WO2020024783A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020024783A1
WO2020024783A1 PCT/CN2019/095954 CN2019095954W WO2020024783A1 WO 2020024783 A1 WO2020024783 A1 WO 2020024783A1 CN 2019095954 W CN2019095954 W CN 2019095954W WO 2020024783 A1 WO2020024783 A1 WO 2020024783A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
sub
signaling
bit
Prior art date
Application number
PCT/CN2019/095954
Other languages
English (en)
French (fr)
Inventor
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020024783A1 publication Critical patent/WO2020024783A1/zh
Priority to US16/831,857 priority Critical patent/US11330564B2/en
Priority to US17/705,262 priority patent/US11706740B2/en
Priority to US18/203,310 priority patent/US20230397169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular, to a communication method and device that support data transmission on an unlicensed spectrum.
  • eMBB Enhance Mobile Broadband
  • URLLC Ultra Reliable and Low Latency Communication
  • MCS Modulation and Coding Scheme
  • UCI includes HARQ / CSI.
  • a PUCCH that is reserved for sending UCI Uplink Control Information
  • UCI Uplink Control Information
  • the present application discloses a method for user equipment for wireless communication, which is characterized by including:
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the problem to be solved in this application is: for the requirement of higher reliability of the new air interface Release16, how to enhance the transmission of UCI when the PUCCH is not orthogonal to the PUSCH in the time domain.
  • the problem to be solved by this application is:
  • the PUCCH reserved for sending UCI is not orthogonal to the PUSCH in the time domain
  • the UCI is changed to be sent on the PUSCH.
  • a PUCCH reserved for UCI sending URLLC services has higher transmission reliability. If the PUCCH is not orthogonal to a PUSCH (eMBB / URLLC service) in the time domain, if the current There are standard methods to change UCI transmission on PUSCH, which may make UCI transmission reliability not guaranteed. Therefore, in order to support the new air interface Release16 for higher reliability requirements, when the PUCCH and PUSCH are not orthogonal in the time domain, how to send UCI is a key issue that needs to be reconsidered.
  • the essence of the above method is that the first time-frequency resource is PUCCH, the second time-frequency resource is PUSCH, the first bit block is UCI, the PUCCH and the PUSCH are not orthogonal in the time domain, and the first identifier is And the second identifier are both RNTIs (Radio Network Temporary Identifiers) used to scramble the DCI CRC.
  • the first identifier is for URLLC services and the second identifier is for eMBB services.
  • the advantage of using the above method is that it is determined whether the UCI is sent on the PUCCH or PUSCH according to the RNTI that scrambles the CRC of the DCI.
  • the above method is characterized in that, if the first signaling carries the first identifier, sending the first bit block in the first time-frequency resource, or in the second Sending the first bit block in time-frequency resources; if the first signaling carries the second identifier, only the second time of the first time-frequency resource and the second time-frequency resource Sending the first bit block in a frequency resource.
  • the essence of the above method is that when the PUCCH and the PUSCH that are reserved for sending UCI are not orthogonal in the time domain, if the UCI of the eMBB transmits the UCI according to the existing standard method, that is, the UCI is on the PUSCH If it is UCI of URLLC, it may be sent on PUCCH or PUSCH.
  • the above method is characterized in that the first signaling carries the first identifier, the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource.
  • the relative position relationship or the relative quantity relationship of the time domain resources is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource; or
  • the first signaling carries the first identity
  • the second signaling carries the first identity or the second identity
  • the second signaling carries the first identity or the second identity
  • the identification is used to determine whether the first bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource.
  • the essence of the above method is that when the PUCCH and PUSCH reserved for URLLC UCI are not orthogonal in the time domain, is URLLC UCI sent on PUCCH or PUSCH or is it related to the time domain included in PUCCH
  • the resources are related to the relative position relationship of the time domain resources included in the PUSCH, either to the relative quantity relationship of the time domain resources included in the PUCCH and the time domain resources included in the PUSCH, or to whether the PUSCH is an eMBB or URLLC service.
  • the above method is characterized by comprising:
  • the first information is used to indicate the first identifier, the first signaling carries the first identifier, and the first signaling is further used to indicate the target modulation and coding mode set.
  • a modulation and coding scheme adopted by the first wireless signal, the target modulation and coding scheme set is an alternative modulation and coding scheme set among the X candidate modulation and coding scheme sets, and the first identifier is used for the X number of modulation and coding schemes
  • the target modulation and coding scheme set is determined in the candidate modulation and coding scheme set, and X is a positive integer greater than 1; the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the above method is characterized by comprising:
  • a second wireless signal is also sent in the second time-frequency resource
  • the second signaling is also used to indicate scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, and the first sub-signal
  • the occupied time domain resources are orthogonal to the time domain resources occupied by the first time-frequency resource, and the time domain resources occupied by the second sub-signal belong to the time domain occupied by the first time-frequency resource. Resources.
  • the above method is characterized in that the first bit block is sent in the first time-frequency resource, the first time-frequency resource includes K time-frequency resources, and the K time Any two time-frequency resources in the frequency resource are orthogonal to each other, the K is a positive integer greater than 1; the first bit block includes a first bit sub-block and a second bit sub-block; the first bit sub-block is It is used to indicate whether the first wireless signal is received correctly; the first bit sub-block is transmitted in each of the K time-frequency resources; the second bit sub-block is transmitted in all Each of the K time-frequency resources is transmitted, or at least one bit in the second bit sub-block is transmitted in only one time-frequency resource of the K time-frequency resources.
  • the essence of the above method is that the same URLLC is repeatedly sent on multiple PUCCHs in one slot.
  • UCI is a research direction of the new air interface Release16, and K time-frequency resources are used in one slot.
  • the first bit sub-block is URLLC UCI with high requirements (repeated sending is required multiple times), and the second bit sub-block is eMBB UCI or low-required URLLC UCI (only one transmission is required);
  • URLLC with high requirements UCI is transmitted in each time-frequency resource of K time-frequency resources; each bit in eMBB UCI or URLLC with low requirements UCI is transmitted in each time-frequency resource of K time-frequency resources Send, or only in one or more of the K time-frequency resources.
  • the advantage of using the above method is that if each bit in eMBB UCI or low-required URLLC UCI is transmitted in each time-frequency resource of K time-frequency resources, then eMBB UCI or low-required URLLC UCI because it is repeated multiple times Sending thus improves transmission reliability; if each bit in eMBB UCI or URLLC UCI is only transmitted in one or more time-frequency resources of K time-frequency resources, a smaller PUCCH resource can be selected to Send UCI, so can improve resource utilization and increase system transmission capacity.
  • the above method is characterized by comprising:
  • the second information is used to determine configuration information of the third wireless signal;
  • the first bit block includes the first bit sub-block and the second bit sub-block, and the second bit sub-block
  • the block is derived based on measurements for the third wireless signal.
  • the above method is characterized by comprising:
  • the third information is used to indicate N time-frequency resource sets, the first time-frequency resource is related to the first time-frequency resource set, and the first time-frequency resource set is the N time-frequency resources.
  • One time-frequency resource set in the set; the number of bits included in the first bit block is used to determine the first time-frequency resource set from the N time-frequency resource sets.
  • This application discloses a method in a base station device for wireless communication, which is characterized in that it includes:
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the above method is characterized in that if the first signaling carries the first identifier, receiving the first bit block in the first time-frequency resource, or in the second Receiving the first bit block in time-frequency resources; if the first signaling carries the second identifier, at the second time only of the first time-frequency resource and the second time-frequency resource Receiving the first bit block in a frequency resource.
  • the above method is characterized in that the first signaling carries the first identifier, the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource.
  • the relative position relationship or the relative quantity relationship of the time domain resources is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource; or
  • the first signaling carries the first identity
  • the second signaling carries the first identity or the second identity
  • the second signaling carries the first identity or the second identity
  • the identification is used to determine whether the first bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource.
  • the above method is characterized by comprising:
  • the first information is used to indicate the first identifier, the first signaling carries the first identifier, and the first signaling is further used to indicate the target modulation and coding mode set.
  • a modulation and coding scheme adopted by the first wireless signal, the target modulation and coding scheme set is an alternative modulation and coding scheme set among the X candidate modulation and coding scheme sets, and the first identifier is used for the X number of modulation and coding schemes
  • the target modulation and coding scheme set is determined in the candidate modulation and coding scheme set, and X is a positive integer greater than 1; the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the above method is characterized by comprising:
  • the first bit block is sent in the first time-frequency resource, giving up receiving a second wireless signal in the second time-frequency resource, or
  • the second signaling is also used to indicate scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, and the first sub-signal
  • the occupied time domain resources are orthogonal to the time domain resources occupied by the first time-frequency resource, and the time domain resources occupied by the second sub-signal belong to the time domain occupied by the first time-frequency resource. Resources.
  • the above method is characterized in that the first bit block is sent in the first time-frequency resource, the first time-frequency resource includes K time-frequency resources, and the K time Any two time-frequency resources in the frequency resource are orthogonal to each other, the K is a positive integer greater than 1; the first bit block includes a first bit sub-block and a second bit sub-block; the first bit sub-block is It is used to indicate whether the first wireless signal is received correctly; the first bit sub-block is transmitted in each of the K time-frequency resources; the second bit sub-block is transmitted in all Each of the K time-frequency resources is transmitted, or at least one bit in the second bit sub-block is transmitted in only one time-frequency resource of the K time-frequency resources.
  • the above method is characterized by comprising:
  • the second information is used to determine configuration information of the third wireless signal;
  • the first bit block includes the first bit sub-block and the second bit sub-block, and the second bit sub-block
  • the block is derived based on measurements for the third wireless signal.
  • the above method is characterized by comprising:
  • the third information is used to indicate N time-frequency resource sets, the first time-frequency resource is related to the first time-frequency resource set, and the first time-frequency resource set is the N time-frequency resources.
  • One time-frequency resource set in the set; the number of bits included in the first bit block is used to determine the first time-frequency resource set from the N time-frequency resource sets.
  • This application discloses a user equipment for wireless communication, which is characterized by including:
  • a first receiver that receives first signaling that is used to determine a first time-frequency resource; receives a second signaling that is used to determine a second time-frequency resource;
  • a first transmitter sending a first bit block in the first time-frequency resource, or sending a first bit block in the second time-frequency resource;
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • This application discloses a base station device for wireless communication, which is characterized by including:
  • a second transmitter sending first signaling, the first signaling being used to determine a first time-frequency resource; sending a second signaling, the second signaling being used to determine a second time-frequency resource;
  • a second receiver receiving a first bit block in the first time-frequency resource, or receiving a first bit block in the second time-frequency resource;
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • this application has the following advantages:
  • the UCI is for URLLC service or eMBB service; when the PUCCH and PUSCH that are reserved for sending UCI are not orthogonal in time domain, if the UCI for eMBB is according to the existing Standard method to transmit UCI, that is, UCI is sent on PUSCH; if it is ULC of URLLC, URLLC is whether UCI is sent on PUCCH or PUSCH or is relative to the time domain resources included in PUCCH and the time domain resources included in PUSCH The relationship is related to the relative quantity relationship between the time domain resources included in the PUCCH and the time domain resources included in the PUSCH, or whether the PUSCH is an eMBB service or a URLLC service.
  • UCI is a research direction of the new air interface Release16. If the UCI to be sent in a time slot includes high-required URLLC UCI (requires multiple repeated transmissions) and eMBB UCI / low-required URLLC UCI (single transmission only); high-required URLLC UCI in each of the multiple PUCCH All PUCCHs are sent; eMBB or ULC with low requirements, each bit in UCI is sent in each PUCCH of the multiple PUCCHs, or only one or more PUCCHs in the multiple PUCCHs .
  • the advantage of using the above method is that if each bit in eMBB UCI or low-required URLLC UCI is transmitted in each PUCCH of the plurality of PUCCHs, then eMBB UCI or low-required URLLC UCI improves due to multiple repeated transmissions Transmission reliability; if eMBB UCI or low requirement URLLC UCI each bit is only transmitted in one or more PUCCH of the multiple PUCCH, a smaller PUCCH resource can be selected to send UCI, so it can improve Resource utilization and increase system transmission capacity.
  • FIG. 1 shows a flowchart of a first signaling, a second signaling, and a first bit block according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless transmission according to another embodiment of the present application.
  • FIG. 7 shows whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second identifier according to an embodiment of the present application. Schematic diagram of the time-frequency resources being sent;
  • FIG. 8 shows a schematic diagram of determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource according to another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource according to another embodiment of the present application
  • FIG. 11 is a schematic diagram of a first time-frequency resource according to an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of sending a first bit block in a second time-frequency resource according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of sending a first bit block in a second time-frequency resource according to another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of sending a first bit block in a first time-frequency resource according to an embodiment of the present application
  • FIG. 15 shows a schematic diagram of sending a first bit block in a first time-frequency resource according to another embodiment of the present application.
  • 16 shows a schematic diagram related to a first time-frequency resource and a first time-frequency resource set according to an embodiment of the present application
  • FIG. 17 is a schematic diagram showing that the number of bits included in a first bit block is used to determine a first time-frequency resource set from N time-frequency resource sets according to an embodiment of the present application;
  • 18 is a schematic diagram illustrating that the number of bits included in a first bit block is used to determine a first time-frequency resource set from N time-frequency resource sets according to another embodiment of the present application;
  • FIG. 19 is a schematic diagram of a first signaling according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of first signaling according to another embodiment of the present application.
  • FIG. 21 is a schematic diagram of first signaling according to another embodiment of the present application.
  • FIG. 22 shows a structural block diagram of a processing device in a UE according to an embodiment of the present application
  • FIG. 23 shows a structural block diagram of a processing apparatus in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first signaling, a second signaling, and a first bit block, as shown in FIG. 1.
  • the user equipment in the present application receives a first signaling, the first signaling is used to determine a first time-frequency resource, and a second signaling is used, and the second signaling is used Determining a second time-frequency resource; sending a first bit block in the first time-frequency resource, or sending a first bit block in the second time-frequency resource; wherein the first time-frequency resource is The occupied time domain resources and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; the first signaling carries The first identifier or the second identifier is used to determine whether the first bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information, Downlink Control Information) signaling.
  • DCI Downlink Control Information, Downlink Control Information
  • the first signaling is DCI signaling of a Downlink Grant.
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is an NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • NB-PDCCH Narrow Band PDCCH, narrowband PDCCH.
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the downlink physical layer data channel is an sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, Narrow Band PDSCH).
  • the first signaling is DCI format 1_0 or DCI format 1_1, and specific definitions of the DCI format 1_0 and the DCI format 1_1 refer to section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_0
  • the specific definition of the DCI format 1_0 refers to section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and the specific definition of the DCI format 1_1 refers to section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling includes a first domain, and the first domain included in the first signaling is used to determine the first time-frequency resource.
  • the first field included in the first signaling includes a positive integer number of bits.
  • the first domain included in the first signaling is used to determine the first time-frequency resource from a first time-frequency resource set, and the first time-frequency resource The set includes positive integer time-frequency resources.
  • the first domain included in the first signaling indicates an index of the first time-frequency resource in a first time-frequency resource set, and the first time-frequency resource set Includes a positive integer number of time-frequency resources.
  • the first domain included in the first signaling is a PUCCH resource indicator.
  • the PUCCH resource indicator see section 9.2.3 in 3GPP TS38.213.
  • the second signaling is DCI format 0_0 or DCI format 0_1.
  • DCI format 0_0 and DCI format 0_1 see section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_0
  • the specific definition of the DCI format 0_0 refers to section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is DCI format 0_1, and the specific definition of the DCI format 0_1 refers to section 7.3.1.1 in 3GPP TS38.212.
  • the second signaling is dynamically configured.
  • the second signaling is physical layer signaling.
  • the second signaling is DCI signaling.
  • the second signaling is DCI signaling of an uplink grant (UpLink Grant).
  • the second signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH.
  • the downlink physical layer control channel is sPDCCH.
  • the downlink physical layer control channel is an NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the second signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the second signaling includes a first domain and a second domain, and the first domain and the second domain included in the second signaling are used to indicate the second time-frequency resource. .
  • the first field included in the second signaling includes a positive integer number of bits
  • the second field included in the second signaling includes a positive integer number of bits
  • the first domain included in the second signaling indicates a frequency domain resource occupied by the second time-frequency resource.
  • the second domain included in the second signaling indicates a time domain resource occupied by the second time-frequency resource.
  • the first domain and the second domain included in the second signaling are Frequency domain resource resource and Time domain resource resource signature, Frequency domain domain resource source signature and the For the specific definition of time domain resource assignment, see section 6.1.2 in 3GPP TS38.214.
  • the first identifier and the second identifier are two different signaling identifiers, respectively.
  • the first identifier and the second identifier are two different RNTIs (Radio Network Temporary Identifier).
  • the second identifier includes C (Cell, Cell) -RNTI (Radio Network Temporary Identifier, wireless network tentative identifier) or CS (Configured Scheduling, configured scheduling)-RNTI
  • the first identifier includes new-RNTI.
  • C Cell, Cell
  • CS Configured Scheduling, configured scheduling
  • the first identifier includes one RNTI among multiple RNTIs
  • the second identifier includes one RNTI different from the first identifier among the multiple RNTIs.
  • the multiple RNTIs include at least two of C-RNTI, CS-RNTI, and new-RNTI.
  • C-RNTI C-RNTI
  • CS-RNTI CS-RNTI
  • new-RNTI For a specific definition of the new-RNTI, see section 5.1 of 3GPP TS38.214 .3.1 Section.
  • the multiple RNTIs include at least one of ⁇ C-RNTI, CS-RNTI ⁇ and new-RNTI.
  • new-RNTI refers to Section 5.1.3.1.
  • the first identifier and the second identifier are two different non-negative integers, respectively.
  • the first signaling carries the first identifier or the second identifier.
  • the first identifier or the second identifier is a signaling identifier of the first signaling.
  • the first signaling is a DCI signaling identified by the first identifier or the second identifier.
  • the first identifier or the second identifier is used to generate a RS (Reference Signal) of a DMRS (DeModulation Reference Signals) of the first signaling. Signal) sequence.
