WO2014205699A1 - 参考信号的传输方法及装置 - Google Patents

参考信号的传输方法及装置 Download PDF

Info

Publication number
WO2014205699A1
WO2014205699A1 PCT/CN2013/078062 CN2013078062W WO2014205699A1 WO 2014205699 A1 WO2014205699 A1 WO 2014205699A1 CN 2013078062 W CN2013078062 W CN 2013078062W WO 2014205699 A1 WO2014205699 A1 WO 2014205699A1
Authority
WO
WIPO (PCT)
Prior art keywords
reg
reference signal
antenna port
resource unit
pair
Prior art date
Application number
PCT/CN2013/078062
Other languages
English (en)
French (fr)
Inventor
王建国
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020187024435A priority Critical patent/KR101928879B1/ko
Priority to CN201910104917.9A priority patent/CN109743081B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020177034679A priority patent/KR101893455B1/ko
Priority to PCT/CN2013/078062 priority patent/WO2014205699A1/zh
Priority to CN201910105182.1A priority patent/CN109756250A/zh
Priority to CN201910106686.5A priority patent/CN110034789A/zh
Priority to KR1020187035540A priority patent/KR102025715B1/ko
Priority to CN201380001630.4A priority patent/CN104782054B/zh
Priority to KR1020167001307A priority patent/KR101805744B1/ko
Priority to EP17191800.6A priority patent/EP3309973B1/en
Priority to EP13887927.5A priority patent/EP3001577B1/en
Publication of WO2014205699A1 publication Critical patent/WO2014205699A1/zh
Priority to US14/979,967 priority patent/US9800385B2/en
Priority to US15/785,881 priority patent/US10333677B2/en
Priority to US16/418,131 priority patent/US10855429B2/en
Priority to US17/096,703 priority patent/US11496269B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting a reference signal. Background technique
  • DMRS Downlink Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the reference signal further includes a CRS (Cell-specific Reference Signal) that is inherited from the R8/R9 system, and the CRS is used for UE channel estimation, thereby implementing a Physical Downlink Control Channel (PDCCH). Channel) and demodulation of other common channels.
  • CRS Cell-specific Reference Signal
  • PDCH Physical Downlink Control Channel
  • the number of antenna ports supported by the above several reference signals in the LTE system varies.
  • DMRS supports up to 8 antenna ports; in LTE R10, CSI-RS supports up to 8 antenna ports, and the number of antenna ports can be 1, 2, 4 or 8; in LTE R8 to R10, CRS supports up to 4
  • the number of antenna ports can be 1, 2 or 4.
  • DMRS supports up to 8 antenna ports, and the number of antenna ports can be 1 to 8.
  • AAS Active Antenna
  • Antenna configurations with more than 8 antenna ports For example, the number of antenna ports can be 16, 32, or 64.
  • the existing CRS supports only 4 antenna ports at most, and directly expanding to support 16 antenna ports or more antenna ports results in very large overhead.
  • the CSI-RS supports only 8 antenna ports at most. If the number of antenna ports is increased in the PDSCH area to support the number of 16 antenna ports or more, it will cause interference to the downlink data transmission in the existing system, resulting in deterioration of downlink system performance. If the resource block is extended, the legacy (Legacy) UE cannot perform correct CSI estimation, so the existing reference signal design scheme cannot effectively support more antenna ports.
  • a method and a device for transmitting a reference signal are provided, which can solve the problem that the existing reference signal does not support more than eight antenna ports, improve the measurement efficiency of the channel state information, and improve the throughput of the system.
  • a method for transmitting a reference signal including:
  • the reference signal resource configuration information includes an antenna port number information and a resource configuration index
  • the reference signal configuration set includes at least one first reference signal configuration
  • the antenna port set corresponding to the first reference signal configuration includes at least two antenna port subsets: where the first antenna port The RE used for transmitting the reference signal on the concentrated antenna port is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair, the first RB pair and The second RB pair is different;
  • the reference signal is received based on the location of the RE.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is a REG
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG p ⁇ (9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0 ), (2,5,0), (2,6,0) ⁇ ;
  • REG ⁇ CP ⁇ (11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3, 1), (4, 2, 1), (4, 3, 1) ⁇ ;
  • REG ⁇ CP ⁇ (9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3, 1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3, 1), (0,2,1), (0,3,1) ⁇ ;
  • REG 4 NCP ⁇ (9,5,1), (9,6,1), (8,5,1), ( 8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit groups:
  • R EG NCP,FS2 (9,1,1), (9,3,1), (8,1,1) , (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1) ⁇ ;
  • R EG NCP,FSI KV ⁇ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0 , 3,1) ⁇ .
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration ( lEG h , REG is REG ⁇ P , REG ) or Or (?EG P , ?EG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration is REG ⁇ P , REG ) or Or (?EG P , ?EG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration ( lEG h , REG is REG ⁇ P , REG ) or Or (?EG P , ?EG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration is REG ⁇ P , REG
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration is (REG CP , REG CP , or ( ⁇ , REG 3 NCp j or REG P , REG CP Or [REG p , REG p ) or ( X ).
  • the resource unit pair used by the two antenna port subsets in the first reference signal configuration is, REG cp ' FS2 , REG p ' FS2) j or, REG CP ' FS2 , REG CP ' FS2 , or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration ( lEG h , REG is i ⁇ EG ⁇ REG ⁇ P) or Or (?EG p , ?EG p ) or [REG p ,REG ⁇ CP ) or ( X ).
  • the resource unit group set includes the following resources: Two or more of the source cell groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REGf cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4 ,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource
  • REG ECP, FS2 ⁇ (11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1), (5,2 ,1), (2,1,1), (2,2,1) ⁇ ;
  • R EG ECP,FS2 ⁇ (10,1,1),(10,2,1),(7,1,1 ),(7,2,1),(4,1,1), (4,2,1), (1,1,1), (1,2,1) ⁇ ;
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG P ' FS2 , REG P ' FS2 ) or REG 2 , REG cp ' FS2) j or
  • the resource element group pair (?ES, REG) used in the two antenna port subsets in the first reference signal configuration is (?EG. £CP , REG 2 ECP ) or (?EG, REG 3 ECP) Or REG, REG 0 ECP ) or [REG ⁇ CP , REG cp ).
  • the resource unit pair used in the subset of the two antenna ports in the first reference signal configuration ( lEG h , REG is REG ' FS2 , REG 2 ECP ' FS2 , or REG FS2 , REG FS2 ) or
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration Correct REG ⁇ or (WEGf CP , ?EGf P ) or (REG CP , REG 3 ECP ) j or [REG ⁇ CP , REG 2 ECP ) 0
  • a method for transmitting a reference signal including:
  • the reference signal resource configuration information includes antenna port number information and a resource configuration index
  • the antenna port number information and the resource configuration index are used to indicate one of the reference signal configuration sets.
  • a reference signal configuration where the reference signal is configured to indicate location information of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set
  • the reference signal configuration set includes at least one first reference signal configuration
  • the antenna port set corresponding to the first reference signal configuration includes at least two antenna port subsets, wherein the resource unit RE used for transmitting the reference signal on the antenna port in the first antenna port subset is located in the first resource block RB pair, and the second The RE used for transmitting the reference signal on the antenna port in the antenna port subset is located in the second RB pair, and the first RB pair is different from the second RB pair;
  • a reference signal is transmitted to the user equipment at the location.
  • the first RB pair and the second RB pair are respectively located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG
  • the intersection of different resource unit groups in the collection ⁇ is an empty set.
  • each resource unit group in the set ⁇ represents a resource unit RE used in the RB pair for transmitting the reference signal relative to the a set of location triplets W, /', mod2) of the RB pair, wherein the A' represents an index of a subcarrier of the resource unit RE within the RB pair in which it resides, and the '' indicates that the resource element is in its An index of an Orthogonal Frequency Division Multiplexing OFDM symbol within the RB pair, the slot index indicating the location of the resource unit, mod indicating a modulo operation, and n s mod2 representing an operation value for modulo 2.
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair REG h , REG .
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG p ⁇ (9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0 ), (2,5,0), (2,6,0) ⁇ ;
  • REG ⁇ CP ⁇ (11,2,1),(11,3,1),(10,2,1), (10,3,1), (5,2,1),(5,3, 1), (4, 2, 1), (4, 3, 1) ⁇ ;
  • REG ⁇ CP ⁇ (9,2,1),(9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3, 1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3, 1), (0,2,1), (0,3,1) ⁇ ;
  • REG 4 NCP ⁇ (9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6, 1), (2,5,1), (2,6,1) ⁇ .
  • R EG NCP,FS2 ⁇ , ⁇ , , (9,3,1), (8,1,1), (8 ,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1) ⁇ ;
  • R EG NCP,FS2 7, ), ( 7,3,1), (6,1,1), (6,3,1), (1,
  • the resource element group pair ( lEG k , REG is REG ⁇ P , REG ) or ( ?EGf P , ?EG P ) or REG P used in the subset of the two antenna ports in the first reference signal configuration, REG 3 NCP ) or
  • the resource unit group used by the two antenna ports in the first reference signal configuration is (REG CP , REG CP , or ( ⁇ , REG 3 NCp j or REG P , REG CP Or [REG p , REG p ) or ( X ).
  • the resource unit pair used by the two antenna port subsets in the first reference signal configuration is, REG cp ' FS2 , REG p ' FS2) j or, REG CP ' FS2 , REG CP ' FS2 , or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (lEG h , REG is i ⁇ EG ⁇ REG ⁇ P) or)
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5, 1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit groups:
  • ⁇ ° ⁇ 2 ⁇ (11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5 , 2,1), (2,1,1),(2,2,1) ⁇ ;
  • the resource unit groups used in the subset of the two antenna ports in the first reference signal configuration are respectively paired ) is (REG 'REG ) or ( ?EG , ?EGf p ) or , REG CP , REG 3 ECp) ) or ( fX ).
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG P ' FS2 , REG P ' FS2 ) or REG 2 , REG cp ' FS2) j or
  • resource element groups of the first reference signal configuration in two subsets of antenna ports used for (? ES, REG) is (? EG. £ CP, REG 2 ECP) or (? EG, REG 3 ECP Or REG, REG 0 ECP ) or [REG ⁇ CP , REG cp ).
  • the resource unit pair used in the subset of the two antenna ports in the first reference signal configuration ( lEG h , REG is REG ' FS2 , REG 2 ECP ' FS2 , or REG FS2 , REG FS2 ) or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG cp , REG p j or REG P , REG CP j or , REG CP , REG 3 ECP ) ) or [REG ⁇ CP , REG 2 ECP ) 0
  • the third aspect provides a user equipment, including:
  • a receiving unit configured to receive reference signal resource configuration information sent by the base station, where the reference signal is
  • the resource configuration information includes an antenna port number information and a resource configuration index
  • a determining unit configured to determine, according to the antenna port number information and the resource configuration index received by the receiving unit, a reference signal configuration from a reference signal configuration set, where the reference signal is configured to indicate an antenna port set Position information of the resource unit RE used for transmitting the reference signal on the antenna port;
  • the reference signal configuration set includes at least one first reference signal configuration, and the antenna signal port set corresponding to the first reference signal configuration includes at least two antennas
  • the port subset is: wherein the RE used for transmitting the reference signal on the antenna port in the first antenna port subset is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second In the RB pair, the first RB pair is different from the second RB pair;
  • a location obtaining unit configured to obtain, according to the reference signal determined by the determining unit, a location of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set; the receiving unit is further configured to The position of the RE obtained by the location acquisition unit receives the reference signal.
  • the first RB pair and the second RB pair are respectively located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is a REG
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair REG h , REG.
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG ⁇ CP ⁇ (9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6, 0), (2,5,0), (2,6,0) ⁇ ;
  • ⁇ (11 1 11,34 10,24) ⁇ 0,3 ⁇ ) 5 ⁇ 1 5,3,1),(4,2,1),(4,3,1) ⁇ ;
  • REG ⁇ CP ⁇ (9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3, 1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3, 1), (0,2,1), (0,3,1) ⁇ ;
  • the resource unit group set includes two or more of the following resource unit groups:
  • FSI ⁇ (11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3 ,1),(4,1,1), (4,3,1) ⁇ ;
  • FS2 (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3, 1), (2,1,1), (2,3,1) ⁇ ;
  • REG NCP, FS2 7, ), (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), ( 0,1,1), (0,3,1) ⁇ .
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration Pair ( ⁇ REG ⁇ REG ⁇ is REG ⁇ P , REG ) or ( ?EGf P , ?EG P ) or (REG , REG P j or [REG ⁇ CP , REG A NCP ) (REG CP , REG CP , .
  • the resource element group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG ⁇ p ' FS2 , REG ' FS2 j or ( ?EG cp ' ra2 , ?EG p ' ra2 ) or ⁇ REG 2 NCP ' FS1 , REG P ' FS1 ) 0
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration iEG ⁇ REG is i ⁇ EG CP , REG CP , or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration is, REG cp ' FS2 , REG p ' FS2) j or, REG CP ' FS2 , REG CP ' FS2 , or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration ( lEG h , REG is i ⁇ EG ⁇ REG ⁇ P) or Or ( ?EG p , ?EG p ) or [REG p ,REG ⁇ CP ) or ( X ).
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4 ,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration is REG P ' FS2 , REG P ' FS2 ) or (REG ⁇ 2 , REG ⁇ P ' FS2 ) or
  • resource element groups of the first reference signal configuration in two subsets of antenna ports used for (? ES, REG) is (? EG. £ CP, REG 2 ECP) or (? EG, REG 3 ECP Or REG, REG 0 ECP ) or [REG ⁇ CP , REG cp ).
