WO2018090816A1 - 一种被用于用户设备和基站中的方法和装置 - Google Patents

一种被用于用户设备和基站中的方法和装置 Download PDF

Info

Publication number
WO2018090816A1
WO2018090816A1 PCT/CN2017/108489 CN2017108489W WO2018090816A1 WO 2018090816 A1 WO2018090816 A1 WO 2018090816A1 CN 2017108489 W CN2017108489 W CN 2017108489W WO 2018090816 A1 WO2018090816 A1 WO 2018090816A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless signal
signaling
time domain
port group
antenna port
Prior art date
Application number
PCT/CN2017/108489
Other languages
English (en)
French (fr)
Inventor
蒋琦
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2018090816A1 publication Critical patent/WO2018090816A1/zh
Priority to US16/412,391 priority Critical patent/US10785785B2/en
Priority to US16/941,558 priority patent/US11343834B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0075Transmission of coding parameters to receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to transmission schemes for wireless signals in wireless communication systems, and more particularly to methods and apparatus for transmissions that are used for low latency.
  • the transmission of downlink and uplink wireless signals is based on the scheduling of the base station. Further, the transmission at a given time is based on the currently configured TM (Transmission Mode), and one transmission of one TB (Transmission Block) can only adopt one transmission mode - corresponding to one DCI (Downlink Control Information) , downlink control information) format.
  • TM Transmission Mode
  • DCI Downlink Control Information
  • NR Radio Access Technologies
  • Massive MIMO large-scale antenna
  • BF BeamForming
  • RF Radio Frequency
  • TDM Time Division Multiplexing
  • the present application provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa. It should be further explained that although the original intention of the present application is for a scenario of multi-antenna transmission, this application Please also apply to single antenna transmission scenarios, such as Short Latency communication, URLLC (Ultra Reliable Low Latency Communication), and so on.
  • Short Latency communication such as Short Latency communication, URLLC (Ultra Reliable Low Latency Communication), and so on.
  • the present application discloses a method used in a dynamically scheduled UE, which is characterized by:
  • the first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, the first The configuration information includes ⁇ MCS (Modulation and Coding Status), HARQ (Hybrid Automatic Repeat reQuest) process number, NDI (New Data Indicator), RV (Redundancy Version, redundancy).
  • MCS Modulation and Coding Status
  • HARQ Hybrid Automatic Repeat reQuest
  • NDI New Data Indicator
  • RV Redundancy Version, redundancy
  • the port group includes P1 antenna ports and P2 antenna ports respectively; the P1 and the P2 are positive integers respectively; at least one of the antenna ports belongs to only the first antenna port group, and the second antenna port group One of the ⁇ (ie, the antenna ports in the first antenna port group and the second antenna port group are not identical).
  • an antenna virtualization vector corresponding to all antenna ports in the first antenna port group for generating an analog beam is a first vector
  • all antenna ports in the second antenna port group are corresponding to
  • the antenna virtualization vector that generates the analog beam is the second vector.
  • the primary transmission of the first bit block can correspond to two simulated beam directions, which has better compatibility and improves transmission efficiency.
  • the sending manner corresponding to the first wireless signal is transmit diversity
  • the sending manner corresponding to the second wireless signal is beamforming
  • the foregoing embodiment can fully utilize the time domain resource and timely send data.
  • the first time domain resource can only be used for the transmission mode of the transmit diversity and the second time domain resource can be used for the beamforming mode
  • the foregoing embodiment can fully utilize the time domain resource and timely send data.
  • traditional LTE only one transmission mode can be used for the first bit block, and the first time domain resource and the second time cannot be occupied at the same time. Domain resources reduce transmission efficiency or increase transmission delay.
  • the first time domain resource performs beam scan based transmission, when the direction of the beam in the first time domain resource is aligned with the UE, the first A primary transmission of a block of bits can be transmitted on the first time domain resource.
  • the first block of bits is a TB.
  • the first block of bits includes a plurality of bits.
  • the first configuration information further includes an occupied frequency domain resource.
  • the first wireless signal adopts a transmission mode of transmission diversity
  • the second wireless signal adopts a beam shaping transmission mode
  • the first wireless signal adopts a Sweeping transmission mode
  • the second wireless signal adopts a beamforming transmission mode
  • the time domain resources allocated to any two of the antenna ports in the first antenna port group are orthogonal.
  • the first configuration information is used to determine at least one of ⁇ the first antenna port group, the second antenna port group ⁇ .
  • the first configuration information indicates at least one of an index corresponding to the first antenna port group and an index corresponding to the second antenna port group.
  • any one of the first antenna port groups does not belong to the second antenna port group.
  • a part of the antenna ports in the first antenna port group does not belong to the second antenna port group, and a part of the first antenna port group belongs to the second antenna port. group.
  • the TM used by the first wireless signal and the TM used by the second wireless signal are different.
  • the first configuration information is corresponding to one or more DCIs.
  • the first configuration information is carried by physical layer signaling.
  • the P1 and the P2 are different.
  • the first time domain resource and the second time domain resource respectively include A positive integer multi-carrier symbol.
  • the multi-carrier symbol is ⁇ OFDM (Orthogonal Frequency Division Multiplexing) symbol, and SC-FDMA (Single-Carrier Frequency Division Multiple Access) FBMC (Filter Bank Multi Carrier) symbol, including OFDM symbol of CP (Cyclic Prefix), including DFT-s-OFDM (Discrete Fourier Transform-Spreading-OFDM) of CP , one of the symbols of the discrete frequency division multiplexing (OFDM) of the discrete Fourier transform.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • FBMC Fanter Bank Multi Carrier
  • OFDM symbol of CP Cyclic Prefix
  • DFT-s-OFDM Discrete Fourier Transform-Spreading-OFDM
  • the first time domain resource and the second time domain resource are orthogonal in the time domain.
  • the first time domain resource and the second time domain resource are orthogonal in the time domain, that is, when there is no multi-carrier symbol and belongs to the first time A domain resource and the second time domain resource.
  • the first bit block is used to generate a given wireless signal, which means that the given wireless signal is sequentially channel-coded by the first bit block, and a modulation mapper (Modulation) Mapper), Layer Mapper, Precoding, Resource Element Mapper, part or all of the output after multi-carrier signal generation.
  • Modulation Modulation
  • Layer Mapper Precoding
  • Resource Element Mapper Resource Element Mapper
  • the antenna port is formed by antenna virtualization by a positive integer antenna.
  • the above method is characterized by comprising:
  • the first signaling is used to determine at least a former one of ⁇ a first time domain resource pool, the first antenna port group ⁇ ; the second signaling is used to determine ⁇ a first time window, At least the former of the second antenna port group, the first time domain resource belongs to an overlapping portion of the first time domain resource pool and the first time window.
  • the second time domain resource belongs to the first time window.
  • the second signaling indicates the first time domain resource from an overlapping portion of the first time domain resource pool and the first time window.
  • the second signaling can be the UE according to a channel feature of the UE. Selecting a suitable time domain resource (beam direction), on the one hand, improving the reception quality of the first wireless signal, and on the other hand, the base station can overlap the first time domain resource pool and the first time window The time domain resources (beam directions) that are not suitable for the UE in the part are allocated to other terminals, and the transmission efficiency is improved.
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first signaling is common to a cell or is for a UE group, and the second signaling is for the UE.
  • the UE group includes a plurality of UEs, and the UE is one of the UE groups.
  • the first signaling and the second signaling are both physical layer signaling.
  • the CRC (Cyclic Redundancy Check) of the first signaling is scrambled by the RNTI (Radio Network Temporary Identifier) of the cell or is UE group specific RNTI scrambling code.
  • RNTI Radio Network Temporary Identifier
  • the RNTI other than the UE-specific RNTI is an SI-RNTI (System Information RNTI).
  • the RNTI other than the UE-specific RNTI is a UE group-specific RNTI.
  • the CRC of the second signaling is scrambled by the UE-specific RNTI.
  • the UE-specific RNTI is a C-RNTI (Cell RNTI, Cell Radio Network Temporary Identity).
  • the UE-specific RNTI is a TRP-RNTI (Transmission Reception Point RNTI).
  • the first configuration information is transmitted in one of ⁇ the first signaling, the second signaling ⁇ .
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the first configuration information is transmitted in the second signaling.
  • the first time domain resource occupies part of the time domain resource in the second time window, or the first time domain resource occupies all time domain resources in the second time window. Said The second time window is an overlapping portion of the first time domain resource pool and the first time window.
  • the second time domain resource belongs to the first time window.
  • the second time domain resource occupies all time domain resources except the second time window in the first time window.
  • the first signaling is used to determine the first time domain resource from the second time window.
  • the first signaling indicates a time domain location of the first time domain resource in the second time window.
  • the method is characterized in that: the first wireless signal includes P1 RS (Reference Signal) ports, and the P1 RS ports are respectively sent by the P1 antenna ports;
  • the second wireless signal includes P2 RS ports, and the P2 RS ports are respectively sent by the P2 antenna ports.
  • P1 RS Reference Signal
  • the first wireless signal includes first data and the second wireless signal includes second data.
  • the first block of bits is used to determine the first data and the second data.
  • the pattern of the RS port in one subframe reuses a pattern of a DMRS (Demodulation Reference Signal) port in one subframe.
  • DMRS Demodulation Reference Signal
  • the RS port includes at least one of a ⁇ Zadoff-Chu sequence, a pseudo-random sequence ⁇ .
  • the air interface resources occupied by any two of the RS ports are orthogonal (that is, one of the air interface resources does not exist and is occupied by any two of the RS ports).
  • the air interface resource includes at least one of ⁇ time domain resource, frequency domain resource, and code domain resource ⁇ .
  • the P2 is greater than the P1.
  • the RS port in the P2 RS ports is a DMRS port.
  • the RS port in the P1 RS ports is a CSI-RS (Channel State Information Reference Signal) port.
  • CSI-RS Channel State Information Reference Signal
  • the RS port in the P1 RS ports is a CSI-RS port
  • the RS port in the P2 RS ports is a DMRS port
  • the time domain resources occupied by any two of the P1 RS ports are orthogonal; when there is a given moment, the given moment is used by the P2 RS ports. All of the RS ports are occupied.
  • the above method is characterized by comprising:
  • the first information is used to determine P3 antenna ports, the P3 antenna ports are a subset of the P1 antenna ports, and the P3 is a positive integer less than or equal to the P1.
  • the base station determines the P1 antenna ports used by the UE to transmit the first wireless signal by acquiring an uplink report of the UE.
  • measurements for the P1 RS ports are used to determine the P3 antenna ports.
  • the channel quality corresponding to the P3 antenna ports is the best P3 of the channel qualities corresponding to the P1 antenna ports.
  • the channel quality includes ⁇ RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), and RSSI (Received Signal Strength Indicator) At least one of SINR (Signal to Interference and Noise Rate).
  • the method is characterized in that: the first wireless signal comprises P1 sub-radio signals, and the P1 sub-radio signals are respectively sent by the P1 antenna ports; information carried by the P1 sub-radio signals The same is true, the time domain resources occupied by any two of the P1 sub-radio signals are orthogonal.