  • RS Reference Signal
  • DMRS DeModulation Reference Signals
  • a CRC (Cyclic Redundancy Check) bit sequence of the first signaling is scrambled by the first identifier or the second identifier.
  • the first signaling carries the first identifier.
  • the first identifier is a signaling identifier of the first signaling.
  • the first signaling is a DCI signaling identified by the first identifier.
  • the first identifier is used to generate an RS sequence of a DMRS of the first signaling.
  • the CRC bit sequence of the first signaling is scrambled by the first identifier.
  • the first signaling carries the second identifier.
  • the second identifier is a signaling identifier of the first signaling.
  • the first signaling is a DCI signaling identified by the second identifier.
  • the second identifier is used to generate an RS sequence of a DMRS of the first signaling.
  • the CRC bit sequence of the first signaling is scrambled by the second identifier.
  • the second signaling carries the first identifier or the second identifier.
  • the first identifier or the second identifier is a signaling identifier of the second signaling.
  • the second signaling is a DCI signaling identified by the first identifier or the second identifier.
  • the first identifier or the second identifier is used to generate an RS sequence of a DMRS of the second signaling.
  • the CRC bit sequence of the second signaling is scrambled by the first identifier or the second identifier.
  • the second signaling carries the first identifier or the second identifier.
  • the second signaling carries the first identifier.
  • the first identifier is a signaling identifier of the second signaling.
  • the second signaling is a DCI signaling identified by the first identifier.
  • the first identifier is used to generate an RS sequence of a DMRS of the second signaling.
  • the CRC bit sequence of the second signaling is scrambled by the first identifier.
  • the second signaling carries the second identity.
  • the second identifier is a signaling identifier of the second signaling.
  • the second signaling is a DCI signaling identified by the second identifier.
  • the second identifier is used to generate an RS sequence of a DMRS of the second signaling.
  • the CRC bit sequence of the second signaling is scrambled by the second identifier.
  • the first time-frequency resource is a time-frequency resource that belongs to an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • an uplink physical layer control channel that is, an uplink channel that can only be used to carry physical layer signaling
  • the uplink physical layer control channel is PUCCH (Physical Uplink Control CHannel, physical uplink control channel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (Narrow Band PUCCH, Narrow Band PUCCH).
  • the second time-frequency resource is a time-frequency resource that belongs to an UL-SCH (Uplink Shared Channel, Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel, Uplink Shared Channel
  • the second time-frequency resource is a time-frequency resource that belongs to an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow Band PUSCH).
  • the first time-frequency resource includes a positive integer RE (Resource Element).
  • the first time-frequency resource includes a positive integer number of multi-carrier symbols in a time domain, and the first time-frequency resource includes a positive integer number of sub-carriers in a frequency domain.
  • the second time-frequency resource includes a positive integer number of REs.
  • the second time-frequency resource includes positive integer multi-carrier symbols in the time domain
  • the first time-frequency resource includes positive integer sub-carriers in the frequency domain.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource overlap.
  • both the time domain resource occupied by the first time-frequency resource and the time domain resource occupied by the second time-frequency resource include at least one identical multi-carrier symbol.
  • both the time domain resource occupied by the first time-frequency resource and the time domain resource occupied by the second time-frequency resource belong to the first time window.
  • the first time window includes a slot.
  • the first time window includes a subframe.
  • the first time window includes multiple time slots.
  • the first time window includes multiple subframes.
  • the first time window includes a positive integer number of multi-carrier symbols.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource are orthogonal or non-orthogonal.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource are non-overlapping or overlapping.
  • any subcarrier in the frequency domain resources occupied by the first time-frequency resource does not belong to the frequency domain resources occupied by the second time-frequency resource, or the Both the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource include at least one identical subcarrier.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource are orthogonal.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource are non-overlapping.
  • any one of the sub-carriers in the frequency domain resources occupied by the first time-frequency resource does not belong to the frequency domain resources occupied by the second time-frequency resource.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource are non-orthogonal.
  • the frequency domain resources occupied by the first time-frequency resource and the frequency domain resources occupied by the second time-frequency resource overlap.
  • both the frequency domain resource occupied by the first time-frequency resource and the frequency domain resource occupied by the second time-frequency resource include at least one identical subcarrier.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is a Filter Bank Multi-Carrier (FBMC) symbol.
  • FBMC Filter Bank Multi-Carrier
  • the multi-carrier symbol includes a CP (Cyclic Prefix, cyclic prefix).
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a network architecture 200 of an NR 5G, Long-Term Evolution (LTE), and LTE-A (Long-Term Evolution Advanced) system.
  • the NR 5G or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200, some other suitable term.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) / 5G-CN (5G-Core Network) 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services, however, those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • the gNB203 provides UE201-oriented user and control plane protocol termination.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit and receive point), or some other suitable term.
  • gNB203 provides UE201 with an access point to EPC / 5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrow-band physical network devices, machine type communication devices, land vehicles, cars, wearables, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players e.g., MP3 players
  • cameras game consoles
  • drones aircraft
  • narrow-band physical network devices machine type communication devices
  • machine type communication devices land vehicles, cars, wearables, or any Other similar functional devices.
  • UE201 may also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC / 5G-CN210 through S1 / NG interface.
  • EPC / 5G-CN210 includes MME / AMF / UPF 211, other MME (Mobility Management Entity) / AMF (Authentication Management Field) / UPF (User Plane Function) 214, S-GW (Service Gateway), 212 and P-GW (Packet Data Network Gateway) 213.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • S-GW Service Gateway
  • P-GW Packet Data Network Gateway
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service, and specifically may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 supports massive MIMO wireless communication.
  • the gNB203 supports massive MIMO wireless communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for the user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, a RLC (Radio Link Control, Radio Link Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data (Aggregation protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including the network layer (e.g., IP layer) terminating at the P-GW on the network side and the other end (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first signaling in this application is generated from the PHY301.
  • the second signaling in this application is generated from the PHY301.
  • the wireless signal carrying the first bit block in the present application is generated in the PHY301.
  • the first information in the present application is generated in the RRC sublayer 306.
  • the second information in the present application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the PHY301.
  • the third information in this application is generated in the RRC sublayer 306.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the fourth information in this application is generated in the MAC sublayer 302.
  • the first wireless signal in the present application is generated in the PHY301.
  • the second wireless signal in the present application is generated in the PHY301.
  • the third wireless signal in the present application is generated in the PHY301.
  • the fourth wireless signal in the present application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of gNB410 communicating with UE 450 in an access network.
  • the base station device (410) includes a controller / processor 440, a memory 430, a receiving processor 412, a beam processor 471, a transmitting processor 415, a transmitter / receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller / processor 490, a memory 480, a data source 467, a beam processor 441, a transmit processor 455, a receive processor 452, a transmitter / receiver 456, and an antenna 460.
  • the processing related to the base station equipment (410) includes:
  • controller / processor 440 provides header compression, encryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels to implement L2 layer protocol for user plane and control plane; upper layer packets may include data or control information, such as DL-SCH (Downlink Shared Channel, downlink shared channel);
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • a controller / processor 440 associated with a memory 430 storing program code and data, the memory 430 may be a computer-readable medium;
  • the controller / processor 440 includes a scheduling unit to transmit demand, and the scheduling unit is used to schedule air interface resources corresponding to the transmission demand;
  • -Transmit processor 415 which receives the output bit stream of the controller / processor 440, and implements various signal transmission processing functions for the L1 layer (that is, the physical layer) including encoding, interleaving, scrambling, modulation, power control / distribution and Generation of physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signals), etc .;
  • -Transmit processor 415 which receives the output bit stream of the controller / processor 440, and implements various signal transmission processing functions for the L1 layer (that is, the physical layer) including multi-antenna transmission, spread spectrum, code division multiplexing, and precoding Wait;
  • a transmitter 416 configured to convert the baseband signal provided by the transmission processor 415 into a radio frequency signal and transmit it through the antenna 420; each transmitter 416 performs sampling processing on a respective input symbol stream to obtain a respective sample signal stream. Each transmitter 416 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on the respective sample stream to obtain a downlink signal.
  • processing related to the user equipment (450) may include:
  • -A receiving processor 452 that implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc .;
  • -A receiving processor 452 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc .;
  • the controller / processor 490 receives the bit stream output from the receiving processor 452, provides header decompression, decryption, packet segment connection and reordering, and multiplexing and demultiplexing between logic and transmission channels for implementation L2 protocol for user plane and control plane;
  • the controller / processor 490 is associated with a memory 480 that stores program code and data.
  • the memory 480 may be a computer-readable medium.
  • the processing related to the base station device (410) includes:
  • a receiver 416 receiving a radio frequency signal through its corresponding antenna 420, converting the received radio frequency signal into a baseband signal, and providing the baseband signal to the receiving processor 412;
  • a receiving processor 412 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction;
  • -A receiving processor 412 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc.
  • a controller / processor 440 that implements L2 layer functions and is associated with a memory 430 that stores program code and data;
  • Controller / processor 440 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper-layer data packets from UE450; from controller / processor 440 Upper layer data packets can be provided to the core network;
  • a beam processor 471 which determines to receive a first bit block in a first time-frequency resource, or receives a first bit block in a second time-frequency resource;
  • the processing related to the user equipment (450) includes:
  • Data source 467 which provides upper layer data packets to the controller / processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • a transmitter 456 that transmits a radio frequency signal through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • a transmit processor 455, which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, and physical layer signaling generation, etc .;
  • -A transmit processor 455, which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including multi-antenna transmission, spreading (spreading), code division multiplexing, precoding, etc .;
  • -Controller / processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410, and implements L2 for user plane and control plane Layer function
  • the controller / processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410;
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one
  • the UE450 device is used at least: receiving a first signaling, the first signaling is used to determine a first time-frequency resource; receiving a second signaling, the second signaling is used to determine a second Time-frequency resources; sending a first bit block in the first time-frequency resource, or sending a first bit block in the second time-frequency resource.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the UE 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving first signaling, The first signaling is used to determine a first time-frequency resource; receiving the second signaling, the second signaling is used to determine a second time-frequency resource; and sending the first in the first time-frequency resource A bit block, or sending a first bit block in the second time-frequency resource.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one Device together.
  • the gNB410 device at least: sends a first signaling, the first signaling is used to determine a first time-frequency resource; sends a second signaling, the second signaling is used to determine a second time-frequency resource; Receiving a first bit block in the first time-frequency resource, or receiving a first bit block in the second time-frequency resource.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first signaling, The first signaling is used to determine a first time-frequency resource; sending a second signaling, the second signaling is used to determine a second time-frequency resource; receiving the first in the first time-frequency resource A bit block, or receiving a first bit block in the second time-frequency resource.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a second identifier; Whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency Sent in the resource.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB410 corresponds to the base station in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the first signaling in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the first signaling in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the receiving second signaling in the present application.
  • At least the former two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the receiving second signaling in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the first information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the first information in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the second information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the second information in the present application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the third information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the third information in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the fourth information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the fourth information in the present application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the first wireless signal in the present application.
  • At least the first two of the transmitter 416, the transmit processor 415, and the controller / processor 440 are used to transmit the first wireless signal in the present application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the third wireless signal in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to transmit the third wireless signal in the present application.
  • At least the first two of the transmitter 456, the transmit processor 455, and the controller / processor 490 are used to transmit the first bit block in the present application.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller / processor 440 are used to receive the first bit block in the present application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller / processor 490 are used to send the first time period in the second time-frequency resource in the present application in the second time-frequency resource in the present application.
  • At least the former two of the receiver 416, the receiving processor 412, and the controller / processor 440 are used to receive the first time frequency in the second time-frequency resource in this application. Two wireless signals.
  • At least the former two of the transmitter 456, the transmit processor 455, and the controller / processor 490 are used to send the first A child signal.
  • At least the former two of the receiver 416, the receiving processor 412, and the controller / processor 440 are used to receive the first time frequency in the second time-frequency resource in this application.
  • a child signal is used to indicate whether the first time frequency in the second time-frequency resource is used.
  • At least the first two of the transmitter 456, the transmit processor 455, and the controller / processor 490 are used to transmit the fourth wireless signal in the present application.
  • At least the former two of the receiver 416, the receiving processor 412, and the controller / processor 440 are used to receive the fourth wireless signal in the present application.
  • Embodiment 5 illustrates a flowchart of wireless transmission, as shown in FIG. 5.
  • the base station N01 is a serving cell maintenance base station of the user equipment U02.
  • blocks F1, F2, and F3 are optional.
  • the second wireless signal; in step S19, the first sub-signal is also received in the second time-frequency resource, and the second sub-signal is abandoned in the second time-frequency resource.
  • the second wireless signal; in step S29, the first sub-signal is also sent in the second time-frequency resource, and the second sub-signal is abandoned in the second time-frequency resource.
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a first Two identifiers; whether the first identifier or the second identifier carried by the first signaling is used by the U02 to determine whether the first bit block is sent in the first time-frequency resource or whether Sent in the second time-frequency resource.
  • the first information is used to indicate the first identifier, the first signaling carries the first identifier, and the first signaling is further used to indicate the first identifier in a target modulation and coding mode set.
  • the modulation and coding mode used by the wireless signal is an alternative modulation and coding mode set among the X candidate modulation and coding mode sets, and the first identifier is used for the X candidate
  • the target coding and coding mode set is determined in the modulation and coding mode set, and X is a positive integer greater than 1; the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the second signaling is also used to indicate scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, and the first sub-signal occupies And the time domain resources occupied by the first time-frequency resource are orthogonal, and the time domain resources occupied by the second sub-signal belong to the time domain resources occupied by the first time-frequency resource.
  • the second information is used by the U02 to determine configuration information of the third wireless signal; the first bit block includes a first bit sub-block and a second bit sub-block, and the first bit sub-block is used In order to indicate whether the first wireless signal is received correctly, the second bit sub-block is obtained based on a measurement for the third wireless signal.
  • the third information is used to indicate N time-frequency resource sets, the first time-frequency resource is related to the first time-frequency resource set, and the first time-frequency resource set is among the N time-frequency resource sets.
  • a time-frequency resource set; the number of bits included in the first bit block is used to determine the first time-frequency resource set from the N time-frequency resource sets.
  • the first information is configured semi-statically.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information includes one or more IE (Information Element, information element) in one RRC signaling.
  • IE Information Element, information element
  • the first information includes all or a part of an IE in one RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the first information explicitly indicates the first identifier.
  • the first information implicitly indicates the first identifier.
  • the first information is used to indicate the first identifier and the second identifier.
  • the first information explicitly indicates the first identifier and the second identifier.
  • the first information implicitly indicates the first identifier and the second identifier.
  • the first wireless signal includes data.
  • the first wireless signal includes data and DMRS.
  • the data included in the first wireless signal is downlink data.
  • a transmission channel of the first wireless signal is a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the first bit block includes a positive integer number of bits.
  • the first bit block carries at least HARQ-ACK feedback in HARQ-ACK (Hybrid, Automatic Repeat, ReQuest, ACKnowledgement, Hybrid Automatic Repeat Request Confirmation) feedback and CSI (Channel State Information, Channel State Information) feedback.
  • HARQ-ACK Hybrid, Automatic Repeat, ReQuest, ACKnowledgement, Hybrid Automatic Repeat Request Confirmation
  • CSI Channel State Information, Channel State Information
  • HARQ-ACK feedback is carried in the first bit block.
  • the first bit block carries HARQ-ACK feedback and CSI.
  • the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the first bit block explicitly indicates whether the first wireless signal is correctly received.
  • the first bit block implicitly indicates whether the first wireless signal is correctly received.
  • the first bit block carries HARQ-ACK (Hybrid Automatic Repeat Repeat ACKnowledgement) feedback for the first wireless signal.
  • HARQ-ACK Hybrid Automatic Repeat Repeat ACKnowledgement
  • some or all of the bits in the first bit block are HARQ-ACK feedbacks for the first wireless signal.
  • the target modulation and coding scheme set includes positive integer modulation and coding schemes (MCS, Modulation and Coding Scheme).
  • the first signaling includes a second domain, and the second domain included in the first signaling is used to indicate that the first wireless signal is used in the target modulation and coding mode set. Modulation and coding.
  • the second field included in the first signaling includes a positive integer number of bits.
  • the second domain included in the first signaling indicates an index of a modulation and coding scheme used by the first wireless signal in the target modulation and coding scheme set.
  • the second domain included in the first signaling is a Modulation and coding scheme, and the specific definition of the Modulation and coding scheme is described in Section 5.1.3 of 3GPP TS38.214 .
  • X is equal to two.
  • X is greater than two.
  • the set of X candidate modulation and coding modes is predefined.
  • the target BLER (Block Error Rate) of two modulation and coding scheme sets in the X candidate modulation and coding scheme sets are different.
  • the first identifier and the second identifier respectively correspond to different modulation and coding scheme sets in the X candidate modulation and coding scheme sets, and the target BLER of the target modulation and coding scheme set is smaller than the target BLER.
  • a target BLER of a modulation and coding mode set in the X candidate modulation and coding mode sets corresponding to the second identifier is equal to 0.1.
  • the target BLER of the target modulation and coding mode set is less than 0.1.
  • the target BLER of the target modulation and coding mode set is equal to 0.00001.
  • the target BLER of the target modulation and coding mode set is equal to 0.000001.
  • a second wireless signal is also sent in the second time-frequency resource; if the first bit block is in the second time-frequency resource, It is transmitted in the first time-frequency resource, and abandons the second wireless signal in the second time-frequency resource.
  • a second wireless signal is also sent in the second time-frequency resource; if the first bit block is in the second time-frequency resource, The first time-frequency resource is transmitted, the first sub-signal is also transmitted in the second time-frequency resource, and the second sub-signal is abandoned in the second time-frequency resource.
  • the second wireless signal is abandoned in the second time-frequency resource.
  • a first sub-signal is also sent in the second time-frequency resource, and is abandoned in the second time-frequency resource Send a second sub-signal.
  • the scheduling information of the second wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS, DMRS configuration information, HARQ process number, RV, NDI, and transmitting antenna port, At least one of the corresponding multi-antenna related transmission and the corresponding multi-antenna related reception.
  • the DMRS configuration information included in the scheduling information of the second wireless signal includes an RS sequence, a mapping mode, a DMRS type, occupied time domain resources, and occupied frequency. At least one of a domain resource, an occupied code domain resource, a cyclic shift amount, and an OCC.
