WO2020011091A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2020011091A1
WO2020011091A1 PCT/CN2019/094665 CN2019094665W WO2020011091A1 WO 2020011091 A1 WO2020011091 A1 WO 2020011091A1 CN 2019094665 W CN2019094665 W CN 2019094665W WO 2020011091 A1 WO2020011091 A1 WO 2020011091A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
deviation
signaling
information
deviations
Prior art date
Application number
PCT/CN2019/094665
Other languages
English (en)
French (fr)
Inventor
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2020011091A1 publication Critical patent/WO2020011091A1/zh
Priority to US16/830,294 priority Critical patent/US11252722B2/en
Priority to US17/564,252 priority patent/US11864168B2/en
Priority to US18/238,538 priority patent/US20230403686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1832Details of sliding window management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and in particular, to a communication method and device that support data transmission on an unlicensed spectrum.
  • eMBB Enhance Mobile Broadband
  • URLLC Ultra Reliable and Low Latency Communication
  • MCS Modulation and Coding Scheme
  • the inventor has found through research that for applications with low latency requirements, faster feedback on HARQ / CSI is required, and for applications with low latency requirements, slower feedback on HARQ / CSI. Feedback is a key issue that needs to be addressed.
  • the present application discloses a method for user equipment for wireless communication, which is characterized by including:
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window. If the first signaling carries a first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier , The first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second-type candidate deviations At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • the problem to be solved in this application is: how to enhance the scheme of HARQ-ACK feedback delay configuration for the new air interface Release16 with lower delay requirements.
  • HARQ-ACK Hybrid Automatic Repeat Repeat ACKnowledgement, hybrid automatic retransmission request confirmation
  • feedback delay configuration can be through DCI (Downlink Control Information, Downlink Control Information (PDCI (Physical Downlink Shared Channel) in the DCI format 1_0 or 1_1 -to-HARQ_feedback timing (indicator field) indication or RRC (Radio Resource Control, radio resource control) configuration (when PDSCH is in the PDSCH format 1_1) -to-HARQ_feedback Timing Indicator field is 0 bits).
  • DCI Downlink Control Information
  • PDCI Physical Downlink Shared Channel
  • RRC Radio Resource Control, radio resource control
  • the method indicated by DCI is to select a delay value from the range of a HARQ-ACK feedback delay configured by RRC, and the method configured by RRC is to configure a HARQ-ACK feedback delay by RRC.
  • the essence of the above method is that the first signaling is DCI signaling scheduling PDSCH, the first wireless signal is PDSCH scheduled by the first signaling, and the feedback for the first wireless signal is HARQ-ACK
  • the first time window is the time slot where the PDSCH is located
  • the second time window is the time slot where the HARQ-ACK is located
  • the first time domain deviation is the feedback delay of the HARQ-ACK relative to the PDSCH
  • the first and second identifiers are DCI's CRC scrambled by two different RNTIs; if it is detected that DCI is scrambled by the first identifier, the feedback delay of HARQ-ACK relative to PDSCH belongs to K1 first-class alternative deviations; if DCI is detected by When the two identifiers are scrambled, the feedback delay of HARQ-ACK relative to PDSCH belongs to K2 second-class candidate deviations.
  • the RNTI of the CRC used to scramble the DCI is associated with the range of the HARQ-ACK feedback delay, and the range of the HARQ-ACK feedback delay can be determined implicitly by identifying the RNTI;
  • the case of choosing a delay value from the range of HARQ-ACK feedback delay avoids introducing more bit overhead in DCI in order to support lower delay; on the other hand, for HARQ-ACK feedback delay indication via RRC signaling
  • multiple HARQ-ACK feedback delay ranges related to RNTI are configured to solve different delay requirements of different services.
  • the above method is characterized in that at least one of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • Alternative bias is characterized in that at least one of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • the essence of the above method is that the K1 first-type candidate deviations are for applications of the new air interface Release15, and the K2 second-type candidate deviations are for applications with lower delay requirements in the new air interface Release16.
  • the above method is characterized in that the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second Class candidate deviation; or, the K1 is greater than 1, the K2 is greater than 1, the first signaling carries first information, the first information includes a first domain, and the first information includes the first A domain is used to determine the first time domain bias from the K1 first category candidate biases or the K2 second category candidate biases.
  • the above method is characterized in that the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the above method is characterized by comprising:
  • the second information is used to indicate at least one of the K1 first-type time domain deviations and the K2 second-type time domain deviations.
  • the above method is characterized by comprising:
  • the third information is used to indicate the second identifier.
  • This application discloses a method in a base station device for wireless communication, which is characterized in that it includes:
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window. If the first signaling carries a first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier , The first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second-type candidate deviations At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • the above method is characterized in that at least one of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations Alternative bias.
  • the above method is characterized in that the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second Alternative bias; or, if K1 is greater than 1, K2 is greater than 1, the first signaling carries first information, the first information includes a first domain, and the first information includes the first information.
  • a domain is used to determine the first time domain bias from the K1 first category candidate biases or the K2 second category candidate biases.
  • the above method is characterized in that the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the above method is characterized by comprising:
  • the second information is used to indicate at least one of the K1 first-type time domain deviations and the K2 second-type time domain deviations.
  • the above method is characterized by comprising:
  • the third information is used to indicate the second identifier.
  • This application discloses a user equipment for wireless communication, which is characterized by including:
  • a first receiver receiving first signaling; receiving a first wireless signal in a first time window;
  • a first transmitter sending feedback for the first wireless signal in a second time window
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window. If the first signaling carries a first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier , The first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second-type candidate deviations At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • the above-mentioned user equipment is characterized in that at least one of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations. Choose deviation.
  • the above-mentioned user equipment is characterized in that the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second-type deviation Candidate deviation; or, K1 is greater than 1, K2 is greater than 1, the first signaling carries first information, the first information includes a first domain, and the first information includes the first The domain is used to determine the first time-domain deviation from the K1 first-category candidate deviations or the K2 second-category candidate deviations.
  • the above-mentioned user equipment is characterized in that the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the above user equipment is characterized in that the first receiver further receives second information; wherein the second information is used to indicate the K1 first-type time domain deviations and the K2 At least one of the second type of time domain bias.
  • the above-mentioned user equipment is characterized in that the first receiver further receives third information; wherein the third information is used to indicate the second identifier.
  • This application discloses a base station device for wireless communication, which is characterized by including:
  • a second transmitter sending first signaling; sending a first wireless signal in a first time window;
  • a second receiver receiving feedback for the first wireless signal in a second time window
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window. If the first signaling carries a first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier , The first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second-type candidate deviations At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • the foregoing base station device is characterized in that at least one of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations. Choose deviation.
  • the above-mentioned base station device is characterized in that the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second-type Candidate deviation; or, K1 is greater than 1, K2 is greater than 1, the first signaling carries first information, the first information includes a first domain, and the first information includes the first The domain is used to determine the first time-domain deviation from the K1 first-category candidate deviations or the K2 second-category candidate deviations.
  • the foregoing base station device is characterized in that the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the foregoing base station device is characterized in that the second transmitter further sends second information; wherein the second information is used to indicate the K1 first-type time domain deviations and the K2 At least one of the second type of time domain bias.
  • the foregoing base station device is characterized in that the second transmitter further sends third information; wherein the third information is used to indicate the second identifier.
  • this application has the following advantages:
  • the configuration of HARQ-ACK feedback delay can be indicated through the DCI (PDSCH-to-HARQ_feedback timingindicator field in DCI format 1_0 or 1_1) or the RRC configuration (when PDSCH-to-HARQ_feedback in DCI format 1_1). When the timing indicator field is 0 bits).
  • the method indicated by DCI is to select a delay value from the range of a HARQ-ACK feedback delay configured by RRC, and the method configured by RRC is to configure a HARQ-ACK feedback delay by RRC. This application can simultaneously support different delay requirements for HARQ feedback in the new air interface Release15 and future Release16.
  • this application avoids introducing more bit overhead in DCI in order to support lower delay
  • this application configures multiple HARQ-ACK feedback delay ranges related to RNTI, which solves different requirements of delay for different services.
  • FIG. 1 shows a flowchart of a first signaling, a first wireless signal, and feedback for the first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of an NR (New Radio) node and a UE according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of K1 first-type candidate deviations and K2 second-type candidate deviations according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of determining a first time domain deviation according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of a first signaling being used to determine a time domain resource occupied by a first wireless signal according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first signaling being used to determine a time-frequency resource occupied by a feedback for a first wireless signal in a second time window according to an embodiment of the present application
  • FIG. 10 shows a structural block diagram of a processing device in a UE according to an embodiment of the present application
  • FIG. 11 shows a structural block diagram of a processing apparatus in a base station device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first signaling, a first wireless signal, and feedback to the first wireless signal, as shown in FIG. 1.
  • the user equipment in this application receives first signaling; receives a first wireless signal in a first time window; and sends feedback for the first wireless signal in a second time window; wherein The first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window; If the first signaling carries a first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier, The first time domain deviation is one of K2 second-type candidate deviations, and K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second-type candidate deviations are At least one second-type candidate deviation and the K1 first-type candidate deviations are different.
  • the first signaling is dynamically configured.
  • the first signaling is physical layer signaling.
  • the first signaling is DCI (Downlink Control Information, Downlink Control Information) signaling.
  • DCI Downlink Control Information, Downlink Control Information
  • the first signaling is DCI signaling of a Downlink Grant.
  • the first signaling is an uplink grant (UpLink Grant) DCI signaling.
  • UpLink Grant UpLink Grant
  • the first signaling is transmitted on a downlink physical layer control channel (that is, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel that is, a downlink channel that can only be used to carry physical layer signaling.
  • the downlink physical layer control channel is a PDCCH (Physical Downlink Control Channel).
  • the downlink physical layer control channel is an sPDCCH (short PDCCH, short PDCCH).
  • the downlink physical layer control channel is an NR-PDCCH (New Radio PDCCH).
  • NR-PDCCH New Radio PDCCH
  • the downlink physical layer control channel is a NB-PDCCH (Narrow Band PDCCH, narrowband PDCCH).
  • the first signaling is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH.
  • the downlink physical layer data channel is sPDSCH.
  • the downlink physical layer data channel is an NR-PDSCH.
  • the downlink physical layer data channel is NB-PDSCH.
  • the first signaling is a UE (User Equipment) -specific DCI signaling.
  • the first signaling is UE-specific.
  • the first identifier and the second identifier are two different signaling identifiers, respectively.
  • the first identifier and the second identifier are respectively two different RNTIs (Radio Network Temporary Identifiers).
  • the first identifier includes C (Cell, cell) -RNTI (Radio Network Temporary Identifier, wireless network tentative identifier) or CS (Configured Scheduling, configured scheduling)-RNTI
  • the second identifier includes new-RNTI.
  • C Cell, cell
  • -RNTI Radio Network Temporary Identifier, wireless network tentative identifier
  • CS Configured Scheduling, configured scheduling
  • the first identifier includes one kind of RNTI among multiple RNTIs
  • the second identifier includes one kind of RNTI different from the first identifier among the multiple RNTIs.
  • the multiple RNTIs include at least two of C-RNTI, CS-RNTI, and new-RNTI.
  • C-RNTI C-RNTI
  • CS-RNTI CS-RNTI
  • new-RNTI For a specific definition of the new-RNTI, see Section 5.1 of 3GPP TS38.214. .3.1 Section.
  • the first identifier and the second identifier are two different non-negative integers, respectively.
  • the first identifier or the second identifier is a signaling identifier of the first signaling.
  • the first signaling is a DCI signaling identified by the first identifier or the second identifier.
  • the first identifier or the second identifier is used to generate an RS sequence of DMRS (DeModulation Reference Signals) of the first signaling.
  • DMRS Demonulation Reference Signals
  • a CRC (Cyclic Redundancy Check) bit sequence of the first signaling is scrambled by the first identifier or the second identifier.
  • the first signaling carries first information
  • the first information includes a second field
  • the second field included in the first information includes a positive integer number of bits
  • the first information includes The second domain is used to indicate a modulation and coding scheme (MCS, Modulation Coding Scheme) of the first wireless signal.
  • MCS Modulation Coding Scheme
  • the second domain included in the first information explicitly indicates a modulation and coding manner of the first wireless signal.
  • the second domain included in the first information implicitly indicates a modulation and coding manner of the first wireless signal.
  • the modulation and coding scheme of the first wireless signal belongs to a first modulation and coding scheme set, a second modulation and coding scheme set, and a third modulation and coding scheme.
  • One of a set of modes if the first signaling carries the second identifier, the modulation and coding mode of the first wireless signal belongs to a third set of modulation and coding modes; the first set of modulation and coding modes includes a positive An integer number of modulation and coding modes, the second modulation and coding mode set includes positive integer modulation and coding modes, and the third modulation and coding mode set includes positive integer modulation and coding modes.