  • the resource unit pair used in the subset of the two antenna ports in the first reference signal configuration ( lEG h , REG is REG ' FS2 , REG 2 ECP ' FS2 , or REG FS2 , REG FS2 ) or
  • a base station including:
  • a sending unit configured to send reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index, where the antenna port number information and the resource configuration index are used to indicate a reference signal Configuring a reference signal configuration in the set, the reference signal configured to indicate that the reference signal is sent on the antenna port in the antenna port set Position information of the resource unit RE;
  • the reference signal configuration set includes at least one first reference signal configuration, and the antenna port set corresponding to the first reference signal configuration includes at least two antenna port subsets, wherein the first antenna
  • the resource unit RE used for transmitting the reference signal on the antenna port in the port subset is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair, where the An RB pair is different from the second RB pair;
  • a determining unit configured to determine, according to the configured reference signal configuration, the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set corresponding to the reference signal configuration;
  • the first RB pair and the second RB pair are respectively located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is a REG
  • An index of a resource unit group REG used in the two RB pairs; each resource unit group in the set ⁇ represents a resource unit RE used in an RB pair for transmitting a reference signal with respect to an RB pair in which the RB pair is located a set of location triplets (yt', /', mod2), wherein the A' represents
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG p ⁇ (9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0 ), (2,5,0), (2,6,0) ⁇ ;
  • ⁇ (11 ⁇ 1) ⁇ 11,34 10,24) 10,34) 5 ⁇ 1),(5,3,1),(4,2,1),(4,3,1) ⁇ ;
  • REG ⁇ CP ⁇ (9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3, 1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3, 1), (0,2,1), (0,3,1) ⁇ ;
  • the resource unit group set includes two or more of the following resource unit groups:
  • FS2 ⁇ (11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3 ,1),(4,1,1), (4,3,1) ⁇ ;
  • FS2 (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3, 1), (2,1,1), (2,3,1) ⁇ ;
  • REG NCP REG NCP
  • FSI KV ⁇ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0, 1,1), (0,3,1) ⁇ .
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration ( lEG h , REG is REG ⁇ P , REG ) or Or (?EG P , ?EG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration For (REG ⁇ CP ' FS2 , REG ' FS2 , or , ⁇ ⁇ or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration is (REG CP , REG CP , or ( ⁇ , REG 3 NCp j or REG P , REG CP Or ⁇ REG ⁇ CP , REG 2 NCP ) (REG CP 'REG ).
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration is, REG cp ' FS2 , REG p ' FS2) j or , REG CP ' FS2 , REG CP ' FS2 , or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is i ⁇ EG CP , REG CP , or)
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4 ,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit
  • ⁇ ° ⁇ 2 ⁇ (11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5 , 2,1), (2,1,1),(2,2,1) ⁇ ;
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration ( ⁇ REGC is ( ⁇ EG 'REG ⁇ or (?EGf CP , ?EGf P ) or (REG CP , REG 3 ECP) j or ( fX ).
  • two of the first reference signal configurations The resource unit group pair used for the antenna port subset (iEG ⁇ REG is REG P ' FS2 , REG P ' FS2 ) or REG 2 , REG cp ' FS2) j or
  • the resource unit group pair ( ?E , REG h ) used in the two antenna port subsets in the first reference signal configuration is (?EG. £ CP , REG 2 ECP ) or ( ?EG , REG 3 ECP ) or REG , REG 0 ECP ) or [REG ⁇ CP , REG cp ).
  • the two antenna port subsets in the first reference signal configuration The resource unit group pair used (iEG ⁇ REG is, REG FS2 , REG ' FS2 , or, REG CP ' FS2
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG p , REGf cp j or ( ⁇ , ⁇ ) or REG CP , REG P , or [REG ⁇ CP , REG 2 ECP ) .
  • a user equipment including:
  • a receiver configured to receive reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index;
  • a processor configured to determine, according to the antenna port number information and the resource configuration index received by the receiver, a reference signal configuration from a reference signal configuration set, where the reference signal is configured to indicate an antenna port set Position information of the resource unit RE used for transmitting the reference signal on the antenna port;
  • the reference signal configuration set includes at least one first reference signal configuration, and the antenna port set corresponding to the first reference signal configuration includes at least two Antenna port subset:
  • the RE used for transmitting the reference signal on the antenna port in the subset of the first antenna port is located in the RB pair of the first resource block, and the RE used for transmitting the reference signal on the antenna port in the subset of the second antenna port is located in the second RB pair.
  • the first RB pair is different from the second RB pair; and configured to obtain, according to the determined reference signal configuration, a location of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set;
  • the receiver is further configured to receive the reference signal based on a location of the RE determined by the processor.
  • the first RB pair and the second RB pair are respectively located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is a REG
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port in the first RB pair
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG ⁇ CP ⁇ (9,5,0),(9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6, 0), (2,5,0), (2,6,0) ⁇ ;
  • ⁇ (11 ⁇ 1) ⁇ 11,34 10,24) 10,34) 5 ⁇ 1),(5,3,1),(4,2,1),(4,3,1) ⁇ ;
  • REG ⁇ CP ⁇ (9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3, 1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3, 1), (0,2,1), (0,3,1) ⁇ ;
  • the resource unit group set includes two or more of the following resource unit groups:
  • FS2 ⁇ (11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3 ,1),(4,1,1), (4,3,1) ⁇ ;
  • FSI (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3, 1), (2,1,1), (2,3,1) ⁇ ;
  • REG NCP REG NCP
  • FSI KV ⁇ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0, 1,1), (0,3,1) ⁇ .
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration iEG ⁇ REG is i ⁇ EG cp , REG , or ) or REG P , REG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource element group pair (lEG h , REG is, REG FS2 , REG ' FS2) used in the two antenna port subsets in the first reference signal configuration or (?EG CP ' ra2 , ?EG P ' ra2 ) or
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration For ( ⁇ REG ⁇ REG ⁇ is REG ⁇ P , REG CP ) or (?EGf P , ?EG P ) or (REG 'REG ) or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration iEG ⁇ REG, REG CP ' FS2 , REG P ' FS2) ) or 2 , REG CP ' FS2) ) or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is i ⁇ EG CP , REG CP , or)
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4 ,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit
  • i?EG 0 £C ra2 ⁇ (ll,l,l),(ll,2,l),(8,l,l),(8,2,l),(5,l,l),( 5,2,l), (2,1,1), (2,2,1) ⁇ ;
  • R EG ECP,FS2 ⁇ (10,1,1),(10,2,1),(7, 1,1),(7,2,1),(4,1,1),(4,2,1), (1,1,1), (1,2,1) ⁇ ;
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG p , REGf cp j or (REG ⁇ , REG CP ) or REG CP , REG P , Or (fX).
  • the resource unit group used in the subset of the two antenna ports in the first reference signal configuration ( ⁇ REG ⁇ REG ⁇ is REG cp ' FS2 , REG ' FS2) j or (REG P ' FS2 , REG ⁇ ' FS2 ) or ⁇ REG 2 ECP ' FS REG 0 ECP ' FS2 ) O optional, a first reference signal resource element group arranged in two subsets of antenna ports used for (? E, REG h) to (? EG. £ CP, REG 2 ECP) or (? EG, REG 3 ECP) or REG, REG 0 ECP ) or ( fX ).
  • a base station including:
  • a transmitter configured to send reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes antenna port number information and a resource configuration index, where the antenna port number information and the resource configuration index are used to indicate a reference signal Configuring a reference signal configuration in the set, the reference signal configured to indicate location information of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set;
  • the reference signal configuration set includes at least one first reference a signal configuration, where the antenna port set corresponding to the first reference signal configuration includes at least two antenna port subsets, where the resource unit RE used for transmitting the reference signal on the antenna port in the first antenna port subset is located in the first resource block RB Internally, the RE used for transmitting the reference signal on the antenna port in the subset of the second antenna port is located in the second RB pair, and the first RB pair is different from the second RB pair;
  • a processor configured to configure, according to the reference signal configuration, the indicated reference signal configuration, to determine, by using the reference signal configuration, an antenna port in the antenna port set corresponding to the reference signal configuration Location of the resource unit RE;
  • the transmitter is further configured to transmit a reference signal to the user equipment at the location determined by the processor.
  • the first RB pair and the second RB pair are respectively located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is a REG
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG ⁇ CP ⁇ (9,2,1), (9,3,1), (8,2,1), (8,3,1), ( 3,2,1), (3,3,1), (2,2,1), (2,3,1) ⁇ ;
  • REG 3 NCP ⁇ (7,2,1), (7,3, 1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1) ⁇ ;
  • REG 4 NCP ⁇ (9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3, 6,1), (2,5,1), (2,6,1) ⁇ .
  • the cyclic prefix CP is
  • REG NCP, FS2 ⁇ (11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3 ,1),(4,1,1), (4,3,1) ⁇ ;
  • R EG NCP,FSI (9,1,1), (9,3,1), (8,1,1) , (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1) ⁇ ;
  • R EG NCP,FSI KV ⁇ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0 , 3,1) ⁇ .
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is i ⁇ EG cp , REG , or ) or REG P , REG P ) or [REG p , REG 4 NCP ) or ( X ).
  • the resource unit group pair (lEG h , REG is, REG FS2 , REG ' FS2) used in the two antenna port subsets in the first reference signal configuration or (?EG CP ' ra2 , ?EG P ' ra2 ) or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration ( lEG k , REG is REG ⁇ P , REG CP ) or (?EGf P , ?EG P ) or REG P , REG CP ) or
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration iEG ⁇ REG, REG CP ' FS2 , REG P ' FS2) ) or 2 , REG CP ' FS2) ) or ( 2 TMX ra2 ).
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration iEG ⁇ REG is i ⁇ EG CP , REG CP , or)
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG, ECP ⁇ (11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0), (9,5,0), (6,4,0), (6 ,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0) ⁇ ;
  • REG 2 ECP ⁇ (10,4,1 ), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4 ,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set includes two or more of the following resource unit
  • ⁇ ° ⁇ 2 ⁇ (11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5 , 2,1), (2,1,1),(2,2,1) ⁇ ;
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (iEG ⁇ REG is REG p , REGf cp j or (REG ⁇ , REG CP ) or REG CP , REG P , Or (fX).
  • the resource unit group pair used by the two antenna port subsets in the first reference signal configuration (lEG k , REG is REG FS2 , REG ' FS2 , or REG FS2 , REG FS2 ) or ⁇ REG 2 ECP ' FS REG 0 ECP ' FS2 ) O
  • the resource unit group pair (?E , REG h ) used in the two antenna port subsets in the first reference signal configuration is (?EG. £ CP , REG 2 ECP ) or REGf cp , REG 3 ECP ) or REG , REG 0 ECP ) or ( fX ).
  • the user equipment receives the reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index.
  • the user equipment determines a reference signal configuration from the reference signal configuration set according to the received antenna port number information and the resource configuration index; the user equipment obtains the antenna in the antenna port set according to the determined reference signal configuration.
  • the location of the resource unit RE used for transmitting the reference signal on the port and receiving the reference signal sent by the base station according to the location of the RE can solve the problem that the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for antenna configurations with more than 8 antenna ports; meanwhile, the two antenna port subsets are in two The resource unit groups used in the RB pair do not intersect each other.
  • the RE position occupied by the CSI RS of the legacy system can be reused while reducing the interference to the legacy UE in the same cell;
  • a plurality of different reference signal configurations in which the resource unit groups used in the two RB pairs do not intersect each other can reduce interference caused by inter-cell reference signals, that is, reduce so-called pilot pollution, thereby improving measurement efficiency of channel state information, and improving the system.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method according to another embodiment of the present invention.
  • FIG. 3a is a schematic diagram of a frame structure type 1 according to another embodiment of the present invention.
  • FIG. 3b is a schematic diagram of a second frame structure type according to another embodiment of the present invention.
  • FIG. 3c is a schematic diagram of a slot structure according to another embodiment of the present invention.
  • FIG. 4a and FIG. 4b are schematic diagrams showing configuration of a reference signal according to another embodiment of the present invention.
  • FIG. 5a and FIG. 5b are schematic diagrams showing another configuration of a reference signal according to another embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • An embodiment of the present invention provides a method for transmitting a reference signal. As shown in FIG. 1, the method includes:
  • the user equipment receives reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index.
  • the user equipment uses the received antenna port number information and the resource configuration index from the reference signal.
  • a reference signal configuration is determined in the configuration set.
  • the reference signal is configured to indicate location information of an RE (Resource Element) used for transmitting a reference signal on an antenna port in the antenna port set; and the reference signal configuration set includes at least one first reference signal configuration
  • the antenna port set corresponding to the first reference signal configuration includes at least two antenna port subsets: where the RE used for transmitting the reference signal on the antenna port in the first antenna port subset is located in the first RB (Resource Block, resource) In the pair (Pair), the RE used for transmitting the reference signal on the antenna port in the subset of the second antenna port is located in the second RB pair, and the first RB pair is different from the second RB pair.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG t REG
  • the second antenna port subset is used in the second RB pair.
  • each of the resource unit groups in the set ⁇ represents a set of location triplets ⁇ , / ', mod2) of the resource unit RE available for transmitting the reference signal in the RB pair with respect to the RB pair in which the reference signal is located, wherein
  • the index indicating the subcarrier in the RB pair in which the resource unit RE is located, and the ′ indicates the OFDM (Orthogonal Frequency Division Multiplexing) in the RB pair in which the resource unit is located.