  • the second signaling includes a first domain
  • the first domain included in the second signaling indicates the scheduling information included in the second wireless signal. Frequency domain resources occupied.
  • the second signaling includes a second domain
  • the second domain included in the second signaling indicates the second signaling included in the scheduling information of the second wireless signal. Occupied time domain resources.
  • the occupied time domain resources included in the scheduling information of the second wireless signal are time domain resources occupied by the second time-frequency resource.
  • the occupied frequency domain resources included in the scheduling information of the second wireless signal are frequency domain resources occupied by the second time-frequency resource.
  • the multi-antenna-related reception is a spatial reception parameter (Spatial Rx parameters).
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna related reception is receiving an analog beamforming vector.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receiving spatial filtering.
  • the multi-antenna related transmissions are spatial transmission parameters (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmission beam.
  • the multi-antenna related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is transmitting an analog beamforming matrix.
  • the multi-antenna related transmission is transmitting an analog beamforming vector.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the spatial transmission parameters include a transmitting antenna port, a transmitting antenna port group, a transmitting beam, a transmitting analog beam forming matrix, a transmitting analog beam forming vector, a transmitting beam forming matrix, and a transmitting beam.
  • a shaping vector and a spatial filtering include a spatial filtering.
  • the spatial receiving parameters include a receiving beam, a receiving analog beam forming matrix, a receiving analog beam forming vector, a receiving beam forming matrix, a receiving beam forming vector, and a receiving spatial filter. filtering).
  • the second wireless signal includes data.
  • the second wireless signal includes data and DMRS.
  • the data included in the second wireless signal is uplink data.
  • a transmission channel of the second wireless signal is an UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the second wireless signal is transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the uplink physical layer data channel is a PUSCH.
  • the uplink physical layer data channel is sPUSCH.
  • the uplink physical layer data channel is an NR-PUSCH.
  • the uplink physical layer data channel is NB-PUSCH.
  • the wireless signal sent in the second time-frequency resource includes the second wireless signal and bears the first Radio signal of a bit block.
  • the wireless signal sent in the second time-frequency resource carries a first bit block set, and the first bit block The set includes the first bit block and the second bit block; the second wireless signal carries the second bit block.
  • the wireless signal sent in the second time-frequency resource carries a first bit block set, and the first bit block The set includes the first bit block and the second bit block; the second bit block belongs to a transmission block, and the second radio signal carries the second bit block.
  • a transport block (TB, Transport Block) is used to generate the second wireless signal.
  • a part of bits included in a Transport Block is used to generate the second wireless signal.
  • the first bit sub-block includes a positive integer number of bits
  • the second bit sub-block includes a positive integer number of bits
  • the first bit sub-block carries HARQ-ACK feedback.
  • the second bit sub-block carries HARQ-ACK feedback or CSI feedback.
  • the second bit sub-block carries HARQ-ACK feedback.
  • the second bit sub-block carries CSI feedback.
  • the second information is configured semi-statically.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or a part of an IE in one RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information is dynamically configured.
  • the second information is carried by physical layer signaling.
  • the second information belongs to DCI.
  • the second information includes a positive integer field (Field) in the DCI, and the field includes a positive integer number of bits.
  • Field positive integer field
  • the third wireless signal includes data, or the third wireless signal includes data and DMRS.
  • the data included in the third wireless signal is downlink data.
  • the second information is dynamically configured.
  • the second information belongs to DCI.
  • the second information includes a positive integer field (Field) in the DCI, and the field includes a positive integer number of bits.
  • the third wireless signal includes a reference signal.
  • the reference signal included in the third wireless signal includes a CSI-RS (Channel State Information-Reference Signal).
  • CSI-RS Channel State Information-Reference Signal
  • the reference signal included in the third wireless signal includes CSI-RS (Channel State Information-Reference Signal) and CSI-IMR (CSI-interference measurement measurement resource) , Channel state information interferes with measurement resources).
  • CSI-RS Channel State Information-Reference Signal
  • CSI-IMR CSI-interference measurement measurement resource
  • the second information is configured semi-statically.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or a part of an IE in an RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information is dynamically configured.
  • the second information belongs to DCI.
  • the second information includes a positive integer field (Field) in the DCI, and the field includes a positive integer number of bits.
  • the configuration information of the third wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS, DMRS configuration information, HARQ process number, RV, NDI, and a transmitting antenna port, At least one of the corresponding multi-antenna related transmission and the corresponding multi-antenna related reception.
  • the third wireless signal includes data, or the third wireless signal includes data and DMRS.
  • the configuration information of the DMRS included in the configuration information of the third wireless signal includes an RS sequence, a mapping mode, a DMRS type, occupied time domain resources, and occupied frequency. At least one of a domain resource, an occupied code domain resource, a cyclic shift amount, and an OCC.
  • the second information indicates configuration information of the third wireless signal.
  • a transmission channel of the third wireless signal is a DL-SCH.
  • the third wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is an NB-PDSCH.
  • the configuration information of the third wireless signal includes occupied time domain resources, occupied frequency domain resources, occupied code domain resources, cyclic shift amount, OCC, occupied antenna ports, At least one of a transmission type, a corresponding multi-antenna related transmission, and a corresponding multi-antenna related reception.
  • the third wireless signal includes a reference signal.
  • the third wireless signal includes a CSI-RS.
  • the third wireless signal includes CSI-RS and CSI-IMR.
  • the transmission type is one of periodic transmission, semi-periodic transmission, and aperiodic transmission.
  • the second information is carried by higher layer signaling, and the second information indicates configuration information of the third wireless signal.
  • the second information is carried by physical layer signaling, the second information indicates the first CSI, and the first CSI is obtained based on the third wireless signal measurement,
  • the configuration information of the third wireless signal is carried by higher layer signaling.
  • the second information is carried by DCI signaling, and the configuration information of the third wireless signal is carried by higher layer signaling; the second information is a CSI request domain, so
  • the CSI request field see section 7.3.1.1 in 3GPP TS38.212.
  • the second bit sub-block is used to indicate whether the third wireless signal is received correctly.
  • the third wireless signal includes data, or the third wireless signal includes data and DMRS.
  • the second bit sub-block carries HARQ-ACK feedback.
  • the second bit sub-block is used to indicate channel state information (CSI, Channel State Information) based on the measurement of the third wireless signal.
  • CSI channel state information
  • the third wireless signal includes a reference signal.
  • the third wireless signal includes a CSI-RS.
  • the third wireless signal includes CSI-RS and CSI-IMR.
  • the channel state information includes ⁇ RI (Rank indication), PMI (Precoding matrix indicator), CQI (Channel quality indicator), CRI (Csi-reference signal Resource Indicator) ⁇ .
  • the second bit sub-block carries CSI feedback.
  • the measurement for the third wireless signal includes a channel measurement, and the channel measurement is used to generate the channel state information.
  • the measurement for the third wireless signal includes interference measurement, and the interference measurement is used to generate the channel state information.
  • the measurement for the third wireless signal includes a channel measurement and an interference measurement, and the channel measurement and the interference measurement are used to generate the channel state information.
  • the third information is configured semi-statically.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC signaling.
  • the third information includes one or more IEs in one RRC signaling.
  • the third information includes all or a part of an IE in one RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the third information explicitly indicates the N time-frequency resource sets.
  • the third information implicitly indicates N time-frequency resource sets.
  • each time-frequency resource set in the N time-frequency resource sets includes a positive integer number of time-frequency resources
  • the third information includes each time-frequency resource in the N time-frequency resource sets. Configuration information.
  • the given time-frequency resource set is a time-frequency resource set of the N time-frequency resource sets, and the given time-frequency resource set includes a positive integer number of time-frequency resources; the given time-frequency resource is the given A time-frequency resource in the time-frequency resource set.
  • the configuration information of the given time-frequency resource includes at least one of a time-domain resource occupied, a code-domain resource occupied, a frequency-domain resource occupied, and a corresponding antenna port group. one.
  • the configuration information of the given time-frequency resource includes time domain resources occupied, code domain resources occupied, frequency domain resources occupied, and corresponding antenna port groups.
  • the configuration information of the given time-frequency resource includes a starting multi-carrier symbol occupied, a number of multi-carrier symbols occupied, and a starting PRB before or without frequency hopping ( Physical Resource Block), starting PRB after frequency hopping, number of PRBs occupied, frequency hopping settings, CS (Cyclic Shift, cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask), OCC Length, the corresponding antenna port group and the maximum code rate.
  • the configuration information of the given time-frequency resource includes a starting multi-carrier symbol occupied, a number of multi-carrier symbols occupied, a starting PRB before or without frequency hopping, At least one of the starting PRB after frequency hopping, the number of PRBs occupied, frequency hopping settings, CS, OCC, OCC length, corresponding antenna port group, and maximum code rate.
  • the N time-frequency resource sets are N PUCCH resource sets, and the specific definitions of the PUCCH resource sets refer to Section 9.2.1 in 3GPP TS38.213.
  • the N time-frequency resource sets correspond to N load size ranges, respectively.
  • the N time-frequency resource sets correspond to N bit number ranges, respectively.
  • the N is equal to 4, and the number of N bits ranges from [1,2], (2, N2], (N2, N3], and (N3, 1706), respectively.
  • N2 and N3 are configured by higher layer signaling.
  • the N is equal to 4, and the number of N bits ranges from [1,2], (2, N2], (N2, N3], and [N3, 1706], so N2 and N3 are configured by higher layer signaling.
  • Embodiment 6 illustrates another flowchart of wireless transmission, as shown in FIG. 6.
  • the base station N03 is a serving cell maintenance base station of the user equipment U04.
  • block F4 is optional.
  • a second wireless signal is also sent in the second time-frequency resource; if the first bit block is in the second time-frequency resource, It is transmitted in the first time-frequency resource, and abandons the second wireless signal in the second time-frequency resource.
  • a second wireless signal is also sent in the second time-frequency resource; if the first bit block is in the second time-frequency resource, The first time-frequency resource is transmitted, the first sub-signal is also transmitted in the second time-frequency resource, and the second sub-signal is abandoned in the second time-frequency resource.
  • a second wireless signal is also transmitted in the second time-frequency resource.
  • Embodiment 7 illustrates whether a first identifier or a second identifier carried by a first signaling is used to determine whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource. Schematic, as shown in Figure 7.
  • Embodiment 7 if the first signaling carries the first identifier, the first bit block is transmitted in the first time-frequency resource, or the first bit block is transmitted in the second time-frequency resource. A first bit block; if the first signaling carries the second identifier, sending the first bit in only the second time-frequency resource among the first time-frequency resource and the second time-frequency resource One bit block.
  • the first signaling carries the first identifier; a first bit block is sent in the first time-frequency resource, or a first bit block is sent in the second time-frequency resource.
  • a first bit block is sent in the first time-frequency resource.
  • a first bit block is sent in the second time-frequency resource.
  • Embodiment 8 illustrates a schematic diagram for determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource, as shown in FIG. 8.
  • the first signaling in this application carries the first identifier
  • the second signaling in this application carries the first identifier or the second identifier
  • the second Whether the first identifier or the second identifier carried in the signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource send.
  • the first bit block is sent in the second time-frequency resource.
  • the first bit block is sent in the first time-frequency resource.
  • Embodiment 9 illustrates another schematic diagram for determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource, as shown in FIG. 9.
  • the first signaling in this application carries the first identifier in this application, the time domain resources occupied by the first time-frequency resource, and the second time-frequency resources.
  • the relative position relationship of the time domain resources is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource.
  • the time domain resource occupied by the second time-frequency resource includes the time domain resource occupied by the first time-frequency resource
  • sending the first bit block in the second time-frequency resource If the time domain resources occupied by the first time-frequency resource include time domain resources that do not belong to the time domain resources occupied by the second time-frequency resource, sending the first time-frequency resource in the first time-frequency resource Bit blocks.
  • the time domain resource occupied by the second time-frequency resource includes the time domain resource occupied by the first time-frequency resource
  • sending the first bit block in the second time-frequency resource Sending if the at least one multi-carrier symbol in the time domain resource occupied by the first time-frequency resource does not belong to the time domain resource occupied by the second time-frequency resource; The first bit block.
  • the time domain resource occupied by the second time-frequency resource includes the time domain resource occupied by the first time-frequency resource
  • sending the first bit block in the second time-frequency resource If at least one multi-carrier symbol in the time domain resource occupied by the first time-frequency resource does not belong to the time domain resource occupied by the second time-frequency resource, the first time-frequency resource or the first time-frequency resource Sending the first bit block in two time-frequency resources.
  • the first threshold is one A positive integer, the first threshold is predefined or configurable.
  • the number of multi-carrier symbols belonging to the time-domain resource occupied by the second time-frequency resource among the time-domain resources occupied by the first time-frequency resource and the first The ratio of the number of multi-carrier symbols occupied by the time-frequency resources is less than a second threshold, and the first bit block is sent in the first time-frequency resource; if the time-domain resources occupied by the first time-frequency resource are The ratio of the number of multi-carrier symbols belonging to the time-domain resource occupied by the second time-frequency resource to the number of multi-carrier symbols occupied by the first time-frequency resource is greater than the second threshold.
  • the two thresholds are one that is not greater than 1. Positive real number, the second threshold is predefined or configurable.
  • the number of multi-carrier symbols belonging to the time domain resource occupied by the second time-frequency resource among the time domain resources occupied by the first time-frequency resource and the second The ratio of the number of multi-carrier symbols occupied by the time-frequency resources is less than a third threshold, and the first bit block is sent in the first time-frequency resource; if the time-domain resources occupied by the first time-frequency resource are The ratio between the number of multi-carrier symbols belonging to the time domain resource occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is greater than the third threshold.
  • the number of multi-carrier symbols occupied by the first time-frequency resource and the time domain resources occupied by the first time-frequency resource belong to the second time-frequency resource If the difference between the number of multi-carrier symbols of the occupied time domain resources is less than a fourth threshold, sending the first bit block in the second time-frequency resource; if the multi-carrier symbols occupied by the first time-frequency resource are And the difference between the number of multi-carrier symbols and the number of multi-carrier symbols belonging to the time-domain resource occupied by the second time-frequency resource among the time-domain resources occupied by the first time-frequency resource is greater than the fourth threshold, Sending the first bit block in a first time-frequency resource; if the number of multi-carrier symbols occupied by the first time-frequency resource and the time domain resource occupied by the first time-frequency resource belong to the second Sending a first bit block in the first time-frequency resource or the second time-frequency resource with a difference between the number
  • the number of multi-carrier symbols occupied by the second time-frequency resource and the time domain resources occupied by the first time-frequency resource belong to the second time-frequency resource If the difference between the number of multi-carrier symbols of the occupied time domain resources is less than a fifth threshold, sending the first bit block in the second time-frequency resource; if the multi-carrier symbols occupied by the second time-frequency resource And the difference between the number of multi-carrier symbols and the number of multi-carrier symbols belonging to the time-domain resource occupied by the second time-frequency resource among the time-domain resources occupied by the first time-frequency resource is greater than the fifth threshold, Sending the first bit block in a first time-frequency resource; if the number of multi-carrier symbols occupied by the second time-frequency resource and the time domain resource occupied by the first time-frequency resource belong to the second Sending the first bit block in the first time-frequency resource or the second time-frequency resource with a difference between the number of multi
  • Embodiment 10 illustrates another schematic diagram for determining whether a first bit block is transmitted in a first time-frequency resource or a second time-frequency resource, as shown in FIG. 10.
  • the first signaling in this application carries the first identifier in this application, the time domain resources occupied by the first time-frequency resource, and the second time-frequency resources.
  • the relative quantity relationship of the time domain resources is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource.
  • the second time-frequency resource if the number of multi-carrier symbols occupied by the second time-frequency resource is greater than the number of multi-carrier symbols occupied by the first time-frequency resource, sending the second time-frequency resource in the second time-frequency resource.
  • a first bit block if the number of multi-carrier symbols occupied by the second time-frequency resource is less than the number of multi-carrier symbols occupied by the first time-frequency resource, sending the The first bit block.
  • the ratio between the number of multi-carrier symbols occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the first time-frequency resource is greater than a sixth threshold, at the second time Sending the first bit block in frequency resources; if the ratio of the number of multi-carrier symbols occupied by the second time-frequency resource to the number of multi-carrier symbols occupied by the first time-frequency resource is less than the sixth A threshold, sending the first bit block in the first time-frequency resource.
  • a ratio between the number of multi-carrier symbols occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the first time-frequency resource is equal to the second A value obtained by dividing the number of multi-carrier symbols occupied by the time-frequency resource by the number of multi-carrier symbols occupied by the first time-frequency resource.
  • the sixth threshold is predefined.
  • the sixth threshold is configurable.
  • the sixth threshold is a positive real number.
  • the sixth threshold is equal to 1.
  • the sixth threshold is greater than 1.
  • the difference between the number of multi-carrier symbols occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the first time-frequency resource is greater than a seventh threshold, in the second Sending the first bit block in time-frequency resources; if the difference between the number of multi-carrier symbols occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the first time-frequency resource is less than the A seventh threshold, sending the first bit block in the first time-frequency resource.
  • a difference between the number of multi-carrier symbols occupied by the second time-frequency resource and the number of multi-carrier symbols occupied by the first time-frequency resource is equal to the first A value obtained by subtracting the number of multi-carrier symbols occupied by the first time-frequency resource from the number of multi-carrier symbols occupied by the second time-frequency resource.
  • the seventh threshold is predefined.
  • the seventh threshold is configurable.
  • the seventh threshold is a positive real number.
  • the seventh threshold is equal to zero.
  • the seventh threshold is greater than zero.
  • the ratio between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is greater than an eighth threshold, Sending the first bit block in frequency resources; if a ratio between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is less than the eighth A threshold, sending the first bit block in the second time-frequency resource.
  • a ratio between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is equal to the first A value obtained by dividing the number of multi-carrier symbols occupied by the time-frequency resource by the number of multi-carrier symbols occupied by the second time-frequency resource.
  • the eighth threshold is predefined.
  • the eighth threshold is configurable.
  • the eighth threshold is a positive real number.
  • the eighth threshold is equal to 1.