  • the first modulation and coding scheme set, the second modulation and coding scheme set, and the third modulation and coding scheme set are different from each other.
  • a coding rate (Code Rate) of at least one modulation coding method in the third modulation coding method set is lower than the first modulation coding method set or the second modulation coding method set The coding rate of each modulation and coding scheme in.
  • a coding rate (Code Rate) of at least one modulation coding method in the third modulation coding method set is lower than the first modulation coding method set and the second modulation coding method set.
  • the coding rate of each modulation and coding scheme in.
  • At least one modulation and coding scheme in the first modulation and coding scheme set does not belong to the second modulation and coding scheme set, or at least one modulation and coding in the second modulation and coding scheme set.
  • the mode does not belong to the first modulation and coding mode set.
  • At least one modulation and coding scheme in the first modulation and coding scheme set does not belong to the third modulation and coding scheme set, or at least one modulation and coding in the third modulation and coding scheme set The mode does not belong to the first modulation and coding mode set.
  • At least one modulation and coding scheme in the second modulation and coding scheme set does not belong to the third modulation and coding scheme set, or at least one modulation and coding in the third modulation and coding scheme set The mode does not belong to the second modulation and coding mode set.
  • the first information belongs to DCI.
  • the first signaling is DCI signaling granted downstream, and the first information belongs to the DCI granted downstream.
  • the first signaling is DCI signaling granted by the uplink, and the first information belongs to the DCI granted by the uplink.
  • the first information includes a DCI.
  • the first signaling is DCI signaling for downlink grant
  • the first information includes one DCI for downlink grant.
  • the first signaling is DCI signaling granted in an uplink
  • the first information includes a DCI granted in uplink
  • the first information includes a positive integer field (Field) in the DCI, and the field includes a positive integer number of bits.
  • Field positive integer field
  • the first time window includes a positive integer number of time domain resource units.
  • the first time window includes a time domain resource unit.
  • the first time window includes a positive integer number of consecutive multi-carrier symbols.
  • the first time window is a continuous period of time.
  • the duration of the first time window is predefined.
  • the duration of the first time window is configurable.
  • the duration of the first time window is configured by higher layer signaling.
  • the duration of the first time window is configured by physical layer signaling.
  • the second time window includes a positive integer number of time domain resource units.
  • the second time window includes a time domain resource unit.
  • the second time window includes a positive integer number of consecutive multi-carrier symbols.
  • the second time window is a continuous time period.
  • the duration of the second time window is predefined.
  • the duration of the second time window is configurable.
  • the duration of the second time window is configured by higher layer signaling.
  • the duration of the second time window is configured by physical layer signaling.
  • the first time window includes one or more time domain resource units to which time domain resources occupied by the first wireless signal belong.
  • the second time window includes one or more time domain resource units to which the time domain resources occupied by the feedback for the first wireless signal belong.
  • the first time window includes a time domain resource unit to which a time domain resource occupied by the first wireless signal belongs.
  • the second time window includes a time domain resource unit to which the time domain resource occupied by the feedback for the first wireless signal belongs.
  • the time domain resource unit includes a positive integer number of consecutive multi-carrier symbols.
  • the time domain resource unit includes a subframe.
  • the time domain resource unit includes a slot.
  • the time domain resource unit includes a mini-slot.
  • the time domain resource unit includes a positive integer number of subframes.
  • the time domain resource unit includes a positive integer number of time slots.
  • the time domain resource unit includes a positive integer number of short time slots.
  • the multi-carrier symbol is an OFDM (Orthogonal Frequency Division Multiplexing) symbol.
  • the multi-carrier symbol is a SC-FDMA (Single Carrier-Frequency Division Multiple Access) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the multi-carrier symbol is a DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbol.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the multi-carrier symbol is a Filter Bank Multi-Carrier (FBMC) symbol.
  • FBMC Filter Bank Multi-Carrier
  • the multi-carrier symbol includes CP (Cyclic Prefix, cyclic prefix).
  • the first time domain deviation is a time domain deviation between a start time of the second time window and a start time of the first time window.
  • the first time domain deviation is a time domain deviation between an end time of the second time window and an end time of the first time window.
  • the first reference time is a time in the first time window
  • the second reference time is a time in the second time window
  • the first time domain deviation is the second reference A deviation in time domain between the time and the first reference time.
  • the first reference time is a starting time of the first time window.
  • the first reference time is an end time of the first time window.
  • the first reference time is a time other than a start time and an end time in the first time window.
  • the second reference time is a start time of the second time window.
  • the second reference time is an end time of the second time window.
  • the second reference time is a time other than a start time and an end time in the second time window.
  • the first time window includes a time domain resource unit to which the time domain resource occupied by the first wireless signal belongs, and the second time window includes the target wireless signal.
  • a time domain resource unit to which the time domain resource occupied by the feedback belongs, the first time domain deviation is an index of the time domain resource unit included in the second time window and a time domain included in the first time window The deviation of the index of the domain resource unit.
  • the unit of the first time domain deviation is a time domain resource unit.
  • a unit of the first time domain deviation is a multi-carrier symbol.
  • a unit of the first time domain deviation is second.
  • a unit of the first time domain deviation is millisecond.
  • the first time domain deviation is a non-negative real number.
  • the first time domain deviation is a non-negative integer.
  • the first wireless signal includes data
  • the feedback for the first wireless signal includes HARQ-ACK (Hybrid Automatic Repeat Repeat ACKnowledgement, hybrid automatic repeat request confirmation).
  • HARQ-ACK Hybrid Automatic Repeat Repeat ACKnowledgement, hybrid automatic repeat request confirmation
  • the data included in the first wireless signal is downlink data.
  • the transmission channel of the first wireless signal is a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first wireless signal is transmitted on a downlink physical layer data channel (that is, a downlink channel that can be used to carry physical layer data).
  • a downlink physical layer data channel that is, a downlink channel that can be used to carry physical layer data
  • the downlink physical layer data channel is a PDSCH (Physical Downlink Shared CHannel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared CHannel, physical downlink shared channel
  • the downlink physical layer data channel is an sPDSCH (short PDSCH, short PDSCH).
  • the downlink physical layer data channel is NR-PDSCH (New Radio PDSCH).
  • the downlink physical layer data channel is NB-PDSCH (Narrow Band PDSCH, Narrow Band PDSCH).
  • the transmission channel for the feedback of the first wireless signal is a resource of an uplink physical layer control channel (that is, an uplink channel that can only be used to carry physical layer signaling).
  • the uplink physical layer control channel is a PUCCH (Physical Uplink Control Channel).
  • the uplink physical layer control channel is sPUCCH (short PUCCH, short PUCCH).
  • the uplink physical layer control channel is NR-PUCCH (New Radio PUCCH).
  • the uplink physical layer control channel is NB-PUCCH (Narrow Band and PUCCH).
  • the transmission channel for the feedback of the first wireless signal is UL-SCH (Uplink, Shared Channel, downlink shared channel).
  • UL-SCH Uplink, Shared Channel, downlink shared channel
  • the transmission channel for the feedback of the first wireless signal is an uplink physical layer data channel (that is, an uplink channel that can be used to carry physical layer data) for transmission.
  • the uplink physical layer data channel is a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the uplink physical layer data channel is a sPUSCH (short PUSCH, short PUSCH).
  • the uplink physical layer data channel is NR-PUSCH (New Radio PUSCH, New Wireless PUSCH).
  • the uplink physical layer data channel is a NB-PUSCH (Narrow Band PUSCH).
  • the first signaling is used to indicate scheduling information of the first wireless signal, and the first signaling is used to determine a time domain resource occupied by the first wireless signal.
  • the first signaling explicitly indicates scheduling information of the first wireless signal.
  • the first signaling implicitly indicates scheduling information of the first wireless signal.
  • the first signaling explicitly indicates a time domain resource occupied by the first wireless signal.
  • the first signaling implicitly indicates a time domain resource occupied by the first wireless signal.
  • Embodiment 2 illustrates a schematic diagram of a network architecture, as shown in FIG. 2.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a network architecture 200 of an NR 5G, Long-Term Evolution (LTE), and LTE-A (Long-Term Evolution Advanced) system.
  • the NR 5G or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, evolved packet system) 200, some other suitable term.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) / 5G-CN (5G-Core Network) 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, the EPS provides packet switching services, but those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides UE201-oriented user and control plane protocol termination.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit and receive point), or some other suitable term.
  • gNB203 provides UE201 with an access point to EPC / 5G-CN210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video device, digital audio player (e.g., MP3 player), camera, game console, drone, aircraft, narrowband physical network device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video device
  • digital audio player e.g., MP3 player
  • camera game console
  • drone narrowband physical network device
  • machine type communication device land vehicle, car, wearable device, or any Other similar functional devices.
  • gNB203 is connected to EPC / 5G-CN210 through S1 / NG interface.
  • EPC / 5G-CN210 includes MME / AMF / UPF211, other MMEs (Mobility Management Entity) / AMF (Authentication Management Field) / UPF (User Plane Function) 214, S -GW (Service Gateway) 212 and P-GW (Packet Data Network Gateway) 213.
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service, and specifically may include the Internet, an intranet, an IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the gNB203 corresponds to the base station in this application.
  • the UE 201 supports massive MIMO wireless communication.
  • the gNB203 supports massive MIMO wireless communication.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane and control plane.
  • Figure 3 shows the radio protocol architecture for the user equipment (UE) and base station equipment (gNB or eNB) in three layers: layer 1.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between UE and gNB through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) radio layer control sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data Aggregation Protocol) sublayers 304, which terminate at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and the other end (e.g., Remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handover support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell between UEs. The MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the gNB and the UE to configure the lower layers.
  • the wireless protocol architecture in FIG. 3 is applicable to the user equipment in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the base station in this application.
  • the first signaling in this application is generated from the PHY301.
  • the second information in this application is generated in the RRC sublayer 306.
  • the third information in this application is generated in the RRC sublayer 306.
  • the fourth information in this application is generated in the RRC sublayer 306.
  • the first wireless signal in the present application is generated in the PHY301.
  • the feedback for the first wireless signal in this application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of a base station device and user equipment according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of gNB410 communicating with UE 450 in an access network.
  • the base station device (410) includes a controller / processor 440, a memory 430, a receiving processor 412, a beam processor 471, a transmitting processor 415, a transmitter / receiver 416, and an antenna 420.
  • the user equipment (450) includes a controller / processor 490, a memory 480, a data source 467, a beam processor 441, a transmit processor 455, a receive processor 452, a transmitter / receiver 456, and an antenna 460.
  • the processing related to the base station equipment (410) includes:
  • controller / processor 440 provides header compression, encryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels to implement L2 layer protocol for user plane and control plane; upper layer packets may include data or control information, such as DL-SCH (Downlink Shared Channel, downlink shared channel);
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the controller / processor 440 includes a scheduling unit to transmit the demand, and the scheduling unit is used to schedule the air interface resources corresponding to the transmission demand;
  • -Transmit processor 415 which receives the output bit stream of the controller / processor 440, and implements various signal transmission processing functions for the L1 layer (that is, the physical layer) including encoding, interleaving, scrambling, modulation, power control / distribution and Generation of physical layer control signaling (including PBCH, PDCCH, PHICH, PCFICH, reference signals), etc .;
  • -Transmit processor 415 which receives the output bit stream of the controller / processor 440, and implements various signal transmission processing functions for the L1 layer (that is, the physical layer) including multi-antenna transmission, spread spectrum, code division multiplexing, and precoding Wait;
  • a transmitter 416 configured to convert the baseband signal provided by the transmission processor 415 into a radio frequency signal and transmit it through the antenna 420; each transmitter 416 performs sampling processing on a respective input symbol stream to obtain a respective sampled signal stream. Each transmitter 416 performs further processing (such as digital-to-analog conversion, amplification, filtering, up-conversion, etc.) on the respective sample stream to obtain a downlink signal.
  • processing related to the user equipment (450) may include:
  • -A receiving processor 452 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc .;
  • a receiving processor 452 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc .;
  • the controller / processor 490 receives the bit stream output from the receiving processor 452, provides header decompression, decryption, packet segment connection and reordering, and multiplexing and demultiplexing between logic and transmission channels for implementation.
  • the controller / processor 490 is associated with a memory 480 that stores program code and data.
  • the memory 480 may be a computer-readable medium.
  • the processing related to the base station device (410) includes:
  • a receiver 416 which receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the receiving processor 412;
  • L1 layer ie, physical layer
  • various signal receiving processing functions for the L1 layer including decoding, deinterleaving, descrambling, demodulation, and physical layer control signaling extraction, etc .
  • -A receiving processor 412 which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including multi-antenna reception, despreading, code division multiplexing, precoding, etc .;
  • a controller / processor 440 that implements L2 layer functions and is associated with a memory 430 that stores program code and data;
  • Controller / processor 440 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, and control signal processing to recover upper-layer data packets from UE450; from controller / processor 440 Upper layer data packets can be provided to the core network;
  • the processing related to the user equipment (450) includes:
  • Data source 467 which provides upper layer data packets to the controller / processor 490.
