WO2020181994A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020181994A1
WO2020181994A1 PCT/CN2020/077000 CN2020077000W WO2020181994A1 WO 2020181994 A1 WO2020181994 A1 WO 2020181994A1 CN 2020077000 W CN2020077000 W CN 2020077000W WO 2020181994 A1 WO2020181994 A1 WO 2020181994A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
parameter group
signaling
wireless signal
group
Prior art date
Application number
PCT/CN2020/077000
Other languages
English (en)
French (fr)
Inventor
武露
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020181994A1 publication Critical patent/WO2020181994A1/zh
Priority to US17/472,700 priority Critical patent/US20220046674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to a transmission method and device in a wireless communication system, in particular to a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable and Low Latency Communication, ultra-high reliability and ultra-low latency communication
  • 3GPP 3rd Generation Partner Project
  • Low target BLER (10 ⁇ -5) and low latency (1ms) requirements for URLLC services have been targeted, and grant free is supported (Grant Free)
  • Uplink transmission is the uplink transmission based on the Configured Grant.
  • the inventor found through research that for transmission based on semi-persistent scheduling, dynamic changes in channel and/or interference may affect the reliability of transmission, and how to improve the reliability of transmission based on semi-persistent scheduling is a key issue that needs to be studied.
  • This application discloses a method for wireless communication in user equipment, which is characterized in that it includes:
  • the initial sending time of the first signaling is later than the initial sending time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group is used to generate For the first wireless signal, the target parameter group is the first parameter group or the second parameter group; the first condition set is used to determine from the first parameter group and the second parameter group The target parameter group; the operation is sending, or the operation is receiving.
  • the problem to be solved by this application is: For transmission based on semi-persistent scheduling, dynamic changes in channel and/or interference may affect the reliability of transmission, and how to improve the reliability of transmission based on semi-persistent scheduling is required A key issue for research.
  • the problem to be solved by this application is: For transmission based on semi-persistent scheduling, dynamic changes in channel and/or interference may affect the reliability of transmission, and how to dynamically adjust transmission parameters to improve transmission reliability needs to be studied A key issue for
  • the essence of the above method is that the first wireless signal is transmission based on semi-persistent scheduling, such as uplink transmission based on configuration grant, SPS (Semi-persistent scheduling) transmission; the second wireless signal is based on Dynamic scheduling (Dynamic Scheduling) transmission; the first parameter group and the second parameter group are the same type of transmission parameters, according to the first set of conditions to determine whether the transmission parameters based on semi-persistent scheduling is replaced by transmission based on dynamic scheduling Send parameters.
  • semi-persistent scheduling such as uplink transmission based on configuration grant, SPS (Semi-persistent scheduling) transmission
  • the second wireless signal is based on Dynamic scheduling (Dynamic Scheduling) transmission
  • the first parameter group and the second parameter group are the same type of transmission parameters, according to the first set of conditions to determine whether the transmission parameters based on semi-persistent scheduling is replaced by transmission based on dynamic scheduling Send parameters.
  • the advantage of adopting the above method is that the transmission parameters of transmission based on
  • the above method is characterized in that when at least one condition in the first condition set is not satisfied, the target parameter group is the first parameter group; when the first condition set When all the conditions in are met, the target parameter group is the second parameter group.
  • the advantage of the above method is that if a transmission based on dynamic scheduling satisfies all the conditions in the first condition set, the transmission parameters of the transmission based on dynamic scheduling are applicable to the transmission parameters of transmission based on semi-persistent scheduling.
  • Transmission parameters based on semi-persistent scheduling have been dynamically adjusted to better adapt to dynamic changes in channels and/or interference, while avoiding additional dynamic signaling overhead.
  • the above method is characterized in that the first information carries a first identifier, the first signaling carries a second identifier, and the first identifier and the second identifier are different.
  • the essence of the above method is that the first identifier indicates that the first wireless signal is transmitted based on semi-persistent scheduling, and the second identifier indicates that the second wireless signal is transmitted based on dynamic scheduling.
  • the above method is characterized in that it includes:
  • the initial transmission time of the second information is earlier than the initial transmission time of the first signaling; the second information is used to determine M time windows, any two of the M time windows The time windows are all orthogonal, and M is a positive integer greater than 1.
  • the first time window includes the time domain resources occupied by the first time-frequency resource, and the first time window is among the M time windows A window of time.
  • the essence of the above method is that the M time windows include time domain resources that can be occupied by transmission based on semi-persistent scheduling.
  • the above method is characterized in that the first antenna port group includes the transmitting antenna port of the first wireless signal, and the second antenna port group includes the transmitting antenna port of the second wireless signal;
  • a condition set includes that the first antenna port group and the second antenna port group are spatially related.
  • the above method is characterized in that the reference time domain resource includes the time domain resource occupied by the first signaling, or the reference time domain resource includes the time domain occupied by the second time-frequency resource Resource; the time domain resource occupied by the first time-frequency resource is used to determine a target time domain resource set; the first condition set includes that the reference time domain resource and the target time domain resource set are non-orthogonal .
  • the above method is characterized in that the target parameter group is the second parameter group, the first signaling is any one of K signaling, and the K signaling All satisfy the first set of conditions, and the first signaling is a signaling that is closest to the first time-frequency resource at the initial transmission time among the K signaling; K is a positive integer greater than 1.
  • the above method is characterized in that it includes:
  • the initial transmission time of the K signaling is later than the initial transmission time of the first information; the K signaling is used to determine K time-frequency resources, and the K signaling Are respectively used to determine K parameter groups; the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is one of the K parameter groups ;
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively used by the K-1 signaling Let the determined time-frequency resources in the K time-frequency resources; K-1 parameter groups are respectively parameter groups in the K parameter groups determined by the K-1 signaling, and K-1 parameter groups are respectively used to generate the K-1 wireless signals; the operation is sending, or the operation is receiving.
  • This application discloses a method in a base station device for wireless communication, which is characterized in that it includes:
  • the initial sending time of the first signaling is later than the initial sending time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group is used to generate For the first wireless signal, the target parameter group is the first parameter group or the second parameter group; the first condition set is used to determine from the first parameter group and the second parameter group The target parameter group; the execution is receiving, or the execution is sending.
  • the above method is characterized in that when at least one condition in the first condition set is not satisfied, the target parameter group is the first parameter group; when the first condition set When all the conditions in are met, the target parameter group is the second parameter group.
  • the above method is characterized in that the first information carries a first identifier, the first signaling carries a second identifier, and the first identifier and the second identifier are different.
  • the above method is characterized in that it includes:
  • the initial transmission time of the second information is earlier than the initial transmission time of the first signaling; the second information is used to determine M time windows, any two of the M time windows The time windows are all orthogonal, and M is a positive integer greater than 1.
  • the first time window includes the time domain resources occupied by the first time-frequency resource, and the first time window is among the M time windows A window of time.
  • the above method is characterized in that the first antenna port group includes the transmitting antenna port of the first wireless signal, and the second antenna port group includes the transmitting antenna port of the second wireless signal;
  • a condition set includes that the first antenna port group and the second antenna port group are spatially related.
  • the above method is characterized in that the reference time domain resource includes the time domain resource occupied by the first signaling, or the reference time domain resource includes the time domain occupied by the second time-frequency resource Resource; the time domain resource occupied by the first time-frequency resource is used to determine a target time domain resource set; the first condition set includes that the reference time domain resource and the target time domain resource set are non-orthogonal .
  • the above method is characterized in that the target parameter group is the second parameter group, the first signaling is any one of K signaling, and the K signaling All satisfy the first set of conditions, and the first signaling is a signaling that is closest to the first time-frequency resource at the initial transmission time among the K signaling; K is a positive integer greater than 1.
  • the above method is characterized in that it includes:
  • the initial transmission time of the K signaling is later than the initial transmission time of the first information; the K signaling is used to determine K time-frequency resources, and the K signaling Are respectively used to determine K parameter groups; the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is one of the K parameter groups ;
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively used by the K-1 signaling Let the determined time-frequency resources in the K time-frequency resources; K-1 parameter groups are respectively parameter groups in the K parameter groups determined by the K-1 signaling, and The K-1 parameter groups are respectively used to generate the K-1 wireless signals; the execution is reception, or the execution is transmission.
  • This application discloses a user equipment for wireless communication, which is characterized in that it includes:
  • first receiver receiving first information, the first information is used to determine the first time-frequency resource and the first parameter group; receiving the first signaling, the first signaling is used to determine the second time Frequency resource and the second parameter group;
  • the initial sending time of the first signaling is later than the initial sending time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group is used to generate For the first wireless signal, the target parameter group is the first parameter group or the second parameter group; the first condition set is used to determine from the first parameter group and the second parameter group The target parameter group; the operation is sending, or the operation is receiving.
  • This application discloses a base station device for wireless communication, which is characterized in that it includes:
  • the second transmitter sends first information, which is used to determine the first time-frequency resource and the first parameter group; sends first signaling, which is used to determine the second time Frequency resource and the second parameter group;
  • -A second transceiver which executes a first wireless signal in the first time-frequency resource; executes a second wireless signal in the second time-frequency resource;
  • the initial sending time of the first signaling is later than the initial sending time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group is used to generate For the first wireless signal, the target parameter group is the first parameter group or the second parameter group; the first condition set is used to determine from the first parameter group and the second parameter group The target parameter group; the execution is receiving, or the execution is sending.
  • this application has the following advantages:
  • transmission parameters based on semi-persistent scheduling can be dynamically adjusted while avoiding additional dynamic signaling overhead.
  • Figure 1 shows a flowchart of first information, first signaling, first wireless signal, and second wireless signal according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of an NR (New Radio) node and UE according to an embodiment of the present application
  • Fig. 5 shows a flow chart of wireless transmission according to an embodiment of the present application
  • Fig. 6 shows a flow chart of wireless transmission according to another embodiment of the present application.
  • Fig. 7 shows a schematic diagram of a first condition set used to determine a target parameter group from the first parameter group and the second parameter group according to an embodiment of the present application
  • Fig. 8 shows a schematic diagram of first information and first signaling according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of a first condition set according to an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a first condition set according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the relationship between the first condition set and the reference time domain resource according to an embodiment of the present application
  • FIG. 12 shows a schematic diagram of the relationship between the first condition set and the reference time domain resource according to another embodiment of the present application.
  • FIG. 13 shows a schematic diagram of the relationship between the first condition set and the reference time domain resource according to another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of the relationship between the first signaling and K signaling according to an embodiment of the present application
  • 15A-15C respectively show a schematic diagram of the spatial correlation between a first given antenna port group and a second given antenna port group according to an embodiment of the present application;
  • Fig. 16 shows a structural block diagram of a processing device in a UE according to an embodiment of the present application
  • Fig. 17 shows a structural block diagram of a processing device in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of first information, first signaling, first wireless signal, and second wireless signal, as shown in FIG. 1.
  • each box represents a step.
  • the order of the steps in the box does not represent the time sequence relationship between the characteristics of each step.
  • the user equipment in this application receives first information in step 101, and the first information is used to determine the first time-frequency resource and the first parameter group; in step 102, the first information is received.
  • Signaling the first signaling is used to determine the second time-frequency resource and the second parameter group; in step 103, the first wireless signal is operated in the first time-frequency resource; in step 104, in the The second wireless signal is operated in the second time-frequency resource; wherein, the initial transmission time of the first signaling is later than the initial transmission time of the first information; the second parameter group is used to generate the
  • a target parameter set is used to generate the first wireless signal, and the target parameter set is the first parameter set or the second parameter set; the first condition set is used to generate the first wireless signal from the The target parameter group is determined in a parameter group and the second parameter group; the operation is sending, or the operation is receiving.
  • the operation is sending.
  • the operation is receiving.
  • the first information is semi-statically configured.
  • the first information is carried by higher layer signaling.
  • the first information is carried by RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first information is carried by MAC CE signaling.
  • the first information includes one or more IEs (Information Elements) in one RRC signaling.
  • the first information includes all or part of an IE in an RRC signaling.
  • the first information includes a partial field of an IE in an RRC signaling.
  • the first information includes multiple IEs in one RRC signaling.
  • the operation is sending, and the first information includes part or all of the ConfiguredGrantConfig IE in RRC signaling.
  • the ConfiguredGrantConfig IE please refer to section 6.3.2 of 3GPP TS38.331 .
  • the first information is dynamically configured.
  • the first information is carried by physical layer signaling.
  • the first information is carried by DCI signaling.
  • the operation is sending, and the first information is carried by DCI signaling of UpLink Grant.
  • the operation is receiving, and the first information is carried by DCI signaling of DownLink Grant.
  • the CRC (Cyclic Redundancy Check) bit sequence of the DCI signaling carrying the first information is controlled by CS (Configured Scheduling)-RNTI (Radio Network Temporary Identifier, wireless network Tentative identification) scrambling.
  • CS Configured Scheduling
  • RTI Radio Network Temporary Identifier, wireless network Tentative identification
  • the operation is sending, and the DCI signaling carrying the first information is DCI format 0_0.
  • DCI format 0_0 For the specific definition of the DCI format 0_0, refer to section 7.3.1.1 in 3GPP TS38.212.
  • the operation is sending, and the DCI signaling carrying the first information is DCI format 0_1.
  • DCI format 0_1 For the specific definition of the DCI format 0_1, refer to section 7.3.1.1 in 3GPP TS38.212.
  • the operation is receiving, and the DCI signaling carrying the first information is DCI format 1_0.
  • DCI format 1_0 For the specific definition of the DCI format 1_0, refer to section 7.3.1.2 in 3GPP TS38.212.
  • the operation is receiving, and the DCI signaling carrying the first information is DCI format 1_1, and the specific definition of the DCI format 1_1 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the first information is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH (Physical Downlink Control CHannel, physical downlink control channel).
  • the downlink physical layer control channel is sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is NR-PDCCH (New Radio PDCCH, New Radio PDCCH).
  • the downlink physical layer control channel is NB-PDCCH (Narrow Band PDCCH, Narrow Band PDCCH).
  • the first information is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data.
  • the downlink physical layer data channel is PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • the downlink physical layer data channel is sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH, New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, narrowband PDSCH).
  • the first time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain.
  • the first time-frequency resource includes one or more continuous multi-carrier symbols in the time domain.
  • the first time-frequency resource includes a positive integer number of subcarriers in the frequency domain.
  • the number of subcarriers included in the first time-frequency resource in the frequency domain is equal to a positive integer multiple of 12.
  • the first time-frequency resource includes a positive integer number of RBs (Resource Block, resource block) in the frequency domain.
  • the second time-frequency resource includes a positive integer number of multi-carrier symbols in the time domain.
  • the second time-frequency resource includes one or more continuous multi-carrier symbols in the time domain.
  • the second time-frequency resource includes a positive integer number of subcarriers in the frequency domain.
  • the number of subcarriers included in the second time-frequency resource in the frequency domain is equal to a positive integer multiple of 12.
  • the second time-frequency resource includes a positive integer number of RBs in the frequency domain.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is an SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is an FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbol.
  • FBMC Breast Bank Multi Carrier, filter bank multi-carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix).
  • the start time of sending the first signaling is later than the end sending time of the first information.
  • the start time of sending the first signaling is earlier than the start time of sending the first time-frequency resource.
  • the stop sending time of the first signaling is earlier than the start sending time of the first time-frequency resource.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI signaling.
  • the operation is receiving, and the first signaling is DCI signaling of DownLink Grant.
  • the operation is sending, and the first signaling is DCI signaling of UpLink Grant.
  • the CRC bit sequence of the first signaling is scrambled by C (Cell)-RNTI (Radio Network Temporary Identifier, Radio Network Temporary Identifier).
  • C (Cell)-RNTI Radio Network Temporary Identifier, Radio Network Temporary Identifier
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is PDCCH.
  • the downlink physical layer control channel is sPDCCH.
  • the downlink physical layer control channel is NR-PDCCH.
  • the downlink physical layer control channel is an NB-PDCCH.
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the operation is receiving, the first signaling is DCI format 1_0, and the specific definition of DCI format 1_0 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the operation is receiving, the first signaling is DCI format 1_1, and the specific definition of DCI format 1_1 can be found in section 7.3.1.2 of 3GPP TS38.212.
  • the operation is sending, the first signaling is DCI format 0_0, and the specific definition of DCI format 0_0 can be found in section 7.3.1.1 in 3GPP TS38.212.
  • the operation is sending, the first signaling is DCI format 0_1, and the specific definition of DCI format 0_1 can be found in section 7.3.1.1 of 3GPP TS38.212.
  • the first information indicates the first time-frequency resource and the first parameter group.
  • the first information indicates time domain resources occupied by the first time-frequency resource, frequency domain resources occupied by the first time-frequency resource, and the first parameter group.
  • the operation is sending, the first information is carried by RRC signaling, and the first information includes the timeDomainAllocation field and the frequencyDomainAllocation field in the ConfiguredGrantConfig IE, and the timeDomainAllocation field indicates the The time domain resource occupied by the first time-frequency resource, the frequencyDomainAllocation field indicates the frequency domain resource occupied by the first time-frequency resource, the ConfiguredGrantConfig IE, the timeDomainAllocation field and the frequencyDomainAllocation field
  • the first information is carried by RRC signaling
  • the first information includes the timeDomainAllocation field and the frequencyDomainAllocation field in the ConfiguredGrantConfig IE
  • the timeDomainAllocation field indicates the The time domain resource occupied by the first time-frequency resource
  • the frequencyDomainAllocation field indicates the frequency domain resource occupied by the first time-frequency resource
  • the ConfiguredGrantConfig IE the timeDomainAllocation field and the frequencyDomainAllocation field
  • the first information is carried by DCI signaling, and the first information includes the Time domain resource assignment field and the Frequency domain resource assignment field.
  • the Time domain resource assignment field indicates the first information.
  • the time domain resource occupied by a time-frequency resource, the Frequency domain resource assignment field indicates the frequency domain resource occupied by the first time-frequency resource, the Time domain resource assignment domain and the Frequency domain resource
  • the assignment field refers to section 7.3.1 in 3GPP TS38.212.
  • the first information is carried by DCI signaling
  • the first parameter group includes TCI
  • the first information includes the Transmission configuration indication field
  • the specific definition of the Transmission configuration indication field See section 7.3.1 in 3GPP TS38.212.