  • the resource unit Groups REG t and REG; respectively, two different elements in the set ⁇ , that is, the intersection of two different resource unit groups REG, and REG, is also an empty set.
  • the different resource element groups in the set may be a set of locations of REs used for transmitting CSI RSs on different 8 antenna ports in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • the eNB evolved Node B, the evolved base station
  • the existing (legacy) UE can notify the existing (legacy) UE to transmit on the 8 antenna port in the RE position in the EG of the first and second RB pairs.
  • the eNB may Notifying the UE to receive the CSI RS of the non-zero power transmitted on the first 8 antenna ports of the 16 antenna ports in the RE position in the REG t of the first RB pair, and receive the RE position in the REG h of the second RB pair a non-zero power CSI RS transmitted on the last 8 antenna ports of the 16 antenna ports; meanwhile, the eNB may notify the UE of the RE location in the REG of the first RB pair, and the RE in the REG of the second RB pair a CSI RS with a position of zero power; whether the legacy (Legacy) UE or the LTE R12 or a UE in a future system, the PDSCH may be based on the CSI
  • the above reference signal configuration can be reused in the CSI RS of the LTE R10 system.
  • the occupied RE location reduces interference to legacy (Legacy) UEs in the same cell.
  • the eNB notifies the UE in the first cell to use the first reference signal configuration, that is, the resource unit group in the first RB pair, the EG, and the resources in the second RB pair.
  • the unit group ?EG, 2 receives the non-zero power CSI RS, and the second cell uses the second reference signal configuration, that is, the resource unit group in the first RB pair, the resource unit in the second RB pair, and the resource unit in the second RB pair
  • the group EG A receives the non-zero power CSI RS, and the first 'intra-area eNB informs the UE of the resource unit group in the first RB pair and the resource unit group in the second RB pair (7 2 is zero power)
  • the CSI RS, the eNB informs the UE in the second cell that the resource unit group REG in the first RB pair and the resource unit group REG in the second RB pair are zero power CSI RS.
  • the non-zero-power CSI RS configured by the UEs in the respective cells and the non-zero-power CSI RSs configured by the UEs in the neighboring cells are mutually offset, that is, there is no intersection, thereby effectively avoiding so-called pilot pollution (Pilot Contamination)
  • the UEs in the respective cells can also perform correct rate matching on the PDSCH according to the non-zero power and the zero-power CSI RS position notified by the eNB, that is, avoid mapping the PDSCH to the non- The CSI RS position of zero power and zero power, thereby effectively avoiding interference of the neighboring cell CSI RS on the PDSCH.
  • each resource element group includes 8 REs
  • the resource unit group set includes two or more of the following resource unit groups:
  • the resource unit group set ⁇ includes two or more of the following resource unit groups:
  • the resource unit group set A can be used for the subframe type FS1 or FS2.
  • each resource unit group has 8 REs
  • the resource unit group set ⁇ may further include two or more of the following resource unit groups:
  • the resource unit group set ⁇ may further include Two or more of the next resource unit groups:
  • the resource unit group set includes two or more of the following resource unit groups:
  • REG ⁇ CP ' FS1 ⁇ (11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5, 3,1),(4,1,1),(4,3,1) ⁇ ;
  • REG cp ' FS2 ⁇ (9,1,1),(9,3,1), (8, 1,1), (8,3,1), (3,1,1), (3,3,1),(2,1,1), (2,3,1) ⁇ ;
  • REG ⁇ CP ' FS1 ⁇ (7,1,1),(7,3,1), (6,1,1), (6,3,1), (1,1,1),(1,3 , 1), (0,1,1), (0,3,1) ⁇ . (27) wherein the resource element group set A is available for the subframe type FS2.
  • the resource unit group set ⁇ includes two or more of the following resource unit groups:
  • each resource unit group contains 8 REs.
  • the resource unit RE is relative to The location of the RB pair is represented by a triplet (c'j', n s mod 2), and each resource element group contains 8 REs, and the resource unit group set ⁇ includes the following resource unit groups. Two or more:
  • REG ⁇ CP ⁇ (11,4,0),(11,5,0),(8,4,0),(8,5,0),(5,4,0),(5,5, 0), (2,4,0), (2,5,0) ⁇ ;
  • REG cp ⁇ (9,4,0),(9,5,0), (6,4,0) , (6,5,0),(3,4,0),(3,5,0),(0,4,0),(0,5,0) ⁇ ;
  • i?EGf p ⁇ (10,4,l),(10,5,l),(7,4,l),(7,5,l),(4,4,l),(4,5,l),( l,4,l),(l,5,l) ⁇ ;
  • REG 3 ECP ⁇ (9,4,1),(9,5,1),(6,4,1),(6 , 5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1) ⁇ .
  • the resource unit group set or the resource unit group may be used for the subframe type FS1 or FS
  • each resource unit group includes 8 REs as an example.
  • the resource unit group set ⁇ includes two or more of the following resource unit groups: i ⁇ G.
  • the resource unit group set ⁇ includes two or more of the following resource unit groups:
  • the user equipment configures, according to the determined reference signal, the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set, and receives the reference signal sent by the base station according to the location of the RE.
  • the main body that sends the reference signal in step 103 is a base station.
  • the user equipment receives the reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index; the user equipment according to the received antenna The port number information and the resource configuration index determine a reference signal configuration from the reference signal configuration set; the user equipment configures, according to the determined reference signal configuration, the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set. And receiving the reference signal sent by the base station according to the location of the RE. It can solve the problem that the existing reference signal does not support more than 8 antenna ports, and the antenna configuration for more than 8 antenna ports is provided. a design that provides a viable reference signal configuration; at the same time, the two antenna port subsets are in two
  • the resource unit groups used in the RB pair do not intersect each other.
  • the RE location occupied by the CSI RS of the existing legacy system can be reused while reducing the legacy UE in the same cell;
  • a plurality of different reference signal configurations in which the resource unit groups used in the two RB pairs do not intersect each other can reduce interference caused by inter-cell reference signals, that is, reduce so-called pilot pollution, thereby improving measurement efficiency of channel state information, Improve system throughput.
  • a further embodiment of the present invention provides a method for transmitting a reference signal. As shown in FIG. 2, the method includes:
  • the base station sends reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index.
  • the antenna port number information and the resource configuration index are used to indicate a reference signal configuration in a reference signal configuration set, where the reference signal is configured to indicate resources used for transmitting a reference signal on an antenna port in the antenna port set.
  • the resource unit RE used for transmitting the reference signal on the concentrated antenna port is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair, the first RB The pair is different from the second RB pair.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG t
  • the resource element group used by the second antenna port subset in the second RB pair is REG, , where ?EG,. e A , REG, e A , ⁇ 2
  • the intersection of different resource unit groups in the set ⁇ is an empty set, i l , i 2 e ⁇ 0,...,Mi ⁇ , M>2 , i ⁇ i ⁇ are used for the two RB pairs Index of the REG; each resource unit group in the set ⁇ represents a set of locations / ', n s mod 2) of the resource unit RE used in the RB pair for transmitting the reference signal relative to the RB pair in which it is located Wherein the 'represents an index of a subcarrier within the RB pair in which
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair REG, REG.
  • different resource element groups in the set ⁇ may be a set of locations of REs used for transmitting CSI RSs on different 8 antenna ports in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • how does the eNB inform the existing (legacy) UE and the LTE R12 and the CSI RS received by the UE in the future system and how the UE performs correct rate matching, so that the reference signal configuration can be reused in the CSIRS of the LTE R10 system.
  • the occupied RE location reduces the interference to the legacy UEs in the same cell. See step 102 in the previous embodiment, and no further details are provided herein.
  • the resource unit group set ⁇ includes two or more of the resource element groups as shown in the formulas (1) - (5), wherein the resource unit group set A can be used for the subframe type FS1 or FS2.
  • the resource unit group set ⁇ includes two or more of the resource unit groups as shown in the formulas (6) - (15).
  • the resource unit group set A can be used for the subframe type as FS1 or FS2.
  • the resource unit group set ⁇ may further include two or more of the resource unit groups as shown in the equations (16) - (18).
  • the resource unit group set A can be used for the subframe type FS1.
  • the resource unit group set ⁇ may further include two or more of the resource unit groups as shown in the equations (19) - (24).
  • the resource unit group set A can be used for the subframe type FS1.
  • the resource unit set ⁇ includes two or more of the resource unit groups as shown in the equations (25) - (27).
  • the resource unit group set A can be used for the subframe type FS2.
  • the resource unit group set includes two or more of the resource unit groups as shown in the equations (28)-(33).
  • the resource unit group set A can be used for the subframe type FS2.
  • the resource unit group set ⁇ may further include resources as shown in the formulas (34)-(36). Two or more of the unit groups;
  • the resource unit group set ⁇ may further include resources as shown in the formulas (37)-(42). Two or more of the unit groups;
  • the resource unit group set ⁇ may further include resources as shown in the formulas (43)-(45). Two or more of the unit groups;
  • the resource unit group set ⁇ may further include resources as shown in the formulas (46)-(51). Two or more of the unit groups;
  • the resource unit The group set ⁇ includes two or more of the resource unit groups as shown in the equations (52) - (55).
  • the resource unit group set or the resource unit group may be used for the subframe type FS1 or FS2.
  • the resource unit group set includes two or more of the resource unit groups as shown in the equations (56)-(63).
  • the resource unit group set or the resource unit group may be used for the subframe type FS1 or FS2.
  • the resource unit set ⁇ includes two or more of the resource unit groups as shown in the equations (64) - (66).
  • the resource unit group set or the resource unit group may be used for the subframe type FS2.
  • each resource element group contains 4 REs
  • the resource unit group set ⁇ includes two or more of the resource unit groups as shown in the equations (67)-(72).
  • the resource unit group set or the resource unit group may be used for the subframe type FS2.
  • the base station determines, according to the reference signal configuration indicated by the reference signal configuration information, The reference signal configures the location of the resource unit RE used for transmitting the reference signal on the antenna port in the corresponding antenna port set.
  • the base station sends a reference signal to the user equipment at the determined location.
  • the base station sends the reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index, and the antenna port set includes two antennas.
  • the resource unit RE used for transmitting the reference signal on the antenna port in the port subset is located in two different resource block RB pairs; the base station determines, according to the transmitted reference signal configuration, the resource used for transmitting the reference signal on the antenna port in the antenna port set.
  • the location of the unit RE and a reference signal is sent to the user equipment at the location of the resource unit RE.
  • a further embodiment of the present invention provides a method for transmitting and receiving a reference signal. As shown in FIG. 3, the method includes:
  • the base station sends reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index.
  • the number of antenna port numbers may be the number of antenna ports, for example, the number of antenna ports is 8 or 16, or 32 or 64, and the like.
  • the antenna port number information may also be antenna port array structure information.
  • the antenna port array is 2x8 (2 rows and 8 columns) or 4x4 (4 rows and 4 columns) or 8x2 (8 rows and 2 columns), which can be obtained from the information.
  • the number of antenna ports is 16.
  • the antenna port array is 4x8 (2 rows and 8 Column) or 2x16 (2 rows and 16 columns) or 8x4 (8 rows and 4 columns), the number of antenna ports can be 32 from this information.
  • the resource configuration index is an index of a reference signal configuration corresponding to the number of specific antenna ports. After determining the number of antenna ports, a reference signal configuration can be determined according to the resource configuration index.
  • the user equipment determines, according to the received antenna port number information and the resource configuration index, a reference signal configuration from the reference signal configuration set, where the reference signal configuration corresponding antenna port set includes at least two antenna port subsets, where the two The REs used to transmit the reference signals on the antenna ports in the antenna port subset are located in two different resource block RB pairs.
  • the reference signal configuration set includes at least one reference signal configuration, where the reference signal is configured to indicate location information of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set.
  • the RB pairs in which the REs used for transmitting the reference signals on the antenna ports in the two antenna port subsets are located in different frequency domain positions in the same subframe or in the same subband of different subframes.
  • the sub-bands are one or more consecutive RBs.
  • the subband size may be a size of a Precoding Resource Block Group (PRG).
  • PRG Precoding Resource Block Group
  • the subband size or the PRG size (in RBs) depending on the system bandwidth may be
  • the subband size may also be equal to the subband size of the CSL ⁇ , for example, the subband size may be
  • the resource element groups used by the two antenna port subsets in the two RB pairs are REGi and REG, respectively, where REGi e A , REG t ⁇ , ⁇ 7 ; , ⁇ >2, the intersection of different resource unit groups in the set ⁇ is an empty set, ⁇ ⁇ (), ..., ⁇ -1 ⁇ , and 2 are resource units used in the two RB pairs respectively The index of the group REG;
  • Each resource element group in the set ⁇ represents a set of locations, / touches d2) of resource elements RE used in the RB pair for transmitting a reference signal with respect to the RB pair in which the reference signal is located, where the ⁇ indicates An index of the sub-carrier in the RB pair in which the resource unit RE is located, the /′ indicating an index of the orthogonal frequency division multiplexing OFDM symbol of the resource unit in the RB pair in which the resource unit is located, where the resource unit is represented
  • the slot index in which it is located, mod represents the modulo operation, and mod2 represents the operation value of modulo 2.
  • the value of a radio frame is 0 to 19, and the value of ⁇ in each RB is 0-11, and the value of /' is 0-6.
