WO2018024206A1 - 一种被用于低延迟通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于低延迟通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2018024206A1
WO2018024206A1 PCT/CN2017/095553 CN2017095553W WO2018024206A1 WO 2018024206 A1 WO2018024206 A1 WO 2018024206A1 CN 2017095553 W CN2017095553 W CN 2017095553W WO 2018024206 A1 WO2018024206 A1 WO 2018024206A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
signaling
target
target time
Prior art date
Application number
PCT/CN2017/095553
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018024206A1 publication Critical patent/WO2018024206A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to a transmission scheme of a wireless signal in a wireless communication system, and more particularly to a user equipment and a method and apparatus in a base station supporting low latency communication.
  • TTI Transmission Time Interval
  • Subframe PRB
  • the Physical Resource Block (Ph) corresponds to one ms (milli-second) in time.
  • An LTE subframe includes two time slots (Time Slots), which are a first time slot and a second time slot, respectively, and the first time slot and the second time slot respectively occupy the first half of a LTE subframe. And the last half a millisecond.
  • Latency Reduction In the Latency Reduction (LR, Delay Reduction) topic of 3GPP (3rd Generation Partner Project) Release 14, an important application purpose is low-latency communication. In order to reduce the delay, the traditional LTE frame structure needs to be redesigned, and correspondingly, the new scheduling method needs to be considered.
  • the scheduling granularity of the uplink and downlink scheduling at the physical layer is a PRB (Physical Resource Block) pair, that is, the minimum scheduling unit is a PRB pair, and different RBGs are defined for different system bandwidths ( Resource Block Size) to further apply to different Resource Allocation Types.
  • PRB Physical Resource Block
  • RBGs Resource Block Size
  • the base station and the UE can support different sTTIs (Short Transmission Time Interval).
  • TBSs Transmission Block Sizes
  • Transport block size Transport block size
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa.
  • the present application discloses a method for use in a user equipment for low latency communication, characterized in that it comprises:
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is related to the target time interval.
  • the duration of the target interval is no more than 1 ms.
  • the foregoing method designed by the present application establishes a relationship between the scheduling granularity of the first time-frequency resource in the frequency domain and the duration of the target time interval, thereby simplifying the introduction of low-latency communication.
  • the scheduling of low-latency communication is implemented on the basis of using the existing LTE system TBS as much as possible.
  • the first signaling is used to schedule the first wireless signal.
  • the duration of the target time interval corresponds to a time length of one TTI or a time length of one sTTI.
  • the target time interval occupies a positive integer number of multi-carrier symbols in the time domain.
  • the target time interval is equal to one of ⁇ 2, 4, 7, 14 ⁇ occupied by the time domain.
  • the multicarrier symbol described herein is ⁇ contains CP (Cyclic OFDM (Orthogonal Frequency Division Multiplexing) symbol of Prefix, cyclic prefix, including DFT-s-OFDM (Discrete Fourier Transform Spreading OFDM) of CP, orthogonal frequency division complex of discrete Fourier transform spread spectrum One of the symbols, SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbol, FBMC (Filter Bank Multi Carrier) symbol ⁇ .
  • CP Cyclic OFDM (Orthogonal Frequency Division Multiplexing) symbol of Prefix
  • cyclic prefix including DFT-s-OFDM (Discrete Fourier Transform Spreading OFDM) of CP, orthogonal frequency division complex of discrete Fourier transform spread spectrum
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • FBMC Breast Bank Multi Carrier
  • the first wireless signal occupies all RUs in the first time-frequency resource.
  • the first wireless signal occupies a part of the first time-frequency resource (Resource Unit).
  • the first wireless signal is mapped into the first time-frequency resource by a Rate Matching manner, and the RU occupied by the first wireless signal and the The RUs occupied by the legacy signals in the first time-frequency resource are orthogonal.
  • the traditional signal includes a ⁇ CRS (Cell Reference Signal), a PBCH (Physical Broadcast Channel), and a PSS (Primary Synchronization Signal). At least one of SSS (Secondary Synchronization Signal).
  • ⁇ CRS Cell Reference Signal
  • PBCH Physical Broadcast Channel
  • PSS Primary Synchronization Signal
  • the first time-frequency resource includes a positive integer number of RUs.
  • the first time-frequency resource is discrete in the frequency domain.
  • the first time-frequency resource is continuous in the frequency domain.
  • the RU described herein occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the RU described herein is an RE (Resource Element) in LTE.
  • the UE receives a first radio signal on the first time-frequency resource, where the first signaling corresponds to a DCI of a downlink grant (Downlink Grant), and a physical layer channel corresponding to the first radio signal. It is a PDSCH (Physical Downlink Shared Channel) or a sPDSCH (Short Latency Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • sPDSCH Short Latency Physical Downlink Shared Channel
  • the UE sends a first wireless signal on the first time-frequency resource, where the first signaling corresponds to an uplink grant (Uplink Grant) DCI, the first wireless
  • the physical layer channel corresponding to the signal is a PUSCH (Physical Uplink Shared Channel) or a Short Latency Physical Uplink Shared Channel (SPUSCH).
  • PUSCH Physical Uplink Shared Channel
  • SPUSCH Short Latency Physical Uplink Shared Channel
  • the physical layer channel corresponding to the first signaling is a PDCCH (Physical Downlink Control Channel) or a Short Latency Physical Downlink Control Channel (SPDCCH).
  • PDCCH Physical Downlink Control Channel
  • SPDCCH Short Latency Physical Downlink Control Channel
  • the transport channel corresponding to the first radio signal is a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the transport channel corresponding to the first wireless signal is a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the scheduling granularity of the first time-frequency resource in the frequency domain refers to a minimum frequency domain scheduling unit supported by the first time-frequency resource when being scheduled.
  • the minimum frequency domain scheduling unit corresponds to a frequency domain resource occupied by F PRBs, and the F is a positive integer.
  • the F PRBs are contiguous in the frequency domain.
  • the F PRBs are discrete in the frequency domain.
  • the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval, and refers to the length of time of the F along the target time interval. Increase and decrease, the F increases as the length of time of the target time interval decreases.
  • the duration of the target time interval corresponds to the multi-carrier symbol number F1 occupied by the target time interval in the time domain.
  • the product of F and F1 is equal to a fixed positive integer.
  • the F1 is a positive integer.
  • the duration of the target time interval corresponds to the multi-carrier symbol number F1 occupied by the target time interval in the time domain. If F1 is equal to 14, the F is equal to 1; if the F1 is equal to 7, the F is equal to 2; if the F1 is equal to 4, the F is equal to one of ⁇ 3, 4 ⁇ ; F1 is equal to 2, and the F is equal to one of ⁇ 6, 7 ⁇ .
  • the F1 is a positive integer.
  • the above method is characterized by comprising:
  • the second signaling is physical layer signaling.
  • the above method is characterized in that the UE needs to decode two DCIs for the first wireless signal, respectively for the first signaling and the second signaling.
  • the above embodiment has the advantage that the design of the two DCIs can be optimized to reduce the complexity of implementing low latency transmissions.
  • the second signaling is a DCI.
  • the physical layer channel corresponding to the second signaling is a PDCCH.
  • the physical layer channel corresponding to the second signaling is an sPDCCH.
  • the second signaling is Cell-Specific physical layer signaling.
  • the second signaling is UE-specific (UE-Specific) physical layer signaling.
  • the second signaling is UE group specific, and the UE group includes one or more UEs.
  • the foregoing embodiment has the advantage that UEs supporting different sTTI durations share the second signaling to reduce control signaling overhead.
  • the CRC (Cyclic Redundancy Check) of the second signaling is scrambled by a Radio Group Tempory Identity (Radio Network Tempory Identity) of the UE group.
  • the CRC of the second signaling is scrambled by a C-RNTI (Cell Radio Network Tempory Identity).
  • C-RNTI Cell Radio Network Tempory Identity
  • the second signaling is identified by a default (ie, does not need to be explicitly configured) RNTI.
  • the default RNTI is common to the cell.
  • the CRC of the second signaling is scrambled by the default RNTI.
  • the default RNTI is used to determine a time-frequency resource occupied by the first signaling.
  • the default RNTI is used to generate a demodulation reference signal corresponding to the first signaling.
  • the default RNTI and the target time The duration of the interval is related.
  • the using the second signaling to determine the target time interval means that the second signaling is used to determine ⁇ the duration of the target time interval, the target time interval At least one of the time domain locations ⁇ in a given subframe.
  • the given subframe is a subframe in which the target time interval is located in the time domain.
  • the above method is characterized by comprising:
  • the durations of the time intervals occupied by the wireless signals on the L time-frequency resource pools are respectively L durations; the duration of the target time intervals is one of the L types of durations,
  • the one time-frequency resource belongs to a target time-frequency resource pool, and the target time-frequency resource pool is one of the L time-frequency resource pools; the L is a positive integer.
  • the above method is characterized in that, for durations of different time intervals, the base station configures different time-frequency resource pools for scheduling of the first wireless signal.
  • the duration of the time interval occupied by the wireless signals on the L time-frequency resource pools is L durations respectively: the given wireless signals are transmitted in the given frequency resource pool, and The given wireless signal occupies a given time interval.
  • the duration of the given time interval is one of the L durations.
  • the given time-frequency resource pool is one of the L time-frequency resource pools.
  • the third signaling is high layer signaling.
  • the time-frequency resource pool includes a positive integer number of RUs.
  • the length of time corresponding to any two of the L durations is different.
  • the L is equal to 2, and the L kinds of durations respectively correspond to ⁇ duration of 2 multicarrier symbols, duration of 7 multicarrier symbols ⁇ .
  • the L is equal to 3, and the L kinds of durations respectively correspond to ⁇ duration of 2 multicarrier symbols, duration of 4 multicarrier symbols, duration of 7 multicarrier symbols ⁇ .
  • the above method is characterized in that the first signaling is used for at least one of the following:
  • the explicitly indicating the first time-frequency resource from the target time-frequency resource pool means that the first signaling includes a positive integer number of information bits, and the positive integer information The bits are used to indicate at least the latter of ⁇ timed domain resource location, given frequency domain resource location ⁇ .
  • the given time domain resource location is a time domain location of the first time-frequency resource in the target time-frequency resource pool, and the given frequency-domain resource location is when the first time-frequency resource is in the target The frequency domain location in the frequency resource pool.
  • the explicitly indicating the target time-frequency resource pool from the L time-frequency resource pools is: the first signaling includes P information bits, and the P information bits Located at a fixed location of the first signaling, and the P information bits are used to indicate a target time-frequency resource pool in the L time-frequency resource pools.
  • the P is the largest positive integer less than (log 2 L+1).
  • the implicitly indicating the first time-frequency resource from the target time-frequency resource pool refers to: determining, by the UE, a time domain location and a frequency domain location of the target time-frequency resource pool. Determining a time domain location and a frequency domain location of the first time-frequency resource.
  • the time domain location of the target time-frequency resource pool and the time domain location of the first time-frequency resource are the same.
  • the frequency domain location of the first time-frequency resource in the target time-frequency resource pool is fixed.
  • the frequency domain location of the first time-frequency resource in the target time-frequency resource pool is predefined.
  • the predefined: the frequency domain location of the first time-frequency resource in the target time-frequency resource pool is related to a C-RNTI configured to the UE. .
  • the implicitly indicating the target time-frequency resource pool from the L time-frequency resource pools means that the first signaling includes a total of R information bits, the R and the The index of the target time-frequency resource pool in the L time-frequency resource pools is related.