  • Data source 467 represents all protocol layers above the L2 layer;
  • a transmit processor 455, which implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, and physical layer signaling generation, etc .;
  • a transmit processor 455, which implements various signal reception processing functions for the L1 layer (ie, the physical layer) including multi-antenna transmission, spreading (spreading), code division multiplexing, precoding, etc .;
  • the controller / processor 490 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels based on the radio resource allocation of gNB410, and implements L2 for the user plane and control plane Layer function
  • the controller / processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to gNB410;
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one
  • the UE450 device uses at least: receiving first signaling; receiving a first wireless signal in a first time window; sending feedback for the first wireless signal in a second time window; wherein the first A signaling is used to determine a time domain resource occupied by the first wireless signal; a first time domain deviation is a time domain deviation between the second time window and the first time window; if the first A signaling carries a first identifier, the first time-domain deviation is one of K1 first-type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier, the first The time-domain deviation is one of K2 second-type candidate deviations, where K2 is a positive integer; the first identifier is different from the second identifier, and at least one of the K2 second-type candidate deviations is second Class
  • the UE 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving first signaling; Receiving a first wireless signal in a first time window; sending feedback for the first wireless signal in a second time window; wherein the first signaling is used to determine the occupied by the first wireless signal Time domain resources; the first time domain deviation is the time domain deviation between the second time window and the first time window; if the first signaling carries a first identifier, the first time domain deviation is One of K1 first-type candidate deviations, where K1 is a positive integer; if the first signaling carries a second identifier, the first time-domain deviation is one of K2 second-type alternative deviations, The K2 is a positive integer; the first identifier is different from the second identifier; at least one of the K2 second-type candidate deviations and the K1 first-type candidate deviations are both different.
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one Device together.
  • the gNB410 device at least: sends a first signaling; sends a first wireless signal in a first time window; receives feedback for the first wireless signal in a second time window; wherein the first signaling is For determining a time domain resource occupied by the first wireless signal; the first time domain deviation is a time domain deviation between the second time window and the first time window; if the first signaling carries A first identifier, the first time domain deviation is one of K1 first type candidate deviations, and K1 is a positive integer; if the first signaling carries a second identifier, the first time domain deviation is One of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and at least one second-type candidate deviation of the K2 second-type
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending a first signaling; Sending a first wireless signal in a first time window; receiving feedback for the first wireless signal in a second time window; wherein the first signaling is used to determine the occupied by the first wireless signal Time domain resources; the first time domain deviation is the time domain deviation between the second time window and the first time window; if the first signaling carries a first identifier, the first time domain deviation is One of K1 first-type candidate deviations, where K1 is a positive integer; if the first signaling carries a second identifier, the first time-domain deviation is one of K2 second-type alternative deviations, The K2 is a positive integer; the first identifier is different from the second identifier; at least one of the K2 second-type candidate deviations and the K1 first-type candidate deviations are both different.
  • the UE 450 corresponds to the user equipment in this application.
  • gNB410 corresponds to the base station in this application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the first signaling in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the first signaling in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the second information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the second information in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the third information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the third information in the present application.
  • At least the first two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the fourth information in the present application.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the fourth information in the present application.
  • At least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 are used to receive the first in the present application in the first time window in the present application. wireless signal.
  • At least the first two of the transmitter 416, the transmission processor 415, and the controller / processor 440 are used to send the first in the present application in the first time window in the present application wireless signal.
  • At least the first two of the transmitter 456, the transmission processor 455, and the controller / processor 490 are used to send in the second time window in this application for the first time in this application. Feedback of a wireless signal.
  • At least the first two of the receiver 416, the receiving processor 412, and the controller / processor 440 are used to receive, for the second time window in the present application, Feedback of a wireless signal.
  • Embodiment 5 illustrates a flowchart of wireless transmission, as shown in FIG. 5.
  • the base station N01 is a serving cell maintenance base station of the user equipment U02.
  • blocks F1 and F2 are optional.
  • step S11 For N01, send the second information in step S11; send the third information in step S12; send the first signaling in step S13; send the first wireless signal in the first time window in step S14; in step S15 Zhong receives feedback for the first wireless signal in a second time window.
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is when the second time window and the first time window are in time. Deviation in the domain; if the first signaling carries a first identifier, the first time domain deviation is one of K1 first-type candidate deviations, and K1 is a positive integer; if the first signaling Carry a second identifier, the first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • the second information is used to indicate at least one of the K1 first-type time domain offsets and the K2 second-type time domain offsets.
  • the third information is used to indicate the second identification.
  • At least one second-type candidate deviation of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second-type candidate deviation; or Said K1 is greater than 1, said K2 is greater than 1, said first signaling carries first information, said first information includes a first field, said first field included in said first information is used to retrieve from said The first time-domain deviation is determined from K1 first-category candidate deviations or the K2 second-category candidate deviations.
  • the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the second information is configured semi-statically.
  • the second information is carried by higher layer signaling.
  • the second information is carried by RRC signaling.
  • the second information includes one or more IEs in one RRC signaling.
  • the second information includes all or a part of an IE in one RRC signaling.
  • the second information includes multiple IEs in one RRC signaling.
  • the second information is used to indicate the K1 first-type time domain deviations.
  • the second information is dl-DataToUL-ACK, and for a specific definition of the dl-DataToUL-ACK, see section 9.2.3 in 3GPP TS38.213.
  • the second information is used to indicate the K2 second-type time domain deviations.
  • the second information is used to indicate the K1 first-type time domain deviations and the K2 second-type time domain deviations.
  • the third information is configured semi-statically.
  • the third information is carried by higher layer signaling.
  • the third information is carried by RRC signaling.
  • the third information includes one or more IEs in one RRC signaling.
  • the third information includes all or a part of an IE in one RRC signaling.
  • the third information includes multiple IEs in one RRC signaling.
  • the third information explicitly indicates the second identifier.
  • the third information implicitly indicates the second identifier.
  • the third information is used to indicate the first identifier and the second identifier.
  • the third information explicitly indicates the first identifier and the second identifier.
  • the third information implicitly indicates the first identifier and the second identifier.
  • Embodiment 6 illustrates a schematic diagram of K1 first-class candidate deviations and K2 second-type candidate deviations, as shown in FIG. 6.
  • At least one second-type candidate deviation of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • the K1 first-type candidate deviations are different from each other.
  • the K2 second-type candidate deviations are different from each other.
  • the K1 first-type candidate deviations are all non-negative real numbers.
  • the K2 second-type candidate deviations are all non-negative real numbers.
  • the K1 first-type candidate deviations are all non-negative integers.
  • the K2 second-type candidate deviations are all non-negative integers.
  • the K1 first-type candidate deviations are predefined.
  • the K1 is equal to 8
  • the K1 first-type candidate deviations are 1, 2, 3, 4, 5, 6, 7, and 8, respectively.
  • the K1 first-type candidate deviations are configurable.
  • the K1 first-class candidate deviations are configured by a higher layer parameter dl-DataToUL-ACK.
  • dl-DataToUL-ACK For a specific definition of the dl-DataToUL-ACK, see section 9.2 in 3GPP TS38.213. .3 Section.
  • the K2 second-type candidate deviations are predefined.
  • the K2 second-type candidate deviations are configurable.
  • the minimum value of the K2 second-type candidate deviations is smaller than the minimum value of the K2 second-type candidate deviations.
  • the minimum value of the K2 second-type candidate deviations is equal to 0, and the minimum value of the K2 second-type candidate deviations is greater than 0.
  • a minimum value of the K2 second-type candidate deviations is greater than 0, and a minimum value of the K2 second-type candidate deviations is greater than 0.
  • Embodiment 7 illustrates a schematic diagram for determining a first time domain deviation, as shown in FIG. 7.
  • the K1 in the present application is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-class candidate deviation or the K2 first Type II candidate deviation; or, if K1 is greater than 1, K2 is greater than 1, the first signaling in this application carries first information, the first information includes a first domain, and the first information The included first domain is used to determine the first time domain bias from the K1 first category candidate biases or the K2 second category candidate biases.
  • the first field included in the first information includes a positive integer number of bits.
  • the first field included in the first information includes non-negative integer bits.
  • the first field included in the first information includes J1 bits, the J1 is a non-negative integer, and the J1 is predefined or configurable.
  • the J1 is predefined.
  • the J1 is equal to 3.
  • the J1 is configurable.
  • the value range of J1 includes ⁇ 0, 1, 2, 3 ⁇ .
  • the value range of J1 includes ⁇ 1, 2, 3 ⁇ .
  • the J1 is equal to
  • the I is the number of elements included in the higher layer parameter dl-DataToUL-ACK.
  • dl-DataToUL-ACK For a specific definition of the dl-DataToUL-ACK, see section 9.2.3 in 3GPP TS38.213.
  • the first field included in the first information is a PDSCH-to-HARQ_feedback timing indicator.
  • a PDSCH-to-HARQ_feedback timing indicator For a specific definition of the PDSCH-to-HARQ_feedback timing indicator, see section 9.2.3 in 3GPP TS38.213. .
  • the first field included in the first information includes J1 bits, and J1 is a non-negative integer; the K1 or the K2 is used to determine the J1.
  • the first domain included in the first information is used to determine the first time domain deviation from the K1 first-type candidate deviations, and the K1 is Used to determine the J1.
  • the first domain included in the first information is used to determine the first time domain deviation from the K1 first-type candidate deviations, and the K1 is For determining the J1; the J1 is equal to the K1, or the J1 is equal to
  • the first domain included in the first information is used to determine the first time domain deviation from the K2 second-type candidate deviations, and the K2 is Used to determine the J1.
  • the first domain included in the first information is used to determine the first time domain deviation from the K2 second-type candidate deviations, and the K2 is For determining the J1; the J1 is equal to the K2, or the J1 is equal to
  • Embodiment 8 illustrates a schematic diagram in which the first signaling is used to determine the time domain resources occupied by the first wireless signal, as shown in FIG. 8.
  • the first signaling carries first information
  • the first information includes a fourth field
  • the fourth field included in the first information includes a positive integer number of bits
  • the first information The included fourth domain is used to indicate a time domain resource occupied by the first wireless signal.
  • the fourth domain included in the first information explicitly indicates a time domain resource occupied by the first wireless signal.
  • the fourth domain included in the first information implicitly indicates a time domain resource occupied by the first wireless signal.
  • the first signaling is used to indicate scheduling information of the first wireless signal.
  • the first wireless signal includes data
  • the feedback for the first wireless signal includes HARQ-ACK.
  • the scheduling information of the first wireless signal includes occupied time domain resources, occupied frequency domain resources, MCS (Modulation and Coding Scheme), and DMRS (DeModulation Reference Signals).
  • MCS Modulation and Coding Scheme
  • DMRS DeModulation Reference Signals
  • HARQ Hybrid, Automatic Repeat, ReQuest, hybrid automatic repeat request
  • RV Redundancy Version
  • NDI New Data Indicator, new data indication
  • sending antenna port At least one of the corresponding multi-antenna related transmission and the corresponding multi-antenna related reception.
  • the time domain resources occupied by the first wireless signal are the occupied time domain resources included in the scheduling information of the first wireless signal.
  • the configuration information of the DMRS includes an RS (Reference Signal) sequence, a mapping method, a DMRS type, occupied time domain resources, occupied frequency domain resources, and occupied code domain resources. , At least one of a cyclic shift (cyclic shift) and an OCC (Orthogonal Cover Code).
  • the multi-antenna-related reception is spatial reception parameters (Spatial Rx parameters).
  • the multi-antenna related reception is a receive beam.
  • the multi-antenna related reception is a receive beamforming matrix.
  • the multi-antenna related reception is a reception analog beamforming matrix.
  • the multi-antenna related reception is receiving an analog beamforming vector.
  • the multi-antenna related reception is a receive beamforming vector.
  • the multi-antenna related reception is receiving spatial filtering.
  • the multi-antenna related transmissions are spatial transmission parameters (Spatial Tx parameters).
  • the multi-antenna related transmission is a transmission beam.
  • the multi-antenna related transmission is a transmission beamforming matrix.
  • the multi-antenna related transmission is transmitting an analog beamforming matrix.
  • the multi-antenna related transmission is transmitting an analog beamforming vector.
  • the multi-antenna related transmission is a transmission beamforming vector.
  • the multi-antenna related transmission is transmission spatial filtering.
  • the spatial transmission parameters include transmission antenna ports, transmission antenna port groups, transmission beams, transmission analog beamforming matrices, transmission analog beamforming vectors, transmission beamforming matrices, and transmission beams One or more of a shaping vector and a spatial filtering.
