WO2020216013A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020216013A1
WO2020216013A1 PCT/CN2020/082280 CN2020082280W WO2020216013A1 WO 2020216013 A1 WO2020216013 A1 WO 2020216013A1 CN 2020082280 W CN2020082280 W CN 2020082280W WO 2020216013 A1 WO2020216013 A1 WO 2020216013A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
parameter
sub
frequency resource
resource block
Prior art date
Application number
PCT/CN2020/082280
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020216013A1 publication Critical patent/WO2020216013A1/zh
Priority to US17/156,699 priority Critical patent/US12015567B2/en
Priority to US18/641,459 priority patent/US20240267168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • a PUSCH/PDSCH transmission is limited to one slot (Slot), that is, it cannot cross (Across) the boundary of the slot (Boundary).
  • Slot slot
  • more time-frequency resources may be required to transmit PUSCH/PDSCH, which may cause a relatively long transmission delay.
  • how to enhance PUSCH/PDSCH transmission is a key issue.
  • This application discloses a method for wireless communication in user equipment, which is characterized in that it includes:
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to the N time sub-windows in the time domain
  • the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to the first parameter, and the second wireless
  • the signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and whether the first time-frequency resource block and the second time-frequency resource block belong to the N time sub-parameters in the time domain
  • the same time sub-window in the window is used to determine whether the target parameter is the first parameter or the second parameter; the operation is sending, or the operation is receiving;
  • N is a positive integer greater than 1.
  • the problem to be solved by this application is: when a standard (Nominal) repeated transmission of PUSCH/PDSCH can cross the boundary of a time slot, if a standard repeated transmission crosses the boundary of the time slot or crosses the uplink and downlink switching time ( DL/UL switching point), this time the standard repeated transmission is divided into two actual repeated transmissions, so how to design the transmission/reception parameters for different repeated transmissions of PUSCH/PDSCH is a key issue that needs to be solved.
  • the essence of the above method is that the N time sub-windows respectively correspond to N times of standard (Nominal) repeated transmission of PUSCH/PDSCH, and the configured transmission/reception parameters for repeated transmission of different standards may be different;
  • the signal and the second wireless signal are actually repeated twice.
  • the first parameter and the second parameter are the transmission/reception parameters of the two standard repeated transmissions.
  • the first parameter is the transmission/reception parameter of the first wireless signal
  • the target parameter is The transmission/reception parameter of the second wireless signal; when the first time-frequency resource block and the second time-frequency resource block belong to different time sub-windows of the N time sub-windows in the time domain, the first wireless signal and the second time-frequency resource block
  • the wireless signal is sent twice standard repeatedly; when the first time-frequency resource block and the second time-frequency resource block belong to the same time sub-window of the N time sub-windows in the time domain, the first wireless signal and the second time-frequency resource block
  • the wireless signal is two actual repeated transmissions of the same standard repeated transmission.
  • the advantage of using the above method is that the transmission/reception parameters of the PUSCH/PDSCH repeated transmission can be dynamically determined according to whether a standard repeated transmission crosses the boundary of the time slot or cross the uplink and downlink switching moments, which is similar to the method of using the physical layer signaling dynamic indication. It has a smaller signaling overhead (Overhead).
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block respectively belong to two adjacent ones of the N time sub-windows in the time domain
  • the target parameter is the second parameter
  • the first time-frequency resource block and the second time-frequency resource block both belong to the N time sub-windows in the time domain
  • the target parameter is the first parameter.
  • the essence of the above method is that when the first time-frequency resource block and the second time-frequency resource block belong to different time sub-windows of the N time sub-windows in the time domain, the first wireless signal and the second time-frequency resource block
  • the second wireless signal is two standard repeated transmissions, and the second parameter is the transmission/reception parameter of the second wireless signal; when the first time-frequency resource block and the second time-frequency resource block belong to N time sub-windows in the time domain
  • the first wireless signal and the second wireless signal are two actual repeated transmissions of the same standard repeated transmission, and the first parameter is the transmission/reception parameter of the second wireless signal.
  • the advantage of using the above method is that two actual repeated transmissions of the same standard repeated transmission use the same sending/receiving parameters, which can improve the reliability of this standard repeated transmission.
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block respectively belong to two adjacent ones of the N time sub-windows in the time domain
  • the target parameter is the second parameter
  • the size of the first time-frequency resource block is used to determine whether the target parameter is the first parameter or the second parameter.
  • the essence of the above method is that when the first time-frequency resource block and the second time-frequency resource block belong to different time sub-windows of the N time sub-windows in the time domain, the first wireless signal and the second time-frequency resource block
  • the second wireless signal is two standard repeated transmissions, and the second parameter is the transmission/reception parameter of the second wireless signal; when the first time-frequency resource block and the second time-frequency resource block belong to N time sub-windows in the time domain In the same time sub-window, the first wireless signal and the second wireless signal are two actual repeated transmissions of the same standard repeated transmission.
  • the size of the first time-frequency resource block reflects the number of bits actually transmitted in it, so the target Whether the parameter is the same as the first parameter is related to the number of bits sent in an earlier actual repeated transmission.
  • the advantage of using the above method is that for two actual repeated transmissions of the same standard repeated transmission, the transmission/reception parameters of another repeated transmission can be dynamically determined according to the size of the RE occupied by one of the actual repeated transmissions. Compared with the method of signaling dynamic indication, the signaling overhead (Overhead) is smaller.
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window in the N time sub-windows in the time domain Window, the size of the first time-frequency resource block and the size of the second time-frequency resource block are used to determine a first value; the relationship between the first value and the first threshold is used to determine the Whether the target parameter is the first parameter or the second parameter.
  • the essence of the above method is that when the first wireless signal and the second wireless signal are actually repeatedly sent twice in the same standard, if the first time-frequency resource block is small, in order to ensure that this standard For the reliability of repeated transmission, the first parameter is still used as the second wireless signal transmission/reception parameter; if the first time-frequency resource block is large, the reliability of the standard repeated transmission can be guaranteed this time, and the second parameter is used as the first parameter. 2. Transmitting/receiving parameters of wireless signals.
  • the advantage of adopting the above method is that the sending/receiving parameters of a repeated transmission can be dynamically determined, and the reliability of a standard repeated transmission and the reliability and transmission delay of total repeated transmission are also considered.
  • the above method is characterized in that the operation is sending, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the The multi-antenna-related transmission of the second wireless signal; or, the operation is reception, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine Multi-antenna related reception of the second wireless signal.
  • the essence of the above method is that the first parameter and the second parameter indicate reference signals (such as CSI-RS (Channel State Information-Reference Signal, channel state information reference signal), SRS (Sounding Reference Signal, sounding Reference signal), SS-PBCH (Synchronization Signal/Physical Broadcast CHannel) block (Block), the transmit antenna port of this reference signal and the transmit antenna port of the first wireless signal are Type D QCL, or the user equipment can assume The transmission/reception beam of this reference signal is the same as the transmission/reception beam of the first wireless signal.
  • reference signals such as CSI-RS (Channel State Information-Reference Signal, channel state information reference signal), SRS (Sounding Reference Signal, sounding Reference signal), SS-PBCH (Synchronization Signal/Physical Broadcast CHannel) block (Block)
  • the transmit antenna port of this reference signal and the transmit antenna port of the first wireless signal are Type D QCL, or the user equipment can assume
  • the transmission/reception beam of this reference signal is the same
  • the above method is characterized in that the first parameter is one parameter among N1 parameters arranged in sequence, and the second parameter is one parameter among the N1 parameters arranged in sequence, so The position of the first parameter in the N1 sequentially arranged parameters is used to determine the second parameter, and N1 is a positive integer greater than 1.
  • the essence of the above method is that the first parameter and the second parameter are respectively the sending/receiving parameters configured to be repeatedly sent by two standards that are adjacent in time.
  • the above method is characterized in that it includes:
  • the first information is used to determine the first frequency domain deviation; the first parameter is used to determine the frequency domain resource occupied by the first wireless signal, and the target parameter is used to determine the first 2.
  • Frequency domain resources occupied by a wireless signal the second parameter is used to determine a third frequency domain resource, and the deviation between the third frequency domain resource and the frequency domain resource occupied by the first wireless signal is equal to The first frequency domain deviation.
  • the essence of the above method is that the first frequency domain offset is the frequency offset (Frequency Offset) between two adjacent hops in frequency hopping (Frequency Hopping), the first parameter and the second parameter It is the index of the standard repeated transmission or the index of the slot.
  • This application discloses a method in a base station device for wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to the N time sub-windows in the time domain
  • the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to the first parameter, and the second wireless
  • the signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and whether the first time-frequency resource block and the second time-frequency resource block belong to the N time sub-parameters in the time domain
  • the same time sub-window in the window is used to determine whether the target parameter is the first parameter or the second parameter;
  • the execution is receiving; or, the execution is sending;
  • N is a positive integer greater than 1. .
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block respectively belong to two adjacent ones of the N time sub-windows in the time domain
  • the target parameter is the second parameter
  • the first time-frequency resource block and the second time-frequency resource block both belong to the N time sub-windows in the time domain
  • the target parameter is the first parameter.
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block respectively belong to two adjacent ones of the N time sub-windows in the time domain
  • the target parameter is the second parameter
  • the first time-frequency resource block and the second time-frequency resource block both belong to the N time sub-windows in the time domain
  • the relationship between the size of the first time-frequency resource block and the size of the second time-frequency resource block is used to determine whether the target parameter is the first parameter or the first parameter. Two parameters.
  • the above method is characterized in that when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window in the N time sub-windows in the time domain Window, the size of the first time-frequency resource block and the size of the second time-frequency resource block are used to determine a first value; the relationship between the first value and the first threshold is used to determine the Whether the target parameter is the first parameter or the second parameter.
  • the above method is characterized in that the execution is receiving, the first parameter is used to determine the multi-antenna related transmission of the first wireless signal, and the target parameter is used to determine the The multi-antenna-related transmission of the second wireless signal; or, the execution is transmission, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine Multi-antenna related reception of the second wireless signal.
  • the above method is characterized in that the first parameter is one parameter among N1 parameters arranged in sequence, and the second parameter is one parameter among the N1 parameters arranged in sequence, so The position of the first parameter in the N1 sequentially arranged parameters is used to determine the second parameter, and N1 is a positive integer greater than 1.
  • the above method is characterized in that it includes:
  • the first information is used to determine the first frequency domain deviation; the first parameter is used to determine the frequency domain resource occupied by the first wireless signal, and the target parameter is used to determine the first 2.
  • Frequency domain resources occupied by a wireless signal the second parameter is used to determine a third frequency domain resource, and the deviation between the third frequency domain resource and the frequency domain resource occupied by the first wireless signal is equal to The first frequency domain deviation.
  • This application discloses a user equipment for wireless communication, which is characterized in that it includes:
  • a first receiver receiving first signaling, the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • a first transceiver which operates the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to the N time sub-windows in the time domain
  • the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to the first parameter, and the second wireless
  • the signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and whether the first time-frequency resource block and the second time-frequency resource block belong to the N time sub-parameters in the time domain
  • the same time sub-window in the window is used to determine whether the target parameter is the first parameter or the second parameter; the operation is sending, or the operation is receiving;
  • N is a positive integer greater than 1.
  • This application discloses a base station device for wireless communication, which is characterized in that it includes:
  • the second transmitter sends first signaling, the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • a second transceiver which executes the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to the N time sub-windows in the time domain
  • the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to the first parameter, and the second wireless
  • the signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and whether the first time-frequency resource block and the second time-frequency resource block belong to the N time sub-parameters in the time domain
  • the same time sub-window in the window is used to determine whether the target parameter is the first parameter or the second parameter;
  • the execution is receiving; or, the execution is sending;
  • N is a positive integer greater than 1. .
  • this application has the following advantages:
  • this application proposes a difference when a PUSCH/PDSCH standard repeated transmission can cross the boundary of the time slot or cross the uplink and downlink switching time Design method of sending/receiving parameters of repeated sending.
  • the method proposed in this application can dynamically determine the transmission/reception parameters of PUSCH/PDSCH repeated transmission according to whether a standard repeated transmission crosses the boundary of the time slot or cross the uplink and downlink switching time, and the method of using the physical layer signaling to dynamically indicate Compared with a smaller signaling overhead (Overhead).
  • the transmission/reception of the other repeated transmission is dynamically determined according to the size of the time-frequency resources occupied by the actual repeated transmission.
  • the parameters take into account the reliability of a standard repeated transmission and the reliability and transmission delay of all repeated transmissions.
  • Fig. 1 shows a flow chart of first signaling, first wireless signal, and second wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of an NR (New Radio) node and UE according to an embodiment of the present application
  • Fig. 5 shows a flow chart of wireless transmission according to an embodiment of the present application
  • Fig. 6 shows a flow chart of wireless transmission according to another embodiment of the present application.
  • Fig. 7 shows a schematic diagram of the relationship between a given time sub-window and the first bit block according to an embodiment of the present application
  • FIGS. 8A-8B respectively show schematic diagrams of the relationship between a first time-frequency resource block, a second time-frequency resource block, and N time sub-windows according to an embodiment of the present application;
  • Fig. 9 shows a schematic diagram of determining target parameters according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of determining target parameters according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of determining target parameters according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the size of the first time-frequency resource block used to determine the target parameter according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of the size of the first time-frequency resource block used to determine the target parameter according to another embodiment of the present application
  • FIG. 14 shows a schematic diagram of the size of a first time-frequency resource block used to determine a target parameter according to another embodiment of the present application
  • FIG. 15 shows a schematic diagram of the size of the first time-frequency resource block used to determine the target parameter according to another embodiment of the present application.
  • 16A-16B respectively show schematic diagrams of the first parameter and the target parameter according to an embodiment of the present application.
  • FIG. 17 shows a schematic diagram of the first parameter and the target parameter according to another embodiment of the present application.
  • FIG. 18 shows a schematic diagram of the first parameter and the target parameter according to another embodiment of the present application.
  • FIG. 19 shows a schematic diagram of the relationship between the first parameter and the second parameter according to an embodiment of the present application.
  • Fig. 20 shows a structural block diagram of a processing device in a UE according to an embodiment of the present application
  • Fig. 21 shows a structural block diagram of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of the first signaling, the first wireless signal, and the second wireless signal, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent the time sequence relationship between the characteristics of each step.
  • the user equipment in this application receives first signaling in step 101, and the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved.
  • the first bit block For the first bit block; in step 102, operate the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block, respectively.
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to the N time sub-windows in the time domain
  • the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to the first parameter, and the second wireless
  • the signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and whether the first time-frequency resource block and the second time-frequency resource block belong to the N time sub-parameters in the time domain
  • the same time sub-window in the window is used to determine whether the target parameter is the first parameter or the second parameter; the operation is sending, or the operation is receiving;
  • N is a positive integer greater than 1.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information, Downlink Control Information) signaling.
  • DCI Downlink Control Information, Downlink Control Information
  • the first signaling indicates the scheduling information of the first wireless signal and the scheduling information of the second wireless signal.
  • the scheduling information of a given wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) Configuration information, HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, RV (Redundancy Version, redundancy version), NDI (New Data Indicator, new data indicator), transmit antenna port, corresponding multiple antennas At least one of the related transmission and the corresponding multi-antenna related reception.
  • the given wireless signal is the first wireless signal.
  • the given wireless signal is the second wireless signal.
  • the DMRS configuration information in the scheduling information of the given wireless signal includes RS (Reference Signal) sequence, mapping mode, DMRS type, occupied time domain resources, and occupied Frequency domain resources, occupied code domain resources, at least one of cyclic shift (cyclic shift), OCC (Orthogonal Cover Code, orthogonal mask).
  • RS Reference Signal
  • the given wireless signal is the first wireless signal
  • the time domain resources occupied by the first time-frequency resource block include the scheduling information of the given wireless signal
  • the given wireless signal is the first wireless signal
  • the frequency domain resources occupied by the first time-frequency resource block include the scheduling information of the given wireless signal Frequency domain resources occupied by the
  • the given wireless signal is the second wireless signal
  • the time domain resources occupied by the second time-frequency resource block include the scheduling information of the given wireless signal
  • the given wireless signal is the second wireless signal
  • the frequency domain resources occupied by the second time-frequency resource block include the scheduling information of the given wireless signal Frequency domain resources occupied by the
  • the first signaling indicates the N.
  • the above method further includes:
  • the third information indicates the N.