  • the above embodiments have the advantage of reducing the overhead of system control signaling.
  • the first signaling is explicitly from the target
  • the first time-frequency resource is indicated in the frequency resource pool.
  • the value of the R and the target time-frequency resource pool are in one-to-one correspondence in the indexes of the L time-frequency resource pools.
  • the given scheduling state includes ⁇ given system bandwidth, given transmission mode (Transmission Mode), given multi-antenna transmission mode (transmission classification or beamforming), given the number of currently configured serving cells, given double FDD (Frequency Division Duplexing) or TDD (Time Division Duplexing), given the number of bits in the SRS (Sounding Reference Signal) request field, given CSI (Channel) State information, channel state information)
  • the number of bits in the request field given the number of bits in the CIF (Carrier Indicator Field) field, given ARO (Hybrid Automatic Repeat request Acknowledgement Resource Offset) Move at least one of the number of bits in the field ⁇ .
  • the L is equal to two.
  • the time lengths corresponding to the L time-frequency resource pools are respectively ⁇ 2 multi-carrier symbols, 7 multi-carrier symbols ⁇ .
  • the target time-frequency resource pool is a first time-frequency resource pool; if the R is equal to R2, the target time-frequency resource pool is a second Time-frequency resource pool.
  • the R1 is smaller than the R2, and the corresponding time length of the first time-frequency resource pool is smaller than the corresponding time length of the second time-frequency resource pool.
  • the L is equal to three.
  • the length of time corresponding to the L time-frequency resource pools is ⁇ 2 multi-carrier symbols, 4 multi-carrier symbols, and 7 multi-carrier symbols ⁇ .
  • the R is one of ⁇ R3, R4, R5 ⁇
  • the target time-frequency resource pool is corresponding to ⁇ the third time-frequency resource pool, and the fourth time-frequency resource pool.
  • the R3 is smaller than the R4, and the R4 is smaller than the R5; and the corresponding time length of the third time-frequency resource pool is smaller than the fourth time-frequency resource.
  • the corresponding time length of the pool of the fourth time-frequency resource pool is smaller than the corresponding length of time of the fifth time-frequency resource pool.
  • the above method is characterized in that the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases.
  • the first time-frequency resource includes K first time-frequency resources, and the frequency domain resource occupied by the first time-frequency resource is equal to the scheduling particle of the first time-frequency resource in the frequency domain.
  • the time domain resource occupied by the first sub-time-frequency resource is less than or equal to the duration of the target time interval.
  • the number of RUs occupied by the first sub-time-frequency resource is independent of the duration of the target time interval.
  • the other configuration includes ⁇ subcarrier spacing, CP length ⁇ .
  • the scheduling granularity of the first time-frequency resource in the frequency domain increases as the duration of the target time interval decreases.
  • the above method is characterized in that a first bit block is used to generate the first wireless signal; a time length of a transmission time corresponding to the first bit block is equal to a first time length, the target The duration of the time interval is related to the first length of time, the first time length being no more than 1 ms.
  • the first block of bits is a transport block.
  • the first block of bits includes 2 transport blocks, the two transport blocks being spatially multiplexed.
  • the first bit block is used to generate the first wireless signal, that is, the first wireless signal is that the first bit block is sequentially subjected to channel coding (Channel Coding), and a modulation mapper ( Modulation Mapper), Layer Mapper, Precoding, Resource Element Mapper, Output after OFDM signal generation.
  • channel coding Channel Coding
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Precoding
  • Resource Element Mapper Precoding
  • Output after OFDM signal generation OFDM signal generation
  • a transmission channel corresponding to the first bit block is used to transmit the first bit block and is not used to transmit the first time in a transmission time corresponding to the first bit block.
  • the transmission time corresponding to the first bit block is a TTI or sTTI corresponding to the first bit block.
  • the first length of time is equal to the duration of the target time interval.
  • the first length of time corresponds to a duration of the target time interval.
  • the method is characterized in that the first signaling includes first information, the first information includes M information bits, and the M information bits are used to indicate the first time The frequency domain location of the frequency resource, the M being related to the duration of the target time interval.
  • the M is a positive integer.
  • the above method is characterized in that the number of information bits included in the first information is associated with the duration of the target time interval.
  • the duration of the target time interval is less than 1 ms, the length of the first information is shorter than an information field for the same function in the existing system, thereby reducing the overhead of control signaling.
  • the above method has the advantage that if the load of the first signaling remains unchanged, the saved bits can be used for indication of other information.
  • the above method has the advantage that if the load of the first signaling is reduced due to the reduction of the number of bits of the first information, the blind detection complexity of the first signaling will be reduced, and The overhead of the control signaling corresponding to the first signaling may also be reduced.
  • the reciprocal (1/M) of the M is linear with the duration of the target time interval.
  • the M decreases as the duration of the target time interval increases.
  • the M increases as the duration of the target time interval decreases.
  • the first signaling is further used to determine a ⁇ MCS (Modulation and Coding Status), NDI, RV (Redundancy Version), HARQ process of the first wireless signal.
  • MCS Modulation and Coding Status
  • NDI NDI
  • RV Redundancy Version
  • HARQ process of the first wireless signal.
  • the present application discloses a method in a base station used for low-latency communication, which includes:
  • the first signaling is physical layer signaling.
  • the first time-frequency resource is occupied in the time domain Target time interval.
  • the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval.
  • the duration of the target time interval is no more than 1 ms.
  • the base station sends a first radio signal on the first time-frequency resource, where the first signaling corresponds to a downlink authorized DCI, and the physical layer channel corresponding to the first radio signal is a PDSCH or an sPDSCH. .
  • the base station receives the first wireless signal on the first time-frequency resource, where the first signaling corresponds to an uplink authorized DCI, and the physical layer channel corresponding to the first wireless signal is a PUSCH or an sPUSCH .
  • the above method is characterized by comprising:
  • the second signaling is physical layer signaling.
  • the above method is characterized by comprising:
  • the durations of the time intervals occupied by the wireless signals on the L time-frequency resource pools are respectively L durations.
  • the duration of the target time interval is one of the L types of durations, the first time-frequency resource belongs to a target time-frequency resource pool, and the target time-frequency resource pool is in the L time-frequency resource pools. one of.
  • the L is a positive integer.
  • the above method is characterized in that the first signaling is used for at least one of the following:
  • the above method is characterized in that the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases.
  • the above method is characterized in that a first bit block is used to generate the first wireless signal; a time length of a transmission time corresponding to the first bit block is equal to a first time length, the target The duration of the time interval is related to the first length of time, the first time length being no more than 1 ms.
  • the above method is characterized in that said first signaling comprises First information, the first information includes M information bits, the M information bits are used to indicate a frequency domain location of the first time-frequency resource, and the M is related to a duration of the target time interval.
  • the M is a positive integer.
  • the present application discloses a user equipment used for low-latency communication, which includes:
  • a first receiver module receiving the first signaling, the first signaling being used to determine the first time-frequency resource
  • a first transceiver module receiving a first wireless signal on the first time-frequency resource, or transmitting a first wireless signal on the first time-frequency resource
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is related to the target time interval.
  • the duration of the target interval is no more than 1 ms.
  • the first receiving module is further configured to receive second signaling, where the second signaling is used to determine the target time interval.
  • the second signaling is physical layer signaling.
  • the first receiving module is further configured to receive third signaling, where the third signaling is used to determine L time-frequency resource pools; occupied by wireless signals on the L time-frequency resource pools
  • the duration of the time interval is respectively L duration;
  • the duration of the target time interval is one of the L kinds of durations, and the first time-frequency resource belongs to a target time-frequency resource pool, and the target time
  • the frequency resource pool is one of the L time-frequency resource pools;
  • the L is a positive integer.
  • the user equipment is characterized in that the first signaling is used for at least one of the following:
  • the user equipment is characterized in that the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases.
  • the user equipment is characterized in that the first bit block is used to generate the first wireless signal.
  • the transmission time corresponding to the first bit block is long The degree is equal to the first time length, and the duration of the target time interval is related to the first time length, and the first time length is no more than 1 ms.
  • the user equipment is characterized in that the first signaling includes first information, the first information includes M information bits, and the M information bits are used to indicate a first time frequency.
  • the frequency domain location of the resource the M being related to the duration of the target time interval; the M being a positive integer.
  • the present application discloses a base station device used for low-latency communication, which includes:
  • a first transmitter module transmitting first signaling, the first signaling being used to determine a first time-frequency resource
  • a second transceiver module transmitting a first wireless signal on the first time-frequency resource or receiving a first wireless signal on the first time-frequency resource;
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is related to the target time interval.
  • the duration of the target interval is no more than 1 ms.
  • the first sending module further sends a second signaling, where the second signaling is used to determine the target time interval, and the second signaling is physical layer signaling.
  • the first sending module further sends a third signaling, where the third signaling is used to determine L time-frequency resource pools, and the time occupied by the wireless signals on the L time-frequency resource pools
  • the duration of the interval is respectively L duration
  • the duration of the target time interval is one of the L types of durations
  • the first time-frequency resource belongs to a target time-frequency resource pool
  • the target time-frequency resource The pool is one of the L time-frequency resource pools
  • the L is a positive integer.
  • the user equipment is characterized in that the first signaling is used for at least one of the following:
  • the user equipment is characterized in that the scheduling granularity of the first time-frequency resource in the frequency domain is consistent with the duration of the target time interval. Increase and decrease.
  • the user equipment is characterized in that a first bit block is used to generate the first wireless signal; a time length of a transmission time corresponding to the first bit block is equal to a first time length, The duration of the target time interval is related to the first length of time, the first time length being no more than 1 ms.
  • the user equipment is characterized in that the first signaling includes first information, the first information includes M information bits, and the M information bits are used to indicate a first time frequency.
  • the frequency domain location of the resource the M being related to the duration of the target time interval; the M being a positive integer.
  • the present application has the following technical advantages over the prior art:
  • Optimizing the design manner of the first signaling and the scheduling of the first wireless signal by establishing a scheduling granularity of the first time-frequency resource in a frequency domain with a duration of the target time interval the way.
  • the third signaling By designing the third signaling, allocate L time-frequency resource pools for the L types of durations, and allocate resources reasonably to avoid waste when ensuring transmission requirements corresponding to different durations.
  • the first information to be associated with the duration of the target time interval, and reducing the information bits for the first time-frequency resource indication in the first signaling in a low-latency transmission scenario , thereby reducing control signaling overhead and reducing the blind detection complexity of the UE.
  • FIG. 1 shows a flow chart of first signaling according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a given user equipment according to an embodiment of the present application
  • FIG. 5 illustrates a flow of transmission of the first wireless signal in accordance with an embodiment of the present application.
  • FIG. 6 shows a flow chart of transmission of the first wireless signal in accordance with another embodiment of the present application.
  • FIG. 7 is a schematic diagram of the L time-frequency resource pools according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing durations of the first time-frequency resource corresponding to different target time intervals according to an embodiment of the present application.
  • FIG. 9 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 10 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of a first signaling transmission in accordance with one embodiment of the present application, as shown in FIG.
  • the user equipment in the present application first receives first signaling, the first signaling is used to determine a first time-frequency resource; and then receives the first wireless on the first time-frequency resource. Signaling, or transmitting the first wireless signal on the first time-frequency resource.
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is continued with the target time interval. Time dependent; the duration of the target time interval is no more than 1 ms.
  • the first signaling is used to schedule the first wireless signal.
  • the duration of the target time interval corresponds to a time length of one TTI or a time length of one sTTI.