  • the first information is carried by DCI signaling
  • the first parameter group includes PMI
  • the first information includes the Precoding information and number of layers field, and the Precoding information and number
  • the Precoding information and number For the specific definition of the layers field, refer to section 7.3.1 in 3GPP TS38.212.
  • the first parameter group includes PMI
  • the operation is sending
  • the first information is carried by RRC signaling
  • the first information includes the precodingAndNumberOfLayers field in the ConfiguredGrantConfig IE, so
  • the ConfiguredGrantConfig IE and the precodingAndNumberOfLayers field refer to section 6.3.2 of 3GPP TS38.331.
  • the first information is carried by DCI signaling
  • the first parameter group includes SRI
  • the first information includes the SRS resource indicator field
  • the specific definition of the SRS resource indicator field See section 7.3.1 in 3GPP TS38.212.
  • the first parameter group includes SRI
  • the operation is sending
  • the first information is carried by RRC signaling
  • the first information includes the srs-ResourceIndicator field in the ConfiguredGrantConfig IE
  • the ConfiguredGrantConfig IE For specific definitions of the ConfiguredGrantConfig IE and the srs-ResourceIndicator field, refer to section 6.3.2 in 3GPP TS38.331.
  • the first information is carried by DCI signaling
  • the first parameter group includes RI
  • the first information includes the Precoding information and number of layers field, and the Precoding information and number
  • the Precoding information and number For the specific definition of the layers field, refer to section 7.3.1 in 3GPP TS38.212.
  • the first parameter group includes RI
  • the operation is sending
  • the first information is carried by RRC signaling
  • the first information includes the precodingAndNumberOfLayers field in the ConfiguredGrantConfig IE, so
  • the ConfiguredGrantConfig IE and the precodingAndNumberOfLayers field refer to section 6.3.2 of 3GPP TS38.331.
  • the first information is carried by DCI signaling
  • the first parameter group includes RI
  • the first information includes the Antenna port(s) field
  • the Antenna port(s) For the specific definition of the domain, refer to Chapter 7.3.1 in 3GPP TS38.212.
  • the first information is carried by DCI signaling
  • the first parameter group includes an antenna port group
  • the antenna port group is composed of a positive integer number of antenna ports
  • the first information Including the Antenna port(s) field.
  • Antenna port(s) field refers to section 7.3.1 of 3GPP TS38.212.
  • the first parameter group includes an antenna port group, the antenna port group is composed of a positive integer number of antenna ports, the operation is sending, and the first information is carried by RRC signaling
  • the first information includes the antennaPort field in the ConfiguredGrantConfig IE, and the specific definitions of the ConfiguredGrantConfig IE and the antennaPort field refer to section 6.3.2 of 3GPP TS38.331.
  • the first information is carried by DCI signaling
  • the first parameter group includes MCS
  • the first information includes the Modulation and coding scheme field
  • the value of the Modulation and coding scheme field is
  • the value of the Modulation and coding scheme field is
  • the first parameter group includes MCS
  • the operation is sending
  • the first information is carried by RRC signaling
  • the first information includes the mcsAndTBS field in the ConfiguredGrantConfig IE, so
  • the ConfiguredGrantConfig IE and the mcsAndTBS domain refer to section 6.3.2 of 3GPP TS38.331.
  • the first signaling indicates the second time-frequency resource and the second parameter group.
  • the first signaling indicates the time domain resource occupied by the second time-frequency resource, the frequency domain resource occupied by the second time-frequency resource, and the second parameter group.
  • the first signaling includes a Time domain resource assignment field and a Frequency domain resource assignment field, and the Time domain resource assignment field indicates the time occupied by the first time-frequency resource.
  • Domain resource the Frequency domain resource assignment field indicates the frequency domain resource occupied by the first time-frequency resource.
  • the first parameter group includes TCI
  • the first signaling includes the Transmission configuration indication field.
  • the Transmission configuration indication field refers to Article 7.3 in 3GPP TS38.212. 1 chapter.
  • the first parameter group includes PMI
  • the first signaling includes Precoding information and number of layers fields.
  • Precoding information and number of layers fields see 3GPP TS38. Section 7.3.1 in 212.
  • the first parameter group includes SRI
  • the first signaling includes the SRS resource indicator field.
  • SRS resource indicator field For the specific definition of the SRS resource indicator field, please refer to Article 7.3 of 3GPP TS38.212. 1 chapter.
  • the first parameter group includes RI
  • the first signaling includes the Precoding information and number of layers field.
  • the Precoding information and number of layers field see 3GPP TS38. Section 7.3.1 in 212.
  • the first parameter group includes RI
  • the first signaling includes the Antenna port(s) field.
  • Antenna port(s) field refers to 3GPP TS38.212 Chapter 7.3.1.
  • the first parameter group includes an antenna port group
  • the antenna port group is composed of a positive integer number of antenna ports
  • the first signaling includes the Antenna port(s) field
  • the Antenna port(s) field please refer to section 7.3.1 of 3GPP TS38.212.
  • the first parameter group includes MCS
  • the first signaling includes Modulation and coding scheme fields
  • the specific definition of the Modulation and coding scheme fields can be found in section 3GPP TS38.212. Section 7.3.1.
  • the first parameter group includes multi-antenna-related transmission, multi-antenna-related reception, TCI (Transmission Configuration Indication), PMI (Precoding Matrix Indicator), and SRI (Sounding Matrix Indicator).
  • TCI Transmission Configuration Indication
  • PMI Precoding Matrix Indicator
  • SRI Sounding Matrix Indicator.
  • RI Rank Indicator, rank indicator
  • MCS Modulation and coding scheme, modulation coding scheme
  • the second parameter group includes multi-antenna related transmission, multi-antenna related reception, TCI (Transmission Configuration Indication), PMI (Precoding Matrix Indicator), SRI (Sounding Reference Signal Resource Indicator, measurement reference signal resource indicator), RI (Rank Indicator), MCS (Modulation and coding scheme, modulation coding scheme) and at least one of the antenna port group; the second parameter group and all
  • the first parameter group includes parameters of the same type.
  • the first parameter group includes multi-antenna related transmission.
  • the first parameter group includes multi-antenna related reception.
  • the first parameter group includes TCI
  • the second parameter group includes TCI
  • the first parameter group includes PMI
  • the second parameter group includes PMI
  • the first parameter group includes SRI
  • the second parameter group includes SRI
  • the first parameter group includes RI
  • the second parameter group includes RI
  • the first parameter group includes MCS
  • the second parameter group includes MCS
  • the first parameter group includes an antenna port group
  • the second parameter group includes an antenna port group
  • the antenna port group includes a positive integer number of antenna ports.
  • the multi-antenna-related reception is spatial reception parameters (Spatial Rx parameters).
  • the multi-antenna related reception is a reception beam.
  • the multi-antenna-related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna related reception is to receive an analog beamforming vector.
  • the multi-antenna-related reception is a receive beamforming vector.
  • the multi-antenna-related reception is spatial filtering.
  • the multi-antenna-related transmission is spatial transmission parameters (Spatial Tx parameters).
  • the multi-antenna-related transmission is a transmission beam.
  • the multi-antenna-related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming vector.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the spatial transmission parameters include transmitting antenna port, transmitting antenna port group, transmitting beam, transmitting analog beamforming matrix, transmitting analog beamforming vector, transmitting beamforming matrix, and transmitting beam
  • One or more of shaping vector and transmission spatial filtering include transmitting antenna port, transmitting antenna port group, transmitting beam, transmitting analog beamforming matrix, transmitting analog beamforming vector, transmitting beamforming matrix, and transmitting beam
  • shaping vector and transmission spatial filtering include transmitting antenna port, transmitting antenna port group, transmitting beam, transmitting analog beamforming matrix, transmitting analog beamforming vector, transmitting beamforming matrix, and transmitting beam
  • shaping vector and transmission spatial filtering spatial filtering
  • the spatial receiving parameters include receiving beams, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming matrix, receiving beamforming vector, and receiving spatial filtering (spatial). filtering).
  • the operation is sending, the first information is carried by RRC signaling, and the first wireless signal includes a Type 1 Configured Grant PUSCH (Physical Uplink Shared CHannel, physical uplink sharing). Channel) transmission.
  • Type 1 Configured Grant PUSCH Physical Uplink Shared CHannel, physical uplink sharing). Channel
  • the operation is sending, the first information is carried by DCI signaling, and the first wireless signal includes a Type 2 PUSCH transmission based on a configuration grant (Configured Grant).
  • the operation is receiving, the first information is carried by DCI signaling, and the first wireless signal includes SPS (Semi-persistent Scheduling, semi-persistent scheduling) PDSCH transmission.
  • SPS Semi-persistent Scheduling, semi-persistent scheduling
  • the first wireless signal includes data.
  • the first wireless signal includes data and reference signals.
  • the operation is receiving, and the reference signals included in the first wireless signal include DMRS (DeModulation Reference Signals, demodulation reference signals), and CSI-RS (Channel State Information-Reference). Signal, at least one of channel state information reference signal), PTRS (Phase-tracking reference signal, phase tracking reference signal).
  • DMRS Demodulation Reference Signals
  • demodulation reference signals demodulation reference signals
  • CSI-RS Channel State Information-Reference
  • Signal at least one of channel state information reference signal
  • PTRS Phase-tracking reference signal
  • phase tracking reference signal Phase tracking reference signal
  • the operation is sending, and the reference signal included in the first wireless signal includes at least one of DMRS, SRS (Sounding Reference Signal, sounding reference signal), and PTRS.
  • DMRS Downlink Reference Signal
  • SRS Sounding Reference Signal
  • PTRS PTRS
  • the reference signal included in the first wireless signal includes a DMRS.
  • the operation is receiving, and the reference signal included in the first wireless signal includes a PT-RS.
  • the operation is receiving, and the reference signal included in the first wireless signal includes CSI-RS.
  • the operation is sending, and the reference signal included in the first wireless signal includes an SRS.
  • the transmission channel of the first wireless signal is DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the operation is sending, and the second wireless signal includes scheduled PUSCH transmission.
  • the operation is receiving, and the second wireless signal includes scheduled PDSCH transmission.
  • the second wireless signal includes data.
  • the second wireless signal includes data and reference signals.
  • the operation is receiving, and the reference signal included in the second wireless signal includes at least one of DMRS, CSI-RS, and PTRS.
  • the operation is sending, and the reference signal included in the second wireless signal includes at least one of DMRS, SRS, and PTRS.
  • the reference signal included in the second wireless signal includes a DMRS.
  • the operation is receiving, and the reference signal included in the second wireless signal includes a PT-RS.
  • the operation is receiving, and the reference signal included in the second wireless signal includes CSI-RS.
  • the operation is sending, and the reference signal included in the second wireless signal includes an SRS.
  • the transmission channel of the second wireless signal is DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the operation is receiving, the first parameter group includes multi-antenna-related reception, the second parameter group includes multi-antenna-related reception; the first parameter group includes the multi-antenna correlation The reception of indicates the multi-antenna related reception of the first wireless signal, and the multi-antenna related reception included in the second parameter group indicates the multi-antenna related reception of the second wireless signal.
  • the operation is transmission
  • the first parameter group includes multi-antenna related transmission
  • the second parameter group includes multi-antenna related transmission
  • the first parameter group includes the multi-antenna related transmission
  • the sending of indicates the multi-antenna related sending of the first wireless signal
  • the multi-antenna related sending included in the second parameter group indicates the multi-antenna related sending of the second wireless signal.
  • the operation is receiving, the first parameter group includes TCI, and the second parameter group includes TCI; the TCI included in the first parameter group indicates multiple antennas of the first wireless signal For related reception, the TCI included in the second parameter group indicates multi-antenna related reception of the second wireless signal.
  • the first parameter group includes PMI
  • the second parameter group includes PMI
  • the PMI included in the first parameter group indicates the transmission precoding matrix of the first wireless signal
  • the first parameter group The PMI included in the second parameter group indicates a transmission precoding matrix of the second wireless signal.
  • the operation is sending, the first parameter group includes SRI, and the second parameter group includes SRI; the SRI included in the first parameter group indicates multiple antennas of the first wireless signal For related transmission, the SRI included in the second parameter group indicates multi-antenna related transmission of the second wireless signal.
  • the first parameter group includes RI
  • the second parameter group includes RI
  • the RI included in the first parameter group indicates the number of layers of the first wireless signal
  • the RI included in the second parameter group indicates the number of layers of the second wireless signal.
  • the first parameter group includes MCS
  • the second parameter group includes MCS
  • the MCS included in the first parameter group indicates the modulation order (Modulation Order) of the first wireless signal and Coding rate (Coding Rate)
  • the MCS included in the second parameter group indicates the modulation order and the coding rate of the second wireless signal.
  • the first parameter group includes an antenna port group
  • the second parameter group includes an antenna port group
  • the antenna port group included in the first parameter group indicates a transmitting antenna of the first wireless signal A port group
  • the antenna port group included in the second parameter group indicates a transmitting antenna port group of the second wireless signal.
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is equal to 1.
  • the N is greater than one.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a system network architecture 200 of NR 5G, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced).
  • the NR 5G or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200 with some other suitable term.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, EPS provides packet switching services. However, those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination for UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive point), or some other suitable terminology.
  • gNB203 provides UE201 with an access point to EPC/5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network equipment, machine-type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles, drones, aircraft, narrowband physical network equipment, machine-type communication equipment, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to EPC/5G-CN210 through the S1/NG interface.
  • EPC/5G-CN210 includes MME/AMF/UPF 211, other MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management field)/UPF (User Plane Function, user plane function) 214, S-GW (Service Gateway, Serving Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF211 is a control node that processes the signaling between UE201 and EPC/5G-CN210.
  • MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • the P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to the Internet service 230.
  • the Internet service 230 includes the corresponding Internet protocol service of the operator, which may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a PS streaming service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS streaming service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 supports MIMO wireless communication.
  • the gNB203 supports MIMO wireless communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • Fig. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane and the control plane.
  • Fig. 3 shows the radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) with three layers: layer 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol), packet data Convergence protocol) sublayers 304, these sublayers terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer terminating at the P-GW on the network side (e.g., IP layer) and terminating at the other end of the connection (e.g., Remote UE, server, etc.) at the application layer.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among UEs. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the second information in this application is generated in the RRC sublayer 306.
  • the second information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the RRC sublayer 306.
  • the first information in this application is generated in the MAC sublayer 302.
  • the first information in this application is generated in the PHY301.
  • the first signaling in this application is generated in the PHY301.
  • the K-1 signaling in this application is generated in the PHY301.
  • the K signals in this application are generated in the PHY301.
  • the first wireless signal in this application is generated in the PHY301.
  • the second wireless signal in this application is generated in the PHY301.
  • the K-1 wireless signal in this application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in FIG. 4.
  • Figure 4 is a block diagram of gNB410 communicating with UE450 in an access network.
  • the base station equipment (410) includes a controller/processor 440, a memory 430, a receiving processor 412, a first processor 471, a transmitting processor 415, a transmitter/receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a data source 467, a first processor 441, a transmitting processor 455, a receiving processor 452, a transmitter/receiver 456 and an antenna 460.
  • processing related to the base station equipment (410) includes:
  • the controller/processor 440 provides header compression, encryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels for implementation L2 layer protocol for user plane and control plane; upper layer packets can include data or control information, such as DL-SCH (Downlink Shared Channel, downlink shared channel);
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the controller/processor 440 is associated with a memory 430 storing program codes and data, and the memory 430 may be a computer-readable medium;
  • the controller/processor 440 includes a scheduling unit for transmission requirements, and the scheduling unit is used for scheduling air interface resources corresponding to the transmission requirements;
  • the first processor 471 determines to send the first information and the first signaling
  • the first processor 471 determines to execute the first wireless signal in the first time-frequency resource, and executes the second wireless signal in the second time-frequency resource, and the execution is sending;
  • -Transmit processor 415 which receives the output bit stream of the controller/processor 440, and implements various signal transmission processing functions for the L1 layer (ie, physical layer) including coding, interleaving, scrambling, modulation, power control/allocation, and Physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signal) generation, etc.;
  • -Transmit processor 415 which receives the output bit stream of the controller/processor 440, and implements various signal transmission processing functions for the L1 layer (ie, physical layer), including multi-antenna transmission, spread spectrum, code division multiplexing, and precoding Wait;
  • the transmitter 416 is used to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420; each transmitter 416 samples its input symbol stream to obtain its own sampled signal stream. Each transmitter 416 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on its sample stream to obtain a downlink signal.
  • processing related to the user equipment (450) may include:
  • -A receiver 456 for converting the radio frequency signal received through the antenna 460 into a baseband signal and providing it to the receiving processor 452;
  • -Receive processor 452 which implements various signal reception processing functions for the L1 layer (ie, physical layer), including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.;
  • -Receiving processor 452 which implements various signal reception processing functions for the L1 layer (that is, physical layer), including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • the first processor 441 determines to receive the first information and the first signaling
  • the first processor 441 determines that the first wireless signal is operated in the first time-frequency resource and the second wireless signal is operated in the second time-frequency resource, and the operation is receiving;
  • the controller/processor 490 receives the bit stream output by the receiver processor 452, and provides header decompression, decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 storing program codes and data.
  • the memory 480 may be a computer-readable medium.
  • the processing related to the base station equipment (410) includes:
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the receiving processor 412;
  • L1 layer ie, physical layer
  • various signal reception processing functions for the L1 layer including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc.
  • -Receiving processor 412 which implements various signal reception processing functions for the L1 layer (ie, physical layer), including multi-antenna reception, despreading, code division multiplexing, precoding, etc.;
  • Controller/processor 440 which implements L2 layer functions, and is associated with memory 430 storing program codes and data;
  • the controller/processor 440 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to restore upper layer data packets from the UE450; from the controller/processor 440
  • the upper layer data packets can be provided to the core network;
  • the first processor 471 determines to execute the first wireless signal in the first time-frequency resource, and executes the second wireless signal in the second time-frequency resource, and the execution is receiving;
  • the processing related to the user equipment (450) includes:
  • the data source 467 provides upper layer data packets to the controller/processor 490.