  • the first signaling and the third information are jointly used to determine the N time sub-windows.
  • the third information is semi-statically configured.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the third information is carried by MAC CE signaling.
  • the third information includes one or more IEs (Information Elements) in one RRC signaling.
  • the third information includes all or part of an IE in an RRC signaling.
  • the third information includes a partial field of an IE in an RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the first signaling explicitly indicates the N time sub-windows.
  • the first signaling implicitly indicates the N time sub-windows.
  • the first signaling indicates the start time of the N time sub-windows and the total time length of the N time sub-windows.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the first signaling indicates the start time of the N time sub-windows, and the total time length for sending the first bit block in the N time sub-windows.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the operation is sending, and the first signaling indicates the start time of the N time sub-windows, and the total time length used for uplink transmission in the N time sub-windows.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the operation is receiving, and the first signaling indicates the start time of the N time sub-windows, and the total time length used for downlink transmission in the N time sub-windows.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the N time sub-windows include multiple multi-carrier symbols
  • the first signaling indicates the starting multi-carrier symbol of the N time sub-windows
  • the N time sub-windows include multiple multi-carrier symbols. The total number of carrier symbols.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the N time sub-windows include a plurality of multi-carrier symbols
  • the first signaling indicates the starting multi-carrier symbol of the N time sub-windows
  • the N time sub-windows are used for The total number of multi-carrier symbols for transmitting the first bit block.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the operation is sending, the N time sub-windows include multiple multi-carrier symbols, the first signaling indicates the starting multi-carrier symbols of the N time sub-windows, and the N time sub-windows The total number of multi-carrier symbols used for uplink transmission in the time sub-window.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the operation is receiving, the N time sub-windows include a plurality of multi-carrier symbols, the first signaling indicates the starting multi-carrier symbols of the N time sub-windows, and the N time sub-windows The total number of multi-carrier symbols used for downlink transmission in the time sub-window.
  • the first signaling further indicates the N.
  • the third information indicates the N.
  • the first signaling indicates the earliest one of the N time sub-windows and the N.
  • the first signaling indicates the initial multi-carrier symbol of the earliest one of the N time subwindows, and the earliest one of the N time subwindows includes multiple The number of carrier symbols and the N.
  • the first signaling indicates the initial multi-carrier symbol of the earliest one of the N time subwindows, and the earliest one of the N time subwindows includes the The number of multi-carrier symbols used to transmit the first bit block and the N.
  • the operation is sending, the first signaling indicates the start multi-carrier symbol of the earliest one of the N time subwindows, and the earliest one of the N time subwindows
  • the time sub-window includes the number of multi-carrier symbols used for uplink transmission and the N.
  • the operation is receiving, the first signaling indicates the first multi-carrier symbol of the earliest one of the N time subwindows, and the earliest one of the N time subwindows
  • the time sub-window includes the number of multi-carrier symbols used for downlink transmission and the N.
  • any two of the N time sub-windows are orthogonal (non-overlapping).
  • the number of multi-carrier symbols included in any two time sub-windows in the N time sub-windows is the same.
  • the operation is sending, and the number of uplink multi-carrier symbols included in any two of the N time sub-windows is the same.
  • the operation is receiving, and the number of downlink multi-carrier symbols included in any two of the N time sub-windows is the same.
  • any time sub-window of the N time sub-windows includes a continuous period of time.
  • any time sub-window of the N time sub-windows includes one multi-carrier symbol or multiple consecutive multi-carrier symbols.
  • the N time sub-windows are respectively reserved for N nominal (nominal) transmissions of the first bit block, and the repetition of the first bit block in the N time sub-windows
  • the actual number of transmissions is not less than the N.
  • any of the N time sub-windows does not include the uplink/downlink switching point (DL/UL switching point) or the boundary of the time domain unit (Boundary), and the The actual number of repeated transmissions of the first bit block in the N time sub-windows is equal to the N.
  • one of the N time sub-windows includes an uplink/downlink switching point (DL/UL switching point) or a boundary of a time domain unit (Boundary), and the first bit
  • DL/UL switching point uplink/downlink switching point
  • Boundary boundary of a time domain unit
  • the N time sub-windows are respectively reserved for N nominal (nominal) repeated transmissions of the first bit block, and the first bit block is repeatedly transmitted in a given time sub-window.
  • the actual number (Actual Number) is not less than 1, and the given time sub-window is any one of the N time sub-windows.
  • a given time sub-window is any one of the N time sub-windows, and the given time sub-window includes an uplink/downlink switching point (DL/UL switching point) or a time domain unit
  • the number of Boundary is equal to M-1, the actual number of repeated transmissions of the first bit block in the given time sub-window is equal to M, and M is a positive integer.
  • a given time sub-window is any one of the N time sub-windows, and the given time sub-window includes an uplink/downlink switching point (DL/UL switching point) or a time domain unit Boundary, the actual number of repeated transmissions of the first bit block in the given time sub-window is greater than one.
  • DL/UL switching point uplink/downlink switching point
  • Boundary time domain unit Boundary
  • the operation is sending, the given time sub-window is any one of the N time sub-windows, and the multi-carrier symbols included in the given time sub-window are all uplink multi-carrier symbols And the given time sub-window belongs to a time domain unit, and the actual number of repeated transmissions of the first bit block in the given time sub-window is equal to 1.
  • the operation is receiving, a given time sub-window is any one of the N time sub-windows, and all multi-carrier symbols included in the given time sub-window are downlink multi-carrier symbols
  • the given time sub-window belongs to a time domain unit, and the actual number of repeated transmissions of the first bit block in the given time sub-window is equal to 1.
  • the operation is sending.
  • the operation is receiving.
  • the first time-frequency resource block and the second time-frequency resource block are orthogonal in the time domain.
  • the second time-frequency resource block is later than the first time-frequency resource block in the time domain.
  • the operation is sending, and both the first wireless signal and the second wireless signal include uplink data.
  • the operation is sending, and both the first wireless signal and the second wireless signal include sending of an uplink physical layer data channel.
  • the operation is receiving, and both the first wireless signal and the second wireless signal include downlink data.
  • the operation is receiving, and both the first wireless signal and the second wireless signal include sending of a downlink physical layer data channel.
  • the operation is sending, and the first wireless signal and the second wireless signal are transmitted on an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel that is, an uplink channel that can be used to carry physical layer data.
  • the operation is receiving, and the first wireless signal and the second wireless signal are transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the uplink physical layer data channel is PUSCH (Physical Uplink Shared Channel).
  • the uplink physical layer data channel is sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NPUSCH (Narrow Band PUSCH, Narrow Band PUSCH).
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NPDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first bit block includes a positive integer number of bits.
  • the first bit block includes a transport block (TB, Transport Block).
  • TB transport block
  • the first wireless signal and the second wireless signal are one transmission of the first bit block.
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), rate matching (Rate Matching), scrambling, modulation (Modulation), and layer mapping (Layer Mapping). ), precoding (Precoding), mapping to resource element (Mapping to Resource Element), OFDM baseband signal generation (OFDM Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the first wireless signal.
  • CRC Insertion CRC Insertion
  • channel coding Channel coding
  • Rate Matching rate matching
  • scrambling scrambling
  • modulation Modulation
  • Layer Mapping Layer Mapping
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), rate matching (Rate Matching), scrambling, modulation (Modulation), and layer mapping (Layer Mapping). ), precoding, mapping to virtual resource blocks (Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from Virtual to Physical Resource Blocks), OFDM baseband signal generation (OFDM Baseband Signal Generation) , Obtaining the first wireless signal after modulation and upconversion (Modulation and Upconversion).
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), segmentation (Segmentation), coding block level CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Element, OFDM Baseband Signal Generation , Obtaining the first wireless signal after modulation and upconversion (Modulation and Upconversion).
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), rate matching (Rate Matching), scrambling, modulation (Modulation), and layer mapping (Layer Mapping). ), precoding (Precoding), mapping to resource element (Mapping to Resource Element), OFDM baseband signal generation (OFDM Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the second wireless signal.
  • CRC Insertion CRC Insertion
  • channel coding Channel coding
  • Rate Matching rate matching
  • scrambling scrambling
  • modulation Modulation
  • Layer Mapping Layer Mapping
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), channel coding (Channel Coding), rate matching (Rate Matching), scrambling, modulation (Modulation), and layer mapping (Layer Mapping). ), precoding, mapping to virtual resource blocks (Mapping to Virtual Resource Blocks), mapping from virtual resource blocks to physical resource blocks (Mapping from Virtual to Physical Resource Blocks), OFDM baseband signal generation (OFDM Baseband Signal Generation) , Obtaining the second wireless signal after modulation and upconversion (Modulation and Upconversion).
  • the first bit block sequentially undergoes CRC insertion (CRC Insertion), segmentation (Segmentation), coding block level CRC insertion (CRC Insertion), channel coding (Channel Coding), and rate matching (Rate Matching), Concatenation, Scrambling, Modulation, Layer Mapping, Precoding, Mapping to Resource Element, OFDM Baseband Signal Generation , Obtaining the second wireless signal after modulation and upconversion (Modulation and Upconversion).
  • the first bit block is channel-encoded to obtain the second bit block, the first target bit block generates the first wireless signal, the second target bit block generates the second wireless signal, and the first target bit block generates the second wireless signal.
  • Any bit in a target bit block belongs to the second bit block, and any bit in the second target bit block belongs to the second bit block; the redundancy version (RV, Redundancy Version) value is used to determine the first target bit block from the second bit block, and the redundancy version value of the second wireless signal is used to determine the first target bit block from the second bit block Two target bit blocks.
  • RV Redundancy Version
  • the second bit block is an input of rate matching
  • the first target bit block is an output of rate matching
  • the redundancy version value of the first wireless signal determines the first bit of the first target bit block.
  • the total number of available coded bits (Coded bits) in the first time-frequency resource block for transmitting the first bit block is used to determine the first The number of bits included in the target bit block.
  • the second bit block is an input of rate matching
  • the second target bit block is an output of rate matching
  • the redundancy version value of the second wireless signal determines the first bit of the second target bit block.
  • the total number of available coded bits (Coded bits) in the second time-frequency resource block for transmitting the first bit block is used to determine the second time-frequency resource block.
  • the number of bits included in the target bit block is used to determine the second time-frequency resource block.
  • the second bit block is d 0 , d 1 ,..., d N-1
  • the first target bit block is f 0 , f 1 ,..., f E-1
  • the total number of available coded bits (Coded bits) in the first time-frequency resource block for transmitting the first bit block is G
  • the d 0 , d 1 ,..., d N-1 For specific definitions of the f 0 , f 1 ,..., f E-1 and the G, refer to Chapter 5.4 in 3GPP TS38.212.
  • the second bit block is d 0 , d 1 ,..., d N-1
  • the second target bit block is f 0 , f 1 ,..., f E-1
  • the total number of available coded bits (Coded bits) in the second time-frequency resource block for transmitting the first bit block is G
  • the d 0 , d 1 ,..., d N-1 For specific definitions of the f 0 , f 1 ,..., f E-1 and the G, refer to Chapter 5.4 in 3GPP TS38.212.
  • the first parameter is used to send the first wireless signal.
  • the first parameter is used to receive the first wireless signal.
  • the first parameter is used for the first wireless signal to generate the first wireless signal.
  • the operation is sending, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Related sending.
  • the operation is receiving, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Relevant reception.
  • the first parameter is a redundancy version value of the first wireless signal
  • the target parameter is a redundancy version value of the second wireless signal
  • the first parameter is used to determine the frequency domain resource occupied by the first wireless signal
  • the target parameter is used to determine the frequency domain resource occupied by the second wireless signal.
  • a given timing frequency resource block belongs to a given time sub-window in the time domain means that the time domain resources occupied by the given timing frequency resource block belong to the given time sub-window.
  • the given time-frequency resource block is the first time-frequency resource block
  • the given time sub-window is that the N time sub-windows include the first time-frequency resource block.
  • the given time-frequency resource block is the second time-frequency resource block
  • the given time sub-window is that the N time sub-windows include the second time-frequency resource block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a system network architecture 200 of NR 5G, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced).
  • the NR 5G or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable term.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination for UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine-type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles, drones, aircraft, narrowband physical network equipment, machine-type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF211, other MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/UPF (User Plane Function, user plane function) 214, S -GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the corresponding Internet protocol service of the operator, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and PS streaming service (PSS).
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • PSS PS streaming service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 supports MIMO wireless communication.
  • the gNB203 supports MIMO wireless communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) with three layers: layer 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer terminating at the P-GW on the network side (e.g., IP layer) and terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first signaling in this application is generated in the PHY301.
  • the first wireless signal in this application is generated in the PHY301.
  • the second wireless signal in this application is generated in the PHY301.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the third information in this application is generated in the RRC sublayer 306.
  • the third information in this application is generated in the MAC sublayer 302.
  • Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in FIG. 4.
  • Figure 4 is a block diagram of gNB410 communicating with UE450 in an access network.
  • the base station equipment (410) includes a controller/processor 440, a memory 430, a receiving processor 412, a first processor 471, a transmitting processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a first processor 441, a transmitting processor 455, a receiving processor 452, a transmitter/receiver 456 and an antenna 460.
  • processing related to the base station equipment (410) includes:
  • the controller/processor 440 provides header compression, encryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels for implementation L2 layer protocol for user plane and control plane; upper layer packets can include data or control information, such as DL-SCH (Downlink Shared Channel, downlink shared channel);
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the controller/processor 440 is associated with a memory 430 storing program codes and data, and the memory 430 may be a computer-readable medium;
  • the controller/processor 440 includes a scheduling unit for transmission requirements, and the scheduling unit is used for scheduling air interface resources corresponding to the transmission requirements;
  • the first processor 471 determines to send the first signaling
  • the first processor 471 determines to send the first signaling and send the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • -Transmit processor 415 which receives the output bit stream of the controller/processor 440, and implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • -Transmit processor 415 which receives the output bit stream of the controller/processor 440, and implements various signal transmission processing functions for the L1 layer (ie, physical layer), including multi-antenna transmission, spread spectrum, code division multiplexing, and precoding Wait;
  • the transmitter 416 is used to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420; each transmitter 416 samples its input symbol stream to obtain its own sampled signal stream. Each transmitter 416 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on its sample stream to obtain a downlink signal.
  • processing related to the user equipment (450) may include:
  • -Receiver 456, for converting the radio frequency signal received through antenna 460 into baseband signal and providing it to receiving processor 452;
  • -Receive processor 452 which implements various signal reception processing functions for the L1 layer (ie, physical layer), including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • -Receiving processor 452 which implements various signal reception processing functions for the L1 layer (ie, physical layer), including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • the first processor 441 determines to receive the first signaling
  • the first processor 441 determines to receive the first signaling and receives the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the controller/processor 490 receives the bit stream output by the receiver processor 452, and provides header decompression, decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 storing program codes and data.
  • the memory 480 may be a computer-readable medium.
  • the processing related to the base station equipment (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the receiving processor 412;
  • L1 layer ie, physical layer
  • various signal reception processing functions for the L1 layer including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.
  • -Receiving processor 412 which implements various signal reception processing functions for the L1 layer (ie, physical layer), including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • Controller/processor 440 which implements L2 layer functions, and is associated with memory 430 storing program codes and data;
  • the controller/processor 440 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to restore upper layer data packets from the UE450; from the controller/processor 440
  • the upper layer data packets can be provided to the core network;
  • the first processor 471 determines to receive the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block, respectively;
  • the processing related to the user equipment (450) includes:
  • the data source 467 provides upper layer data packets to the controller/processor 490.