  • the target time interval occupies a positive integer number of multi-carrier symbols in the time domain.
  • the target time interval is equal to one of ⁇ 2, 4, 7, 14 ⁇ occupied by the time domain.
  • the multi-carrier symbol described herein is in the ⁇ OFDM symbol including CP, DFT-s-OFDM symbol including CP, SC-FDMA symbol, FBMC symbol ⁇ One.
  • the first wireless signal occupies all RUs in the first time-frequency resource.
  • the first wireless signal occupies a part of the first time-frequency resources.
  • the first wireless signal is mapped to the first time-frequency resource in a rate matching manner, and the RU occupied by the first wireless signal and the first time
  • the RU occupied by the legacy signal in the frequency resource is orthogonal.
  • the legacy signal includes at least one of ⁇ CRS, PBCH, PSS, SSS ⁇ .
  • the first time-frequency resource includes a positive integer number of RUs.
  • the first time-frequency resource is discrete in the frequency domain.
  • the first time-frequency resource is continuous in the frequency domain.
  • the RU described herein occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the RU described herein is an RE in LTE.
  • the UE receives a first radio signal on the first time-frequency resource, where the first signaling corresponds to a downlink authorized DCI, and a physical layer channel corresponding to the first radio signal is a PDSCH or sPDSCH.
  • the UE sends a first radio signal on the first time-frequency resource, where the first signaling corresponds to an uplink authorized DCI, and the physical layer channel corresponding to the first wireless signal is a PUSCH or sPUSCH.
  • the physical layer channel corresponding to the first signaling is a PDCCH or an sPDCCH.
  • the transport channel corresponding to the first wireless signal is a DL-SCH.
  • the transport channel corresponding to the first wireless signal is a UL-SCH.
  • the scheduling granularity of the first time-frequency resource in the frequency domain refers to a minimum frequency domain scheduling unit supported by the first time-frequency resource when being scheduled.
  • the minimum frequency domain scheduling unit corresponds to a frequency domain resource occupied by F PRBs, and the F is a positive integer.
  • the F PRBs are contiguous in the frequency domain.
  • the F PRBs are discrete in the frequency domain.
  • the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval, and refers to the time of the F along the target time interval.
  • the length increases and decreases, and the F increases as the length of time of the target time interval decreases.
  • the duration of the target time interval corresponds to the multi-carrier symbol number F1 occupied by the target time interval in the time domain.
  • the product of F and F1 is equal to a fixed positive integer.
  • the F1 is a positive integer.
  • the duration of the target time interval corresponds to the multi-carrier symbol number F1 occupied by the target time interval in the time domain. If F1 is equal to 14, the F is equal to 1; if the F1 is equal to 7, the F is equal to 2; if the F1 is equal to 4, the F is equal to one of ⁇ 3, 4 ⁇ ; F1 is equal to 2, and the F is equal to one of ⁇ 6, 7 ⁇ .
  • the F1 is a positive integer.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-Core Network 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • Internet service 230 Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of the UE 201 include a cellular phone, a smart phone, a session Start Protocol (SIP) phones, laptops, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (eg, MP3 players), cameras, game consoles , drones, aircraft, narrowband physical network equipment, machine type communication equipment, land vehicles, automobiles, wearable devices, or any other similar functional device.
  • SIP Session Start Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players eg, MP3 players
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports low latency communication.
  • the gNB 203 supports low latency communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 Above the PHY 301, and is responsible for the link between the UE and the gNB through the PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first signaling in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated by the PHY 301.
  • the third signaling in this application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB 410 in communication with a UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a scheduler 471, a transmitter/receiver 416, and an antenna 420.
  • the user equipment includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a dispatch processor 441, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • the upper layer packet arrives at the controller/processor 440, which provides header compression, encryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as DL-SCH (Downlink Shared Channel);
  • DL-SCH Downlink Shared Channel
  • the controller/processor 440 is associated with a memory 430 that stores program codes and data.
  • the memory 430 can be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling air interface resources corresponding to the transmission requirements;
  • - Transmit processor 415 receives the output bit stream of controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • the scheduler 471 allocates the time domain, the frequency domain and the code domain resource to the data symbols, determines the first signaling in the application, and determines the time interval of the first time-frequency resource in the time domain and the application in the present application.
  • Transmitter 416 is operative to convert the baseband signals provided by transmit processor 415 into radio frequency signals and transmit them via antenna 420; each transmitter 416 samples the respective input symbol streams to obtain a respective sampled signal stream. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment may include:
  • Receiver 456 for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • a scheduling processor 441 determining time domain, frequency domain and code domain resources occupied by downlink data symbols, and determining a time interval of the first time-frequency resource in the time domain and a description in the present application The scheduling granularity of a time-frequency resource in the frequency domain; and outputting the result to the controller/processor 490;
  • the controller/processor 490 receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the processing related to the user equipment may include:
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression, encryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels, Implementing an L2 layer protocol for the user plane and the control plane; the upper layer packet includes data or control information;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • the memory 480 can be a computer readable medium;
  • a scheduling processor 441 determining a time domain, a frequency domain, and a code domain resource occupied by the uplink data symbol, and determining that the first time-frequency resource is in a time domain occupied target time interval and the first time-frequency resource in the present application is The scheduling granularity in the frequency domain; and outputting the result to the controller/processor 440;
  • the transmit processor 455 receives the output bit stream of the controller/processor 490, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling generation, etc.
  • L1 layer ie, the physical layer
  • various signal transmission processing functions for the L1 layer including coding, interleaving, scrambling, modulation, power control/allocation, and physics Layer control signaling generation, etc.
  • Transmitter 456 is operative to convert the baseband signals provided by transmit processor 455 into radio frequency signals and transmit them via antenna 460; each transmitter 456 samples the respective input symbol streams to obtain a respective sampled signal stream. Each transmitter 456 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on the respective sample streams to obtain an uplink signal.
  • the processing related to the base station device (410) may include:
  • Receiver 416 is configured to convert the radio frequency signal received through the antenna 420 into a baseband signal and provide it to the receiving processor 412;
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, and the like;
  • the scheduler 471 allocates time domain, frequency domain and code domain resources to the data symbols, and determines the application Determining the first signaling, and determining the scheduling time granularity of the first time-frequency resource in the time domain occupation target interval and the first time-frequency resource in the frequency domain in the application; and passing the controller / processor 440 outputs the result to the transmit processor 415;
  • the controller/processor 440 receives the bit stream output by the receive processor 412, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels for implementation.
  • the controller/processor 440 can be associated with a memory 430 that stores program codes and data.
  • Memory 430 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be
  • the processor is used together, the UE 450 device at least: receiving the first signaling, the first signaling is used to determine a first time-frequency resource; receiving the first wireless signal on the first time-frequency resource, or Transmitting a first radio signal on the first time-frequency resource; the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in a time domain; and the first time-frequency resource is in a frequency
  • the scheduling granularity on the domain is related to the duration of the target time interval; the duration of the target time interval is no more than 1 ms.
  • the UE 450 includes a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: receiving a first signaling
  • the first signaling is used to determine a first time-frequency resource; receive a first wireless signal on the first time-frequency resource, or send a first wireless signal on the first time-frequency resource;
  • the first signaling is physical layer signaling;
  • the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval.
  • the duration of the target time interval is no more than 1 ms.
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device at least: transmitting first signaling, the first signaling is used to determine a first time-frequency resource; transmitting a first wireless signal on the first time-frequency resource, or at the first time Receiving a first wireless signal on a frequency resource; the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in a time domain; and the scheduling particle of the first time-frequency resource in a frequency domain
  • the degree is related to the duration of the target time interval; the duration of the target time interval is no more than 1 ms.
  • the gNB 410 includes: a memory storing a computer readable instruction program that, when executed by at least one processor, generates an action, the action comprising: transmitting the first signaling
  • the first signaling is used to determine a first time-frequency resource; to send a first wireless signal on the first time-frequency resource, or to receive a first wireless signal on the first time-frequency resource;
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; and the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval.
  • the duration of the target time interval is no more than 1 ms.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the first wireless signal on the first time-frequency resource.
  • At least two of receiver 456, receive processor 452, and controller/processor 490 are used to receive the first wireless signal on the first time-frequency resource.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first signaling.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the second signaling.
  • At least two of the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the third signaling.
  • the scheduling processor 441 is configured to determine the first time-frequency resource and to determine a scheduling granularity of the first time-frequency resource in a frequency domain.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first wireless signal on the first time-frequency resource.
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the first wireless signal on the first time-frequency resource.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first signaling.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the second signaling.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the third signaling.
  • a scheduler 471 is used to determine the first time-frequency resource and is used to determine a scheduling granularity of the first time-frequency resource in a frequency domain.
  • Embodiment 5 illustrates a flow chart of transmission of one of the first wireless signals in accordance with the present application, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the steps identified in block F0 are optional.
  • the third signaling is sent in step S10, the third signaling is used to determine L time-frequency resource pools; the second signaling is sent in step S11, the second signaling is used Determining the target time interval; transmitting first signaling in step S12, the first signaling is used to determine a first time-frequency resource; and transmitting, in step S13, the first wireless on the first time-frequency resource signal.
  • receiving third signaling in step S20 the third signaling is used to determine L time-frequency resource pools; receiving second signaling in step S11, the second signaling is used Determining the target time interval; receiving first signaling in step S12, the first signaling is used to determine a first time-frequency resource; and receiving, in step S13, the first wireless on the first time-frequency resource signal.
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in a time domain; the scheduling granularity of the first time-frequency resource in a frequency domain is The duration of the target time interval is related; the duration of the target time interval is not more than 1 ms; the second signaling is physical layer signaling; the duration of the time interval occupied by the wireless signals on the L time-frequency resource pools The time is respectively L durations; the duration of the target time interval is one of the L types of durations, the first time-frequency resource belongs to a target time-frequency resource pool, and the target time-frequency resource pool is ???
  • the first signaling is used to ⁇ explicitly indicate the first time-frequency resource from the target time-frequency resource pool, Explicitly indicating the target time-frequency resource pool in the L time-frequency resource pools, implicitly indicating the first time-frequency resource from the target time-frequency resource pool, and from the L time-frequency resource pools At least one of implicitly indicating the target time-frequency resource pool ⁇ ;
  • the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases;
  • a first bit block is used to generate the first wireless signal;
  • the first The time length of the transmission time corresponding to the bit block is equal to the first time length, and the duration of the target time interval is related to the first time length, and the first time length is not More than 1 ms;
  • the first signaling includes first information, the first information includes M information bits, and the M information bits are used to indicate a frequency domain location of the first time-frequency resource, where the M Related to the duration
  • the first time-frequency resource includes K first time-frequency resources, and the frequency-domain resource occupied by the first time-frequency resource is equal to the scheduling of the first time-frequency resource in a frequency domain.
  • the granularity, the time domain resource occupied by the first sub-time-frequency resource is less than or equal to the duration of the target time interval.
  • the number of RUs occupied by the first sub-time-frequency resource is independent of the duration of the target time interval.
  • the first sub-time-frequency resource occupies a bandwidth corresponding to Z PRBs in the frequency domain.
  • the Z is a positive integer.
  • the Z PRBs are contiguous in the frequency domain.
  • the Z PRBs are discrete in the frequency domain.
  • the value of Z is related to the duration of the target time interval.
  • the duration of the target time interval is equal to 7 multi-carrier symbols, the Z is equal to 2; the duration of the target time interval is equal to 4 multi-carrier symbols, and the Z is equal to ⁇ One of 3, 4 ⁇ ; the duration of the target time interval is equal to 2 multicarrier symbols, the Z being equal to one of ⁇ 6, 7 ⁇ .