  • the data source 467 represents all protocol layers above the L2 layer;
  • the transmitter 456 transmits radio frequency signals through its corresponding antenna 460, converts the baseband signal into a radio frequency signal, and provides the radio frequency signal to the corresponding antenna 460;
  • -Transmitting processor 455, which implements various signal reception processing functions for the L1 layer (ie, physical layer), including coding, interleaving, scrambling, modulation, and physical layer signaling generation;
  • -Transmitting processor 455, which implements various signal reception processing functions for the L1 layer (ie, physical layer) including multi-antenna transmission, spreading (Spreading), code division multiplexing, precoding, etc.;
  • the controller/processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410, and implements L2 for user plane and control plane Layer function
  • the controller/processor 490 is also responsible for HARQ operation, retransmission of lost packets, and signaling to gNB410;
  • the first processor 441 determines to operate the first wireless signal in the first time-frequency resource and operates the second wireless signal in the second time-frequency resource, and the operation is transmission;
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor
  • the UE450 device at least: receives first information, the first information is used to determine the first time-frequency resource and the first parameter group; receives the first signaling, the first signaling is used to Determine a second time-frequency resource and a second parameter group; operate a first wireless signal in the first time-frequency resource; operate a second wireless signal in the second time-frequency resource; wherein, the first signaling
  • the initial transmission time of the first information is later than the initial transmission time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group is used to generate the first wireless signal, so
  • the target parameter group is the first parameter group or the second parameter group; the first condition set is used to determine the target parameter group from the first parameter group and the second parameter group; the The operation is sending, or the operation is receiving.
  • the UE 450 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates an action when executed by at least one processor, the action includes: receiving first information, The first information is used to determine the first time-frequency resource and the first parameter group; the first signaling is received, and the first signaling is used to determine the second time-frequency resource and the second parameter group; The first wireless signal is operated in a time-frequency resource; the second wireless signal is operated in the second time-frequency resource; wherein the initial transmission time of the first signaling is later than the initial transmission of the first information Time; the second parameter set is used to generate the second wireless signal, a target parameter set is used to generate the first wireless signal, and the target parameter set is the first parameter set or the second Parameter group; a first condition set is used to determine the target parameter group from the first parameter group and the second parameter group; the operation is sending, or the operation is receiving.
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the at least one processor Use together with the device.
  • the gNB410 device at least: sends first information, the first information is used to determine the first time-frequency resource and the first parameter group; sends first signaling, the first signaling is used to determine the second time Frequency resources and a second parameter group; execute a first wireless signal in the first time-frequency resource; execute a second wireless signal in the second time-frequency resource; wherein the initial transmission of the first signaling The time is later than the initial sending time of the first information; the second parameter set is used to generate the second wireless signal, the target parameter set is used to generate the first wireless signal, and the target parameter set Is the first parameter group or the second parameter group; the first condition set is used to determine the target parameter group from the first parameter group and the second parameter group; the execution is receiving, Or, the execution is sending.
  • the gNB410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending first information, so The first information is used to determine the first time-frequency resource and the first parameter group; the first signaling is sent, and the first signaling is used to determine the second time-frequency resource and the second parameter group; The first wireless signal is executed in a time-frequency resource; the second wireless signal is executed in the second time-frequency resource; wherein, the initial transmission time of the first signaling is later than the initial transmission of the first information Time; the second parameter set is used to generate the second wireless signal, a target parameter set is used to generate the first wireless signal, and the target parameter set is the first parameter set or the second Parameter group; a first condition set is used to determine the target parameter group from the first parameter group and the second parameter group; the execution is reception, or the execution is transmission.
  • UE450 corresponds to the user equipment in this application.
  • gNB410 corresponds to the base station in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to receive the second information in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to send the second information in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to receive the first information in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to send the first information in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to receive the local data in the first time-frequency resource in this application.
  • the first wireless signal in the application is used to receive the local data in the first time-frequency resource in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to transmit the local data in the first time-frequency resource in this application.
  • the first wireless signal in the application is used to transmit the local data in the first time-frequency resource in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to receive the K-1 signaling in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to send the K-1 signaling in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to receive the first signaling in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to send the first signaling in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used in the K-1 time-frequency resources in this application Receive the K-1 wireless signals in this application respectively.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used in the K-1 time-frequency resources in this application Send the K-1 wireless signals in this application respectively.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used to respectively receive data in the first time-frequency resource in this application.
  • the first wireless signal in this application is used to respectively receive data in the first time-frequency resource in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to transmit data in the first time-frequency resource in this application.
  • the first wireless signal in this application is used to transmit data in the first time-frequency resource in this application.
  • At least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 are used for receiving in the second time-frequency resource in this application.
  • the second wireless signal in this application is used for receiving in the second time-frequency resource in this application.
  • At least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 are used to transmit data in the second time-frequency resource in this application.
  • the second wireless signal in this application is used to transmit data in the second time-frequency resource in this application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the first time-frequency resource in the present application respectively.
  • the first wireless signal is used to send the first time-frequency resource in the present application respectively.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to respectively receive the first time-frequency resource in the present application.
  • the first wireless signal is used to respectively receive the first time-frequency resource in the present application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the second time-frequency resource in the present application respectively.
  • the second wireless signal is used to send the second time-frequency resource in the present application respectively.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to respectively receive the second time-frequency resource in the present application.
  • the second wireless signal is used to respectively receive the second time-frequency resource in the present application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the K-1 signaling in this application.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the K-1 signaling in this application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the first signaling in this application.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to receive the first signaling in this application.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller/processor 490 are used to send the K-1 time-frequency resources in this application, respectively.
  • the K-1 wireless signals are used to send the K-1 time-frequency resources in this application, respectively.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller/processor 440 are used to respectively receive the K-1 time-frequency resources in this application.
  • the K-1 wireless signals are used to respectively receive the K-1 wireless signals.
  • Embodiment 5 illustrates a flow chart of wireless transmission, as shown in FIG. 5.
  • the base station N01 is the serving cell maintenance base station of the user equipment U02.
  • the block F1 is optional.
  • step S10 send the second information in step S10; send the first information in step S11; receive the first wireless signal in the first time-frequency resource in step S12; send K-1 signaling in step S13;
  • step S14 K-1 wireless signals are received in K-1 time-frequency resources respectively; in step S15, the first signaling is sent; in step S16, the second wireless signal is received in the second time-frequency resource.
  • step S20 receive the second information in step S20; receive the first information in step S21; transmit the first wireless signal in the first time-frequency resource in step S22; receive K-1 signaling in step S23;
  • step S24 K-1 wireless signals are respectively sent in K-1 time-frequency resources; in step S25, the first signaling is received; in step S26, the second wireless signal is sent in the second time-frequency resource.
  • the operation in this application is sending, and the execution in this application is receiving;
  • the first information is used by the U02 to determine the first time-frequency resource and the first parameter group;
  • the first signaling is used by the U02 to determine the second time-frequency resource and the second parameter group; the initial sending time of the first signaling is later than the initial sending time of the first information;
  • Two parameter groups are used to generate the second wireless signal, a target parameter group is used to generate the first wireless signal, and the target parameter group is the first parameter group or the second parameter group;
  • the condition set is used to determine the target parameter group from the first parameter group and the second parameter group.
  • the initial sending time of the second information is earlier than the initial sending time of the first signaling; the second information is used by the U02 to determine M time windows, any of the M time windows The two time windows are orthogonal, and M is a positive integer greater than 1.
  • the first time window includes the time domain resources occupied by the first time-frequency resource, and the first time window is the M time windows A time window in The initial sending time of the K signaling is later than the initial sending time of the first information; the K signaling is used by the U02 to determine K time-frequency resources, and the K signaling Let the U02 be respectively used to determine K parameter groups; the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is the K parameter groups
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively controlled by the K -1 time-frequency resource in the K time-frequency resources determined by the K-1 signaling; K-1 parameter groups are the parameters in the K parameter groups determined by the K-1 signal
  • the second information is semi-statically configured.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information is carried by MAC CE signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or part of an IE in an RRC signaling.
  • the second information includes a partial field of an IE in an RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the operation is sending, and the second information includes part or all of the ConfiguredGrantConfig IE in RRC signaling.
  • the ConfiguredGrantConfig IE please refer to section 6.3.2 of 3GPP TS38.331 .
  • the operation is receiving, and the second information includes part or all of the fields of the SPS-Config IE in the RRC signaling.
  • the SPS-Config IE refers to Article 3GPP TS38.331 Section 6.3.2.
  • the second information explicitly indicates the M time windows.
  • the second information implicitly indicates the M time windows.
  • the second information indicates a period and a time domain offset, and the period and the time domain offset are used by the U02 to determine the M time windows.
  • the period is a time interval between any two adjacent time windows in the M time windows.
  • the time interval between any two time windows in the M time windows is a positive integer multiple of the period.
  • the unit of the period is milliseconds (mini second).
  • the unit of the period is a time domain unit.
  • the time domain offset indicates the earliest time window among the M time windows.
  • the unit of the time domain offset is milliseconds (mini second).
  • the unit of the time domain offset is a time domain unit.
  • the second information includes the periodicity field and the timeDomainOffset field in the ConfiguredGrantConfig IE in the RRC signaling, the periodicity field indicates the period, and the timeDomainOffset field indicates the time domain offset.
  • the ConfiguredGrantConfig IE please refer to section 6.3.2 of 3GPP TS38.331.
  • the second information indicates a period
  • the first information also indicates a time domain offset
  • the period and the time domain offset are used by the U02 to determine the M time windows.
  • the period is a time interval between any two adjacent time windows in the M time windows.
  • the time interval between any two time windows in the M time windows is a positive integer multiple of the period.
  • the unit of the period is milliseconds (mini second).
  • the unit of the period is a time domain unit.
  • the second information includes the Periodicity field in the SPS-Config IE in the RRC signaling.
  • SPS-Config IE For the specific definition of the SPS-Config IE, refer to section 6.3 of 3GPP TS38.331. 2 chapters.
  • the second information includes the periodicity field in the ConfiguredGrantConfig IE in RRC signaling, and the periodicity field indicates the period.
  • the ConfiguredGrantConfig IE refers to 3GPP TS38.331 Chapter 6.3.2.
  • the time domain offset indicates the earliest time window among the M time windows.
  • the unit of the time domain offset is milliseconds (mini second).
  • the unit of the time domain offset is a time domain unit.
  • the first information is carried by DCI signaling.
  • the first information includes a Time domain resource assignment field, and the specific definition of the Time domain resource assignment field refers to section 7.3.1 of 3GPP TS38.212.
  • the operation is receiving, and the user equipment receives a wireless signal in each of the M time windows.
  • the operation is sending, and the user equipment selects the first time window from the M time windows by itself.
  • the length of any two time windows in the M time windows are the same.
  • any one of the M time windows includes a positive integer number of consecutive time domain units.
  • any one of the M time windows includes one time domain unit.
  • the number of time domain units included in any two of the M time windows is the same.
  • the time domain unit includes a positive integer number of consecutive multi-carrier symbols.
  • the time domain unit includes 14 consecutive multi-carrier symbols.
  • the time domain unit includes 7 consecutive multi-carrier symbols.
  • the time domain unit includes a positive integer number of time slots (Slot).
  • the time domain unit includes a positive integer number of subframes.
  • the time domain unit includes one time slot.
  • the time domain unit includes one subframe.
  • the time interval between two time windows in the M time windows is the absolute value of the difference between the start moments of the two time windows.
  • the time interval between two time windows in the M time windows is the absolute value of the difference between the index (Index) of the start time domain unit of the two time windows.
  • the time interval between two time windows in the M time windows is the absolute value of the difference between the indexes of the two time windows.
  • the reference time domain resource includes the time domain resource occupied by the first signaling, or the reference time domain resource includes the time domain resource occupied by the second time-frequency resource; the first time-frequency resource The time domain resource occupied by the resource is used by the U02 to determine a target time domain resource set; the first condition set includes that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the first condition set includes that the MCS used by the second wireless signal and the first wireless signal respectively correspond to the same MCS table.
  • the first information indicates a first MCS index
  • the MCS adopted by the first wireless signal is an MCS corresponding to the first MCS index in the MCS table
  • the first MCS index A signaling indicates a second MCS index
  • the MCS used by the second wireless signal is an MCS corresponding to the second MCS index in the MCS table.
  • the first condition set includes that the time interval between the first signaling and the second wireless signal belongs to the first interval set.
  • the time interval between the first signaling and the second wireless signal is the index of the time domain unit to which the second wireless signal belongs minus the first signal to which it belongs. Let the difference after the index of the time domain unit to which it belongs.
  • the time interval between the first signaling and the second wireless signal is the starting multi-carrier symbol of the second wireless signal minus the first signaling The difference after the initial multi-carrier symbol.
  • the time interval between the first signaling and the second wireless signal is the initial transmission time of the second wireless signal minus the time of the first signaling The difference after the initial sending time.
  • the first interval set includes a positive integer value (Value), and the unit of the value is a time domain unit.
  • the first interval set includes a positive integer number of values, and the unit of the number is a multi-carrier symbol.
  • the first interval set includes a positive integer number of values, and the unit of the number is milliseconds.
  • the first condition set includes that the repetition number (Repetition Number) of the second wireless signal is the same as the repetition number of the first wireless signal.
  • the first wireless signal includes one of multiple repeated transmissions of a TB (Transport Block), and the second wireless signal includes multiple repeated transmissions of a TB.
  • TB Transport Block
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is greater than 1, and one of the N conditions includes that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the N is equal to 1, and the N conditions include that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the N is greater than 1, and one of the N conditions includes that the MCS respectively adopted by the second wireless signal and the first wireless signal correspond to the same MCS table.
  • the N is equal to 1, and the N conditions include that the MCS used by the second wireless signal and the first wireless signal respectively correspond to the same MCS table.
  • the N is greater than 1, and one of the N conditions includes that the time interval between the first signaling and the second wireless signal belongs to a first interval set.
  • the N is equal to 1, and the N conditions include that the time interval between the first signaling and the second wireless signal belongs to a first interval set.
  • the N is greater than 1, and one of the N conditions includes that the repeated transmission number of the second wireless signal is the same as the repeated transmission number of the first wireless signal.
  • the N is equal to 1, and the N conditions include that the repetition number (Repetition Number) of the second wireless signal is the same as the repetition number of the first wireless signal.
  • Embodiment 6 illustrates another flow chart of wireless transmission, as shown in FIG. 6.
  • the base station N03 is the serving cell maintenance base station of the user equipment U04.
  • block F2 is optional.
  • step S30 send the second information in step S30; send the first information in step S31; send the first wireless signal in the first time-frequency resource in step S32; send K-1 signaling in step S33;
  • step S34 K-1 wireless signals are sent in K-1 time-frequency resources, respectively; in step S35, the first signaling is sent; in step S36, the second wireless signal is sent in the second time-frequency resource.
  • step S40 receive the second information in step S40; receive the first information in step S41; receive the first wireless signal in the first time-frequency resource in step S42; receive K-1 signaling in step S43;
  • step S44 K-1 wireless signals are received in K-1 time-frequency resources, respectively; in step S45, the first signaling is received; in step S46, the second wireless signal is received in the second time-frequency resource.
  • the operation in this application is receiving, and the execution in this application is sending;
  • the first information is used by the U04 to determine the first time-frequency resource and the first parameter group;
  • the first signaling is used by the U04 to determine the second time-frequency resource and the second parameter group; the initial sending time of the first signaling is later than the initial sending time of the first information;
  • Two parameter groups are used to generate the second wireless signal, a target parameter group is used to generate the first wireless signal, and the target parameter group is the first parameter group or the second parameter group;
  • the condition set is used to determine the target parameter group from the first parameter group and the second parameter group.
  • the initial sending time of the second information is earlier than the initial sending time of the first signaling; the second information is used by the U04 to determine M time windows, any of the M time windows The two time windows are orthogonal, and M is a positive integer greater than 1.
  • the first time window includes the time domain resources occupied by the first time-frequency resource, and the first time window is the M time windows A time window in The initial sending time of the K signaling is later than the initial sending time of the first information; the K signaling is used by the U04 to determine K time-frequency resources, and the K signaling Let the U04 be used to determine K parameter groups respectively; the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is the K parameter groups
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively controlled by the K -1 time-frequency resource in the K time-frequency resources determined by the K-1 signaling; K-1 parameter groups are the parameters in the K parameter groups determined by the K-1 signal
  • Embodiment 7 illustrates a schematic diagram of a first condition set being used to determine a target parameter group from the first parameter group and the second parameter group, as shown in FIG. 7.
  • the target parameter set when at least one condition in the first condition set is not satisfied, the target parameter set is the first parameter set; when all conditions in the first condition set are satisfied When, the target parameter group is the second parameter group.
  • the first condition set includes N conditions, and N is a positive integer greater than 1.
  • the target parameter set is the first condition A parameter group; when all conditions in the first condition set are met, the target parameter group is the second parameter group.
  • the first condition set includes N conditions, and N is equal to 1; when the first condition set is not satisfied, the target parameter group is the first parameter group; when the first condition set When the condition set is satisfied, the target parameter group is the second parameter group.
  • Embodiment 8 illustrates a schematic diagram of first information and first signaling, as shown in FIG. 8.
  • the first information carries a first identifier
  • the first signaling carries a second identifier
  • the first identifier and the second identifier are different.
  • the first identifier and the second identifier are two different non-negative integers.
  • the first information includes part or all of the fields of an IE in the RRC signaling, and the first identifier is the name of the IE included in the first information.
  • the operation is sending, the first information includes part or all of the fields of the ConfiguredGrantConfig IE in RRC signaling, the first identifier is ConfiguredGrantConfig, and the specific definition of the ConfiguredGrantConfig IE See Chapter 6.3.2 in 3GPP TS38.331.
  • the first information is carried by DCI signaling
  • the first identifier is a signaling identifier of the DCI signaling that carries the first information.
  • the first information is carried by DCI signaling
  • the DCI signaling that carries the first information is a DCI signaling identified by the first identifier.
  • the first information is carried by DCI signaling, and the first identifier is used to generate an RS (Reference Signal) sequence of a DMRS that carries the DCI signaling of the first information.
  • RS Reference Signal
  • the first information is carried by DCI signaling, and the CRC bit sequence of the DCI signaling that carries the first information is scrambled by the first identifier.
  • the first information is carried by DCI signaling, and the first identifier is RNTI (Radio Network Temporary Identifier, radio network tentative identifier).
  • RNTI Radio Network Temporary Identifier, radio network tentative identifier
  • the first information is carried by DCI signaling, and the first identifier is CS (Configured Scheduling, configured scheduling)-RNTI.
  • CS Configured Scheduling, configured scheduling
  • the second identifier is a signaling identifier of the first signaling.