  • the method is characterized in that the information corresponding to the first wireless signal is sent in different directions by means of beam scanning to ensure that the UE receives correctly.
  • the P1 sub-radio signals are transmitted by means of beam scanning.
  • the method is characterized in that the first signaling is physical layer signaling, the first signaling includes K1 information bits; the K1 is a positive integer greater than 1; The value is related to the time domain position of the first time window.
  • the method has the following advantages: to reduce the complexity of the first signaling by the UE, the number of information bits carried by the first signaling (ie, load, Payload) and the first The time domain position of the time window is related.
  • the first time window overlaps with the first time domain resource pool, the first bit block simultaneously corresponds to the first wireless signal and the second wireless signal, and the first signaling carries The number of information bits is a fixed value.
  • the first time window does not overlap with the first time domain resource pool, the first bit block only corresponds to one wireless signal, and the number of information bits carried by the first signaling is another fixed value.
  • the UE does not need to blindly detect the DCI corresponding to the two Payloads at the same time, thereby reducing the number of blind detections of the UE.
  • the value of the K1 is related to the time domain position of the first time window, where the first time window and the first time domain resource pool overlap in the time domain, the K1 Equal to M1; the first time window and the first time domain resource pool do not overlap in the time domain, and the K1 is equal to M2.
  • Both M1 and M2 are fixed positive integers, and the M1 is greater than the M2.
  • the first time window and the first time domain resource pool have overlapping portions in the time domain, and the M1 is equal to the sum of the M2 and 1.
  • the K1 is equal to the M1.
  • the first signaling includes 1-bit information, and the 1-bit information indicates that the first wireless signal is transmitted on the first time domain resource.
  • the first time window and the first time domain resource pool have overlapping portions in the time domain, and the M1 is equal to the sum of the M2 and M3, and the M3 is greater than 1.
  • the K1 is equal to the M1
  • the first signaling includes M3 bit information, where the M3 bit information indicates a location of the first time domain resource in the M4 candidate time domain resources.
  • the M4 candidate time domain resources belong to a second time window.
  • the second time window is an overlapping portion of the first time domain resource pool and the first time window.
  • the M4 is a positive integer of power M3 not greater than 2.
  • the method is characterized in that the first signaling is high layer signaling, the second signaling is physical layer signaling, and the second signaling includes K2 information bits; K2 is a positive integer greater than one; the value of K2 is related to the time domain position of the first time window.
  • the foregoing method has the following advantages: in order to reduce the complexity of the second signaling by the UE, the number of information bits carried by the second signaling (ie, load, Payload) is related to the time domain location of the first time window.
  • the first time window overlaps with the first time domain resource pool, the first bit block simultaneously corresponds to the first wireless signal and the second wireless signal, and the second signaling is carried by
  • the number of information bits is a fixed value.
  • the first time window does not overlap with the first time domain resource pool, the first bit block only corresponds to one wireless signal, and the number of information bits carried by the second signaling is another fixed value.
  • the UE does not need to blindly detect the DCI corresponding to the two Payloads at the same time, thereby reducing the number of blind detections of the UE.
  • the value of the K2 is related to the time domain position of the first time window, where the first time window and the first time domain resource pool overlap in the time domain, the K2 Equal to N1; the first time window and the first time domain resource pool do not overlap in the time domain, and the K2 is equal to N2.
  • the N1 and the N2 are both positive integers, and the N1 is greater than the N2.
  • the first time window and the first time domain resource pool have overlapping portions in the time domain, and the N1 is equal to the sum of the N2 and 1, and the K2 is equal to the N1, the second signaling includes 1-bit information, and the 1-bit information indicates that the first wireless signal is transmitted on the first time domain resource.
  • the first time window and the first time domain resource pool have overlapping portions in the time domain, and the N1 is equal to the sum of the N2 and N3, and the N3 is greater than 1.
  • the K2 is equal to the N1
  • the second signaling includes N3 bit information, where the N3 bit information indicates a location of the first time domain resource in the N4 candidate time domain resources.
  • the N4 candidate time domain resources belong to a second time window.
  • the second time window is an overlapping portion of the first time domain resource pool and the first time window.
  • the N4 is a positive integer of N3 power not greater than 2.
  • the present application discloses a method for use in a base station for dynamic scheduling, which includes:
  • the first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal,
  • the first configuration information includes at least one of ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is sent by a first antenna port group, and the second wireless signal is used by a second antenna port group Transmitting; the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; respectively, the P1 and the P2 are positive integers; at least one of the antenna ports belongs to only ⁇ One of the first antenna port group and the second antenna port group ⁇ .
  • the above method is characterized by comprising:
  • the first signaling is used to determine at least a former one of ⁇ a first time domain resource pool, the first antenna port group ⁇ ; the second signaling is used to determine ⁇ a first time window, At least the former of the second antenna port group, the first time domain resource belongs to an overlapping portion of the first time domain resource pool and the first time window.
  • the method is characterized in that: the first wireless signal includes P1 RS ports, and the P1 RS ports are respectively sent by the P1 antenna ports; and the second wireless signal includes P2 An RS port, where the P2 RS ports are respectively sent by the P2 antenna ports.
  • the above method is characterized by comprising:
  • the first information is used to determine P3 antenna ports, the P3 antenna ports are a subset of the P1 antenna ports, and the P3 is a positive integer less than or equal to the P1.
  • the method is characterized in that: the first wireless signal comprises P1 sub-radio signals, and the P1 sub-radio signals are respectively sent by the P1 antenna ports; information carried by the P1 sub-radio signals The same is true, the time domain resources occupied by any two of the P1 sub-radio signals are orthogonal.
  • the method is characterized in that the first signaling is physical layer signaling, the first signaling includes K1 information bits; the K1 is a positive integer greater than 1; The value is related to the time domain position of the first time window.
  • the method is characterized in that the first signaling is high layer signaling, the second signaling is physical layer signaling, and the second signaling includes K2 information ratios.
  • the K2 is a positive integer greater than one; the value of K2 is related to the time domain position of the first time window.
  • the present application discloses a user equipment used for dynamic scheduling, which is characterized by:
  • a first processing module receiving the first configuration information
  • a first receiving module respectively receiving the first wireless signal and the second wireless signal in the first time domain resource and the second time domain resource
  • the first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, the first The configuration information includes at least one of ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by a first antenna port group, and the second wireless signal is transmitted by a second antenna port group;
  • the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are respectively positive integers; at least one of the antenna ports belongs to only the first One of the antenna port group, the second antenna port group ⁇ .
  • the foregoing user equipment used for dynamic scheduling is characterized in that the first processing module is further configured to receive first signaling and receive second signaling; the first signaling is used to determine ⁇ a first time domain resource pool, at least a former one of the first antenna port groups ⁇ ; the second signaling is used to determine at least a former one of a ⁇ first time window, the second antenna port group ⁇
  • the first time domain resource belongs to an overlapping portion of the first time domain resource pool and the first time window.
  • the foregoing user equipment used for dynamic scheduling is characterized in that the first processing module is further configured to send first information; the first information is used to determine P3 antenna ports, and the P3 The antenna port is a subset of the P1 antenna ports, and the P3 is a positive integer less than or equal to the P1.
  • the foregoing user equipment used for dynamic scheduling is characterized in that: the first wireless signal includes P1 RS ports, and the P1 RS ports are respectively sent by the P1 antenna ports; the second The wireless signal includes P2 RS ports, and the P2 RS ports are respectively transmitted by the P2 antenna ports.
  • the foregoing user equipment used for dynamic scheduling is characterized in that the first wireless signal includes P1 sub-radio signals, and the P1 sub-radio signals are respectively The P1 antenna signals are transmitted; the information carried by the P1 sub-radio signals is the same, and the time domain resources occupied by any two of the P1 sub-radio signals are orthogonal.
  • the foregoing user equipment used for dynamic scheduling is characterized in that: the first signaling is physical layer signaling, the first signaling includes K1 information bits; and the K1 is greater than 1 An integer; the value of K1 is related to the time domain position of the first time window.
  • the foregoing user equipment used for dynamic scheduling is characterized in that: the first signaling is high layer signaling, the second signaling is physical layer signaling, and the second signaling includes K2 Information bits; said K2 being a positive integer greater than one; said value of K2 being related to a time domain position of said first time window.
  • the present application discloses a base station device used for dynamic scheduling, which is characterized by:
  • a first transmitting module configured to respectively transmit the first wireless signal and the second wireless signal in the first time domain resource and the second time domain resource
  • the first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, the first The configuration information includes at least one of ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by a first antenna port group, and the second wireless signal is transmitted by a second antenna port group;
  • the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are respectively positive integers; at least one of the antenna ports belongs to only the first One of the antenna port group, the second antenna port group ⁇ .
  • the foregoing base station device used for dynamic scheduling is characterized in that the second processing module is further configured to send first signaling and send second signaling; the first signaling is used to determine ⁇ a first time domain resource pool, at least a former one of the first antenna port groups ⁇ ; the second signaling is used to determine at least a former one of a ⁇ first time window, the second antenna port group ⁇
  • the first time domain resource belongs to an overlapping portion of the first time domain resource pool and the first time window.
  • the foregoing base station device used for dynamic scheduling is characterized in that the second processing module is further configured to receive first information; the first information is used to determine P3 An antenna port, the P3 antenna ports being a subset of the P1 antenna ports, and the P3 is a positive integer less than or equal to the P1.
  • the foregoing base station device used for dynamic scheduling is characterized in that: the first wireless signal includes P1 RS ports, and the P1 RS ports are respectively sent by the P1 antenna ports;
  • the wireless signal includes P2 RS ports, and the P2 RS ports are respectively transmitted by the P2 antenna ports.