  • the spatial receiving parameters include a receiving beam, a receiving analog beam forming matrix, a receiving analog beam forming vector, a receiving beam forming matrix, a receiving beam forming vector, and a receiving spatial filter. filtering).
  • the fourth domain included in the first information is a time domain resource assignment.
  • the time domain resource assignment refers to section 5.1.2.1 in 3GPP TS38.214.
  • the fourth domain included in the first information indicates a second time domain deviation
  • the reference time window includes time domain resources occupied by the first signaling
  • the second time domain deviation is A deviation in time domain between the first time window and the reference time window.
  • the fourth domain included in the first information indicates a second time domain deviation, an occupied initial multi-carrier symbol, and a number of occupied multi-carrier symbols;
  • the reference time window includes the first information.
  • the occupied time domain resource, the second time domain deviation be a deviation in time domain between the first time window and the reference time window.
  • the second time domain deviation is K 0.
  • K 0 For a specific definition of K 0 , see section 5.1.2.1 in 3GPP TS38.214.
  • the occupied initial multicarrier symbol and the number of occupied multicarrier symbols indicated by the fourth field included in the first information are SLIV, and the SLIV
  • the SLIV For specific definitions, see section 5.1.2.1 in 3GPP TS38.214.
  • the occupied initial multi-carrier symbol indicated by the fourth field included in the first information is S
  • the fourth field indicated by the first information includes
  • the number of occupied multi-carrier symbols is L.
  • the first information includes the second time domain deviation indicated by the fourth domain, the occupied initial multi-carrier symbol, and the occupied multi-carrier
  • the number of symbols is predefined or configurable.
  • the first information includes the second time domain deviation indicated by the fourth domain, the occupied initial multi-carrier symbol, and the occupied multi-carrier
  • the number of symbols is configured by higher layer parameters.
  • the first information includes the second time domain deviation indicated by the fourth domain, the occupied initial multi-carrier symbol, and the occupied multi-carrier
  • the number of symbols is configured by a higher layer parameter pdsch-AllocationList.
  • pdsch-AllocationList For a specific definition of the pdsch-AllocationList, see section 6.3.2 in 3GPP TS38.331.
  • the first time window is a time domain resource that is later in time domain than the reference time window by the second time domain deviation.
  • a unit of the second time domain deviation is a time domain resource unit.
  • a unit of the second time domain deviation is a multi-carrier symbol.
  • a unit of the second time domain deviation is second.
  • a unit of the second time domain deviation is millisecond.
  • the second time domain deviation is a non-negative real number.
  • the second time domain deviation is a non-negative integer.
  • the reference time window includes a positive integer number of time domain resource units.
  • the reference time window includes a time domain resource unit.
  • the reference time window includes a positive integer number of consecutive multi-carrier symbols.
  • the reference time window is a continuous period of time.
  • the duration of the reference time window is predefined.
  • the duration of the reference time window is configurable.
  • the duration of the reference time window is configured by higher layer signaling.
  • the duration of the reference time window is configured by physical layer signaling.
  • the second time domain deviation is a time domain deviation between a start time of the first time window and a start time of the reference time window.
  • the second time domain deviation is a time domain deviation between an end time of the first time window and an end time of the reference time window.
  • the fifth reference time is a time in the first time window
  • the sixth reference time is a time in the reference time window
  • the second time domain deviation is the fifth reference time Deviation from the sixth reference time in the time domain
  • the fifth reference time is a time other than the start time and the end time in the first time window
  • the sixth reference time is the A time in the reference time window other than the start time and the end time.
  • the reference time window includes a time domain resource unit to which the time domain resource occupied by the first signaling belongs, and the first time window includes a time domain occupied by the first wireless signal.
  • a time domain resource unit to which a domain resource belongs, the second time domain deviation is a deviation between an index of a time domain resource unit included in the first time window and an index of a time domain resource unit included in the reference time window .
  • Embodiment 9 illustrates a schematic diagram of a first signaling used to determine time-frequency resources occupied by a feedback for a first wireless signal in a second time window, as shown in FIG. 9.
  • the first signaling carries first information
  • the first information includes a third field
  • the third field included in the first information is used to determine the response to the first field.
  • the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the third field included in the first information includes a positive integer number of bits.
  • the third domain included in the first information is a PUCCH resource source indicator.
  • a PUCCH resource source indicator For a specific definition of the PUCCH resource source indicator, see section 9.2.3 in 3GPP TS38.213.
  • the third field included in the first information explicitly indicates a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the third field included in the first information implicitly indicates a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the above method further includes:
  • the fourth information is used to indicate configuration information of J2 candidate time-frequency resources, and J2 is a positive integer; the first signaling and the fourth information are collectively used to determine the response to the first The time-frequency resource occupied by the feedback of a wireless signal in the second time window.
  • the third domain included in the first information is used to determine the feedback for the first wireless signal from the J2 candidate time-frequency resources at Time-frequency resources occupied in the second time window.
  • the time-frequency resource occupied by the feedback for the first wireless signal in the second time window is one of the J2 candidate time-frequency resources Time-frequency resources.
  • the J2 candidate time-frequency resources are respectively J2 PUCCH resources (resources).
  • the time-frequency resource occupied by the feedback for the first wireless signal in the second time window is one of the J2 candidate time-frequency resources Time-frequency resources
  • the third field included in the first information indicates that the time-frequency resources occupied by the feedback to the first wireless signal in the second time window are among the J2 candidates Index in time-frequency resources.
  • the fourth information is configured semi-statically.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the fourth information includes one or more IE (Information Element, information element) in one RRC signaling.
  • the fourth information includes all or a part of an IE in an RRC signaling.
  • the fourth information includes multiple IEs in one RRC signaling.
  • the configuration information of each candidate time-frequency resource among the J2 candidate time-frequency resources includes occupied time domain resources, occupied code domain resources, and occupied frequency domain resources. And at least one of the corresponding antenna port groups.
  • the configuration information of each candidate time-frequency resource among the J2 candidate time-frequency resources includes occupied time domain resources, occupied code domain resources, and occupied frequency domain resources. And the corresponding antenna port group.
  • the configuration information of each candidate time-frequency resource among the J2 candidate time-frequency resources includes the initial multi-carrier symbol occupied, the number of multi-carrier symbols occupied, and before frequency hopping.
  • Starting PRB Physical Resource Block
  • Starting PRB after frequency hopping Number of PRBs occupied, Frequency hopping setting
  • CS Cyclic shift, Cyclic shift
  • OCC Cover Code orthogonal mask
  • OCC length corresponding antenna port group and maximum code rate (Code Rate).
  • the configuration information of each candidate time-frequency resource among the J2 candidate time-frequency resources includes the initial multi-carrier symbol occupied, the number of multi-carrier symbols occupied, and before frequency hopping. At least one of starting PRB with or without frequency hopping, starting PRB after frequency hopping, number of PRBs occupied, frequency hopping settings, CS, OCC, OCC length, corresponding antenna port group, and maximum bit rate .
  • the user equipment determines a first candidate time-frequency resource set from J3 candidate time-frequency resource sets, where J3 is a positive integer greater than 1; the first candidate time-frequency resource set is the J3 One candidate time-frequency resource set among the candidate time-frequency resource sets, and the first candidate time-frequency resource set includes the J2 candidate time-frequency resources.
  • a first candidate time-frequency resource set is determined from the J3 candidate time-frequency resource sets according to a payload size of the feedback for the first wireless signal.
  • the J3 candidate time-frequency resource sets respectively correspond to J3 load size ranges, and the load size for the feedback of the first wireless signal belongs to the first load size range, and the The first load size range is a load size range among the J3 load size ranges, and the first candidate time-frequency resource set is among the J3 candidate time-frequency resource sets corresponding to the first load size range.
  • a candidate set of time-frequency resources is a candidate set of time-frequency resources.
  • a first candidate time-frequency resource set is determined from the J3 candidate time-frequency resource sets according to the number of bits included in the feedback for the first wireless signal.
  • the J3 candidate time-frequency resource sets respectively correspond to a J3 bit number range, and the number of bits included in the feedback for the first wireless signal belongs to a first bit number range
  • the first bit number range is a bit number range in the J3 bit number range
  • the first candidate time-frequency resource set is the J3 candidate time-frequency resources corresponding to the first bit number range.
  • a candidate time-frequency resource set in the set is the J3 candidate time-frequency resources corresponding to the first bit number range.
  • the J3 is equal to 4, and the range of the number of J3 bits is [1,2], (2, N2], (N2, N3], and (N3, 1706), respectively.
  • N2 and N3 are configured by higher layer signaling.
  • the J3 is equal to 4, and the number of J3 bits ranges from [1,2], (2, N2], (N2, N3], and [N3, 1706], so N2 and N3 are configured by higher layer signaling.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a UE, as shown in FIG. 10.
  • the UE processing device 1200 includes a first receiver 1201 and a first transmitter 1202.
  • the first receiver 1201 includes a receiver 456, a receiving processor 452, and a controller / processor 490 in Embodiment 4.
  • the first receiver 1201 includes at least the former two of the receiver 456, the receiving processor 452, and the controller / processor 490 in Embodiment 4.
  • the first transmitter 1202 includes the transmitter 456, the transmission processor 455, and the controller / processor 490 in Embodiment 4.
  • the first transmitter 1202 includes at least the former two of the transmitter 456, the transmit processor 455, and the controller / processor 490 in Embodiment 4.
  • -A first receiver 1201 receiving first signaling; receiving a first wireless signal in a first time window;
  • -A first transmitter 1202 sending feedback for the first wireless signal in a second time window
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is when the second time window and the first time window are in time. Deviation in the domain; if the first signaling carries a first identifier, the first time domain deviation is one of K1 first-type candidate deviations, and K1 is a positive integer; if the first signaling Carry a second identifier, the first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • At least one second-type candidate deviation of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second-type candidate deviation; or Said K1 is greater than 1, said K2 is greater than 1, said first signaling carries first information, said first information includes a first field, said first field included in said first information is used to retrieve from said The first time-domain deviation is determined from K1 first-category candidate deviations or the K2 second-category candidate deviations.
  • the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the first receiver 1201 further receives second information; wherein the second information is used to indicate the K1 first-type time domain deviations and the K2 second-type time domain deviations. At least one of them.
  • the first receiver 1201 further receives third information; wherein the third information is used to indicate the second identifier.
  • Embodiment 11 illustrates a structural block diagram of a processing apparatus in a base station device, as shown in FIG. 11.
  • the processing apparatus 1300 in the base station device includes a second transmitter 1301 and a second receiver 1302.
  • the second transmitter 1301 includes the transmitter 416, the transmission processor 415, and the controller / processor 440 in Embodiment 4.
  • the second transmitter 1301 includes at least two of the transmitter 416, the transmission processor 415, and the controller / processor 440 in Embodiment 4.
  • the second receiver 1302 includes a receiver 416, a receiving processor 412, and a controller / processor 440 in Embodiment 4.
  • the second receiver 1302 includes at least the former two of the receiver 416, the receiving processor 412, and the controller / processor 440 in Embodiment 4.
  • -A second transmitter 1301, sending the first signaling; sending a first wireless signal in a first time window;
  • the first signaling is used to determine a time domain resource occupied by the first wireless signal; the first time domain deviation is when the second time window and the first time window are in time. Deviation in the domain; if the first signaling carries a first identifier, the first time domain deviation is one of K1 first-type candidate deviations, and K1 is a positive integer; if the first signaling Carry a second identifier, the first time-domain deviation is one of K2 second-type candidate deviations, the K2 is a positive integer; the first identifier is different from the second identifier, and the K2 second At least one of the second-type candidate deviations and the K1 first-type candidate deviations are different.
  • At least one second-type candidate deviation of the K2 second-type candidate deviations is smaller than each of the K1 first-type candidate deviations.
  • the K1 is equal to 1, the K2 is equal to 1, and the first time domain deviation is the K1 first-type candidate deviation or the K2 second-type candidate deviation; or Said K1 is greater than 1, said K2 is greater than 1, said first signaling carries first information, said first information includes a first field, said first field included in said first information is used to retrieve from said The first time-domain deviation is determined from K1 first-category candidate deviations or the K2 second-category candidate deviations.
  • the first signaling is used to determine a time-frequency resource occupied by the feedback for the first wireless signal in the second time window.
  • the second transmitter 1301 further sends second information; wherein the second information is used to indicate the K1 first-type time domain deviations and the K2 second-type time domain deviations At least one of them.
  • the second transmitter 1301 further sends third information; wherein the third information is used to indicate the second identifier.
  • the user equipment, terminals, and UEs in this application include, but are not limited to, drones, communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • drones communication modules on drones, remotely controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, internet card, vehicle communication device, low cost mobile phone, low Costs wireless communications equipment such as tablets.
  • the base station or system equipment in this application includes, but is not limited to, macro-cell base stations, micro-cell base stations, home base stations, relay base stations, gNB (NR Node B), NR Node B, TRP (Transmitter Receiver Point, sending and receiving nodes) and other wireless communications. device.