  • the first signaling is a DCI signaling identified by the second identifier.
  • the second identifier is used to generate an RS (Reference Signal) sequence of the DMRS of the first signaling.
  • RS Reference Signal
  • the CRC bit sequence of the first signaling is scrambled by the second identifier.
  • the second identifier is C (Cell)-RNTI (Radio Network Temporary Identifier, radio network temporary identifier).
  • the second identifier is new-RNTI, and the specific definition of the new-RNTI can be found in Section 5.1 or Section 6.1 in 3GPP TS38.214.
  • Embodiment 9 illustrates a schematic diagram of the first condition set, as shown in FIG. 9.
  • the first antenna port group includes the transmitting antenna port of the first wireless signal in the present application
  • the second antenna port group includes the transmitting antenna port of the second wireless signal in the present application
  • the first condition set includes that the first antenna port group and the second antenna port group are spatially related.
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is greater than 1, and one of the N conditions includes that the first antenna port group and the second antenna port group are spatially related.
  • the N is equal to 1, and the N conditions include that the first antenna port group and the second antenna port group are spatially related.
  • the first antenna port group includes a positive integer number of antenna ports
  • the second antenna port group includes a positive integer number of antenna ports
  • the first information further indicates the first antenna port group.
  • the first signaling further indicates the second antenna port group.
  • Embodiment 10 illustrates another schematic diagram of the first condition set, as shown in FIG. 10.
  • the reference time domain resource includes the time domain resource occupied by the first signaling in this application, or the reference time domain resource includes the time domain occupied by the second time-frequency resource in this application.
  • Domain resource; the time domain resource occupied by the first time-frequency resource in this application is used to determine a target time domain resource set; the first condition set includes the reference time domain resource and the target time domain resource The set is non-orthogonal.
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is greater than 1, and one of the N conditions includes that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the N is equal to 1, and the N conditions include that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the reference time domain resource includes the time domain resource occupied by the first signaling.
  • the reference time domain resource includes the time domain resource occupied by the second time-frequency resource.
  • the reference time domain resource includes a positive integer number of multi-carrier symbols.
  • the target time domain resource set includes a positive integer number of time domain resources.
  • the target time domain resource set includes a positive integer number of consecutive time domain resources.
  • the target time domain resource set includes a positive integer number of multi-carrier symbols.
  • the target time domain resource set includes one or more continuous multi-carrier symbols.
  • one multi-carrier symbol in the reference time domain resource belongs to the target time domain resource set.
  • At least one multi-carrier symbol in the reference time domain resource belongs to the target time domain resource set.
  • the reference time domain resource belongs to the target time domain resource set.
  • the reference time domain resource and the target time domain resource set partially or completely overlap.
  • the target time domain resource set is predefined.
  • the target time domain resource set is configurable.
  • the second information further indicates the target time domain resource set.
  • the second information is also used to determine the target time domain resource set.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first condition set and the reference time domain resource, as shown in FIG. 11.
  • the target time domain resource set includes the time domain resource occupied by the first time-frequency resource in this application, and the first condition set includes the reference time domain resource and the target time domain resource The set is non-orthogonal.
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is greater than 1, one of the N conditions includes that the reference time domain resource and the target time domain resource set are non-orthogonal, and the target time domain
  • the resource set includes time domain resources occupied by the first time-frequency resource.
  • the N is equal to 1
  • the N conditions include that the reference time domain resource and the target time domain resource set are non-orthogonal, and the target time domain resource set includes all Describe the time domain resources occupied by the first time-frequency resource.
  • the reference time domain resource and the target time domain resource set overlap.
  • one multi-carrier symbol in the reference time domain resource belongs to the target time domain resource set.
  • At least one multi-carrier symbol in the reference time domain resource belongs to the target time domain resource set.
  • the reference time domain resource belongs to the target time domain resource set.
  • the reference time domain resource includes a first sub-time domain resource and a second sub-time domain resource, the first sub-time domain resource belongs to the target time domain resource set, and the second sub-time domain resource
  • the resource and the target time-domain resource set are orthogonal.
  • any multi-carrier symbol in the second sub-time domain resource does not belong to the target time-domain resource set.
  • Embodiment 12 illustrates another schematic diagram of the relationship between the first condition set and the reference time domain resource, as shown in FIG. 12.
  • the first condition set includes that the reference time domain resource belongs to the target time domain resource set in this application.
  • the first condition set includes N conditions, and N is a positive integer.
  • the N is greater than 1, and one of the N conditions includes that the reference time domain resource belongs to the target time domain resource set.
  • the N is equal to 1, and the N conditions include that the reference time domain resource belongs to the target time domain resource set.
  • the target time domain resource set includes a positive integer number of time domain units.
  • the target time domain resource set includes a positive integer number of consecutive time domain units.
  • the target time domain resource set includes a positive integer number of multi-carrier symbols.
  • the target time domain resource set includes a positive integer number of consecutive multi-carrier symbols.
  • the target time-domain resource set includes multi-carrier symbols that do not belong to the time-domain resource occupied by the first time-frequency resource.
  • the target time-domain resource set includes time-domain resources occupied by the first time-frequency resource and multi-carrier symbols that do not belong to the time-domain resources occupied by the first time-frequency resource.
  • the target time domain resource set includes a positive integer number of consecutive multi-carrier symbols
  • the first time domain offset is the starting multi-carrier symbol of the target time domain resource set and the first time-frequency resource The absolute value of the time deviation between the occupied time domain resources.
  • the time deviation between the start multi-carrier symbol of the target time domain resource set and the time domain resource occupied by the first time-frequency resource is the target time domain
  • the time deviation between the start multi-carrier symbol of the target time domain resource set and the time domain resource occupied by the first time-frequency resource is the target time domain
  • the first time domain offset is predefined.
  • the first time domain offset is configurable.
  • the first time domain offset is indicated by the second information.
  • the unit of the first time domain offset is milliseconds.
  • the unit of the first time domain offset is a multi-carrier symbol.
  • the target time domain resource set includes a positive integer number of consecutive multi-carrier symbols
  • the second time domain offset is the termination multi-carrier symbol of the target time domain resource set and the location of the first time-frequency resource. The absolute value of the time deviation between occupied time domain resources.
  • the time deviation between the termination multi-carrier symbol of the target time domain resource set and the time domain resource occupied by the first time-frequency resource is the target time domain resource
  • the time deviation between the termination multi-carrier symbol of the target time domain resource set and the time domain resource occupied by the first time-frequency resource is the target time domain resource
  • the second time domain offset is predefined.
  • the second time domain offset is configurable.
  • the second time domain offset is indicated by the second information.
  • the unit of the second time domain offset is milliseconds.
  • the unit of the second time domain offset is a multi-carrier symbol.
  • the target time domain resource set includes a positive integer number of consecutive time domain units
  • the third time domain offset is the start time domain unit of the target time domain resource set and the first time-frequency resource The absolute value of the time deviation between the occupied time domain resources.
  • the time domain resource occupied by the first time-frequency resource belongs to a time domain unit, and the start time domain unit of the target time-domain resource set and the first time-frequency resource
  • the time deviation between the occupied time domain resources is the index of the start time domain unit of the target time domain resource set minus the time domain unit that includes the time domain resource occupied by the first time-frequency resource The difference after the index.
  • the time domain resource occupied by the first time-frequency resource belongs to a time domain unit, and the end time domain unit of the target time-domain resource set includes the first time-frequency resource The time domain unit of the time domain resource occupied.
  • the time-domain resource occupied by the first time-frequency resource belongs to a time-domain unit, and the termination time-domain unit of the target time-domain resource set is earlier than that including the first time-frequency resource.
  • a time domain unit of the time domain unit of the time domain resource occupied by the frequency resource, and the index of the time domain unit of the time domain resource occupied by the first time-frequency resource minus the target time domain The difference after the index of the end time domain unit of the resource set is equal to 1.
  • the time-domain resource occupied by the first time-frequency resource belongs to a time-domain unit, and the termination time-domain unit of the target time-domain resource set is earlier than that including the first time-frequency resource.
  • a time domain unit of the time domain unit of the time domain resource occupied by the frequency resource, and the index of the time domain unit of the time domain resource occupied by the first time-frequency resource minus the target time domain The difference after the index of the end time domain unit of the resource set is equal to the first difference, and the first difference is predefined or configurable.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the start time-domain unit of the target time-domain resource set and the first time-frequency resource set
  • the time deviation between the time domain resources occupied by the resources is the index of the start time domain unit of the target time domain resource set minus the index of the start time domain unit occupied by the first time-frequency resource The difference.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the starting time-domain unit of the target time-domain resource set and the first time-frequency
  • the time deviation between the time domain resources occupied by the resources is the index of the start time domain unit of the target time domain resource set minus the index of the end time domain unit occupied by the first time-frequency resource Difference.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the end time-domain unit of the target time-domain resource set is the first time-frequency resource The starting time domain unit.
  • the time domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the termination time-domain unit of the target time-domain resource set is earlier than the first time-frequency resource.
  • the start time domain unit of the resource, and the difference between the index of the start time domain unit of the first time-frequency resource and the index of the end time domain unit of the target time domain resource set is equal to 1.
  • the time domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the termination time-domain unit of the target time-domain resource set is earlier than the first time-frequency resource.
  • the start time domain unit of the resource, and the difference between the index of the start time domain unit of the first time-frequency resource and the index of the end time domain unit of the target time domain resource set is equal to the second difference ,
  • the second difference value is predefined or configurable.
  • the third time domain offset is predefined.
  • the third time domain offset is configurable.
  • the third time domain offset is indicated by the second information.
  • the unit of the third time domain offset is milliseconds.
  • the unit of the third time domain offset is a time domain unit.
  • the target time domain resource set includes a positive integer number of consecutive time domain units
  • the fourth time domain offset is the end time domain unit of the target time domain resource set and the location of the first time-frequency resource. The absolute value of the time deviation between occupied time domain resources.
  • the time domain resource occupied by the first time-frequency resource belongs to a time domain unit, and the end time domain unit of the target time-domain resource set and the first time-frequency resource are The time deviation between the occupied time domain resources is the index of the end time domain unit of the target time domain resource set minus the index of the time domain unit including the time domain resource occupied by the first time-frequency resource The difference.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, the end time-domain unit of the target time-domain resource set and the first time-frequency resource
  • the time deviation between the occupied time domain resources is the difference between the index of the end time domain unit of the target time domain resource set minus the index of the start time domain unit occupied by the first time-frequency resource value.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, the end time-domain unit of the target time-domain resource set and the first time-frequency resource
  • the time deviation between the occupied time domain resources is the difference between the index of the end time domain unit of the target time domain resource set minus the index of the end time domain unit occupied by the first time-frequency resource .
  • the time domain resource occupied by the first time-frequency resource belongs to a time domain unit, and the end time domain unit of the target time-domain resource set includes the first time-frequency resource The time domain unit of the time domain resource occupied.
  • the time-domain resource occupied by the first time-frequency resource belongs to multiple time-domain units, and the end time-domain unit of the target time-domain resource set is the first time-frequency resource The starting time domain unit.
  • the fourth time domain offset is equal to 1 time domain unit.
  • the fourth time domain offset is predefined.
  • the fourth time domain offset is configurable.
  • the unit of the fourth time domain offset is milliseconds.
  • the unit of the fourth time domain offset is a time domain unit.
  • Embodiment 13 illustrates another schematic diagram of the relationship between the first condition set and the reference time domain resource, as shown in FIG. 13.
  • the reference time-frequency resource includes the time-frequency resource occupied by the first signaling in this application, or the reference time-frequency resource includes the second time-frequency resource in this application ;
  • the first condition set includes that the reference time-frequency resource belongs to the target time-frequency resource set in this application.
  • the target time-frequency resource set includes a positive integer number of time-frequency resources.
  • the target time-frequency resource set is predefined.
  • the target time-frequency resource set is configurable.
  • the target time-frequency resource set is indicated by the second information.
  • the first time-frequency resource is used to determine the target time-frequency resource set.
  • the reference time-frequency resource includes the time-frequency resource occupied by the first signaling.
  • the reference time-frequency resource includes the second time-frequency resource.
  • any time-frequency resource included in the target time-frequency resource set includes a positive integer number of multi-carrier symbols in the time domain.
  • any time-frequency resource included in the target time-frequency resource set includes one or more continuous multi-carrier symbols in the time domain.
  • any time-frequency resource included in the target time-frequency resource set includes a positive integer number of subcarriers in the frequency domain.
  • the number of subcarriers included in any time-frequency resource included in the target time-frequency resource set in the frequency domain is equal to a positive integer multiple of 12.
  • any time-frequency resource included in the target time-frequency resource set includes a positive integer number of RBs in the frequency domain.
  • Embodiment 14 illustrates a schematic diagram of the relationship between the first signaling and K signaling, as shown in FIG. 14.
  • the target parameter group in this application is the second parameter group in this application
  • the first signaling is any one of the K signaling
  • the K Both signalings satisfy the first set of conditions in this application
  • the first signaling is the signal whose initial transmission time is closest to the first time-frequency resource in this application among the K signalings.
  • Embodiments 15A to 15C respectively illustrate a schematic diagram of the spatial correlation between the first given antenna port group and the second given antenna port group.
  • the first given antenna port group corresponds to the first antenna port group in this application
  • the second given antenna port group corresponds to the second antenna port group in this application.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port All antenna ports in the group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the sending or receiving of the transmitted wireless signal on the second given antenna port group
  • the antenna or antenna group includes all the transmitting or receiving antennas or antenna groups that transmit wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the transmitting antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes all transmitting antennas or antenna groups that transmit wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the receiving antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes all receiving antennas or antenna groups that transmit wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the transmitting antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes all receiving antennas or antenna groups that transmit wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the receiving antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes all transmitting antennas or antenna groups that transmit wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission or multi-antenna-related reception of wireless signals.
  • the first antenna group is a multi-antenna-related transmission or multi-antenna group that generates wireless signals on the first given antenna port group.
  • One or more antenna groups for antenna-related reception, and the second antenna group includes all antennas or antenna groups in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission of wireless signals, the first antenna group is one or more antenna groups that generate multi-antenna-related transmissions for wireless signals on the first given antenna port group,
  • the second antenna group includes all antennas or antenna groups in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna related reception of wireless signals, the first antenna group is one or more antenna groups that generate multi-antenna related reception for transmitting wireless signals on the first given antenna port group,
  • the second antenna group includes all antennas or antenna groups in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission of wireless signals, where the first antenna group is one or more antenna groups that generate multi-antenna-related reception for transmitting wireless signals on the first given antenna port group,
  • the second antenna group includes all antennas or antenna groups in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port Part of the antenna ports in the group, any antenna port in the first given antenna port group that does not belong to the second given antenna port group is equal to at least one antenna port in the second given antenna port QCL (Quasi Co-Located).
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port Part of the antenna ports in the group, any antenna port in the first given antenna port group that does not belong to the second given antenna port group and one of the antenna ports in the second given antenna port are QCL .
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port Part of the antenna ports in the group, any antenna port in the first given antenna port group that does not belong to the second given antenna port group is equal to at least one antenna port in the second given antenna port spatial QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port Part of the antenna ports in the group, any antenna port in the first given antenna port group that does not belong to the second given antenna port group and one of the antenna ports in the second given antenna port are spatial QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: any antenna port in the first given antenna port group is related to all At least one antenna port in the second given antenna port group is QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: any antenna port in the first given antenna port group is related to all One antenna port in the second given antenna port group is QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: any antenna port in the first given antenna port group is related to all At least one antenna port in the second given antenna port group is spatial QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: any antenna port in the first given antenna port group is related to all One antenna port in the second given antenna port group is spatial QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially correlated includes: at least one antenna port in the first given antenna port group cannot be At least one antenna port in the second given antenna port group simultaneously transmits wireless signals.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on at least one antenna port in the first given antenna port group The sending or receiving of wireless signals and the sending or receiving of wireless signals on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on at least one antenna port in the first given antenna port group The reception of the transmitted wireless signal and the reception of the transmitted wireless signal on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on at least one antenna port in the first given antenna port group The transmission of the wireless signal and the reception of the transmitted wireless signal on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on at least one antenna port in the second given antenna port group The transmission of the wireless signal and the reception of the transmitted wireless signal on at least one antenna port in the first given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: any antenna port in the first given antenna port group cannot be At least one antenna port in the second given antenna port group simultaneously transmits wireless signals.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on any antenna port in the first given antenna port group The sending or receiving of wireless signals and the sending or receiving of wireless signals on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on any antenna port in the first given antenna port group The reception of the transmitted wireless signal and the reception of the transmitted wireless signal on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on any antenna port in the first given antenna port group The transmission of the wireless signal and the reception of the transmitted wireless signal on at least one antenna port in the second given antenna port group cannot be performed simultaneously.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: on at least one antenna port in the second given antenna port group The sending of wireless signals and the receiving of sent wireless signals on any antenna port in the first given antenna port group cannot be performed at the same time.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the sending or receiving of the transmitted wireless signal on the second given antenna port group
  • the antenna or antenna group includes at least one transmitting or receiving antenna or antenna group for transmitting wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the transmitting antenna or antenna of the wireless signal on the second given antenna port group
  • the group includes at least one transmitting antenna or antenna group of wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the receiving antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes at least one receiving antenna or antenna group for transmitting wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the transmitting antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes at least one receiving antenna or antenna group for transmitting wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the receiving antenna or the wireless signal transmitting antenna on the second given antenna port group
  • the antenna group includes at least one transmitting antenna or antenna group for transmitting wireless signals on the first given antenna port group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission or multi-antenna-related reception of wireless signals.
  • the first antenna group is a multi-antenna-related transmission or multi-antenna group that generates wireless signals on the first given antenna port group.
  • One or more antenna groups for antenna-related reception, and the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission of wireless signals, the first antenna group is one or more antenna groups that generate multi-antenna-related transmissions for wireless signals on the first given antenna port group,
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna related reception of wireless signals, the first antenna group is one or more antenna groups that generate multi-antenna related reception for transmitting wireless signals on the first given antenna port group,
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related transmission of wireless signals, where the first antenna group is one or more antenna groups that generate multi-antenna-related reception for transmitting wireless signals on the first given antenna port group,
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second antenna group is to generate transmissions on the second given antenna port group One or more antenna groups for multi-antenna-related reception of wireless signals, the first antenna group is one or more antenna groups that generate multi-antenna-related transmissions for sending wireless signals on the first given antenna port group,
  • the second antenna group includes at least one antenna or antenna group in the first antenna group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: the second given antenna port group includes the first given antenna port At least one antenna port in the group.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: at least one antenna port in the first given antenna port group is all connected At least one antenna port in the second given antenna port group is QCL.