  • the data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456 transmits radio frequency signals through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • -Transmitting processor 455, which implements various signal reception processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, and physical layer signaling generation;
  • -Transmitting processor 455, which implements various signal reception processing functions for the L1 layer (ie, physical layer), including multi-antenna transmission, spreading (Spreading), code division multiplexing, precoding, etc.;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410, and implements L2 for user plane and control plane Layer function
  • the controller/processor 490 is also responsible for HARQ operation, retransmission of lost packets, and signaling to gNB410;
  • the first processor 441 determines to send the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor
  • the UE450 device at least receives first signaling, which is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • the first wireless signal and the second wireless signal are respectively operated in the first time-frequency resource block and the second time-frequency resource block; wherein, the first wireless signal and the second wireless signal respectively carry two parts of the first bit block Repeated transmission;
  • the first time-frequency resource block belongs to one of the N time sub-windows in the time domain, and the second time-frequency resource block belongs to the N time sub-windows in the time domain A time sub-window in the window;
  • the first wireless signal corresponds to a first parameter
  • the second wireless signal corresponds to a target parameter
  • the target parameter is the first parameter or the second parameter
  • the UE 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving first signaling, The first signaling is used to determine N time sub-windows, the N time sub-windows are reserved for the first bit block; the first time-frequency resource block and the second time-frequency resource block are operated separately A wireless signal and a second wireless signal; wherein the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block; the first time-frequency resource block is in the time domain Belongs to one of the N time sub-windows, and the second time-frequency resource block belongs to one of the N time sub-windows in the time domain; the first wireless signal and the first Corresponds to a parameter, the second wireless signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and the first time-frequency resource block and the second time-frequency resource block are in the time domain Whether the above belongs to the same time
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor Use together with the device.
  • the gNB410 device at least sends first signaling, the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block; in the first time-frequency resource
  • the first wireless signal and the second wireless signal are respectively executed in a block and a second time-frequency resource block; wherein the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to one of the N time sub-windows in the time domain, and the second time-frequency resource block belongs to one of the N time sub-windows in the time domain Time sub-window;
  • the first wireless signal corresponds to a first parameter
  • the second wireless signal corresponds to a target parameter
  • the target parameter is the first parameter or the
  • the gNB410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending first signaling, The first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block; the first time-frequency resource block and the second time-frequency resource block are respectively performed A wireless signal and a second wireless signal; wherein the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block; the first time-frequency resource block is in the time domain Belongs to one of the N time sub-windows, and the second time-frequency resource block belongs to one of the N time sub-windows in the time domain; the first wireless signal and the first Corresponds to a parameter, the second wireless signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and the first time-frequency resource block and the second time-frequency resource block are in the time domain Whether the above belongs to the same
  • UE450 corresponds to the user equipment in this application.
  • gNB410 corresponds to the base station in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive the first signaling in this application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to send the first signaling in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive the first information in this application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to transmit the first information in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive the second information in this application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to transmit the second information in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive the third information in this application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used to transmit the third information in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used for the first time-frequency resource block and the second time-frequency resource in this application
  • the first wireless signal and the second wireless signal in this application are respectively received in the block.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller/processor 440 are used for the first time-frequency resource block and the second time-frequency resource in this application
  • the first wireless signal and the second wireless signal in this application are respectively sent in the block.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used for the first time-frequency resource block and the second time-frequency resource in this application
  • the first wireless signal and the second wireless signal in this application are respectively sent in the block.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used for the first time-frequency resource block and the second time-frequency resource in this application
  • the first wireless signal and the second wireless signal in this application are respectively received in the block.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG. 5.
  • the base station N01 is the serving cell maintenance base station of the user equipment U02.
  • the block F1 is optional.
  • step S10 send the first information in step S10; send the first signaling in step S11; in step S12, receive the first radio signal and the second radio signal in the first time-frequency resource block and the second time-frequency resource block, respectively. wireless signal.
  • the first information is received in step S20; the first signaling is received in step S21; the first wireless signal and the second wireless signal are respectively sent in the first time-frequency resource block and the second time-frequency resource block in step S22. wireless signal.
  • the operation in this application is sending, and the execution in this application is receiving;
  • the first signaling is used by the U02 to determine N time sub-windows, and the N time The sub-window is reserved for the first bit block;
  • the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block;
  • the first time-frequency resource block is in the time domain Belongs to one of the N time sub-windows, and the second time-frequency resource block belongs to one of the N time sub-windows in the time domain;
  • the second wireless signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and the first time-frequency resource block and the second time-frequency resource block are in the time domain Whether the above belongs to the same time sub-window of the N time sub-windows is used by the U02 to determine whether the target parameter is the first parameter or the second parameter;
  • N is a positive integer greater than 1.
  • the first information is used by the U02 to determine the first frequency domain deviation; the first parameter is used by the U02 to determine the frequency domain resource occupied by the first wireless signal, and the target parameter is used by the U02 is used to determine the frequency domain resource occupied by the second wireless signal, the second parameter is used by the U02 to determine a third frequency domain resource, the third frequency domain resource and the first wireless signal
  • the deviation of the frequency domain resources occupied is equal to the first frequency domain deviation.
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC signaling.
  • the first information is carried by MAC CE signaling.
  • the first information includes one or more IEs (Information Elements) in one RRC signaling.
  • the first information includes all or part of an IE in an RRC signaling.
  • the first information includes a partial field of an IE in an RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the first information and the third information belong to the same IE in one RRC signaling.
  • the first information indicates the first frequency domain deviation.
  • the first signaling and the first information are jointly used by the U02 to determine the first frequency domain offset.
  • the first information indicates L frequency domain deviations
  • the first signaling indicates the first frequency domain deviation from the L frequency domain deviations
  • the first frequency domain deviation is the L
  • L is a positive integer greater than 1.
  • the L frequency domain deviations are non-negative positive integers.
  • the L frequency domain deviations are positive integers.
  • the unit of the L frequency domain deviations is RB.
  • the unit of the L frequency domain deviations is a sub-carrier.
  • the first frequency domain deviation is a non-negative positive integer.
  • the first frequency domain deviation is a positive integer.
  • the unit of the first frequency domain deviation is RB.
  • the first frequency domain offset is RB offset
  • the specific definition of the RB offset can be found in section 6.3 of 3GPP TS38.214.
  • Embodiment 6 illustrates a flow chart of wireless transmission, as shown in FIG. 6.
  • the base station N03 is the serving cell maintenance base station of the user equipment U04.
  • block F2 is optional.
  • step S30 send the first information in step S30; send the first signaling in step S31; send the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block, respectively, in step S32 wireless signal.
  • the first information is received in step S40; the first signaling is received in step S41; the first wireless signal and the second wireless signal are received in the first time-frequency resource block and the second time-frequency resource block, respectively, in step S42. wireless signal.
  • the operation in this application is receiving, and the execution in this application is sending; the first signaling is used by the U04 to determine N time sub-windows, and the N time The sub-window is reserved for the first bit block; the first wireless signal and the second wireless signal respectively carry two repeated transmissions of the first bit block; the first time-frequency resource block is in the time domain Belongs to one of the N time sub-windows, and the second time-frequency resource block belongs to one of the N time sub-windows in the time domain; the first wireless signal and the first Corresponds to a parameter, the second wireless signal corresponds to a target parameter, the target parameter is the first parameter or the second parameter, and the first time-frequency resource block and the second time-frequency resource block are in the time domain Whether the above belongs to the same time sub-window of the N time sub-windows is used by the U04 to determine whether the target parameter is the first parameter or the second parameter; N is a positive integer greater than 1.
  • the first information is used by the U04 to determine the first frequency domain deviation; the first parameter is used by the U04 to determine the frequency domain resource occupied by the first wireless signal, and the target parameter is used by the U04 is used to determine the frequency domain resource occupied by the second wireless signal, the second parameter is used by the U04 to determine a third frequency domain resource, the third frequency domain resource and the first wireless signal
  • the deviation of the frequency domain resources occupied is equal to the first frequency domain deviation.
  • Embodiment 7 illustrates a schematic diagram of the relationship between a given time sub-window and the first bit block, as shown in FIG. 7.
  • the given time sub-window is one of the N time sub-windows in the present application, and the given time sub-window includes M time periods, and in the M time periods One repeated transmission of the first bit block is performed in each time period in, and M is a positive integer.
  • the number of uplink and downlink switching points (DL/UL switching points) or time domain unit boundaries (boundary) included in the given time sub-window is equal to M-1, and the first bit block is in the The actual number of repeated transmissions in a given time sub-window is equal to the M.
  • the number of repeated transmissions of the first bit block in the M periods (Period) is equal to the M.
  • the M is equal to 1, and one repeated transmission of the first bit block is performed in the M time periods.
  • the M is greater than 1, and the first bit block is repeatedly sent M times in the M time periods.
  • the M is greater than 1, and the given time sub-window includes an uplink/downlink switching point (DL/UL switching point) or a boundary of a time domain unit (Boundary).
  • DL/UL switching point uplink/downlink switching point
  • Boundary boundary of a time domain unit
  • the M is greater than 1, and any two adjacent time periods in the M time periods include an uplink/downlink switching point (DL/UL switching point) or a boundary of a time domain unit (Boundary).
  • DL/UL switching point uplink/downlink switching point
  • Boundary a boundary of a time domain unit
  • the M is greater than 1, and any two adjacent time periods in the M time periods are discontinuous or belong to different time domain units.
  • any one of the M time periods includes a continuous period of time.
  • any one of the M time periods includes one multi-carrier symbol or multiple consecutive multi-carrier symbols.
  • the time domain unit includes a time slot (Slot).
  • the time domain unit includes a mini-slot.
  • the time domain unit includes one subframe (Subframe).
  • the time domain unit includes a positive integer number of multi-carrier symbols.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix).
  • Embodiments 8A-8B respectively illustrate a schematic diagram of the relationship between a first time-frequency resource block, a second time-frequency resource block, and N time sub-windows, as shown in FIG. 8.
  • the first time sub-window is one of the N time sub-windows to which the first time-frequency resource block belongs in the time domain
  • the second time sub-window is the N time sub-windows.
  • a time sub-window to which the second time-frequency resource block belongs in the time domain in the sub-window, and the second time sub-window is the same as the first time sub-window;
  • the first time sub-window includes two time periods
  • the two time periods included in the first time sub-window respectively include time domain resources occupied by the first time-frequency resource block and time domain resources occupied by the second time-frequency resource block.
  • the first time sub-window is a time sub-window to which the first time-frequency resource block belongs in the time domain among the N time sub-windows
  • the second time sub-window is the N time sub-windows.
  • a time sub-window to which the second time-frequency resource block in the sub-window belongs in the time domain, and the second time sub-window is the earliest one of the N time sub-windows that is later than the first time sub-window A time window.
  • the first time sub-window includes two time periods, and the two time periods included in the first time sub-window respectively include the time domain resources occupied by the first time-frequency resource block and the Time domain resources occupied by the second time-frequency resource block.
  • the two time periods included in the first time sub-window include uplink and downlink switching points (DL/UL switching points).
  • the two time periods included in the first time sub-window include a boundary of a time domain unit (Boundary).
  • the second time sub-window is the earliest one of the N time sub-windows that is later than the first time sub-window.
  • the first time sub-window and the second time sub-window include an uplink/downlink switching point (DL/UL switching point).
  • the boundary between the first time sub-window and the second time sub-window includes a time domain unit boundary (Boundary).
  • the first time sub-window and the second time sub-window are continuous.
  • the first time sub-window and the second time sub-window are discontinuous.
  • Embodiment 9 illustrates a schematic diagram of determining target parameters, as shown in FIG. 9.
  • the target parameter is the second parameter in this application; when the first time-frequency resource block and the second time-frequency resource block both belong to the N in the time domain
  • the target parameter is the first parameter in this application.
  • Embodiment 10 illustrates another schematic diagram of determining target parameters, as shown in FIG. 10.
  • the target parameter is the second parameter in this application; when the first time-frequency resource block and the second time-frequency resource block both belong to the N in the time domain
  • the size of the first time-frequency resource block is used to determine whether the target parameter is the first parameter or the second parameter in this application.
  • the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain
  • the first time-frequency resource block The relationship between the size of the frequency resource block and the size of the second time-frequency resource block is used to determine whether the target parameter is the first parameter or the second parameter.
  • the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain
  • the first time-frequency resource block The relationship between the size of the frequency resource block and the first reference quantity is used to determine whether the target parameter is the first parameter or the second parameter, and the first reference quantity is equal to the first time-frequency resource block The sum of the size of and the size of the second time-frequency resource block.
  • the size of a given timing frequency resource is the number of REs (Resource Elements, resource units) included in the given timing frequency resource.
  • the given timing-frequency resource is the first timing-frequency resource block.
  • the given timing-frequency resource is the second timing-frequency resource block.
  • the given timing-frequency resource is a time-frequency resource occupied by the first wireless signal.
  • the given timing frequency resource is a time-frequency resource occupied by the second wireless signal.
  • the size of the given timing frequency resource is the product of the size of the time domain resource occupied by the given timing frequency resource and the size of the frequency domain resource occupied by the given timing frequency resource.
  • the given timing-frequency resource is the first timing-frequency resource block.
  • the given timing-frequency resource is the second timing-frequency resource block.
  • the given timing-frequency resource is a time-frequency resource occupied by the first wireless signal.
  • the given timing-frequency resource is the time-frequency resource occupied by the second wireless signal.
  • the size of the given timing frequency resource is the product of the number of multi-carrier symbols occupied by the given timing frequency resource and the number of RBs (Resource Block) occupied by the given timing frequency resource .
  • the given timing-frequency resource is the first timing-frequency resource block.
  • the given timing-frequency resource is the second timing-frequency resource block.
  • the given timing-frequency resource is a time-frequency resource occupied by the first wireless signal.
  • the given timing frequency resource is a time-frequency resource occupied by the second wireless signal.
  • Embodiment 11 illustrates another schematic diagram of determining target parameters, as shown in FIG. 11.
  • Embodiment 11 when the first time-frequency resource block and the second time-frequency resource block in this application respectively belong to two phases of the N time sub-windows in this application in the time domain. Adjacent time sub-window, the target parameter is the second parameter in this application; when the first time-frequency resource block and the second time-frequency resource block both belong to the time domain In the same time sub-window of the N time sub-windows, the size of the time-frequency resource occupied by the first wireless signal in this application is used to determine whether the target parameter is the first parameter or the The second parameter.
  • the first radio when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, the first radio The relationship between the size of the time-frequency resource occupied by the signal and the size of the time-frequency resource occupied by the second wireless signal is used to determine whether the target parameter is the first parameter or the second parameter.
  • the first radio when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, the first radio
  • the relationship between the size of the time-frequency resource occupied by the signal and the second reference quantity is used to determine whether the target parameter is the first parameter or the second parameter, and the second reference quantity is equal to the first parameter.
  • Embodiment 12 illustrates a schematic diagram in which the size of the first time-frequency resource block is used to determine the target parameter, as shown in FIG. 12.
  • Embodiment 12 when the first time-frequency resource block and the second time-frequency resource block in this application both belong to the same time in the N time sub-windows in this application in the time domain In the case of a sub-window, the size of the first time-frequency resource block and the size of the second time-frequency resource block are used to determine a first value; the relationship between the first value and the first threshold is used to determine the The target parameter is the first parameter or the second parameter in this application.
  • the target parameter when the first value is less than the first threshold, the target parameter is the first parameter; when the first value is greater than the first threshold, the target parameter is the The second parameter.
  • the target parameter is the first parameter.
  • the target parameter is the second parameter.
  • the first value is equal to a quotient obtained by dividing the size of the first time-frequency resource block by the size of the second time-frequency resource block.
  • the first threshold is a positive real number.
  • the first threshold is a positive integer.
  • the first threshold is predefined.
  • the first threshold is configurable.
  • the first threshold is configured by higher layer signaling.
  • the first threshold is configured by RRC signaling.
  • Embodiment 13 illustrates another schematic diagram in which the size of the first time-frequency resource block is used to determine the target parameter, as shown in FIG. 13.
  • the size of the first time-frequency resource block and the first reference quantity are used to determine the second value; the size relationship between the second value and the second threshold is used to determine that the target parameter is the present application
  • the first parameter in is also the second parameter; the first reference quantity is equal to the sum of the size of the first time-frequency resource block and the size of the second time-frequency resource block.
  • the target parameter when the second value is less than the second threshold, the target parameter is the first parameter; when the second value is greater than the second threshold, the target parameter is the The second parameter.
  • the target parameter is the first parameter.
  • the target parameter is the second parameter.
  • the second value is equal to a quotient obtained by dividing the size of the first time-frequency resource block by the first reference quantity.
  • the second threshold is a positive real number less than one.
  • the second threshold is predefined.
  • the second threshold is configurable.
  • the second threshold is configured by higher layer signaling.
  • the second threshold is configured by RRC signaling.
  • Embodiment 14 illustrates another schematic diagram of the size of the first time-frequency resource block being used to determine the target parameter, as shown in FIG. 14.