  • Embodiment 6 illustrates a flow chart of another transmission of the first wireless signal according to the present application, as shown in FIG.
  • the base station N3 is a maintenance base station of the serving cell of the UE U4.
  • the steps identified in block F1 are optional.
  • the third signaling is sent in step S30, the third signaling is used to determine L time-frequency resource pools; the second signaling is sent in step S31, the second signaling is used Determining the target time interval; transmitting first signaling in step S32, the first signaling is used to determine a first time-frequency resource; and receiving, in step S33, the first wireless on the first time-frequency resource signal.
  • receiving third signaling in step S40 the third signaling is used to determine L time-frequency resource pools; receiving second signaling in step S41, the second signaling is used Determining the target time interval; receiving first signaling in step S42, the first signaling is used to determine a first time-frequency resource; and transmitting, in step S43, the first wireless on the first time-frequency resource signal.
  • the first time-frequency resource includes K first time-frequency resources, and the frequency-domain resource occupied by the first time-frequency resource is equal to the scheduling of the first time-frequency resource in a frequency domain.
  • the granularity, the time domain resource occupied by the first sub-time-frequency resource is less than or equal to the duration of the target time interval.
  • the number of RUs occupied by the first sub-time-frequency resource is independent of the duration of the target time interval.
  • the first sub-time-frequency resource occupies a bandwidth corresponding to Z PRBs in the frequency domain.
  • the Z is a positive integer.
  • the Z PRBs are contiguous in the frequency domain.
  • the Z PRBs are discrete in the frequency domain.
  • the value of Z is related to the duration of the target time interval.
  • the duration of the target time interval is equal to 7 multi-carrier symbols, the Z is equal to 2; the duration of the target time interval is equal to 4 multi-carrier symbols, and the Z is equal to ⁇ One of 3, 4 ⁇ ; the duration of the target time interval is equal to 2 multicarrier symbols, the Z being equal to one of ⁇ 6, 7 ⁇ .
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in the time domain; the scheduling granularity of the first time-frequency resource in the frequency domain is The duration of the target time interval is related; the duration of the target time interval is not more than 1 ms; the second signaling is physical layer signaling; the duration of the time interval occupied by the wireless signals on the L time-frequency resource pools The time is respectively L durations; the duration of the target time interval is one of the L types of durations, the first time-frequency resource belongs to a target time-frequency resource pool, and the target time-frequency resource pool is ???
  • the L is a positive integer
  • the first signaling is used to ⁇ explicitly indicate the first time-frequency resource from the target time-frequency resource pool, Explicitly indicating the target time-frequency resource pool in the L time-frequency resource pools, implicitly indicating the first time-frequency resource from the target time-frequency resource pool, and from the L time-frequency resource pools At least one of implicitly indicating the target time-frequency resource pool ⁇ ;
  • the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases;
  • a first bit block is used to generate the first wireless signal;
  • the first The length of the transmission time corresponding to the bit block is equal to the first time length, and the duration of the target time interval is related to the first time length, the first time length is not more than 1 ms;
  • the first signaling includes a message, the first information includes M information bits, and the M information bits are used to indicate a frequency domain location of the first time-frequency resource, M is related to the duration of the
  • Embodiment 7 illustrates a schematic diagram of one of the L time-frequency resource pools according to the present application, as shown in FIG. In FIG. 7, ⁇ time length #1, time length #2, ..., time length #L ⁇ are respectively for the length of the time window occupied by the L time-frequency resource pools in the time domain.
  • the time length #i and the time length #j are unequal lengths of time, the time length #i and the time length #j being any two of the L time lengths.
  • the i and the j are both positive integers less than L, and the i is not equal to the j.
  • the L time-frequency resource pools are all located in one subframe.
  • the L time-frequency resource pools are orthogonal in the frequency domain.
  • the L time-frequency resource pools have overlapping in the frequency domain.
  • Embodiment 8 illustrates a schematic diagram of the duration of the first time-frequency resource corresponding to different target time intervals according to one of the present application, as shown in FIG. Figure 8-A in Figure 8 is for a duration of the target time interval for the first time-frequency resource equal to a first time length, and Figure 8-B in Figure 8 is for the first time
  • the duration of the target time interval for which the frequency resource is directed is equal to the second length of time.
  • the first length of time is less than the second length of time.
  • the bandwidth occupied by the first time-frequency resource in the frequency domain is equal to S1 (kHz) in the first time length, and the bandwidth occupied by the first time-frequency resource in the frequency domain is equal to S2 in the first time length. (kHz).
  • the thick line box in the figure is for the first time-frequency resource set in different durations, and the small square in the figure corresponds to the RU described in the figure, and the small square filled with the oblique square in the figure corresponds to the given RU set.
  • the given set of RUs is an RU other than the RU occupied by the first wireless signal in the first time-frequency resource.
  • the first time-frequency resource shown in the figure is directed to the first sub-time-frequency resource described in this application.
  • the number of RUs occupied by the first sub-time-frequency resource in FIG. 8-A and the first sub-time-frequency resource in FIG. 8-B are The number of RUs occupied is the same.
  • the first sub-time-frequency resource is in a normal CP. It takes up 168 RUs.
  • the first sub-time-frequency resource occupies 144 RUs under the extended CP.
  • the number of RUs occupied by the given RU set in one of the first sub-time-frequency resources in FIG. 8-A and the given set of RUs are in FIG. 8 -
  • the number of RUs occupied in one of the first sub-time-frequency resources in B is different.
  • the first time length corresponds to T1 multi-carrier symbols
  • the second time length corresponds to T2 multi-carrier symbols
  • the product of T1 and S1 is equal to the product of T2 and S2.
  • the T1, T2, S1, and S2 are all positive integers.
  • the given set of RUs is used to transmit at least one of ⁇ PSS, SSS, CRS, PBCH ⁇ .
  • the first signaling is used to determine the first time-frequency resource, and the first wireless signal occupies a part of the first time-frequency resource.
  • the first time length corresponds to a time duration of two multi-carrier symbols.
  • the second length of time corresponds to the duration of the 7 multi-carrier symbols.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 900 is mainly composed of a first receiver module 901 and a first transceiver module 902.
  • a first receiver module 901 receiving first signaling, the first signaling being used to determine a first time-frequency resource
  • the first transceiver module 902 receives the first wireless signal on the first time-frequency resource or transmits the first wireless signal on the first time-frequency resource.
  • the first signaling is physical layer signaling; the first time-frequency resource occupies a target time interval in a time domain; the scheduling granularity of the first time-frequency resource in a frequency domain is The duration of the target time interval is related; the duration of the target time interval is no more than 1 ms.
  • the first receiver module 901 further receives second signaling, the second signaling is used to determine the target time interval; and the second signaling is physical layer signaling.
  • the first receiver module 902 further receives third signaling, where the third signaling is used to determine L time-frequency resource pools; wireless signal stations on the L time-frequency resource pools
  • the duration of the occupied time interval is respectively L duration;
  • the duration of the target time interval is one of the L kinds of durations, and the first time-frequency resource belongs to a target time-frequency resource pool, the target The time-frequency resource pool is one of the L time-frequency resource pools;
  • the L is a positive integer.
  • the first signaling is used for at least one of the following:
  • the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases.
  • a first block of bits is used to generate the first wireless signal.
  • the time length of the transmission time corresponding to the first bit block is equal to the first time length, and the duration of the target time interval is related to the first time length, and the first time length is not more than 1 ms.
  • the first signaling includes first information, where the first information includes M information bits, where the M information bits are used to indicate a frequency domain location of the first time-frequency resource, M is related to the duration of the target time interval; the M is a positive integer.
  • the first receiver module 901 includes at least the first three of the ⁇ receiver 456, the receiving processor 452, the scheduling processor 441, the controller/processor 490 ⁇ of FIG.
  • the first transceiver module 902 includes at least one of ⁇ transmitter 456, transmit processor 455, receiver 456, receive processor 452, controller/processor 490 ⁇ of FIG. Both.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 1000 is mainly composed mainly of a first transmitter module 1001 and a second transceiver module 1002.
  • a first transmitter module 1001 transmitting first signaling, the first signaling being used for determining First time-frequency resource;
  • the second transceiver module 1002 transmits the first wireless signal on the first time-frequency resource or the first wireless signal on the first time-frequency resource.
  • the first signaling is physical layer signaling.
  • the first time-frequency resource occupies a target time interval in the time domain.
  • the scheduling granularity of the first time-frequency resource in the frequency domain is related to the duration of the target time interval.
  • the duration of the target time interval is no more than 1 ms.
  • the first transmitter module 1001 also transmits second signaling, the second signaling being used to determine the target time interval.
  • the second signaling is physical layer signaling.
  • the first transmitter module 1001 further sends a third signaling, where the third signaling is used to determine L time-frequency resource pools; wireless signal stations on the L time-frequency resource pools
  • the duration of the occupied time interval is respectively L duration; the duration of the target time interval is one of the L kinds of durations, and the first time-frequency resource belongs to a target time-frequency resource pool, the target The time-frequency resource pool is one of the L time-frequency resource pools.
  • the L is a positive integer.
  • the first signaling is used for at least one of the following:
  • the scheduling granularity of the first time-frequency resource in the frequency domain decreases as the duration of the target time interval increases.
  • a first block of bits is used to generate the first wireless signal.
  • the time length of the transmission time corresponding to the first bit block is equal to the first time length, and the duration of the target time interval is related to the first time length, and the first time length is not more than 1 ms.
  • the first signaling includes first information, where the first information includes M information bits, where the M information bits are used to indicate a frequency domain location of the first time-frequency resource, M is related to the duration of the target time interval; the M is a positive integer.
  • the first transmitter module 1001 includes the ⁇ transmitted in FIG. At least three of the transmitter 416, the transmit processor 415, the scheduler 471, and the controller/processor 440 ⁇ .