  • the eighth threshold is greater than 1.
  • the eighth threshold is less than 1.
  • the difference between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is greater than a ninth threshold, Sending the first bit block in time-frequency resources; if the difference between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is less than the A ninth threshold, sending the first bit block in the second time-frequency resource.
  • a difference between the number of multi-carrier symbols occupied by the first time-frequency resource and the number of multi-carrier symbols occupied by the second time-frequency resource is equal to the first A value obtained by subtracting the number of multi-carrier symbols occupied by the second time-frequency resource from the number of multi-carrier symbols occupied by a time-frequency resource.
  • the ninth threshold is predefined.
  • the ninth threshold is configurable.
  • the ninth threshold is a positive real number.
  • the ninth threshold is equal to zero.
  • the ninth threshold is greater than zero.
  • the ninth threshold is less than zero.
  • Embodiment 11 illustrates a schematic diagram of a first time-frequency resource, as shown in FIG. 11.
  • the first time-frequency resource includes K time-frequency resources, and K is a positive integer.
  • K is equal to 1.
  • K is greater than 1, and any two of the K time-frequency resources are orthogonal to each other.
  • the K time-frequency resources all include the same subcarrier in the frequency domain.
  • the K time-frequency resources all include the same number of subcarriers in the frequency domain.
  • the K time-frequency resources all include the same number of multi-carrier symbols in the time domain.
  • the K time-frequency resources are continuous in the time domain.
  • At least two of the K time-frequency resources are discontinuous in the time domain.
  • the K is predefined.
  • the K is configurable.
  • the first signaling is further used to indicate the K.
  • the first signaling includes a third domain, and the third domain included in the first signaling is used to indicate the K.
  • the third field included in the first signaling includes a positive integer number of bits.
  • the third field included in the first signaling indicates an index of the K among a plurality of positive integers.
  • the above method further includes:
  • the fourth information is used to indicate the K.
  • the fourth information is configured semi-statically.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by RRC signaling.
  • the fourth information is carried by MAC CE signaling.
  • the fourth information includes one or more IE (Information Element, information element) in one RRC signaling.
  • the fourth information includes all or a part of an IE in an RRC signaling.
  • the fourth information includes multiple IEs in one RRC signaling.
  • Embodiment 12 illustrates a schematic diagram of sending a first bit block in a second time-frequency resource, as shown in FIG. 12.
  • the first bit block is used to indicate whether the first wireless signal in the present application is correctly received; if the first bit block is transmitted in the second time-frequency resource,
  • the wireless signal sent in the second time-frequency resource includes the second wireless signal and a fourth wireless signal in the present application, and the first bit block is carried by the fourth wireless signal.
  • sending the first bit block in the first time-frequency resource is abandoned.
  • the user equipment gives up sending a wireless signal in the first time-frequency resource.
  • the number of the first bit blocks carried by the fourth wireless signal is equal to one.
  • the number of the first bit blocks carried by the fourth wireless signal is greater than one.
  • the number of the first bit blocks carried by the fourth wireless signal is equal to the K in this application, and the K is predefined or configurable.
  • the first time-frequency resource includes K time-frequency resources, and any two time-frequency resources in the K time-frequency resources are orthogonal to each other, and K is a positive integer greater than 1;
  • the number of the first bit blocks carried by the four wireless signals is equal to the K; the K is predefined or configurable.
  • Embodiment 13 illustrates another schematic diagram of sending a first bit block in a second time-frequency resource, as shown in FIG. 13.
  • the wireless signal sent in the second time-frequency resource includes the second wireless signal and A fourth wireless signal
  • the first bit block is carried by the fourth wireless signal
  • the first bit block includes a first bit sub-block and a second bit sub-block, and the first bit sub-block is used for indicating Whether the first wireless signal is received correctly, and the second bit sub-block is obtained based on a measurement of the third wireless signal in the present application.
  • sending the first bit block in the first time-frequency resource is abandoned.
  • the user equipment gives up sending a wireless signal in the first time-frequency resource.
  • the number of the first bit sub-blocks carried by the fourth wireless signal is equal to K1, and the number of the second bit sub-blocks carried by the fourth wireless signal is equal to K2; K1 is a positive integer K2 is a positive integer.
  • the K1 is equal to 1
  • the K2 is equal to 1.
  • the K1 is greater than 1, and the K2 is equal to 1.
  • the K1 is greater than 1, and the K2 is greater than 1.
  • the K1 is equal to the K
  • the K2 is equal to 1
  • the K is predefined or configurable.
  • the K1 is equal to the K
  • the K2 is equal to the K
  • the K is predefined or configurable.
  • the first signaling carries the first identifier.
  • the K2 is equal to 1
  • the second information is used to indicate configuration information of the third wireless signal
  • the signaling carrying the second information carries the first identifier or all information.
  • the second identification is described.
  • the K2 is greater than 1
  • the second information is used to indicate configuration information of the third wireless signal
  • the signaling carrying the second information carries the first identifier
  • Embodiment 14 illustrates a schematic diagram of sending a first bit block in a first time-frequency resource, as shown in FIG. 14.
  • the first bit block is used to indicate whether the first wireless signal in the present application is received correctly; the first bit block is transmitted in the first time-frequency resource, so
  • the first time-frequency resource includes K time-frequency resources, and any two of the K time-frequency resources are orthogonal to each other, and K is a positive integer greater than 1; the first bit block is in the Each of the K time-frequency resources is transmitted.
  • Embodiment 15 illustrates another schematic diagram of sending a first bit block in a first time-frequency resource, as shown in FIG. 15.
  • the first bit block is transmitted in the first time-frequency resource
  • the first time-frequency resource includes K time-frequency resources
  • any two of the K time-frequency resources are Frequency resources are orthogonal to each other
  • the K is a positive integer greater than 1
  • the first bit block includes a first bit sub-block and a second bit sub-block
  • the first bit sub-block is used to indicate the first bit sub-block Whether the wireless signal is received correctly;
  • the first bit sub-block is transmitted in each of the K time-frequency resources;
  • the second bit sub-block is in the K time-frequency resources
  • Each time-frequency resource is transmitted, or at least one bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources.
  • the second bit sub-block is sent in each of the K time-frequency resources.
  • the signaling carrying the second information carries the first identifier or the second identifier.
  • At least one bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources.
  • each bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources, and the second bit sub-block is At least two bits are transmitted in different time-frequency resources among the K time-frequency resources.
  • At least one bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources, and at least one of the second bit sub-blocks is transmitted.
  • the bits are transmitted in a plurality of time-frequency resources among the K time-frequency resources.
  • the signaling carrying the second information carries the second identifier.
  • the number of bits included in the second bit sub-block is equal to mK, and m is a positive integer; mK bits included in the second bit sub-block are evenly divided into K first bit groups, and The K first bit groups include m bits in the second bit sub-block, respectively; any bit in the second bit sub-block belongs to only one bit group in the K first bit groups.
  • the signaling carrying the second information carries the second identifier.
  • the K first bit groups are respectively transmitted in the K time-frequency resources.
  • the second bit sub-block includes S0 bits, and S0 is not a positive integer multiple of K;
  • the target bit block includes the second bit sub-block and a third bit block, and the third A bit block includes t bits, where t is related to the S0 and the K.
  • the signaling carrying the second information carries the second identifier.
  • the t is a positive integer not greater than the K.
  • the t is equal to
  • the number of bits included in the target bit block is nK, and n is a positive integer.
  • the number of bits included in the target bit block is nK
  • the t is equal to a difference between the nK and the S0
  • n is a positive integer
  • the number of bits included in the target bit block is nK
  • the t is equal to a value obtained by subtracting the S0 from the nK
  • n is a positive integer
  • the t bits are all 0.
  • all the t bits belong to the second bit sub-block.
  • the t bits are the first t bits in the second bit sub-block, and t is a positive integer.
  • the t bits are t bits in the second bit sub-block, and t is a positive integer.
  • the number of bits included in the target bit block is nK, and n is a positive integer; the nK bits included in the target bit block are evenly divided into K second bit groups, so The K second bit groups each include n bits in the target bit block; any bit in the target bit block belongs to only one second bit group in the K second bit groups; the The K second bit groups are respectively transmitted in the K time-frequency resources.
  • Embodiment 16 illustrates a schematic diagram related to a first time-frequency resource and a first time-frequency resource set, as shown in FIG. 16.
  • the first set of time-frequency resources includes a positive integer number of time-frequency resources
  • the first given time-frequency resource is a time-frequency resource in the first set of time-frequency resources
  • the first time-frequency resource The resource is related to the first given time-frequency resource.
  • the first signaling in this application is used to indicate the first given time-frequency resource from a positive integer number of time-frequency resources included in the first time-frequency resource set.
  • the first time-frequency resource includes K time-frequency resources, and the K time-frequency resources all include the same subcarrier and the same number of multi-carrier symbols as the first given time-frequency resource.
  • the first time-frequency resource includes K time-frequency resources, and the first given time-frequency resource and the earliest time-frequency resource of the K time-frequency resources are the same.
  • the first time-frequency resource includes K time-frequency resources
  • the first given time-frequency resource includes the K time-frequency resources
  • Embodiment 17 illustrates a schematic diagram in which the number of bits included in a first bit block is used to determine a first time-frequency resource set from N time-frequency resource sets, as shown in FIG. 17.
  • the first bit block is used to indicate whether the first wireless signal is received correctly;
  • the N time-frequency resource sets respectively correspond to N bit number ranges, and the first bit block includes The number of bits belongs to a first number of bits range, the first number of bits range is a bit number range of the N number of bits range, and the first time-frequency resource set corresponds to the first number of bits range One time-frequency resource set among the N time-frequency resource sets.
  • Embodiment 18 illustrates a schematic diagram in which the number of bits included in another first bit block is used to determine a first time-frequency resource set from N time-frequency resource sets, as shown in FIG. 18.
  • the first bit block includes a first bit sub-block and a second bit sub-block, and the first bit sub-block is used to indicate whether the first wireless signal is correctly received, and the first The two-bit sub-block is obtained based on the measurement of the third wireless signal; the number of bits included in the first bit sub-block, the number of bits included in the second bit sub-block, and K are used from The first time-frequency resource set is determined from the N time-frequency resource sets.
  • the number of bits included in the second bit sub-block and the K are used to determine a target integer
  • the target integer is a positive integer
  • the number of bits included in the first bit sub-block and the target integer The product of is used to determine the first time-frequency resource set from the N time-frequency resource sets.
  • the N time-frequency resource sets respectively correspond to a range of N bits, and a product of the number of bits included in the first bit sub-block and the target integer belongs to a first bit Number range, the first bit number range is a bit number range among the N bit number ranges, and the first time-frequency resource set is the N time-frequency corresponding to the first bit number range A time-frequency resource set in a resource set.
  • the number of bits included in the second bit sub-block is equal to mK
  • the m is a positive integer
  • the target integer is equal to the m.
  • the second bit sub-block includes S0 bits, and the S0 is not a positive integer multiple of the K;
  • the target bit block includes the second bit sub-block and the third bit block
  • the third bit block includes t bits, where t is related to the S0 and the K; the number of bits included in the target bit block is nK, and n is a positive integer; the target integer is equal to the n.
  • Embodiment 19 illustrates a schematic diagram of a first signaling, as shown in FIG. 19.
  • the first signaling includes a first domain, and the first domain included in the first signaling is used to determine the first time-frequency resource in the present application.
  • the first field included in the first signaling includes a positive integer number of bits.
  • the first domain included in the first signaling is used to determine the first time-frequency resource from a first time-frequency resource set, where the first time-frequency resource set includes a positive integer number of time Frequency resources.
  • the first domain included in the first signaling indicates an index of the first time-frequency resource in a first time-frequency resource set, and the first time-frequency resource set includes a positive integer number of time Frequency resources.
  • the first domain included in the first signaling is a PUCCH resource source indicator.
  • PUCCH resource source indicator For a specific definition of the PUCCH resource source indicator, see section 9.2.3 in 3GPP TS38.213.
  • Embodiment 20 illustrates another schematic diagram of the first signaling, as shown in FIG. 20.
  • the first signaling includes a second domain, and the second domain included in the first signaling is used to indicate in the target modulation and coding mode set in the present application that the A modulation and coding method adopted by the first wireless signal.
  • the target modulation and coding scheme set includes positive integer modulation and coding schemes (MCS, Modulation and Coding Scheme).
  • the second field included in the first signaling includes a positive integer number of bits.
  • the second domain included in the first signaling indicates an index of a modulation and coding scheme adopted by the first wireless signal in the target modulation and coding scheme set.
  • the second domain included in the first signaling is a Modulation and coding scheme.
  • the Modulation and coding scheme see section 5.1.3 in 3GPP TS38.214.
  • Embodiment 21 illustrates another schematic diagram of the first signaling, as shown in FIG. 21.
  • the first signaling is used to indicate scheduling information of the first wireless signal in the present application and the first time-frequency resource in the present application; or, the first signaling And is used to indicate scheduling information of the first wireless signal, the first time-frequency resource, and the K in this application.
  • the first signaling is used to indicate scheduling information of the first wireless signal and the first time-frequency resource.
  • the first signaling is used to indicate scheduling information of the first wireless signal, the first time-frequency resource, and the K.
  • the scheduling information of the first wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), and DMRS (DeModulation Reference Signals, solution).
  • MCS Modulation and Coding Scheme
  • DMRS DeModulation Reference Signals, solution.
  • HARQ Hybrid, Automatic, Repeat, ReQuest, hybrid automatic repeat request
  • RV Redundancy Version
  • NDI New Data Indicator, new data indication
  • sending antenna port all At least one of the corresponding multi-antenna related transmission and the corresponding multi-antenna related reception.
  • the MCS included in the scheduling information of the first wireless signal is a modulation and coding scheme adopted by the first wireless signal.
  • the DMRS configuration information included in the scheduling information of the first wireless signal includes an RS (Reference Signal) sequence, a mapping method, a DMRS type, and occupied time domain resources. At least one of occupied frequency domain resources, occupied code domain resources, cyclic shift (OCR), or OCC (Orthogonal Cover Code).
  • Embodiment 22 illustrates a structural block diagram of a processing device in a UE, as shown in FIG. 22.
  • the UE processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 includes a receiver 456, a receiving processor 452, and a controller / processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 in Embodiment 4.
  • the first transmitter 1202 includes the transmitter 456, the transmission processor 455, and the controller / processor 490 in Embodiment 4.
  • the first transmitter 1202 includes at least the former two of the transmitter 456, the transmit processor 455, and the controller / processor 490 in Embodiment 4.
  • -A first receiver 1201 receiving a first signaling (DL-grant DCI), the first signaling being used to determine a first time-frequency resource (PUCCH); receiving a second signaling (UL-grant DCI), The second signaling is used to determine a second time-frequency resource (PUSCH);
  • DL-grant DCI first signaling
  • UL-grant DCI second signaling
  • PUSCH second time-frequency resource
  • -A first transmitter 1202 sending a first bit block in the first time-frequency resource, or sending a first bit block in the second time-frequency resource;
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a first Two identifiers; whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or in the first time-frequency resource It is transmitted in the second time-frequency resource.
  • the first bit block is sent in the first time-frequency resource, or the first bit block is sent in the second time-frequency resource.
  • the first signaling carries the first identifier, a relative position relationship between time domain resources occupied by the first time-frequency resource and time domain resources occupied by the second time-frequency resource, or The relative quantity relationship is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource; or the first signaling carries the first An identifier, the second signaling carries the first identifier or the second identifier, and whether the first identifier or the second identifier carried by the second signaling is used to determine the first identifier Whether a bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource.
  • the first receiver 1201 further receives first information; the first receiver 1201 further receives a first wireless signal; the first information is used to indicate the first identifier, and the first A signaling carries the first identifier, and the first signaling is further used to indicate a modulation and coding scheme adopted by the first wireless signal in a target modulation and coding scheme set, and the target modulation and coding scheme set is X
  • the target modulation and coding scheme set is X
  • the first identifier is used to determine the target modulation and coding scheme set among the X candidate modulation and coding scheme sets, and X is A positive integer greater than 1; the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the first transmitter 1202 if the first bit block is transmitted in the second time-frequency resource, the first transmitter 1202 also sends a second wireless signal in the second time-frequency resource; if all The first bit block is transmitted in the first time-frequency resource, and the first transmitter 1202 abandons sending a second wireless signal in the second time-frequency resource, or the first transmitter 1202 is A first sub-signal is also sent in the second time-frequency resource, and the first transmitter 1202 abandons sending a second sub-signal in the second time-frequency resource; the second signaling is also used to indicate all The scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, time-domain resources occupied by the first sub-signal, and the first time-frequency resource The occupied time-domain resources are orthogonal, and the time-domain resources occupied by the second sub-signal belong to the time-domain resources occupied by the first time-frequency resource.
  • the first transmitter 1202 also sends a second wireless signal in the second time-frequency resource; if all The first bit block is transmitted in the first time-frequency resource, and the first transmitter 1202 gives up sending a second wireless signal in the second time-frequency resource; the second signaling is also used for Indicating scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, time domain resources occupied by the first sub-signal, and the first time The time domain resources occupied by the frequency resources are orthogonal, and the time domain resources occupied by the second sub-signal belong to the time domain resources occupied by the first time frequency resource.
  • the first transmitter 1202 if the first bit block is transmitted in the second time-frequency resource, the first transmitter 1202 also sends a second wireless signal in the second time-frequency resource; if all The first bit block is sent in the first time-frequency resource, the first transmitter 1202 also sends a first sub-signal in the second time-frequency resource, and the first transmitter 1202 gives up Sending a second sub-signal in the second time-frequency resource; the second signaling is further used to indicate scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the The second sub-signal, the time-domain resources occupied by the first sub-signal and the time-domain resources occupied by the first time-frequency resource are orthogonal, and the time-domain resources occupied by the second sub-signal belong to The time-domain resources occupied by the first time-frequency resource are described.
  • the first bit block is sent in the first time-frequency resource, and the first time-frequency resource includes K time-frequency resources, and any two time-frequency resources in the K time-frequency resources.