  • Embodiment 14 when the first time-frequency resource block and the second time-frequency resource block in this application both belong to the same time in the N time sub-windows in this application in the time domain In the case of a sub-window, the size of the time-frequency resource occupied by the first wireless signal and the size of the time-frequency resource occupied by the second wireless signal in this application are used to determine the third value; the third value The magnitude relationship with the third threshold is used to determine whether the target parameter is the first parameter or the second parameter in this application.
  • the target parameter when the third value is less than the third threshold, the target parameter is the first parameter; when the third value is greater than the third threshold, the target parameter is the The second parameter.
  • the target parameter is the first parameter.
  • the target parameter is the second parameter.
  • the third value is equal to the quotient obtained by dividing the size of the time-frequency resource occupied by the first wireless signal by the size of the time-frequency resource occupied by the second wireless signal.
  • the third threshold is a positive real number.
  • the third threshold is a positive integer.
  • the third threshold is predefined.
  • the third threshold is configurable.
  • the third threshold is configured by higher layer signaling.
  • the third threshold is configured by RRC signaling.
  • Embodiment 15 illustrates another schematic diagram in which the size of the first time-frequency resource block is used to determine the target parameter, as shown in FIG. 15.
  • Embodiment 15 when the first time-frequency resource block and the second time-frequency resource block in this application both belong to the same time in the N time sub-windows in this application in the time domain
  • the size of the time-frequency resource occupied by the first wireless signal and the second reference quantity in this application are used to determine the fourth value; the magnitude relationship between the fourth value and the fourth threshold is used It is determined whether the target parameter is the first parameter or the second parameter in this application; the second reference quantity is equal to the size of the time-frequency resource occupied by the first wireless signal and the size in this application The sum of the time-frequency resources occupied by the second wireless signal.
  • the target parameter when the fourth value is less than the fourth threshold, the target parameter is the first parameter; when the fourth value is greater than the fourth threshold, the target parameter is the The second parameter.
  • the target parameter is the first parameter.
  • the target parameter is the second parameter.
  • the fourth value is equal to the quotient obtained by dividing the size of the time-frequency resource occupied by the first wireless signal by the second reference quantity.
  • the fourth threshold is a positive real number less than one.
  • the fourth threshold is predefined.
  • the fourth threshold is configurable.
  • the fourth threshold is configured by higher layer signaling.
  • the fourth threshold is configured by RRC signaling.
  • Embodiments 16A-16B respectively illustrate a schematic diagram of the first parameter and the target parameter, as shown in FIG. 16.
  • the operation in this application is transmission
  • the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal in this application
  • the target parameter is used to determine Multi-antenna related transmission of the second wireless signal in this application.
  • the operation in this application is receiving, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal in this application, and the target parameter is used to determine The multi-antenna related reception of the second wireless signal in this application.
  • the operation is sending, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Related sending.
  • the first parameter is the index of the first reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation transmission of the first reference signal.
  • the first reference signal includes SRS (Sounding Reference Signal, sounding reference signal).
  • the first parameter is the index of the first reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation reception of the first reference signal.
  • the first reference signal includes CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • the first parameter is the index of the first reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation reception of the first reference signal.
  • the first reference signal includes SS/PBCH (Synchronization Signal/Physical Broadcast CHannel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast CHannel
  • the target parameter is the index of the second reference signal
  • the multi-antenna related transmission of the second wireless signal can be inferred from the multi-antenna related transmission of the second reference signal
  • the second reference signal includes SRS.
  • the target parameter is the index of the second reference signal
  • the multi-antenna related transmission of the second wireless signal can be inferred from the multi-antenna related reception of the second reference signal
  • the second reference signal includes CSI-RS.
  • the target parameter is the index of the second reference signal
  • the multi-antenna related transmission of the second wireless signal can be inferred from the multi-antenna related reception of the second reference signal
  • the second reference signal includes an SS/PBCH block.
  • the operation is receiving, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Relevant reception.
  • the first parameter is the index of the third reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation transmission of the third reference signal.
  • the third reference signal includes SRS.
  • the first parameter is the index of the third reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation reception of the third reference signal.
  • the third reference signal includes CSI-RS.
  • the first parameter is the index of the third reference signal
  • the multi-antenna correlation of the first wireless signal can be inferred from the multi-antenna correlation reception of the third reference signal.
  • the third reference signal includes SSB.
  • the target parameter is the index of the fourth reference signal
  • the multi-antenna related reception of the second wireless signal can be inferred from the multi-antenna related transmission of the fourth reference signal
  • the fourth reference signal includes SRS.
  • the target parameter is the index of the fourth reference signal
  • the multi-antenna related reception of the second wireless signal can be inferred from the multi-antenna related reception of the fourth reference signal
  • the fourth reference signal includes CSI-RS.
  • the target parameter is the index of the fourth reference signal
  • the multi-antenna related reception of the second wireless signal can be inferred from the multi-antenna related reception of the fourth reference signal
  • the fourth reference signal includes SSB.
  • the multi-antenna-related reception is spatial reception parameters (Spatial Rx parameters).
  • the multi-antenna related reception is a reception beam.
  • the multi-antenna-related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna related reception is to receive an analog beamforming vector.
  • the multi-antenna-related reception is a receive beamforming vector.
  • the multi-antenna-related reception is spatial filtering.
  • the multi-antenna related transmission is a spatial transmission parameter (Spatial Tx parameter).
  • the multi-antenna-related transmission is a transmission beam.
  • the multi-antenna-related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming vector.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the spatial transmit parameter includes transmit antenna port, transmit antenna port group, transmit beam, transmit analog beamforming matrix, transmit analog beamforming vector, transmit beamforming matrix, and transmit beam One or more of shaping vector and transmission spatial filtering (spatial filtering).
  • the spatial receiving parameter includes receiving beam, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming matrix, receiving beamforming vector, and receiving spatial filtering (spatial). filtering).
  • Embodiment 17 illustrates another schematic diagram of the first parameter and the target parameter, as shown in FIG. 17.
  • the first parameter is the redundancy version value of the first wireless signal in this application
  • the target parameter is the redundancy version value of the second wireless signal in this application.
  • Embodiment 18 illustrates another schematic diagram of the first parameter and the target parameter, as shown in FIG. 18.
  • the first parameter is used to determine the frequency domain resource occupied by the first wireless signal in this application
  • the target parameter is used to determine the second wireless signal in this application
  • the second parameter is used to determine a third frequency domain resource
  • the deviation between the third frequency domain resource and the frequency domain resource occupied by the first wireless signal is equal to the first wireless signal A frequency domain deviation.
  • the first parameter is a non-negative integer.
  • the second parameter is a non-negative integer.
  • the second parameter is greater than the first parameter.
  • the second parameter is a positive integer obtained by adding 1 to the first parameter.
  • the first time sub-window is a time sub-window to which the first time-frequency resource block belongs in the time domain among the N time sub-windows, and the first parameter is the same as the first time sub-window.
  • the position of the window in the N time sub-windows is related;
  • the second time sub-window is a time sub-window to which the second time-frequency resource block belongs in the time domain in the N time sub-windows, and the target The parameter is related to the position of the second time sub-window in the N time sub-windows.
  • the first parameter is the position of the first time sub-window in the N time sub-windows
  • the target parameter is the position of the second time sub-window in the The position in the N time sub-windows.
  • the first parameter is a positive integer obtained by adding 1 to the position of the first time sub-window in the N time sub-windows
  • the target parameter is the A positive integer obtained by adding 1 to the position of the second time sub-window in the N time sub-windows.
  • the first time sub-window is one of the N time sub-windows to which the first time-frequency resource block belongs in the time domain
  • the second time sub-window is the N time sub-windows.
  • a time sub-window to which the second time-frequency resource block in the window belongs in the time domain;
  • the N time sub-windows are divided into N2 time sub-window sets, and any one of the N2 time sub-window sets
  • the time sub-window set includes at least one time sub-window in the N time sub-windows, and any one time sub-window of the N time sub-windows belongs to only one time in the N2 time sub-window sets
  • a set of sub-windows, N2 is a positive integer greater than 1;
  • the first parameter and a set of time sub-windows in the set of N2 time sub-windows including the first time sub-window are in the set of N2 time sub-windows
  • the target parameter is related to the position in
  • the positions of the N2 time sub-window sets respectively in the N2 time sub-window sets are 0, 1, ..., N2-1; the N2 time sub-windows The sets are respectively the 1, 2, ..., N2 time sub-window sets in the N2 time sub-window sets.
  • the first parameter is the set of one time sub-window including the first time sub-window in the N2 time sub-window set in the N2 time sub-window set
  • the position, the target parameter is the position of a time sub-window set including the second time sub-window in the N2 time sub-window set in the N2 time sub-window sets.
  • the first parameter is the set of one time sub-window including the first time sub-window in the N2 time sub-window set in the N2 time sub-window set A positive integer obtained by adding 1 to the position
  • the target parameter is the position of a time sub-window set including the second time sub-window in the N2 time sub-window set in the N2 time sub-window sets The positive integer obtained after adding 1.
  • any time sub-window set in the N2 time sub-window sets is a Hop, and the specific definition of the Hop is referred to section 6.3 in 3GPP TS38.214.
  • the N2 is equal to 2, and the N2 time sub-window sets are First hop and Second hop respectively.
  • First hop and the Second hop refer to 3GPP TS38.214 Section 6.3.
  • the first time sub-window is one of the N time sub-windows to which the first time-frequency resource block belongs in the time domain
  • the second time sub-window is the N time sub-windows.
  • the first parameter is the serial number of the time domain unit to which the first time sub-window belongs
  • the target parameter is the serial number of the time domain unit to which the second time sub-window belongs .
  • the first parameter is a positive integer obtained by adding 1 to the serial number of the time domain unit to which the first time sub-window belongs
  • the target parameter is the second time sub-window.
  • the first parameter is Said For specific definitions, see Chapter 6.3 in 3GPP TS38.214.
  • the target parameter is Said For specific definitions, see Chapter 6.3 in 3GPP TS38.214.
  • the deviation between the third frequency domain resource and the frequency domain resource occupied by the first wireless signal is the index (Index) of the start RB of the third frequency domain resource and the first The absolute value of the difference between the indexes of the start RB occupied by a wireless signal.
  • the start RB of the third frequency domain resource is the lowest frequency RB in the third frequency domain resource, and the first wireless signal occupied by the The starting RB is the lowest frequency RB among the frequency domain resources occupied by the first wireless signal.
  • the start RB of the third frequency domain resource is the highest frequency RB in the third frequency domain resource, and the first wireless signal occupied
  • the starting RB is the RB with the highest frequency among the frequency domain resources occupied by the first wireless signal.
  • the start RB of the third frequency domain resource is RB start , and the specific definition of the RB start can be found in Chapter 6.3 of 3GPP TS38.214.
  • the start RB of the third frequency domain resource is RB start , and the specific definition of the RB start can be found in section 6.3 of 3GPP TS38.214.
  • the first modulus value is a non-negative integer obtained after a given parameter modulates N3, and the first modulus value is used to determine a given frequency domain resource.
  • the N3 is equal to 2.
  • the N3 is equal to 4.
  • the given parameter is the first parameter
  • the given frequency domain resource is a frequency domain resource occupied by the first wireless signal
  • the given parameter is the target parameter
  • the given frequency domain resource is a frequency domain resource occupied by the second wireless signal
  • the first signaling indicates a first frequency domain resource
  • the first frequency domain resource consists of 1 RB
  • the given frequency domain resource also consists of 1 RB
  • the third difference is an integer after the index of the RB included in the given frequency domain resource minus the index of the RB included in the first frequency domain resource, and the absolute value of the third difference is equal to the first frequency.
  • the product of the domain deviation and the first modulus value is equal to the first frequency.
  • the first signaling indicates a first frequency domain resource
  • the first frequency domain resource consists of 1 RB
  • the given frequency domain resource also consists of 1 RB
  • the third difference is an integer after the index of the RB included in the given frequency domain resource minus the index of the RB included in the first frequency domain resource, and the third difference is equal to the first frequency domain deviation sum The product of the first modulus value.
  • the first signaling indicates a first frequency domain resource
  • the first frequency domain resource is composed of N4 RBs
  • the given frequency domain resource is also composed of N4 RBs
  • N4 is a positive integer greater than 1
  • n1 and n2 are any two different integers among 1, 2, ..., N4
  • the first difference is the index of the n1th RB of the given frequency domain resource minus all
  • the second difference is the index of the n2-th RB in the given frequency domain resource minus the n2-th RB index in the first frequency domain resource
  • An integer after the index of RB, the first difference is equal to the second difference
  • the absolute value of the first difference is equal to the product of the first frequency domain deviation and the first modulus.
  • the first signaling indicates a first frequency domain resource
  • the first frequency domain resource is composed of N4 RBs
  • the given frequency domain resource is also composed of N4 RBs
  • N4 is a positive integer greater than 1
  • n1 and n2 are any two different integers among 1, 2, ..., N4
  • the first difference is the index of the n1th RB of the given frequency domain resource minus all
  • the second difference is the index of the n2-th RB in the given frequency domain resource minus the n2-th RB index in the first frequency domain resource
  • An integer after the index of RBs the first difference is equal to the second difference
  • the first difference is equal to the product of the first frequency domain deviation and the first modulus.
  • Embodiment 19 illustrates a schematic diagram of the relationship between the first parameter and the second parameter, as shown in FIG. 19.
  • the first parameter is one parameter among N1 parameters arranged in sequence
  • the second parameter is one parameter among the N1 parameters arranged in sequence
  • the first parameter is in the The position in the N1 parameters arranged in sequence is used to determine the second parameter
  • N1 is a positive integer greater than 1.
  • the N1 sequentially arranged parameters are respectively the 1, 2, ..., N1 parameters in the N1 sequentially arranged parameters, and the N1 sequentially arranged parameters are respectively in the N1
  • the positions of the parameters arranged in sequence are 0, 1, ..., N1-1.
  • the given parameter is any one of the N1 parameters arranged in sequence
  • the given parameter is the i+1th parameter among the N1 parameters arranged in sequence
  • the given The position of the parameter in the N1 parameters arranged in sequence is i
  • the i is a non-negative integer smaller than the N1.
  • the position of the first parameter in the N1 sequentially arranged parameters is k, and the k is a non-negative integer smaller than the N1; the second parameter is arranged in the N1 sequentially
  • the position in the parameter of is a non-negative integer after k+1 modulo N1, that is, (k+1)mod N1.
  • the N1 sequentially arranged parameters are indexes of N1 reference signals, and any reference signal in the N1 reference signals includes one of SRS, CSI-RS and SS/PBCH blocks.
  • the operation is sending, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the second Multi-antenna related transmission of wireless signals.
  • the operation is receiving, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine the second Multi-antenna related reception of wireless signals.
  • the N1 sequentially arranged parameters are respectively N1 redundancy version values.
  • the first parameter is a redundancy version value of the first wireless signal
  • the target parameter is a redundancy version value of the second wireless signal
  • the first signaling is used to determine the N1 sequentially arranged parameters.
  • the first signaling indicates the N1 parameters arranged in sequence.
  • the above method further includes:
  • the second information is used to determine the N1 sequentially arranged parameters.
  • the second information indicates the N1 sequentially arranged parameters.
  • the second information is semi-statically configured.
  • the second information is carried by higher-layer signaling.
  • the second information is carried by RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information includes one or more IEs (Information Elements) in one RRC signaling.
  • the second information includes all or part of an IE in an RRC signaling.
  • the second information includes a partial field of an IE in an RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information and the third information belong to the same IE in one RRC signaling.
  • the first time sub-window is a time sub-window to which the first time-frequency resource block belongs in the time domain among the N time sub-windows, and the first time sub-window is in the N time sub-windows.
  • the positions in the time sub-windows are used to determine the first parameter from the N1 sequentially arranged parameters.
  • the first time sub-window is a time sub-window to which the first time-frequency resource block belongs in the time domain among the N time sub-windows
  • the third time sub-window is in the N time sub-windows.
  • the position in the sub-window is used to determine the second parameter from the N1 sequentially arranged parameters
  • the third time sub-window is later than the first time sub-window among the N time sub-windows One of the earliest time windows.
  • the position of the third time sub-window in the N time sub-windows is the position of the first time sub-window in the N time sub-windows plus 1 The positive integer obtained afterwards.
  • the N time sub-windows are respectively the 1, 2, ..., N-th time sub-windows in the N time sub-windows, and the N time sub-windows are respectively at the N time sub-windows.
  • the positions in the sub-window are 0, 1, ..., N-1 in sequence.