  • the second transceiver module 1002 includes at least one of ⁇ receiver 416, receiving processor 412, transmitter 416, transmitting processor 415, controller/processor 440 ⁇ in FIG. Both.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present application include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种被用于低延迟通信的用户设备、基站中的方法和装置。接收第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号。所述第一信令是物理层信令。所述第一时频资源在时域占用目标时间间隔。所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关。本发明通过将所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间建立联系,优化所述第一信令的设计方式和所述第一无线信号的调度方式,减小控制信令的开销,降低为实现低延迟传输带来的传输块大小设计的复杂度,进而提高整体系统性能和频谱效率。

Description

一种被用于低延迟通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及支持低延迟通信的用户设备及基站中的方法和装置。
背景技术
现有的LTE(Long-term Evolution,长期演进)及LTE-A(Long Term Evolution Advanced,增强的长期演进)系统中,TTI(Transmission Time Interval,传输时间间隔)或者子帧(Subframe)或者PRB(Physical Resource Block,物理资源块)对(Pair)在时间上对应一个ms(milli-second,毫秒)。一个LTE子帧包括两个时隙(Time Slot),分别是第一时隙和第二时隙,且所述第一时隙和所述第二时隙分别占用一个LTE子帧的前半个毫秒和后半个毫秒。
3GPP(3rd Generation Partner Project,第三代合作伙伴项目)Release 14中的Latency Reduction(LR,延迟降低)课题中,一个重要的应用目的就是低延迟通信。针对降低延迟的需求,传统的LTE帧结构需要被重新设计,与之相对应的,新的调度方式也需要被考虑。
发明内容
Release 14降低延迟相关的Study Item(研究课题)中,一个需要被研究的方向就是下行调度和上行调度的传输方式和调度颗粒度(Granularity)的设计。LTE系统中,上下行调度在物理层的调度颗粒度是一个PRB(Physical Resource Block,物理资源块对)对,即最小调度单位是一个PRB对,且针对不同的系统带宽定义了不同的RBG(Resource Block Size)大小,以进一步应用于不同的资源分配方式(Resource Allocation Type)。目前在Release 14的LR课题中,基站和UE(User Equipment,用户设备)可以支持不同的sTTI(Short Transmission Time Interval,缩短的传输时间间隔)。随着而来的问题就是,针对不同的sTTI,系统是否需要设计新的多种不同的TBS(Transmission Block Size, 传输块尺寸)来支持不同的sTTI所对应的不同的持续时间。
一种直观的解决方法,就是针对不同的sTTI的持续时间,结合现有的TBS的大小,分别引入新的TBS,并沿用现在DCI(Downlink Control Information,下行控制信息)中关于RA(Resource Allocation,资源分配)的信息域(Information Field)。然而这样的设计方式,明显会给UE带来较大的实现复杂度,且标准化工作繁重。同时,若考虑到目前两级(Two-level)DCI的设计,此种方法会增加控制信令的开销和盲检测的复杂度。
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本申请公开了一种被用于低延迟通信的用户设备中的方法,其特征在于包括:
-接收第一信令,所述第一信令被用于确定第一时频资源;
-在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;
其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个实施例,本申请设计的上述方法通过将所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间建立联系,从而简化因为引入低延迟通信而带来的新的TBS设计的复杂性。在尽量沿用现有LTE系统TBS的基础上,实现低延迟通信的调度。
作为一个实施例,所述第一信令被用于调度所述第一无线信号。
作为一个实施例,所述目标时间间隔的持续时间对应一个TTI的时间长度或者一个sTTI的时间长度。
作为一个实施例,所述目标时间间隔在时域占用正整数个多载波符号。
作为一个实施例,所述目标时间间隔在时域占用的多载波符号的个数等于{2,4,7,14}中的之一。
作为一个实施例,本文中所述的多载波符号是{包含CP(Cyclic  Prefix,循环前缀)的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading OFDM,离散傅里叶变换扩频的正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号,FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号}中的之一。
作为一个实施例,所述第一无线信号占用所述第一时频资源中的全部RU。
作为一个实施例,所述第一无线信号占用所述第一时频资源中的部分RU(Resource Unit,资源单元)。
作为该实施例的一个子实施例,所述第一无线信号通过速率匹配的方式(Rate Matching)映射到所述第一时频资源中,且所述第一无线信号所占用的RU和所述第一时频资源中的传统信号所占用的RU是正交的。
作为该子实施例的一个附属实施例,所述传统信号包括{CRS(Cell Reference Signal,小区参考信号),PBCH(Physical Broadcast Channel,物理广播信道),PSS(Primary Synchronization Signal,主同步信号),SSS(Secondary Synchronization Signal,辅同步信号)}中的至少之一。
作为一个实施例,所述第一时频资源包括正整数个RU。
作为一个实施例,所述第一时频资源在频域上是离散的。
作为一个实施例,所述第一时频资源在频域上是连续的。
作为一个实施例,本文中所述RU在时域上占用一个多载波符号,在频域上占用一个子载波。
作为一个实施例,本文中所述的RU是LTE中的RE(Resource Element,资源单元)。
作为一个实施例,所述UE在所述第一时频资源上接收第一无线信号,所述第一信令对应下行授权(Downlink Grant)的DCI,所述第一无线信号对应的物理层信道是PDSCH(Physical Downlink Shared Channel,物理下行共享信道)或者sPDSCH(Short Latency Physical Downlink Shared Channel,短延迟物理下行共享信道)。
作为一个实施例,所述UE在所述第一时频资源上发送第一无线信号,所述第一信令对应上行授权(Uplink Grant)的DCI,所述第一无线 信号对应的物理层信道是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)或者sPUSCH(Short Latency Physical Uplink Shared Channel,短延迟物理上行共享信道)。
作为一个实施例,所述第一信令对应的物理层信道是PDCCH(Physical Downlink Control Channel,物理下行控制信道)或者sPDCCH(Short Latency Physical Downlink Control Channel,短延迟的物理下行控制信道)。
作为一个实施例,所述第一无线信号对应的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一无线信号对应的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一时频资源在频域上的调度颗粒度是指:所述第一时频资源在被调度时所支持的最小频域调度单位。
作为该实施例的一个子实施例,所述最小频域调度单位对应F个PRB所占据的频域资源,所述F是正整数。
作为该子实施例的一个附属实施例,所述F个PRB在频域是连续的。
作为该子实施例的一个附属实施例,所述F个PRB在频域是离散的。
作为该实施例的一个子实施例,所述所述第一时频资源在频域上的调度颗粒度与目标时间间隔的持续时间有关是指:所述F随所述目标时间间隔的时间长度增加而减小,所述F随所述目标时间间隔的时间长度减小而增加。
作为该子实施例的一个附属实施例,所述目标时间间隔的持续时间对应所述目标时间间隔在时域占用的多载波符号数F1。所述F与所述F1的乘积等于固定的正整数。所述F1是正整数。
作为该子实施例的一个附属实施例,所述目标时间间隔的持续时间对应所述目标时间间隔在时域占用的多载波符号数F1。如果所述F1等于14,所述F等于1;如果所述F1等于7,所述F等于2;如果所述F1等于4,所述F等于{3,4}中的之一;如果所述F1等于2,所述F等于{6,7}中的之一。所述F1是正整数。
根据本申请的一个方面,上述方法的特征在于包括:
-接收第二信令,所述第二信令被用于确定所述目标时间间隔;
其中,所述第二信令是物理层信令。
作为一个实施例,上述方法的特质在于,所述UE在针对所述第一无线信号需要解码两个DCI,分别针对所述第一信令和所述第二信令。
作为一个实施例,上述实施例的好处在于,可以优化所述两个DCI的设计,以降低实现低延迟传输的复杂度。
作为一个实施例,所述第二信令是DCI。
作为一个实施例,所述第二信令对应的物理层信道是PDCCH。
作为一个实施例,所述第二信令对应的物理层信道是sPDCCH。
作为一个实施例,所述第二信令是小区公共的(Cell-Specific)物理层信令。
作为一个实施例,所述第二信令是UE特定的(UE-Specific)物理层信令。
作为一个实施例,所述第二信令是UE组特定的,所述UE组中包括一个或者多个UE。
作为该实施例的一个子实施例,上述实施例的好处在于:支持不同sTTI持续时间的UE共享所述第二信令以降低控制信令开销。
作为该实施例的一个子实施例,所述第二信令的CRC(Cyclic Redundancy Check,循环冗余校验)通过UE组特定的RNTI(Radio Network Tempory Identity,无线网络临时标识)扰码。
作为一个实施例,所述第二信令的CRC通过C-RNTI(Cell Radio Network Tempory Identity,小区无线网络临时标识)扰码。
作为一个实施例,所述第二信令被缺省的(即不需要显式配置的)RNTI所标识。
作为该实施例的一个子实施例,所述缺省的RNTI是小区公共的。
作为该实施例的一个子实施例,所述第二信令的CRC被所述缺省的RNTI扰码。
作为该实施例的一个子实施例,所述缺省的RNTI被用于确定所述第一信令所占用的时频资源。
作为该实施例的一个子实施例,所述缺省的RNTI被用于生成所述第一信令所对应的解调参考信号。
作为该实施例的一个子实施例,所述缺省的RNTI与所述目标时间 间隔的持续时间有关。
作为一个实施例,所述所述第二信令被用于确定所述目标时间间隔是指:所述第二信令被用于确定{所述目标时间间隔的持续时间,所述目标时间间隔在给定子帧中的时域位置}中的至少之一。所述给定子帧是所述目标时间间隔在时域位于的子帧。
根据本申请的一个方面,上述方法的特征在于包括:
-接收第三信令,所述第三信令被用于确定L个时频资源池;
其中,所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数。
作为一个实施例,上述方法的特征在于:针对不同时间间隔的持续时间,基站配置不同的时频资源池用于所述第一无线信号的调度。
作为一个实施例,所述所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间是指:给定无线信号在给定时频资源池中传输,且所述给定无线信号占据给定时间间隔。所述给定时间间隔的持续时间是所述L种持续时间中的一种。所述给定时频资源池是所述L个时频资源池中的一个。
作为一个实施例,所述第三信令是高层信令。
作为一个实施例,所述时频资源池包括正整数个RU。
作为一个实施例,所述L种持续时间中任意两种持续时间所对应的时间长度是不同的。
作为一个实施例,所述L等于2,所述L种持续时间分别对应{2个多载波符号的持续时间,7个多载波符号的持续时间}。
作为一个实施例,所述L等于3,所述L种持续时间分别对应{2个多载波符号的持续时间,4个多载波符号的持续时间,7个多载波符号的持续时间}。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
作为一个实施例,所述从所述目标时频资源池中显式的指示所述第一时频资源是指:所述第一信令中包含正整数个信息比特,所述正整数个信息比特被用于指示{给定时域资源位置,给定频域资源位置}中的至少后者。所述给定时域资源位置是所述第一时频资源在所述目标时频资源池中的时域位置,所述给定频域资源位置是所述第一时频资源在所述目标时频资源池中的频域位置。
作为一个实施例,所述从所述L个时频资源池中显式的指示所述目标时频资源池是指:所述第一信令中包含P个信息比特,所述P个信息比特位于所述第一信令的固定位置,且所述P个信息比特被用于指示所述L个时频资源池中的目标时频资源池。
作为该实施例的一个子实施例,所述P是小于(log2L+1)的最大正整数。
作为一个实施例,所述从所述目标时频资源池中隐式的指示所述第一时频资源是指:所述UE通过确定所述目标时频资源池的时域位置和频域位置来确定所述第一时频资源的时域位置和频域位置。
作为该实施例的一个子实施例,所述目标时频资源池的时域位置和所述第一时频资源的时域位置是相同的。
作为该实施例的一个子实施例,所述第一时频资源在所述目标时频资源池中的频域位置是固定的。
作为该实施例的一个子实施例,所述第一时频资源在所述目标时频资源池中的频域位置是预定义的。
作为该子实施例的一个附属实施例,所述预定义的是指:所述第一时频资源在所述目标时频资源池中的频域位置与配置给所述UE的C-RNTI有关。
作为一个实施例,所述从所述L个时频资源池中隐式的指示所述目标时频资源池是指:所述第一信令一共包含R个信息比特,所述R和所述目标时频资源池在所述L个时频资源池中的索引是相关的。
上述实施例的好处在于:降低系统控制信令的开销。
作为该实施例的一个子实施例,所述第一信令显式的从所述目标时 频资源池中指示所述第一时频资源。
作为该实施例的一个子实施例,在一个给定调度状态中,所述R的值和所述所述目标时频资源池在所述L个时频资源池中的索引一一对应。所述给定调度状态包括{给定系统带宽,给定传输模式(Transmission Mode),给定多天线发送方式(发送分级或者波束赋型),给定当前配置的服务小区的数量,给定双工方式(FDD(Frequency Division Duplexing,频分双工)或TDD(Time Division Duplexing,时分双工)),给定SRS(Sounding Reference Signal,探测参考信号)请求域的比特数,给定CSI(Channel State Information,信道状态信息)请求域的比特数,给定CIF(Carrier Indicator Field,载波指示域)域的比特数,给定ARO(Hybrid Automatic Repeat request Acknowledgement Resource Offset,混合自动重传请求确认资源偏移)域的比特数}中的至少之一。
作为该实施例的一个子实施例,所述L等于2。
作为该子实施例的一个附属实施例,所述L个时频资源池分别对应的时间长度是{2个多载波符号,7个多载波符号}。
作为该子实施例的一个附属实施例,如果所述R等于R1,所述目标时频资源池是第一时频资源池;如果所述R等于R2,所述目标时频资源池是第二时频资源池。
作为该子实施例的一个附属实施例,所述R1小于所述R2,所述第一时频资源池的所对应的时间长度小于所述第二时频资源池的所对应的时间长度。
作为该实施例的一个子实施例,所述L等于3。
作为该子实施例的一个附属实施例,所述L个时频资源池分别对应的时间长度是{2个多载波符号,4个多载波符号,7个多载波符号}。
作为该子实施例的一个附属实施例,所述R是{R3,R4,R5}中的一个,所述目标时频资源池相应的是{第三时频资源池,第四时频资源池,第五时频资源池}中的一个。
作为该子实施例的一个附属实施例,所述R3小于所述R4,所述R4小于所述R5;且所述第三时频资源池的所对应的时间长度小于所述第四时频资源池的所对应的时间长度,所述第四时频资源池的所对应的时间长度小于所述第五时频资源池的所对应的时间长度。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
作为一个实施例,所述第一时频资源包含K个第一子时频资源,所述第一子时频资源占用的频域资源等于所述第一时频资源在频域上的调度颗粒度,所述第一子时频资源占用的时域资源小于或者等于所述目标时间间隔的持续时间。在其他配置相同的条件下,所述第一子时频资源所占据的RU的数量与所述目标时间间隔的持续时间无关。
作为该实施例的一个子实施例,所述其他配置包括{子载波间隔,CP长度}。