  • the meaning that the first given antenna port group and the second given antenna port group are spatially related includes: at least one antenna port in the first given antenna port group is all connected At least one antenna port in the second given antenna port group is spatial QCL.
  • the two antenna ports being QCL means that the two antenna ports can be inferred from all or part of the large-scale properties of the wireless signal transmitted on one of the two antenna ports. All or part of the large-scale characteristics of the wireless signal transmitted on the other antenna port among the two antenna ports.
  • the two antenna ports being QCL means that the two antenna ports have at least one same QCL parameter (QCL parameter), and the QCL parameter includes multi-antenna related QCL parameters and multi-antenna independent QCL parameters .
  • QCL parameter includes multi-antenna related QCL parameters and multi-antenna independent QCL parameters .
  • the two antenna ports being QCL means that at least one QCL of the other one of the two antenna ports can be inferred from at least one QCL parameter of one of the two antenna ports. parameter.
  • the two antenna ports being QCL means that it is possible to infer the other one of the two antenna ports from the multi-antenna correlation reception of the wireless signal sent on one of the two antenna ports Multi-antenna related reception of wireless signals sent on the antenna port.
  • the two antenna ports being QCL means that it is possible to infer the other one of the two antenna ports from the multi-antenna correlation transmission of the wireless signal transmitted on one of the two antenna ports Multi-antenna related transmission of wireless signals sent on the antenna port.
  • the two antenna ports being QCL means that it is possible to infer the other one of the two antenna ports from the multi-antenna correlation reception of the wireless signal sent on one of the two antenna ports Multi-antenna-related transmission of the wireless signal sent on the antenna port, the receiver of the wireless signal sent on one of the two antenna ports and the other antenna port of the two antenna ports
  • the sender of the wireless signal sent on is the same.
  • the QCL parameters related to multiple antennas include one or more of the angle of arrival (angle of arrival), angle of departure (angle of departure), spatial correlation, multi-antenna related transmission, and multi-antenna related reception.
  • angle of arrival angle of arrival
  • angle of departure angle of departure
  • spatial correlation multi-antenna related transmission
  • multi-antenna related reception e.g., multi-antenna related reception
  • multi-antenna-independent QCL parameters include: delay spread, Doppler spread, Doppler shift, path loss, average gain (delay spread), Doppler spread (Doppler shift), path loss (path loss), average gain ( One or more of average gain).
  • the two antenna ports being spatial QCL refers to: all or part of the multi-antenna-related large-scale characteristics of the wireless signal that can be sent from one of the two antenna ports ( properties) Infer all or part of the multi-antenna-related large-scale characteristics of the wireless signal transmitted on the other of the two antenna ports.
  • that two antenna ports are spatial QCL means that the two antenna ports have at least one same multi-antenna related QCL parameter (spatial QCL parameter).
  • two antenna ports are spatial QCL, it means that the other one of the two antenna ports can be inferred from at least one multi-antenna related QCL parameter of one of the two antenna ports At least one multi-antenna related QCL parameter of the antenna port.
  • the two antenna ports being spatial QCL refers to the ability to infer the other one of the two antenna ports from the multi-antenna related reception of the wireless signal sent on one of the two antenna ports Multi-antenna related reception of wireless signals sent on one antenna port.
  • the two antenna ports being spatial QCL refers to the ability to infer the other one of the two antenna ports from the multi-antenna related transmission of the wireless signal sent on one of the two antenna ports. Multi-antenna related transmission of wireless signals sent on one antenna port.
  • the two antenna ports being spatial QCL refers to the ability to infer the other one of the two antenna ports from the multi-antenna related reception of the wireless signal sent on one of the two antenna ports Multi-antenna related transmission of a wireless signal sent on one antenna port, the receiver of the wireless signal sent on one of the two antenna ports and the other antenna of the two antenna ports The sender of the wireless signal sent on the port is the same.
  • the large-scale characteristics related to multiple antennas of a given wireless signal include angle of arrival (angle of arrival), angle of departure (angle of departure), spatial correlation, multi-antenna-related transmission, and multi-antenna-related reception.
  • angle of arrival angle of arrival
  • angle of departure angle of departure
  • spatial correlation multi-antenna-related transmission
  • multi-antenna-related reception One or more of.
  • the multi-antenna-related reception is spatial reception parameters (Spatial Rx parameters).
  • the multi-antenna related reception is a reception beam.
  • the multi-antenna-related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna-related reception is a receive beamforming vector.
  • the multi-antenna-related reception is spatial filtering.
  • the multi-antenna-related transmission is spatial transmission parameters (Spatial Tx parameters).
  • the multi-antenna-related transmission is a transmission beam.
  • the multi-antenna-related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is to transmit an analog beamforming matrix.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the embodiment 15A corresponds to the first given antenna port group and the first given antenna port group that have the same transmit beams of the first given antenna port group and the second given antenna port group.
  • the transmission beam corresponding to the second given antenna port group in Embodiment 15B includes the first given antenna port group and the first given antenna port group of the transmission beam of the first given antenna port group. 2.
  • the embodiment 15C corresponds to the transmission beam of the second given antenna port group only including the first given antenna port group and all the transmission beams of the first given antenna port group.
  • Embodiment 16 illustrates a structural block diagram of a processing device in UE, as shown in FIG. 16.
  • the UE processing device 1200 includes a first receiver 1201 and a first transceiver 1202.
  • the first receiver 1201 includes the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first receiver 1201 includes at least the first three of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least the first two of the receiver 456, the receiving processor 452, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes the transmitter/receiver 456, the receiving processor 452, the transmitting processor 455, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes at least one of the transmitter/receiver 456, the receiving processor 452, the transmitting processor 455, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes at least one of the transmitter/receiver 456, the receiving processor 452, the transmitting processor 455, the first processor 441, and the controller/processor 490 in the fourth embodiment.
  • the first transceiver 1202 includes at least one of the transmitter/receiver 456, the receiving processor 452, the transmitting processor 455, the first processor 441, and the controller/processor 490 in the fourth embodiment. The first two.
  • the first receiver 1201 receives first information, the first information is used to determine the first time-frequency resource and the first parameter group; receives the first signaling, the first signaling is used to determine the second Time-frequency resources and the second parameter group;
  • -A first transceiver 1202 operating a first wireless signal in the first time-frequency resource; operating a second wireless signal in the second time-frequency resource;
  • the initial transmission time of the first signaling is later than the initial transmission time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group Is used to generate the first wireless signal, and the target parameter group is the first parameter group or the second parameter group; the first condition set is used to obtain data from the first parameter group and the second parameter group; The target parameter group is determined in the parameter group; the operation is sending, or the operation is receiving.
  • the target parameter group when at least one condition in the first condition set is not satisfied, the target parameter group is the first parameter set; when all conditions in the first condition set are satisfied , the target parameter group is the second parameter group.
  • the first information carries a first identifier
  • the first signaling carries a second identifier
  • the first identifier and the second identifier are different.
  • the first receiver 1201 also receives second information; wherein, the initial transmission time of the second information is earlier than the initial transmission time of the first signaling; the second information is Used to determine M time windows, any two of the M time windows are orthogonal, and M is a positive integer greater than 1; the first time window includes the occupied by the first time-frequency resource For time domain resources, the first time window is one of the M time windows.
  • the first antenna port group includes the transmitting antenna port of the first wireless signal
  • the second antenna port group includes the transmitting antenna port of the second wireless signal
  • the first condition set includes the first The antenna port group and the second antenna port group are spatially related.
  • the reference time domain resource includes the time domain resource occupied by the first signaling, or the reference time domain resource includes the time domain resource occupied by the second time-frequency resource; the first time-frequency resource The time domain resource occupied by the resource is used to determine a target time domain resource set; the first condition set includes that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the target parameter group is the second parameter group
  • the first signaling is any one of K signaling, and all the K signaling meets the first set of conditions
  • the first signaling is a signaling that is closest to the first time-frequency resource at the start time of the K signaling; K is a positive integer greater than 1.
  • the first receiver 1201 also receives K-1 signaling; the first transceiver 1202 also operates K-1 wireless signals in K-1 time-frequency resources;
  • the initial transmission time of the K signaling is later than the initial transmission time of the first information;
  • the K signaling is used to determine K time-frequency resources, and the K signaling is used respectively In determining K parameter groups;
  • the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is one of the K parameter groups;
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively determined by the K-1 signaling
  • the K-1 parameter groups are respectively the parameter groups in the K parameter groups determined by the K-1 signaling, and the K-1 Each parameter group is used to generate the K-1 wireless signals; the operation is sending, or the operation is receiving.
  • Embodiment 17 illustrates a structural block diagram of a processing device in a base station equipment, as shown in FIG. 17.
  • the processing device 1300 in the base station equipment includes a second transmitter 1301 and a second transceiver 1302.
  • the second transmitter 1301 includes the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transmitter 1301 includes at least the first three of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least the first two of the transmitter 416, the transmission processor 415, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transceiver 1302 includes the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transceiver 1302 includes at least one of the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the first four the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment. The first four.
  • the second transceiver 1302 includes at least one of the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment.
  • the second transceiver 1302 includes at least one of the transmitter/receiver 416, the transmitting processor 415, the receiving processor 412, the first processor 471, and the controller/processor 440 in the fourth embodiment. The first two.
  • the second transmitter 1301 sends first information, the first information is used to determine the first time-frequency resource and the first parameter group; sends the first signaling, the first signaling is used to determine the second Time-frequency resources and the second parameter group;
  • the second transceiver 1302 which executes the first wireless signal in the first time-frequency resource; executes the second wireless signal in the second time-frequency resource;
  • the initial transmission time of the first signaling is later than the initial transmission time of the first information; the second parameter group is used to generate the second wireless signal, and the target parameter group Is used to generate the first wireless signal, and the target parameter group is the first parameter group or the second parameter group; the first condition set is used to obtain data from the first parameter group and the second parameter group; The target parameter group is determined in the parameter group; the execution is receiving, or the execution is sending.
  • the target parameter group when at least one condition in the first condition set is not satisfied, the target parameter group is the first parameter set; when all conditions in the first condition set are satisfied , the target parameter group is the second parameter group.
  • the first information carries a first identifier
  • the first signaling carries a second identifier
  • the first identifier and the second identifier are different.
  • the second transmitter 1301 also sends second information; wherein, the initial sending time of the second information is earlier than the initial sending time of the first signaling; the second information is Used to determine M time windows, any two of the M time windows are orthogonal, and M is a positive integer greater than 1; the first time window includes the occupied by the first time-frequency resource For time domain resources, the first time window is one of the M time windows.
  • the first antenna port group includes the transmitting antenna port of the first wireless signal
  • the second antenna port group includes the transmitting antenna port of the second wireless signal
  • the first condition set includes the first The antenna port group and the second antenna port group are spatially related.
  • the reference time domain resource includes the time domain resource occupied by the first signaling, or the reference time domain resource includes the time domain resource occupied by the second time-frequency resource; the first time-frequency resource The time domain resource occupied by the resource is used to determine a target time domain resource set; the first condition set includes that the reference time domain resource and the target time domain resource set are non-orthogonal.
  • the target parameter group is the second parameter group
  • the first signaling is any one of K signaling, and all the K signaling meets the first set of conditions
  • the first signaling is a signaling that is closest to the first time-frequency resource at the start time of the K signaling; K is a positive integer greater than 1.
  • the second transmitter 1301 also sends K-1 signaling; the second transceiver 1302 also executes K-1 wireless signals in K-1 time-frequency resources;
  • the initial transmission time of the K signaling is later than the initial transmission time of the first information;
  • the K signaling is used to determine K time-frequency resources, and the K signaling is used respectively In determining K parameter groups;
  • the second time-frequency resource is one of the K time-frequency resources, and the second parameter group is one of the K parameter groups;
  • the K-1 signaling is all signaling except the first signaling in the K signaling, and the K-1 time-frequency resources are respectively determined by the K-1 signaling
  • the K-1 parameter groups are the parameter groups in the K parameter groups determined by the K-1 signaling, and the K-1 Each parameter group is used to generate the K-1 wireless signals; the execution is reception, or the execution is transmission.
  • each module unit in the above-mentioned embodiment can be realized in the form of hardware or software function module, and this application is not limited to the combination of software and hardware in any specific form.
  • the user equipment, terminal and UE in this application include, but are not limited to, drones, communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • drones communication modules on drones, remote control aircraft, aircraft, small aircraft, mobile phones, tablets, notebooks, vehicle-mounted communication devices, wireless sensors, network cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, internet cards, in-vehicle communication equipment, low-cost mobile phones, low-cost Cost of wireless communication equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point, transmitter and receiver node) and other wireless communications equipment.