  • a given time sub-window is the j+1th time sub-window of the N time sub-windows, and the position of the given time sub-window in the N time sub-windows is j,
  • the j is a non-negative integer smaller than the N.
  • the position of a given time sub-window in the N time sub-windows is used to determine a given parameter from the N1 sequentially arranged parameters, and the given parameter is the N1 sequentially arranged parameters.
  • the given parameter is the N1 sequentially arranged parameters.
  • the given time sub-window is the first time sub-window
  • the given parameter is the first parameter
  • the given time sub-window is the third time sub-window
  • the given parameter is the second parameter
  • the position of the given time sub-window in the N time sub-windows is 0, and the position of the given parameter in the N1 sequentially arranged parameters is 0 .
  • the position of the given time sub-window in the N time sub-windows is j, and the j is a non-negative integer less than the N; the given parameter is The position in the N1 sequentially arranged parameters is a non-negative integer obtained after the j modulo N1, that is, j mod N1.
  • the position of the given time sub-window in the N time sub-windows is 0, and the position of the given parameter in the N1 sequentially arranged parameters is available Configured.
  • the position of the given time sub-window in the N time sub-windows is 0, and the position of the given parameter in the N1 sequentially arranged parameters is determined by The first signaling indication.
  • the position of the given time sub-window in the N time sub-windows is 0, and the position of the given parameter in the N1 sequentially arranged parameters is J0 ,
  • the J0 is a non-negative positive integer smaller than the N1.
  • the position of the given time sub-window in the N time sub-windows is j, and the j is a non-negative integer less than the N; the given parameter is The position of the N1 sequentially arranged parameters is a non-negative integer obtained after j+J0 modulates N1, that is, (j+J0)mod N1, and J0 is a non-negative positive integer smaller than N1.
  • Embodiment 20 illustrates a structural block diagram of a processing device in UE, as shown in FIG. 20.
  • the UE processing apparatus 1200 includes a first receiver 1201 and a first transceiver 1202.
  • the first receiver 1201 includes the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first receiver 1201 includes at least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least the first two of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes the transmitter/receiver 456, the transmitting processor 455, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes at least one of the transmitter/receiver 456, the transmitting processor 455, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes at least one of the transmitter/receiver 456, the transmitting processor 455, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first receiver 1201 receives the first signaling
  • the first transceiver 1202 which operates the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • the first wireless signal and the second wireless signal The signal respectively bears two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to one of the N time sub-windows in the time domain, and the second time-frequency resource block Belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to a first parameter
  • the second wireless signal corresponds to a target parameter, and the target parameter is the first A parameter or a second parameter, whether the first time-frequency resource block and the second time-frequency resource block belong to the same time sub-window of the N time sub-windows in the time domain is used to determine the Whether the target parameter is the first parameter or the second parameter;
  • the operation is sending, or the operation is receiving;
  • N is a positive integer greater than 1.
  • the The target parameter is the second parameter; when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, The target parameter is the first parameter.
  • the The target parameter is the second parameter; when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, The size of the first time-frequency resource block is used to determine whether the target parameter is the first parameter or the second parameter.
  • the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain
  • the first time-frequency resource block The size of the frequency resource block and the size of the second time-frequency resource block are used to determine a first value; the relationship between the first value and the first threshold is used to determine that the target parameter is the first parameter Still the second parameter.
  • the operation is sending, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Related transmission; or, the operation is receiving, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine the multiple of the second wireless signal Antenna-related reception.
  • the first parameter is one parameter among N1 parameters arranged in sequence
  • the second parameter is one parameter among the N1 parameters arranged in sequence
  • the first parameter is in the N1 parameter.
  • the position in the parameters arranged in sequence is used to determine the second parameter
  • N1 is a positive integer greater than 1.
  • the first receiver 1201 also receives first information; wherein, the first information is used to determine the first frequency domain deviation; the first parameter is used to determine the first wireless signal Occupied frequency domain resource, the target parameter is used to determine the frequency domain resource occupied by the second wireless signal, the second parameter is used to determine a third frequency domain resource, the third frequency domain resource The deviation from the frequency domain resource occupied by the first wireless signal is equal to the first frequency domain deviation.
  • Embodiment 21 illustrates a structural block diagram of a processing device in a base station equipment, as shown in FIG. 21.
  • the processing device 1300 in the base station equipment includes a second transmitter 1301 and a second transceiver 1302.
  • the second transmitter 1301 includes the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transmitter 1301 includes at least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least the first two of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transceiver 1302 includes the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transceiver 1302 includes at least one of the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the first four the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment. The first four.
  • the second transceiver 1302 includes at least one of the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transmitter 1301 sends the first signaling
  • the second transceiver 1302 which executes the first wireless signal and the second wireless signal in the first time-frequency resource block and the second time-frequency resource block respectively;
  • the first signaling is used to determine N time sub-windows, and the N time sub-windows are reserved for the first bit block;
  • the first wireless signal and the second wireless signal The signal respectively bears two repeated transmissions of the first bit block;
  • the first time-frequency resource block belongs to one of the N time sub-windows in the time domain, and the second time-frequency resource block Belongs to one of the N time sub-windows in the time domain;
  • the first wireless signal corresponds to a first parameter
  • the second wireless signal corresponds to a target parameter, and the target parameter is the first A parameter or a second parameter, whether the first time-frequency resource block and the second time-frequency resource block belong to the same time sub-window of the N time sub-windows in the time domain is used to determine the Whether the target parameter is the first parameter or the second parameter;
  • the execution is receiving; or, the execution is sending;
  • N is a positive integer greater than 1.
  • the The target parameter is the second parameter; when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, The target parameter is the first parameter.
  • the The target parameter is the second parameter; when the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain, The relationship between the size of the first time-frequency resource block and the size of the second time-frequency resource block is used to determine whether the target parameter is the first parameter or the second parameter.
  • the first time-frequency resource block and the second time-frequency resource block both belong to the same time sub-window of the N time sub-windows in the time domain
  • the first time-frequency resource block The size of the frequency resource block and the size of the second time-frequency resource block are used to determine a first value; the relationship between the first value and the first threshold is used to determine that the target parameter is the first parameter Still the second parameter.
  • the execution is receiving, the first parameter is used to determine the multi-antenna-related transmission of the first wireless signal, and the target parameter is used to determine the multi-antenna of the second wireless signal Related transmission; or, the execution is transmission, the first parameter is used to determine the multi-antenna-related reception of the first wireless signal, and the target parameter is used to determine the multiple of the second wireless signal Antenna-related reception.
  • the first parameter is one parameter among N1 parameters arranged in sequence
  • the second parameter is one parameter among the N1 parameters arranged in sequence
  • the first parameter is in the N1 parameter.
  • the position in the parameters arranged in sequence is used to determine the second parameter
  • N1 is a positive integer greater than 1.
  • the second transmitter 1301 also sends first information; wherein, the first information is used to determine the first frequency domain deviation; the first parameter is used to determine the first wireless signal Occupied frequency domain resource, the target parameter is used to determine the frequency domain resource occupied by the second wireless signal, the second parameter is used to determine a third frequency domain resource, the third frequency domain resource The deviation from the frequency domain resource occupied by the first wireless signal is equal to the first frequency domain deviation.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR node B), NR node B, TRP (Transmitter Receiver Point), etc. wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信令,然后在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号。所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,为了支持更高要求的URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了NR(New Radio,新空口)Release 16的URLLC增强的SI(Study Item,研究项目)。如何实现PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)/PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)的更低传输时延和更高的传输可靠性是一个研究重点。
发明内容
发明人通过研究发现,在新空口Release15中,一次PUSCH/PDSCH发送被限制在一个时隙(Slot)中,即不能跨(Across)时隙的边界(Boundary),当发送数据较多或者信道质量较差时,可能需要较多的时频资源来发送PUSCH/PDSCH,因此可能会导致发送时延比较大。为了满足新空口Release 16对URLLC业务的更低传输时延和更高可靠性要求,如何对PUSCH/PDSCH发送进行增强是一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;
其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
作为一个实施例,本申请要解决的问题是:当PUSCH/PDSCH的一次标准(Nominal)重复发送可以跨时隙的边界时,如果一次标准重复发送跨时隙的边界或者跨上下行切换时刻(DL/UL switching point),这一次标准重复发送被分成两次实际的重复发送,那么如何设计PUSCH/PDSCH的不同重复发送上的发送/接收参数是需要解决的一个关键问题。
作为一个实施例,上述方法的实质在于,N个时间子窗分别对应PUSCH/PDSCH的N次标准(Nominal)重复发送,不同的标准重复发送被配置的发送/接收参数可以不相同;第一无线信号和第二无线信号是两次实际重复发送,第一参数和第二参数分别是两次标准重复发送的发送/接收参数,第一参数是第一无线信号的发送/接收参数,目标参数是第二无线信号的发送/接收参数;当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的不同的时间子窗时,第一无线信号和第二无线信号分别是两次标准重复发 送;当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的同一个时间子窗时,第一无线信号和第二无线信号是同一次标准重复发送的两次实际重复发送。采用上述方法的好处在于,根据一次标准重复发送是否跨时隙的边界或者跨上下行切换时刻可以动态的确定PUSCH/PDSCH重复发送的发送/接收参数,与采用物理层信令动态指示的方法相比具有更小的信令开销(Overhead)。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是所述第一参数。