作为一个实施例,所述第一时频资源在频域上的调度颗粒度随着所述目标时间间隔的持续时间的减小而增加。
根据本申请的一个方面,上述方法的特征在于,第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
作为一个实施例,所述第一比特块是传输块。
作为一个实施例,所述第一比特块包括2个传输块,所述两个传输块是空分复用的。
作为一个实施例,所述第一比特块被用于生成所述第一无线信号是指:所述第一无线信号是所述第一比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出。
作为一个实施例,在所述所述第一比特块对应的传输时间内,所述第一比特块对应的传输信道被用于传输所述第一比特块且不被用于传输所述第一比特块之外的传输块。
作为一个实施例,所述所述第一比特块对应的传输时间是所述第一比特块对应的TTI或者sTTI。
作为一个实施例,所述第一时间长度等于所述目标时间间隔的持续时间。
作为一个实施例,所述第一时间长度与所述目标时间间隔的持续时间一一对应。
根据本申请的一个方面,上述方法的特征在于,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示所述第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关。所述M是正整数。
作为一个实施例,上述方法的特质在于:将所述第一信息的包含的信息比特数和所述目标时间间隔的持续时间建立联系。当所述目标时间间隔的持续时间小于1ms时,所述第一信息的长度较现有系统中用于同样功能的信息域更短,从而降低控制信令的开销。
作为一个实施例,上述方法的好处在于:若所述第一信令的荷载(Payload)保持不变,节省的比特可用于其它信息的指示。
作为一个实施例,上述方法的好处在于:若所述第一信令的荷载因为所述第一信息的比特数的减少而减少,所述第一信令的盲检测复杂度将会降低,且所述第一信令对应的控制信令的开销也会降低。
作为一个实施例,所述M的倒数(1/M)与所述目标时间间隔的持续时间成线性关系。
作为一个实施例,所述M随所述目标时间间隔的持续时间的增大而减小。
作为一个实施例,所述M随所述目标时间间隔的持续时间的减小而增大。
作为一个实施例,所述第一信令还被用于确定所述第一无线信号的{MCS(Modulation and Coding Status,调制编码状态),NDI,RV(Redundancy Version,冗余版本),HARQ进程号}中的一种或者多种。
本申请公开了一种被用于低延迟通信的基站中的方法,其特征在于包括:
-发送第一信令,所述第一信令被用于确定第一时频资源;
-在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;
其中,所述第一信令是物理层信令。所述第一时频资源在时域占用 目标时间间隔。所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关。所述目标时间间隔的持续时间不大于1ms。
作为一个实施例,所述基站在所述第一时频资源上发送第一无线信号,所述第一信令对应下行授权的DCI,所述第一无线信号对应的物理层信道是PDSCH或者sPDSCH。
作为一个实施例,所述基站在所述第一时频资源上接收第一无线信号,所述第一信令对应上行授权的DCI,所述第一无线信号对应的物理层信道是PUSCH或者sPUSCH。
根据本申请的一个方面,上述方法的特征在于包括:
-发送第二信令,所述第二信令被用于确定所述目标时间间隔;
其中,所述第二信令是物理层信令。
根据本申请的一个方面,上述方法的特征在于包括:
-发送第三信令,所述第三信令被用于确定L个时频资源池;
其中,所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间。所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个。所述L是正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
根据本申请的一个方面,上述方法的特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
根据本申请的一个方面,上述方法的特征在于,第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
根据本申请的一个方面,上述方法的特征在于,所述第一信令包含 第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关。所述M是正整数。
本申请公开了一种被用于低延迟通信的用户设备,其特征在于包括:
-第一接收机模块,接收第一信令,所述第一信令被用于确定第一时频资源;
-第一收发机模块,在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;
其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个实施例,所述第一接收模块还用于接收第二信令,所述第二信令被用于确定所述目标时间间隔。所述第二信令是物理层信令。
作为一个实施例,所述第一接收模块还用于接收第三信令,所述第三信令被用于确定L个时频资源池;所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
根据本申请的一个方面,上述用户设备的特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
根据本申请的一个方面,上述用户设备的特征在于,第一比特块被用于生成所述第一无线信号。所述第一比特块对应的传输时间的时间长 度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
本申请公开了一种被用于低延迟通信的基站设备,其特征在于包括:
-第一发射机模块,发送第一信令,所述第一信令被用于确定第一时频资源;
-第二收发机模块,在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;
其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个实施例,所述第一发送模块还发送第二信令,所述第二信令被用于确定所述目标时间间隔,所述第二信令是物理层信令。
作为一个实施例,所述第一发送模块还发送第三信令,所述第三信令被用于确定L个时频资源池,所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间,所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个,所述L是正整数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
根据本申请的一个方面,上述用户设备的特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的 增加而减小。
根据本申请的一个方面,上述用户设备的特征在于,第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
根据本申请的一个方面,上述用户设备的特征在于,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
作为一个实施例,相比现有公开技术,本申请具有如下技术优势:
-.通过将所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间建立联系,优化所述第一信令的设计方式和所述第一无线信号的调度方式。
-.通过设计所述第三信令,为所述L种持续时间分配L个时频资源池,在保证不同持续时间对应的传输需求时,合理分配资源,避免浪费。
-.通过设计将所述第一信息与所述目标时间间隔的持续时间建立联系,在低延迟传输场景下降低所述第一信令中用于所述第一时频资源指示的信息比特位,进而降低控制信令开销,以及降低UE的盲检测复杂度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的基站设备和给定用户设备的示意图;
图5示出了根据本申请的一个实施例的所述第一无线信号的传输的流 程图;
图6示出了根据本申请的另一个实施例的所述第一无线信号的传输的流程图;
图7示出了根据本申请的一个实施例的所述L个时频资源池的示意图;
图8示出了根据本申请的一个实施例的所述第一时频资源对应不同所述目标时间间隔的持续时间的示意图;
图9示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令传输的流程图,如附图1所示。附图1中,本申请中的所述用户设备首先接收第一信令,所述第一信令被用于确定第一时频资源;随后在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号。所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述第一信令被用于调度所述第一无线信号。
作为一个子实施例,所述目标时间间隔的持续时间对应一个TTI的时间长度或者一个sTTI的时间长度。
作为一个子实施例,所述目标时间间隔在时域占用正整数个多载波符号。
作为一个子实施例,所述目标时间间隔在时域占用的多载波符号的个数等于{2,4,7,14}中的之一。
作为一个子实施例,本文中所述的多载波符号是{包含CP的OFDM符号,包含CP的DFT-s-OFDM符号,SC-FDMA符号,FBMC符号}中的之 一。
作为一个子实施例,所述第一无线信号占用所述第一时频资源中的全部RU。
作为一个子实施例,所述第一无线信号占用所述第一时频资源中的部分RU。
作为该子实施例的一个附属实施例,所述第一无线信号通过速率匹配的方式映射到所述第一时频资源中,且所述第一无线信号所占用的RU和所述第一时频资源中的传统信号所占用的RU是正交的。
作为该附属实施例的一个范例,所述传统信号包括{CRS,PBCH,PSS,SSS}中的至少之一。
作为一个子实施例,所述第一时频资源包括正整数个RU。
作为一个子实施例,所述第一时频资源在频域上是离散的。
作为一个子实施例,所述第一时频资源在频域上是连续的。
作为一个子实施例,本文中所述RU在时域上占用一个多载波符号,在频域上占用一个子载波。
作为一个子实施例,本文中所述的RU是LTE中的RE。
作为一个子实施例,所述UE在所述第一时频资源上接收第一无线信号,所述第一信令对应下行授权的DCI,所述第一无线信号对应的物理层信道是PDSCH或者sPDSCH。
作为一个子实施例,所述UE在所述第一时频资源上发送第一无线信号,所述第一信令对应上行授权的DCI,所述第一无线信号对应的物理层信道是PUSCH或者sPUSCH。
作为一个子实施例,所述第一信令对应的物理层信道是PDCCH或者sPDCCH。
作为一个子实施例,所述第一无线信号对应的传输信道是DL-SCH。
作为一个子实施例,所述第一无线信号对应的传输信道是UL-SCH。
作为一个子实施例,所述第一时频资源在频域上的调度颗粒度是指:所述第一时频资源在被调度时所支持的最小频域调度单位。
作为该子实施例的一个附属实施例,所述最小频域调度单位对应F个PRB所占据的频域资源,所述F是正整数。
作为该附属实施例的一个范例,所述F个PRB在频域是连续的。
作为该附属实施例的一个范例,所述F个PRB在频域是离散的。
作为该子实施例的一个附属实施例,所述所述第一时频资源在频域上的调度颗粒度与目标时间间隔的持续时间有关是指:所述F随所述目标时间间隔的时间长度增加而减小,所述F随所述目标时间间隔的时间长度减小而增加。
作为该附属实施例的一个范例,所述目标时间间隔的持续时间对应所述目标时间间隔在时域占用的多载波符号数F1。所述F与所述F1的乘积等于固定的正整数。所述F1是正整数。
作为该附属实施例的一个范例,所述目标时间间隔的持续时间对应所述目标时间间隔在时域占用的多载波符号数F1。如果所述F1等于14,所述F等于1;如果所述F1等于7,所述F等于2;如果所述F1等于4,所述F等于{3,4}中的之一;如果所述F1等于2,所述F等于{6,7}中的之一。所述F1是正整数。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话 起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的用户设备。
作为一个子实施例,所述gNB203对应本申请中的基站。
作为一个子实施例,所述UE201支持低延迟通信。
作为一个子实施例,所述gNB203支持低延迟通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305 在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个子实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个子实施例,本申请中的所述第三信令生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,调度器471,发射器/接收器416和天线420。
用户设备(UE450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,调度处理器441,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-上层包到达控制器/处理器440,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体;
-控制器/处理器440包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-发射处理器415接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-调度器471对数据符号进行分配时域、频域及码域资源,确定本申请中的第一信令,以及确定所述第一时频资源在时域占用目标时间间隔和本申请中所述第一时频资源在频域上的所述调度颗粒度;并通过控制器/处理器440将结果输出到发射处理器415;
-发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(UE450)有关的处理可以包括:
-接收器456用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-调度处理器441确定下行数据符号所占用的时域、频域及码域资源,以及确定所述第一时频资源在时域占用目标时间间隔和本申请中所述第 一时频资源在频域上的所述调度颗粒度;并将结果输出到控制器/处理器490;
-控制器/处理器490接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在上行传输中,与用户设备(UE450)有关的处理可以包括:
-数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中包括数据或者控制信息;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体;
-调度处理器441确定上行数据符号所占用的时域、频域及码域资源,以及确定所述第一时频资源在时域占用目标时间间隔和本申请中所述第一时频资源在频域上的所述调度颗粒度;并将结果输出到控制器/处理器440;
-发射处理器455接收控制器/处理器490的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令生成等;
-发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去;每个发射器456对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器456对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到上行信号。
在上行传输中,与基站设备(410)有关的处理可以包括:
-接收器416用于将通过天线420接收的射频信号转换成基带信号提供给接收处理器412;
-接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-调度器471对数据符号进行分配时域、频域及码域资源,确定本申 请中的第一信令,以及确定所述第一时频资源在时域占用目标时间间隔和本申请中所述第一时频资源在频域上的所述调度颗粒度;并通过控制器/处理器440将结果输出到发射处理器415;
-控制器/处理器440接收接收处理器412输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器440可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信令,所述第一信令被用于确定第一时频资源;在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定第一时频资源;在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信令,所述第一信令被用于确定第一时频资源;在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定第一时频资源;在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在所述第一时频资源上发送第一无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在所述第一时频资源上接收第一无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收第一信令。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收第二信令。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收第三信令。