  • Resources are orthogonal to each other, K is a positive integer greater than 1;
  • the first bit block includes a first bit sub-block and a second bit sub-block;
  • the first bit sub-block is used to indicate the first wireless Whether the signal is received correctly;
  • the first bit sub-block is transmitted in each of the K time-frequency resources;
  • the second bit sub-block is in the K time-frequency resources
  • Each time-frequency resource is transmitted, or at least one bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources.
  • the first receiver 1201 further receives second information; the first receiver 1201 further receives a third wireless signal; the second information is used to determine configuration information of the third wireless signal ;
  • the first bit block includes the first bit sub-block and the second bit sub-block, and the second bit sub-block is obtained based on a measurement for the third wireless signal.
  • the first receiver 1201 further receives third information; the third information is used to indicate N time-frequency resource sets, and the first time-frequency resource is related to the first time-frequency resource set,
  • the first time-frequency resource set is a time-frequency resource set of the N time-frequency resource sets; the number of bits included in the first bit block is used to determine the number of bits from the N time-frequency resource sets.
  • the first time-frequency resource set is described.
  • Embodiment 23 illustrates a structural block diagram of a processing apparatus in a base station device, as shown in FIG. 23.
  • the processing apparatus 1300 in the base station device includes a second transmitter 1301 and a second receiver 1302.
  • the second transmitter 1301 includes a transmitter 416, a transmission processor 415, and a controller / processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least the former two of the transmitter 416, the transmission processor 415, and the controller / processor 440 in Embodiment 4.
  • the second receiver 1302 includes a receiver 416, a receiving processor 412, and a controller / processor 440 in Embodiment 4.
  • the second receiver 1302 includes at least the former two of the receiver 416, the receiving processor 412, and the controller / processor 440 in Embodiment 4.
  • -A second transmitter 1301, sending first signaling, the first signaling being used to determine a first time-frequency resource; sending a second signaling, the second signaling being used to determine a second time-frequency resource ;
  • a second receiver 1302 receiving a first bit block in the first time-frequency resource, or receiving a first bit block in the second time-frequency resource;
  • the time domain resources occupied by the first time-frequency resource and the time domain resources occupied by the second time-frequency resource are non-orthogonal; the first signaling carries a first identifier or a first Two identifiers; whether the first identifier or the second identifier carried by the first signaling is used to determine whether the first bit block is transmitted in the first time-frequency resource or in the first time-frequency resource It is transmitted in the second time-frequency resource.
  • the first bit block is received in the first time-frequency resource, or the first bit block is received in the second time-frequency resource.
  • the first signaling carries the first identifier, a relative position relationship between time domain resources occupied by the first time-frequency resource and time domain resources occupied by the second time-frequency resource, or The relative quantity relationship is used to determine whether the first bit block is transmitted in the first time-frequency resource or the second time-frequency resource; or the first signaling carries the first An identifier, the second signaling carries the first identifier or the second identifier, and whether the first identifier or the second identifier carried by the second signaling is used to determine the first identifier Whether a bit block is transmitted in the first time-frequency resource or is transmitted in the second time-frequency resource.
  • the second transmitter 1301 also sends first information; the second transmitter 1301 also sends a first wireless signal; the first information is used to indicate the first identifier, and the first A signaling carries the first identifier, and the first signaling is further used to indicate a modulation and coding scheme adopted by the first wireless signal in a target modulation and coding scheme set, and the target modulation and coding scheme set is X
  • the target modulation and coding scheme set is X
  • the first identifier is used to determine the target modulation and coding scheme set among the X candidate modulation and coding scheme sets, and X is A positive integer greater than 1; the first bit block is used to indicate whether the first wireless signal is received correctly.
  • the second receiver 1302 if the first bit block is transmitted in the second time-frequency resource, the second receiver 1302 also receives a second wireless signal in the second time-frequency resource; if all The first bit block is transmitted in the first time-frequency resource, the second receiver 1302 abandons receiving a second wireless signal in the second time-frequency resource, or the second receiver 1302 is in The second sub-signal is also received in the second time-frequency resource, and the second receiver 1302 abandons receiving the second sub-signal in the second time-frequency resource; the second signaling is also used to indicate all The scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, time-domain resources occupied by the first sub-signal, and the first time-frequency resource The occupied time-domain resources are orthogonal, and the time-domain resources occupied by the second sub-signal belong to the time-domain resources occupied by the first time-frequency resource.
  • the second receiver 1302 if the first bit block is transmitted in the second time-frequency resource, the second receiver 1302 also receives a second wireless signal in the second time-frequency resource; if all The first bit block is transmitted in the first time-frequency resource, and the second receiver 1302 gives up receiving a second wireless signal in the second time-frequency resource; the second signaling is also used for Indicating scheduling information of the second wireless signal; the second wireless signal includes the first sub-signal and the second sub-signal, time domain resources occupied by the first sub-signal, and the first time The time domain resources occupied by the frequency resources are orthogonal, and the time domain resources occupied by the second sub-signal belong to the time domain resources occupied by the first time frequency resource.
  • the second receiver 1302 if the first bit block is transmitted in the second time-frequency resource, the second receiver 1302 also receives a second wireless signal in the second time-frequency resource; if all The first bit block is transmitted in the first time-frequency resource, the second receiver 1302 also receives a first sub-signal in the second time-frequency resource, and the second receiver 1302 gives up Receiving a second sub-signal in the second time-frequency resource; the second signaling is also used to indicate scheduling information for the second wireless signal; the second wireless signal includes the first sub-signal and the The second sub-signal, the time-domain resources occupied by the first sub-signal and the time-domain resources occupied by the first time-frequency resource are orthogonal, and the time-domain resources occupied by the second sub-signal belong to The time-domain resources occupied by the first time-frequency resource are described.
  • the first bit block is sent in the first time-frequency resource, and the first time-frequency resource includes K time-frequency resources, and any two time-frequency resources in the K time-frequency resources.
  • Resources are orthogonal to each other, K is a positive integer greater than 1;
  • the first bit block includes a first bit sub-block and a second bit sub-block;
  • the first bit sub-block is used to indicate the first wireless Whether the signal is received correctly;
  • the first bit sub-block is transmitted in each of the K time-frequency resources;
  • the second bit sub-block is in the K time-frequency resources
  • Each time-frequency resource is transmitted, or at least one bit in the second bit sub-block is transmitted in only one time-frequency resource among the K time-frequency resources.
  • the second transmitter 1301 also sends second information; the second transmitter 1301 also sends a third wireless signal; the second information is used to determine configuration information of the third wireless signal ;
  • the first bit block includes the first bit sub-block and the second bit sub-block, and the second bit sub-block is obtained based on a measurement for the third wireless signal.
  • the second transmitter 1301 further sends third information; the third information is used to indicate N time-frequency resource sets, and the first time-frequency resource is related to the first time-frequency resource set,
  • the first time-frequency resource set is a time-frequency resource set of the N time-frequency resource sets; the number of bits included in the first bit block is used to determine the number of bits from the N time-frequency resource sets.
  • the first time-frequency resource set is described.
  • the user equipment, terminals, and UEs in this application include, but are not limited to, drones, communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • drones communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, Internet of things terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro-cell base stations, micro-cell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving nodes) and other wireless communications device.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块。所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
在5G系统中,eMBB(Enhance Mobile Broadband,增强型移动宽带),和URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)是两大典型业务类型。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)新空口Release 15中已针对URLLC业务的更低目标BLER要求(10^-5),定义了一个新的调制编码方式(MCS,Modulation and Coding Scheme)表。
为了支持更高要求的URLLC业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了新空口Release 16的URLLC增强的SI(Study Item,研究项目)。其中,对HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈/CSI(Channel State Information,信道状态信息)反馈的增强是需要研究一个重点。
发明内容
发明人通过研究发现,UCI包括HARQ/CSI,当一个被预留给发送UCI(Uplink Control Information,上行控制信息)的PUCCH在时域上和一个PUSCH不正交时,为了支持新空口Release16中更高可靠性的传输,如何发送UCI是需要重新考虑的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于确定第一时频资源;
接收第二信令,所述第二信令被用于确定第二时频资源;
在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块;
其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,本申请要解决的问题是:针对新空口Release16对更高可靠性的要求,当PUCCH在时域上和PUSCH不正交时,如何对UCI的发送进行增强。
作为一个实施例,本申请要解决的问题是:在现有标准中,当被预留给发送UCI的PUCCH在时域上和PUSCH不正交时,将UCI改在PUSCH上发送。在新空口Release16中,一个被预留给发送URLLC业务的UCI的PUCCH具有更高的传输可靠性,如果该PUCCH在时域上和一个PUSCH(eMBB/URLLC业务)不正交时,如果沿用现有标准的方法,即将UCI改在PUSCH上传输,有可能会使得UCI的传输可靠性得不到保障。因此,为了支持新空口Release16对更高可靠性的要求,当PUCCH和PUSCH在时域上不正交时,如何发送UCI是需要重新考虑的一个关键问题。
作为一个实施例,上述方法的实质在于,第一时频资源是PUCCH,第二时频资源是PUSCH,第一比特块是UCI,该PUCCH和该PUSCH在时域上不正交,第一标识和第二标识 都是用于加扰DCI的CRC的RNTI(Radio Network Temporary Identifier,无线网络暂定标识),第一标识是针对URLLC业务的,第二标识是针对eMBB业务的。采用上述方法的好处在于,根据加扰DCI的CRC的RNTI来确定UCI是在PUCCH还是PUSCH上发送。
根据本申请的一个方面,上述方法的特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中发送所述第一比特块,或者在所述第二时频资源中发送所述第一比特块;如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中发送所述第一比特块。
作为一个实施例,上述方法的实质在于,当被预留给发送UCI的PUCCH和PUSCH在时域上不正交时,如果是eMBB的UCI按照现有标准的方法来传送UCI,即UCI在PUSCH上发送;如果是URLLC的UCI则可能在PUCCH上发送,也可能在PUSCH上发送。
根据本申请的一个方面,上述方法的特征在于,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,上述方法的实质在于,当被预留给URLLC UCI的PUCCH和PUSCH在时域上不正交时,URLLC UCI是在PUCCH上发送还是在PUSCH上发送要么与PUCCH包括的时域资源和PUSCH包括的时域资源的相对位置关系有关,要么与PUCCH包括的时域资源和PUSCH包括的时域资源的相对数量关系有关,要么与PUSCH是eMBB业务还是URLLC业务有关。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息;
接收第一无线信号;
其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收。
根据本申请的一个方面,上述方法的特征在于,包括:
如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;
如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号,或者
在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号;
其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子 块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
作为一个实施例,上述方法的实质在于,在一个时隙(slot)中在多个PUCCH上重复发送同一个URLLC UCI是新空口Release16的一个研究方向,K个时频资源是一个时隙中用来重复发送同一个URLLC UCI的K个PUCCH;第一比特子块是高要求URLLC UCI(需要多次重复发送),第二比特子块是eMBB UCI或者低要求URLLC UCI(只需一次发送);高要求URLLC UCI在K个时频资源中的每个时频资源中都被发送;eMBB UCI或者低要求URLLC UCI中的每个比特在K个时频资源中的每个时频资源中都被发送,或者只在K个时频资源中的一个或多个时频资源中被发送。采用上述方法的好处在于,如果eMBB UCI或者低要求URLLC UCI中的每个比特在K个时频资源中的每个时频资源中都被发送,那么eMBB UCI或者低要求URLLC UCI因为多次重复发送从而提高了传输可靠性;如果eMBB UCI或者低要求URLLC UCI中的每个比特只在K个时频资源中的一个或多个时频资源中被发送,可以选择一个较小的PUCCH资源来发送UCI,因此可以提高资源利用率,提高系统传输容量。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信息;
接收第三无线信号;
其中,所述第二信息被用于确定所述第三无线信号的配置信息;所述第一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息;
其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于确定第一时频资源;
发送第二信令,所述第二信令被用于确定第二时频资源;
在所述第一时频资源中接收第一比特块,或者,在所述第二时频资源中接收第一比特块;
其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
根据本申请的一个方面,上述方法的特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中接收所述第一比特块,或者在所述第二时频资源中接收所述第一比特块;如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中接收所述第一比特块。
根据本申请的一个方面,上述方法的特征在于,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第 二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息;
发送第一无线信号;
其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收。
根据本申请的一个方面,上述方法的特征在于,包括:
如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还接收第二无线信号;
如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中接收第二无线信号,或者
在所述第二时频资源中还接收第一子信号,放弃在所述第二时频资源中接收第二子信号;
其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信息;
发送第三无线信号;
其中,所述第二信息被用于确定所述第三无线信号的配置信息;所述第一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息;
其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令,所述第二信令被用于确定第二时频资源;
第一发射机,在所述第一时频资源中发送第一比特块,或者在所述第二时频资源中 发送第一比特块;
其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于确定第一时频资源;发送第二信令,所述第二信令被用于确定第二时频资源;