  • each radio frame is 10 milliseconds long, and each radio frame includes 10 1 milliseconds.
  • a long subframe consists of 20 slots of 0.5 milliseconds with slot numbers from 0 to 19.
  • One subframe is defined as two consecutive time slots.
  • Common frame types 1 and 2 are supported for FDD systems and TDD systems.
  • Frame Structure type 1, FS1 and Frame Structure Type 2 (FS2) are shown in Figures 3a and 3b, respectively.
  • the signal transmitted in each time slot can be represented by one or several re source grid tables.
  • a sub-carrier and a resource frame structure composed of ⁇ 03 ⁇ 4 ⁇ symbols are shown in Figure 3c.
  • the system bandwidth is in units of Resource Blocks (RBs), N
  • the number of subcarriers in one RB is the number of OFDM symbols in one downlink slot.
  • a continuous OF-symbol in the time domain and a continuous sub-carrier in the frequency domain are defined as one Resource Block (RB).
  • RB Resource Block
  • the conventional (Norma l) cyclic prefix (CP) and extended (Extended CP) configurations may be included, and the number of subcarriers and the number of OFDM symbols are as shown in the following table, where ⁇ / is the subcarrier spacing.
  • An RB pair (RB Pair) is defined as two RBs having the same RB number in one subframe. Obviously, the slot numbers of two RBs in an RB pair are even and odd, respectively.
  • each antenna port may correspond to one physical antenna or one virtual antenna, that is, a combination of multiple physical antennas.
  • Each antenna port uses a resource frame, and the base station transmits a reference signal or a data channel in a time domain and a frequency domain corresponding to the resource frame.
  • the REs in the resource cell can be used to transmit reference signals and data channels such as PDSCH, respectively.
  • the UE may estimate a channel between the UE and the corresponding antenna port by receiving the reference signal on the resource grid, and according to the channel estimation value, the UE may perform channel state measurement on a channel between the UE and the corresponding antenna port. Or demodulate the data channel.
  • the reference signal configuration set includes multiple reference signal configurations, where the reference signal is configured to indicate resources used for transmitting reference signals on antenna ports in the antenna port set. Location information of the unit RE.
  • a resource unit group used in a subset of two antenna ports in a reference signal configuration may be cyclically shifted in a RB by a resource unit group used in a subset of two antenna ports in other reference signal configurations. Interlace is obtained.
  • the antenna port set corresponding to the first reference signal configuration is defined to include at least two antenna port subsets: a first antenna port subset and a second antenna port subset, and the two antenna port subsets are at the first
  • the resource unit groups used in the RB pair and the second RB pair are respectively ?E and REG i2 , ⁇ i 2 , 1? 2 e ⁇ 0, l,..., -l ⁇ , >2, second reference
  • the antenna port set corresponding to the signal configuration also includes at least the first antenna port subset and the second antenna port subset, and the first antenna port subset is used in the first RB pair.
  • the resource element group used by the second antenna port subset in the second RB pair is REG, A, REG. ⁇ A, REG. M ⁇ 2.
  • the resource element group used by the two antenna port subsets included in the second reference signal configuration can be obtained by the following relationship:
  • the shift is ⁇ , where the shift is also n.
  • the cyclic shift corresponds to a sequence of total length M: 0, 1, 2, ..., M-1.
  • the resource unit groups REG. and EG. used by the two antenna port subsets included in the second reference signal configuration may be resource units used by the two antenna port subsets included in the first reference signal configuration.
  • ⁇ 3 ⁇ 4, ⁇ ,...., ⁇ —i is obtained by cyclic shift, where the displacement is n resource unit group positions, ⁇ 1.
  • the resource unit group used for the two antenna port subsets included in the second reference signal configuration may also be obtained by the following relationship based on the resource unit group used by the two antenna port subsets included in the first reference signal configuration;
  • the first reference signal is configured in the first RB pair
  • the resource element group and the second reference signal are used in the second RB pair.
  • the foregoing method or relationship may not be limited to the case where the antenna port set in the reference signal configuration includes two antenna port subsets, or the antenna port set in the reference signal configuration includes three or more antennas.
  • the relationship between the resource element groups used for the reference signal configuration is also not limited to cyclic shift or interleaving, but may also be a combination of cyclic shift and interleaving.
  • a reference is made to the configuration of the reference signals in the conventional CP and the extended CP by using 16 antenna ports, and two antenna port subsets are respectively located in the frequency domain.
  • the resource elements used for the reference signal configuration and the reference signal configuration set can be as shown in Table 1:
  • the reference signal configuration set includes a total of five reference signal configurations of c0-c4 when the subframe type is FS1 or FS2, and three reference signal configurations including c20-c22 when the subframe type is FS2, where the c0- C4 and c20-c22 are resource configuration indexes, and the specific values may be 0-4 and 20-22, respectively, and c0-c4 and c20-c22 may be jointly coded or independently coded. Depending on the specific coding, the specific values of c0-c4 and c20-c22 are not limited herein;
  • RB represents the 3 ⁇ 4 resource unit where the index, the RB numbers may be 3 ⁇ 4 of the system, may be with respect to the RB number of RB index number specified.
  • the position of RE (ie, number 0 RE) is the value of the triple (t', /', « s mod2), and the position of other REs in each resource unit group can be obtained based on the number 0 RE.
  • the other REs have a specified offset relative to the number 0 RE.
  • the locations of the REs in the resource unit group are as shown in FIG. 4a and FIG. 4b, the horizontal direction is the time domain, the OFDM symbol is used, the vertical direction is the frequency domain, and the OFDM symbols are 0-6 and 12 sub-carriers.
  • the RBs of the carrier are located in the slot 0, and the FDM symbols 7 - 13 and the RBs composed of the 12 subcarriers are located in the slot 1, and the two have the same RB number, forming an RB pair.
  • the resource block above is the first RB pair, and the resource block below is the second RB pair.
  • the REs with the numbers 0 to 15 in the figure are the locations of the resource units 0 to 15, where each reference signal is configured.
  • the resource element groups used by the two antenna port subsets each occupy 8 resource elements (REs).
  • the resource unit groups occupied by the c0, cl, ..., and c4 reference signal configurations are respectively represented by the formulas (1)-(5);
  • the resource unit groups occupied by the c0, cl, ..., and c4 reference signal configurations are as shown in (2) - (5), (1), respectively.
  • the resource unit group REG used in the subset of the two antenna ports in each reference signal configuration constitutes a REG pair, which is represented by ( ⁇ G ⁇ REG!), and the reference signal configuration in c0, cl, ..., c4 is configured. Used by two antenna port subsets
  • the REG pair is REG 0 , REG, ), [REG, , REG 2 ), (REG 2 , REG 3 ), (REG 3 , REG 4 ), respectively.
  • REG 4 , REG 0 REG 0
  • the REG pair used in any one of the reference signal configurations is a REG pair cyclic shift used for another reference signal configuration, for example, the shift of ( ⁇ Gp ⁇ ) relative to (G ⁇ ) is 1, ( ⁇ G 4 , ?EG.) The shift relative to ( REG 0 , REG, ) is 4.
  • the resource unit groups occupied by the c20, c21, and c22 reference signal configurations are respectively as shown in (25) - (27); in the second RB pair, The resource unit groups occupied by the c20, c21, and c22 reference signal configurations are as shown in (26), (27), and (25), respectively.
  • the REG pair used for the reference signal configuration is a cyclic shift of the REG pair used for another reference signal configuration, for example, ( ⁇ Gp ⁇ ) is shifted by 1 relative to ( ?E(?., WE ).
  • the resource unit used for the reference signal configuration and the reference signal configuration set may also be as shown in Table 2:
  • the REG pairs used in the two antenna port subsets in the c0, cl, ..., and c4 reference signal configurations are REG 0 , REG 4 ), ⁇ REG REG 2 ), respectively.
  • the REG pairs used in the two antenna port subsets in the c20, c21, and c22 reference signal configurations are (IEG 0 , REG, ), (REG, , REG 2 ), (REG). 2 , REG 0 ), where
  • REGs used in the c20, c21 and c22 reference signal configurations are cyclically shifted by each other.
  • the resource unit used for the reference signal configuration and the reference signal configuration set may also be as shown in Table 3:
  • the number of antenna ports is 16 antenna port number x ⁇ x+7 antenna port number x+8 ⁇ x+15
  • FS1 cO (9,5) xo,0) (9,5) (1-X4,1) or FS2 cl (11,2) xi,l) (7,2) (1-X3,D
  • the REG pairs used in the two antenna port subsets in the c0, cl, ..., and c4 reference signal configurations are REG 0 , REG 4 ), (REG ⁇ REG, respectively). , ⁇ REG 2 , REG , (REG 3 , REG 2 ),
  • REG 4 , REG 0 REG 4 , REG 0
  • REGs used for the cO and c4 reference signal configurations are interleaved with each other; the REGs used for the cl, c2, and c3 reference signal configurations are cyclically shifted by each other.
  • the resource unit used for the reference signal configuration and the reference signal configuration can be as shown in Table 4: Table 4
  • the reference signal configuration set includes a total of four reference signal configurations of c0-c3 when the subframe type is FS1 or FS2, and the reference signal configuration set includes three types of reference signal configurations of cl6-cl8 when the subframe type is FS2, and the c0- C3 and cl6-cl8 are resource configuration indexes, and the specific values may be 0-3 and 16-18, respectively, and c0-c4 and cl6-cl8 may be jointly coded or independently coded. Depending on the specific coding, the specific values of c0-c3 and c 16-C18 are not limited herein.
  • RB represents the 3 ⁇ 4 of the resource unit is located on the index, the RB numbers may be 3 ⁇ 4 of the system, or may be relative to the number of RB RB index number specified.
  • the table indicates the location of the first RE (ie, the number 0 RE) in the resource unit group used for each antenna port subset, that is, the triplet, k 'J ', n s mod 2) Value, other in each resource unit group
  • the position of the RE can be obtained based on the number 0 RE.
  • the other REs have a specified offset relative to the number 0 RE.
  • the locations of the REs in the resource unit group are as shown in FIG. 5a and FIG. 5b, and the RBs of the OFDM symbols 0-5 and the 12 subcarriers are located in the slot 0, and the OFDM symbols 6-11 and the RBs composed of the 12 subcarriers are located.
  • Time slot 1 both have the same RB number, forming an RB pair.
  • the resource block above is the first RB pair, and the lower resource block is the second RB pair.
  • the REs with the numbers 0 to 15 in the figure are the locations of the resource units 0 to 15, where each reference signal is configured.
  • Two antenna port subsets The resource unit groups used each occupy 8 resource units (REs).
  • the resource unit groups occupied by the configuration of c0, cl, c2, and c3 are respectively as shown in (52) - (55).
  • the resource unit group occupied by the configuration of the c0 is as shown in (53) - (55) and (52), respectively.
  • the resource unit group REG used in the subset of the two antenna ports in each reference signal configuration constitutes a REG pair, and is represented by (iEG ⁇ REG ⁇ , then c0, cl, ..., c3 reference signal configuration
  • the resource unit groups occupied by the cl6, cl7, and cl8 configurations are as shown in (64), (65), and (66), respectively.
  • the resource unit groups occupied by the cl6, cl7, and cl8 configurations are as shown in (65), (66), and (64), respectively.
  • Reference antenna port number is 16
  • the resource unit used for the reference signal configuration and the reference signal configuration set may also be as shown in Table 6:
  • the REG pairs used in the two antenna port subsets in the c0, cl, ..., and c3 reference signal configurations are respectively ((?., ⁇ 3 ⁇ 4), (REG) ,, REG 3 , , (REG 2 , REG 0 ),
  • the REGs used in the reference signal configuration of cl6 ⁇ cl8 are cyclic to each other.
  • the resource unit used for the reference signal configuration and the reference signal configuration set can also be as shown in Table 7:
  • the REG pairs used in the two antenna port subsets in the c0, cl, ..., and c3 reference signal configurations are [REG 0 , REG, ), ⁇ REG, respectively. , REG 0 ), (REG 2 , REG, ),
  • cl6 ⁇ cl8 reference signal configuration The REGs used are cyclically shifted by each other.
  • the user equipment configures, according to the determined reference signal, a location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set.
  • the base station configures the indicated reference signal configuration according to the transmitted reference signal, and sends a reference signal to the user equipment by sending a location of the resource unit RE used for the reference signal on the antenna port in the antenna port set corresponding to the reference signal configuration.
  • the user equipment receives the reference signal at a location of the RE used by the base station to transmit the reference signal.
  • the reference signal used in the method for transmitting the reference signal described in this embodiment is a CSI RS (Channel State Information Reference Signal), and the reference is not used in this embodiment.
  • the specific type of signal is limited.
  • the corresponding reference signal configuration or reference signal pattern can also be obtained according to the method in this embodiment, where the reference signal configuration or the reference signal pattern includes at least two antenna ports.
  • the resource element groups used by the antenna port subset in different RB pairs do not intersect each other; further, one of the reference signal configuration or the reference signal pattern used by the resource unit group is another reference signal configuration or reference signal The cyclic shift or interleaving of the resource unit groups used by the pattern.
  • each antenna port subset has 8 antenna ports.
  • a method similar to the above-described CSI RS embodiment can be used to obtain a reference signal configuration of the DMRS or a resource element group used for each antenna port subset in the reference signal pattern based on the resource unit group set.