  • the foregoing base station device used for dynamic scheduling is characterized in that: the first wireless signal includes P1 sub-radio signals, and the P1 sub-radio signals are respectively sent by the P1 antenna ports; the P1 sub- The information carried by the wireless signal is the same, and the time domain resources occupied by any two of the P1 sub-radio signals are orthogonal.
  • the foregoing base station device used for dynamic scheduling is characterized in that the first signaling is physical layer signaling, the first signaling includes K1 information bits; and the K1 is greater than 1 An integer; the value of K1 is related to the time domain position of the first time window.
  • the foregoing base station device used for dynamic scheduling is characterized in that the first signaling is high layer signaling, the second signaling is physical layer signaling, and the second signaling includes K2 Information bits; said K2 being a positive integer greater than one; said value of K2 being related to a time domain position of said first time window.
  • the data of one TB is transmitted in different manners, and then in the 5G system. Improve spectrum utilization and alert overall performance.
  • the number of information bits included in the first signaling is reduced, thereby reducing the implementation complexity of the UE.
  • FIG. 1 shows a flow chart of first configuration information according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of an evolved node and a UE according to an embodiment of the present application
  • FIG. 5 illustrates a flow chart of transmission of a first wireless signal and a second wireless signal in accordance with an embodiment of the present application
  • Figure 6 shows a schematic diagram of a first time window in accordance with one embodiment of the present application
  • Figure 7 shows a schematic diagram of a first time window in accordance with another embodiment of the present application.
  • FIG. 8 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present application.
  • FIG. 9 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing resource allocation in a PRB (Physical Resource Block) according to an embodiment of the present application.
  • PRB Physical Resource Block
  • Embodiment 1 illustrates a flow chart of the first configuration information, as shown in FIG.
  • the user equipment in the application first receives the first configuration information, and then receives the first wireless signal and the second wireless signal respectively in the first time domain resource and the second time domain resource; the first bit a block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, the first configuration information including ⁇ MCS At least one of a HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by a first antenna port group, and the second wireless signal is transmitted by a second antenna port group; the first antenna port group And the second antenna port group respectively includes P1 antenna ports and P2 antenna ports; the P1 and the P2 are positive integers respectively; at least one of the antenna ports exists It belongs to only one of ⁇ the first antenna port group, the second antenna port group ⁇ .
  • the first block of bits is a TB.
  • the first block of bits includes a plurality of bits.
  • the first configuration information further includes an occupied frequency domain resource.
  • the first wireless signal adopts a transmission mode of transmission diversity
  • the second wireless signal adopts a beam shaping transmission mode
  • any one of the first antenna port groups does not belong to the second antenna port group.
  • a part of the antenna ports in the first antenna port group does not belong to the second antenna port group, and a part of the first antenna port group belongs to the second antenna port. group.
  • the TM used by the first wireless signal and the TM used by the second wireless signal are different.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • EPS Evolved Packet System
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • the EPS provides packet switching services, although those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks or other cellular networks that provide circuit switched services.
  • the NG-RAN includes an NR node (gNB) 203 and other NR nodes (gNBs) 204.
  • gNB NR node
  • gNBs NR nodes
  • the gNB 203 provides user and control plane protocol termination for the UE 201.
  • the gNB 203 is connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • gNB 203 and gNB 204 may also be referred to as base stations, base transceiver stations, radio base stations, radio transceivers, transceiver functions, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmission and reception point
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial network base station communications, satellite mobile communications, global positioning systems, multimedia Devices, video devices, digital audio players (eg, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or Any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial network base station communications
  • satellite mobile communications global positioning systems
  • multimedia Devices video devices
  • digital audio players eg, MP3 players
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 214, S-GW (Service Gateway) 212 and P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB 203 corresponds to the base station device in this application.
  • the UE 201 supports BF-based transmission.
  • the gNB 203 supports transmission of BF.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing function.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the radio protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture of Figure 3 is applicable to the network device in this application.
  • the first configuration information in this application is generated in the RRC sublayer 306.
  • the first signaling in the present application is generated in the RRC sublayer 306.
  • the first signaling in the present application is generated in the physical layer 301.
  • the second signaling in the application is generated in the RRC sublayer. 306.
  • the second signaling in the present application is generated in the physical layer 301.
  • the first information in the present application is generated in the RRC sublayer 306.
  • Embodiment 4 shows a schematic diagram of an evolved node and a UE according to the present application, as shown in FIG.
  • the base station device in this application corresponds to the evolved node
  • FIG. 4 is a block diagram of a gNB 410 that communicates with the UE 450 in an access network.
  • the base station device (410) includes a controller/processor 440, a memory 430, a receive processor 412, a transmit processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a transmit processor 455, a receive processor 452, a transmitter/receiver 456, and an antenna 460.
  • the processing related to the base station device (410) includes:
  • a controller/processor 440 the upper layer packet arrives, the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels for implementation
  • the L2 layer protocol of the user plane and the control plane; the upper layer packet may include data or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling air interface resources corresponding to the transmission requirements;
  • a controller/processor 440 determining first configuration information, and determining to transmit the first wireless signal and the second wireless signal, respectively, in the first time domain resource and the second time domain resource; and transmitting the result to the transmit processor 415 ;
  • a transmit processor 415 that receives the output bitstream of the controller/processor 440, implementing various signal transmission processing functions for the L1 layer (ie, the physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • each transmitter 416 for converting the baseband signal provided by the transmit processor 415 into a radio frequency signal and transmitting it via the antenna 420; each transmitter 416 samples the respective input symbol stream Processing results in a respective sampled signal stream. Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • further processing eg, digital to analog conversion, amplification, filtering, upconversion, etc.
  • the processing related to the user equipment (450) may include:
  • a receiver 456, for converting the radio frequency signal received through the antenna 460 into a baseband signal is provided to the receiving processor 452;
  • Receive processor 452 implementing various signal reception processing functions for the L1 layer (ie, physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • Control processor 490 determining first configuration information, and determining to receive the first wireless signal and the second wireless signal, respectively, in the first time domain resource and the second time domain resource; and transmitting the result to receive processor 452.
  • controller/processor 490 that receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program codes and data.
  • Memory 480 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be
  • the processor is used together, the UE 450 device at least: receiving the first configuration information, respectively receiving the first wireless signal and the second wireless signal in the first time domain resource and the second time domain resource; the first bit block is used to generate The first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, and the first configuration information includes a ⁇ MCS, a HARQ process ID, At least one of NDI, RV ⁇ ; the first wireless signal is transmitted by a first antenna port group, the second wireless signal is transmitted by a second antenna port group; the first antenna port group and the second The antenna port group includes P1 antenna ports and P2 antenna ports respectively; the P1 and the P2 are positive integers respectively; at least one of the antenna ports belongs to only ⁇ the first Group antenna port, the second antenna port in a
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first configuration information Receiving, in the first time domain resource and the second time domain resource, a first wireless signal and a second wireless signal, respectively; the first bit block is used to generate the first a line signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, the first configuration information including ⁇ MCS, HARQ process number, NDI, RV ⁇ At least one of the first wireless signals being transmitted by the first antenna port group, the second wireless signal being transmitted by the second antenna port group; the first antenna port group and the second antenna port group respectively Including P1 antenna ports and P2 antenna ports; the P1 and the P2 are positive integers respectively; at least one of the antenna ports belongs to only ⁇ the first antenna port group, the second antenna port group ⁇ One.
  • the gNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be The processor is used together.
  • the gNB410 device transmits at least the first configuration information, and sends the first wireless signal and the second wireless signal respectively in the first time domain resource and the second time domain resource; the first bit block is used to generate the first wireless a signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, and the first configuration information includes ⁇ MCS, HARQ process number, NDI, RV ⁇
  • the first wireless signal is transmitted by a first antenna port group, and the second wireless signal is transmitted by a second antenna port group; the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are positive integers, respectively; at least one of the antenna ports belongs to only one of ⁇ the first antenna port group, the second antenna
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first configuration information Transmitting, by the first time domain resource and the second time domain resource, a first wireless signal and a second wireless signal, respectively; the first bit block is used to generate the first wireless signal and the second wireless signal;
  • the first configuration information is applied to the first wireless signal and the second wireless signal, and the first configuration information includes at least one of ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal Transmitting by the first antenna port group, the second wireless signal is sent by the second antenna port group; the first antenna port group and the second antenna port group respectively comprise P1 antenna ports and P2 antenna ports; P1 and P2 are respectively positive integers; at least one of the antenna ports belongs to only one of ⁇ the first antenna port group, the second antenna port group ⁇ .
  • the UE 450 corresponds to the user equipment in this application.
  • gNB 410 corresponds to the base station in this application.
  • the controller/processor 490 is configured to determine first configuration information and to determine to receive the first wireless signal and the second wireless signal, respectively, in the first time domain resource and the second time domain resource.
  • At least one of the receiver 456 and the receiving processor 452 is configured to receive the first configuration information, and receive the first wireless signal and the first in the first time domain resource and the second time domain resource, respectively. Two wireless signals.