第二接收机,在所述第一时频资源中接收第一比特块,或者在所述第二时频资源中接收第一比特块;
其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.在现有标准中,当被预留给发送UCI的PUCCH在时域上和PUSCH不正交时,将UCI改在PUSCH上发送。在新空口Release16中,一个被预留给发送URLLC业务的UCI的PUCCH具有更高的传输可靠性,如果该PUCCH在时域上和一个PUSCH(eMBB/URLLC业务)不正交时,如果沿用现有标准的方法,即将UCI改在PUSCH上传输,有可能会使得UCI的传输可靠性得不到保障,本申请可以解决这个问题。
-.根据加扰DCI的CRC的RNTI可以判定是UCI是针对URLLC业务还是eMBB业务;当被预留给发送UCI的PUCCH和PUSCH在时域上不正交时,如果是eMBB的UCI按照现有标准的方法来传送UCI,即UCI在PUSCH上发送;如果是URLLC的UCI,URLLC UCI是在PUCCH上发送还是在PUSCH上发送要么与PUCCH包括的时域资源和PUSCH包括的时域资源的相对位置关系有关,要么与PUCCH包括的时域资源和PUSCH包括的时域资源的相对数量关系有关,要么与PUSCH是eMBB业务还是URLLC业务有关。
-.为了更高的传输可靠性和更低的时延,在一个时隙(slot)中在多个PUCCH上重复发送同一个URLLC UCI是新空口Release16的一个研究方向。如果在一个时隙中要发送的UCI包括高要求URLLC UCI(需要多次重复发送)和eMBB UCI/低要求URLLC UCI(只需一次发送);高要求URLLC UCI在这多个PUCCH中的每个PUCCH中都被发送;eMBB UCI或者低要求URLLC UCI中的每个比特在这多个PUCCH中的每个PUCCH中都被发送,或者只在这多个PUCCH中的一个或多个PUCCH中被发送。采用上述方法的好处在于,如果eMBB UCI或者低要求URLLC UCI中的每个比特在这多个PUCCH中的每个PUCCH中都被发送,那么eMBB UCI或者低要求URLLC UCI因为多次重复发送从而提高了传输可靠性;如果eMBB UCI或者低要求URLLC UCI中的每个比特只在这多个PUCCH中的一个或多个PUCCH中被发送,可以选择一个较小的PUCCH资源来发送UCI,因此可以提高资源利用率,提高系统传输容量。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令、第二信令和第一比特块的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的 示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的第一信令所携带的是第一标识还是第二标识被用于确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图;
图8示出了根据本申请的一个实施例的确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图;
图9示出了根据本申请的另一个实施例的确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图;
图10示出了根据本申请的另一个实施例的确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图;
图11示出了根据本申请的一个实施例的第一时频资源的示意图;
图12示出了根据本申请的一个实施例的在第二时频资源中发送第一比特块的示意图;
图13示出了根据本申请的另一个实施例的在第二时频资源中发送第一比特块的示意图;
图14示出了根据本申请的一个实施例的在第一时频资源中发送第一比特块的示意图;
图15示出了根据本申请的另一个实施例的在第一时频资源中发送第一比特块的示意图;
图16示出了根据本申请的一个实施例的第一时频资源与第一时频资源集合有关的示意图;
图17示出了根据本申请的一个实施例的第一比特块包括的比特数量被用于从N个时频资源集合中确定第一时频资源集合的示意图;
图18示出了根据本申请的另一个实施例的第一比特块包括的比特数量被用于从N个时频资源集合中确定第一时频资源集合的示意图;
图19示出了根据本申请的一个实施例的第一信令的示意图;
图20示出了根据本申请的另一个实施例的第一信令的示意图;
图21示出了根据本申请的另一个实施例的第一信令的示意图;
图22示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图23示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信令、第二信令和第一比特块的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块;其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是下行授予(DownLink Grant)的DCI信令。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一信令是DCI format 1_0或者DCI format 1_1,所述DCI format1_0和所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令包括第一域,所述第一信令包括的所述第一域被用于确定所述第一时频资源。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域被用于从第一时频资源集合中确定所述第一时频资源,所述第一时频资源集合包括正整数个时频资源。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域指示所述第一时频资源在第一时频资源集合中的索引,所述第一时频资源集合包括正整数个时频资源。
作为上述实施例的一个子实施例,所述第一信令包括的所述第一域是PUCCH resource indicator,所述PUCCH resource indicator的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第二信令是DCI format 0_0或者DCI format 0_1,所述DCI format 0_0和所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二信令是动态配置的。
作为一个实施例,所述第二信令是物理层信令。
作为一个实施例,所述第二信令是DCI信令。
作为一个实施例,所述第二信令是上行授予(UpLink Grant)的DCI信令。
作为一个实施例,所述第二信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第二信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第二信令包括第一域和第二域,所述第二信令包括的所述第一域和所述第二域被用于指示所述第二时频资源。
作为上述实施例的一个子实施例,所述第二信令包括的所述第一域包括正整数个比特,所述第二信令包括的所述第二域包括正整数个比特。
作为上述实施例的一个子实施例,所述第二信令包括的所述第一域指示所述第二时频资源所占用的频域资源。
作为上述实施例的一个子实施例,所述第二信令包括的所述第二域指示所述第二时频资源所占用的时域资源。
作为上述实施例的一个子实施例,所述第二信令包括的所述第一域和所述第二域分别是Frequency domain resource assignment和Time domain resource assignment,所述Frequency domain resource assignment和所述Time domain resource assignment的具体定义参见3GPP TS38.214中的第6.1.2章节。
作为一个实施例,所述第一标识和所述第二标识分别是两个不同的信令标识。
作为一个实施例,所述第一标识和所述第二标识分别是两个不同的RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第二标识包括C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)或CS(Configured Scheduling,配置的调度)-RNTI,所述第一标识包括new-RNTI,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1.3.1章节。
作为一个实施例,所述第一标识包括多种RNTI中的一种RNTI,所述第二标识包括所述多种RNTI中的不同于所述第一标识的一种RNTI。
作为上述实施例的一个子实施例,所述多种RNTI包括C-RNTI、CS-RNTI和new-RNTI中的至少两种,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1.3.1章节。
作为上述实施例的一个子实施例,所述多种RNTI包括{C-RNTI、CS-RNTI}中的至少一种和new-RNTI,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1.3.1章节。
作为一个实施例,所述第一标识和所述第二标识分别是两个不相同的非负整数。
作为一个实施例,所述第一信令携带所述第一标识或者所述第二标识。
作为上述实施例的一个子实施例,所述第一标识或所述第二标识是所述第一信令的信令标识。
作为上述实施例的一个子实施例,所述第一信令是一个被所述第一标识或所述第二标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第一标识或所述第二标识被用于生成所述第一信令的DMRS(DeModulation Reference Signals,解调参考信号)的RS(Reference Signal,参考信号)序列。
作为上述实施例的一个子实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被所述第一标识或所述第二标识所加扰。
作为一个实施例,所述第一信令携带所述第一标识。
作为上述实施例的一个子实施例,所述第一标识是所述第一信令的信令标识。
作为上述实施例的一个子实施例,所述第一信令是一个被所述第一标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第一标识被用于生成所述第一信令的DMRS的RS序列。
作为上述实施例的一个子实施例,所述第一信令的CRC比特序列被所述第一标识所加扰。
作为一个实施例,所述第一信令携带所述第二标识。
作为上述实施例的一个子实施例,所述第二标识是所述第一信令的信令标识。
作为上述实施例的一个子实施例,所述第一信令是一个被所述第二标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第二标识被用于生成所述第一信令的DMRS的RS序列。
作为上述实施例的一个子实施例,所述第一信令的CRC比特序列被所述第二标识所加扰。
作为一个实施例,所述第二信令携带所述第一标识或者所述第二标识。
作为上述实施例的一个子实施例,所述第一标识或所述第二标识是所述第二信令的信令标识。
作为上述实施例的一个子实施例,所述第二信令是一个被所述第一标识或所述第二标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第一标识或所述第二标识被用于生成所述第二信令的DMRS的RS序列。
作为上述实施例的一个子实施例,所述第二信令的CRC比特序列被所述第一标识或所述第二标识所加扰。
作为一个实施例,所述第二信令携带所述第一标识或者所述第二标识。
作为一个实施例,所述第二信令携带所述第一标识。
作为上述实施例的一个子实施例,所述第一标识是所述第二信令的信令标识。
作为上述实施例的一个子实施例,所述第二信令是一个被所述第一标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第一标识被用于生成所述第二信令的DMRS的RS序列。
作为上述实施例的一个子实施例,所述第二信令的CRC比特序列被所述第一标识所加扰。
作为一个实施例,所述第二信令携带所述第二标识。
作为上述实施例的一个子实施例,所述第二标识是所述第二信令的信令标识。
作为上述实施例的一个子实施例,所述第二信令是一个被所述第二标识所标识的DCI信令。
作为上述实施例的一个子实施例,所述第二标识被用于生成所述第二信令的DMRS的RS序列。
作为上述实施例的一个子实施例,所述第二信令的CRC比特序列被所述第二标识所加扰。
作为一个实施例,所述第一时频资源是属于上行物理层控制信道(即仅能用于承载物理层信令的上行信道)的时频资源。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述第二时频资源是属于UL-SCH(Uplink Shared Channel,上行共享信道)的时频资源。
作为一个实施例,所述第二时频资源是属于上行物理层数据信道(即能用于承载物理层数据的上行信道)的时频资源。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述第一时频资源包括正整数个RE(Resource Element,资源单元)。
作为一个实施例,所述第一时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第二时频资源包括正整数个RE。
作为一个实施例,所述第二时频资源在时域上包括正整数个多载波符号,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是重叠的。
作为一个实施例,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源都包括至少一个相同的多载波符号。
作为一个实施例,所述第一时频资源所占的时域资源和所述第二时频资源所占的时域资源都属于第一时间窗。
作为上述实施例的一个子实施例,所述第一时间窗包括一个时隙(slot)。
作为上述实施例的一个子实施例,所述第一时间窗包括一个子帧(subframe)。
作为上述实施例的一个子实施例,所述第一时间窗包括多个时隙。
作为上述实施例的一个子实施例,所述第一时间窗包括多个子帧。
作为上述实施例的一个子实施例,所述第一时间窗包括正整数个多载波符号。
作为一个实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是正交的或者是非正交的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是不重叠的或者是重叠的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源中的任意一个子载波都不属于所述第二时频资源所占用的频域资源,或者,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源都包括至少一个相同的子载波。
作为一个实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是正交的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是不重叠的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源中的任意一个子载波都不属于所述第二时频资源所占用的频域资源。
作为一个实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是非正交的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源是重叠的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的频域资源和所述第二时频资源所占用的频域资源都包括至少一个相同的子载波。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对 应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,承载本申请中的所述第一比特块的无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第三无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第四无线信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,波束处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,波束处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-波束处理器471,确定第一信令和第二信令;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;
-波束处理器441,确定第一信令和第二信令;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标 头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-波束处理器471,确定在第一时频资源中接收第一比特块,或者,在第二时频资源中接收第一比特块;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-波束处理器441,确定在第一时频资源中发送第一比特块,或者,在第二时频资源中发送第一比特块;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块。其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块。其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信令,所述第一信令被用于确定第一时频资源;发送第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中接收第一比特块,或者,在所述第二时频资源中接收第一比特块。其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定第一时频资源;发送第二信令,所述第二信令被用于确定第二时频资源;在所述第一时频资源中接收第一比特块,或者,在所述第二时频资源中接收第一比特 块。其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信令。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信令。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述接收第二信令。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述接收第二信令。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第四信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第四信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一无线信号。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一无线信号。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三无线信号。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第一比特块。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第一比特块。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时频资源中发送本申请中的所述第二无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时频资源中接收本申请中的所述第二无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时频资源中发送本申请中的所述第一子信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时频资源中接收本申请中的所述第一子信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第四无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第四无线信号。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1、F2和F3是可选的。
对于N01,在步骤S10中发送第一信息;在步骤S11中发送第三信息;在步骤S12中发送第二信令;在步骤S13中发送第一信令;在步骤S14中发送第一无线信号;在步骤S15中发送第二信息;在步骤S16中发送第三无线信号;在步骤S17中在第一时频资源中接收第一比特块;在步骤S18中放弃在第二时频资源中接收第二无线信号;在步骤S19中在第二时频资源中还接收第一子信号,放弃在第二时频资源中接收第二子信号。
对于U02,在步骤S20中接收第一信息;在步骤S21中接收第三信息;在步骤S22中接收第二信令;在步骤S23中接收第一信令;在步骤S24中接收第一无线信号;在步骤S25中接收第二信息;在步骤S26中接收第三无线信号;在步骤S27中在第一时频资源中发送第一比特块;在步骤S28中放弃在第二时频资源中发送第二无线信号;在步骤S29中在第二时频资源中还发送第一子信号,放弃在第二时频资源中发送第二子信号。
在实施例5中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被所述U02用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收。所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。所述第二信息被所述U02用于确定所述第三无线信号的配置信息;所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块被用于指示所述第一无线信号是否被正确接收,所述第二比特子块是基于针对所述第三无线信号的测量得出的。所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
作为一个实施例,方框F2和方框F3中仅一个方框存在。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息显式的指示所述第一标识。
作为一个实施例,所述第一信息隐式的指示所述第一标识。
作为一个实施例,所述第一信息被用于指示所述第一标识和所述第二标识。
作为一个实施例,所述第一信息显式的指示所述第一标识和所述第二标识。
作为一个实施例,所述第一信息隐式的指示所述第一标识和所述第二标识。
作为一个实施例,所述第一无线信号包括数据。
作为一个实施例,所述第一无线信号包括数据和DMRS。
作为一个实施例,所述第一无线信号包括的所述数据是下行数据。
作为一个实施例,所述第一无线信号的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块中承载HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)反馈和CSI(Channel State Information,信道状态信息)中的至少HARQ-ACK反馈。
作为一个实施例,所述第一比特块中承载HARQ-ACK反馈。
作为一个实施例,所述第一比特块中承载HARQ-ACK反馈和CSI。
作为一个实施例,所述第一比特块被用于指示所述第一无线信号是否被正确接收。
作为一个实施例,所述第一比特块显式的指示所述第一无线信号是否被正确接收。
作为一个实施例,所述第一比特块隐式的指示所述第一无线信号是否被正确接收。
作为一个实施例,所述第一比特块中承载针对所述第一无线信号的HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)反馈。
作为一个实施例,所述第一比特块中的部分或全部比特是针对所述第一无线信号的HARQ-ACK反馈。
作为一个实施例,所述目标调制编码方式集合包括正整数个调制编码方式(MCS,Modulation and Coding Scheme)。
作为一个实施例,所述第一信令包括第二域,所述第一信令包括的所述第二域被用于在所述目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域指示所述第一无线信号所采用的调制编码方式在所述目标调制编码方式集合中的索引。
作为上述实施例的一个子实施例,所述第一信令包括的所述第二域是Modulation and coding scheme,所述Modulation and coding scheme的具体定义参见3GPP TS38.214中的第5.1.3章节。
作为一个实施例,所述X等于2。
作为一个实施例,所述X大于2。
作为一个实施例,所述X个备选调制编码方式集合是预定义的。
作为一个实施例,所述X个备选调制编码方式集合中存在两个调制编码方式集合的目标BLER(Block Error Rate,误块率)是不同的。
作为一个实施例,所述第一标识和所述第二标识分别对应所述X个备选调制编码方式集合中的不同的调制编码方式集合,所述目标调制编码方式集合的目标BLER小于所述第二标识 所对应的所述X个备选调制编码方式集合中的调制编码方式集合。
作为上述实施例的一个子实施例,所述第二标识所对应的所述X个备选调制编码方式集合中的调制编码方式集合的目标BLER等于0.1。
作为上述实施例的一个子实施例,所述目标调制编码方式集合的目标BLER小于0.1。
作为上述实施例的一个子实施例,所述目标调制编码方式集合的目标BLER等于0.00001。
作为上述实施例的一个子实施例,所述目标调制编码方式集合的目标BLER等于0.000001。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号。
作为一个实施例,如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号。
作为一个实施例,如果所述第一比特块在所述第一时频资源中被发送,在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号。
作为一个实施例,所述所述第二无线信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS,DMRS的配置信息,HARQ进程号,RV,NDI,发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述所述第二无线信号的调度信息包括的所述DMRS的配置信息包括RS序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量,OCC中的至少之一。
作为上述实施例的一个子实施例,所述第二信令包括第一域,所述第二信令包括的所述第一域指示所述所述第二无线信号的调度信息包括的所述所占用的频域资源。
作为上述实施例的一个子实施例,所述第二信令包括第二域,所述第二信令包括的所述第二域指示所述所述第二无线信号的调度信息包括的所述所占用的时域资源。
作为上述实施例的一个子实施例,所述所述第二无线信号的调度信息包括的所述所占用的时域资源是所述第二时频资源所占用的时域资源。
作为上述实施例的一个子实施例,所述所述第二无线信号的调度信息包括的所述所占用的频域资源是所述第二时频资源所占用的频域资源。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型 矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述第二无线信号包括数据。
作为一个实施例,所述第二无线信号包括数据和DMRS。
作为一个实施例,所述第二无线信号包括的所述数据是上行数据。
作为一个实施例,所述第二无线信号的传输信道是UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第二无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中发送的无线信号包括所述第二无线信号和承载所述第一比特块的无线信号。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中发送的无线信号承载第一比特块集合,所述第一比特块集合包括所述第一比特块和第二比特块;所述第二无线信号承载所述第二比特块。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中发送的无线信号承载第一比特块集合,所述第一比特块集合包括所述第一比特块和第二比特块;所述第二比特块属于一个传输块,所述第二无线信号承载所述第二比特块。
作为一个实施例,一个传输块(TB,Transport Block)被用于生成所述第二无线信号。
作为一个实施例,一个传输块(TB,Transport Block)包括的部分比特被用于生成所述第二无线信号。
作为一个实施例,所述第一比特子块包括正整数个比特,所述第二比特子块包括正整数个比特。
作为一个实施例,所述第一比特子块中承载HARQ-ACK反馈。
作为一个实施例,所述第二比特子块中承载HARQ-ACK反馈或者CSI反馈。
作为一个实施例,所述第二比特子块中承载HARQ-ACK反馈。
作为一个实施例,所述第二比特子块中承载CSI反馈。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第二信息是动态配置的。
作为一个实施例,所述第二信息由物理层信令承载。
作为一个实施例,所述第二信息属于DCI。
作为一个实施例,所述第二信息包括一个DCI中的正整数个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第三无线信号包括数据,或者所述第三无线信号包括数据和DMRS。
作为上述实施例的一个子实施例,所述第三无线信号包括的所述数据是下行数据。
作为上述实施例的一个子实施例,所述第二信息是动态配置的。
作为上述实施例的一个子实施例,所述第二信息属于DCI。
作为上述实施例的一个子实施例,所述第二信息包括一个DCI中的正整数个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第三无线信号包括参考信号。
作为上述实施例的一个子实施例,所述第三无线信号包括的所述参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为上述实施例的一个子实施例,所述第三无线信号包括的所述参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)和CSI-IMR(CSI-interference measurement resource,信道状态信息干扰测量资源)。
作为上述实施例的一个子实施例,所述第二信息是半静态配置的。
作为上述实施例的一个子实施例,所述第二信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第二信息由RRC信令承载。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的多个IE。
作为上述实施例的一个子实施例,所述第二信息是动态配置的。
作为上述实施例的一个子实施例,所述第二信息属于DCI。
作为上述实施例的一个子实施例,所述第二信息包括一个DCI中的正整数个域(Field),所述域包括正整数个比特。
作为一个实施例,所述所述第三无线信号的配置信息包括所占用的时域资源,所占用的频域资源,MCS,DMRS的配置信息,HARQ进程号,RV,NDI,发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述第三无线信号包括数据,或者所述第三无线信号包括数据和DMRS。