  • REG ⁇ (11,5,0), (11,6,0), (11,5,1), (11,6,1), (10,5,0), (10,6,0 ), (10,5,1), (10,6,1) ⁇ ;
  • REG, ⁇ (6,5,0), (6,6,0), (6,5,1), (6, 6,1), (5,5,0), (5,6,0), (5,5,1), (5,6,1) ⁇ ;
  • REG ⁇ (11,2,0), (11,3,0), (11,2,1), (11,3,1), (10,2,0), (10,3,0 ), (10,2,1), (10,3,1) ⁇ ;
  • REG, ⁇ (6,2,0), (6,3,0), (6,2,1), (6, 3,1), (5,2,0), (5,3,0), (5,2,1), (5,3,1) ⁇ ;
  • ⁇ (1,2,0), (1,3,0), (1,2,1), (1,3,1), (0,2,0), (0,3,0) , (0,2,1), (0,3,1) ⁇ .
  • RB or RB pair and the RBs in Tables 1 to 7 may be located in the same subframe or time slot, or may be located in different subframes or time slots or in different subframes or time slots and sub-frames.
  • one antenna port in the antenna port subset may use one resource unit in the resource unit group; taking an antenna port subset formed by eight antenna ports x ⁇ x+7 as an example.
  • the resource unit group used in the antenna port subset is composed of RE0 ⁇ RE7 total 8 resource units (RE)
  • the REs used for transmitting reference signals on antenna ports X, x+1, x+7 may be REO, RE1, respectively. , RE2, RE7;
  • the reference signal transmitted on different antenna ports in the antenna port subset may also use multiple resource units in the resource unit group used by the antenna port by using Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • x+2 and x+3 can use RE2 and RE3 by code division multiplexing CDM
  • x+6 and x+7 can use RE6 and RE7 by code division multiplexing CDM.
  • Antenna port x ⁇ x+3 can use REO, RE1, RE2 and RE3 in code division multiplexing CDM mode
  • antenna port x+4 ⁇ x+7 can use RE4, RE5, RE6 in code division multiplexing CDM mode.
  • RE7, where the code used to transmit the reference signal on antenna port x ⁇ x+3 or x+4 ⁇ x+7 can be [1,1, 1,1], [1,-1,1,-1] respectively. , [1,1,-1,-1] and [1,-1,-1,1]. It is a prior art to use a plurality of resource units to transmit and receive reference signals or data in a CDM code division multiplexing CDM mode, which is not described herein.
  • the base station sends the reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index; the user equipment is configured according to the received antenna port number information.
  • the resource configuration index determines a reference signal configuration from the reference signal configuration set, where the reference signal configuration corresponding to the antenna port set includes two antenna ports, and the RE used for transmitting the reference signal on the antenna port is located in two different resources.
  • the user equipment is configured to obtain the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set according to the determined reference signal configuration; the base station sends the location of the resource unit RE to the user equipment at the location of the resource unit RE a reference signal; the user equipment receives the reference signal sent by the base station according to the location of the RE. It can solve the problem that the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for antenna configurations with more than 8 antenna ports; meanwhile, the two antenna port subsets are in two The resource unit groups used in the RB pair do not intersect each other.
  • the RE position occupied by the CSI RS of the existing (Legacy) system can be reused while reducing the interference to the legacy UE in the same cell; on the other hand, multiple different The reference signal configuration in which the resource unit groups used in the two RB pairs do not intersect each other can reduce the interference caused by the inter-cell reference signal, that is, reduce the so-called pilot pollution (Pilot Contamination), thereby improving channel state information measurement or data demodulation. Efficiency, increase system throughput.
  • a further embodiment of the present invention provides a user equipment 40. As shown in FIG. 6, the user equipment 40 includes:
  • the receiving unit 41 is configured to receive reference signal resource configuration information that is sent by the base station, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index.
  • a determining unit 42 configured to determine, according to the antenna port number information and the resource configuration index received by the receiving unit 41, a reference signal configuration from a reference signal configuration set, where the reference signal is configured to indicate an antenna port Position information of the resource unit RE used for transmitting the reference signal on the antenna port in the set;
  • the reference signal configuration set includes at least one first reference signal configuration
  • the antenna port set corresponding to the first reference signal configuration includes at least two a subset of the antenna ports: wherein the REs used to transmit the reference signals on the antenna ports in the subset of the first antenna ports are located in the first resource block RB pair, and the REs used to transmit the reference signals on the antenna ports in the second antenna port subset are located In the second RB pair, the first RB pair is different from the second RB pair;
  • a location obtaining unit 43 configured to configure, according to the reference signal determined by the determining unit 42, a location of a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set;
  • the receiving unit 41 is further configured to receive the reference signal according to the location of the RE obtained by the location acquiring unit 43.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG
  • the intersection of the resource unit groups is an empty set, and 2 is an index of the resource unit group REG used in the two RB pairs respectively; each resource unit group in the set ⁇ Representing a set of location triplets ', /', m 0 d2) of a resource unit RE for use in transmitting an RB pair relative to an RB pair in which the reference signal is located, wherein the ⁇ indicates that the resource element RE is in its location
  • the index of the subcarrier in the RB pair, the /' indicates the index of the orthogonal frequency division multiplexing OFDM symbol
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair REG, REG.
  • different resource element groups in the set ⁇ may be a set of locations of REs used for transmitting CSI RSs on different 8 antenna ports in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • how does the eNB inform the existing (legacy) UE and the LTE R12 and the CSI RS received by the UE in the future system and how the UE performs correct rate matching, so that the reference signal configuration can be reused in the CSIRS of the LTE R10 system.
  • the occupied RE location reduces the interference to the legacy UEs in the same cell. See step 102 in the previous embodiment, and no further details are provided herein.
  • the cyclic prefix CP is a regular CP
  • the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet t', /', " s mod2)
  • each resource element group contains 8 RE as an example
  • the The resource unit group set ⁇ includes two or more of the resource unit groups as shown in the equations (1) - (5).
  • the resource unit group set A or the resource unit group may be used for the subframe type FS1 or FS2.
  • the resource unit set ⁇ includes two or more of the resource unit groups as shown in the equations (25) - (27).
  • the resource unit group set A can be used for the subframe type FS2.
  • each resource unit group has 8 REs
  • the resource unit group set ⁇ can also be the following resources as shown in the formulas (34)-(36). Two or more of the cell groups.
  • the resource unit group set ⁇ may further include resources as shown in the formulas (43)-(45). Two or more of the cell groups.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 1 or Table 2 or Table 3 in the previous embodiment.
  • Table 1 or Table 2 or Table 3 For related description, refer to the embodiment, where no further Narration.
  • the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet W, /′, “ s m 0 d2), and each resource element group contains 8
  • the resource unit group set includes two or more of the resource unit groups as shown in the formulas (52)-(55).
  • the resource unit group set or the resource unit group is applicable to Subframe type FS1 or FS2.
  • the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet t', /', " s mod2), and each resource element group contains 8
  • the RE unit group includes two or more resource element groups as shown in the formulas (64)-(66).
  • the resource unit group set or the resource unit group may be used for a sub-group.
  • the resource unit group used for the reference signal configuration and the reference signal are matched.
  • the set is as shown in Table 4, Table 5, Table 6, or Table 7 in the previous embodiment. For related description, refer to this embodiment, and no further details are provided herein.
  • the user equipment 40 receives the reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index, and the user equipment 40 according to the received location.
  • the antenna port number information and the resource configuration index determine a reference signal configuration from a reference signal configuration set, where the reference signal configuration corresponds to an antenna port set included in the antenna port subset of the two antenna port subsets used for transmitting the reference signal.
  • the RE is located in two different resource block RB pairs; the user equipment 40 configures the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set according to the determined reference signal configuration, and according to the RE The location receives the reference signal sent by the base station.
  • the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for antenna configurations with more than 8 antenna ports; meanwhile, the two antenna port subsets are in two The resource unit groups used in the RB pair do not intersect each other.
  • the RE position occupied by the CSI RS of the existing legacy system can be reused while reducing interference to the legacy UE in the same cell; The interference caused by the small-area reference signal reduces the so-called pilot pollution, thereby improving the measurement efficiency of the channel state information and improving the throughput of the system.
  • a further embodiment of the present invention provides a base station 50. As shown in FIG.
  • the base station 50 includes: a sending unit 51, configured to send reference signal resource configuration information to a user equipment, where the reference signal resource configuration information includes an antenna.
  • the port number information and the resource configuration index, the antenna port number information and the resource configuration index are used to indicate a reference signal configuration in the reference signal configuration set, where the reference signal is configured to indicate an antenna port in the antenna port set.
  • the reference signal configuration set includes at least one first reference signal configuration, where the first reference signal configuration corresponding to the antenna port set includes at least two antenna port subsets, where the first antenna port subset is sent on the antenna port
  • the resource unit RE used for the reference signal is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair, the first RB pair and the second RB pairs are different;
  • a determining unit 52 configured to determine, according to the reference signal configuration indicated by the reference signal configuration sent by the sending unit 51, a resource unit RE used for transmitting a reference signal on an antenna port in the antenna port set corresponding to the reference signal configuration The location; the device sends a reference signal.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG
  • the intersection of the resource unit groups is an empty set, and 2 is an index of the resource unit group REG used in the two RB pairs, respectively;
  • Each resource element group in the set ⁇ represents a set of location triplets / mod 2) of the resource unit RE used in the RB pair for transmitting the reference signal with respect to the RB pair in which it is located, wherein the ⁇ indicates the An index of a sub-carrier within the RB pair in which the resource unit RE is located, the /' indicating an index of the orthogonal frequency division multiplexing OFDM symbol of the resource unit in the RB pair in which the resource unit is located, where the resource unit is located
  • the slot index, mod represents the modulo operation
  • mod 2 represents the operation value for modulo 2.
  • the reference signal configuration set includes at least one second reference signal configuration
  • the antenna port set corresponding to the second reference signal configuration includes at least the first antenna port subset and the second antenna port subset, and the first antenna port subset is in the first RB pair.
  • the resource unit group used in the group is REG A
  • the resource element group used in the second RB pair in the second antenna port subset is REG h , REG.
  • different resource element groups in the set ⁇ may be a set of locations of REs used for transmitting CSI RSs on different 8 antenna ports in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • how does the eNB inform the existing (legacy) UE and the LTE R12 and the CSI RS received by the UE in the future system and how the UE performs correct rate matching, so that the reference signal configuration can reuse the CSI of the LTE R10 system.
  • the location of the RE occupied by the RS is reduced, and the number of the legacy UEs in the same cell is reduced. See step 102 in the previous embodiment, and no further details are provided herein.
  • the resource unit group set includes two or more of the resource unit groups as shown in the formulas (1) to (5), wherein the resource unit group set A or the resource unit group is applicable to Subframe type FS1 or FS2.
  • the resource unit set ⁇ includes two or more of the resource unit groups as shown in the equations (25) - (27) One.
  • the resource unit group set A can be used for the subframe type FS2.
  • the resource unit group set ⁇ may further include resources as shown in the formulas (34)-(36). Two or more of the cell groups.
  • the resource unit group set ⁇ may further include resources as shown in the formulas (43)-(45). Two or more of the cell groups.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 1, Table 2 or Table 3 in the previous embodiment.
  • Table 1 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • Table 2 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet W, /′, “ s m 0 d2), and each resource element group contains 8
  • the resource unit group set includes two or more of the resource unit groups as shown in the formulas (52)-(55).
  • the resource unit group set or the resource unit group is applicable to Subframe type FS1 or FS2.
  • the resource unit set ⁇ includes two or more of the resource unit groups as shown in the equations (64) - (66).
  • the resource unit group set or the resource unit group may be used for the subframe type FS2.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 4, Table 5, Table 6, or Table 7 in the foregoing embodiment.
  • Table 4 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • Table 7 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • the device 50 sends the reference signal resource configuration information to the user equipment in the embodiment of the present invention, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index, and the antenna port set includes two Sending a reference letter on the antenna port in the antenna port subset
  • the resource unit RE used by the number is located in two different resource block RB pairs; the device 50 determines, according to the transmitted reference signal configuration, the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set, and in the A reference signal is transmitted to the user equipment at the location of the resource unit RE.
  • the invention can solve the problem that the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for the antenna configuration of more than 8 antenna ports, thereby improving the measurement efficiency of the channel state information;
  • the two antenna port subsets do not intersect with each other in the resource unit groups used in the two RB pairs.
  • the RE locations occupied by the CSI RSs of the existing (Legacy) system can be reused while reducing the existing cells in the same cell ( Legacy)
  • the interference caused by multiple different signals reduces the so-called Pilot Contamination and improves the throughput of the system.
  • a further embodiment of the present invention provides a user equipment 60. As shown in FIG. 8, the user equipment 60 includes:
  • the receiver 61 is configured to receive reference signal resource configuration information that is sent by the base station, where the reference signal resource configuration information includes an antenna port number information and a resource configuration index.
  • the processor 62 is configured to determine, according to the received antenna port number information and the resource configuration index, a reference signal configuration from a reference signal configuration set, where the reference signal is configured to indicate an antenna in the antenna port set Location information of the resource unit RE used for transmitting the reference signal on the port;
  • the reference signal configuration set includes at least one first reference signal configuration, where the first reference signal configuration corresponding to the antenna port set includes at least two antenna port subsets: where the first antenna port subset is on the antenna port
  • the RE used for transmitting the reference signal is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair.