  • At least two of the receiver 456, the receiving processor 452, and the controller/processor 490 are used to receive at least one of ⁇ first signaling, second signaling ⁇ .
  • At least two of the transmitter 456, the transmit processor 455, and the controller/processor 490 are used to transmit the first information.
  • the controller/processor 440 is configured to determine first configuration information and to determine to transmit the first wireless signal and the second wireless signal, respectively, in the first time domain resource and the second time domain resource.
  • At least one of the transmitter 416 and the transmit processor 415 is configured to transmit first configuration information, and to transmit the first wireless signal and the first in the first time domain resource and the second time domain resource, respectively. Two wireless signals.
  • At least two of the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit at least one of ⁇ first signaling, second signaling ⁇ .
  • At least two of the receiver 416, the receive processor 412, and the controller/processor 440 are used to receive the first information.
  • Embodiment 5 illustrates a flow chart of transmission of a first wireless signal and a second wireless signal according to the present application, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the steps identified by block F0 are optional.
  • the first information is received in step S10, the first signaling is transmitted in step S11, the second signaling is transmitted in step S12, the first configuration information is transmitted in step S13, and the first configuration information is first in step S14.
  • the first wireless signal and the second wireless signal are respectively transmitted in the time domain resource and the second time domain resource.
  • the first information is transmitted in step S20, the first signaling is received in step S21, the second signaling is received in step S22, the first configuration information is received in step S23, and the first configuration information is obtained in step S24.
  • the first wireless signal and the second wireless signal are respectively received in the time domain resource and the second time domain resource.
  • a first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal,
  • the first configuration information includes at least one of ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by a first antenna port group, and the second wireless signal is sent by a second antenna port group
  • the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are respectively positive integers; at least one of the antenna ports belongs to only Determining one of the first antenna port group, the second antenna port group ⁇ ; the first signaling is used to determine at least a former one of ⁇ a first time domain resource pool, the first antenna port group ⁇ ;
  • the second signaling is used to determine at least a former one of a ⁇ first time window, the second antenna port group ⁇ , the first time domain resource belongs to the first time domain resource pool and the first An overlapping portion of the time window; the first information is used to determine
  • the first wireless signal includes P1 RS ports, and the P1 RS ports are respectively sent by the P1 antenna ports;
  • the second wireless signal includes P2 RS ports, and the P2 The RS ports are respectively transmitted by the P2 antenna ports.
  • the first wireless signal includes P1 sub-radio signals, and the P1 sub-radio signals are respectively sent by the P1 antenna ports; the information carried by the P1 sub-radio signals is the same, the P1 The time domain resources occupied by any two of the sub-radio signals of the sub-radio signals are orthogonal.
  • the first signaling is physical layer signaling
  • the first signaling includes K1 information bits
  • the K1 is a positive integer greater than 1
  • the value of the K1 is the first
  • the time domain position of the time window is related.
  • the first signaling is high layer signaling
  • the second signaling is physical layer signaling
  • the second signaling includes K2 information bits; the K2 is a positive integer greater than 1.
  • the value of K2 is related to the time domain position of the first time window.
  • the first signaling is RRC (Radio Resource Control) signaling
  • the second signaling is physical layer signaling.
  • the second signaling is a DL authorization (Grant).
  • the first signaling and the second signaling are both DL grants.
  • the transport channel corresponding to the first radio signal is a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the transport channel corresponding to the second wireless signal is a DL-SCH.
  • the first radio signal is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal is transmitted on a sPDSCH (Shortened PDSCH).
  • the second wireless signal is transmitted on the PDSCH.
  • the second wireless signal is transmitted on the sPDSCH.
  • Embodiment 6 illustrates a schematic diagram of a first time window. As shown in FIG. 6, the thick line frame portion of the figure corresponds to the time domain resource occupied by the second time window.
  • the second time window is an overlapping portion of the first time domain resource pool and the first time window in a time domain.
  • the first time domain resource shown in the figure occupies a portion of the time domain resource of the second time window.
  • the first time domain resource pool is configurable.
  • the first time domain resource pool is periodically distributed in the time domain.
  • the duration of the first time window in the time domain is no more than 1 ms (milliseconds).
  • the location of the first time domain resource in the second time window is indicated by one of ⁇ first signaling, second signaling ⁇ .
  • At least one of the first signaling and the second signaling is physical layer signaling.
  • whether the first time domain resource is included in the second time window is indicated by one of ⁇ first signaling, second signaling ⁇ .
  • At least one of the first signaling and the second signaling is physical layer signaling.
  • the first wireless signal is transmitted by the first antenna port group on the first time domain resource
  • the second wireless signal is transmitted by the second antenna port group on the second time domain resource.
  • the first antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports.
  • the P1 and the P2 are positive integers, respectively.
  • the P1 antenna ports belong to the P2 antenna ports.
  • Embodiment 7 illustrates a schematic diagram of another first time window.
  • the thick line frame portion of the figure corresponds to the time domain resource occupied by the second time window.
  • the second time window is an overlapping portion of the first time domain resource pool and the first time window in a time domain.
  • the first time domain resource shown in the figure occupies all time domain resources of the second time window.
  • the first time domain resource pool is configurable.
  • the first time domain resource pool is periodically distributed in the time domain.
  • the duration of the first time window in the time domain is no more than 1 ms (milliseconds).
  • whether the first time domain resource is included in the second time window is indicated by one of ⁇ first signaling, second signaling ⁇ .
  • At least one of the first signaling and the second signaling is physical layer signaling.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 800 is mainly composed of a first processing module 801 and a first receiving module 802.
  • a first receiving module 802 respectively receiving the first wireless signal and the second wireless signal in the first time domain resource and the second time domain resource;
  • a first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, The first configuration information includes ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by the first antenna port group, and the second wireless signal is sent by the second antenna port group;
  • the antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are positive integers; respectively, the first antenna port group and the second antenna port group The antenna ports are not identical.
  • the first processing module 801 further receives the first signaling and receives the second signaling; the first signaling is used to determine ⁇ a first time domain resource pool, the first antenna port group At least the former of the ⁇ ; the second signaling is used to determine at least the former of the ⁇ first time window, the second antenna port group ⁇ , the first time domain resource belongs to the first time domain resource An overlap of the pool and the first time window.
  • the first processing module 801 further sends first information; the first information is used to determine P3 antenna ports, and the P3 antenna ports are a subset of the P1 antenna ports, P3 is a positive integer less than or equal to the P1.
  • the first processing module 801 includes ⁇ receiver/transmitter 456, receive processor 452, transmit processor 455, controller/processor 490 ⁇ in embodiment 4.
  • the first receiving module 802 includes at least two of the ⁇ receiver 456, the receiving processor 452, and the controller/processor 490 ⁇ in Embodiment 4.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 900 is mainly composed of a second processing module 901 and a first transmitting module 902.
  • a second processing module 901 transmitting first configuration information
  • a first sending module 902 respectively transmitting the first wireless signal and the second wireless signal in the first time domain resource and the second time domain resource;
  • a first bit block is used to generate the first wireless signal and the second wireless signal; the first configuration information is applied to the first wireless signal and the second wireless signal, The first configuration information includes ⁇ MCS, HARQ process number, NDI, RV ⁇ ; the first wireless signal is transmitted by the first antenna port group, and the second wireless signal is sent by the second antenna port group;
  • the antenna port group and the second antenna port group respectively include P1 antenna ports and P2 antenna ports; the P1 and the P2 are positive integers respectively; at least one of the antenna ports belongs to only the first antenna port.
  • the second processing module 901 further sends the first signaling and sends the second signaling; the first signaling is used to determine ⁇ the first time domain resource pool, the first antenna port group At least the former of the ⁇ ; the second signaling is used to determine at least the former of the ⁇ first time window, the second antenna port group ⁇ , the first time domain resource belongs to the first time domain resource An overlap of the pool and the first time window.
  • the second processing module 901 further receives first information; the first information is used to determine P3 antenna ports, and the P3 antenna ports are a subset of the P1 antenna ports, P3 is a positive integer less than or equal to the P1.
  • the second processing module 901 includes the ⁇ transmitter in Embodiment 4 At least the first three of the receiver 416, the transmit processor 415, the receive processor 412, and the controller/processor 440 ⁇ .
  • the first transmitting module 902 includes at least two of the ⁇ transmitter 416, the transmit processor 415, the controller/processor 440 ⁇ in Embodiment 4.
  • Embodiment 10 illustrates a schematic diagram of resource allocation in one PRB, as shown in FIG.
  • the gray-filled square is an RE (Resource Element) allocated to a PDCCH (Physical Downlink Control Channel), and the dot-filled square is the first sub-radio signal in a PRB.
  • the occupied RE, the blank square is the RE occupied by the second sub-radio signal in one PRB
  • the diagonally filled square is the RE occupied by the P1 RS ports in one PRB in the present application
  • the cross line is filled.
  • the squares are the REs occupied by the P2 RS ports in the PRB in the present application.
  • the first sub-radio signal and the P1 RS ports constitute a first radio signal in the application
  • the second sub-radio signal and the P2 RS ports constitute a second radio signal in the present application.
  • the first time resource in the present application includes an OFDM symbol ⁇ 3, 4, 5, 6, 7, 12, 13 ⁇ .
  • the third time resource includes ⁇ 8, 9, 10, 11 ⁇ .
  • the first time resource in the application is the third time resource.
  • the first time resource in the application is a subset of the third time resource, which is indicated by the second signaling in the present application.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present application include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • the base station in the present application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种被用于用户设备和基站中的方法和装置。UE接收第一配置信息,随后在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号。第一比特块被用于生成所述第一无线信号和所述第二无线信号。所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一无线信号所对应的天线端口和所述第二无线信号所对应的天线端口是不同的。本申请通过采用所述第一配置信息共同配置所述第一无线信号和所述第二无线信号,并在不同的时域资源上分别接收所述第一无线信号和所述第二无线信号,实现同一个比特块对应的数据采用不同的方式进行传输,进而充分利用空口资源,提高系统整体的频谱效率。