作为一个子实施例,调度处理器441被用于确定所述第一时频资源,以及被用于确定所述第一时频资源在频域上的调度颗粒度。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在所述第一时频资源上发送第一无线信号。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在所述第一时频资源上接收第一无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送第一信令。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送第二信令。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送第三信令。
作为一个子实施例,调度器471被用于确定所述第一时频资源,以及被用于确定所述第一时频资源在频域上的调度颗粒度。
实施例5
实施例5示例了根据本申请的一个所述第一无线信号的传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。其中,方框F0中标识的步骤是可选的。
对于基站N1,在步骤S10中发送第三信令,所述第三信令被用于确定L个时频资源池;在步骤S11中发送第二信令,所述第二信令被用于确定所述目标时间间隔;在步骤S12中发送第一信令,所述第一信令被用于确定第一时频资源;在步骤S13中在所述第一时频资源上发送第一无线信号。
对于UE U2,在步骤S20中接收第三信令,所述第三信令被用于确定L个时频资源池;在步骤S11中接收第二信令,所述第二信令被用于确定所述目标时间间隔;在步骤S12中接收第一信令,所述第一信令被用于确定第一时频资源;在步骤S13中在所述第一时频资源上接收第一无线信号。
实施例5中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms;所述第二信令是物理层信令;所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数;所述第一信令被用于{从所述目标时频资源池中显式的指示所述第一时频资源,从所述L个时频资源池中显式的指示所述目标时频资源池,从所述目标时频资源池中隐式的指示所述第一时频资源,从所述L个时频资源池中隐式的指示所述目标时频资源池}中的至少之一;所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小;第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不 大于1ms;所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示所述第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
作为一个子实施例,所述第一时频资源包含K个第一子时频资源,所述第一子时频资源占用的频域资源等于所述第一时频资源在频域上的调度颗粒度,所述第一子时频资源占用的时域资源小于或者等于所述目标时间间隔的持续时间。在其他配置相同的条件下,所述第一子时频资源所占据的RU的数量与所述目标时间间隔的持续时间无关。所述第一子时频资源在频域占用Z个PRB对应的带宽。所述Z是正整数。
作为该子实施例的一个附属实施例,所述Z个PRB在频域是连续的。
作为该子实施例的一个附属实施例,所述Z个PRB在频域是离散的。
作为该子实施例的一个附属实施例,所述Z的值与所述目标时间间隔的持续时间有关。
作为该附属实施例的一个范例,所述目标时间间隔的持续时间等于7个多载波符号,所述Z等于2;所述目标时间间隔的持续时间等于4个多载波符号,所述Z等于{3,4}中的之一;所述目标时间间隔的持续时间等于2个多载波符号,所述Z等于{6,7}中的之一。
实施例6
实施例6示例了根据本申请的另一个所述第一无线信号的传输的流程图,如附图6所示。附图6中,基站N3是UE U4的服务小区的维持基站。其中,方框F1中标识的步骤是可选的。
对于基站N3,在步骤S30中发送第三信令,所述第三信令被用于确定L个时频资源池;在步骤S31中发送第二信令,所述第二信令被用于确定所述目标时间间隔;在步骤S32中发送第一信令,所述第一信令被用于确定第一时频资源;在步骤S33中在所述第一时频资源上接收第一无线信号。
对于UE U4,在步骤S40中接收第三信令,所述第三信令被用于确定L个时频资源池;在步骤S41中接收第二信令,所述第二信令被用于确定所述目标时间间隔;在步骤S42中接收第一信令,所述第一信令被用于确定第一时频资源;在步骤S43中在所述第一时频资源上发送第一无线信号。
作为一个子实施例,所述第一时频资源包含K个第一子时频资源,所述第一子时频资源占用的频域资源等于所述第一时频资源在频域上的调度颗粒度,所述第一子时频资源占用的时域资源小于或者等于所述目标时间间隔的持续时间。在其他配置相同的条件下,所述第一子时频资源所占据的RU的数量与所述目标时间间隔的持续时间无关。所述第一子时频资源在频域占用Z个PRB对应的带宽。所述Z是正整数。
作为该子实施例的一个附属实施例,所述Z个PRB在频域是连续的。
作为该子实施例的一个附属实施例,所述Z个PRB在频域是离散的。
作为该子实施例的一个附属实施例,所述Z的值与所述目标时间间隔的持续时间有关。
作为该附属实施例的一个范例,所述目标时间间隔的持续时间等于7个多载波符号,所述Z等于2;所述目标时间间隔的持续时间等于4个多载波符号,所述Z等于{3,4}中的之一;所述目标时间间隔的持续时间等于2个多载波符号,所述Z等于{6,7}中的之一。
实施例6中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms;所述第二信令是物理层信令;所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数;所述第一信令被用于{从所述目标时频资源池中显式的指示所述第一时频资源,从所述L个时频资源池中显式的指示所述目标时频资源池,从所述目标时频资源池中隐式的指示所述第一时频资源,从所述L个时频资源池中隐式的指示所述目标时频资源池}中的至少之一;所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小;第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms;所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示所述第一时频资源的频域位置,所述 M与所述目标时间间隔的持续时间有关;所述M是正整数。
实施例7
实施例7示例了根据本申请的一个所述L个时频资源池的示意图,如附图7所示。附图7中,{时间长度#1,时间长度#2,…,时间长度#L}分别针对所述L个时频资源池在时域占据的时间窗口的长度。
作为一个子实施例,时间长度#i和时间长度#j是不相等的时间长度,所述时间长度#i和所述时间长度#j是所述L个时间长度中的任意两个时间长度。所述i和所述j均是小于L的正整数,且所述i不等于所述j。
作为一个子实施例,所述L个时频资源池均位于一个子帧中。
作为该子实施例的一个附属实施例,所述L个时频资源池在频域是正交的。
作为该子实施例的一个附属实施例,所述L个时频资源池在频域是有重叠的。
实施例8
实施例8示例了根据本申请的一个所述第一时频资源对应不同所述目标时间间隔的持续时间的示意图,如附图8所示。附图8中的附图8-A针对所述第一时频资源针对的所述目标时间间隔的持续时间等于第一时间长度,附图8中的附图8-B针对所述第一时频资源针对的所述目标时间间隔的持续时间等于第二时间长度。所述第一时间长度小于所述第二时间长度。所述第一时频资源在所述第一时间长度下在频域占用的带宽等于S1(kHz),所述第一时频资源在所述第一时间长度下在频域占用的带宽等于S2(kHz)。图中的粗线框针对不同持续时间下的所述第一时频资源集合,图中小方格对应本文中所述的RU,图中填充斜方格的小方格对应给定RU集合,所述给定RU集合是所述第一时频资源中被所述第一无线信号所占据的RU之外的RU。
作为一个子实施例,图中所示的第一时频资源针对本申请中所述的第一子时频资源。
作为该子实施例的一个附属实施例,在其他配置相同的条件下,图8-A中所述第一子时频资源占据的RU数与图8-B中所述第一子时频资源占据的RU数是相同的。
作为该子实施例的一个附属实施例,所述第一子时频资源在正常CP 下占用168个RU。
作为该子实施例的一个附属实施例,所述第一子时频资源在扩展CP下占用144个RU。
作为该子实施例的一个附属实施例,所述给定RU集合在图8-A中在一个所述第一子时频资源中所占据的RU数和所述给定RU集合在图8-B中在一个所述第一子时频资源中所占据的RU数是不同的。
作为该子实施例的一个附属实施例,所述第一时间长度对应T1个多载波符号,所述第二时间长度对应T2个多载波符号,且T1与S1的乘积等于T2与S2的乘积。所述T1,T2,S1,S2均是正整数。
作为一个子实施例,所述给定RU集合被用于传输{PSS,SSS,CRS,PBCH}中的至少之一。
作为一个子实施例,所述第一信令被用于确定所述第一时频资源,且所述第一无线信号占据所述第一时频资源中的部分RU。
作为一个子实施例,所述第一时间长度对应2个多载波符号所持续的时间。
作为一个子实施例,所述第二时间长度对应7个多载波符号所持续的时间。
实施例9
实施例9示例了一个用户设备中的处理装置的结构框图,如附图9所示。附图9中,用户设备处理装置900主要由第一接收机模块901和第一收发机模块902组成。
-第一接收机模块901,接收第一信令,所述第一信令被用于确定第一时频资源;
-第一收发机模块902,在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号。
实施例9中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述第一接收机模块901还接收第二信令,所述第二信令被用于确定所述目标时间间隔;所述第二信令是物理层信令。
作为一个子实施例,所述第一接收机模块902还接收第三信令,所述第三信令被用于确定L个时频资源池;所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数。
作为一个子实施例,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
作为一个子实施例,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
作为一个子实施例,第一比特块被用于生成所述第一无线信号。所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
作为一个子实施例,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
作为一个子实施例,所述第一接收机模块901包括附图4中的{接收器456,接收处理器452,调度处理器441,控制器/处理器490}中的至少前三者。
作为一个子实施例,所述第一收发机模块902包括附图4中的{发射器456,发射处理器455,接收器456,接收处理器452,控制器/处理器490}中的至少前两者。
实施例10
实施例10示例了一个基站设备中的处理装置的结构框图,如附图10所示。附图10中,基站设备处理装置1000主要由主要由第一发射机模块1001和第二收发机模块1002组成。
-第一发射机模块1001,发送第一信令,所述第一信令被用于确定 第一时频资源;
-第二收发机模块1002,在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号。
实施例10中,所述第一信令是物理层信令。所述第一时频资源在时域占用目标时间间隔。所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关。所述目标时间间隔的持续时间不大于1ms。
作为一个子实施例,所述第一发射机模块1001还发送第二信令,所述第二信令被用于确定所述目标时间间隔。所述第二信令是物理层信令。
作为一个子实施例,所述第一发射机模块1001还发送第三信令,所述第三信令被用于确定L个时频资源池;所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个。所述L是正整数。
作为一个子实施例,所述第一信令被用于以下至少之一:
-.从所述目标时频资源池中显式的指示所述第一时频资源;
-.从所述L个时频资源池中显式的指示所述目标时频资源池;
-.从所述目标时频资源池中隐式的指示所述第一时频资源;
-.从所述L个时频资源池中隐式的指示所述目标时频资源池。
作为一个子实施例,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
作为一个子实施例,第一比特块被用于生成所述第一无线信号。所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
作为一个子实施例,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
作为一个子实施例,所述第一发射机模块1001包括附图4中的{发 射器416,发射处理器415,调度器471,控制器/处理器440}中的至少前三者。
作为一个子实施例,所述第二收发机模块1002包括附图4中的{接收器416,接收处理器412,发射器416,发射处理器415,控制器/处理器440}中的至少前两者。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种被用于低延迟通信的用户设备中的方法,其特征在于包括:
    -接收第一信令,所述第一信令被用于确定第一时频资源;
    -在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;
    其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
  2. 根据权利要求1所述的方法,其特征在于包括:
    -接收第二信令,所述第二信令被用于确定所述目标时间间隔;
    其中,所述第二信令是物理层信令。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于包括:
    -接收第三信令,所述第三信令被用于确定L个时频资源池;
    其中,所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信令被用于以下至少之一:
    -.从所述目标时频资源池中显式的指示所述第一时频资源;
    -.从所述L个时频资源池中显式的指示所述目标时频资源池;
    -.从所述目标时频资源池中隐式的指示所述第一时频资源;
    -.从所述L个时频资源池中隐式的指示所述目标时频资源池。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被 用于指示所述第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
  8. 一种被用于低延迟通信的基站中的方法,其特征在于包括:
    -发送第一信令,所述第一信令被用于确定第一时频资源;
    -在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;
    其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
  9. 根据权利要求8所述的方法,其特征包括:
    -发送第二信令,所述第二信令被用于确定所述目标时间间隔;
    其中,所述第二信令是物理层信令。
  10. 根据权利要求8或9中任一权利要求所述的方法,其特征在于包括:
    -发送第三信令,所述第三信令被用于确定L个时频资源池;
    其中,所述L个时频资源池上的无线信号所占据的时间间隔的持续时间分别是L种持续时间;所述目标时间间隔的持续时间是所述L种持续时间的一种,所述第一时频资源属于目标时频资源池,所述目标时频资源池是所述L个时频资源池中的一个;所述L是正整数。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信令被用于以下至少之一:
    -.从所述目标时频资源池中显式的指示所述第一时频资源;
    -.从所述L个时频资源池中显式的指示所述目标时频资源池;
    -.从所述目标时频资源池中隐式的指示所述第一时频资源;
    -.从所述L个时频资源池中隐式的指示所述目标时频资源池。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,所述第一时频资源在频域上的所述调度颗粒度随着所述目标时间间隔的持续时间的增加而减小。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,第一比特块被用于生成所述第一无线信号;所述第一比特块对应的传输时间的时间长度等于第一时间长度,所述目标时间间隔的持续时间与所述第一时间长度相关,所述第一时间长度不大于1ms。
  14. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,所述第一信令包含第一信息,所述第一信息包含M个信息比特,所述M个信息比特被用于指示所述第一时频资源的频域位置,所述M与所述目标时间间隔的持续时间有关;所述M是正整数。
  15. 一种被用于低延迟通信的用户设备,其特征在于包括:
    -第一接收机模块,接收第一信令,所述第一信令被用于确定第一时频资源;
    -第一收发机模块,在所述第一时频资源上接收第一无线信号,或者在所述第一时频资源上发送第一无线信号;
    其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