  • the first RB pair is different from the second RB pair; and configured to obtain, according to the reference signal determined by the determining unit, a resource used to send a reference signal on an antenna port in the antenna port set The location of the unit RE;
  • the receiver 61 is further configured to receive the reference signal according to a location of the RE.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG
  • the intersection of the resource unit groups is an empty set, ⁇ O ⁇ .'Ml ⁇ MS, and 2 are indexes of the resource unit group REG used in the two RB pairs, respectively;
  • Each resource element group in the set ⁇ represents a set of location ', / ⁇ mod2) of the resource unit RE used in the RB pair for transmitting the reference signal relative to the RB pair in which it is located, where the ' indicates An index of a sub-carrier within the RB pair in which the resource unit RE is located, the /' indicating an index of the orthogonal frequency division multiplexing OFDM symbol of the resource unit in the RB pair in which the resource unit is located, where the resource unit is located
  • the slot index, mod represents the modulo operation, m .
  • D2 represents the calculated value for modulo 2.
  • the reference signal configuration set includes at least one second reference signal configuration, where the antenna port set corresponding to the second reference signal configuration includes at least the first antenna port subset and the second antenna port a subset, the resource element group used by the first antenna port subset in the first RB pair is REGj, and the second antenna port subset is used in the second RB pair REG h , REG A e A , REG h EA , 7 ⁇ ⁇ , ⁇ , ⁇ e ⁇ 0,l,..., -l ⁇ ;
  • different resource unit groups in the set may be different 8 in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • how does the eNB inform the existing (legacy) UE and the LTE R12 and the CSI RS received by the UE in the future system and how the UE performs correct rate matching, so that the reference signal configuration can reuse the CSI of the LTE R10 system.
  • the location of the RE occupied by the RS is reduced, and the interference to the legacy (Legacy) UE in the same cell is reduced. See step 102 in the previous embodiment, and no further details are provided herein.
  • the resource unit group set includes two or more of the resource unit groups as shown in (1) - (5), wherein the resource unit group set A or the resource unit group is available for the child.
  • the resource unit RE when the cyclic prefix CP is a regular CP, the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet mod2), and each resource element group includes 8 REs as an example, the resource unit The group set ⁇ includes two or more of the resource unit groups as shown in (25) - (27).
  • the resource unit group set A can be used for the subframe type FS2.
  • the resource unit group set ⁇ may further include resource units as shown in (34) - ( 36 ) Two or more of the groups.
  • the resource unit group set ⁇ may further include resource units as shown in (43) - ( 45 ) Two or more of the groups.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 1, Table 2 or Table 3 in the previous embodiment. For related description, refer to the embodiment, where no further Narration.
  • the resource unit RE uses a triplet relative to the location of the RB pair in which it is located.
  • Mo d2) indicates that each resource element group contains 8 REs, and the resource unit group set includes two or more of resource resource groups as shown in (52)-(55).
  • the resource unit group set or the resource unit group may be used for the subframe type FS1 or FS2.
  • the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet t', /', " s mod2), and each resource element group contains 8
  • the RE unit group includes two or more resource element groups as shown in (64) - (66).
  • the resource unit group set or the resource unit group may be used for a subframe. Type FS2.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 4, Table 5, Table 6, or Table 7 in the foregoing embodiment.
  • Table 4 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • Table 7 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • the user equipment 60 receives the reference signal resource configuration information sent by the base station, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index; the user equipment 60 according to the received The antenna port number information and the resource configuration index determine a reference signal configuration from a reference signal configuration set, where the reference signal configuration corresponds to an antenna port set included in the antenna port subset of the two antenna port subsets used for transmitting the reference signal
  • the RE is located in two different resource block RB pairs; the user equipment 60 configures the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set according to the determined reference signal configuration, and according to the RE The location receives the reference signal sent by the base station.
  • the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for antenna configurations with more than 8 antenna ports; meanwhile, the two antenna port subsets are in two RB inside
  • the resource unit groups used do not intersect each other.
  • the RE position occupied by the CSI RS of the existing legacy system can be reused while reducing the interference to the legacy UE in the same cell; on the other hand, multiple non-reference signals are caused.
  • the interference that is, the reduction of the so-called pilot pollution, thereby improving the measurement efficiency of the channel state information and improving the throughput of the system.
  • a further embodiment of the present invention provides a base station 70. As shown in FIG.
  • the base station 70 includes: a transmitter 71, configured to send reference signal resource configuration information to a user equipment, where the reference signal resource configuration information includes an antenna.
  • the port number information and the resource configuration index, the antenna port number information and the resource configuration index are used to indicate a reference signal configuration in the reference signal configuration set, where the reference signal is configured to indicate an antenna port in the antenna port set.
  • the reference signal configuration set includes at least one first reference signal configuration, where the first reference signal configuration corresponding to the antenna port set includes at least two antenna port subsets, where the first antenna port subset is sent on the antenna port
  • the resource unit RE used for the reference signal is located in the first resource block RB pair, and the RE used for transmitting the reference signal on the antenna port in the second antenna port subset is located in the second RB pair, the first RB pair and the second RB pairs are different;
  • the processor 72 is configured to determine, according to the configured reference signal configuration, the location of the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port set corresponding to the reference signal configuration,
  • the transmitter 71 is further configured to transmit a reference signal to the user equipment at the location determined by the processor 72.
  • the first RB pair and the second RB pair are respectively located in different frequency domain locations in the same subframe or in the same subband of different subframes.
  • the resource element group used by the first antenna port subset in the first RB pair is REG
  • the intersection of the group is an empty set, and 2 are respectively indexes of the resource unit group REG used in the two RB pairs;
  • Each resource element group in the set ⁇ represents a set of location triplets / mod 2) of the resource unit RE used in the RB pair for transmitting the reference signal with respect to the RB pair in which it is located, wherein the ⁇ indicates the An index of a sub-carrier within the RB pair in which the resource unit RE is located, the /' indicating an index of the orthogonal frequency division multiplexing OFDM symbol of the resource unit in the RB pair in which the resource unit is located, where the resource unit is located
  • the slot index, mod represents the modulo operation
  • mod2 represents the operation value for modulo 2.
  • the reference signal configuration set includes at least one second reference signal configuration, where the second reference signal configuration corresponding to the antenna port set includes at least the first antenna port subset and the second antenna a subset of the first antenna port, wherein the resource element group used in the first RB pair is REG A , and the second antenna port subset is used in the second RB pair For ?E ⁇ 3 ⁇ 4 , REG A eA, REG j2 eA , - ⁇ ;
  • the different resource element groups in the set may be a set of locations of REs used for transmitting CSI RSs on different 8 antenna ports in the LTE R10 system.
  • the resource element groups used by the two antenna port subsets in the two RB pairs do not intersect each other.
  • how does the eNB inform the existing (legacy) UE and the LTE R12 and the CSI RS received by the UE in the future system and how the UE performs correct rate matching, so that the reference signal configuration can be reused in the CSIRS of the LTE R10 system. Reducing interference to existing (Legacy) UEs in the same cell while occupying the RE location, see The foregoing embodiment is described in step 102, and is not further described herein.
  • the resource unit group set includes two or more of the resource unit groups as shown in (1) - (5), wherein the resource unit group set A or the resource unit group is available for the child.
  • the resource unit RE when the cyclic prefix CP is a regular CP, the location of the resource unit RE relative to the RB pair in which it is located is represented by a triplet mod2), and each resource element group includes 8 REs as an example, the resource unit The group set ⁇ includes two or more of the resource unit groups as shown in (25) - (27).
  • the resource unit group set A can be used for the subframe type FS2.
  • the resource unit group set ⁇ may further include resource units as shown in (34) - ( 36 ) Two or more of the groups.
  • the resource unit group set ⁇ may further include resource units as shown in (43) - ( 45 ) Two or more of the groups.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 1, Table 2, and Table 3 in the previous embodiment.
  • Table 1, Table 2, and Table 3 for related description, refer to the embodiment, where no further Narration.
  • the resource unit RE uses a triplet relative to the location of the RB pair in which it is located.
  • Mo d2) indicates that each resource unit group contains 8 REs as an example.
  • the source unit group set ⁇ includes two or more of the resource unit groups as shown in (52) - (55).
  • the resource unit group set or the resource unit group may be used for the subframe type FS1 or FS2.
  • the resource unit The group set ⁇ includes two or more of the resource unit groups as shown in (64) - (66).
  • the resource unit group set or the resource unit group may be used for the subframe type FS2.
  • the resource unit group and the reference signal configuration set used in the reference signal configuration may be as shown in Table 4, Table 5, Table 6, or Table 7 in the foregoing embodiment.
  • Table 4 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • Table 7 the resource unit group and the reference signal configuration set used in the reference signal configuration
  • the base station 70 sends the reference signal resource configuration information to the user equipment, where the reference signal resource configuration information includes the antenna port number information and the resource configuration index, and the antenna port set includes two
  • the resource unit RE used for transmitting the reference signal on the antenna port in the antenna port subset is located in two different resource block RB pairs; the base station 70 determines, according to the transmitted reference signal configuration, the reference signal used on the antenna port in the antenna port set.
  • the location of the resource unit RE and the reference signal are transmitted to the user equipment at the location of the resource unit RE.
  • the existing reference signal does not support more than 8 antenna ports, and provides a feasible reference signal configuration design for antenna configurations with more than 8 antenna ports; meanwhile, the two antenna port subsets are in two The resource unit groups used in the RB pair do not intersect each other.
  • the RE position occupied by the CSI RS of the legacy system can be reused while reducing the interference to the Legacy UE in the same cell;
  • the plurality of different reference signals are configured to be disjoint in the resource unit groups used in the two RB pairs, which can reduce the interference caused by the reference signals between the cells, that is, reduce the so-called pilot pollution (Pilot Contamination), thereby improving the measurement of the channel state information.
  • Efficiency increase system throughput.
  • the transmission device of the reference signal provided by the embodiment of the present invention can implement the method provided above.