作为上述实施例的一个子实施例,所述所述第三无线信号的配置信息包括的所述DMRS的配置信息包括RS序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量,OCC中的至少之一。
作为上述实施例的一个子实施例,所述第二信息指示所述所述第三无线信号的配置信息。
作为一个实施例,所述第三无线信号的传输信道是DL-SCH。
作为一个实施例,所述第三无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述所述第三无线信号的配置信息包括所占用的时域资源、所占用的频域资源、所占用的码域资源、循环位移量、OCC、所占用的天线端口、发送类型、所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述第三无线信号包括参考信号。
作为上述实施例的一个子实施例,所述第三无线信号包括CSI-RS。
作为上述实施例的一个子实施例,所述第三无线信号包括CSI-RS和CSI-IMR。
作为上述实施例的一个子实施例,所述发送类型是周期性发送,半周期性发送和非周期性发送中之一。
作为上述实施例的一个子实施例,所述第二信息由更高层信令承载,所述第二信息指示所述所述第三无线信号的配置信息。
作为上述实施例的一个子实施例,所述第二信息由物理层信令承载,所述第二信息指示第一CSI,所述第一CSI是基于所述第三无线信号测量得出的,所述所述第三无线信号的配置信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第二信息由DCI信令承载,所述所述第三无线信号的配置信息由更高层信令承载;所述第二信息是CSI request域,所述CSI request域的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第二比特子块被用于指示所述第三无线信号是否被正确接收。
作为上述实施例的一个子实施例,所述第三无线信号包括数据,或者所述第三无线信号包括数据和DMRS。
作为上述实施例的一个子实施例,所述第二比特子块中承载HARQ-ACK反馈。
作为一个实施例,所述第二比特子块被用于指示基于针对所述第三无线信号的测量得出的信道状态信息(CSI,Channel State Information)。
作为上述实施例的一个子实施例,所述第三无线信号包括参考信号。
作为上述实施例的一个子实施例,所述第三无线信号包括CSI-RS。
作为上述实施例的一个子实施例,所述第三无线信号包括CSI-RS和CSI-IMR。
作为上述实施例的一个子实施例,所述信道状态信息包括{RI(Rank indication,秩指示),PMI(Precoding matrix indicator,预编码矩阵指示),CQI(Channel quality indicator,信道质量指示),CRI(Csi-reference signal Resource Indicator)}中的至少之一。
作为上述实施例的一个子实施例,所述第二比特子块中承载CSI反馈。
作为上述实施例的一个子实施例,针对所述第三无线信号的测量包括信道测量,所述信道测量被用于生成所述信道状态信息。
作为上述实施例的一个子实施例,针对所述第三无线信号的测量包括干扰测量,所述干扰测量被用于生成所述信道状态信息。
作为上述实施例的一个子实施例,针对所述第三无线信号的测量包括信道测量和干扰测量,所述信道测量和所述干扰测量被用于生成所述信道状态信息。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC信令承载。
作为一个实施例,所述第三信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第三信息显式的指示N个时频资源集合。
作为一个实施例,所述第三信息隐式的指示N个时频资源集合。
作为一个实施例,所述N个时频资源集合中的每个时频资源集合包括正整数个时频资源,所述第三信息包括所述N个时频资源集合中的每个时频资源的配置信息。
作为一个实施例,给定时频资源集合是所述N个时频资源集合中的一个时频资源集合,所述给定时频资源集合包括正整数个时频资源;给定时频资源是所述给定时频资源集合中的一个时频资源。
作为上述实施例的一个子实施例,所述给定时频资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组中的至少之一。
作为上述实施例的一个子实施例,所述给定时频资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组。
作为上述实施例的一个子实施例,所述给定时频资源的配置信息包括所占的起始多载波符号,所占的多载波符号数目,跳频前或不跳频情况的起始PRB(Physical Resource Block,物理资源块),跳频后的起始PRB,所占的PRB数目,跳频设置,CS(Cyclic Shift,循环移位),OCC(Orthogonal Cover Code,正交掩码),OCC长度,所对应的天线端口组和最大码 率(Code Rate)。
作为上述实施例的一个子实施例,所述给定时频资源的配置信息包括所占的起始多载波符号,所占的多载波符号数目,跳频前或不跳频情况的起始PRB,跳频后的起始PRB,所占的PRB数目,跳频设置,CS,OCC,OCC长度,所对应的天线端口组和最大码率中的至少之一。
作为一个实施例,所述N个时频资源集合分别是N个PUCCH resource sets,所述PUCCH resource sets的具体定义参见3GPP TS38.213中的第9.2.1章节。
作为一个实施例,所述N个时频资源集合分别对应N个负载大小范围。
作为一个实施例,所述N个时频资源集合分别对应N个比特数目范围。
作为上述实施例的一个子实施例,所述N等于4,所述N个比特数目范围分别是[1,2],(2,N2],(N2,N3]和(N3,1706],所述N2和所述N3由更高层信令配置。
作为上述实施例的一个子实施例,所述N等于4,所述N个比特数目范围分别是[1,2],(2,N2],(N2,N3]和[N3,1706],所述N2和所述N3由更高层信令配置。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F4是可选的。
对于N03,在步骤S30中发送第一信息;在步骤S31中发送第三信息;在步骤S32中发送第二信令;在步骤S33中发送第一信令;在步骤S34中发送第一无线信号;在步骤S35中发送第二信息;在步骤S36中发送第三无线信号;在步骤S37中在第二时频资源中接收第一比特块;在步骤S38中在第二时频资源中还接收第二无线信号。
对于U04,在步骤S40中接收第一信息;在步骤S41中接收第三信息;在步骤S42中接收第二信令;在步骤S43中接收第一信令;在步骤S44中接收第一无线信号;在步骤S45中接收第二信息;在步骤S46中接收第三无线信号;在步骤S47中在第二时频资源中发送第一比特块;在步骤S48中在第二时频资源中还发送第二无线信号。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号。
实施例7
实施例7示例了一个第一信令所携带的是第一标识还是第二标识被用于确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图,如附图7所示。
在实施例7中,如果所述第一信令携带所述第一标识,在所述第一时频资源中发送所述第一比特块,或者在所述第二时频资源中发送所述第一比特块;如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中发送所述第一比特块。
作为一个实施例,所述第一信令携带所述第一标识;在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块。
作为上述实施例的一个子实施例,在所述第一时频资源中发送第一比特块。
作为上述实施例的一个子实施例,在所述第二时频资源中发送第一比特块。
实施例8
实施例8示例了一个确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图,如附图8所示。
在实施例8中,本申请中的所述第一信令携带所述第一标识,本申请中的所述第二信令 携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,如果所述第二信令所携带的是所述第一标识,所述第一比特块在所述第二时频资源中被发送。
作为一个实施例,如果所述第二信令所携带的是所述第二标识,所述第一比特块在所述第一时频资源中被发送。
实施例9
实施例9示例了另一个确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图,如附图9所示。
在实施例9中,本申请中的所述第一信令携带本申请中的所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,如果所述第二时频资源所占用的时域资源包括所述第一时频资源所占用的时域资源,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源包括不属于所述第二时频资源所占用的时域资源的时域资源,在所述第一时频资源中发送所述第一比特块。
作为一个实施例,如果所述第二时频资源所占用的时域资源包括所述第一时频资源所占用的时域资源,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中的至少一个多载波符号不属于所述第二时频资源所占用的时域资源,在所述第一时频资源中发送所述第一比特块。
作为一个实施例,如果所述第二时频资源所占用的时域资源包括所述第一时频资源所占用的时域资源,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中的至少一个多载波符号不属于所述第二时频资源所占用的时域资源,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量小于第一阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量大于所述第一阈值,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量等于所述第一阈值,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块;所述第一阈值是一个正整数,所述第一阈值是预定义的或者可配置的。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值小于第二阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值大于所述第二阈值,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值等于所述第二阈值,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块;所述第二阈值是一个不大于1的正实数,所述第二阈值是预定义的或者可配置的。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值小于第三阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值大于所述第三阈值,在所述第二时频 资源中发送所述第一比特块;如果所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值等于所述第三阈值,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块;所述第三阈值是一个不大于1的正实数,所述第三阈值是预定义的或者可配置的。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值小于第四阈值,在所述第二时频资源中发送所述第一比特块;如果所述第一时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值大于所述第四阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值等于所述第四阈值,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块;所述第四阈值是一个正整数,所述第四阈值是预定义的或者可配置的。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值小于第五阈值,在所述第二时频资源中发送所述第一比特块;如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值大于所述第五阈值,在所述第一时频资源中发送所述第一比特块;如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的时域资源中属于所述第二时频资源所占用的时域资源的多载波符号的数量的差值等于所述第五阈值,在所述第一时频资源或者所述第二时频资源中发送所述第一比特块;所述第五阈值是一个正整数,所述第五阈值是预定义的或者可配置的。
实施例10
实施例10示例了另一个确定第一比特块是在第一时频资源中被发送还是在第二时频资源中被发送的示意图,如附图10所示。
在实施例10中,本申请中的所述第一信令携带本申请中的所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,如果所述第二时频资源所占用的多载波符号的数量大于所述第一时频资源所占用的多载波符号的数量,在所述第二时频资源中发送所述第一比特块;如果所述第二时频资源所占用的多载波符号的数量小于所述第一时频资源所占用的多载波符号的数量,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量等于所述第一时频资源所占用的多载波符号的数量,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量等于所述第一时频资源所占用的多载波符号的数量,在所述第一时频资源中发送所述第一比特块。
作为一个实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值大于第六阈值,在所述第二时频资源中发送所述第一比特块;如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值小于所述第六阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值等于所述第二时频资源所占用的多载波符号的数量除以所述第一时频资源所占用的多载波符号的数量得到的数值。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量和 所述第一时频资源所占用的多载波符号的数量的比值等于所述第六阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的比值等于所述第六阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述第六阈值是预定义的。
作为上述实施例的一个子实施例,所述第六阈值是可配置的。
作为上述实施例的一个子实施例,所述第六阈值是一个正实数。
作为上述实施例的一个子实施例,所述第六阈值等于1。
作为上述实施例的一个子实施例,所述第六阈值大于1。
作为一个实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的差值大于第七阈值,在所述第二时频资源中发送所述第一比特块;如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的差值小于所述第七阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的差值等于所述第二时频资源所占用的多载波符号的数量减去所述第一时频资源所占用的多载波符号的数量得到的数值。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的差值等于所述第七阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第二时频资源所占用的多载波符号的数量和所述第一时频资源所占用的多载波符号的数量的差值等于所述第七阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述第七阈值是预定义的。
作为上述实施例的一个子实施例,所述第七阈值是可配置的。
作为上述实施例的一个子实施例,所述第七阈值是一个正实数。
作为上述实施例的一个子实施例,所述第七阈值等于0。
作为上述实施例的一个子实施例,所述第七阈值大于0。
作为一个实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值大于第八阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值小于所述第八阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值等于所述第一时频资源所占用的多载波符号的数量除以所述第二时频资源所占用的多载波符号的数量得到的数值。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值等于所述第八阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的比值等于所述第八阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述第八阈值是预定义的。
作为上述实施例的一个子实施例,所述第八阈值是可配置的。
作为上述实施例的一个子实施例,所述第八阈值是一个正实数。
作为上述实施例的一个子实施例,所述第八阈值等于1。
作为上述实施例的一个子实施例,所述第八阈值大于1。
作为上述实施例的一个子实施例,所述第八阈值小于1。
作为一个实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的差值大于第九阈值,在所述第一时频资源中发送所述第一比特块;如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的差值小于所述第九阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的差值等于所述第一时频资源所占用的多载波符号的数量减去所述第二时频资源所占用的多载波符号的数量得到的数值。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的差值等于所述第九阈值,在所述第二时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,如果所述第一时频资源所占用的多载波符号的数量和所述第二时频资源所占用的多载波符号的数量的差值等于所述第九阈值,在所述第一时频资源中发送所述第一比特块。
作为上述实施例的一个子实施例,所述第九阈值是预定义的。
作为上述实施例的一个子实施例,所述第九阈值是可配置的。
作为上述实施例的一个子实施例,所述第九阈值是一个正实数。
作为上述实施例的一个子实施例,所述第九阈值等于0。
作为上述实施例的一个子实施例,所述第九阈值大于0。
作为上述实施例的一个子实施例,所述第九阈值小于0。
实施例11
实施例11示例了一个第一时频资源的示意图,如附图11所示。
在实施例11中,所述第一时频资源包括K个时频资源,所述K是正整数。
作为一个实施例,所述K等于1。
作为一个实施例,所述K大于1,所述K个时频资源中任意两个时频资源相互正交。
作为上述实施例的一个子实施例,所述K个时频资源在频域上都包括相同的子载波。
作为上述实施例的一个子实施例,所述K个时频资源在频域上都包括相同数量的子载波。
作为上述实施例的一个子实施例,所述K个时频资源在时域上都包括相同数量的多载波符号。
作为上述实施例的一个子实施例,所述K个时频资源在时域上是连续的。
作为上述实施例的一个子实施例,所述K个时频资源中至少两个时频资源在时域上是不连续的。
作为一个实施例,所述K是预定义。
作为一个实施例,所述K是可配置的。
作为一个实施例,所述第一信令还被用于指示所述K。
作为一个实施例,所述第一信令包括第三域,所述第一信令包括的所述第三域被用于指示所述K。
作为上述实施例的一个子实施例,所述第一信令包括的所述第三域包括正整数个比特。
作为上述实施例的一个子实施例,所述第一信令包括的所述第三域指示所述K在多个正整数中的索引。
作为一个实施例,上述方法还包括:
-接收第四信息;
其中,所述第四信息被用于指示所述K。
作为上述实施例的一个子实施例,所述第四信息是半静态配置的。
作为上述实施例的一个子实施例,所述第四信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第四信息由RRC信令承载。
作为上述实施例的一个子实施例,所述第四信息由MAC CE信令承载。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的多个IE。
实施例12
实施例12示例了一个在第二时频资源中发送第一比特块的示意图,如附图12所示。
在实施例12中,所述第一比特块被用于指示本申请中的所述第一无线信号是否被正确接收;如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中发送的无线信号包括本申请中的所述第二无线信号和第四无线信号,所述第一比特块由所述第四无线信号承载。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,放弃在所述第一时频资源中发送所述第一比特块。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述用户设备放弃在所述第一时频资源中发送无线信号。
作为一个实施例,所述第四无线信号承载的所述第一比特块的数量等于1。
作为一个实施例,所述第四无线信号承载的所述第一比特块的数量大于1。
作为上述实施例的一个子实施例,所述第四无线信号承载的所述第一比特块的数量等于本申请中的所述K,所述K是预定义的或者可配置的。
作为一个实施例,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第四无线信号承载的所述第一比特块的数量等于所述K;所述K是预定义的或者可配置的。
实施例13
实施例13示例了另一个在第二时频资源中发送第一比特块的示意图,如附图13所示。
在实施例13中,如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中发送的无线信号包括本申请中的所述第二无线信号和第四无线信号,所述第一比特块由所述第四无线信号承载;所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块被用于指示所述第一无线信号是否被正确接收,所述第二比特子块是基于针对本申请中的所述第三无线信号的测量得出的。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,放弃在所述第一时频资源中发送所述第一比特块。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述用户设备放弃在所述第一时频资源中发送无线信号。
作为一个实施例,所述第四无线信号承载的所述第一比特子块的数量等于K1,所述第四无线信号承载的所述第二比特子块的数量等于K2;所述K1是正整数,所述K2是正整数。
作为上述实施例的一个子实施例,所述K1等于1,所述K2等于1。
作为上述实施例的一个子实施例,所述K1大于1,所述K2等于1。
作为上述实施例的一个子实施例,所述K1大于1,所述K2大于1。
作为上述实施例的一个子实施例,所述K1等于所述K,所述K2等于1,所述K是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述K1等于所述K,所述K2等于所述K,所述K是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述第一信令携带所述第一标识。
作为上述实施例的一个子实施例,所述K2等于1,第二信息被用于指示所述第三无线信号的配置信息,承载所述第二信息的信令携带所述第一标识或者所述第二标识。
作为上述实施例的一个子实施例,所述K2大于1,第二信息被用于指示所述第三无线信号的配置信息,承载所述第二信息的信令携带所述第一标识。
实施例14
实施例14示例了一个在第一时频资源中发送第一比特块的示意图,如附图14所示。
在实施例14中,所述第一比特块被用于指示本申请中的所述第一无线信号是否被正确接收;所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块在所述K个时频资源中的每个时频资源中都被发送。
实施例15
实施例15示例了另一个在第一时频资源中发送第一比特块的示意图,如附图15所示。
在实施例15中,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
作为一个实施例,所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送。
作为上述实施例的一个子实施例,承载所述第二信息的信令携带所述第一标识或者所述第二标识。
作为一个实施例,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
作为上述实施例的一个子实施例,所述第二比特子块中的每个比特都在所述K个时频资源中的仅一个时频资源中被发送,所述第二比特子块中至少两个比特在所述K个时频资源中的不同的时频资源中被发送。
作为上述实施例的一个子实施例,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送,所述第二比特子块中至少一个比特在所述K个时频资源中的多个时频资源中被发送。
作为上述实施例的一个子实施例,承载所述第二信息的信令携带所述第二标识。
作为一个实施例,所述第二比特子块包括的比特数量等于mK,所述m是正整数;所述第二比特子块包括的mK个比特被平均划分为K个第一比特组,所述K个第一比特组分别包括所述第二比特子块中的m个比特;所述第二比特子块中的任一比特属于所述K个第一比特组中的仅一个比特组。
作为上述实施例的一个子实施例,承载所述第二信息的信令携带所述第二标识。
作为上述实施例的一个子实施例,所述K个第一比特组分别在所述K个时频资源中被发送。
作为一个实施例,所述第二比特子块包括S0个比特,所述S0不是所述K的正整数倍;目标比特块包括所述第二比特子块和第三比特块,所述第三比特块包括t个比特,所述t与所述S0和所述K有关。
作为上述实施例的一个子实施例,承载所述第二信息的信令携带所述第二标识。
作为上述实施例的一个子实施例,所述t是不大于所述K的正整数。
作为上述实施例的一个子实施例,所述t等于
Figure PCTCN2019095954-appb-000001
作为上述实施例的一个子实施例,所述目标比特块包括的比特数量是nK,所述n是正整数。
作为上述实施例的一个子实施例,所述目标比特块包括的比特数量是nK,所述t等于所述nK和所述S0的差值,所述n是正整数。
作为上述实施例的一个子实施例,所述目标比特块包括的比特数量是nK,所述t等于所 述nK减去所述S0得到的数值,所述n是正整数。
作为上述实施例的一个子实施例,所述t个比特都是0。
作为上述实施例的一个子实施例,所述t个比特都属于所述第二比特子块。
作为上述实施例的一个子实施例,所述t个比特是所述第二比特子块中的前t个比特,所述t是正整数。
作为上述实施例的一个子实施例,所述t个比特是所述第二比特子块中的t个比特,所述t是正整数。
作为上述实施例的一个子实施例,所述目标比特块包括的比特数量是nK,所述n是正整数;所述目标比特块包括的nK个比特被平均划分为K个第二比特组,所述K个第二比特组分别包括所述目标比特块中的n个比特;所述目标比特块中的任一比特属于所述K个第二比特组中的仅一个第二比特组;所述K个第二比特组分别在所述K个时频资源中被发送。
实施例16
实施例16示例了一个第一时频资源与第一时频资源集合有关的示意图,如附图16所示。
在实施例16中,所述第一时频资源集合包括正整数个时频资源,第一给定时频资源是所述第一时频资源集合中的一个时频资源,所述第一时频资源与所述第一给定时频资源有关。
作为一个实施例,本申请中的所述第一信令被用于从所述第一时频资源集合所包括的正整数个时频资源中指示所述第一给定时频资源。
作为一个实施例,所述第一时频资源包括K个时频资源,所述K个时频资源都与所述第一给定时频资源包括相同的子载波和相同的多载波符号数量。
作为一个实施例,所述第一时频资源包括K个时频资源,所述第一给定时频资源和所述K个时频资源中最早的一个时频资源相同。
作为一个实施例,所述第一时频资源包括K个时频资源,所述第一给定时频资源包括所述K个时频资源。
实施例17
实施例17示例了一个第一比特块包括的比特数量被用于从N个时频资源集合中确定第一时频资源集合的示意图,如附图17所示。
在实施例17中,所述第一比特块被用于指示所述第一无线信号是否被正确接收;所述N个时频资源集合分别对应N个比特数目范围,所述第一比特块包括的比特数量属于第一比特数目范围,所述第一比特数目范围是所述N个比特数目范围中的一个比特数目范围,所述第一时频资源集合是所述第一比特数目范围所对应的所述N个时频资源集合中的一个时频资源集合。
实施例18
实施例18示例了另一个第一比特块包括的比特数量被用于从N个时频资源集合中确定第一时频资源集合的示意图,如附图18所示。
在实施例18中,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块被用于指示所述第一无线信号是否被正确接收,所述第二比特子块是基于针对所述第三无线信号的测量得出的;所述第一比特子块包括的比特数量、所述第二比特子块包括的比特数量和所述K被用于从所述N个时频资源集合中确定所述第一时频资源集合。
作为一个实施例,所述第二比特子块包括的比特数量和所述K被用于确定目标整数,所述目标整数是正整数;所述第一比特子块包括的比特数量和所述目标整数的乘积被用于从所述N个时频资源集合中确定所述第一时频资源集合。
作为上述实施例的一个子实施例,所述N个时频资源集合分别对应N个比特数目范围,所述所述第一比特子块包括的比特数量和所述目标整数的乘积属于第一比特数目范围,所述第一比特数目范围是所述N个比特数目范围中的一个比特数目范围,所述第一时频资源集合是所述第一比特数目范围所对应的所述N个时频资源集合中的一个时频资源集合。
作为上述实施例的一个子实施例,所述第二比特子块包括的比特数量等于mK,所述m是 正整数;所述目标整数等于所述m。
作为上述实施例的一个子实施例,所述第二比特子块包括S0个比特,所述S0不是所述K的正整数倍;目标比特块包括所述第二比特子块和第三比特块,所述第三比特块包括t个比特,所述t与所述S0和所述K有关;所述目标比特块包括的比特数量是nK,所述n是正整数;所述目标整数等于所述n。
实施例19
实施例19示例了一个第一信令的示意图,如附图19所示。
在实施例19中,所述第一信令包括第一域,所述第一信令包括的所述第一域被用于确定本申请中的所述第一时频资源。
作为一个实施例,所述第一信令包括的所述第一域包括正整数个比特。
作为一个实施例,述第一信令包括的所述第一域被用于从第一时频资源集合中确定所述第一时频资源,所述第一时频资源集合包括正整数个时频资源。
作为一个实施例,所述第一信令包括的所述第一域指示所述第一时频资源在第一时频资源集合中的索引,所述第一时频资源集合包括正整数个时频资源。
作为一个实施例,所述第一信令包括的所述第一域是PUCCH resource indicator,所述PUCCH resource indicator的具体定义参见3GPP TS38.213中的第9.2.3章节。
实施例20
实施例20示例了另一个第一信令的示意图,如附图20所示。
在实施例20中,所述第一信令包括第二域,所述第一信令包括的所述第二域被用于在本申请中的所述目标调制编码方式集合中指示本申请中的所述第一无线信号所采用的调制编码方式。
作为一个实施例,所述目标调制编码方式集合包括正整数个调制编码方式(MCS,Modulation and Coding Scheme)。
作为一个实施例,所述第一信令包括的所述第二域包括正整数个比特。
作为一个实施例,所述第一信令包括的所述第二域指示所述第一无线信号所采用的调制编码方式在所述目标调制编码方式集合中的索引。
作为一个实施例,所述第一信令包括的所述第二域是Modulation and coding scheme,所述Modulation and coding scheme的具体定义参见3GPP TS38.214中的第5.1.3章节。
实施例21