  16. 一种被用于低延迟通信的基站设备,其特征在于包括:
    -第一发射机模块,发送第一信令,所述第一信令被用于确定第一时频资源;
    -第二收发机模块,在所述第一时频资源上发送第一无线信号,或者在所述第一时频资源上接收第一无线信号;
    其中,所述第一信令是物理层信令;所述第一时频资源在时域占用目标时间间隔;所述第一时频资源在频域上的调度颗粒度与所述目标时间间隔的持续时间有关;所述目标时间间隔的持续时间不大于1ms。
PCT/CN2017/095553 2016-08-05 2017-08-02 一种被用于低延迟通信的用户设备、基站中的方法和装置 WO2018024206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610635146.2A CN107690188B (zh) 2016-08-05 2016-08-05 一种无线传输中的方法和装置
CN201610635146.2 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018024206A1 true WO2018024206A1 (zh) 2018-02-08

Family

ID=61074034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095553 WO2018024206A1 (zh) 2016-08-05 2017-08-02 一种被用于低延迟通信的用户设备、基站中的方法和装置

Country Status (2)

Country Link
CN (2) CN107690188B (zh)
WO (1) WO2018024206A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248368A (zh) * 2018-03-08 2019-09-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110267344A (zh) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110300453A (zh) * 2018-03-22 2019-10-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110602785A (zh) * 2018-06-12 2019-12-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111263447A (zh) * 2018-12-03 2020-06-09 上海朗帛通信技术有限公司 一种无线通信中的用户设备中的方法和装置
CN111543014A (zh) * 2018-02-05 2020-08-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111586871A (zh) * 2018-02-13 2020-08-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111769926A (zh) * 2018-03-12 2020-10-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111884788A (zh) * 2018-07-30 2020-11-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111972018A (zh) * 2018-05-24 2020-11-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112055411A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112118585A (zh) * 2019-06-19 2020-12-22 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN112235870A (zh) * 2019-07-15 2021-01-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112769532A (zh) * 2019-11-06 2021-05-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112887065A (zh) * 2019-11-29 2021-06-01 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266451B (zh) * 2018-03-12 2021-12-24 上海朗帛通信技术有限公司 一种被用于非授权频谱的用户设备、基站中的方法和装置
CN117939681A (zh) * 2019-06-04 2024-04-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202346A (zh) * 2010-03-22 2011-09-28 电信科学技术研究院 一种数据映射的方法和设备
CN104469926A (zh) * 2013-09-16 2015-03-25 上海朗帛通信技术有限公司 一种d2d系统中的传输方法和装置
CN105338635A (zh) * 2014-08-06 2016-02-17 电信科学技术研究院 一种业务传输的方法和设备
CN106549739A (zh) * 2015-09-20 2017-03-29 上海朗帛通信技术有限公司 无线通信中的一种低延时的方法和装置
CN106561066A (zh) * 2015-10-02 2017-04-12 上海朗帛通信技术有限公司 无线通信中的一种降低网络延迟的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547482A (zh) * 2008-03-28 2009-09-30 中兴通讯股份有限公司 无线资源调度方法
CN101742665B (zh) * 2008-11-05 2012-02-29 中兴通讯股份有限公司 一种无线资源子信道化及映射的方法
CN101908955A (zh) * 2009-06-05 2010-12-08 大唐移动通信设备有限公司 一种回程链路下行信息传输方法及设备
US9705654B2 (en) * 2011-11-08 2017-07-11 Apple Inc. Methods and apparatus for an extensible and scalable control channel for wireless networks
CN109687950B (zh) * 2014-03-31 2021-06-25 上海朗帛通信技术有限公司 非授权频带上的传输方法和装置
CN104468030B (zh) * 2014-08-26 2018-06-05 上海华为技术有限公司 一种数据传输方法、用户设备及基站
CN105682241B (zh) * 2014-11-21 2020-06-16 中兴通讯股份有限公司 一种非授权载波的占用方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202346A (zh) * 2010-03-22 2011-09-28 电信科学技术研究院 一种数据映射的方法和设备
CN104469926A (zh) * 2013-09-16 2015-03-25 上海朗帛通信技术有限公司 一种d2d系统中的传输方法和装置
CN105338635A (zh) * 2014-08-06 2016-02-17 电信科学技术研究院 一种业务传输的方法和设备
CN106549739A (zh) * 2015-09-20 2017-03-29 上海朗帛通信技术有限公司 无线通信中的一种低延时的方法和装置
CN106561066A (zh) * 2015-10-02 2017-04-12 上海朗帛通信技术有限公司 无线通信中的一种降低网络延迟的方法和装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111543014B (zh) * 2018-02-05 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111543014A (zh) * 2018-02-05 2020-08-14 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111586871B (zh) * 2018-02-13 2022-11-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US11523385B2 (en) 2018-02-13 2022-12-06 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
US11696264B2 (en) 2018-02-13 2023-07-04 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
US11963140B2 (en) 2018-02-13 2024-04-16 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication
CN111586871A (zh) * 2018-02-13 2020-08-25 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110248368A (zh) * 2018-03-08 2019-09-17 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110248368B (zh) * 2018-03-08 2023-09-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769926A (zh) * 2018-03-12 2020-10-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111769926B (zh) * 2018-03-12 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110267344B (zh) * 2018-03-12 2023-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110267344A (zh) * 2018-03-12 2019-09-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110300453A (zh) * 2018-03-22 2019-10-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111972018A (zh) * 2018-05-24 2020-11-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111972018B (zh) * 2018-05-24 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110602785A (zh) * 2018-06-12 2019-12-20 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110602785B (zh) * 2018-06-12 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111884788A (zh) * 2018-07-30 2020-11-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111884788B (zh) * 2018-07-30 2024-03-29 迪朵无线创新有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111263447A (zh) * 2018-12-03 2020-06-09 上海朗帛通信技术有限公司 一种无线通信中的用户设备中的方法和装置
CN111263447B (zh) * 2018-12-03 2022-09-27 上海朗帛通信技术有限公司 一种无线通信中的用户设备中的方法和装置
CN112055411B (zh) * 2019-06-06 2024-04-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112055411A (zh) * 2019-06-06 2020-12-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112118585A (zh) * 2019-06-19 2020-12-22 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN112235870B (zh) * 2019-07-15 2022-07-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112235870A (zh) * 2019-07-15 2021-01-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112769532A (zh) * 2019-11-06 2021-05-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11617194B2 (en) 2019-11-06 2023-03-28 Shanghai Langbo Communication Technology Company Limited Method and device in nodes used for wireless communication
CN112769532B (zh) * 2019-11-06 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112887065A (zh) * 2019-11-29 2021-06-01 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备
CN112887065B (zh) * 2019-11-29 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Also Published As

Publication number Publication date
CN107690188A (zh) 2018-02-13
CN110740519A (zh) 2020-01-31
CN110740519B (zh) 2022-11-25
CN107690188B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
US10728007B2 (en) Method and device in wireless transmission
US11818704B2 (en) Method and device in wireless communication
WO2018033009A1 (zh) 一种无线通信中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2018090816A1 (zh) 一种被用于用户设备和基站中的方法和装置
CN111083782B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019179343A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020207245A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020024783A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2019174490A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144822A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020181994A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11848892B2 (en) Method and device in wireless transmission
CN116113054A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113452484B (zh) 一种被用于低延迟通信的用户、基站中的方法和装置
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN116017745A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2024093880A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17836388

Country of ref document: EP

Kind code of ref document: A1