  • gNB NR Node B
  • NR Node B NR Node B
  • TRP Transmitter Receiver Point, transmitter and receiver node

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号。所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
在5G系统中,eMBB(Enhance Mobile Broadband,增强型移动宽带),和URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)是两大典型业务类型。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)新空口Release 15中已针对URLLC业务的低目标BLER(10^-5)和低延迟(1ms)要求,支持了免授予(Grant Free)上行传输,即基于配置授予的(Configured Grant)上行传输。
为了支持更高要求的URLLC业务,比如更高可靠性(比如:目标BLER为10^-6)、更低延迟(比如:0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了新空口Release 16的URLLC增强的SI(Study Item,研究项目)。其中,如何实现PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)/PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)的更低传输时延和更高的传输可靠性是一个研究重点。
发明内容
发明人通过研究发现,对于基于半静态调度的传输,信道和/或干扰的动态变化可能会影响传输的可靠性,如何提高基于半静态调度的传输的可靠性是需要研究的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
-接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;
-接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-在所述第一时频资源中操作第一无线信号;
-在所述第二时频资源中操作第二无线信号;
其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
作为一个实施例,本申请要解决的问题是:对于基于半静态调度的传输,信道和/或干扰的动态变化可能会影响传输的可靠性,如何提高基于半静态调度的传输的可靠性是需要研究的一个关键问题。
作为一个实施例,本申请要解决的问题是:对于基于半静态调度的传输,信道和/或干扰的动态变化可能会影响传输的可靠性,如何动态调整发送参数以提高传输可靠性是需要研究的一个关键问题。
作为一个实施例,上述方法的实质在于,第一无线信号是基于半静态调度的传输,比如基于配置授予的上行传输,SPS(Semi-persistent scheduling,半持续调度)传输;第二无线信号是基于动态调度的(Dynamic Scheduling)传输;第一参数组和第二参数 组是相同类型的发送参数,根据第一条件集合来确定基于半静态调度的传输的发送参数是否替换为基于动态调度的传输的发送参数。采用上述方法的好处在于,基于半静态调度的传输的发送参数可以被动态调整,同时还避免了额外的动态信令开销。
根据本申请的一个方面,上述方法的特征在于,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
作为一个实施例,上述方法的好处在于,如果一个基于动态调度的传输满足第一条件集合中的所有条件,这个基于动态调度的传输的发送参数适用于基于半静态调度的传输的发送参数,这样基于半静态调度的传输的发送参数得到了动态调整,更好的适应了信道和/或干扰的动态变化,同时还避免了额外的动态信令开销。
根据本申请的一个方面,上述方法的特征在于,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
作为一个实施例,上述方法的实质在于,第一标识表明第一无线信号是基于半静态调度的传输,第二标识表明第二无线信号是基于动态调度的传输。
根据本申请的一个方面,上述方法的特征在于,包括:
-接收第二信息;
其中,所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。
作为一个实施例,上述方法的实质在于,所述M个时间窗包括基于半静态调度的传输可以占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,第一天线端口组包括所述第一无线信号的发送天线端口,第二天线端口组包括所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
根据本申请的一个方面,上述方法的特征在于,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
根据本申请的一个方面,上述方法的特征在于,所述目标参数组是所述第二参数组,所述第一信令是K个信令中的任意一个信令,所述K个信令都满足所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离所述第一时频资源最近的一个信令;K是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
-接收K-1个信令;
-在K-1个时频资源中分别操作K-1个无线信号;
其中,所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被用于确定K个时频资源,所述K个信令分别被用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号;所述操作是发送,或者,所述操作是接收。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
-发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;
-发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-在所述第一时频资源中执行第一无线信号;
-在所述第二时频资源中执行第二无线信号;
其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
根据本申请的一个方面,上述方法的特征在于,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
根据本申请的一个方面,上述方法的特征在于,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
根据本申请的一个方面,上述方法的特征在于,包括:
-发送第二信息;
其中,所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。
根据本申请的一个方面,上述方法的特征在于,第一天线端口组包括所述第一无线信号的发送天线端口,第二天线端口组包括所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
根据本申请的一个方面,上述方法的特征在于,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
根据本申请的一个方面,上述方法的特征在于,所述目标参数组是所述第二参数组,所述第一信令是K个信令中的任意一个信令,所述K个信令都满足所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离所述第一时频资源最近的一个信令;K是大于1的正整数。
根据本申请的一个方面,上述方法的特征在于,包括:
-发送K-1个信令;
-在K-1个时频资源中分别执行K-1个无线信号;
其中,所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被用于确定K个时频资源,所述K个信令分别被用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号;所述执行是接收,或者,所述执行是发送。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
-第一接收机,接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-第一收发机,在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号;
其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
-第二发射机,发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-第二收发机,在所述第一时频资源中执行第一无线信号;在所述第二时频资源中执行第二无线信号;
其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.作为一个实施例,对于基于半静态调度的传输,信道和/或干扰的动态变化可能会影响传输的可靠性,本申请提出了一种如何提高基于半静态调度的传输的可靠性的方案。
-.作为一个实施例,对于基于半静态调度的传输,信道和/或干扰的动态变化可能会影响传输的可靠性,本申请提出了一种如何动态调整发送参数以提高传输可靠性的方案。
-.作为一个实施例,在本申请所提的方案中,基于半静态调度的传输的发送参数可以被动态调整,同时还避免了额外的动态信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息、第一信令、第一无线信号和第二无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的另一个实施例的无线传输的流程图;
图7示出了根据本申请的一个实施例的第一条件集合被用于从第一参数组和第二参数组中确定目标参数组的示意图;
图8示出了根据本申请的一个实施例的第一信息和第一信令的示意图;
图9示出了根据本申请的一个实施例的第一条件集合的示意图;
图10示出了根据本申请的另一个实施例的第一条件集合的示意图;
图11示出了根据本申请的一个实施例的第一条件集合和参考时域资源的关系的示意图;
图12示出了根据本申请的另一个实施例的第一条件集合和参考时域资源的关系的示意图;
图13示出了根据本申请的另一个实施例的第一条件集合和参考时域资源的关系的示意图;
图14示出了根据本申请的一个实施例的第一信令和K个信令的关系的示意图;
图15A-15C分别示出了根据本申请的一个实施例的第一给定天线端口组和第二给定天线端口组在空间上相关的示意图;
图16示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图17示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信息、第一信令、第一无线信号和第二无线信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间的特点的时间先后关系。
在实施例1中,本申请中的所述用户设备在步骤101中接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;在步骤102中接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在步骤103中在所述第一时频资源中操作第一无线信号;在步骤104中在所述第二时频资源中操作第二无线信号;其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
作为一个实施例,所述操作是发送。
作为一个实施例,所述操作是接收。
作为一个实施例,所述第一信息是半静态配置的。
作为一个实施例,所述第一信息由更高层信令承载。
作为一个实施例,所述第一信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为一个实施例,所述第一信息由MAC CE信令承载。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个IE(Information Element,信息单元)。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第一信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第一信息包括一个RRC信令中的多个IE。
作为一个实施例,所述操作是发送,所述第一信息包括一个RRC信令中的ConfiguredGrantConfig IE的部分或全部域,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息是动态配置的。
作为一个实施例,所述第一信息由物理层信令承载。
作为一个实施例,所述第一信息由DCI信令承载。
作为一个实施例,所述操作是发送,所述第一信息由上行授予(UpLink Grant)的DCI信令承载。
作为一个实施例,所述操作是接收,所述第一信息由下行授予(DownLink Grant)的DCI信令承载。
作为一个实施例,承载所述第一信息的DCI信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被CS(Configured Scheduling,配置的调度)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)加扰。
作为一个实施例,所述操作是发送,承载所述第一信息的DCI信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述操作是发送,承载所述第一信息的DCI信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述操作是接收,承载所述第一信息的DCI信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述操作是接收,承载所述第一信息的DCI信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信息在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信息在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为一个实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为一个实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为一个实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述第一时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述第一时频资源在时域上包括一个或多个连续的多载波符号。
作为一个实施例,所述第一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第一时频资源在频域上包括的子载波的数量等于12的正整数倍。
作为一个实施例,所述第一时频资源在频域上包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述第二时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述第二时频资源在时域上包括一个或多个连续的多载波符号。
作为一个实施例,所述第二时频资源在频域上包括正整数个子载波。
作为一个实施例,所述第二时频资源在频域上包括的子载波的数量等于12的正整数倍。
作为一个实施例,所述第二时频资源在频域上包括正整数个RB。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一信令的起始发送时刻晚于所述第一信息的终止发送时刻。
作为一个实施例,所述第一信令的起始发送时刻早于所述第一时频资源的起始发送时刻。
作为一个实施例,所述第一信令的终止发送时刻早于所述第一时频资源的起始发送时刻。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI信令。
作为一个实施例,所述操作是接收,所述第一信令是下行授予(DownLink Grant)的DCI信令。
作为一个实施例,所述操作是发送,所述第一信令是上行授予(UpLink Grant)的DCI信令。
作为一个实施例,所述第一信令的CRC比特序列被C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)加扰。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述操作是接收,所述第一信令是DCI format 1_0,所述DCI format1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述操作是接收,所述第一信令是DCI format 1_1,所述DCI format1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述操作是发送,所述第一信令是DCI format 0_0,所述DCI format0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述操作是发送,所述第一信令是DCI format 0_1,所述DCI format0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信息指示所述第一时频资源和所述第一参数组。
作为一个实施例,所述第一信息指示所述第一时频资源所占用的时域资源,所述第一时频资源所占用的频域资源和所述第一参数组。
作为上述实施例的一个子实施例,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的timeDomainAllocation域和frequencyDomainAllocation域,所述timeDomainAllocation域指示所述第一时频资源所占用的所述时域资源,所述frequencyDomainAllocation域指示所述第一时频资源所占用的所述频域资源,所述ConfiguredGrantConfig IE,所述timeDomainAllocation域和所述frequencyDomainAllocation域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一信息包括Time domain resource assignment域和Frequency domain resource assignment域,所述Time domain resource assignment域指示所述第一时频资源所占用的所述时域资源,所述Frequency domain resource assignment域指示所述第一时频资源所占用的所述频域资源,所述Time domain resource assignment域和所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括TCI,所述第一信息包括Transmission configuration indication域,所述Transmission configuration indication域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括PMI,所述第一信息包括Precoding information and number of layers域,所述Precoding information and number of layers域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括PMI,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的precodingAndNumberOfLayers域,所述ConfiguredGrantConfig IE和所述precodingAndNumberOfLayers域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括SRI,所述第一信息包括SRS resource indicator域,所述SRS resource indicator域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括SRI,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的srs-ResourceIndicator域,所述ConfiguredGrantConfig IE和所述srs-ResourceIndicator域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括RI,所述第一信息包括Precoding information and number of layers域,所述Precoding information and number of layers域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括RI,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的precodingAndNumberOfLayers域,所述ConfiguredGrantConfig IE和所述precodingAndNumberOfLayers域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括RI,所述第一信息包括Antenna port(s)域,所述Antenna port(s)域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括天线端口组,所述天线端口组由正整数个天线端口组成,所述第一信息包括Antenna port(s)域,所述Antenna port(s)域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括天线端口组,所述天线端口组由正整数个天线端口组成,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的antennaPort域,所述ConfiguredGrantConfig IE和所述antennaPort域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载,所述第一参数组包括MCS,所述第一信息包括Modulation and coding scheme域,所述Modulation and coding scheme域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括MCS,所述操作是发送,所述第一信息由RRC信令承载,所述第一信息包括ConfiguredGrantConfig IE中的mcsAndTBS域,所述ConfiguredGrantConfig IE和所述mcsAndTBS域的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信令指示所述第二时频资源和所述第二参数组。
作为一个实施例,所述第一信令指示所述第二时频资源所占用的时域资源,所述第二时频资源所占用的频域资源和所述第二参数组。
作为上述实施例的一个子实施例,所述第一信令包括Time domain resource assignment域和Frequency domain resource assignment域,所述Time domain resource assignment域指示所述第一时频资源所占用的所述时域资源,所述Frequency domain resource assignment域指示所述第一时频资源所占用的所述频域资源,所述Time domain resource assignment域和所述Frequency domain resource assignment域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括TCI,所述第一信令包括Transmission configuration indication域,所述Transmission configuration indication域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括PMI,所述第一信令包括Precoding information and number of layers域,所述Precoding information and number of layers域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括SRI,所述第一信令包括SRS resource indicator域,所述SRS resource indicator域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括RI,所述第一信令包括Precoding information and number of layers域,所述Precoding information and number of layers域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括RI,所述第一信令包括Antenna port(s)域,所述Antenna port(s)域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括天线端口组,所述天线端口组由正整数个天线端口组成,所述第一信令包括Antenna port(s)域,所述Antenna port(s)域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为上述实施例的一个子实施例,所述第一参数组包括MCS,所述第一信令包括Modulation and coding scheme域,所述Modulation and coding scheme域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为一个实施例,所述第一参数组包括多天线相关的发送,多天线相关的接收,TCI(Transmission configuration indication,传输配置指示),PMI(Precoding Matrix Indicator,预编码矩阵指示),SRI(Sounding Reference Signal Resource Indicator,测量参考信号资源指示),RI(Rank Indicator,秩指示),MCS(Modulation and coding scheme,调制编码方式)和天线端口组中的至少之一。
作为一个实施例,所述第二参数组包括多天线相关的发送,多天线相关的接收,TCI(Transmission configuration indication,传输配置指示),PMI(Precoding Matrix Indicator,预编码矩阵指示),SRI(Sounding Reference Signal Resource Indicator,测量参考信号资源指示),RI(Rank Indicator,秩指示),MCS(Modulation and coding scheme,调制编码方式)和天线端口组中的至少之一;所述第二参数组和所述第一参数组包括相同类 型的参数。
作为一个实施例,所述第一参数组包括多天线相关的发送。
作为一个实施例,所述第一参数组包括多天线相关的接收。
作为一个实施例,所述第一参数组包括TCI,所述第二参数组包括TCI。
作为一个实施例,所述第一参数组包括PMI,所述第二参数组包括PMI。
作为一个实施例,所述第一参数组包括SRI,所述第二参数组包括SRI。
作为一个实施例,所述第一参数组包括RI,所述第二参数组包括RI。
作为一个实施例,所述第一参数组包括MCS,所述第二参数组包括MCS。
作为一个实施例,所述第一参数组包括天线端口组,所述第二参数组包括天线端口组。
作为一个实施例,所述天线端口组包括正整数个天线端口。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述操作是发送,所述第一信息由RRC信令承载,所述第一无线信号包括类型1的基于配置授予的(Configured Grant)PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)传输。
作为一个实施例,所述操作是发送,所述第一信息由DCI信令承载,所述第一无线信号包括类型2的基于配置授予的(Configured Grant)PUSCH传输。
作为一个实施例,所述操作是接收,所述第一信息由DCI信令承载,所述第一无线信号包括SPS(Semi-persistent scheduling,半持续调度)PDSCH传输。
作为一个实施例,所述第一无线信号包括数据。
作为一个实施例,所述第一无线信号包括数据和参考信号。
作为上述实施例的一个子实施例,所述操作是接收,所述第一无线信号包括的所述参考信号包括DMRS(DeModulation Reference Signals,解调参考信号),CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号),PTRS(Phase-tracking reference signal,相位跟踪参考信号)中的至少之一。
作为上述实施例的一个子实施例,所述操作是发送,所述第一无线信号包括的所述参考信号包括DMRS,SRS(Sounding Reference Signal,探测参考信号),PTRS中的至少之一。
作为上述实施例的一个子实施例,所述第一无线信号包括的所述参考信号包括DMRS。
作为上述实施例的一个子实施例,所述操作是接收,所述第一无线信号包括的所述参考信号包括PT-RS。
作为上述实施例的一个子实施例,所述操作是接收,所述第一无线信号包括的所述参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述操作是发送,所述第一无线信号包括的所述参考信号包括SRS。
作为一个实施例,所述第一无线信号的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述操作是发送,所述第二无线信号包括基于调度的(Scheduled)PUSCH传输。
作为一个实施例,所述操作是接收,所述第二无线信号包括基于调度的(Scheduled)PDSCH传输。
作为一个实施例,所述第二无线信号包括数据。
作为一个实施例,所述第二无线信号包括数据和参考信号。
作为上述实施例的一个子实施例,所述操作是接收,所述所述第二无线信号包括的所述参考信号包括DMRS,CSI-RS,PTRS中的至少之一。
作为上述实施例的一个子实施例,所述操作是发送,所述第二无线信号包括的所述参考信号包括DMRS,SRS,PTRS中的至少之一。
作为上述实施例的一个子实施例,所述第二无线信号包括的所述参考信号包括DMRS。
作为上述实施例的一个子实施例,所述操作是接收,所述第二无线信号包括的所述参考信号包括PT-RS。
作为上述实施例的一个子实施例,所述操作是接收,所述第二无线信号包括的所述参考信号包括CSI-RS。
作为上述实施例的一个子实施例,所述操作是发送,所述第二无线信号包括的所述参考信号包括SRS。
作为一个实施例,所述第二无线信号的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第二无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为一个实施例,所述操作是接收,所述第一参数组包括多天线相关的接收,所述第二参数组包括多天线相关的接收;所述第一参数组包括的所述多天线相关的接收指示所述第一无线信号的多天线相关的接收,所述第二参数组包括的所述多天线相关的接收指示所述第二无线信号的多天线相关的接收。
作为一个实施例,所述操作是发送,所述第一参数组包括多天线相关的发送,所述第二参数组包括多天线相关的发送;所述第一参数组包括的所述多天线相关的发送指示所述第一无线信号的多天线相关的发送,所述第二参数组包括的所述多天线相关的发送指示所述第二无线信号的多天线相关的发送。
作为一个实施例,所述操作是接收,所述第一参数组包括TCI,所述第二参数组包括TCI;所述第一参数组包括的所述TCI指示所述第一无线信号的多天线相关的接收,所述第二参数组包括的所述TCI指示所述第二无线信号的多天线相关的接收。
作为一个实施例,所述第一参数组包括PMI,所述第二参数组包括PMI;所述第一参数组包括的所述PMI指示所述第一无线信号的发送预编码矩阵,所述第二参数组包括的所述PMI指示所述第二无线信号的发送预编码矩阵。
作为一个实施例,所述操作是发送,所述第一参数组包括SRI,所述第二参数组包括SRI;所述第一参数组包括的所述SRI指示所述第一无线信号的多天线相关的发送,所述第二参数组包括的所述SRI指示所述第二无线信号的多天线相关的发送。
作为一个实施例,所述第一参数组包括RI,所述第二参数组包括RI;所述第一参数组包括的所述RI指示所述第一无线信号的层(Layer)数,所述第二参数组包括的所述RI指示所述第二无线信号的层数。
作为一个实施例,所述第一参数组包括MCS,所述第二参数组包括MCS;所述第一参数组包括的所述MCS指示所述第一无线信号的调制阶数(Modulation Order)和编码速率(Coding Rate),所述第二参数组包括的所述MCS指示所述第二无线信号的调制阶数和编码速率。
作为一个实施例,所述第一参数组包括天线端口组,所述第二参数组包括天线端口组;所述第一参数组包括的所述天线端口组指示所述第一无线信号的发送天线端口组,所述第二参数组包括的所述天线端口组指示所述第二无线信号的发送天线端口组。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N等于1。
作为上述实施例的一个子实施例,所述N大于1。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、 基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持MIMO的无线通信。
作为一个子实施例,所述gNB203支持MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述K-1个信令生成于所述PHY301。