  • gNB NR Node B
  • NR Node B NR Node B
  • TRP Transmitter Receiver Point

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备接收第一信令,在第一时间窗中接收第一无线信号,然后在第二时间窗中发送针对所述第一无线信号的反馈。所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是涉及支持在非授权频谱(Unlicensed Spectrum)上进行数据传输的通信方法和装置。
背景技术
在5G系统中,eMBB(Enhance Mobile Broadband,增强型移动宽带),和URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)是两大典型业务类型。在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)新空口Release 15中已针对URLLC业务定义了一个新的调制编码方式(MCS,Modulation and Coding Scheme)表。
为了支持更高要求的URLLC业务,比如更高可靠性、更低延迟(0.5-1ms)等,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#80次全会上通过了新空口Release 16的URLLC增强的SI(Study Item,研究项目)。其中,对调度/HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)/CSI(Channel State Information,信道状态信息)处理时序(timeline)的增强是需要研究一个重点。
发明内容
发明人通过研究发现,对于低延迟要求的应用需要更快的反馈HARQ/CSI,而对于延迟要求不高的应用则可以较慢的反馈HARQ/CSI,因此如何针对不同延迟要求来配置HARQ/CSI反馈是需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信的用户设备中的方法,其特征在于,包括:
接收第一信令;
在第一时间窗中接收第一无线信号;
在第二时间窗中发送针对所述第一无线信号的反馈;
其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,本申请要解决的问题是:如何针对新空口Release16对更低延迟要求,对HARQ-ACK反馈延迟配置的方案进行增强。
作为一个实施例,本申请要解决的问题是:在新空口Release 15中,HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)反馈延迟的配置可以通过DCI(下行控制信息,Downlink Control Information)(DCI format 1_0或1_1中的PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)-to-HARQ_feedback timing indicator域)指示或者RRC(Radio Resource Control,无线电资源控制)配置(DCI format1_1中当PDSCH-to-HARQ_feedback timing indicator域为0比特时)。通过DCI指示的方法是从RRC配置的一个HARQ-ACK反馈延迟的范围中选择一个延迟值,而通过RRC配置的方法是RRC配置一个HARQ-ACK反馈延迟。要在新空口Release 16中支持更低延迟的HARQ反馈, 如何对上述DCI指示的方法或者RRC配置的方法进行增强是需要解决的一个关键问题。
作为一个实施例,上述方法的实质在于,第一信令是调度PDSCH的DCI信令,第一无线信号是被第一信令调度的PDSCH,针对所述第一无线信号的反馈是HARQ-ACK,第一时间窗是PDSCH所在的时隙,第二时间窗是HARQ-ACK所在的时隙,第一时域偏差是HARQ-ACK相对PDSCH的反馈延迟,第一标识和第二标识是用于DCI的CRC加扰的两个不同的RNTI;如果检测到DCI是由第一标识加扰时,HARQ-ACK相对PDSCH的反馈延迟属于K1个第一类备选偏差;如果检测到DCI是由第二标识加扰时,HARQ-ACK相对PDSCH的反馈延迟属于K2个第二类备选偏差。采用上述方法的好处在于,将用于加扰DCI的CRC的RNTI与HARQ-ACK反馈延迟的范围相关联,通过识别RNTI可以隐性确定HARQ-ACK反馈延迟的范围;一方面,对于通过DCI信令从HARQ-ACK反馈延迟的范围中选择一个延迟值的情况,避免了为了支持更低延迟在DCI中引入更多的比特开销;另一方面,对于通过RRC信令指示HARQ-ACK反馈延迟的情况,配置多个与RNTI有关的HARQ-ACK反馈延迟的范围,解决了不同业务对延迟的不同要求。
根据本申请的一个方面,上述方法的特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,上述方法的实质在于,K1个第一类备选偏差是针对新空口Release15的应用,而K2个第二类备选偏差是针对新空口Release 16中更低延迟要求的应用。
根据本申请的一个方面,上述方法的特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信息;
其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第三信息;
其中,所述第三信息被用于指示所述第二标识。
本申请公开了一种用于无线通信的基站设备中的方法,其特征在于,包括:
发送第一信令;
在第一时间窗中发送第一无线信号;
在第二时间窗中接收针对所述第一无线信号的反馈;
其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
根据本申请的一个方面,上述方法的特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
根据本申请的一个方面,上述方法的特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1 大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信息;
其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第三信息;
其中,所述第三信息被用于指示所述第二标识。
本申请公开了一种用于无线通信的用户设备,其特征在于,包括:
第一接收机,接收第一信令;在第一时间窗中接收第一无线信号;
第一发射机,在第二时间窗中发送针对所述第一无线信号的反馈;
其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,上述用户设备的特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,上述用户设备的特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,上述用户设备的特征在于,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,上述用户设备的特征在于,所述第一接收机还接收第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
作为一个实施例,上述用户设备的特征在于,所述第一接收机还接收第三信息;其中,所述第三信息被用于指示所述第二标识。
本申请公开了一种用于无线通信的基站设备,其特征在于,包括:
第二发射机,发送第一信令;在第一时间窗中发送第一无线信号;
第二接收机,在第二时间窗中接收针对所述第一无线信号的反馈;
其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,上述基站设备的特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,上述基站设备的特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,上述基站设备的特征在于,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,上述基站设备的特征在于,所述第二发射机还发送第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
作为一个实施例,上述基站设备的特征在于,所述第二发射机还发送第三信息;其中,所述第三信息被用于指示所述第二标识。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-.在新空口Release 15中,HARQ-ACK反馈延迟的配置可以通过DCI(DCI format 1_0或1_1中的PDSCH-to-HARQ_feedback timing indicator域)指示或者RRC配置(DCI format1_1中当PDSCH-to-HARQ_feedback timing indicator域为0比特时)。通过DCI指示的方法是从RRC配置的一个HARQ-ACK反馈延迟的范围中选择一个延迟值,而通过RRC配置的方法是RRC配置一个HARQ-ACK反馈延迟。本申请可以同时支持新空口Release 15和未来Release16中对HARQ反馈的不同延迟要求。
-.将用于加扰DCI的CRC的RNTI与HARQ-ACK反馈延迟的范围相关联,通过识别RNTI可以隐性确定HARQ-ACK反馈延迟的范围。
-.对于通过DCI信令从HARQ-ACK反馈延迟的范围中选择一个延迟值的情况,本申请避免了为了支持更低延迟在DCI中引入更多的比特开销;
-.对于通过RRC信令指示HARQ-ACK反馈延迟的情况,本申请配置多个与RNTI有关的HARQ-ACK反馈延迟的范围,解决了不同业务对延迟的不同要求。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令、第一无线信号和针对所述第一无线信号的反馈的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的NR(New Radio,新无线)节点和UE的示意图;
图5示出了根据本申请的一个实施例的无线传输的流程图;
图6示出了根据本申请的一个实施例的K1个第一类备选偏差和K2个第二类备选偏差的示意图;
图7示出了根据本申请的一个实施例的确定第一时域偏差的示意图;
图8示出了根据本申请的一个实施例的第一信令被用于确定第一无线信号所占用的时域资源的示意图;
图9示出了根据本申请的一个实施例的第一信令被用于确定针对第一无线信号的反馈在第二时间窗中所占用的时频资源的示意图;
图10示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一信令、第一无线信号和针对所述第一无线信号的反馈的流程图,如附图1所示。
在实施例1中,本申请中的所述用户设备接收第一信令;在第一时间窗中接收第一无线信号;在第二时间窗中发送针对所述第一无线信号的反馈;其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述第一信令是动态配置的。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(下行控制信息,Downlink Control Information)信令。
作为一个实施例,所述第一信令是下行授予(DownLink Grant)的DCI信令。
作为一个实施例,所述第一信令是上行授予(UpLink Grant)的DCI信令。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层控制信道是PDCCH(Physical Downlink Control CHannel,物理下行控制信道)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是sPDCCH(short PDCCH,短PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NR-PDCCH(New Radio PDCCH,新无线PDCCH)。
作为上述实施例的一个子实施例,所述下行物理层控制信道是NB-PDCCH(Narrow Band PDCCH,窄带PDCCH)。
作为一个实施例,所述第一信令在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH。
作为一个实施例,所述第一信令是一个UE(User Equipment,用户设备)特定(UE-specific)的DCI信令。
作为一个实施例,所述第一信令是UE特定的。
作为一个实施例,所述第一标识和所述第二标识分别是两个不同的信令标识。
作为一个实施例,所述第一标识和所述第二标识分别是两个不同的RNTI(Radio Network Temporary Identifier,无线网络暂定标识)。
作为一个实施例,所述第一标识包括C(Cell,小区)-RNTI(Radio Network Temporary Identifier,无线网络暂定标识)或CS(Configured Scheduling,配置的调度)-RNTI,所 述第二标识包括new-RNTI,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1.3.1章节。
作为一个实施例,所述第一标识包括多种RNTI中的一种RNTI,所述第二标识包括所述多种RNTI中的不同于所述第一标识的一种RNTI。
作为上述实施例的一个子实施例,所述多种RNTI包括C-RNTI、CS-RNTI和new-RNTI中的至少两种,所述new-RNTI的具体定义参见3GPP TS38.214中的第5.1.3.1章节。
作为一个实施例,所述第一标识和所述第二标识分别是两个不相同的非负整数。
作为一个实施例,所述第一标识或所述第二标识是所述第一信令的信令标识。
作为一个实施例,所述第一信令是一个被所述第一标识或所述第二标识所标识的DCI信令。
作为一个实施例,所述第一标识或所述第二标识被用于生成所述第一信令的DMRS(DeModulation Reference Signals,解调参考信号)的RS序列。
作为一个实施例,所述第一信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特序列被所述第一标识或所述第二标识所加扰。
作为一个实施例,所述第一信令携带第一信息,所述第一信息包括第二域,所述第一信息包括的所述第二域包括正整数个比特,所述第一信息包括的所述第二域被用于指示所述第一无线信号的调制编码方式(MCS,Modulation and Coding Scheme)。
作为上述实施例的一个子实施例,所述第一信息包括的所述第二域显式的指示所述第一无线信号的调制编码方式。
作为上述实施例的一个子实施例,所述第一信息包括的所述第二域隐式的指示所述第一无线信号的调制编码方式。
作为一个实施例,如果所述第一信令携带所述第一标识,所述所述第一无线信号的调制编码方式属于第一调制编码方式集合、第二调制编码方式集合和第三调制编码方式集合中之一;如果所述第一信令携带所述第二标识,所述所述第一无线信号的调制编码方式属于第三调制编码方式集合;所述第一调制编码方式集合包括正整数个调制编码方式,所述第二调制编码方式集合包括正整数个调制编码方式,所述第三调制编码方式集合包括正整数个调制编码方式。
作为上述实施例的一个子实施例,所述第一调制编码方式集合、所述第二调制编码方式集合和所述第三调制编码方式集合两两互不相同。
作为上述实施例的一个子实施例,所述第三调制编码方式集合中至少一个调制编码方式的编码速率(Code Rate)低于所述第一调制编码方式集合或所述第二调制编码方式集合中的每个调制编码方式的编码速率。
作为上述实施例的一个子实施例,所述第三调制编码方式集合中至少一个调制编码方式的编码速率(Code Rate)低于所述第一调制编码方式集合和所述第二调制编码方式集合中的每个调制编码方式的编码速率。
作为上述实施例的一个子实施例,所述第一调制编码方式集合中至少一个调制编码方式 不属于所述第二调制编码方式集合,或者,所述第二调制编码方式集合中至少一个调制编码方式不属于所述第一调制编码方式集合。
作为上述实施例的一个子实施例,所述第一调制编码方式集合中至少一个调制编码方式不属于所述第三调制编码方式集合,或者,所述第三调制编码方式集合中至少一个调制编码方式不属于所述第一调制编码方式集合。
作为上述实施例的一个子实施例,所述第二调制编码方式集合中至少一个调制编码方式不属于所述第三调制编码方式集合,或者,所述第三调制编码方式集合中至少一个调制编码方式不属于所述第二调制编码方式集合。
作为上述实施例的一个子实施例,所述第一调制编码方式集合的具体定义参见3GPP TS38.214中的第5.1.3.1章节的表5.1.3.1-1。
作为上述实施例的一个子实施例,所述第二调制编码方式集合的具体定义参见3GPP TS38.214中的第5.1.3.1章节的表5.1.3.1-2。
作为上述实施例的一个子实施例,所述第三调制编码方式集合的具体定义参见3GPP TS38.214中的第5.1.3.1章节的表5.1.3.1-3。
作为一个实施例,所述第一信息属于DCI。
作为一个实施例,所述第一信令是下行授予的DCI信令,所述第一信息属于下行授予的DCI。
作为一个实施例,所述第一信令是上行授予的DCI信令,所述第一信息属于上行授予的DCI。
作为一个实施例,所述第一信息包括一个DCI。
作为一个实施例,所述第一信令是下行授予的DCI信令,所述第一信息包括一个下行授予的DCI。
作为一个实施例,所述第一信令是上行授予的DCI信令,所述第一信息包括一个上行授予的DCI。
作为一个实施例,所述第一信息包括一个DCI中的正整数个域(Field),所述域包括正整数个比特。
作为一个实施例,所述第一时间窗包括正整数个时域资源单元。
作为一个实施例,所述第一时间窗包括一个时域资源单元。
作为一个实施例,所述第一时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第一时间窗是一个连续的时间段。
作为一个实施例,所述第一时间窗的持续时间是预定义的。
作为一个实施例,所述第一时间窗的持续时间是可配置的。
作为一个实施例,所述第一时间窗的持续时间是由更高层信令配置的。
作为一个实施例,所述第一时间窗的持续时间是由物理层信令配置的。
作为一个实施例,所述第二时间窗包括正整数个时域资源单元。