Description

一种被用于用户设备和基站中的方法和装置 技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及被用于低延迟的传输的方法和装置。
背景技术
传统的基于数字调制方式的无线通信系统,例如3GPP(3rd Generation Partner Project,第三代合作伙伴项目)蜂窝系统中,下行及上行无线信号的发送均基于基站的调度。进一步的,给定时刻的传输是基于当前配置的TM(Transmission Mode,传输模式),一个TB(Transmission Block,传输块)的一次传输只能采用一种传输方式–对应一种DCI(Downlink Control Information,下行控制信息)格式。
Release 14的Reduced Latency(降低延迟)课题中,针对一个TB的多个DCI被引入。多个DCI同时调度一个TB的传输,以降低延迟并且减少控制信令的开销,一个TB仍然只能采用一种传输方式。
新一代的无线接入技术(NR,New Radio access technologies)目前已在3GPP中讨论。其中,典型的应用场景包括Massive MIMO(大规模天线)等。针对Massive MIMO,BF(BeamForming,波束赋型)以及基于波束扫射(Sweeping)传输方式将会被大量应用。而对于一个RF(Radio Frequency,射频)链(Chain)而言,生成的多个模拟波束只能是TDM(Time Division Multiplexing,时分复用)的。在发送用于基于波束扫射的RS(Rerence Signal,参考信号)时,能否实现和数据的复用是一个需要解决的问题。
发明内容
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。需要进一步说明的是,虽然本申请的初衷是针对多天线传输的场景,本申 请也适用于单天线传输场景,例如短延迟(Short Latency)通信,URLLC(Ultra Reliable Low Latency Communication,低延迟高可靠)等等。
本申请公开了一种被用于动态调度的UE中的方法,其特征在于包括:
-接收第一配置信息;
-在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;
其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS(Modulation and Coding Status,调制编码状态),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,NDI(New Data Indicator,新数据指示),RV(Redundancy Version,冗余版本)}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个(即所述第一天线端口组和所述第二天线端口组中的天线端口不完全相同)。
作为一个实施例,所述第一天线端口组中的所有天线端口对应的用于生成模拟波束的天线虚拟化向量是第一向量,所述第二天线端口组中的所有天线端口对应的用于生成模拟波束的天线虚拟化向量是第二向量。
上述实施例中,所述第一比特块的一次传输能对应两个模拟的波束方向,具备更好地兼容性,提高传输效率。
作为一个实施例,所述第一无线信号对应的发送方式是发送分集,所述第二无线信号对应的发送方式是波束赋型。
当所述第一时域资源只能被用于发送分集的传输方式而所述第二时域资源能被用于波束赋型的传输方式时,上述实施例能充分利用时域资源,及时地发送数据。而传统的LTE中,所述第一比特块的一次传输只能采用一种传输方式,无法同时占用所述第一时域资源和所述第二时 域资源,降低了传输效率或者增大了传输延迟。
作为一个实施例,上述方法的另一个特质在于:所述第一时域资源进行基于波束扫射的传输,当所述第一时域资源中波束的方向对准所述UE时,所述第一比特块的一次传输能在所述第一时域资源上传输。
作为一个实施例,所述第一比特块是一个TB。
作为一个实施例,所述第一比特块包括多个比特。
作为一个实施例,所述第一配置信息还包括所占用的频域资源。
作为一个实施例,所述第一无线信号采用发送分集的传输方式,所述第二无线信号采用波束赋型的传输方式。
作为一个实施例,所述第一无线信号采用Sweeping(扫射)的传输方式,所述第二无线信号采用波束赋型的传输方式。
作为一个实施例,所述第一天线端口组中的任意两个所述天线端口被分配的时域资源是正交的。
作为一个实施例,存在一个给定时刻,所述给定时刻被分配给所述第二天线端口组中的所有所述天线端口。
作为一个实施例,所述第一配置信息被用于确定{所述第一天线端口组,所述第二天线端口组}中的至少之一。
作为该实施例的一个子实施例,所述第一配置信息指示{所述第一天线端口组所对应的索引,所述第二天线端口组所对应的索引}中的至少之一。
作为一个实施例,所述第一天线端口组中的任意一个所述天线端口都不属于所述第二天线端口组。
作为一个实施例,所述第一天线端口组中的部分所述天线端口不属于所述第二天线端口组,所述第一天线端口组中的部分所述天线端口属于所述第二天线端口组。
作为一个实施例,所述第一无线信号所采用的TM和所述第二无线信号所采用的TM是不同的。
作为一个实施例,所述第一配置信息是对应一个或者多个DCI。
作为一个实施例,所述第一配置信息是由物理层信令承载的。
作为一个实施例,所述P1和所述P2不同。
作为一个实施例,所述第一时域资源和所述第二时域资源分别包括 正整数个多载波符号。
作为上述实施例的一个子实施例,所述多载波符号是{OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号,FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号,包括CP(Cyclic Prefix,循环前缀)的OFDM符号,包括CP的DFT-s-OFDM(Discrete Fourier Transform-Spreading-OFDM,离散傅里叶变换扩频的正交频分复用)符号}中的一种。
作为一个实施例,所述第一时域资源和所述第二时域资源在时域是正交的。
作为该实施例的一个子实施例,所述所述第一时域资源和所述第二时域资源在时域是正交的是指:不存在一个多载波符号同时属于所述第一时域资源和所述第二时域资源。
作为一个实施例,所述第一比特块被用于生成给定无线信号是指:所述给定无线信号是由所述第一比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波信号发生(Generation)之后的输出(的一部分或者全部)。
作为一个实施例,所述天线端口由正整数根天线通过天线虚拟化形成。
根据本申请的一个方面,上述方法的特征在于包括:
-接收第一信令,
-接收第二信令;
其中,所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,所述第二时域资源属于所述第一时间窗。
作为一个实施例,所述第二信令从所述所述第一时域资源池和所述第一时间窗的重叠部分中指示所述第一时域资源。
上述实施例中,所述第二信令能根据所述UE的信道特征为所述UE 选择合适的时域资源(波束方向),一方面提高了所述第一无线信号的接收质量,另一方面基站能将所述所述第一时域资源池和所述第一时间窗的重叠部分中不适合所述UE的时域资源(波束方向)分配给其他终端,提高了传输效率。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令。
作为一个实施例,所述第一信令是小区公共的或者是针对UE组的,所述第二信令是针对所述UE的。所述UE组中包括多个UE,所述UE是所述UE组中的一个UE。
作为一个实施例,所述第一信令和所述第二信令均是物理层信令。
作为该实施例的一个子实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)被小区公共的RNTI(Radio Network Temporary Identifier,无线网络暂定身份)扰码或者被UE组特定的RNTI扰码。
作为该子实施例的一个附属实施例,所述UE专属的RNTI之外的RNTI是SI-RNTI(System Information RNTI,系统无线网络临时标识)。
作为该子实施例的一个附属实施例,所述UE专属的RNTI之外的RNTI是UE组专属的RNTI。
作为该实施例的一个子实施例,所述第二信令的CRC被UE特定的RNTI扰码。
作为该子实施例的一个附属实施例,所述UE专属的RNTI是C-RNTI(Cell RNTI,小区无线网络临时标识)。
作为该子实施例的一个附属实施例,所述UE专属的RNTI是TRP-RNTI(Transmission Reception Point RNTI,发送接收点无线网络临时标识)。
作为该实施例的一个子实施例,所述第一配置信息在{所述第一信令,所述第二信令}中的之一中传输。
作为一个实施例,所述第一信令是高层信令,所述第二信令是物理层信令,且所述第一配置信息在所述第二信令中传输。
作为一个实施例,所述第一时域资源占用第二时间窗中的部分时域资源,或者所述第一时域资源占用第二时间窗中的全部时域资源。所述 第二时间窗是所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,所述第二时域资源属于所述第一时间窗。
作为上述两个实施例的一个子实施例,所述第二时域资源占用所述第一时间窗中所述第二时间窗之外的所有时域资源。
作为上述两个实施例的另一个子实施例,所述第一信令被用于从所述第二时间窗中确定所述第一时域资源。
作为该子实施例的一个附属实施例,所述第一信令指示所述第一时域资源在所述第二时间窗中的时域位置。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号包括P1个RS(Reference Signal,参考信号)端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
作为一个实施例,所述第一无线信号包括第一数据,所述第二无线信号包括第二数据。所述第一比特块被用于确定所述第一数据和所述第二数据。
作为一个实施例,所述RS端口在一个子帧内的图案重用DMRS(Demodulation Reference Signal,解调参考信号)端口在一个子帧内的图案。
作为该实施例的一个子实施例,所述RS端口包括{Zadoff-Chu序列,伪随机序列}中的至少之一。
作为该实施例的一个子实施例,任意两个所述RS端口所占用的空口资源是正交的(即不存在一个所述空口资源同时被所述任意两个所述RS端口占用)。所述空口资源包括{时域资源,频域资源,码域资源}中的至少之一。
作为一个实施例,所述P2大于所述P1。
作为一个实施例,所述P2个RS端口中的所述RS端口是DMRS端口。
作为一个实施例,所述P1个RS端口中的所述RS端口是CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)端口,
作为一个实施例,所述P1个RS端口中的所述RS端口是CSI-RS端口,所述P2个RS端口中的所述RS端口是DMRS端口。
作为一个实施例,所述P1个RS端口中的任意两个所述RS端口所占用的时域资源是正交的;存在一个给定时刻,所述给定时刻被所述P2个RS端口中所有所述RS端口占用。
根据本申请的一个方面,上述方法的特征在于包括:
-发送第一信息;
其中,所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个实施例,上述方法的好处在于:基站通过获取UE的上行汇报以确定向所述UE传输所述第一无线信号所采用的所述P1个天线端口。
作为一个实施例,针对所述P1个RS端口的测量被用于确定所述P3个天线端口。
作为一个实施例,所述P3个天线端口对应的信道质量是所述P1个天线端口对应的信道质量中最好的P3个所述信道质量。
作为上述实施例的一个子实施例,所述信道质量包括{RSRP(Reference Signal Received Power,参考信号接收质量),RSRQ(Reference Signal Received Quality,参考信号接收质量),RSSI(Received Signal Strength Indicator,接收信号强度指示),SINR(Signal to Interference and Noise Rate,信干噪比)}中的至少之一。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