  • the method and apparatus for transmitting reference signals provided by the embodiments of the present invention may be applied to the transmission of reference signals in an LTE system, but are not limited thereto.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种参考信号的传输方法及装置,所述方法包括:接收基站发送的参考信号资源配置信息,所述参考信号资源配置信息包括天线端口数信息和资源配置索引;根据所述天线端口数信息和资源配置索引从参考信号配置集合中确定一个参考信号配置,其中,所述参考信号配置对应的天线端口集合至少包含两个天线端口子集中的天线端口上发送参考信号所用的RE位于不同的资源块RB对内;根据确定的参考信号配置得到天线端口集合中的天线端口上发送参考信号所用的资源单元RE的位置;根据RE的位置接收参考信号。本发明适用于LTE系统中参考信号的发送。

Description

参考信号的传输方法及装置 技术领域
本发明涉及通信技术领域, 特别涉及一种参考信号的传输方法及装置。 背景技术
通信系统通常使用不同种类的参考信号: 一类参考信号用于估计信道, 从而可以对含有控制信息或者数据的接收信号进行相干解调; 另一类用于信 道状态或信道质量的测量, 从而实现对 UE ( User Equipment, 用户设备 )的调 度。在 3GPP ( the 3rd Generation Partnership Project,第三代合作伙伴项目) LTE ( Long Term Evolution, 长期演进 ) R10 ( Release 10, 第 10版本 )下行系统中, 用于相干解调的参考信号被称为 DMRS ( Demodulation Reference Signal, 解调 参考信号); 用于信道状态信息测量的参考信号被称为 CSI-RS ( Channel State Information Reference Signal, 信道状态信息参考信号)。 此夕卜, 参考信号还包 括继承自 R8/R9系统的 CRS ( Cell-specific Reference Signal, 小区特定的参考信 号), CRS用于 UE信道估计, 从而实现对 PDCCH ( Physical Downlink Control Channel, 物理下行控制信道) 以及其他公共信道的解调。
上述几种参考信号在 LTE系统中多支持的天线口数量各不相同。 在 LTE R10中 DMRS支持最多 8个天线口;在 LTE R10中 CSI-RS最多支持 8个天线端口, 天线端口数可以为 1、 2、 4或 8; 在 LTE的 R8至 R10中 CRS支持最多 4个天线端 口, 天线端口数可以为 1、 2或 4。 在 LTE R10中 DMRS最多支持 8个天线端口, 天线端口数可以为 1至 8; 为了进一步提高频谱效率, 目前即将启动的 LTE R12 标准开始考虑引入更多的天线配置,特别是基于 AAS( Active Antenna Systems, 有源天线系统) 的多于 8个天线口的天线配置。 例如, 天线端口数可以为 16、 32或 64。
现有技术中至少存在如下问题: 现有的 CRS最多只支持 4个天线口, 若直 接扩充以支持 16天线口数或更多天线口数会导致非常大的开销。 现有的 CSI-RS最多只支持 8个天线口,若直接在 PDSCH区域扩展以支持 16天线口数或 更多天线口数会导致对现有系统中下行数据传输的干扰, 导致下行系统性能 恶化; 若使用相邻的资源块进行扩展, 则会导致已有(Legacy ) UE无法进行 正确的 CSI估计, 因此现有的参考信号设计方案均不能有效的支持更多天线端 口。 发明内容
提供一种参考信号的传输方法及装置, 能够解决现有的参考信号不支持 8 个以上天线口数的问题, 提高信道状态信息的测量效率, 提高系统的吞吐量。 第一方面, 提供一种参考信号的传输方法, 包括:
接收基站发送的参考信号资源配置信息, 所述参考信号资源配置信息包 括天线端口数信息和资源配置索引;
根据所述天线端口数信息和所述资源配置索引从参考信号配置集合中确 定一个参考信号配置, 其中, 所述参考信号配置用于指示天线端口集合中的 天线端口上发送参考信号所用的资源单元 RE的位置信息; 所述参考信号配置 集合中至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线 端口集合中至少包含两个天线端口子集: 其中, 第一天线端口子集中的天线 端口上发送参考信号所用的 RE位于第一资源块 RB对内, 第二天线端口子集中 的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述第一 RB对与所 述第二 RB对不同;
根据确定的所述参考信号配置得到所述天线端口集合中的天线端口上发 送参考信号所用的资源单元 RE的位置;
根据所述 RE的位置接收所述参考信号。
在第一种可能的实现方式中,所述第一 RB对和第二 RB对分别位于相同子 帧内不同的频域位置或者不同子帧的相同子带内。 结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^e REGh e A , ¾≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l,..., kf— l}, kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集, ^e^.^M-l}, 和 2分别为所述 两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元 组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对 的位置三元组(f,/', mod2)的集合,其中所述 ^表示该资源单元 RE在其所在的
RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频 分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示 取模操作, "im。d2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REGh , REG. e A, REGh eA , jx≠ j.J^j, e {θ,Ι,.,.,Μ— 1}; 其中 m和 j2满足下述至少一种关系: j、 = (i{ + n) odM, j2 = (¾ + n)modM或 j、 = i2, j2 = , 其中, n表示取值为整数的移位( shift )。
可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG p = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)};
REG^CP = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1),(4,2,1), (4,3,1)};
REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) }; REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)}; REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REGNCP,FSI = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)}; REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)}; REGNCP,FSI = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 REG^P,REG )或
Figure imgf000005_0001
或 (?EG P, ?EG P)或 [REG p ,REG4 NCP) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组
Figure imgf000005_0002
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 (REG CP,REG CP、或 (^ ,REG3 NCpj 或 REG P ,REG CP)或 [REG p,REG p) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG cp'FS2,REG p'FS2)j 或 、REG CP'FS2 ,REG CP'FS2、 或
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 i^EG^^REG^P)或
Figure imgf000005_0003
或 (?EG p, ?EG p)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REGfcp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1), (5,2,1), (2,1,1), (2,2,1)}; REGECP,FS2 = {(10,1,1),(10,2,1),(7,1,1),(7,2,1),(4,1,1), (4,2,1), (1,1,1), (1,2,1)};
= {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?E , REGh )为 (?EG。£CP , REG cp )或 REGfcp , REG2 ECP ) 或 REG , REG3 ECP )或
( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG P'FS2,REG P'FS2) 或 REG 2 ,REG cp'FS2)j 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?ES , REG )为 (?EG。£CP , REG2 ECP )或 (?EG , REG3 ECP ) 或 REG , REG0 ECP )或 [REG^CP ,REG cp) . 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 REG 'FS2,REG2 ECP'FS2、 或 REG FS2 ,REG FS2) 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对
Figure imgf000007_0001
REG^或 (WEGfCP, ?EGf P) 或 (REG CP ,REG3 ECP )j或 [REG^CP, REG2 ECP ) 0
第二方面, 提供一种参考信号的传输方法, 包括:
向用户设备发送参考信号资源配置信息 , 其中所述参考信号资源配置信 息包括天线端口数信息和资源配置索引, 所述天线端口数信息和所述资源配 置索引用于指示参考信号配置集合中的一个参考信号配置, 所述参考信号配 置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的 位置信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述 第一参考信号配置对应的天线端口集合中至少包含两个天线端口子集, 其中 第一天线端口子集中的天线端口上发送参考信号所用的资源单元 RE位于第一 资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位 于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
根据所述参考信号配置所指示的参考信号配置, 确定所述参考信号配置 对应的天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位 置;
在所述位置上向所述用户设备发送参考信号。
在第一种可能的实现方式中,所述第一 RB对和第二 RB对分别位于相同子 帧内不同的频域位置或者不同子帧的相同子带内。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?EG, e REGi e A, ≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l, ..., kf— l} , kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集,
Figure imgf000008_0001
2分别 为所述两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资 源单元组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在 的 RB对的位置三元组 W,/', mod2)的集合, 其中所述 A '表示该资源单元 RE在 其所在的 RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内 的正交频分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示取模操作, ns mod2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REGh , REG . e A, REGh e A , j,≠ j2 , j j2 e {θ,Ι,.,.,Μ— 1}; 其中 il , i2 , jl和 j2满足下述至少一种关系: j、 = ( i + n) od M, j2 = (¾ + n) mod M或
Figure imgf000008_0002
其中, n表示取值为整数的移位( shift )。
可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG p = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG^CP = {(11,2,1),(11,3,1),(10,2,1), (10,3,1), (5,2,1),(5,3,1),(4,2,1),(4,3,1)};
REG^CP = {(9,2,1),(9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1)} ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个: REGNCP,FS2 = {(ii,i,i),(ii,3,i),(io,l,l),(10,3,l),(5,l,l),(5,3,l),(4,l,l), (4,3,1)}; REGNCP,FS2 = { ,ι, , (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)}; REGNCP,FS2 = 7, ), (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGk,REG 为 REG^P,REG )或 ( ?EGfP, ?EG P) 或 REG P ,REG3 NCP)或
[REG^CP ,REGA NCP) (REG CP ,REG CP、。
可选的, 所述第一参考信号配置中两个天线端口 用的资源单元组
Figure imgf000009_0001
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 (REG CP,REG CP、或 (^ ,REG3 NCpj 或 REG P ,REG CP)或 [REG p,REG p) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG cp'FS2,REG p'FS2)j 或 、REG CP'FS2 ,REG CP'FS2、 或
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 i^EG^^REG^P)或 )
Figure imgf000009_0002
或 ( ?EG p, ?EG p)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
^<^°^2 = {(11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5,2,1),(2,1,1),(2,2,1)};
= {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 分别对
Figure imgf000010_0001
)为 (REG 'REG )或 ( ?EG , ?EGf p) 或 、REG CP ,REG3 ECp)) 或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG P'FS2,REG P'FS2) 或 REG 2 ,REG cp'FS2)j 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?ES , REG )为 ( ?EG。£CP , REG2 ECP )或 ( ?EG , REG3 ECP ) 或 REG , REG0 ECP )或 [REG^CP ,REG cp) . 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 REG 'FS2,REG2 ECP'FS2、 或 REG FS2 ,REG FS2) 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG cp,REG pj或 REG P ,REG CPj 或 、REG CP ,REG3 ECP))或 [REG^CP,REG2 ECP) 0 第三方面, 提供一种用户设备, 包括:
接收单元, 用于接收基站发送的参考信号资源配置信息, 所述参考信号 资源配置信息包括天线端口数信息和资源配置索引;
确定单元, 用于根据所述接收单元接收的所述天线端口数信息和所述资 源配置索引从参考信号配置集合中确定一个参考信号配置, 其中, 所述参考 信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单 元 RE的位置信息;所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线端口子集: 其中, 第一天线端口子集中的天线端口上发送参考信号所用的 RE位于第一资 源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于 第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
位置获取单元, 用于根据所述确定单元确定的所述参考信号配置得到所 述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置; 所述接收单元还用于根据所述位置获取单元得到的所述 RE的位置接收所 述参考信号。
在第一种可能的实现方式中,所述第一 RB对和第二 RB对分别位于相同子 帧内不同的频域位置或者不同子帧的相同子带内。
结合第三方面或第三方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^e REGh e A , ¾≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l,..., kf— l}, kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集, ^e^.^M-l} , 和 2分别为所述 两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元 组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对 的位置三元组 W,/', mod2)的集合,其中所述 ^表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频 分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示 取模操作, m。d2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REGh , REG. e A, REGh eA , j,≠ j2,j j2 e {θ,Ι,.,.,Μ— 1}; 其中 il,i2,jl和 j2满足下述至少一种关系: j、 = (i + n) odM, j2 = (¾ + n)modM或 = i2, j2 =¾, 其中, n表示取值为整数的移位( shift )。
可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG^CP = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)};
^^ = {(11 1 11,34 10,24) ΐ0,3α) 5Λ1 5,3,1),(4,2,1),(4,3,1)};
REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) };
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)};
REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合包括以下资源单元组中的两个或者多个:
REGNCP,FSI = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)};
REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)};
REGNCP,FS2 = 7, ), (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 (^REG^REG^为 REG^P,REG )或 ( ?EGfP, ?EG P) 或 (REG ,REG Pj或 [REG^CP ,REGA NCP) (REG CP ,REG CP、。
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG^p'FS2,REG 'FS2j 或 ( ?EG cp'ra2, ?EG p'ra2) 或 {REG2 NCP'FS1,REG P'FS1) 0 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG CP,REG CP、或 )
Figure imgf000013_0001
或 ( ?EG p, ?EG )或
[REG p,REG p) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG cp'FS2,REG p'FS2)j 或 、REG CP'FS2 ,REG CP'FS2、 或
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 i^EG^^REG^P)或
Figure imgf000013_0002
或 ( ?EG p, ?EG p)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
^<^°^2 = {(11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5,2,1),(2,1,1), (2,2,1)}; ?EGf cp'ra2 = {(10, 1,1),(10,2,1 ),(7, 1,1),(7,2,1),(4,1,1),(4,2,1),( 1,1,1), (1,2,1)}; = {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?E , REGh )为 ( ?EG。£CP , REG cp )或 ( ?EG , REG2 ECP ) 或 REG , REG3 ECP )或
( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG P'FS2,REG P'FS2) 或 (REG^ 2 ,REG^P'FS2) 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?ES , REG )为 ( ?EG。£CP , REG2 ECP )或 ( ?EG , REG3 ECP ) 或 REG , REG0 ECP )或 [REG^CP ,REG cp) . 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 REG 'FS2,REG2 ECP'FS2、 或 REG FS2 ,REG FS2) 或
( ?EC f )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?E , REGh )为 ( ?EG。£CP , REG cp )或 ( ?EG , REG0 ECP ) 或 REG , REG3 ECP )或 [REG^CP,REG2 ECP)0
第四方面, 提供一种基站, 包括:
发送单元, 用于向用户设备发送参考信号资源配置信息, 其中所述参考 信号资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数信 息和所述资源配置索引用于指示参考信号配置集合中的一个参考信号配置, 所述参考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用 的资源单元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考 信号配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线 端口子集, 其中第一天线端口子集中的天线端口上发送参考信号所用的资源 单元 RE位于第一资源块 RB对内, 第二天线端口子集中的天线端口上发送参考 信号所用的 RE位于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
确定单元, 用于根据发送的所述参考信号配置所指示的参考信号配置, 确定所述参考信号配置对应的天线端口集合中的天线端口上发送参考信号所 用的资源单元 RE的位置;
发送参考信号。
在第一种可能的实现方式中,所述第一 RB对和第二 RB对分别位于相同子 帧内不同的频域位置或者不同子帧的相同子带内。
结合第四方面或第四方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^e REGh e A , ¾≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l,..., kf— l}, kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集, ^{( .'M-^M S , 和 2分别 为所述两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资 源单元组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在 的 RB对的位置三元组(yt',/', mod2)的集合, 其中所述 A '表示该资源单元 RE在 其所在的 RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内 的正交频分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示取模操作, ns mod2表示对 取模 2的运算值。 进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 ?E ,
Figure imgf000016_0001
-1}; 其中 ¾,¾,7i和 j2满足下述至少一种关系: j、 = ( i + n) odM, j2 = (¾ + n)modM或
Figure imgf000016_0002
其中, n表示取值为整数的移位( shift )。
可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG p = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)};
^^ = {(11^1)^11,34 10,24) 10,34) 5^1),(5,3,1),(4,2,1),(4,3,1)};
REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) };
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)};
REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REGNCP,FS2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)};
REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)};
REGNCP,FSI = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 REG^P,REG )或
Figure imgf000016_0003
或 ( ?EG P, ?EG P)或 [REG p ,REG4 NCP) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 为 (REG^CP'FS2,REG 'FS2、 或 ,^ Ί 或
Figure imgf000017_0001
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 (REG CP,REG CP、或 (^ ,REG3 NCpj 或 REG P ,REG CP)或 {REG^CP ,REG2 NCP) (REG CP 'REG )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG cp'FS2,REG p'FS2)j 或 、REG CP'FS2 ,REG CP'FS2、 或
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG CP,REG CP、或 )
Figure imgf000017_0002
或 REG P ,REG P)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
^<^°^2 = {(11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5,2,1),(2,1,1),(2,2,1)};
= {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 (^REGC 为 (^EG 'REG^或 ( ?EGfCP, ?EGf P) 或 (REG CP ,REG3 ECP)j或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG P'FS2,REG P'FS2) 或 REG 2 ,REG cp'FS2)j 或
{REG2 ECP'FS REG0 ECP'FS1) O 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?E , REGh )为 ( ?EG。£CP , REG2 ECP )或 ( ?EG , REG3 ECP ) 或 REG , REG0 ECP )或 [REG^CP ,REG cp) . 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG FS2,REG 'FS2、 或 ,REG CP'FS2
Figure imgf000018_0001
、 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG p,REGfcpj或 (^ ,^Γ) 或 REG CP ,REG P、或 [REG^CP ,REG2 ECP) .