作为一个实施例,所述第二时间窗包括一个时域资源单元。
作为一个实施例,所述第二时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述第二时间窗是一个连续的时间段。
作为一个实施例,所述第二时间窗的持续时间是预定义的。
作为一个实施例,所述第二时间窗的持续时间是可配置的。
作为一个实施例,所述第二时间窗的持续时间是由更高层信令配置的。
作为一个实施例,所述第二时间窗的持续时间是由物理层信令配置的。
作为一个实施例,所述第一时间窗包括所述所述第一无线信号所占用的时域资源所属的一个或多个时域资源单元。
作为一个实施例,所述第二时间窗包括所述针对所述第一无线信号的反馈所占用的时域资源所属的一个或多个时域资源单元。
作为一个实施例,所述第一时间窗包括所述所述第一无线信号所占用的时域资源所属的一个时域资源单元。
作为一个实施例,所述第二时间窗包括所述针对所述第一无线信号的反馈所占用的时域资源所属的一个时域资源单元。
作为一个实施例,所述时域资源单元包括正整数个连续的多载波符号。
作为一个实施例,所述时域资源单元包括一个子帧(subframe)。
作为一个实施例,所述时域资源单元包括一个时隙(slot)。
作为一个实施例,所述时域资源单元包括一个短时隙(mini-slot)。
作为一个实施例,所述时域资源单元包括正整数个子帧。
作为一个实施例,所述时域资源单元包括正整数个时隙。
作为一个实施例,所述时域资源单元包括正整数个短时隙。
作为一个实施例,所述多载波符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述多载波符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,所述多载波符号包括CP(Cyclic Prefix,循环前缀)。
作为一个实施例,所述第一时域偏差是所述第二时间窗的起始时刻与所述第一时间窗的起始时刻在时域上的偏差。
作为一个实施例,所述第一时域偏差是所述第二时间窗的终止时刻与所述第一时间窗的终止时刻在时域上的偏差。
作为一个实施例,第一参考时刻是所述第一时间窗中的一个时刻,第二参考时刻是所述第二时间窗中的一个时刻,所述第一时域偏差是所述第二参考时刻与所述第一参考时刻在时域上的偏差。
作为上述实施例的一个子实施例,所述第一参考时刻是所述第一时间窗的起始时刻。
作为上述实施例的一个子实施例,所述第一参考时刻是所述第一时间窗的终止时刻。
作为上述实施例的一个子实施例,所述第一参考时刻是所述第一时间窗中除了起始时刻和终止时刻之外的一个时刻。
作为上述实施例的一个子实施例,所述第二参考时刻是所述第二时间窗的起始时刻。
作为上述实施例的一个子实施例,所述第二参考时刻是所述第二时间窗的终止时刻。
作为上述实施例的一个子实施例,所述第二参考时刻是所述第二时间窗中除了起始时刻和终止时刻之外的一个时刻。
作为一个实施例,所述第一时间窗包括所述所述第一无线信号所占用的时域资源所属的一个时域资源单元,所述第二时间窗包括所述针对所述第一无线信号的反馈所占用的时域资源所属的一个时域资源单元,所述第一时域偏差是所述第二时间窗所包括的时域资源单元的索引与所述第一时间窗所包括的时域资源单元的索引的偏差。
作为一个实施例,所述第一时域偏差的单位是时域资源单元。
作为一个实施例,所述第一时域偏差的单位是多载波符号。
作为一个实施例,所述第一时域偏差的单位是秒(second)。
作为一个实施例,所述第一时域偏差的单位是毫秒(millisecond)。
作为一个实施例,所述第一时域偏差是非负实数。
作为一个实施例,所述第一时域偏差是非负整数。
作为一个实施例,所述第一无线信号包括数据,所述针对所述第一无线信号的反馈包括HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)。
作为上述实施例的一个子实施例,所述第一无线信号包括的所述数据是下行数据。
作为一个实施例,所述第一无线信号的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述第一无线信号在下行物理层数据信道(即能用于承载物理层数据的下行信道)上传输。
作为上述实施例的一个子实施例,所述下行物理层数据信道是PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是sPDSCH(short PDSCH,短PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NR-PDSCH(New Radio PDSCH,新无线PDSCH)。
作为上述实施例的一个子实施例,所述下行物理层数据信道是NB-PDSCH(Narrow Band PDSCH,窄带PDSCH)。
作为一个实施例,所述针对所述第一无线信号的反馈的传输信道是上行物理层控制信道(即仅能用于承载物理层信令的上行信道)的资源。
作为上述实施例的一个子实施例,所述上行物理层控制信道是PUCCH(Physical Uplink Control CHannel,物理上行控制信道)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是sPUCCH(short PUCCH,短PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NR-PUCCH(New Radio PUCCH,新无线PUCCH)。
作为上述实施例的一个子实施例,所述上行物理层控制信道是NB-PUCCH(Narrow Band PUCCH,窄带PUCCH)。
作为一个实施例,所述针对所述第一无线信号的反馈的传输信道是UL-SCH(Uplink Shared Channel,下行共享信道)。
作为一个实施例,所述针对所述第一无线信号的反馈的传输信道是上行物理层数据信道 (即能用于承载物理层数据的上行信道)上传输。
作为上述实施例的一个子实施例,所述上行物理层数据信道是PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是sPUSCH(short PUSCH,短PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NR-PUSCH(New Radio PUSCH,新无线PUSCH)。
作为上述实施例的一个子实施例,所述上行物理层数据信道是NB-PUSCH(Narrow Band PUSCH,窄带PUSCH)。
作为一个实施例,所述第一信令被用于指示所述第一无线信号的调度信息,所述第一信令被用于确定所述第一无线信号所占用的时域资源。
作为上述实施例的一个子实施例,所述第一信令显式的指示所述第一无线信号的调度信息。
作为上述实施例的一个子实施例,所述第一信令隐式的指示所述第一无线信号的调度信息。
作为上述实施例的一个子实施例,所述第一信令显式的指示所述第一无线信号所占用的时域资源。
作为上述实施例的一个子实施例,所述第一信令隐式的指示所述第一无线信号所占用的时域资源。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供面向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播 放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF211、其它MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述gNB203对应本申请中的所述基站。
作为一个子实施例,所述UE201支持大规模MIMO的无线通信。
作为一个子实施例,所述gNB203支持大规模MIMO的无线通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
附图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的针对所述第一无线信号的反馈生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB410的框图。
基站设备(410)包括控制器/处理器440,存储器430,接收处理器412,波束处理器471,发射处理器415,发射器/接收器416和天线420。
用户设备(450)包括控制器/处理器490,存储器480,数据源467,波束处理器441,发射处理器455,接收处理器452,发射器/接收器456和天线460。
在下行传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层包中可以包括数据或者控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的空口资源;
-波束处理器471,确定第一信令和第一无线信号;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配和物理层控制信令(包括PBCH,PDCCH,PHICH,PCFICH,参考信号)生成等;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即物理层)的各种信号发射处理功能包括多天线发送、扩频、码分复用、预编码等;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在下行传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调和物理层控制信令提取等;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解扩、码分复用、预编码等;
-波束处理器441,确定第一信令和第一无线信号;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联。存储器480可以为计算机可读媒体。
在UL(Uplink,上行)中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、 解交织、解扰、解调和物理层控制信令提取等;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收,解扩频(Despreading),码分复用,预编码等;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联;
-控制器/处理器440提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-波束处理器471,确定针对所述第一无线信号的反馈;
在UL(Uplink,上行)中,与用户设备(450)有关的处理包括:
-数据源467,将上层数据包提供到控制器/处理器490。数据源467表示L2层之上的所有协议层;
-发射器456,通过其相应天线460发射射频信号,把基带信号转化成射频信号,并把射频信号提供到相应天线460;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括编码、交织、加扰、调制和物理层信令生成等;
-发射处理器455,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线发送,扩频(Spreading),码分复用,预编码等;
-控制器/处理器490基于gNB410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能;
-控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令;
-波束处理器441,确定针对所述第一无线信号的反馈;
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信令;在第一时间窗中接收第一无线信号;在第二时间窗中发送针对所述第一无线信号的反馈;其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;在第一时间窗中接收第一无线信号;在第二时间窗中发送针对所述第一无线信号的反馈;其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信令;在第一时间窗中发送第一无线信号;在第二时间窗中接收针对所述第一无线信号的反馈;其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类 备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;在第一时间窗中发送第一无线信号;在第二时间窗中接收针对所述第一无线信号的反馈;其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,UE450对应本申请中的用户设备。
作为一个实施例,gNB410对应本申请中的基站。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第一信令。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第一信令。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第二信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第二信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第三信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第三信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于接收本申请中的所述第四信息。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于发送本申请中的所述第四信息。
作为一个实施例,接收器456、接收处理器452和控制器/处理器490中的至少前两者被用于在本申请中的所述第一时间窗中接收本申请中的所述第一无线信号。
作为一个实施例,发射器416、发射处理器415和控制器/处理器440中的至少前两者被用于在本申请中的所述第一时间窗中发送本申请中的所述第一无线信号。
作为一个实施例,发射器456、发射处理器455和控制器/处理器490中的至少前两者被用于在本申请中的所述第二时间窗中发送针对本申请中的所述第一无线信号的反馈。
作为一个实施例,接收器416、接收处理器412和控制器/处理器440中的至少前两者被用于在本申请中的所述第二时间窗中接收针对本申请中的所述第一无线信号的反馈。
实施例5
实施例5示例了一个无线传输的流程图,如附图5所示。在附图5中,基站N01是用户设备U02的服务小区维持基站。附图5中,方框F1和F2是可选的。
对于N01,在步骤S11中发送第二信息;在步骤S12中发送第三信息;在步骤S13中发送第一信令;在步骤S14中在第一时间窗中发送第一无线信号;在步骤S15中在第二时间窗中接收针对第一无线信号的反馈。
对于U02,在步骤S21中接收第二信息;在步骤S22中接收第三信息;在步骤S23中接收第一信令;在步骤S24中在第一时间窗中接收第一无线信号;在步骤S25中在第二时间窗中发送针对第一无线信号的反馈。
在实施例5中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。所述第三信息被用于指示所述第二标识。
作为一个实施例,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第二信息是半静态配置的。
作为一个实施例,所述第二信息由更高层信令承载。
作为一个实施例,所述第二信息由RRC信令承载。
作为一个实施例,所述第二信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第二信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第二信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第二信息被用于指示所述K1个第一类时域偏差。
作为上述实施例的一个子实施例,所述第二信息是dl-DataToUL-ACK,所述dl-DataToUL-ACK的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第二信息被用于指示所述K2个第二类时域偏差。
作为一个实施例,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差。
作为一个实施例,所述第三信息是半静态配置的。
作为一个实施例,所述第三信息由更高层信令承载。
作为一个实施例,所述第三信息由RRC信令承载。
作为一个实施例,所述第三信息包括一个RRC信令中的一个或多个IE。
作为一个实施例,所述第三信息包括一个RRC信令中的一个IE的全部或一部分。
作为一个实施例,所述第三信息包括一个RRC信令中的多个IE。
作为一个实施例,所述第三信息显式的指示所述第二标识。
作为一个实施例,所述第三信息隐式的指示所述第二标识。
作为一个实施例,所述第三信息被用于指示所述第一标识和所述第二标识。
作为一个实施例,所述第三信息显式的指示所述第一标识和所述第二标识。
作为一个实施例,所述第三信息隐式的指示所述第一标识和所述第二标识。
实施例6
实施例6示例了一个K1个第一类备选偏差和K2个第二类备选偏差的示意图,如附图6所示。
在实施例6中,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,所述K1个第一类备选偏差互不相同。
作为一个实施例,所述K2个第二类备选偏差互不相同。
作为一个实施例,所述K1个第一类备选偏差都是非负实数。
作为一个实施例,所述K2个第二类备选偏差都是非负实数。
作为一个实施例,所述K1个第一类备选偏差都是非负整数。
作为一个实施例,所述K2个第二类备选偏差都是非负整数。
作为一个实施例,所述K1个第一类备选偏差是预定义的。
作为上述实施例的一个子实施例,所述K1等于8,所述K1个第一类备选偏差分别是1,2,3,4,5,6,7和8。
作为一个实施例,所述K1个第一类备选偏差是可配置的。
作为上述实施例的一个子实施例,所述K1个第一类备选偏差由更高层参数dl-DataToUL-ACK配置,所述dl-DataToUL-ACK的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述K2个第二类备选偏差是预定义的。