作为一个实施例,上述方法的特质在于:所述第一无线信号对应的信息通过波束扫射的方式向不同的方向发送,以保证所述UE正确接收。
作为一个实施例,所述P1个子无线信号通过波束扫射的方式发送。
根据本申请的一个方面,上述方法的特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
作为一个实施例,上述方法的好处在于:为降低UE盲检测所述第一信令的复杂度,所述第一信令所携带的信息比特的数量(即负载,Payload)与所述第一时间窗的时域位置相关。当所述第一时间窗与所述第一时域资源池存在重叠时,所述第一比特块同时对应所述第一无线信号和所述第二无线信号,所述第一信令所携带的信息比特的数量是一个固定值。当所述第一时间窗与所述第一时域资源池不存在重叠时,所述第一比特块仅对应一个无线信号,所述第一信令所携带的信息比特的数量是另一个固定值。所述UE不需要同时盲检测两种Payload对应的DCI,进而降低UE的盲检测次数。
作为一个实施例,所述K1的值与所述第一时间窗的时域位置相关是指:所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述K1等于M1;所述第一时间窗与所述第一时域资源池在时域不存在重叠部分,所述K1等于M2。所述M1和所述M2均是固定的正整数,且所述M1大于所述M2。
作为该实施例的一个子实施例,所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述M1等于所述M2与1的和,所述K1等于所述M1,所述第一信令包括1比特信息,所述1比特信息指示所述第一无线信号在所述第一时域资源上传输。
作为该实施例的一个子实施例,所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述M1等于所述M2与M3的和,所述M3是大于1的正整数。所述K1等于所述M1,所述第一信令包括M3个比特信息,所述M3个比特信息指示所述第一时域资源在M4个候选时域资源中的位置。所述M4个候选时域资源属于第二时间窗。所述第二时间窗是所述第一时域资源池和所述第一时间窗的重叠部分。所述M4是不大于2的M3次幂的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
作为一个实施例,上述方法的好处在于:为降低UE盲检测所述第二信令的复杂度,所述第二信令所携带的信息比特的数量(即负载, Payload)与所述第一时间窗的时域位置相关。当所述第一时间窗与所述第一时域资源池存在重叠时,所述第一比特块同时对应所述第一无线信号和所述第二无线信号,所述第二信令所携带的信息比特的数量是一个固定值。当所述第一时间窗与所述第一时域资源池不存在重叠时,所述第一比特块仅对应一个无线信号,所述第二信令所携带的信息比特的数量是另一个固定值。所述UE不需要同时盲检测两种Payload对应的DCI,进而降低UE的盲检测次数。
作为一个实施例,所述K2的值与所述第一时间窗的时域位置相关是指:所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述K2等于N1;所述第一时间窗与所述第一时域资源池在时域不存在重叠部分,所述K2等于N2。所述N1和所述N2均是正整数,且所述N1大于所述N2。
作为该实施例的一个子实施例,所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述N1等于所述N2与1的和,所述K2等于所述N1,所述第二信令包括1比特信息,所述1比特信息指示所述第一无线信号在所述第一时域资源上传输。
作为该实施例的一个子实施例,所述第一时间窗与所述第一时域资源池在时域存在重叠部分,所述N1等于所述N2与N3的和,所述N3是大于1的正整数。所述K2等于所述N1,所述第二信令包括N3个比特信息,所述N3个比特信息指示所述第一时域资源在N4个候选时域资源中的位置。所述N4个候选时域资源属于第二时间窗。所述第二时间窗是所述第一时域资源池和所述第一时间窗的重叠部分。所述N4是不大于2的N3次幂的正整数。
本申请公开了一种被用于动态调度的基站中的方法,其特征在于包括:
-发送第一配置信息;
-在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;
其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号, 所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
根据本申请的一个方面,上述方法的特征在于包括:
-发送第一信令,
-发送第二信令;
其中,所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
根据本申请的一个方面,上述方法的特征在于包括:
-接收第一信息;
其中,所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
根据本申请的一个方面,上述方法的特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
根据本申请的一个方面,上述方法的特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比 特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
本申请公开了一种被用于动态调度的用户设备,其特征在于包括:
-第一处理模块,接收第一配置信息;
-第一接收模块,在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;
其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一处理模块还用于接收第一信令和接收第二信令;所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一处理模块还用于发送第一信息;所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所 述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
作为一个实施例,上述被用于动态调度的用户设备的特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
本申请公开了一种被用于动态调度的基站设备,其特征在于包括:
-第二处理模块,发送第一配置信息;
-第一发送模块,在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;
其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第二处理模块还用于发送第一信令和发送第二信令;所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第二处理模块还用于接收第一信息;所述第一信息被用于确定P3个 天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
作为一个实施例,上述被用于动态调度的基站设备的特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
相比现有公开技术,本申请具有如下技术优势:
-.通过设计将所述第一比特块对应的信息拆分成所述第一无线信号和所述第二无线信号分别发送,实现了一个TB的数据采用不同的传输方式,进而在5G系统中进提高频谱利用率,提醒整体性能。
-.通过设计所述第一信令和所述第二信令,分别用于确定所述第一时域资源池和所述第一时间窗的时域位置,进而使所述第一无线信号和所述第二无线信号的分别发送成为可能。
-.通过设计所述第一信息,确定所述第一无线信号对应的所述第一天线端口组。
-.通过设计将所述第一信令包括的信息比特数和所述第一时间窗的时域位置建立联系,降低盲检测次数,进而降低UE的实现复杂度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一配置信息的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的演进节点和UE的示意图;
图5示出了根据本申请的一个实施例的第一无线信号和第二无线信号的传输的流程图;
图6示出了根据本申请的一个实施例的第一时间窗的示意图;
图7示出了根据本申请的另一个实施例的第一时间窗的示意图;
图8示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图9示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
图10示出了根据本申请的一个实施例的在一个PRB(Physical Resource Block,物理资源块)中的资源分配的示意图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一配置信息的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备首先接收第一配置信息,随后在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口 只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个实施例,所述第一比特块是一个TB。
作为一个实施例,所述第一比特块包括多个比特。
作为一个实施例,所述第一配置信息还包括所占用的频域资源。
作为一个实施例,所述第一无线信号采用发送分集的传输方式,所述第二无线信号采用波束赋型的传输方式。
作为一个实施例,所述第一天线端口组中的任意一个所述天线端口都不属于所述第二天线端口组。
作为一个实施例,所述第一天线端口组中的部分所述天线端口不属于所述第二天线端口组,所述第一天线端口组中的部分所述天线端口属于所述第二天线端口组。
作为一个实施例,所述第一无线信号所采用的TM和所述第二无线信号所采用的TM是不同的。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点(gNB)203和其它NR节点(gNB)204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203经由Xn接口(例如,回程)连接到其它gNB204。gNB203和gNB204也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为 UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面网络基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个子实施例,所述UE201对应本申请中的所述用户设备。
作为一个子实施例,所述gNB203对应本申请中的所述基站设备。
作为一个子实施例,所述UE201支持基于BF的传输。
作为一个子实施例,所述gNB203支持BF的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种 PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个子实施例,附图3中的无线协议架构适用于本申请中的所述网络设备。
作为一个子实施例,本申请中的所述第一配置信息生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个子实施例,本申请中的所述第一信令生成于所述物理层301。
作为一个子实施例,本申请中的所述第二信令生成于所述RRC子层 306。
作为一个子实施例,本申请中的所述第二信令生成于所述物理层301。
作为一个子实施例,本申请中的所述第一信息生成于所述RRC子层306。
实施例4