作为一个实施例,本申请中的所述K个信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述K-1无线信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,第一处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,第一处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-第一处理器471,确定发送第一信息和第一信令;
-第一处理器471,确定在第一时频资源中执行第一无线信号,在第二时频资源中执行第二无线信号,所述执行是发送;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天 线接收、解扩、码分复用、预编码等;
-第一处理器441,确定接收第一信息和第一信令;
-第一处理器441,确定在第一时频资源中操作第一无线信号,在第二时频资源中操作第二无线信号,所述操作是接收;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-第一处理器471,确定在第一时频资源中执行第一无线信号,在第二时频资源中执行第二无线信号,所述执行是接收;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-第一处理器441,确定在第一时频资源中操作第一无线信号,在第二时频资源中操作第二无线信号,所述操作是发送;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号;其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参 数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号;其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在所述第一时频资源中执行第一无线信号;在所述第二时频资源中执行第二无线信号;其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;在所述第一时频资源中执行第一无线信号;在所述第二时频资源中执行第二无线信号;其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于接收本申请中的所述第一信息。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于发送本申请中的所述第一信息。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于在本申请中的所述第一时频资源中接收本申请中的所述第一无线信号。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于在本申请中的所述第一时频资源中发送本申请中的所述第一无线信号。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器 490中的至少前三者被用于接收本申请中的所述K-1个信令。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于发送本申请中的所述K-1个信令。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于接收本申请中的所述第一信令。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于发送本申请中的所述第一信令。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于在本申请中的所述K-1个时频资源中分别接收本申请中的所述K-1个无线信号。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于在本申请中的所述K-1个时频资源中分别发送本申请中的所述K-1个无线信号。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于在本申请中的所述第一时频资源中分别接收本申请中的所述第一无线信号。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于在本申请中的所述第一时频资源中分别发送本申请中的所述第一无线信号。
作为一个实施例,接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者被用于在本申请中的所述第二时频资源中分别接收本申请中的所述第二无线信号。
作为一个实施例,发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者被用于在本申请中的所述第二时频资源中分别发送本申请中的所述第二无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时频资源中分别发送本申请中的所述第一无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时频资源中分别接收本申请中的所述第一无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时频资源中分别发送本申请中的所述第二无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时频资源中分别接收本申请中的所述第二无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述K-1个信令。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述K-1个信令。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于发送本申请中的所述第一信令。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于接收本申请中的所述第一信令。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述K-1个时频资源中分别发送本申请中的所述K-1个无线信号。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前 两者被用于在本申请中的所述K-1个时频资源中分别接收本申请中的所述K-1个无线信号。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1是可选的。
对于N01,在步骤S10中发送第二信息;在步骤S11中发送第一信息;在步骤S12中在第一时频资源中接收第一无线信号;在步骤S13中发送K-1个信令;在步骤S14中在K-1个时频资源中分别接收K-1个无线信号;在步骤S15中发送第一信令;在步骤S16中在第二时频资源中接收第二无线信号。
对于U02,在步骤S20中接收第二信息;在步骤S21中接收第一信息;在步骤S22中在第一时频资源中发送第一无线信号;在步骤S23中接收K-1个信令;在步骤S24中在K-1个时频资源中分别发送K-1个无线信号;在步骤S25中接收第一信令;在步骤S26中在第二时频资源中发送第二无线信号。
在实施例5中,本申请中的所述操作是发送,本申请中的所述执行是接收;所述第一信息被所述U02用于确定第一时频资源和第一参数组;所述第一信令被所述U02用于确定第二时频资源和第二参数组;所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组。所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被所述U02用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被所述U02用于确定K个时频资源,所述K个信令分别被所述U02用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息由MAC CE信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的部分域。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述操作是发送,所述第二信息包括一个RRC信令中的ConfiguredGrantConfig IE的部分或全部域,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述操作是接收,所述第二信息包括一个RRC信令中的SPS-Config IE 的部分或全部域,所述SPS-Config IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第二信息显式的指示所述M个时间窗。
作为一个实施例,所述第二信息隐式的指示所述M个时间窗。
作为一个实施例,所述第二信息指示周期和时域偏移,所述周期和所述时域偏移被所述U02用于确定所述M个时间窗。
作为上述实施例的一个子实施例,所述周期是所述M个时间窗中任意两个相邻的时间窗之间的时间间隔。
作为上述实施例的一个子实施例,所述M个时间窗中任意两个时间窗之间的时间间隔都是所述周期的正整数倍。
作为上述实施例的一个子实施例,所述周期的单位是毫秒(mini second)。
作为上述实施例的一个子实施例,所述周期的单位是时域单元。
作为上述实施例的一个子实施例,所述时域偏移指示所述M个时间窗中最早的一个时间窗。
作为上述实施例的一个子实施例,所述时域偏移的单位是毫秒(mini second)。
作为上述实施例的一个子实施例,所述时域偏移的单位是时域单元。
作为上述实施例的一个子实施例,所述第二信息包括RRC信令中的ConfiguredGrantConfig IE中的periodicity域和timeDomainOffset域,所述periodicity域指示所述周期,所述timeDomainOffset域指示所述时域偏移,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第二信息指示周期,所述第一信息还指示时域偏移,所述周期和所述时域偏移被所述U02用于确定所述M个时间窗。
作为上述实施例的一个子实施例,所述周期是所述M个时间窗中任意两个相邻的时间窗之间的时间间隔。
作为上述实施例的一个子实施例,所述M个时间窗中任意两个时间窗之间的时间间隔都是所述周期的正整数倍。
作为上述实施例的一个子实施例,所述周期的单位是毫秒(mini second)。
作为上述实施例的一个子实施例,所述周期的单位是时域单元。
作为上述实施例的一个子实施例,所述第二信息包括RRC信令中的SPS-Config IE中的的Periodicity域,所述SPS-Config IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述第二信息包括RRC信令中的ConfiguredGrantConfig IE中的periodicity域,所述periodicity域指示所述周期,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为上述实施例的一个子实施例,所述时域偏移指示所述M个时间窗中最早的一个时间窗。
作为上述实施例的一个子实施例,所述时域偏移的单位是毫秒(mini second)。
作为上述实施例的一个子实施例,所述时域偏移的单位是时域单元。
作为上述实施例的一个子实施例,所述第一信息由DCI信令承载。
作为上述实施例的一个子实施例,所述第一信息包括Time domain resource assignment域,所述Time domain resource assignment域的具体定义参见3GPP TS38.212中的第7.3.1章节。
作为一个实施例,所述操作是接收,所述用户设备在所述M个时间窗中的每个时间窗中都接收无线信号。
作为一个实施例,所述操作是发送,所述用户设备从所述M个时间窗中自行选择所述第一时间窗。
作为一个实施例,所述M个时间窗中任意两个时间窗的长度都相同。
作为一个实施例,不存在一个多载波符号属于所述M个时间窗中的两个时间窗。
作为一个实施例,所述M个时间窗中的任一时间窗包括正整数个连续的时域单元。
作为一个实施例,所述M个时间窗中的任一时间窗包括一个时域单元。
作为一个实施例,所述M个时间窗中的任意两个时间包括的时域单元的数量都相同。
作为一个实施例,所述时域单元包括正整数个连续的多载波符号。
作为一个实施例,所述时域单元包括14个连续的多载波符号。
作为一个实施例,所述时域单元包括7个连续的多载波符号。
作为一个实施例,所述时域单元包括正整数个时隙(Slot)。
作为一个实施例,所述时域单元包括正整数个子帧(Subframe)。
作为一个实施例,所述时域单元包括一个时隙。
作为一个实施例,所述时域单元包括一个子帧。
作为一个实施例,所述M个时间窗中的两个时间窗之间的时间间隔是所述两个时间窗的起始时刻之间的差值的绝对值。
作为一个实施例,所述M个时间窗中的两个时间窗之间的时间间隔是所述两个时间窗的起始时域单元的索引(Index)之间的差值的绝对值。
作为一个实施例,所述M个时间窗中的两个时间窗之间的时间间隔是所述两个时间窗的索引之间的差值的绝对值。
作为一个实施例,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被所述U02用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,所述第一条件集合包括所述第二无线信号和所述第一无线信号分别采用的MCS都对应相同的MCS表格。
作为上述实施例的一个子实施例,所述第一信息指示第一MCS索引,所述第一无线信号采用的MCS是所述MCS表格中对应所述第一MCS索引的一个MCS,所述第一信令指示第二MCS索引,所述第二无线信号采用的MCS是所述MCS表格中对应所述第二MCS索引的一个MCS。
作为一个实施例,所述第一条件集合包括所述第一信令和所述第二无线信号之间的时间间隔属于第一间隔集合。
作为上述实施例的一个子实施例,所述第一信令和所述第二无线信号之间的所述时间间隔是所述第二无线信号所属的时域单元的索引减去所属第一信令所属的时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一信令和所述第二无线信号之间的所述时间间隔是所述第二无线信号的起始多载波符号减去所属第一信令的起始多载波符号之后的差值。
作为上述实施例的一个子实施例,所述第一信令和所述第二无线信号之间的所述时间间隔是所述第二无线信号的起始发送时刻减去所属第一信令的起始发送时刻之后的差值。
作为上述实施例的一个子实施例,所述第一间隔集合包括正整数个数值(Value),所述数值的单位是时域单元。
作为上述实施例的一个子实施例,所述第一间隔集合包括正整数个数值,所述数值的单位是多载波符号。
作为上述实施例的一个子实施例,所述第一间隔集合包括正整数个数值,所述数值的单位是毫秒。
作为一个实施例,所述第一条件集合包括所述第二无线信号的重复发送编号(Repetition Number)和所述第一无线信号的重复发送编号相同。
作为上述实施例的一个子实施例,所述第一无线信号包括一个TB(Transport Block,传输块)的多次重复发送中的一次重复发送,所述第二无线信号包括一个TB的多次重复发送中的一次重复发送。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述第二无线信号和所述第一无线信号分别采用的MCS都对应相同的MCS表格。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述第二无线信号和所述第一无线信号分别采用的MCS都对应相同的MCS表格。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述第一信令和所述第二无线信号之间的时间间隔属于第一间隔集合。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述第一信令和所述第二无线信号之间的时间间隔属于第一间隔集合。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述第二无线信号的重复发送编号和所述第一无线信号的重复发送编号相同。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述第二无线信号的重复发送编号(Repetition Number)和所述第一无线信号的重复发送编号相同。
实施例6
实施例6示例了另一个无线传输的流程图,如附图6所示。在附图6中,基站N03是用户设备U04的服务小区维持基站。附图6中,方框F2是可选的。
对于N03,在步骤S30中发送第二信息;在步骤S31中发送第一信息;在步骤S32中在第一时频资源中发送第一无线信号;在步骤S33中发送K-1个信令;在步骤S34中在K-1个时频资源中分别发送K-1个无线信号;在步骤S35中发送第一信令;在步骤S36中在第二时频资源中发送第二无线信号。
对于U04,在步骤S40中接收第二信息;在步骤S41中接收第一信息;在步骤S42中在第一时频资源中接收第一无线信号;在步骤S43中接收K-1个信令;在步骤S44中在K-1个时频资源中分别接收K-1个无线信号;在步骤S45中接收第一信令;在步骤S46中在第二时频资源中接收第二无线信号。
在实施例6中,本申请中的所述操作是接收,本申请中的所述执行是发送;所述第一信息被所述U04用于确定第一时频资源和第一参数组;所述第一信令被所述U04用于确定第二时频资源和第二参数组;所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组。所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被所述U04用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被所述U04用于确定K个时频资源,所述K个信令分别被所述U04用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号。
实施例7
实施例7示例了一个第一条件集合被用于从第一参数组和第二参数组中确定目标参数组的示意图,如附图7所示。
在实施例7中,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
作为一个实施例,所述第一条件集合包括N个条件,N是大于1的正整数;当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
作为一个实施例,所述第一条件集合包括N个条件,N等于1;当所述第一条件集合未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合被满足时,所述目标参数组是所述第二参数组。
实施例8
实施例8示例了一个第一信息和第一信令的示意图,如附图8所示。
在实施例8中,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
作为一个实施例,所述第一标识和所述第二标识分别是两个不相同的非负整数。
作为一个实施例,所述第一信息包括RRC信令中的一个IE的部分或全部域,所述第一标识是所述第一信息包括的所述IE的名称。
作为上述实施例的一个子实施例,所述操作是发送,所述第一信息包括RRC信令中的ConfiguredGrantConfig IE的部分或全部域,所述第一标识是ConfiguredGrantConfig,所述ConfiguredGrantConfig IE的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一信息由DCI信令承载,所述第一标识是承载所述第一信息的所述DCI信令的信令标识。
作为一个实施例,所述第一信息由DCI信令承载,承载所述第一信息的所述DCI信令是一个被所述第一标识所标识的DCI信令。
作为一个实施例,所述第一信息由DCI信令承载,所述第一标识被用于生成承载所述第一信息的所述DCI信令的DMRS的RS(Reference Signal,参考信号)序列。
作为一个实施例,所述第一信息由DCI信令承载,承载所述第一信息的所述DCI信令的CRC比特序列被所述第一标识所加扰。
作为一个实施例,所述第一信息由DCI信令承载,所述第一标识是RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一信息由DCI信令承载,所述第一标识是CS(Configured Scheduling,配置的调度)-RNTI。
作为一个实施例,所述第二标识是所述第一信令的信令标识。
作为一个实施例,所述第一信令是一个被所述第二标识所标识的DCI信令。
作为一个实施例,所述第二标识被用于生成所述第一信令的DMRS的RS(Reference Signal,参考信号)序列。
作为一个实施例,所述第一信令的CRC比特序列被所述第二标识所加扰。
作为一个实施例,所述第二标识是C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第二标识是new-RNTI,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1章节或第6.1章节。
实施例9
实施例9示例了一个第一条件集合的示意图,如附图9所示。
在实施例9中,第一天线端口组包括本申请中的所述第一无线信号的发送天线端口,第二天线端口组包括本申请中的所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述第一天线端口组和所述第二天线端口组在空间上相关。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述第一天线端口组和所述第二天线端口组在空间上相关。
作为一个实施例,所述第一天线端口组包括正整数个天线端口,所述第二天线端口组包括正整数个天线端口。
作为一个实施例,所述第一信息还指示所述第一天线端口组。
作为一个实施例,所述第一信令还指示所述第二天线端口组。
实施例10
实施例10示例了另一个第一条件集合的示意图,如附图10所示。
在实施例10中,参考时域资源包括本申请中的所述第一信令所占用的时域资源,或者,参考时域资源包括本申请中的所述第二时频资源所占用的时域资源;本申请中的所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,参考时域资源包括所述第一信令所占用的时域资源。
作为一个实施例,参考时域资源包括所述第二时频资源所占用的时域资源。
作为一个实施例,所述参考时域资源包括正整数个多载波符号。
作为一个实施例,所述目标时域资源集合包括正整数个时域资源。
作为一个实施例,所述目标时域资源集合包括正整数个连续的时域资源。
作为一个实施例,所述目标时域资源集合包括正整数个多载波符号。
作为一个实施例,所述目标时域资源集合包括1个或多个连续的多载波符号。
作为一个实施例,所述参考时域资源中的一个多载波符号属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源中的至少一个多载波符号属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源与所述目标时域资源集合是部分或全部重叠的。
作为一个实施例,所述目标时域资源集合是预定义的。
作为一个实施例,所述目标时域资源集合是可配置的。
作为一个实施例,所述第二信息还指示所述目标时域资源集合。
作为一个实施例,所述第二信息还被用于确定所述目标时域资源集合。
实施例11
实施例11示例了一个第一条件集合和参考时域资源的关系的示意图,如附图11所示。
在实施例11中,目标时域资源集合包括本申请中的所述第一时频资源所占用的时域资源,所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述参考时域资源与所述目标时域资源集合是非正交的,所述目标时域资源集合包括所述第一时频资源所占用的时域资源。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述参考时域资源与所述目标时域资源集合是非正交的,所述目标时域资源集合包括所述第一时频资源所占用 的时域资源。
作为一个实施例,所述参考时域资源与所述目标时域资源集合是重叠的。
作为一个实施例,所述参考时域资源中的一个多载波符号属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源中的至少一个多载波符号属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源属于所述目标时域资源集合。
作为一个实施例,所述参考时域资源包括第一子时域资源和第二子时域资源,所述第一子时域资源属于所述目标时域资源集合,所述第二子时域资源和所述目标时域资源集合是正交的。
作为上述实施例的一个子实施例,所述第二子时域资源中的任一多载波符号都不属于所述目标时域资源集合。
实施例12
实施例12示例了另一个第一条件集合和参考时域资源的关系的示意图,如附图12所示。
在实施例12中,所述第一条件集合包括所述参考时域资源属于本申请中的所述目标时域资源集合。
作为一个实施例,所述第一条件集合包括N个条件,N是正整数。
作为上述实施例的一个子实施例,所述N大于1,所述N个条件中的一个条件包括所述参考时域资源属于所述目标时域资源集合。
作为上述实施例的一个子实施例,所述N等于1,所述N个条件包括所述参考时域资源属于所述目标时域资源集合。
作为一个实施例,所述目标时域资源集合包括正整数个时域单元。
作为一个实施例,所述目标时域资源集合包括正整数个连续的时域单元。
作为一个实施例,所述目标时域资源集合包括正整数个多载波符号。
作为一个实施例,所述目标时域资源集合包括正整数个连续的多载波符号。
作为一个实施例,所述目标时域资源集合包括不属于所述第一时频资源所占用的时域资源的多载波符号。
作为一个实施例,所述目标时域资源集合包括所述第一时频资源所占用的时域资源和不属于所述第一时频资源所占用的所述时域资源的多载波符号。
作为一个实施例,所述目标时域资源集合包括正整数个连续的多载波符号,第一时域偏移是所述目标时域资源集合的起始多载波符号和所述第一时频资源所占用的时域资源之间的时间偏差的绝对值。
作为上述实施例的一个子实施例,所述目标时域资源集合的起始多载波符号和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的起始多载波符号的索引减去所述第一时频资源的起始多载波符号的索引之后的差值。
作为上述实施例的一个子实施例,所述目标时域资源集合的起始多载波符号和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的起始多载波符号的索引减去所述第一时频资源的终止多载波符号的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时域偏移是预定义的。
作为上述实施例的一个子实施例,所述第一时域偏移是可配置的。
作为上述实施例的一个子实施例,所述第一时域偏移是由所述第二信息指示。
作为上述实施例的一个子实施例,所述第一时域偏移的单位是毫秒。
作为上述实施例的一个子实施例,所述第一时域偏移的单位是多载波符号。
作为一个实施例,所述目标时域资源集合包括正整数个连续的多载波符号,第二时域偏移是所述目标时域资源集合的终止多载波符号和所述第一时频资源所占用的时域资源之间的时间偏差的绝对值。
作为上述实施例的一个子实施例,所述目标时域资源集合的终止多载波符号和所述第一 时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的终止多载波符号的索引减去所述第一时频资源的起始多载波符号的索引之后的差值。
作为上述实施例的一个子实施例,所述目标时域资源集合的终止多载波符号和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的终止多载波符号的索引减去所述第一时频资源的终止多载波符号的索引之后的差值。
作为上述实施例的一个子实施例,所述第二时域偏移是预定义的。
作为上述实施例的一个子实施例,所述第二时域偏移是可配置的。
作为上述实施例的一个子实施例,所述第二时域偏移是由所述第二信息指示。
作为上述实施例的一个子实施例,所述第二时域偏移的单位是毫秒。
作为上述实施例的一个子实施例,所述第二时域偏移的单位是多载波符号。
作为一个实施例,所述目标时域资源集合包括正整数个连续的时域单元,第三时域偏移是所述目标时域资源集合的起始时域单元和所述第一时频资源所占用的时域资源之间的时间偏差的绝对值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的起始时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的起始时域单元的索引减去包括所述第一时频资源所占用的时域资源的时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的终止时域单元是包括所述第一时频资源所占用的所述时域资源的时域单元。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的终止时域单元是早于包括所述第一时频资源所占用的所述时域资源的时域单元的一个时域单元,所述第一时频资源所占用的所述时域资源的所述时域单元的索引减去所述目标时域资源集合的终止时域单元的索引之后的差值等于1。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的终止时域单元是早于包括所述第一时频资源所占用的所述时域资源的时域单元的一个时域单元,所述第一时频资源所占用的所述时域资源的所述时域单元的索引减去所述目标时域资源集合的终止时域单元的索引之后的差值等于第一差值,所述第一差值是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的起始时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的起始时域单元的索引减去所述第一时频资源所占用的起始时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的起始时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的起始时域单元的索引减去所述第一时频资源所占用的终止时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元是所述第一时频资源的起始时域单元。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元早于所述第一时频资源的起始时域单元,所述第一时频资源的所述起始时域单元的索引减去所述目标时域资源集合的终止时域单元的索引之后的差值等于1。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元早于所述第一时频资源的起始时域单元,所述第一时频资源的所述起始时域单元的索引减去所述目标时域资源集合的终止时域单元的索引之 后的差值等于第二差值,所述第二差值是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述第三时域偏移是预定义的。
作为上述实施例的一个子实施例,所述第三时域偏移是可配置的。
作为上述实施例的一个子实施例,所述第三时域偏移是由所述第二信息指示。
作为上述实施例的一个子实施例,所述第三时域偏移的单位是毫秒。
作为上述实施例的一个子实施例,所述第三时域偏移的单位是时域单元。
作为一个实施例,所述目标时域资源集合包括正整数个连续的时域单元,第四时域偏移是所述目标时域资源集合的终止时域单元和所述第一时频资源所占用的时域资源之间的时间偏差的绝对值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的终止时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的终止时域单元的索引减去包括所述第一时频资源所占用的时域资源的时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的终止时域单元的索引减去所述第一时频资源所占用的起始时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元和所述第一时频资源所占用的时域资源之间的所述时间偏差是所述目标时域资源集合的终止时域单元的索引减去所述第一时频资源所占用的终止时域单元的索引之后的差值。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于一个时域单元,所述目标时域资源集合的终止时域单元是包括所述第一时频资源所占用的所述时域资源的时域单元。
作为上述实施例的一个子实施例,所述第一时频资源所占用的时域资源属于多个时域单元,所述目标时域资源集合的终止时域单元是所述第一时频资源的起始时域单元。
作为上述实施例的一个子实施例,所述第四时域偏移等于1个时域单元。
作为上述实施例的一个子实施例,所述第四时域偏移是预定义的。
作为上述实施例的一个子实施例,所述第四时域偏移是可配置的。
作为上述实施例的一个子实施例,所述第四时域偏移的单位是毫秒。
作为上述实施例的一个子实施例,所述第四时域偏移的单位是时域单元。
实施例13
实施例13示例了另一个第一条件集合和参考时域资源的关系的示意图,如附图13所示。
在实施例13中,所述参考时频资源包括本申请中的所述第一信令所占用的时频资源,或者,所述参考时频资源包括本申请中的所述第二时频资源;所述第一条件集合包括所述参考时频资源属于本申请中的所述目标时频资源集合。
作为一个实施例,所述目标时频资源集合包括正整数个时频资源。
作为一个实施例,所述目标时频资源集合是预定义的。
作为一个实施例,所述目标时频资源集合是可配置的。
作为一个实施例,所述目标时频资源集合是由所述第二信息指示的。
作为一个实施例,所述第一时频资源被用于确定所述目标时频资源集合。
作为一个实施例,所述参考时频资源包括所述第一信令所占用的时频资源。
作为一个实施例,所述参考时频资源包括所述第二时频资源。
作为一个实施例,所述目标时频资源集合包括的任一时频资源在时域上包括正整数个多载波符号。
作为一个实施例,所述目标时频资源集合包括的任一时频资源在时域上包括一个或多个 连续的多载波符号。
作为一个实施例,所述目标时频资源集合包括的任一时频资源在频域上包括正整数个子载波。
作为一个实施例,所述目标时频资源集合包括的任一时频资源在频域上包括的子载波的数量等于12的正整数倍。
作为一个实施例,所述目标时频资源集合包括的任一时频资源在频域上包括正整数个RB。
实施例14
实施例14示例了一个第一信令和K个信令的关系的示意图,如附图14所示。
在实施例14中,本申请中的所述目标参数组是本申请中的所述第二参数组,所述第一信令是所述K个信令中的任意一个信令,所述K个信令都满足本申请中的所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离本申请中的所述第一时频资源最近的一个信令;K是大于1的正整数。