作为一个实施例,所述K2个第二类备选偏差是可配置的。
作为一个实施例,所述K2个第二类备选偏差中的最小值小于所述K2个第二类备选偏差中的最小值。
作为上述实施例的一个子实施例,所述K2个第二类备选偏差中的最小值等于0,所述K2个第二类备选偏差中的最小值大于0。
作为上述实施例的一个子实施例,所述K2个第二类备选偏差中的最小值大于0,所述K2个第二类备选偏差中的最小值大于0。
实施例7
实施例7示例了一个确定第一时域偏差的示意图,如附图7所示。
在实施例7中,本申请中的所述K1等于1,所述K2等于1,所述第一时域偏差是本申请中的所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,本申请中的所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,所述第一信息包括的所述第一域包括正整数个比特。
作为一个实施例,所述第一信息包括的所述第一域包括非负整数个比特。
作为一个实施例,所述第一信息包括的所述第一域包括J1个比特,所述J1是非负整数;所述J1是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述J1是预定义的。
作为上述实施例的一个子实施例,所述J1等于3。
作为上述实施例的一个子实施例,所述J1是可配置的。
作为上述实施例的一个子实施例,所述J1的取值范围包括{0,1,2,3}。
作为上述实施例的一个子实施例,所述J1的取值范围包括{1,2,3}。
作为上述实施例的一个子实施例,所述J1等于
Figure PCTCN2019094665-appb-000001
所述I是更高层参数dl-DataToUL-ACK所包括的元素(entry)的数目,所述dl-DataToUL-ACK的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第一信息包括的所述第一域是PDSCH-to-HARQ_feedback timing indicator,所述PDSCH-to-HARQ_feedback timing indicator的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第一信息包括的所述第一域包括J1个比特,所述J1是非负整数;所述K1或者所述K2被用于确定所述J1。
作为上述实施例的一个子实施例,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差中确定所述第一时域偏差,所述K1被用于确定所述J1。
作为上述实施例的一个子实施例,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差中确定所述第一时域偏差,所述K1被用于确定所述J1;所述J1等于所述K1,或者,所述J1等于
Figure PCTCN2019094665-appb-000002
作为上述实施例的一个子实施例,所述第一信息包括的所述第一域被用于从所述K2个第二类备选偏差中确定所述第一时域偏差,所述K2被用于确定所述J1。
作为上述实施例的一个子实施例,所述第一信息包括的所述第一域被用于从所述K2个第二类备选偏差中确定所述第一时域偏差,所述K2被用于确定所述J1;所述J1等于所述K2,或者,所述J1等于
Figure PCTCN2019094665-appb-000003
实施例8
实施例8示例了一个第一信令被用于确定第一无线信号所占用的时域资源的示意图,如附图8所示。
在实施例8中,所述第一信令携带第一信息,所述第一信息包括第四域,所述第一信息包括的所述第四域包括正整数个比特,所述第一信息包括的所述第四域被用于指示所述第一无线信号所占用的时域资源。
作为一个实施例,所述第一信息包括的所述第四域显式的指示所述第一无线信号所占用的时域资源。
作为一个实施例,所述第一信息包括的所述第四域隐式的指示所述第一无线信号所占用的时域资源。
作为一个实施例,所述第一信令被用于指示所述第一无线信号的调度信息。
作为一个实施例,所述第一无线信号包括数据,所述针对所述第一无线信号的反馈包括HARQ-ACK。
作为一个实施例,所述所述第一无线信号的调度信息包括所占用的时域资源,所占用的频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)的配置信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号,RV(Redundancy Version,冗余版本),NDI(New Data Indicator,新数据指示),发送天线端口,所对应的多天线相关的发送和所对应的多天线相关的接收中的至少之一。
作为上述实施例的一个子实施例,所述所述第一无线信号所占用的时域资源是所述所述第一无线信号的调度信息所包括的所述所占用的时域资源。
作为上述实施例的一个子实施例,所述DMRS的配置信息包括RS(Reference Signal)序列,映射方式,DMRS类型,所占用的时域资源,所占用的频域资源,所占用的码域资源,循环位移量(cyclic shift),OCC(Orthogonal Cover Code,正交掩码)中的至少之一。
作为一个实施例,所述多天线相关的接收是空间接收参数(Spatial Rx parameters)。
作为一个实施例,所述多天线相关的接收是接收波束。
作为一个实施例,所述多天线相关的接收是接收波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的接收是接收模拟波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收波束赋型向量。
作为一个实施例,所述多天线相关的接收是接收空间滤波(spatial filtering)。
作为一个实施例,所述多天线相关的发送是空间发送参数(Spatial Tx parameters)。
作为一个实施例,所述多天线相关的发送是发送波束。
作为一个实施例,所述多天线相关的发送是发送波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型矩阵。
作为一个实施例,所述多天线相关的发送是发送模拟波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送波束赋型向量。
作为一个实施例,所述多天线相关的发送是发送空间滤波。
作为一个实施例,所述空间发送参数(Spatial Tx parameters)包括发送天线端口、发送天线端口组、发送波束、发送模拟波束赋型矩阵、发送模拟波束赋型向量、发送波束赋型矩阵、发送波束赋型向量和发送空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述空间接收参数(Spatial Rx parameters)包括接收波束、接收模拟波束赋型矩阵、接收模拟波束赋型向量、接收波束赋型矩阵、接收波束赋型向量和接收空间滤波(spatial filtering)中的一种或多种。
作为一个实施例,所述第一信息包括的所述第四域是Time domain resource assignment,所述Time domain resource assignment的具体定义参见3GPP TS38.214中的第5.1.2.1章节。
作为一个实施例,所述第一信息包括的所述第四域指示第二时域偏差;参考时间窗包括所述第一信令所占用的时域资源,所述第二时域偏差是所述第一时间窗和所述参考时间窗在时域上的偏差。
作为一个实施例,所述第一信息包括的所述第四域指示第二时域偏差、所占用的起始多载波符号和所占用的多载波符号数目;参考时间窗包括所述第一信令所占用的时域资源,所述第二时域偏差是所述第一时间窗和所述参考时间窗在时域上的偏差。
作为上述实施例的一个子实施例,所述第二时域偏差是K 0,所述K 0的具体定义参见3GPP TS38.214中的第5.1.2.1章节。
作为上述实施例的一个子实施例,所述第一信息包括的所述第四域指示的所述所占用的 起始多载波符号和所述所占用的多载波符号数目是SLIV,所述SLIV的具体定义参见3GPP TS38.214中的第5.1.2.1章节。
作为上述实施例的一个子实施例,所述第一信息包括的所述第四域指示的所述所占用的起始多载波符号是S,所述第一信息包括的所述第四域指示的所述所占用的多载波符号数目是L,所述S和所述L的具体定义参见3GPP TS38.214中的第5.1.2.1章节。
作为上述实施例的一个子实施例,所述第一信息包括的所述第四域指示的所述第二时域偏差、所述所占用的起始多载波符号和所述所占用的多载波符号数目是预定义的或者可配置的。
作为上述实施例的一个子实施例,所述第一信息包括的所述第四域指示的所述第二时域偏差、所述所占用的起始多载波符号和所述所占用的多载波符号数目由更高层参数配置。
作为上述实施例的一个子实施例,所述第一信息包括的所述第四域指示的所述第二时域偏差、所述所占用的起始多载波符号和所述所占用的多载波符号数目由更高层参数pdsch-AllocationList配置,所述pdsch-AllocationList的具体定义参见3GPP TS38.331中的第6.3.2章节。
作为一个实施例,所述第一时间窗是相比所述参考时间窗在时域上晚了所述第二时域偏差的时域资源。
作为一个实施例,所述第二时域偏差的单位是时域资源单元。
作为一个实施例,所述第二时域偏差的单位是多载波符号。
作为一个实施例,所述第二时域偏差的单位是秒(second)。
作为一个实施例,所述第二时域偏差的单位是毫秒(millisecond)。
作为一个实施例,所述第二时域偏差是非负实数。
作为一个实施例,所述第二时域偏差是非负整数。
作为一个实施例,所述参考时间窗包括正整数个时域资源单元。
作为一个实施例,所述参考时间窗包括一个时域资源单元。
作为一个实施例,所述参考时间窗包括正整数个连续的多载波符号。
作为一个实施例,所述参考时间窗是一个连续的时间段。
作为一个实施例,所述参考时间窗的持续时间是预定义的。
作为一个实施例,所述参考时间窗的持续时间是可配置的。
作为一个实施例,所述参考时间窗的持续时间是由更高层信令配置的。
作为一个实施例,所述参考时间窗的持续时间是由物理层信令配置的。
作为一个实施例,所述第二时域偏差是所述第一时间窗的起始时刻与所述参考时间窗的起始时刻在时域上的偏差。
作为一个实施例,所述第二时域偏差是所述第一时间窗的终止时刻与所述参考时间窗的终止时刻在时域上的偏差。
作为一个实施例,第五参考时刻是所述第一时间窗中的一个时刻,第六参考时刻是所述参考时间窗中的一个时刻,所述第二时域偏差是所述第五参考时刻与所述第六参考时刻在时域上的偏差;所述第五参考时刻是所述第一时间窗中除了起始时刻和终止时刻之外的一个时刻,所述第六参考时刻是所述参考时间窗中除了起始时刻和终止时刻之外的一个时刻。
作为一个实施例,所述参考时间窗包括所述第一信令所占用的时域资源所属的一个时域资源单元,所述第一时间窗包括所述所述第一无线信号所占用的时域资源所属的一个时域资源单元,所述第二时域偏差是所述第一时间窗所包括的时域资源单元的索引与所述参考时间窗所包括的时域资源单元的索引的偏差。
实施例9
实施例9示例了一个第一信令被用于确定针对第一无线信号的反馈在第二时间窗中所占用的时频资源的示意图,如附图9所示。
在实施例9中,所述第一信令携带第一信息,所述第一信息包括第三域,所述第一信息 包括的所述第三域被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第一信息包括的所述第三域包括正整数个比特。
作为一个实施例,所述第一信息包括的所述第三域是PUCCH resource indicator,所述PUCCH resource indicator的具体定义参见3GPP TS38.213中的第9.2.3章节。
作为一个实施例,所述第一信息包括的所述第三域显式的指示所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第一信息包括的所述第三域隐式的指示所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,上述方法还包括:
接收第四信息;
其中,所述第四信息被用于指示J2个候选时频资源的配置信息,所述J2是正整数;所述第一信令和所述第四信息共同被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为上述实施例的一个子实施例,所述第一信息包括的所述第三域被用于从所述J2个候选时频资源中确定所述所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为上述实施例的一个子实施例,所述所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源是所述J2个候选时频资源中的一个候选时频资源。
作为上述实施例的一个子实施例,所述J2个候选时频资源分别是J2个PUCCH资源(resource)。
作为上述实施例的一个子实施例,所述所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源是所述J2个候选时频资源中的一个候选时频资源,所述第一信息包括的所述第三域指示所述所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源在所述J2个候选时频资源中的索引。
作为上述实施例的一个子实施例,所述第四信息是半静态配置的。
作为上述实施例的一个子实施例,所述第四信息由更高层信令承载。
作为上述实施例的一个子实施例,所述第四信息由RRC(Radio Resource Control,无线电资源控制)信令承载。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的一个或多个IE (Information Element,信息单元)。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的一个IE的全部或一部分。
作为上述实施例的一个子实施例,所述第四信息包括一个RRC信令中的多个IE。
作为上述实施例的一个子实施例,所述J2个候选时频资源中的每个候选时频资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组中的至少之一。
作为上述实施例的一个子实施例,所述J2个候选时频资源中的每个候选时频资源的配置信息包括所占的时域资源,所占的码域资源,所占的频域资源和所对应的天线端口组。
作为上述实施例的一个子实施例,所述J2个候选时频资源中的每个候选时频资源的配置信息包括所占的起始多载波符号,所占的多载波符号数目,跳频前或不跳频情况的起始PRB(Physical Resource Block,物理资源块),跳频后的起始PRB,所占的PRB数目,跳频设置,CS(Cyclic Shift,循环移位),OCC(Orthogonal Cover Code,正交掩码),OCC长度,所对应的天线端口组和最大码率(Code Rate)。
作为上述实施例的一个子实施例,所述J2个候选时频资源中的每个候选时频资源的配置信息包括所占的起始多载波符号,所占的多载波符号数目,跳频前或不跳频情况的起始PRB,跳频后的起始PRB,所占的PRB数目,跳频设置,CS,OCC,OCC长度,所对应的天线端口组和最大码率中的至少之一。
作为一个实施例,所述用户设备从J3个候选时频资源集合中确定第一候选时频资源集合,所述J3是大于1的正整数;所述第一候选时频资源集合是所述J3个候选时频资源集合中的一个候选时频资源集合,所述第一候选时频资源集合包括所述J2个候选时频资源。
作为上述实施例的一个子实施例,根据所述针对所述第一无线信号的反馈的负载(payload)大小(size)从J3个候选时频资源集合中确定第一候选时频资源集合。
作为上述实施例的一个子实施例,所述J3个候选时频资源集合分别对应J3个负载大小范围,所述针对所述第一无线信号的反馈的负载大小属于第一负载大小范围,所述第一负载大小范围是所述J3个负载大小范围中的一个负载大小范围,所述第一候选时频资源集合是所述第一负载大小范围所对应的所述J3个候选时频资源集合中的一个候选时频资源集合。
作为上述实施例的一个子实施例,根据所述针对所述第一无线信号的反馈所包括的比特数目从J3个候选时频资源集合中确定第一候选时频资源集合。
作为上述实施例的一个子实施例,所述J3个候选时频资源集合分别对应J3个比特数目范围,所述针对所述第一无线信号的反馈所包括的比特数目属于第一比特数目范围,所述第 一比特数目范围是所述J3个比特数目范围中的一个比特数目范围,所述第一候选时频资源集合是所述第一比特数目范围所对应的所述J3个候选时频资源集合中的一个候选时频资源集合。
作为上述实施例的一个子实施例,所述J3等于4,所述J3个比特数目范围分别是[1,2],(2,N2],(N2,N3]和(N3,1706],所述N2和所述N3由更高层信令配置。
作为上述实施例的一个子实施例,所述J3等于4,所述J3个比特数目范围分别是[1,2],(2,N2],(N2,N3]和[N3,1706],所述N2和所述N3由更高层信令配置。
实施例10
实施例10示例了一个UE中的处理装置的结构框图,如附图10所示。附图10中,UE处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490。
作为一个实施例,所述第一接收机1201包括实施例4中的接收器456、接收处理器452和控制器/处理器490中的至少前二者。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490。
作为一个实施例,所述第一发射机1202包括实施例4中的发射器456、发射处理器455和控制器/处理器490中的至少前二者。
-第一接收机1201:接收第一信令;在第一时间窗中接收第一无线信号;
-第一发射机1202:在第二时间窗中发送针对所述第一无线信号的反馈;
在实施例10中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第一接收机1201还接收第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
作为一个实施例,所述第一接收机1201还接收第三信息;其中,所述第三信息被用于指示所述第二标识。
实施例11
实施例11示例了一个基站设备中的处理装置的结构框图,如附图11所示。附图11中,基站设备中的处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器 415和控制器/处理器440。