实施例4示出了根据本申请的一个演进节点和UE的示意图,如附图4所示。本申请中的所述基站设备对应所述演进节点,图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-控制器/处理器440,确定第一配置信息,以及确定在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;并将结果发送到发射处理器415;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样 处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-控制处理器490,确定第一配置信息,以及确定在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;并将结果发送到接收处理器452。
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
作为一个子实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一配置信息,在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个子实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一配置信息,在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;第一比特块被用于生成所述第一无 线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个子实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一配置信息,在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个子实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一配置信息,在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个子实施例,UE450对应本申请中的用户设备。
作为一个子实施例,gNB410对应本申请中的基站。
作为一个子实施例,控制器/处理器490被用于确定第一配置信息,以及用于确定在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号。
作为一个子实施例,接收器456和接收处理器452中的至少之一被用于接收第一配置信息,以及在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号。
作为一个子实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收{第一信令、第二信令}中的至少之一。
作为一个子实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送第一信息。
作为一个子实施例,控制器/处理器440被用于确定第一配置信息,以及用于确定在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号。
作为一个子实施例,发射器416和发射处理器415中的至少之一被用于发送第一配置信息,以及在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号。
作为一个子实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送{第一信令、第二信令}中的至少之一。
作为一个子实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收第一信息。
实施例5
实施例5示例了根据本申请的一个第一无线信号和第二无线信号的传输的流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。方框F0标识的步骤是可选的。
对于基站N1,在步骤S10中接收第一信息,在步骤S11中发送第一信令,在步骤S12中发送第二信令,在步骤S13中发送第一配置信息,在步骤S14中在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号。
对于UE U2,在步骤S20中发送第一信息,在步骤S21中接收第一信令,在步骤S22中接收第二信令,在步骤S23中接收第一配置信息,在 步骤S24中在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号。
实施例5中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个;所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分;所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个子实施例,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
作为一个子实施例,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
作为一个子实施例,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
作为一个子实施例,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。作为一个子实施例,所述第一信令是RRC(Radio Resource Control,无线资源控制)信令,所述第二信令是物理层信令。
作为该子实施例的一个附属实施例,所述第二信令是DL授权 (Grant)。
作为一个子实施例,所述第一信令和所述第二信令均是DL授权。
作为一个子实施例,所述第一无线信号对应的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个子实施例,所述第二无线信号对应的传输信道是DL-SCH。
作为一个子实施例,所述第一无线信号在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为一个子实施例,所述第一无线信号在sPDSCH(Shortened PDSCH,短物理下行共享信道)上传输。
作为一个子实施例,所述第二无线信号在PDSCH上传输。
作为一个子实施例,所述第二无线信号在sPDSCH上传输。
实施例6
实施例6示例了一个的第一时间窗的示意图。如附图6所示,图中粗线框部分对应第二时间窗所占据的时域资源。所述第二时间窗是所述第一时域资源池与所述第一时间窗在时域的重叠部分。图中所示的第一时域资源占据所述第二时间窗的部分时域资源。
作为一个子实施例,所述第一时域资源池是可配置的。
作为一个子实施例,所述第一时域资源池在时域是周期分布的。
作为一个子实施例,所述第一时间窗在时域的持续时间不大于1ms(毫秒)。
作为一个子实施例,所述第一时域资源在所述第二时间窗中的位置由{第一信令,第二信令}中的之一指示。所述第一信令和所述第二信令中的至少之一是物理层信令。
作为一个子实施例,所述第二时间窗中是否包括所述第一时域资源由{第一信令,第二信令}中的之一指示。所述第一信令和所述第二信令中的至少之一是物理层信令。
作为一个子实施例,第一无线信号在所述第一时域资源上被第一天线端口组发送,第二无线信号在所述第二时域资源上被第二天线端口组发送。所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口。所述P1和所述P2分别是正整数。所述P1个天线端口属于所述P2个天线端口。
实施例7
实施例7示例了另一个的第一时间窗的示意图。如附图7所示,图中粗线框部分对应第二时间窗所占据的时域资源。所述第二时间窗是所述第一时域资源池与所述第一时间窗在时域的重叠部分。图中所示的第一时域资源占据所述第二时间窗的全部时域资源。
作为一个子实施例,所述第一时域资源池是可配置的。
作为一个子实施例,所述第一时域资源池在时域是周期分布的。
作为一个子实施例,所述第一时间窗在时域的持续时间不大于1ms(毫秒)。
作为一个子实施例,所述第二时间窗中是否包括所述第一时域资源由{第一信令,第二信令}中的之一指示。所述第一信令和所述第二信令中的至少之一是物理层信令。
实施例8
实施例8示例了一个UE中的处理装置的结构框图,如附图8所示。附图8中,UE处理装置800主要由第一处理模块801和第一接收模块802组成。
-第一处理模块801,接收第一配置信息;
-第一接收模块802,在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;
实施例8中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV};所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;所述第一天线端口组和所述第二天线端口组中的所述天线端口不完全相同。
作为一个实施例,所述第一处理模块801还接收第一信令和接收第二信令;所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,所述第一处理模块801还发送第一信息;所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个实施例,所述第一处理模块801包括实施例4中的{接收器/发射器456、接收处理器452、发射处理器455、控制器/处理器490}。
作为一个实施例,所述第一接收模块802包括实施例4中的{接收器456、接收处理器452、控制器/处理器490}中的至少前二者。
实施例9
实施例9示例了一个基站设备中的处理装置的结构框图,如附图9所示。附图9中,基站设备处理装置900主要由第二处理模块901和第一发送模块902组成。
-第二处理模块901,发送第一配置信息;
-第一发送模块902,在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;
实施例9中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV};所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
作为一个实施例,所述第二处理模块901还发送第一信令和发送第二信令;所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
作为一个实施例,所述第二处理模块901还接收第一信息;所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
作为一个实施例,所述第二处理模块901包括实施例4中的{发射器 /接收器416、发射处理器415、接收处理器412、控制器/处理器440}中的至少前三者。
作为一个实施例,所述第一发送模块902包括实施例4中的{发射器416、发射处理器415、控制器/处理器440}中的至少前二者。
实施例10
实施例10示例了在一个PRB中的资源分配的示意图,如附图10所示。附图10中,灰色填充的方格是分配给PDCCH(Physical Downlink Control Channel,物理下行控制信道)的RE(Resource Element,资源粒子),点填充的方格是第一子无线信号在一个PRB中占用的RE,空白方格是第二子无线信号在一个PRB中占用的RE,斜线填充的方格是本申请中的所述P1个RS端口在一个PRB中所占用的RE,交叉线填充的方格是本申请中的所述P2个RS端口在一个PRB中所占用的RE。所述第一子无线信号和所述P1个RS端口组成本申请中的第一无线信号,所述第二子无线信号和所述P2个RS端口组成本申请中的第二无线信号。
实施例10中,本申请中的所述第一时间资源包括OFDM符号{3,4,5,6,7,12,13}。第三时间资源包括{8,9,10,11}。
作为实施例10的子实施例1,本申请中的所述第一时间资源是所述第三时间资源。
作为实施例10的子实施例2,本申请中的所述第一时间资源是所述第三时间资源的子集,由本申请中的所述第二信令指示。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成 本平板电脑等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包括在本申请的保护范围之内。