作为一个实施例,上述方法的实质在于,当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的不同的时间子窗时,第一无线信号和第二无线信号分别是两次标准重复发送,第二参数是第二无线信号的发送/接收参数;当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的同一个时间子窗时,第一无线信号和第二无线信号是同一次标准重复发送的两次实际重复发送,第一参数是第二无线信号的发送/接收参数。采用上述方法的好处在于,同一次标准重复发送的两次实际重复发送采用相同的发送/接收参数,可以提高这一次标准重复发送的可靠性。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,上述方法的实质在于,当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的不同的时间子窗时,第一无线信号和第二无线信号分别是两次标准重复发送,第二参数是第二无线信号的发送/接收参数;当第一时频资源块和第二时频资源块在时域上属于N个时间子窗中的同一个时间子窗时,第一无线信号和第二无线信号是同一次标准重复发送的两次实际重复发送,第一时频资源块的大小反应了在其中实际发送的比特数量,因此目标参数是否和第一参数相同与其中较早的一次实际重复发送所发送的比特数量有关。采用上述方法的好处在于,对于同一次标准重复发送的两次实际重复发送,可以根据其中一次实际重复发送所占用的RE大小来动态的确定另一次重复发送的发送/接收参数,与采用物理层信令动态指示的方法相比具有更小的信令开销(Overhead)。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大小关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,上述方法的实质在于,当第一无线信号和第二无线信号是同一次标准重复发送的两次实际重复发送时,如果第一时频资源块较小,为了保证这一次标准重复发送的可靠性,仍采用第一参数作为第二无线信号的发送/接收参数;如果第一时频资源块较大,这一次标准重复发送的可靠性可以得到保证,采用第二参数作为第二无线信号的发送/接收参数。采用上述方法的好处在于,可以动态的确定一次重复发送的发送/接收参数,同时还兼顾了一次标准重复发送的可靠性以及全部(Total)重复发送的可靠性和传输时延。
根据本申请的一个方面,上述方法的特征在于,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送;或者,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线 相关的接收。
作为一个实施例,上述方法的实质在于,第一参数和第二参数指示的是参考信号(比如CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号),SRS(Sounding Reference Signal,探测参考信号),SS-PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)),这个参考信号的发送天线端口和第一无线信号的发送发送天线端口是Type D QCL的,或者,用户设备可以假定这个参考信号的发送/接收波束和第一无线信号的发送/接收波束相同。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
作为一个实施例,上述方法的实质在于,第一参数和第二参数分别是配置给两次在时间上相邻的标准重复发送的发送/接收参数。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息;
其中,所述第一信息被用于确定第一频域偏差;所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
作为一个实施例,上述方法的实质在于,第一频域偏差是跳频(Frequency Hopping)中的两个相邻跳(Hop)之间的频率偏差(Frequency Offset),第一参数和第二参数是标准重复发送的索引或者时隙(slot)的索引。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;
其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是所述第一参数。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
根据本申请的一个方面,上述方法的特征在于,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大 小关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
根据本申请的一个方面,上述方法的特征在于,所述执行是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送;或者,所述执行是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
根据本申请的一个方面,上述方法的特征在于,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息;
其中,所述第一信息被用于确定第一频域偏差;所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
第一收发机,在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;
其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
第二收发机,在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;
其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.针对新空口Release16对更低传输时延和更高可靠性的要求,本申请提出了一种当一次PUSCH/PDSCH标准重复发送可以跨时隙的边界或者跨上下行切换时刻情况下的不 同重复发送的发送/接收参数的设计方法。
-.本申请所提的方法根据一次标准重复发送是否跨时隙的边界或者跨上下行切换时刻可以动态的确定PUSCH/PDSCH重复发送的发送/接收参数,与采用物理层信令动态指示的方法相比具有更小的信令开销(Overhead)。
-.在本申请所提的方法中,同一次标准重复发送的两次实际重复发送采用相同的发送/接收参数,提高了这一次标准重复发送的可靠性。
-.在本申请所提的方法中,对于同一次标准重复发送的两次实际重复发送,根据其中一次实际重复发送所占用的时频资源的大小来动态的确定另一次重复发送的发送/接收参数,兼顾了一次标准重复发送的可靠性以及全部重复发送的可靠性和传输时延。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令、第一无线信号和第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的给定时间子窗和第一比特块的关系的示意图;
图8A-8B分别示出了根据本申请的一个实施例的第一时频资源块、第二时频资源块和N个时间子窗的关系的示意图;
图9示出了根据本申请的一个实施例的确定目标参数的示意图;
图10示出了根据本申请的另一个实施例的确定目标参数的示意图;
图11示出了根据本申请的另一个实施例的确定目标参数的示意图;
图12示出了根据本申请的一个实施例的第一时频资源块的大小被用于确定目标参数的示意图;
图13示出了根据本申请的另一个实施例的第一时频资源块的大小被用于确定目标参数的示意图;
图14示出了根据本申请的另一个实施例的第一时频资源块的大小被用于确定目标参数的示意图;
图15示出了根据本申请的另一个实施例的第一时频资源块的大小被用于确定目标参数的示意图;
图16A-16B分别示出了根据本申请的一个实施例的第一参数和目标参数的示意图;
图17示出了根据本申请的另一个实施例的第一参数和目标参数的示意图;
图18示出了根据本申请的另一个实施例的第一参数和目标参数的示意图;
图19示出了根据本申请的一个实施例的第一参数和第二参数的关系的示意图;
图20示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图21示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信令、第一无线信号和第二无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特点的时间先后关系。
在实施例1中,本申请中的所述用户设备在步骤101中接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;在步骤102中在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号。其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令指示所述第一无线信号的调度信息和所述第二无线信号的调度信息。
作为一个实施例,给定无线信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一无线信号。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二无线信号。
作为上述实施例的一个子实施例,所述给定无线信号的调度信息中的所述DMRS的配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一无线信号,所述第一时频资源块所占用的时域资源包括所述给定无线信号的所述调度信息中的所述所占用的时域资源。
作为上述实施例的一个子实施例,所述给定无线信号是所述第一无线信号,所述第一时频资源块所占用的频域资源包括所述给定无线信号的所述调度信息中的所述所占用的频域资源。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二无线信号,所述第二时 频资源块所占用的时域资源包括所述给定无线信号的所述调度信息中的所述所占用的时域资源。
作为上述实施例的一个子实施例,所述给定无线信号是所述第二无线信号,所述第二时频资源块所占用的频域资源包括所述给定无线信号的所述调度信息中的所述所占用的频域资源。
作为一个实施例,所述第一信令指示所述N。
作为一个实施例,上述方法还包括:
接收第三信息;
其中,所述第三信息指示所述N。
作为上述实施例的一个子实施例,所述第一信令和所述第三信息共同被用于确定所述N个时间子窗。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第三信息由MAC CE信令承载。
作为一个实施例,所述第三信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第三信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信令显式的指示所述N个时间子窗。
作为一个实施例,所述第一信令隐式的指示所述N个时间子窗。
作为一个实施例,所述第一信令指示所述N个时间子窗的起始时刻,所述N个时间子窗的总时间长度。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述第一信令指示所述N个时间子窗的起始时刻,所述N个时间子窗中用于发送第一比特块的总时间长度。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述操作是发送,所述第一信令指示所述N个时间子窗的起始时刻,所述N个时间子窗中用于上行传输的总时间长度。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述操作是接收,所述第一信令指示所述N个时间子窗的起始时刻,所述N个时间子窗中用于下行传输的总时间长度。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述N个时间子窗包括多个多载波符号,所述第一信令指示所述N个时间子窗的起始多载波符号,所述N个时间子窗包括的多载波符号的总数量。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述N个时间子窗包括多个多载波符号,所述第一信令指示所述N个 时间子窗的起始多载波符号,所述N个时间子窗中用于发送第一比特块的多载波符号的总数量。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述操作是发送,所述N个时间子窗包括多个多载波符号,所述第一信令指示所述N个时间子窗的起始多载波符号,所述N个时间子窗中用于上行传输的多载波符号的总数量。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述操作是接收,所述N个时间子窗包括多个多载波符号,所述第一信令指示所述N个时间子窗的起始多载波符号,所述N个时间子窗中用于下行传输的多载波符号的总数量。
作为上述实施例的一个子实施例,所述第一信令还指示所述N。
作为上述实施例的一个子实施例,第三信息指示所述N。
作为一个实施例,所述第一信令指示所述N个时间子窗中最早的一个时间子窗和所述N。
作为一个实施例,所述第一信令指示所述N个时间子窗中最早的一个时间子窗的起始多载波符号,所述N个时间子窗中最早的一个时间子窗包括的多载波符号的数量和所述N。
作为一个实施例,所述第一信令指示所述N个时间子窗中最早的一个时间子窗的起始多载波符号,所述N个时间子窗中最早的一个时间子窗包括的用于发送第一比特块的多载波符号的数量和所述N。
作为一个实施例,所述操作是发送,所述第一信令指示所述N个时间子窗中最早的一个时间子窗的起始多载波符号,所述N个时间子窗中最早的一个时间子窗包括的用于上行传输多载波符号的数量和所述N。
作为一个实施例,所述操作是接收,所述第一信令指示所述N个时间子窗中最早的一个时间子窗的起始多载波符号,所述N个时间子窗中最早的一个时间子窗包括的用于下行传输多载波符号的数量和所述N。
作为一个实施例,所述N个时间子窗中的任意两个时间子窗都是正交的(非重叠)。
作为一个实施例,所述N个时间子窗中的任意两个时间子窗包括的多载波符号的数量都是相同的。
作为一个实施例,所述操作是发送,所述N个时间子窗中的任意两个时间子窗包括的上行多载波符号的数量都是相同的。
作为一个实施例,所述操作是接收,所述N个时间子窗中的任意两个时间子窗包括的下行多载波符号的数量都是相同的。
作为一个实施例,所述N个时间子窗中的任一时间子窗都包括一段连续的时间。
作为一个实施例,所述N个时间子窗中的任一时间子窗包括一个多载波符号或者多个连续的多载波符号。
作为一个实施例,所述N个时间子窗分别被预留给所述第一比特块的N次标准(nominal)重复发送,所述第一比特块在所述N个时间子窗中的重复发送的实际次数不小于所述N。
作为上述实施例的一个子实施例,所述N个时间子窗中的任一时间子窗都不包括上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary),所述第一比特块在所述N个时间子窗中的重复发送的实际次数等于所述N。
作为上述实施例的一个子实施例,所述N个时间子窗中的一个时间子窗包括上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary),所述第一比特块在所述N个时间子窗中的重复发送的实际次数大于所述N。
作为一个实施例,所述N个时间子窗分别被预留给所述第一比特块的N次标准 (nominal)重复发送,所述第一比特块在给定时间子窗中的重复发送的实际次数(Actual Number)不小于1,所述给定时间子窗是所述N个时间子窗中的任一时间子窗。
作为一个实施例,给定时间子窗是所述N个时间子窗中的任一时间子窗,所述给定时间子窗包括的上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary)的数量等于M-1,所述第一比特块在所述给定时间子窗中的重复发送的实际次数等于M,M是正整数。
作为一个实施例,给定时间子窗是所述N个时间子窗中的任一时间子窗,所述给定时间子窗包括上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary),所述第一比特块在所述给定时间子窗中的重复发送的实际次数大于1。
作为一个实施例,所述操作是发送,给定时间子窗是所述N个时间子窗中的任一时间子窗,所述给定时间子窗包括的多载波符号全部是上行多载波符号并且所述给定时间子窗属于一个时域单元,所述第一比特块在所述给定时间子窗中的重复发送的实际次数等于1。
作为一个实施例,所述操作是接收,给定时间子窗是所述N个时间子窗中的任一时间子窗,所述给定时间子窗包括的多载波符号全部是下行多载波符号并且所述给定时间子窗属于一个时域单元,所述第一比特块在所述给定时间子窗中的重复发送的实际次数等于1。
作为一个实施例,所述操作是发送。
作为一个实施例,所述操作是接收。
作为一个实施例,所述第一时频资源块和所述第二时频资源块在时域上是正交的。
作为一个实施例,所述第二时频资源块在时域上晚于所述第一时频资源块。
作为一个实施例,所述操作是发送,所述第一无线信号和所述第二无线信号都包括上行数据。
作为一个实施例,所述操作是发送,所述第一无线信号和所述第二无线信号都包括上行物理层数据信道的发送。
作为一个实施例,所述操作是接收,所述第一无线信号和所述第二无线信号都包括下行数据。
作为一个实施例,所述操作是接收,所述第一无线信号和所述第二无线信号都包括下行物理层数据信道的发送。
作为一个实施例,所述操作是发送,所述第一无线信号和所述第二无线信号在上行物理层数据信道(即能用于承载物理层数据的上行信道)上传输。
作为一个实施例,所述操作是接收,所述第一无线信号和所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为一个实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为一个实施例,所述上行物理层数据信道是NPUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NPDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括一个传输块(TB,Transport Block)。
作为一个实施例,所述第一无线信号和所述第二无线信号是所述第一比特块的一次传输。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第二无线信号。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到虚拟资源块(Mapping to Virtual Resource Blocks),从虚拟资源块映射到物理资源块(Mapping from Virtual to Physical Resource Blocks),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第二无线信号。
作为一个实施例,所述第一比特块依次经过CRC添加(CRC Insertion),分段(Segmentation),编码块级CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第二无线信号。
作为一个实施例,所述第一比特块经过信道编码后得到第二比特块,第一目标比特块生成所述第一无线信号,第二目标比特块生成所述第二无线信号,所述第一目标比特块中的任一比特属于所述第二比特块,所述第二目标比特块中的任一比特属于所述第二比特块;所述第一无线信号的冗余版本(RV,Redundancy Version)值被用于从所述第二比特块中确定所述第一目标比特块,所述第二无线信号的冗余版本值被用于从所述第二比特块中确定所述第二目标比特块。
作为上述实施例的一个子实施例,所述第二比特块是速率匹配的输入,所述第一目标比特块是速率匹配的输出。
作为上述实施例的一个子实施例,所述第一无线信号的冗余版本值确定所述第一目 标比特块的第一个比特。
作为上述实施例的一个子实施例,所述第一时频资源块中为了传输所述第一比特块可用的(Available)编码后比特(Coded bits)的总数量被用于确定所述第一目标比特块包括的比特数量。
作为上述实施例的一个子实施例,所述第二比特块是速率匹配的输入,所述第二目标比特块是速率匹配的输出。
作为上述实施例的一个子实施例,所述第二无线信号的冗余版本值确定所述第二目标比特块的第一个比特。
作为上述实施例的一个子实施例,所述第二时频资源块中为了传输所述第一比特块可用的(Available)编码后比特(Coded bits)的总数量被用于确定所述第二目标比特块包括的比特数量。
作为上述实施例的一个子实施例,所述第二比特块是d 0,d 1,…,d N-1,所述第一目标比特块是f 0,f 1,…,f E-1,所述第一时频资源块中为了传输所述第一比特块可用的(Available)编码后比特(Coded bits)的总数量是G,所述d 0,d 1,…,d N-1,所述f 0,f 1,…,f E-1和所述G的具体定义参见3GPP TS38.212中的第5.4章节。
作为上述实施例的一个子实施例,所述第二比特块是d 0,d 1,…,d N-1,所述第二目标比特块是f 0,f 1,…,f E-1,所述第二时频资源块中为了传输所述第一比特块可用的(Available)编码后比特(Coded bits)的总数量是G,所述d 0,d 1,…,d N-1,所述f 0,f 1,…,f E-1和所述G的具体定义参见3GPP TS38.212中的第5.4章节。
作为一个实施例,所述第一参数被用于发送所述第一无线信号。
作为一个实施例,所述第一参数被用于接收所述第一无线信号。
作为一个实施例,所述第一参数被用于所述第一无线信号生成所述第一无线信号。
作为一个实施例,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送。
作为一个实施例,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
作为一个实施例,所述第一参数是所述第一无线信号的冗余版本值,所述目标参数是所述第二无线信号的冗余版本值。
作为一个实施例,所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源。
作为一个实施例,给定时频资源块在时域上属于给定时间子窗是指所述给定时频资源块所占用的时域资源属于所述给定时间子窗。
作为上述实施例的一个子实施例,所述给定时频资源块是所述第一时频资源块,所述给定时间子窗是所述N个时间子窗中包括所述第一时频资源块所占用的时域资源的一个时间子窗。
作为上述实施例的一个子实施例,所述给定时频资源块是所述第二时频资源块,所述给定时间子窗是所述N个时间子窗中包括所述第二时频资源块所占用的时域资源的一个时间子窗。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home  Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持MIMO的无线通信。
作为一个子实施例,所述gNB203支持MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE 之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC子层302。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,第一处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,第一处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-第一处理器471,确定发送第一信令;
-第一处理器471,确定发送第一信令和在第一时频资源块和第二时频资源块中分别发送第一无线信号和第二无线信号;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处 理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;
-第一处理器441,确定接收第一信令;
-第一处理器441,确定接收第一信令和在第一时频资源块和第二时频资源块中分别接收第一无线信号和第二无线信号;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-第一处理器471,确定在第一时频资源块和第二时频资源块中分别接收第一无线信号和第二无线信号;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-第一处理器441,确定在第一时频资源块和第二时频资源块中分别发送第一无线信号和第二无线信号;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;其中,所述第一无线信号和所述第二无线 信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信令。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信令。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前 两者被用于接收本申请中的所述第一信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时频资源块和所述第二时频资源块中分别接收本申请中的所述第一无线信号和所述第二无线信号。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时频资源块和所述第二时频资源块中分别发送本申请中的所述第一无线信号和所述第二无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时频资源块和所述第二时频资源块中分别发送本申请中的所述第一无线信号和所述第二无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时频资源块和所述第二时频资源块中分别接收本申请中的所述第一无线信号和所述第二无线信号。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1是可选的。
对于N01,在步骤S10中发送第一信息;在步骤S11中发送第一信令;在步骤S12中在第一时频资源块和第二时频资源块中分别接收第一无线信号和第二无线信号。
对于U02,在步骤S20中接收第一信息;在步骤S21中接收第一信令;在步骤S22中在第一时频资源块和第二时频资源块中分别发送第一无线信号和第二无线信号。
在实施例5中,本申请中的所述操作是发送,本申请中的所述执行是接收;所述第一信令被所述U02用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被所述U02用于确定所述目标参数是所述第一参数还是所述第二参数;N是大于1的正整数。所述第一信息被所述U02用于确定第一频域偏差;所述第一参数被所述U02用于确定所述第一无线信号所占用的频域资源,所述目标参数被所述U02用于确定所述第二无线信号所占用的频域资源,所述第二参数被所述U02用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第一信息和所述第三信息属于一个RRC信令中的同一个IE。