作为一个实施例,所述第二发射机1301包括实施例4中的发射器416、发射处理器415和控制器/处理器440中的至少前二者。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440。
作为一个实施例,所述第二接收机1302包括实施例4中的接收器416、接收处理器412和控制器/处理器440中的至少前二者。
-第二发射机1301,发送第一信令;在第一时间窗中发送第一无线信号;
-第二接收机1302,在第二时间窗中接收针对所述第一无线信号的反馈;
在实施例11中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
作为一个实施例,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
作为一个实施例,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差。
作为一个实施例,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
作为一个实施例,所述第二发射机1301还发送第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
作为一个实施例,所述第二发射机1301还发送第三信息;其中,所述第三信息被用于指示所述第二标识。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种用于无线通信的用户设备中的方法,其特征在于,包括:
    接收第一信令;
    在第一时间窗中接收第一无线信号;
    在第二时间窗中发送针对所述第一无线信号的反馈;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
  2. 根据权利要求1所述的方法,其特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
  3. 根据权利要求1所述的方法,其特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差;或者,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
  4. 根据权利要求1所述的方法,其特征在于,包括:
    接收第二信息;
    其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
  5. 根据权利要求1所述的方法,其特征在于,包括:
    接收第三信息;
    其中,所述第三信息被用于指示所述第二标识。
  6. 一种用于无线通信的基站设备中的方法,其特征在于,包括:
    发送第一信令;
    在第一时间窗中发送第一无线信号;
    在第二时间窗中接收针对所述第一无线信号的反馈;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
  7. 根据权利要求6所述的方法,其特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
  8. 根据权利要求6所述的方法,其特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差;或者,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
  9. 根据权利要求6所述的方法,其特征在于,包括:
    发送第二信息;
    其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差 中的至少之一。
  10. 根据权利要求6所述的方法,其特征在于,包括:
    发送第三信息;
    其中,所述第三信息被用于指示所述第二标识。
  11. 一种用于无线通信的用户设备,其特征在于,包括:
    第一接收机,接收第一信令;在第一时间窗中接收第一无线信号;
    第一发射机,在第二时间窗中发送针对所述第一无线信号的反馈;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
  12. 根据权利要求11所述的用户设备,其特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
  13. 根据权利要求11所述的用户设备,其特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差;或者,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
  14. 根据权利要求11所述的用户设备,其特征在于,所述第一接收机还接收第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
  15. 根据权利要求11所述的用户设备,其特征在于,所述第一接收机还接收第三信息;其中,所述第三信息被用于指示所述第二标识。
  16. 一种用于无线通信的基站设备,其特征在于,包括:
    第二发射机,发送第一信令;在第一时间窗中发送第一无线信号;
    第二接收机,在第二时间窗中接收针对所述第一无线信号的反馈;
    其中,所述第一信令被用于确定所述第一无线信号所占用的时域资源;第一时域偏差是所述第二时间窗与所述第一时间窗在时域上的偏差;如果所述第一信令携带第一标识,所述第一时域偏差是K1个第一类备选偏差中之一,所述K1是正整数;如果所述第一信令携带第二标识,所述第一时域偏差是K2个第二类备选偏差中之一,所述K2是正整数;所述第一标识不同于所述第二标识,所述K2个第二类备选偏差中至少一个第二类备选偏差和所述K1个第一类备选偏差都不同。
  17. 根据权利要求16所述的基站设备,其特征在于,所述K2个第二类备选偏差中至少一个第二类备选偏差小于所述K1个第一类备选偏差中的每个第一类备选偏差。
  18. 根据权利要求16所述的基站设备,其特征在于,所述K1等于1,所述K2等于1,所述第一时域偏差是所述K1个第一类备选偏差或者所述K2个第二类备选偏差;或者,所述K1大于1,所述K2大于1,所述第一信令携带第一信息,所述第一信息包括第一域,所述第一信息包括的所述第一域被用于从所述K1个第一类备选偏差或者所述K2个第二类备选偏差中确定所述第一时域偏差;或者,所述第一信令被用于确定所述针对所述第一无线信号的反馈在所述第二时间窗中所占用的时频资源。
  19. 根据权利要求16所述的基站设备,其特征在于,所述第二发射机还发送第二信息;其中,所述第二信息被用于指示所述K1个第一类时域偏差和所述K2个第二类时域偏差中的至少之一。
  20. 根据权利要求16所述的基站设备,其特征在于,所述第二发射机还发送第三信息;其中,所述第三信息被用于指示所述第二标识。
PCT/CN2019/094665 2018-07-12 2019-07-04 一种被用于无线通信的用户设备、基站中的方法和装置 WO2020011091A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/830,294 US11252722B2 (en) 2018-07-12 2020-03-26 Method and device in UE and base station for wireless communication
US17/564,252 US11864168B2 (en) 2018-07-12 2021-12-29 Method and device in UE and base station for wireless communication
US18/238,538 US20230403686A1 (en) 2018-07-12 2023-08-28 Method and device in ue and base station for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810763067.9 2018-07-12
CN201810763067.9A CN110719153B (zh) 2018-07-12 2018-07-12 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/830,294 Continuation US11252722B2 (en) 2018-07-12 2020-03-26 Method and device in UE and base station for wireless communication

Publications (1)

Publication Number Publication Date
WO2020011091A1 true WO2020011091A1 (zh) 2020-01-16

Family

ID=69141860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094665 WO2020011091A1 (zh) 2018-07-12 2019-07-04 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (3) US11252722B2 (zh)
CN (3) CN111970097A (zh)
WO (1) WO2020011091A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351492A (zh) * 2019-08-06 2021-02-09 中国移动通信有限公司研究院 资源指示方法、资源确定方法、装置、网络侧设备及终端
CN113676300B (zh) * 2020-05-15 2023-06-20 北京佰才邦技术股份有限公司 混合自适应重传请求应答信息的反馈方法及设备
CN113949492B (zh) * 2020-07-16 2023-06-06 维沃移动通信有限公司 反馈信息传输方法、装置、终端及网络侧设备
WO2023280192A1 (zh) * 2021-07-07 2023-01-12 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301850A1 (en) * 2016-09-30 2018-04-04 TCL Communication Limited Systems and methods for frequency division duplex communication
CN108271262A (zh) * 2017-01-03 2018-07-10 北京三星通信技术研究有限公司 分配上行控制信道的方法及设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008265134C1 (en) * 2007-06-19 2014-09-25 Beijing Xiaomi Mobile Software Co.,Ltd. Adaptive transport format uplink signaling for data-non-associated feedback control signals
KR101551496B1 (ko) * 2009-02-05 2015-09-09 엘지전자 주식회사 무선 통신 시스템에서 피드백 메시지 전송 방법
KR101709499B1 (ko) * 2009-03-25 2017-02-23 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
KR101687835B1 (ko) * 2009-12-18 2016-12-20 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 채널 전송 방법 및 장치
CN103733557B (zh) * 2011-08-10 2016-12-07 交互数字专利控股公司 用于多站点调度的上行链路反馈
EP2849485B1 (en) * 2013-09-12 2017-04-05 Alcatel Lucent Scheduler virtualization for mobile cloud for high latency backhaul
US10158473B2 (en) * 2014-10-03 2018-12-18 Intel IP Corporation Methods, apparatuses, and systems for transmitting hybrid automatic repeat request transmissions using channels in an unlicensed shared medium
CN107580801B (zh) * 2015-05-12 2021-03-30 Lg 电子株式会社 在支持未授权带的无线接入系统中基于harq-ack信息调整竞争窗口大小的方法和支持该方法的设备
JP2018152626A (ja) * 2015-08-05 2018-09-27 シャープ株式会社 端末装置、基地局装置および通信方法
CN107634821B (zh) * 2016-07-18 2020-06-30 上海朗帛通信技术有限公司 一种无线传输的ue和基站中的方法和装置
CN107645777B (zh) * 2016-07-22 2020-05-26 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107919948B (zh) * 2016-10-09 2020-03-20 中国移动通信有限公司研究院 一种下行接收反馈信息的传输控制方法、基站和终端
EP3691387B1 (en) * 2017-09-29 2023-06-28 NTT DoCoMo, Inc. User terminal and radio communication method
CN110635870B (zh) * 2018-06-22 2021-05-18 华为技术有限公司 生成混合自动重传请求harq信息的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301850A1 (en) * 2016-09-30 2018-04-04 TCL Communication Limited Systems and methods for frequency division duplex communication
CN108271262A (zh) * 2017-01-03 2018-07-10 北京三星通信技术研究有限公司 分配上行控制信道的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Uplink HARQ-ACK feedback in efeMTC", 3GPP TSG-RAN WG1 MEETING #91, 1 November 2017 (2017-11-01), XP051368902 *
NOKIA: "Uplink HARQ-ACK feedback in efeMTC", 3GPP TSG-RAN WG1 MEETING #92, 16 February 2018 (2018-02-16), XP051397258 *

Also Published As

Publication number Publication date
CN111970096A (zh) 2020-11-20
CN110719153A (zh) 2020-01-21
CN111970096B (zh) 2022-03-29
US11252722B2 (en) 2022-02-15
CN111970097A (zh) 2020-11-20
US20230403686A1 (en) 2023-12-14
US20200229183A1 (en) 2020-07-16
US11864168B2 (en) 2024-01-02
US20220124710A1 (en) 2022-04-21
CN110719153B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
US11265897B2 (en) Method and device in user equipment and base station for wireless communication
WO2018024206A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
CN111083782B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11283576B2 (en) Method and device in UE and base station used for wireless communication
WO2020011091A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
US11706740B2 (en) Method and device in UE and base station used for wireless communication
US10965357B2 (en) Method and device in first node and base station used for wireless communication
WO2020147554A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN114844613A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020181994A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113453345A (zh) 一种被用于无线通信的节点中的方法和装置
CN111757394A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN116233920A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19834034

Country of ref document: EP

Kind code of ref document: A1