实施例15
实施例15A至实施例15C分别示例了一个第一给定天线端口组和第二给定天线端口组在空间上相关的示意图。
在实施例15中,所述第一给定天线端口组对应本申请中的所述第一天线端口组,所述第二给定天线端口组对应本申请中的所述第二天线端口组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的所有天线端口。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的发送或接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送或接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的所有发送天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接 收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的所有天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的至少一个天线端口是QCL(Quasi Co-Located,准共址)。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的至少一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的部分天线端口,所述第一给定天线端口组中不属于所述第二给定天线端口组的任一天线端口都和所述第二给定天线端口中的一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的至少一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的至少一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的任一天线端口都和所述第二给定天线端口组中的一个天线端口是spatial QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的至少一个天线端口不能和所述第二给定天线端口组中的至少一个天线端口同时发送无线信号。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第一给定天线端口组中的至少一个天线端口上的无线信号的发送或接收和所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送或接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第一给定天线端口组中的至少一个天线端口上的发送无线信号的接收和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的 意思包括:在所述第一给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第一给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的任一天线端口不能和所述第二给定天线端口组中的至少一个天线端口同时发送无线信号。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第一给定天线端口组中的任一天线端口上的无线信号的发送或接收和所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送或接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第一给定天线端口组中的任一天线端口上的发送无线信号的接收和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第一给定天线端口组中的任一天线端口上的无线信号的发送和所述第二给定天线端口组中的至少一个天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:在所述第二给定天线端口组中的至少一个天线端口上的无线信号的发送和所述第一给定天线端口组中的任一天线端口上的发送无线信号的接收不能同时进行。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的发送或接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个发送或接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的无线信号的发送天线或天线组包括所述第一给定天线端口组上的无线信号的至少一个发送天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的发送天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个接收天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组上的发送无线信号的接收天线或天线组包括所述第一给定天线端口组上的发送无线信号的至少一个发送天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送或多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的 意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:第二天线组是生成所述第二给定天线端口组上的发送无线信号的多天线相关的接收的一个或多个天线组,第一天线组是生成所述第一给定天线端口组上的发送无线信号的多天线相关的发送的一个或多个天线组,所述第二天线组包括所述第一天线组中的至少一个天线或天线组。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第二给定天线端口组包括所述第一给定天线端口组中的至少一个天线端口。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的至少一个天线端口都和所述第二给定天线端口组中的至少一个天线端口是QCL。
作为一个实施例,所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的意思包括:所述第一给定天线端口组中的至少一个天线端口都和所述第二给定天线端口组中的至少一个天线端口是spatial QCL。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,两个天线端口是QCL是指:所述两个天线端口至少有一个相同的QCL参数(QCL parameter),所述QCL参数包括多天线相关的QCL参数和多天线无关的QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口的至少一个QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个QCL参数。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,多天线相关的QCL参数包括:到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或多种。
作为一个实施例,多天线无关的QCL参数包括:延时扩展(delay spread)、多普勒 扩展(Doppler spread)、多普勒移位(Doppler shift)、路径损耗(path loss)、平均增益(average gain)中的一种或多种。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度(large-scale)特性(properties)推断出两个天线端口中的另一个天线端口上发送的无线信号的全部或者部分多天线相关的大尺度特性。
作为一个实施例,两个天线端口是spatial QCL是指:所述两个天线端口至少有一个相同的多天线相关的QCL参数(spatial QCL parameter)。
作为一个实施例,两个天线端口是spatial QCL的是指:能够从所述两个天线端口中的一个天线端口的至少一个多天线相关的QCL参数推断出所述两个天线端口中的另一个天线端口的至少一个多天线相关的QCL参数。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的接收。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的发送推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送。
作为一个实施例,两个天线端口是spatial QCL是指:能够从所述两个天线端口中的一个天线端口上发送的无线信号的多天线相关的接收推断出所述两个天线端口中的另一个天线端口上发送的无线信号的多天线相关的发送,所述所述两个天线端口中的一个天线端口上发送的无线信号的接收者和所述所述两个天线端口中的另一个天线端口上发送的无线信号的发送者相同。
作为一个实施例,给定无线信号的多天线相关的大尺度特性包括到达角(angle of arrival)、离开角(angle of departure)、空间相关性、多天线相关的发送、多天线相关的接收中的一种或者多种。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述实施例15A对应所述第一给定天线端口组的发送波束和所述第二给定天线端口组的发送波束相同的所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的示意图。
作为一个实施例,所述实施例15B对应所述第二给定天线端口组的发送波束包括所述第一给定天线端口组的发送波束的所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的示意图。
作为一个实施例,所述实施例15C对应所述第二给定天线端口组的发送波束只包括所述第一给定天线端口组的部分发送波束的所述第一给定天线端口组和所述第二给定天线端口组在空间上相关的示意图。
实施例16
实施例16示例了一个UE中的处理装置的结构框图,如附图16所示。附图16中,UE处理装置1200包括第一接收机1201和第一收发机1202。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前三者。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452、第一处理器441和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、接收处理器452、发射处理器455、第一处理器441和控制器/处理器490。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、接收处理器452、发射处理器455、第一处理器441和控制器/处理器490中的至少前四者。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、接收处理器452、发射处理器455、第一处理器441和控制器/处理器490中的至少前三者。
作为一个实施例,所述第一收发机1202包括实施例4中的发射器/接收器456、接收处理器452、发射处理器455、第一处理器441和控制器/处理器490中的至少前二者。
-第一接收机1201,接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-第一收发机1202,在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号;
在实施例16中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
作为一个实施例,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
作为一个实施例,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
作为一个实施例,所述第一接收机1201还接收第二信息;其中,所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。
作为一个实施例,第一天线端口组包括所述第一无线信号的发送天线端口,第二天线端口组包括所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
作为一个实施例,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,所述目标参数组是所述第二参数组,所述第一信令是K个信令中的任意一个信令,所述K个信令都满足所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离所述第一时频资源最近的一个信令;K是大于1的正整数。
作为一个实施例,所述第一接收机1201还接收K-1个信令;所述第一收发机1202还在K-1个时频资源中分别操作K-1个无线信号;其中,所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被用于确定K个时频资源,所述K个信令分别被用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号;所述操作是发送,或者,所述操作是接收。
实施例17
实施例17示例了一个基站设备中的处理装置的结构框图,如附图17所示。附图17中,基站设备中的处理装置1300包括第二发射机1301和第二收发机1302组成。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前三者。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415、第一处理器471和控制器/处理器440中的至少前二者。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440中的至少前四者。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440中的至少前三者。
作为一个实施例,所述第二收发机1302包括实施例4中的发射器/接收器416、发射处理器415、接收处理器412、第一处理器471和控制器/处理器440中的至少前二者。
-第二发射机1301,发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
-第二收发机1302,在所述第一时频资源中执行第一无线信号;在所述第二时频资源中执行第二无线信号;
在实施例17中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
作为一个实施例,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
作为一个实施例,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
作为一个实施例,所述第二发射机1301还发送第二信息;其中,所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。
作为一个实施例,第一天线端口组包括所述第一无线信号的发送天线端口,第二天 线端口组包括所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
作为一个实施例,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
作为一个实施例,所述目标参数组是所述第二参数组,所述第一信令是K个信令中的任意一个信令,所述K个信令都满足所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离所述第一时频资源最近的一个信令;K是大于1的正整数。
作为一个实施例,所述第二发射机1301还发送K-1个信令;所述第二收发机1302还在K-1个时频资源中分别执行K-1个无线信号;其中,所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被用于确定K个时频资源,所述K个信令分别被用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号;所述执行是接收,或者,所述执行是发送。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种用于无线通信的用户设备,其特征在于,包括:
    -第一接收机,接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
    -第一收发机,在所述第一时频资源中操作第一无线信号;在所述第二时频资源中操作第二无线信号;
    其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一条件集合中的至少一个条件未被满足时,所述目标参数组是所述第一参数组;当所述第一条件集合中的所有条件都被满足时,所述目标参数组是所述第二参数组。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息携带第一标识,所述第一信令携带第二标识,所述第一标识和所述第二标识不相同。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,所述第一接收机还接收第二信息;其中,所述第二信息的起始发送时刻早于所述第一信令的起始发送时刻;所述第二信息被用于确定M个时间窗,所述M个时间窗中的任意两个时间窗都是正交的,M是大于1的正整数;第一时间窗包括所述第一时频资源所占用的时域资源,所述第一时间窗是所述M个时间窗中的一个时间窗。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,第一天线端口组包括所述第一无线信号的发送天线端口,第二天线端口组包括所述第二无线信号的发送天线端口;所述第一条件集合包括所述第一天线端口组和所述第二天线端口组在空间上相关。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,参考时域资源包括所述第一信令所占用的时域资源,或者,参考时域资源包括所述第二时频资源所占用的时域资源;所述第一时频资源所占用的时域资源被用于确定目标时域资源集合;所述第一条件集合包括所述参考时域资源与所述目标时域资源集合是非正交的。
  7. 根据权利要求1至6所述的方法,其特征在于,所述目标参数组是所述第二参数组,所述第一信令是K个信令中的任意一个信令,所述K个信令都满足所述第一条件集合,所述第一信令是所述K个信令中起始发送时刻距离所述第一时频资源最近的一个信令;K是大于1的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一接收机还接收K-1个信令;所述第一收发机还在K-1个时频资源中分别操作K-1个无线信号;其中,所述K个信令的起始发送时刻都晚于所述第一信息的起始发送时刻;所述K个信令分别被用于确定K个时频资源,所述K个信令分别被用于确定K个参数组;所述第二时频资源是所述K个时频资源中的一个时频资源,所述第二参数组是所述K个参数组中的一个参数组;所述K-1个信令是所述K个信令中除了所述第一信令之外的所有信令,所述K-1个时频资源分别是被所述K-1个信令所确定的所述K个时频资源中的时频资源;K-1个参数组分别是被所述K-1个信令所确定的所述K个参数组中的参数组,所述K-1个参数组分别被用于生成所述K-1个无线信号;所述操作是发送,或者,所述操作是接收。
  9. 一种用于无线通信的基站设备,其特征在于,包括:
    -第二发射机,发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
    -第二收发机,在所述第一时频资源中执行第一无线信号;在所述第二时频资源中执行第二无线信号;
    其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数 组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
  10. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    -接收第一信息,所述第一信息被用于确定第一时频资源和第一参数组;
    -接收第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
    -在所述第一时频资源中操作第一无线信号;
    -在所述第二时频资源中操作第二无线信号;
    其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述操作是发送,或者,所述操作是接收。
  11. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    -发送第一信息,所述第一信息被用于确定第一时频资源和第一参数组;
    -发送第一信令,所述第一信令被用于确定第二时频资源和第二参数组;
    -在所述第一时频资源中执行第一无线信号;
    -在所述第二时频资源中执行第二无线信号;
    其中,所述第一信令的起始发送时刻晚于所述第一信息的起始发送时刻;所述第二参数组被用于生成所述第二无线信号,目标参数组被用于生成所述第一无线信号,所述目标参数组是所述第一参数组或者所述第二参数组;第一条件集合被用于从所述第一参数组和所述第二参数组中确定所述目标参数组;所述执行是接收,或者,所述执行是发送。
PCT/CN2020/077000 2019-03-14 2020-02-27 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020181994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/472,700 US20220046674A1 (en) 2019-03-14 2021-09-13 Method and device for use in user device and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910193082.9 2019-03-14
CN201910193082.9A CN111698788B (zh) 2019-03-14 2019-03-14 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/472,700 Continuation US20220046674A1 (en) 2019-03-14 2021-09-13 Method and device for use in user device and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2020181994A1 true WO2020181994A1 (zh) 2020-09-17

Family

ID=72426878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077000 WO2020181994A1 (zh) 2019-03-14 2020-02-27 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US20220046674A1 (zh)
CN (3) CN113839749A (zh)
WO (1) WO2020181994A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208522A (zh) * 2021-04-09 2022-10-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN116170888A (zh) * 2021-11-24 2023-05-26 华为技术有限公司 一种信息接收与发送方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867981A (zh) * 2009-04-17 2010-10-20 中兴通讯股份有限公司 网络拓扑信息发送及获取方法
CN102612090A (zh) * 2011-01-19 2012-07-25 华为技术有限公司 数据联合传输的方法及装置
EP2882155A1 (en) * 2012-08-02 2015-06-10 Huawei Technologies Co., Ltd. Configuration method and sending method for pilot frequency, and device
CN107404369A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583939B2 (en) * 2006-08-22 2009-09-01 Mitsubishi Electric Research Laboratories, Inc. Method and system for antenna selection in wireless networks
CN103379603B (zh) * 2012-04-17 2016-08-03 电信科学技术研究院 功控信息通知及功控方法和设备
CN109327822B (zh) * 2012-10-05 2022-10-25 交互数字专利控股公司 增强机器类型通信(mtc)设备覆盖的方法和装置
US10582552B2 (en) * 2014-08-22 2020-03-03 Lg Electronics Inc. Method for device-to-device communication in wireless communication system and apparatus therefor
WO2017164593A1 (en) * 2016-03-21 2017-09-28 Samsung Electronics Co., Ltd. Method and apparatus of performing scheduling and power saving in beam-formed system
CN107342852B (zh) * 2016-04-29 2022-11-15 中兴通讯股份有限公司 信令发送、接收方法及装置、网络侧设备、终端
CN107454645B (zh) * 2016-05-31 2020-05-26 上海诺基亚贝尔股份有限公司 基于波束的毫米波通信系统中的方法、基站以及用户设备
CN107896389A (zh) * 2016-09-29 2018-04-10 华为技术有限公司 一种用于数据传输的方法和装置
CN108076520B (zh) * 2016-11-16 2020-02-14 上海朗帛通信技术有限公司 一种被用于ue和基站中的方法和设备
WO2018120054A1 (en) * 2016-12-30 2018-07-05 Abb Schweiz Ag Method and control system for faulted phase detection
CN114244407A (zh) * 2017-03-18 2022-03-25 上海朗桦通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN116232554A (zh) * 2017-05-05 2023-06-06 中兴通讯股份有限公司 一种传输参数处理方法及装置
CN112600600A (zh) * 2017-07-12 2021-04-02 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
WO2019028687A1 (zh) * 2017-08-09 2019-02-14 南通朗恒通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
EP3678299A1 (en) * 2017-08-29 2020-07-08 Shanghai Langbo Communication Technology Company Limited User equipment used for wireless communications, and method and apparatus in base station
CN109462462B (zh) * 2017-09-06 2021-07-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN110350955B (zh) * 2018-04-06 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN114124170B (zh) * 2018-04-08 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110739988B (zh) * 2018-07-20 2021-04-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11770842B2 (en) * 2019-10-07 2023-09-26 Qualcomm Incorporated Support of simultaneous unicast and multicast monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867981A (zh) * 2009-04-17 2010-10-20 中兴通讯股份有限公司 网络拓扑信息发送及获取方法
CN102612090A (zh) * 2011-01-19 2012-07-25 华为技术有限公司 数据联合传输的方法及装置
EP2882155A1 (en) * 2012-08-02 2015-06-10 Huawei Technologies Co., Ltd. Configuration method and sending method for pilot frequency, and device
CN107404369A (zh) * 2016-05-21 2017-11-28 上海朗帛通信技术有限公司 一种无线通信中的ue和基站中的方法和装置

Also Published As

Publication number Publication date
CN113839748A (zh) 2021-12-24
CN111698788A (zh) 2020-09-22
US20220046674A1 (en) 2022-02-10
CN113839748B (zh) 2024-03-01
CN113839749A (zh) 2021-12-24
CN111698788B (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2018090816A1 (zh) 一种被用于用户设备和基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
WO2019148488A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020029861A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN109391346B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11337230B2 (en) Method and device in UE and base station used for wireless communication
CN111083782A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US10965357B2 (en) Method and device in first node and base station used for wireless communication
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020024783A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174490A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111278110A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20220046674A1 (en) Method and device for use in user device and base station used for wireless communication
CN111490861B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019041146A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
WO2019028687A1 (zh) 一种用于无线通信的用户设备、基站中的方法和装置
US11877305B2 (en) Method and device in UE and base station for wireless communication
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114189884B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023011281A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220330043A1 (en) Method and device in nodes used for wireless communication
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770637

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 20770637

Country of ref document: EP

Kind code of ref document: A1