作为一个实施例,所述第一信息指示第一频域偏差。
作为一个实施例,所述第一信令和所述第一信息共同被所述U02用于确定第一频域偏差。
作为一个实施例,所述第一信息指示L个频域偏差,所述第一信令从所述L个频域偏差中指示第一频域偏差,所述第一频域偏差是所述L个频域偏差中的一个频域偏差,L是大于1的正整数。
作为上述实施例的一个子实施例,所述L个频域偏差是非负正整数。
作为上述实施例的一个子实施例,所述L个频域偏差是正整数。
作为上述实施例的一个子实施例,所述L个频域偏差的单位是RB。
作为上述实施例的一个子实施例,所述L个频域偏差的单位是子载波。
作为一个实施例,所述第一频域偏差是非负正整数。
作为一个实施例,所述第一频域偏差是正整数。
作为一个实施例,所述第一频域偏差的单位是RB。
作为一个实施例,所述第一频域偏差是RB offset,所述RB offset的具体定义参见3GPP TS38.214中的第6.3章节。
实施例6
实施例6示例了一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F2是可选的。
对于N03,在步骤S30中发送第一信息;在步骤S31中发送第一信令;在步骤S32中在第一时频资源块和第二时频资源块中分别发送第一无线信号和第二无线信号。
对于U04,在步骤S40中接收第一信息;在步骤S41中接收第一信令;在步骤S42中在第一时频资源块和第二时频资源块中分别接收第一无线信号和第二无线信号。
在实施例6中,本申请中的所述操作是接收,本申请中的所述执行是发送;所述第一信令被所述U04用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被所述U04用于确定所述目标参数是所述第一参数还是所述第二参数;N是大于1的正整数。所述第一信息被所述U04用于确定第一频域偏差;所述第一参数被所述U04用于确定所述第一无线信号所占用的频域资源,所述目标参数被所述U04用于确定所述第二无线信号所占用的频域资源,所述第二参数被所述U04用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
实施例7
实施例7示例了一个给定时间子窗和第一比特块的关系的示意图,如附图7所示。
在实施例7中,所述给定时间子窗是本申请中的所述N个时间子窗中的一个时间子窗,所述给定时间子窗包括M个时段,在所述M个时段中的每个时段内进行所述第一比特块的一次重复发送,M是正整数。
作为一个实施例,所述给定时间子窗包括的上下行切换时刻(DL/UL switching point) 或者时域单元的边界(Boundary)的数量等于M-1,所述第一比特块在所述给定时间子窗中的重复发送的实际次数等于所述M。
作为一个实施例,在所述M个时段(Period)中进行的所述第一比特块的重复发送的次数等于所述M。
作为一个实施例,所述M等于1,在所述M个时段中进行所述第一比特块的一次重复发送。
作为一个实施例,所述M大于1,在所述M个时段中分别进行所述第一比特块的M次重复发送。
作为一个实施例,所述M大于1,所述给定时间子窗包括上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary)。
作为一个实施例,所述M大于1,所述M个时段中的任意两个相邻的时段之间包括上下行切换时刻(DL/UL switching point)或者时域单元的边界(Boundary)。
作为一个实施例,所述M大于1,所述M个时段中的任意两个相邻的时段是不连续的或者分别属于不同的时域单元。
作为一个实施例,所述M个时段中的任一时段都包括一段连续的时间。
作为一个实施例,所述M个时段中的任一时段包括一个多载波符号或者多个连续的多载波符号。
作为一个实施例,所述时域单元包括一个时隙(Slot)。
作为一个实施例,所述时域单元包括一个小时隙(Mini-slot)。
作为一个实施例,所述时域单元包括一个子帧(Subframe)。
作为一个实施例,所述时域单元包括正整数个多载波符号。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
实施例8
实施例8A-8B分别示例了一个第一时频资源块、第二时频资源块和N个时间子窗的关系的示意图,如附图8所示。
在实施例8A中,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的一个时间子窗,第二时间子窗是所述N个时间子窗中所述第二时频资源块在时域上所属的一个时间子窗,所述第二时间子窗和所述第一时间子窗相同;所述第一时间子窗包括两个时段,所述第一时间子窗包括的所述两个时段分别包括所述第一时频资源块所占用的时域资源和所述第二时频资源块所占用的时域资源。
在实施例8B中,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的一个时间子窗,第二时间子窗是所述N个时间子窗中所述第二时频资源块在时域上所属的一个时间子窗,所述第二时间子窗是所述N个时间子窗中晚于所述第一时间子窗的最早的一个时间子窗。
作为一个实施例,所述第一时间子窗包括两个时段,所述第一时间子窗包括的所述两个时段分别包括所述第一时频资源块所占用的时域资源和所述第二时频资源块所占用的时域资源。
作为上述实施例的一个子实施例,所述第一时间子窗包括的所述两个时段之间包括上下 行切换时刻(DL/UL switching point)。
作为上述实施例的一个子实施例,所述第一时间子窗包括的所述两个时段之间包括时域单元的边界(Boundary)。
作为一个实施例,所述第二时间子窗是所述N个时间子窗中晚于所述第一时间子窗的最早的一个时间子窗。
作为上述实施例的一个子实施例,所述第一时间子窗和所述第二时间子窗之间包括上下行切换时刻(DL/UL switching point)。
作为上述实施例的一个子实施例,所述第一时间子窗和所述第二时间子窗之间包括时域单元的边界(Boundary)。
作为上述实施例的一个子实施例,所述第一时间子窗和所述第二时间子窗是连续的。
作为上述实施例的一个子实施例,所述第一时间子窗和所述第二时间子窗是非连续的。
实施例9
实施例9示例了一个确定目标参数的示意图,如附图9所示。
在实施例9中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上分别属于本申请中的所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是本申请中的所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是本申请中的所述第一参数。
实施例10
实施例10示例了另一个确定目标参数的示意图,如附图10所示。
在实施例10中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上分别属于本申请中的所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是本申请中的所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小被用于确定所述目标参数是本申请中的所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与第一参考数量之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数,所述第一参考数量等于所述第一时频资源块的所述大小和所述第二时频资源块的大小之和。
作为一个实施例,给定时频资源的大小是所述给定时频资源包括的RE(Resource Element,资源单位)的数量。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一无线信号所占用的时频资源。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二无线信号所占用的时频资源。
作为一个实施例,所述给定时频资源的大小是所述给定时频资源所占用的时域资源的大小和所述给定时频资源所占用的频域资源的大小的乘积。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一无线信号所占用的时频资源。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二无线信号所占用的时频 资源。
作为一个实施例,所述给定时频资源的大小是所述给定时频资源所占用的多载波符号的数量和所述给定时频资源所占用的RB(Resource Block,资源块)的数量的乘积。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二时频资源块。
作为上述实施例的一个子实施例,所述给定时频资源是所述第一无线信号所占用的时频资源。
作为上述实施例的一个子实施例,所述给定时频资源是所述第二无线信号所占用的时频资源。
实施例11
实施例11示例了另一个确定目标参数的示意图,如附图11所示。
在实施例11中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上分别属于本申请中的所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是本申请中的本申请中的所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,本申请中的所述第一无线信号所占用的时频资源的大小被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一无线信号所占用的时频资源的大小与所述第二无线信号所占用的时频资源的大小之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一无线信号所占用的时频资源的大小与第二参考数量之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数,所述第二参考数量等于所述第一无线信号所占用的时频资源的所述大小与所述第二无线信号所占用的时频资源的大小之和。
实施例12
实施例12示例了一个第一时频资源块的大小被用于确定目标参数的示意图,如附图12所示。
在实施例12中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上都属于本申请中的所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大小关系被用于确定所述目标参数是本申请中的所述第一参数还是所述第二参数。
作为一个实施例,当所述第一数值小于所述第一阈值时,所述目标参数是所述第一参数;当所述第一数值大于所述第一阈值时,所述目标参数是所述第二参数。
作为一个实施例,当所述第一数值等于所述第一阈值时,所述目标参数是所述第一参数。
作为一个实施例,当所述第一数值等于所述第一阈值时,所述目标参数是所述第二参数。
作为一个实施例,所述第一数值等于所述第一时频资源块的所述大小除以所述第二时频资源块的所述大小之后的商。
作为一个实施例,所述第一阈值是正实数。
作为一个实施例,所述第一阈值是正整数。
作为一个实施例,所述第一阈值是预定义的。
作为一个实施例,所述第一阈值是可配置的。
作为一个实施例,所述第一阈值由更高层信令配置。
作为一个实施例,所述第一阈值由RRC信令配置。
实施例13
实施例13示例了另一个第一时频资源块的大小被用于确定目标参数的示意图,如附图 13所示。
在实施例13中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上都属于本申请中的所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与第一参考数量被用于确定第二数值;所述第二数值和第二阈值的大小关系被用于确定所述目标参数是本申请中的所述第一参数还是所述第二参数;所述第一参考数量等于所述第一时频资源块的所述大小和所述第二时频资源块的大小之和。
作为一个实施例,当所述第二数值小于所述第二阈值时,所述目标参数是所述第一参数;当所述第二数值大于所述第二阈值时,所述目标参数是所述第二参数。
作为一个实施例,当所述第二数值等于所述第二阈值时,所述目标参数是所述第一参数。
作为一个实施例,当所述第二数值等于所述第二阈值时,所述目标参数是所述第二参数。
作为一个实施例,所述第二数值等于所述第一时频资源块的大小除以所述第一参考数量之后的商。
作为一个实施例,所述第二阈值是小于1的正实数。
作为一个实施例,所述第二阈值是预定义的。
作为一个实施例,所述第二阈值是可配置的。
作为一个实施例,所述第二阈值由更高层信令配置。
作为一个实施例,所述第二阈值由RRC信令配置。
实施例14
实施例14示例了另一个第一时频资源块的大小被用于确定目标参数的示意图,如附图14所示。
在实施例14中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上都属于本申请中的所述N个时间子窗中的同一个时间子窗时,本申请中的所述第一无线信号所占用的时频资源的大小与所述第二无线信号所占用的时频资源的大小被用于确定第三数值;所述第三数值和第三阈值的大小关系被用于确定所述目标参数是本申请中的所述第一参数还是所述第二参数。
作为一个实施例,当所述第三数值小于所述第三阈值时,所述目标参数是所述第一参数;当所述第三数值大于所述第三阈值时,所述目标参数是所述第二参数。
作为一个实施例,当所述第三数值等于所述第三阈值时,所述目标参数是所述第一参数。
作为一个实施例,当所述第三数值等于所述第三阈值时,所述目标参数是所述第二参数。
作为一个实施例,所述第三数值等于所述第一无线信号所占用的时频资源的所述大小除以所述第二无线信号所占用的时频资源的所述大小之后的商。
作为一个实施例,所述第三阈值是正实数。
作为一个实施例,所述第三阈值是正整数。
作为一个实施例,所述第三阈值是预定义的。
作为一个实施例,所述第三阈值是可配置的。
作为一个实施例,所述第三阈值由更高层信令配置。
作为一个实施例,所述第三阈值由RRC信令配置。
实施例15
实施例15示例了另一个第一时频资源块的大小被用于确定目标参数的示意图,如附图15所示。
在实施例15中,当本申请中的所述第一时频资源块和所述第二时频资源块在时域上都属于本申请中的所述N个时间子窗中的同一个时间子窗时,本申请中的所述第一无线信号所占用的时频资源的大小与第二参考数量被用于确定第四数值;所述第四数值和第四阈值的大小关系被用于确定所述目标参数是本申请中的所述第一参数还是所述第二参数;所述第二参考数量等于所述第一无线信号所占用的时频资源的所述大小与本申请中的所述第二无线信号所占用的时频资源的大小之和。
作为一个实施例,当所述第四数值小于所述第四阈值时,所述目标参数是所述第一参数;当所述第四数值大于所述第四阈值时,所述目标参数是所述第二参数。
作为一个实施例,当所述第四数值等于所述第四阈值时,所述目标参数是所述第一参数。
作为一个实施例,当所述第四数值等于所述第四阈值时,所述目标参数是所述第二参数。
作为一个实施例,所述第四数值等于所述第一无线信号所占用的时频资源的所述大小除以所述第二参考数量之后的商。
作为一个实施例,所述第四阈值是小于1的正实数。
作为一个实施例,所述第四阈值是预定义的。
作为一个实施例,所述第四阈值是可配置的。
作为一个实施例,所述第四阈值由更高层信令配置。
作为一个实施例,所述第四阈值由RRC信令配置。
实施例16
实施例16A-16B分别示例了一个第一参数和目标参数的示意图,如附图16所示。
在实施例16A中,本申请中的所述操作是发送,所述第一参数被用于确定本申请中的所述第一无线信号的多天线相关的发送,所述目标参数被用于确定本申请中的所述第二无线信号的多天线相关的发送。
在实施例16B中,本申请中的所述操作是接收,所述第一参数被用于确定本申请中的所述第一无线信号的多天线相关的接收,所述目标参数被用于确定本申请中的所述第二无线信号的多天线相关的接收。
作为一个实施例,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送。
作为上述实施例的一个子实施例,所述第一参数是第一参考信号的索引,能够从所述第一参考信号的多天线相关的发送推断出所述第一无线信号的多天线相关的发送;所述第一参考信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为上述实施例的一个子实施例,所述第一参数是第一参考信号的索引,能够从所述第一参考信号的多天线相关的接收推断出所述第一无线信号的多天线相关的发送;所述第一参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为上述实施例的一个子实施例,所述第一参数是第一参考信号的索引,能够从所述第一参考信号的多天线相关的接收推断出所述第一无线信号的多天线相关的发送;所述第一参考信号包括SS/PBCH(Synchronization Signal/Physical Broadcast CHannel)块(Block)。
作为上述实施例的一个子实施例,所述目标参数是第二参考信号的索引,能够从所述第二参考信号的多天线相关的发送推断出所述第二无线信号的多天线相关的发送;所述第二参考信号包括SRS。
作为上述实施例的一个子实施例,所述目标参数是第二参考信号的索引,能够从所述第二参考信号的多天线相关的接收推断出所述第二无线信号的多天线相关的发送;所述第二参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述目标参数是第二参考信号的索引,能够从所述第二参考信号的多天线相关的接收推断出所述第二无线信号的多天线相关的发送;所述第二参考信号包括SS/PBCH块。
作为一个实施例,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
作为上述实施例的一个子实施例,所述第一参数是第三参考信号的索引,能够从所述第三参考信号的多天线相关的发送推断出所述第一无线信号的多天线相关的接收;所述第三参考信号包括SRS。
作为上述实施例的一个子实施例,所述第一参数是第三参考信号的索引,能够从所述第 三参考信号的多天线相关的接收推断出所述第一无线信号的多天线相关的接收;所述第三参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述第一参数是第三参考信号的索引,能够从所述第三参考信号的多天线相关的接收推断出所述第一无线信号的多天线相关的接收;所述第三参考信号包括SSB。
作为上述实施例的一个子实施例,所述目标参数是第四参考信号的索引,能够从所述第四参考信号的多天线相关的发送推断出所述第二无线信号的多天线相关的接收;所述第四参考信号包括SRS。
作为上述实施例的一个子实施例,所述目标参数是第四参考信号的索引,能够从所述第四参考信号的多天线相关的接收推断出所述第二无线信号的多天线相关的接收;所述第四参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述目标参数是第四参考信号的索引,能够从所述第四参考信号的多天线相关的接收推断出所述第二无线信号的多天线相关的接收;所述第四参考信号包括SSB。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameter)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameter)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameter)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
实施例17
实施例17示例了另一个第一参数和目标参数的示意图,如附图17所示。
在实施例17中,所述第一参数是本申请中的所述第一无线信号的冗余版本值,所述目标参数是本申请中的所述第二无线信号的冗余版本值。
实施例18
实施例18示例了另一个第一参数和目标参数的示意图,如附图18所示。
在实施例18中,所述第一参数被用于确定本申请中的所述第一无线信号所占用的频域资源,所述目标参数被用于确定本申请中的所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
作为一个实施例,所述第一参数是非负整数。
作为一个实施例,所述第二参数是非负整数。
作为一个实施例,所述第二参数大于所述第一参数。
作为一个实施例,所述第二参数是所述第一参数加上1之后得到的正整数。
作为一个实施例,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的一个时间子窗,所述第一参数与所述第一时间子窗在所述N个时间子窗中的位置有关;第二时间子窗是所述N个时间子窗中所述第二时频资源块在时域上所属的一个时间子窗,所述目标参数与所述第二时间子窗在所述N个时间子窗中的位置有关。
作为上述实施例的一个子实施例,所述第一参数是所述第一时间子窗在所述N个时间子窗中的位置,所述目标参数是所述第二时间子窗在所述N个时间子窗中的位置。
作为上述实施例的一个子实施例,所述第一参数是所述第一时间子窗在所述N个时间子窗中的位置加上1之后得到的正整数,所述目标参数是所述第二时间子窗在所述N个时间子窗中的位置加上1之后得到的正整数。
作为一个实施例,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的一个时间子窗,第二时间子窗是所述N个时间子窗中所述第二时频资源块在时域上所属的一个时间子窗;所述N个时间子窗被分为N2个时间子窗集合,所述N2个时间子窗集合中的任一时间子窗集合都包括所述N个时间子窗中的至少一个时间子窗,所述N个时间子窗中的任一时间子窗都属于所述N2个时间子窗集合中的仅一个时间子窗集合,N2是大于1的正整数;所述第一参数与所述N2个时间子窗集合中包括所述第一时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置有关,所述目标参数与所述N2个时间子窗集合中包括所述第二时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置有关。
作为上述实施例的一个子实施例,所述N2个时间子窗集合分别在所述N2个时间子窗集合中的位置依次是0,1,…,N2-1;所述N2个时间子窗集合分别是所述N2个时间子窗集合中的第1,2,…,N2个时间子窗集合。
作为上述实施例的一个子实施例,所述第一参数是所述N2个时间子窗集合中包括所述第一时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置,所述目标参数是所述N2个时间子窗集合中包括所述第二时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置。
作为上述实施例的一个子实施例,所述第一参数是所述N2个时间子窗集合中包括所述第一时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置加上1之后得到的正整数,所述目标参数是所述N2个时间子窗集合中包括所述第二时间子窗的一个时间子窗集合在所述N2个时间子窗集合中的位置加上1之后得到的正整数。
作为上述实施例的一个子实施例,所述N2个时间子窗集合中的任一时间子窗集合是一个Hop,所述Hop的具体定义参见3GPP TS38.214中的第6.3章节。
作为上述实施例的一个子实施例,所述N2等于2,所述N2个时间子窗集合分别是First hop和Second hop,所述First hop和所述Second hop的具体定义参见3GPP TS38.214中的第6.3章节。
作为一个实施例,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的一个时间子窗,第二时间子窗是所述N个时间子窗中所述第二时频资源块在时域上所属的一个时间子窗;所述第一参数与所述第一时间子窗所属的时域单元的序号(Number)有关, 所述目标参数与所述第二时间子窗所属的时域单元的序号(Number)有关。
作为上述实施例的一个子实施例,所述第一参数是所述第一时间子窗所属的时域单元的序号,所述目标参数是所述第二时间子窗所属的时域单元的序号。
作为上述实施例的一个子实施例,所述第一参数是所述第一时间子窗所属的时域单元的序号加上1之后得到的正整数,所述目标参数是所述第二时间子窗所属的时域单元的序号加上1之后得到的正整数。
作为上述实施例的一个子实施例,所述第一参数是
Figure PCTCN2020082280-appb-000001
所述
Figure PCTCN2020082280-appb-000002
的具体定义参见3GPP TS38.214中的第6.3章节。
作为上述实施例的一个子实施例,所述目标参数是
Figure PCTCN2020082280-appb-000003
所述
Figure PCTCN2020082280-appb-000004
的具体定义参见3GPP TS38.214中的第6.3章节。
作为一个实施例,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差是所述第三频域资源的起始RB的索引(Index)和所述第一无线信号所占用的起始RB的索引之间的差值的绝对值。
作为上述实施例的一个子实施例,所述第三频域资源的所述起始RB是所述第三频域资源中的频率最低的一个RB,所述第一无线信号所占用的所述起始RB是所述第一无线信号所占用的所述频域资源中频率最低的一个RB。
作为上述实施例的一个子实施例,所述第三频域资源的所述起始RB是所述第三频域资源中的频率最高的一个RB,所述第一无线信号所占用的所述起始RB是所述第一无线信号所占用的所述频域资源中频率最高的一个RB。
作为上述实施例的一个子实施例,所述第三频域资源的所述起始RB是RB start,所述RB start的具体定义参见3GPP TS38.214中的第6.3章节。
作为上述实施例的一个子实施例,所述第三频域资源的所述起始RB是RB start,所述RB start的具体定义参见3GPP TS38.214中的第6.3章节。
作为一个实施例,第一模值是给定参数对N3取模之后得到的非负整数,所述第一模值被用于确定给定频域资源。
作为上述实施例的一个子实施例,所述N3等于2。
作为上述实施例的一个子实施例,所述N3等于4。
作为上述实施例的一个子实施例,所述给定参数是所述第一参数,所述给定频域资源是所述第一无线信号所占用的频域资源。
作为上述实施例的一个子实施例,所述给定参数是所述目标参数,所述给定频域资源是所述第二无线信号所占用的频域资源。
作为上述实施例的一个子实施例,所述第一信令指示第一频域资源,所述第一频域资源由1个RB组成,所述给定频域资源也由1个RB组成;第三差值是所述给定频域资源包括的RB的索引减去所述第一频域资源包括的RB的索引之后的整数,所述第三差值的绝对值等于所述第一频域偏差和所述第一模值的乘积。
作为上述实施例的一个子实施例,所述第一信令指示第一频域资源,所述第一频域资源由1个RB组成,所述给定频域资源也由1个RB组成;第三差值是所述给定频域资源包括的RB的索引减去所述第一频域资源包括的RB的索引之后的整数,所述第三差值等于所述第一频域偏差和所述第一模值的乘积。
作为上述实施例的一个子实施例,所述第一信令指示第一频域资源,所述第一频域资源由N4个RB组成,所述给定频域资源也由N4个RB组成,N4是大于1的正整数;n1和n2是1,2,…,N4中的任意两个不同的整数,第一差值是所述给定频域资源的第n1个RB的索引减去所述第一频域资源中的第n1个RB的索引之后的整数,第二差值是所述给定频域资源的第n2个RB的索引减去所述第一频域资源中的第n2个RB的索引之后的整数,所述第一差值等于所述第二差值,并且所述第一差值的绝对值等于所述第一频域偏差和所述第一模值的乘积。