实施例21示例了另一个第一信令的示意图,如附图21所示。
在实施例21中,所述第一信令被用于指示本申请中的所述第一无线信号的调度信息和本申请中的所述第一时频资源;或者,所述第一信令被用于指示所述第一无线信号的调度信息、所述第一时频资源和本申请中的所述K。
作为一个实施例,所述第一信令被用于指示所述第一无线信号的调度信息和所述第一时频资源。
作为一个实施例,所述第一信令被用于指示所述第一无线信号的调度信息、所述第一时频资源和所述K。
作为一个实施例,所述所述第一无线信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述所述第一无线信号的调度信息包括的所述MCS是所述所述第一无线信号所采用的调制编码方式。
作为上述实施例的一个子实施例,所述所述第一无线信号的调度信息包括的所述DMRS的 配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
实施例22
实施例22示例了一个UE中的处理装置的结构框图,如附图22所示。附图22中,UE处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前二者。
-第一接收机1201:接收第一信令(DL-grant DCI),所述第一信令被用于确定第一时频资源(PUCCH);接收第二信令(UL-grant DCI),所述第二信令被用于确定第二时频资源(PUSCH);
-第一发射机1202:在所述第一时频资源中发送第一比特块,或者在所述第二时频资源中发送第一比特块;
在实施例22中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,如果所述第一信令携带所述第一标识,在所述第一时频资源中发送所述第一比特块,或者在所述第二时频资源中发送所述第一比特块;如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中发送所述第一比特块。
作为一个实施例,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述第一接收机1201还接收第一信息;所述第一接收机1201还接收第一无线信号;所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第一发射机1202还在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第一发射机1202放弃在所述第二时频资源中发送第二无线信号,或者,所述第一发射机1202在所述第二时频资源中还发送第一子信号,所述第一发射机1202放弃在所述第二时频资源中发送第二子信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号, 所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第一发射机1202还在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第一发射机1202放弃在所述第二时频资源中发送第二无线信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第一发射机1202还在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第一发射机1202在所述第二时频资源中还发送第一子信号,所述第一发射机1202放弃在所述第二时频资源中发送第二子信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
作为一个实施例,所述第一接收机1201还接收第二信息;所述第一接收机1201还接收第三无线信号;所述第二信息被用于确定所述第三无线信号的配置信息;所述第一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
作为一个实施例,所述第一接收机1201还接收第三信息;所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
实施例23
实施例23示例了一个基站设备中的处理装置的结构框图,如附图23所示。附图23中,基站设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机1301,发送第一信令,所述第一信令被用于确定第一时频资源;发送第二信令,所述第二信令被用于确定第二时频资源;
-第二接收机1302,在所述第一时频资源中接收第一比特块,或者在所述第二时频资源中接收第一比特块;
在实施例23中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,如果所述第一信令携带所述第一标识,在所述第一时频资源中接收所述第一比特块,或者在所述第二时频资源中接收所述第一比特块;如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中接收所述第一比特块。
作为一个实施例,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
作为一个实施例,所述第二发射机1301还发送第一信息;所述第二发射机1301还发送第一无线信号;所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第二接收机1302还在所述第二时频资源中还接收第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第二接收机1302放弃在所述第二时频资源中接收第二无线信号,或者,所述第二接收机1302在所述第二时频资源中还接收第一子信号,所述第二接收机1302放弃在所述第二时频资源中接收第二子信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第二接收机1302还在所述第二时频资源中还接收第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第二接收机1302放弃在所述第二时频资源中接收第二无线信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,如果所述第一比特块在所述第二时频资源中被发送,所述第二接收机1302还在所述第二时频资源中还接收第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,所述第二接收机1302在所述第二时频资源中还接收第一子信号,所述第二接收机1302放弃在所述第二时频资源中接收第二子信号;所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
作为一个实施例,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被 用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
作为一个实施例,所述第二发射机1301还发送第二信息;所述第二发射机1301还发送第三无线信号;所述第二信息被用于确定所述第三无线信号的配置信息;所述第一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
作为一个实施例,所述第二发射机1301还发送第三信息;所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定第一时频资源;
    接收第二信令,所述第二信令被用于确定第二时频资源;
    在所述第一时频资源中发送第一比特块,或者,在所述第二时频资源中发送第一比特块;
    其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  2. 根据权利要求1所述的方法,其特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中发送所述第一比特块或者在所述第二时频资源中发送所述第一比特块,如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中发送所述第一比特块;或者,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块被用于指示所述第一无线信号是否被正确接收,所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送,所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送或者所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
  3. 根据权利要求1所述的方法,其特征在于,包括:
    接收第一信息;
    接收第一无线信号;
    其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收;
    或者,接收第三信息;
    其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
  4. 根据权利要求1所述的方法,其特征在于,包括:
    如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还发送第二无线信号;
    如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号,或者
    在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号;
    其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
  5. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定第一时频资源;
    发送第二信令,所述第二信令被用于确定第二时频资源;
    在所述第一时频资源中接收第一比特块,或者,在所述第二时频资源中接收第一比特块;
    其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  6. 根据权利要求5所述的方法,其特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中接收所述第一比特块或者在所述第二时频资源中接收所述第一比特块,如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中接收所述第一比特块;或者,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数,所述第一比特块包括第一比特子块和第二比特子块,所述第一比特子块被用于指示所述第一无线信号是否被正确接收,所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送,所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送或者所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
  7. 根据权利要求5所述的方法,其特征在于,包括:
    发送第一信息;
    发送第一无线信号;
    其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收;
    或者,发送第三信息;
    其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
  8. 根据权利要求5所述的方法,其特征在于,包括:
    如果所述第一比特块在所述第二时频资源中被发送,在所述第二时频资源中还接收第二无线信号;
    如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中接收第二无线信号,或者
    在所述第二时频资源中还接收第一子信号,放弃在所述第二时频资源中接收第二子信号;
    其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
  9. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定第一时频资源;接收第二信令, 所述第二信令被用于确定第二时频资源;
    第一发射机,在所述第一时频资源中发送第一比特块,或者在所述第二时频资源中发送第一比特块;
    其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  10. 根据权利要求9所述的用户设备,其特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中发送所述第一比特块或者在所述第二时频资源中发送所述第一比特块,如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中发送所述第一比特块;或者,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  11. 根据权利要求9所述的用户设备,其特征在于,所述第一接收机还接收第一信息;接收第一无线信号;其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收;
    或者,所述第一接收机还接收第三信息;其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
  12. 根据权利要求9所述的用户设备,其特征在于,如果所述第一比特块在所述第二时频资源中被发送,所述第一发射机在所述第二时频资源中还发送第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中发送第二无线信号,或者所述第一发射机在所述第二时频资源中还发送第一子信号,放弃在所述第二时频资源中发送第二子信号;其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
  13. 根据权利要求9所述的用户设备,其特征在于,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
  14. 根据权利要求13所述的用户设备,其特征在于,第一接收机接收第二信息;接收第三无线信号;其中,所述第二信息被用于确定所述第三无线信号的配置信息;所述第一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
  15. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于确定第一时频资源;发送第二信令,所述第二信令被用于确定第二时频资源;
    第二接收机,在所述第一时频资源中接收第一比特块,或者在所述第二时频资源中接收第一比特块;
    其中,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源是非正交的;所述第一信令携带第一标识或者第二标识;所述第一信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  16. 根据权利要求15所述的基站设备,其特征在于,如果所述第一信令携带所述第一标识,在所述第一时频资源中接收所述第一比特块或者在所述第二时频资源中接收所述第一比特块,如果所述第一信令携带所述第二标识,在所述第一时频资源和所述第二时频资源中的仅所述第二时频资源中接收所述第一比特块;或者,所述第一信令携带所述第一标识,所述第一时频资源所占用的时域资源和所述第二时频资源所占用的时域资源的相对位置关系或者相对数量关系被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送;或者,所述第一信令携带所述第一标识,所述第二信令携带所述第一标识或者所述第二标识,所述第二信令所携带的是所述第一标识还是所述第二标识被用于确定所述第一比特块是在所述第一时频资源中被发送还是在所述第二时频资源中被发送。
  17. 根据权利要求15所述的基站设备,其特征在于,所述第二发射机还发送第一信息;发送第一无线信号;其中,所述第一信息被用于指示所述第一标识,所述第一信令携带所述第一标识,所述第一信令还被用于在目标调制编码方式集合中指示所述第一无线信号所采用的调制编码方式,所述目标调制编码方式集合是X个备选调制编码方式集合中的一个备选调制编码方式集合,所述第一标识被用于在所述X个备选调制编码方式集合中确定所述目标调制编码方式集合,所述X是大于1的正整数;所述第一比特块被用于指示所述第一无线信号是否被正确接收;
    或者,所述第二发射机还发送第三信息;其中,所述第三信息被用于指示N个时频资源集合,所述第一时频资源与第一时频资源集合有关,所述第一时频资源集合是所述N个时频资源集合中的一个时频资源集合;所述第一比特块包括的比特数量被用于从所述N个时频资源集合中确定所述第一时频资源集合。
  18. 根据权利要求15所述的基站设备,其特征在于,如果所述第一比特块在所述第二时频资源中被发送,所述第二接收机在所述第二时频资源中还接收第二无线信号;如果所述第一比特块在所述第一时频资源中被发送,放弃在所述第二时频资源中接收第二无线信号,或者所述第二接收机在所述第二时频资源中还接收第一子信号,放弃在所述第二时频资源中接收第二子信号;其中,所述第二信令还被用于指示所述第二无线信号的调度信息;所述第二无线信号包括所述第一子信号和所述第二子信号,所述第一子信号所占用的时域资源和所述第一时频资源所占用的时域资源是正交的,所述第二子信号所占用的时域资源属于所述第一时频资源所占用的时域资源。
  19. 根据权利要求15所述的基站设备,其特征在于,所述第一比特块在所述第一时频资源中被发送,所述第一时频资源包括K个时频资源,所述K个时频资源中任意两个时频资源相互正交,所述K是大于1的正整数;所述第一比特块包括第一比特子块和第二比特子块;所述第一比特子块被用于指示所述第一无线信号是否被正确接收;所述第一比特子块在所述K个时频资源中的每个时频资源中都被发送;所述第二比特子块在所述K个时频资源中的每个时频资源中都被发送,或者,所述第二比特子块中至少一个比特在所述K个时频资源中的仅一个时频资源中被发送。
  20. 根据权利要求19所述的基站设备,其特征在于,所述第二发射机还发送第二信息;发送第三无线信号;其中,所述第二信息被用于确定所述第三无线信号的配置信息;所述第 一比特块包括所述第一比特子块和所述第二比特子块,所述第二比特子块是基于针对所述第三无线信号的测量得出的。
PCT/CN2019/095954 2018-07-30 2019-07-15 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020024783A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/831,857 US11330564B2 (en) 2018-07-30 2020-03-27 Method and device in UE and base station used for wireless communication
US17/705,262 US11706740B2 (en) 2018-07-30 2022-03-25 Method and device in UE and base station used for wireless communication
US18/203,310 US20230397169A1 (en) 2018-07-30 2023-05-30 Method and Device in UE and Base Station Used for Wireless Communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810853930.XA CN110784291B (zh) 2018-07-30 2018-07-30 一种被用于无线通信的用户设备、基站中的方法和装置
CN201810853930.X 2018-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/831,857 Continuation US11330564B2 (en) 2018-07-30 2020-03-27 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020024783A1 true WO2020024783A1 (zh) 2020-02-06

Family

ID=69230922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095954 WO2020024783A1 (zh) 2018-07-30 2019-07-15 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (3) US11330564B2 (zh)
CN (3) CN111884787B (zh)
WO (1) WO2020024783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169967A1 (en) * 2020-02-25 2021-09-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111884787B (zh) * 2018-07-30 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110831218B (zh) * 2018-08-10 2021-07-23 大唐移动通信设备有限公司 一种信息传输方法、基站及终端
WO2021159490A1 (en) * 2020-02-14 2021-08-19 Lenovo (Beijing) Limited Method and apparatus for uci repetitions with multiple beams
CN114499799B (zh) * 2020-11-13 2024-02-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998611A (zh) * 2009-08-11 2011-03-30 华为技术有限公司 一种上行载波的功控信息通信方法及装置
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US20180110041A1 (en) * 2015-07-30 2018-04-19 Intel IP Corporation Ofdma-based multiplexing of uplink control information
CN108282876A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行传输方法、终端、网络侧设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141463A2 (ko) * 2011-04-11 2012-10-18 엘지전자 주식회사 이동통신시스템에서 신호 전송 방법 및 장치
US10499409B2 (en) * 2012-02-02 2019-12-03 Genghiscomm Holdings, LLC Cooperative and parasitic radio access networks
CN106170940B (zh) * 2015-02-13 2019-05-10 华为技术有限公司 传输上行控制信息的方法、用户设备和接入网设备
KR102262300B1 (ko) * 2015-06-17 2021-06-08 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 협대역을 이용한 신호 전송을 위한 송수신 방법 및 장치
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
EP3446425B1 (en) * 2016-04-20 2024-02-21 InterDigital Patent Holdings, Inc. Physical channels in new radio
CN114727424A (zh) * 2016-06-15 2022-07-08 康维达无线有限责任公司 用于新无线电的无许可上行链路传输
CN109194456B (zh) * 2016-08-05 2020-11-06 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107690188B (zh) * 2016-08-05 2019-12-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN111294194B (zh) * 2016-08-16 2022-06-21 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107846726B (zh) * 2016-09-19 2019-08-09 上海朗帛通信技术有限公司 一种ue、基站中的发射功率调整的方法和装置
CN107959557B (zh) * 2016-10-15 2020-01-03 上海朗帛通信技术有限公司 一种支持多载波通信的ue、基站中的方法和设备
CN108023722B (zh) * 2016-11-04 2022-11-11 中兴通讯股份有限公司 一种控制信道的发送方法和装置
US10595336B2 (en) * 2016-11-15 2020-03-17 Huawei Technologies Co., Ltd. Systems and methods for grant-free uplink transmissions
US11166262B2 (en) * 2017-01-05 2021-11-02 FG Innovation Company Limited Long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
CN113890719B (zh) * 2017-01-22 2024-10-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US10742349B2 (en) * 2017-07-21 2020-08-11 Samsung Electronics Co., Ltd Apparatus and method for encoding and decoding channel in communication or broadcasting system
CN111108798B (zh) * 2017-11-15 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110098901B (zh) * 2018-01-29 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110401980B (zh) * 2018-04-25 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111884787B (zh) * 2018-07-30 2022-03-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998611A (zh) * 2009-08-11 2011-03-30 华为技术有限公司 一种上行载波的功控信息通信方法及装置
US20180110041A1 (en) * 2015-07-30 2018-04-19 Intel IP Corporation Ofdma-based multiplexing of uplink control information
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN108282876A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种上行传输方法、终端、网络侧设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "UL Multiplexing for URLLC", 3GPP TSG RAN WGI MEETING #93 R1-1806893, 25 May 2018 (2018-05-25), pages 1 - 3, XP051442093 *
ZTE ET AL.: "UCI multiplexing for URLLC", 3GPP TSG RAN WGI MEETING #92BIS R1 -1804173, 20 April 2018 (2018-04-20), pages 1 - 3, XP051426461 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169967A1 (en) * 2020-02-25 2021-09-02 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Also Published As

Publication number Publication date
CN111884788B (zh) 2024-03-29
US20200229151A1 (en) 2020-07-16
CN111884788A (zh) 2020-11-03
US20230397169A1 (en) 2023-12-07
US11330564B2 (en) 2022-05-10
US11706740B2 (en) 2023-07-18
CN111884787B (zh) 2022-03-29
CN111884787A (zh) 2020-11-03
US20220217685A1 (en) 2022-07-07
CN110784291A (zh) 2020-02-11
CN110784291B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111049627B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11283576B2 (en) Method and device in UE and base station used for wireless communication
WO2020024783A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US12114314B2 (en) Method and device for use in wireless communication nodes
CN111224753B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111083782A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111490861B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020186990A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113453345B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111757394B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113411887B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024055916A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024051624A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111556529A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19843597

Country of ref document: EP

Kind code of ref document: A1