Claims (16)

  1. 一种被用于动态调度的UE中的方法,其特征在于包括:
    -接收第一配置信息,
    -在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;
    其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
  2. 根据权利要求1所述的方法,其特征在于包括:
    -接收第一信令,
    -接收第二信令;
    其中,所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于包括:
    -发送第一信息;
    其中,所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被 所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
  7. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
  8. 一种被用于动态调度的基站中的方法,其特征在于包括:
    -发送第一配置信息,
    -在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号;
    其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
  9. 根据权利要求8所述的方法,其特征在于包括:
    -发送第一信令,
    -发送第二信令;
    其中,所述第一信令被用于确定{第一时域资源池,所述第一天线端口组}中的至少前者;所述第二信令被用于确定{第一时间窗,所述第二天线端口组}中的至少前者,所述第一时域资源属于所述第一时域资源池和所述第一时间窗的重叠部分。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一无线信号包括P1个RS端口,所述P1个RS端口分别被所述P1个天线端口 发送;所述第二无线信号包括P2个RS端口,所述P2个RS端口分别被所述P2个天线端口发送。
  11. 根据权利要求8至10中任一权利要求所述的方法,其特征在于包括:
    -接收第一信息;
    其中,所述第一信息被用于确定P3个天线端口,所述P3个天线端口是所述P1个天线端口的子集,所述P3是小于或者等于所述P1的正整数。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,所述第一无线信号包括P1个子无线信号,所述P1个子无线信号分别被所述P1个天线端口发送;所述P1个子无线信号携带的信息是相同的,所述P1个子无线信号中任意两个所述子无线信号所占用的时域资源是正交的。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,所述第一信令是物理层信令,所述第一信令包括K1个信息比特;所述K1是大于1的正整数;所述K1的值与所述第一时间窗的时域位置相关。
  14. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,所述第一信令是高层信令,所述第二信令是物理层信令,所述第二信令包括K2个信息比特;所述K2是大于1的正整数;所述K2的值与所述第一时间窗的时域位置相关。
  15. 一种被用于动态调度的用户设备,其特征在于包括:
    -第一处理模块,接收第一配置信息;
    -第一接收模块,在第一时域资源和第二时域资源中分别接收第一无线信号和第二无线信号;
    其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少 存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
  16. 一种被用于动态调度的基站设备,其特征在于包括:
    -第二处理模块,发送第一配置信息;
    -第一发送模块,在第一时域资源和第二时域资源中分别发送第一无线信号和第二无线信号。
    其中,第一比特块被用于生成所述第一无线信号和所述第二无线信号;所述第一配置信息应用于所述第一无线信号和所述第二无线信号,所述第一配置信息包括{MCS,HARQ进程号,NDI,RV}中的至少之一;所述第一无线信号被第一天线端口组发送,所述第二无线信号被第二天线端口组发送;所述第一天线端口组和所述第二天线端口组分别包括P1个天线端口和P2个天线端口;所述P1和所述P2分别是正整数;至少存在一个所述天线端口只属于{所述第一天线端口组,所述第二天线端口组}中的一个。
PCT/CN2017/108489 2016-11-16 2017-10-31 一种被用于用户设备和基站中的方法和装置 WO2018090816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/412,391 US10785785B2 (en) 2016-11-16 2019-05-14 Method and device in UE and base station
US16/941,558 US11343834B2 (en) 2016-11-16 2020-07-29 Method and device in UE and base station performing beam sweeping based transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611022276.5A CN108076520B (zh) 2016-11-16 2016-11-16 一种被用于ue和基站中的方法和设备
CN201611022276.5 2016-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/412,391 Continuation US10785785B2 (en) 2016-11-16 2019-05-14 Method and device in UE and base station

Publications (1)

Publication Number Publication Date
WO2018090816A1 true WO2018090816A1 (zh) 2018-05-24

Family

ID=62146116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108489 WO2018090816A1 (zh) 2016-11-16 2017-10-31 一种被用于用户设备和基站中的方法和装置

Country Status (3)

Country Link
US (2) US10785785B2 (zh)
CN (2) CN108076520B (zh)
WO (1) WO2018090816A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855416B2 (en) 2017-11-16 2020-12-01 Mediatek Inc. Segmentation of control payload for channel encoding
US20210219312A1 (en) * 2020-01-14 2021-07-15 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108076520B (zh) * 2016-11-16 2020-02-14 上海朗帛通信技术有限公司 一种被用于ue和基站中的方法和设备
CN110351848B (zh) * 2018-04-04 2021-12-03 华为技术有限公司 一种时域资源分配方法及装置
CN110545154B (zh) * 2018-05-28 2020-12-25 华为技术有限公司 信号处理的方法和装置
US11271828B2 (en) 2018-11-15 2022-03-08 Citrix Systems, Inc. Real-time scalable virtual session and network analytics
CN113839748B (zh) * 2019-03-14 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11489779B2 (en) 2019-05-20 2022-11-01 Citrix Systems, Inc. Systems and methods for managing streams of packets via intermediary devices
WO2021151389A1 (zh) * 2020-01-30 2021-08-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113259066B (zh) * 2020-02-08 2022-07-08 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115225235A (zh) * 2020-02-04 2022-10-21 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484520A (zh) * 2009-09-14 2012-05-30 Lg电子株式会社 在mimo无线通信系统中发射下行链路信号的方法和装置
CN102754364A (zh) * 2010-02-11 2012-10-24 三星电子株式会社 用于在无线通信系统中指示解调参考信号天线端口的方法
US20140211873A1 (en) * 2013-01-25 2014-07-31 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
CN105792359A (zh) * 2014-12-22 2016-07-20 华为技术有限公司 资源分配方法、数据映射方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834629B (zh) * 2010-04-06 2014-10-22 中兴通讯股份有限公司 一种指示传输参数的方法及系统
KR20120129245A (ko) * 2011-05-19 2012-11-28 주식회사 팬택 연계된 다중전송단 방식을 지원하는 제어정보의 전송장치 및 방법
WO2014205699A1 (zh) * 2013-06-26 2014-12-31 华为技术有限公司 参考信号的传输方法及装置
EP3127385B1 (en) * 2014-03-31 2019-03-13 Panasonic Intellectual Property Corporation of America Interference parameter signaling for efficient interference cancellation and suppression
CN105429683B (zh) * 2014-09-17 2019-08-20 上海朗帛通信技术有限公司 一种3d mimo传输方法和装置
CN114221685B (zh) * 2015-09-18 2024-01-26 三星电子株式会社 用于在无线通信系统中发送和接收反馈信号的方法和设备
EP3414960A4 (en) * 2016-03-30 2019-10-23 Nec Corporation METHOD AND DEVICES FOR SENDING AND RECEIVING REFERENCE SIGNALS
CN108076520B (zh) * 2016-11-16 2020-02-14 上海朗帛通信技术有限公司 一种被用于ue和基站中的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484520A (zh) * 2009-09-14 2012-05-30 Lg电子株式会社 在mimo无线通信系统中发射下行链路信号的方法和装置
CN102754364A (zh) * 2010-02-11 2012-10-24 三星电子株式会社 用于在无线通信系统中指示解调参考信号天线端口的方法
US20140211873A1 (en) * 2013-01-25 2014-07-31 Lg Electronics Inc. Method and apparatus for reporting downlink channel state
CN105792359A (zh) * 2014-12-22 2016-07-20 华为技术有限公司 资源分配方法、数据映射方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855416B2 (en) 2017-11-16 2020-12-01 Mediatek Inc. Segmentation of control payload for channel encoding
TWI719673B (zh) * 2017-11-16 2021-02-21 聯發科技股份有限公司 控制有效負載之分段方法、裝置和電腦可讀介質
US20210219312A1 (en) * 2020-01-14 2021-07-15 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US11711837B2 (en) * 2020-01-14 2023-07-25 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication

Also Published As

Publication number Publication date
US11343834B2 (en) 2022-05-24
CN108076520A (zh) 2018-05-25
CN108076520B (zh) 2020-02-14
CN111182641B (zh) 2022-11-25
US10785785B2 (en) 2020-09-22
US20200359396A1 (en) 2020-11-12
CN111182641A (zh) 2020-05-19
US20190268921A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018090816A1 (zh) 一种被用于用户设备和基站中的方法和装置
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
WO2019113766A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
CN112953697B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11546110B2 (en) Method and device for multi-antenna transmission in user equipment (UE) and base station
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10965357B2 (en) Method and device in first node and base station used for wireless communication
WO2018120803A1 (zh) 一种被用于多天线传输的ue、基站中的方法和装置
WO2019041146A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2020181994A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11109381B2 (en) Method and device for wireless communication in UE and base station
US20240137962A1 (en) Method and device in ue and base station for wireless communication
WO2019028687A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2019170058A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112954803A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110072274B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
CN110771215B (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN113395769A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872275

Country of ref document: EP

Kind code of ref document: A1