作为上述实施例的一个子实施例,所述第一信令指示第一频域资源,所述第一频域资源 由N4个RB组成,所述给定频域资源也由N4个RB组成,N4是大于1的正整数;n1和n2是1,2,…,N4中的任意两个不同的整数,第一差值是所述给定频域资源的第n1个RB的索引减去所述第一频域资源中的第n1个RB的索引之后的整数,第二差值是所述给定频域资源的第n2个RB的索引减去所述第一频域资源中的第n2个RB的索引之后的整数,所述第一差值等于所述第二差值,并且所述第一差值等于所述第一频域偏差和所述第一模值的乘积。
实施例19
实施例19示例了一个第一参数和第二参数的关系的示意图,如附图19所示。
在实施例19中,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
作为一个实施例,所述N1个依次排列的参数分别是所述N1个依次排列的参数中的第1,2,…,N1个参数,所述N1个依次排列的参数分别在所述N1个依次排列的参数中的位置依次是0,1,…,N1-1。
作为一个实施例,给定参数是所述N1个依次排列的参数中的任一参数,所述给定参数是所述N1个依次排列的参数中的第i+1个参数,所述给定参数在所述N1个依次排列的参数中的位置是i,所述i是小于所述N1的非负整数。
作为一个实施例,所述第一参数在所述N1个依次排列的参数中的位置是k,所述k是小于所述N1的非负整数;所述第二参数在所述N1个依次排列的参数中的位置是k+1对N1取模之后的非负整数,即(k+1)mod N1。
作为一个实施例,所述N1个依次排列的参数分别是N1个参考信号的索引,N1个参考信号中的任一参考信号包括SRS,CSI-RS和SS/PBCH块中之一。
作为上述实施例的一个子实施例,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送。
作为上述实施例的一个子实施例,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
作为一个实施例,所述N1个依次排列的参数分别是N1个冗余版本值。
作为上述实施例的一个子实施例,所述第一参数是所述第一无线信号的冗余版本值,所述目标参数是所述第二无线信号的冗余版本值。
作为一个实施例,所述第一信令被用于确定所述N1个依次排列的参数。
作为一个实施例,所述第一信令指示所述N1个依次排列的参数。
作为一个实施例,上述方法还包括:
接收第二信息;
其中,所述第二信息被用于确定所述N1个依次排列的参数。
作为上述实施例的一个子实施例,所述第二信息指示所述N1个依次排列的参数。
作为上述实施例的一个子实施例,所述第二信息是半静态配置的。
作为上述实施例的一个子实施例,所述第二信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第二信息由RRC信令承载。
作为上述实施例的一个子实施例,所述第二信息由MAC CE信令承载。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的一个IE的部分域。
作为上述实施例的一个子实施例,所述第二信息包括一个RRC信令中的多个IE。
作为上述实施例的一个子实施例,所述第二信息和所述第三信息属于一个RRC信令中的同一个IE。
作为一个实施例,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的的一个时间子窗,所述第一时间子窗在所述N个时间子窗中的位置被用于从所述N1个依次排列的参数中确定所述第一参数。
作为一个实施例,第一时间子窗是所述N个时间子窗中所述第一时频资源块在时域上所属的的一个时间子窗,第三时间子窗在所述N个时间子窗中的位置被用于从所述N1个依次排列的参数中确定所述第二参数,所述第三时间子窗是所述N个时间子窗中晚于所述第一时间子窗的最早的一个时间子窗。
作为上述实施例的一个子实施例,所述第三时间子窗在所述N个时间子窗中的位置是所述第一时间子窗在所述N个时间子窗中的位置加上1之后得到的正整数。
作为一个实施例,所述N个时间子窗分别是所述N个时间子窗中的第1,2,…,N个时间子窗,所述N个时间子窗分别在所述N个时间子窗中的位置依次是0,1,…,N-1。
作为一个实施例,给定时间子窗是所述N个时间子窗中的第j+1个时间子窗,所述给定时间子窗在所述N个时间子窗中的位置是j,所述j是小于所述N的非负整数。
作为一个实施例,给定时间子窗在所述N个时间子窗中的位置被用于从所述N1个依次排列的参数中确定给定参数,所述给定参数是所述N1个依次排列的参数中的一个参数。
作为上述实施例的一个子实施例,所述给定时间子窗是所述第一时间子窗,所述给定参数是所述第一参数。
作为上述实施例的一个子实施例,所述给定时间子窗是所述第三时间子窗,所述给定参数是所述第二参数。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是0,所述给定参数在所述N1个依次排列的参数中的位置是0。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是j,所述j是小于所述N的非负整数;所述给定参数在所述N1个依次排列的参数中的位置是所述j对N1取模之后得到的非负整数,即j mod N1。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是0,所述给定参数在所述N1个依次排列的参数中的位置是可配置的。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是0,所述给定参数在所述N1个依次排列的参数中的位置由所述第一信令指示。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是0,所述给定参数在所述N1个依次排列的参数中的位置是J0,所述J0是小于所述N1的非负正整数。
作为上述实施例的一个子实施例,所述给定时间子窗在所述N个时间子窗中的位置是j,所述j是小于所述N的非负整数;所述给定参数在所述N1个依次排列的参数中的位置是j+J0对N1取模之后得到的非负整数,即(j+J0)mod N1,J0是小于所述N1的非负正整数。
实施例20
实施例20示例了一个UE中的处理装置的结构框图,如附图20所示。附图20中,UE处理装置1200包括第一接收机1201和第一收发机1202。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、发 射处理器455、接收处理器452、第一处理器441和控制器/处理器490。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452、第一处理器441和控制器/处理器490中的至少前四者。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、发射处理器455、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者。
-第一接收机1201,接收第一信令;
-第一收发机1202,在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;
在实施例20中,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是所述第一参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大小关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送;或者,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
作为一个实施例,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
作为一个实施例,所述第一接收机1201还接收第一信息;其中,所述第一信息被用于确定第一频域偏差;所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
实施例21
实施例21示例了一个基站设备中的处理装置的结构框图,如附图21所示。附图21中,基站设备中的处理装置1300包括第二发射机1301和第二收发机1302组成。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前二者。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440中的至少前四者。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440中的至少前三者。
-第二发射机1301,发送第一信令;
-第二收发机1302,在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;
在实施例21中,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是所述第一参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小之间的关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大小关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
作为一个实施例,所述执行是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送;或者,所述执行是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
作为一个实施例,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
作为一个实施例,所述第二发射机1301还发送第一信息;其中,所述第一信息被用于确定第一频域偏差;所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
    第一收发机,在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;
    其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述目标参数是所述第一参数。
  3. 根据权利要求1所述的方法,其特征在于,当所述第一时频资源块和所述第二时频资源块在时域上分别属于所述N个时间子窗中的两个相邻的时间子窗时,所述目标参数是所述第二参数;当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小被用于确定所述目标参数是所述第一参数还是所述第二参数。
  4. 根据权利要求3所述的方法,其特征在于,当所述第一时频资源块和所述第二时频资源块在时域上都属于所述N个时间子窗中的同一个时间子窗时,所述第一时频资源块的大小与所述第二时频资源块的大小被用于确定第一数值;所述第一数值和第一阈值的大小关系被用于确定所述目标参数是所述第一参数还是所述第二参数。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述操作是发送,所述第一参数被用于确定所述第一无线信号的多天线相关的发送,所述目标参数被用于确定所述第二无线信号的多天线相关的发送;或者,所述操作是接收,所述第一参数被用于确定所述第一无线信号的多天线相关的接收,所述目标参数被用于确定所述第二无线信号的多天线相关的接收。
  6. 根据权利要求5所述的方法,其特征在于,所述第一参数是N1个依次排列的参数中的一个参数,所述第二参数是所述N1个依次排列的参数中的一个参数,所述第一参数在所述N1个依次排列的参数中的位置被用于确定所述第二参数,N1是大于1的正整数。
  7. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一接收机还接收第一信息;其中,所述第一信息被用于确定第一频域偏差;所述第一参数被用于确定所述第一无线信号所占用的频域资源,所述目标参数被用于确定所述第二无线信号所占用的频域资源,所述第二参数被用于确定第三频域资源,所述第三频域资源和所述第一无线信号所占用的所述频域资源的偏差等于所述第一频域偏差。
  8. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
    第二收发机,在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;
    其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应, 所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
  9. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
    在第一时频资源块和第二时频资源块中分别操作第一无线信号和第二无线信号;
    其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述操作是发送,或者,所述操作是接收;N是大于1的正整数。
  10. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信令,所述第一信令被用于确定N个时间子窗,所述N个时间子窗被预留给第一比特块;
    在第一时频资源块和第二时频资源块中分别执行第一无线信号和第二无线信号;
    其中,所述第一无线信号和所述第二无线信号分别承载所述第一比特块的两次重复发送;所述第一时频资源块在时域上属于所述N个时间子窗中的一个时间子窗,所述第二时频资源块在时域上属于所述N个时间子窗中的一个时间子窗;所述第一无线信号和第一参数对应,所述第二无线信号和目标参数对应,所述目标参数是所述第一参数或者第二参数,所述第一时频资源块和所述第二时频资源块在时域上是否属于所述N个时间子窗中的同一个时间子窗被用于确定所述目标参数是所述第一参数还是所述第二参数;所述执行是接收;或者,所述执行是发送;N是大于1的正整数。
PCT/CN2020/082280 2019-04-25 2020-03-31 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020216013A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/156,699 US12015567B2 (en) 2019-04-25 2021-01-25 Method and device in UE and base station used for wireless communication
US18/641,459 US20240267168A1 (en) 2019-04-25 2024-04-22 Method and device in ue and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338994.0 2019-04-25
CN201910338994.0A CN111865516B (zh) 2019-04-25 2019-04-25 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/156,699 Continuation US12015567B2 (en) 2019-04-25 2021-01-25 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020216013A1 true WO2020216013A1 (zh) 2020-10-29

Family

ID=72941520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082280 WO2020216013A1 (zh) 2019-04-25 2020-03-31 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US12015567B2 (zh)
CN (3) CN111865516B (zh)
WO (1) WO2020216013A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117135749A (zh) * 2022-05-17 2023-11-28 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181576A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
CN105282837A (zh) * 2014-06-12 2016-01-27 中兴通讯股份有限公司 功率控制方法、用户设备、基站及系统
US20180324793A1 (en) * 2013-12-03 2018-11-08 Lg Electronics Inc. Methods and apparatuses for transmitting uplink in wireless access system supporting machine-type communication

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705339B2 (en) * 2009-05-29 2014-04-22 Panasonic Corporation Wireless communication apparatus and frequency hopping method
WO2014183278A1 (zh) * 2013-05-15 2014-11-20 华为技术有限公司 信号传输方法、装置、通信系统、终端和基站
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
US10257853B2 (en) * 2014-12-18 2019-04-09 Qualcomm Incorporated Techniques for identifying resources to transmit a channel reservation signal
CN110636622B (zh) * 2016-06-06 2022-12-27 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107979439B (zh) * 2016-10-22 2020-07-31 上海朗帛通信技术有限公司 一种支持信道编码的ue、基站中的方法和设备
CN108076519B (zh) * 2016-11-15 2020-05-26 上海朗帛通信技术有限公司 一种被用于低延迟的ue、基站中的方法和设备
CN109309553B (zh) * 2017-07-27 2021-03-09 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
PT3666001T (pt) * 2017-08-10 2022-11-08 Sharp Kk Procedimentos, estações base e equipamentos de utilizador para transmissão de ligação ascendente sem concessão
US11115242B2 (en) * 2018-04-13 2021-09-07 Qualcomm Incorporated Uplink multi-beam operation
CN110475360B (zh) * 2018-05-10 2023-05-02 华硕电脑股份有限公司 无线通信系统中上行链路传送的波束指示的方法和设备
US10701679B2 (en) * 2018-07-05 2020-06-30 Huawei Technologies Co., Ltd. Method and system for enhancing data channel reliability using multiple transmit receive points
US11050525B2 (en) * 2018-09-27 2021-06-29 Huawei Technologies Co., Ltd. System and method for control and data channel reliability enhancement using multiple diversity domains
US11641249B2 (en) * 2019-03-25 2023-05-02 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block
US11882083B2 (en) * 2019-03-29 2024-01-23 Qualcomm Incorporated Uplink shared channel repetition for ultra-reliable low latency communications
US11317396B2 (en) * 2019-05-14 2022-04-26 Qualcomm Incorporated PDSCH/PUSCH repetition enhancements for URLLC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180324793A1 (en) * 2013-12-03 2018-11-08 Lg Electronics Inc. Methods and apparatuses for transmitting uplink in wireless access system supporting machine-type communication
US20150181576A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Determining timing for transmission or reception of signaling in a coverage enhanced operating mode
CN105282837A (zh) * 2014-06-12 2016-01-27 中兴通讯股份有限公司 功率控制方法、用户设备、基站及系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CAICT: "PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 MEETING #97 R1-1907204, 17 May 2019 (2019-05-17), XP051709230, DOI: 20200618155038PX *
CATT: "PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 MEETING #97 R1-1906329, 17 May 2019 (2019-05-17), XP051708364, DOI: 20200618155400PX *
HUAWEI ET AL.: "PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 MEETING #96BIS R1-1903956, 12 April 2019 (2019-04-12), XP051707071, DOI: 20200618155831A *
NTT DOCOMO, INC.: "Enhancements for URLLC PUSCH", 3GPP TSG RAN WG1 MEETING #95 R1-1813326, 16 November 2018 (2018-11-16), XP051479636, DOI: 20200618155615A *
VIVO: "PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 #96BIS R1-1904083, 12 April 2019 (2019-04-12), XP051707106, DOI: 20200618155743A *
ZTE: "PUSCH enhancements for NR URLLC", 3GPP TSG RAN WG1 #96BIS R1-1904145, 12 April 2019 (2019-04-12), XP051707145, DOI: 20200618155507A *

Also Published As

Publication number Publication date
US20210143946A1 (en) 2021-05-13
CN113839761A (zh) 2021-12-24
CN111865516B (zh) 2021-10-29
CN113839762A (zh) 2021-12-24
CN111865516A (zh) 2020-10-30
US12015567B2 (en) 2024-06-18
US20240267168A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
US11818704B2 (en) Method and device in wireless communication
US10728007B2 (en) Method and device in wireless transmission
WO2018033009A1 (zh) 一种无线通信中的方法和装置
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018090816A1 (zh) 一种被用于用户设备和基站中的方法和装置
CN109391346B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
WO2020024783A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019085729A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020181994A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20240267168A1 (en) Method and device in ue and base station used for wireless communication
WO2018103611A1 (zh) 一种用户设备和基站中的方法和设备
US11316647B2 (en) Method and device in wireless transmission
WO2019047050A1 (zh) 一种被用于低延迟通信的用户、基站中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019095148A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023024964A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113365348B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794045

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/02/2022)