第五方面, 提供一种用户设备, 包括:
接收器, 用于接收基站发送的参考信号资源配置信息, 所述参考信号资 源配置信息包括天线端口数信息和资源配置索引;
处理器, 用于根据所述接收器接收的所述天线端口数信息和所述资源配 置索引从参考信号配置集合中确定一个参考信号配置, 其中, 所述参考信号 配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE 的位置信息; 所述参考信号配置集合中包含至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线端口子集: 其中, 第一天线端口子集中的天线端口上发送参考信号所用的 RE位于第一资 源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于 第二 RB对内, 所述第一 RB对与所述第二 RB对不同; 以及, 用于根据确定的 所述参考信号配置得到所述天线端口集合中的天线端口上发送参考信号所用 的资源单元 RE的位置;
所述接收器还用于根据所述处理器确定的所述 RE的位置接收所述参考信 号。
在第一种可能的实现方式中,所述第一 RB对和所述第二 RB对分别位于相 同子帧内不同的频域位置或者不同子帧的相同子带内。
结合第五方面或第五方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^ e REGh e A , ¾≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l,..., kf— l}, kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集, ^ ^ {Ο,.,.,Μ-Ι} , 和 2分别为所述 两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元 组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对 的位置三元组 (yt',/', mod2)的集合,其中所述 ^表示该资源单元 RE在其所在的
RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频 分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示 取模操作, "i m。d2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REG , 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 ?E , REGA A , REGj2 A ,
Figure imgf000020_0001
e{ ,l,...,M ~ ]; 其中 il,i2,jl和 j2满足下述至少一种关系: = + n)modM, j2 = (¾ + n)modM或
Figure imgf000020_0002
其中, n表示取值为整数的移位( shift )。
可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG^CP = {(9,5,0),(9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)};
^^ = {(11^1)^11,34 10,24) 10,34) 5^1),(5,3,1),(4,2,1),(4,3,1)};
REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) };
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)};
REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REGNCP,FS2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)};
REGNCP,FSI = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)};
REGNCP,FSI = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG cp,REG 、或
Figure imgf000020_0003
) 或 REG P ,REG P)或 [REG p ,REG4 NCP) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 、REG FS2,REG 'FS2)) 或 (?EG CP'ra2, ?EG P'ra2) 或
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 (^REG^REG^为 REG^P,REG CP)或 (?EGfP, ?EG P) 或 (REG 'REG )或
[REG^CP ,REG2 NCP) (REG CP ,REG CP、。
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG CP'FS2,REG P'FS2)) 或 、 2 ,REG CP'FS2)) 或
{REG2 NCP'FS REG^CP'FS1) 0 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG CP,REG CP、或 )
Figure imgf000021_0001
或 REG P ,REG P)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
i?EG0 £C ra2 = {(ll,l,l),(ll,2,l),(8,l,l),(8,2,l),(5,l,l),(5,2,l), (2,1,1), (2,2,1)}; REGECP,FS2 = {(10,1,1),(10,2,1),(7,1,1),(7,2,1),(4,1,1),(4,2,1), (1,1,1), (1,2,1)};
= {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG p,REGfcpj或 (REG^ ,REG CP) 或 REG CP ,REG P、或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 (^REG^REG^ 为 REG cp'FS2,REG 'FS2)j 或 (REG P'FS2 ,REG^'FS2) 或 {REG2 ECP'FS REG0 ECP'FS2) O 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?E , REGh )为 (?EG。£CP , REG2 ECP )或 (?EG , REG3 ECP ) 或 REG , REG0 ECP )或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ,REG CP'FS2
Figure imgf000022_0001
、 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( ?ES , REG )为 (?EG。£CP , REG cp )或 (?EG , REG0 ECP ) 或 REG , REG3 ECP )或 [REG^CP ,REG2 ECP) . 第六方面, 提供一种基站, 包括:
发送器, 用于向用户设备发送参考信号资源配置信息, 其中所述参考信 号资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数信息 和所述资源配置索引用于指示参考信号配置集合中的一个参考信号配置, 所 述参考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的 资源单元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考信 号配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线端 口子集, 其中第一天线端口子集中的天线端口上发送参考信号所用的资源单 元 RE位于第一资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信 号所用的 RE位于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
处理器, 用于根据发送的所述参考信号配置所指示的参考信号配置, 确 定所述参考信号配置对应的天线端口集合中的天线端口上发送参考信号所用 的资源单元 RE的位置;
所述发送器还用于在所述处理器确定的所述位置上向所述用户设备发送 参考信号。
在第一种可能的实现方式中,所述第一 RB对和所述第二 RB对分别位于相 同子帧内不同的频域位置或者不同子帧的相同子带内。
结合第六方面或第六方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^ e REGh e A , ¾≠ i2; 所述集合 ^ = { ?EG,小 · = 0,l,..., kf— l}, kf≥ 2 , 所述 集合 ^中不同的资源单元组的交集为空集, ^^{Ο,.,.,Μ-Ι}, 和 2分别为所述 两个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元 组表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对 的位置三元组 (yt',/', mod2)的集合,其中所述 ^表示该资源单元 RE在其所在的
RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频 分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示 取模操作, "im。d2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 ?E ,
Figure imgf000023_0001
-1}; 其中 il,i2,jl和 j2满足下述至少一种关系: = + n)modM, j2 = (¾ + n)modM或
Figure imgf000023_0002
其中, n表示取值为整数的移位( shift )。 可选的, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG CP = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)}; ^^ = {(11 1 11,34 10,24) ΐ0,3α) 5Λ1 5,3,1),(4,2,1),(4,3,1)}; REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) }; REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)}; REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 可选的, 当循环前缀 CP为常规 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REGNCP,FS2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)}; REGNCP,FSI = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)}; REGNCP,FSI = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG cp,REG 、或
Figure imgf000024_0001
) 或 REG P ,REG P)或 [REG p ,REG4 NCP) 或 ( X )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGh,REG 为 、REG FS2,REG 'FS2)) 或 (?EG CP'ra2,?EG P'ra2) 或
Figure imgf000024_0002
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGk,REG 为 REG^P,REG CP)或 (?EGfP,?EG P) 或 REG P,REG CP)或
[REG^CP ,REG2 NCP) (REG CP ,REG CP、。
可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 、REG CP'FS2,REG P'FS2)) 或 、 2 ,REG CP'FS2)) 或 ( 2™X ra2)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 i^EG CP,REG CP、或 )
Figure imgf000025_0001
或 REG P ,REG P)或 [REG p ,REG^CP) 或 ( X )。 可选的, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资 源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)}; REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 可选的, 当循环前缀 CP为扩展 CP且子帧类型为 LTE第二帧结构类型 FS2 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
^<^°^2 = {(11,1,1),(11,2,1),(8,1,1),(8,2,1),(5,1,1),(5,2,1),(2,1,1),(2,2,1)};
= {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG p,REGfcpj或 (REG^ ,REG CP) 或 REG CP ,REG P、或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( lEGk,REG 为 REG FS2,REG 'FS2、 或 REG FS2 ,REG FS2) 或 {REG2 ECP'FS REG0 ECP'FS2) O 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 (?E , REGh )为 (?EG。£CP , REG2 ECP )或 REGfcp , REG3 ECP ) 或 REG , REG0 ECP )或 ( fX )。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ,REG CP'FS2
Figure imgf000026_0001
、 或
)。 可选的, 所述第一参考信号配置中两个天线端口子集所用的资源单元组 对 ( iEG^REG 为 REG p,REGfcpj或 (^ ,^Γ) 或 REG CP ,REG P、或 [REG^CP ,REG2 ECP) . 与现有技术相比, 本发明实施例中用户设备接收基站发送的参考信号资 源配置信息, 所述参考信号资源配置信息包括天线端口数信息和资源配置索 引; 用户设备根据所接收的所述天线端口数信息和所述资源配置索引从参考 信号配置集合中确定一个参考信号配置; 用户设备根据确定的所述参考信号 配置得到所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE 的位置并根据所述 RE的位置接收基站发送的所述参考信号。 能够解决现有的 参考信号不支持 8个以上天线口数的问题, 为 8个以上天线口数的天线配置提 供了可行的参考信号配置的设计方案; 同时, 所述两个天线端口子集在两个 RB对内所用的资源单元组互不相交, 一方面, 可以在重用已有 (Legacy) 系 统的 CSI RS占用的 RE位置的同时减少对同一小区内已有 (Legacy) UE的干 扰; 另一方面, 多个不同的参考信号配置在两个 RB对内所用的资源单元组互 不相交可以降低小区间参考信号造成的干扰, 即降低所谓导频污染, 从而提 高信道状态信息的测量效率, 提高系统的吞吐量。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其它的附图。
图 1为本发明一实施例提供的方法流程图;
图 2为本发明又一实施例提供的方法流程图;
图 3为本发明又一实施例提供的方法流程图;
图 3a为本发明又一实施例提供的帧结构类型一的示意图;
图 3b为本发明又一实施例提供的帧结构类型二的示意图;
图 3c为本发明又一实施例提供的时隙结构的示意图;
图 4a、 图 4b为本发明又一实施例提供的参考信号配置示意图;
图 5a、 图 5b为本发明又一实施例提供的另一参考信号配置示意图; 图 6为本发明又一实施例提供的装置结构示意图;
图 7为本发明又一实施例提供的装置结构示意图;
图 8为本发明又一实施例提供的用户设备结构示意图;
图 9为本发明又一实施例提供的基站结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其它实施例 , 都属于本发明保护的范围。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发明 作佯细说明。
本发明一实施例提供一种参考信号的传输方法, 如图 1所示, 所述方法包 括:
101、 用户设备接收基站发送的参考信号资源配置信息, 所述参考信号资 源配置信息包括天线端口数信息和资源配置索引。
102、 用户设备根据所接收的天线端口数信息和资源配置索引从参考信号 配置集合中确定一个参考信号配置。
其中, 所述参考信号配置用于指示天线端口集合中的天线端口上发送参 考信号所用的 RE ( Resource Element, 资源单元)的位置信息; 所述参考信号 配置集合中至少包含一个第一参考信号配置, 所述第一参考信号配置对应的 天线端口集合中至少包含两个天线端口子集: 其中, 第一天线端口子集中的 天线端口上发送参考信号所用的 RE位于第一 RB ( Resource Block, 资源块) 对(Pair )内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于 第二 RB对内, 所述第一 RB对与所述第二 RB对不同。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。
进一步地, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组 为 REGt REG,,所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGh , † REGk e A , REGh e A , ≠ 2;所述集合 ^ = { ?EG,小 · = 0,1, ..., M - 1} , M≥2, 所述集合 中不同的资源单元组的交集为空集, ^ ^Ο, .,., Μ-Ι} , 和 2分别为 所述两个 RB对内所用的 REG ( Resource Element Group, 资源单元组)的索引; 所述集合 ^中的每一个资源单元组表示 RB对内可用于发送参考信号所用的资 源单元 RE相对于其所在的 RB对的位置三元组^ ,/ ', mod2)的集合, 其中所述 表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该资源 单元在其所在的 RB对内 的 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用) 符号的索引, 所述 表示该资源单元所在的时 隙索引, mod表示取模操作, mod2表示对 取模2的运算值。
需要说明的是, 符号 e表示属于或者隶属关系, 例如 ?EG, e ^表示 属 于集合 ^中的一个元素, 此为常用数学符号, 其它各处不再赘述。
需要指出的是, 由于集合 ^中不同的资源单元组的交集为空集, 资源单元 组 REGt和 REG;分别为集合 ^中的两个不同的元素, 即两个不同的资源单元组 REG,和 REG,的交集也为空集。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 ?E , REGA E A , REGh E A , ≠ j'2, j;, e {0,l,...,M-l}; 其中 , i2 , jx和 j2满足下述至少一种关系: = ; + n)mod M, j2 = [i2 + n) mod M或 7; = i2, j2 = , 其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。此时 ,对于 LTE R10-R11系统 , eNB ( evolved Node B , 演进型基站)可以通知已有 ( Legacy ) UE在第一和第二 RB对的 ?EG,中的 RE位置接收 8天线端口上发送非零功率的 CSI RS, 同时, 通 知所述已有 ( Legacy ) UE在第一和第二 RB对的 REGk中的 RE位置 eNB发送零 功率的 CSI RS; 对于 LTE R12或者未来系统, eNB可以通知 UE在所述第一 RB 对的 REGt中的 RE位置接收 16个天线端口中的前 8天线端口上发送的非零功率 的 CSI RS, 在第二 RB对的 REGh中的 RE位置接收 16个天线端口中的后 8天线端 口上发送的非零功率的 CSI RS; 同时, eNB可以通知 UE在所述第一 RB对的 REG,中的 RE位置和第二 RB对的 REG中的 RE位置为零功率的 CSI RS; 不论所 述已有 (Legacy ) UE还是所述 LTE R12或者未来系统中的 UE, 均可以根据所 述 eNB通知的非零功率和零功率的 CSI RS位置, 对 PDSCH进行正确的速率匹 配, 即避免映射 PDSCH到所述非零功率和零功率的 CSI RS位置, 从而避免对 PDSCH造成干扰。 因此,上述参考信号配置可以在重用 LTE R10系统的 CSI RS 占用的 RE位置的同时减少对同一小区内已有 (Legacy ) UE的干扰。 此外, 以两个小区为例, eNB在第一小区内通知 UE使用所述第一参考信 号配置即在所述第一 RB对中的资源单元组 ?EG,.和第二 RB对中的资源单元组 ?EG,2接收非零功率 CSI RS, 第二小区使用所述第二参考信号配置即在所述第 一 RB对中的资源单元组 ?E<¾和第二 RB对中的资源单元组 ?EGA接收非零功 率 CSI RS , 同时, 第一' 区内 eNB通知 UE在所述第一 RB对中的资源单元组 和第二 RB对中的资源单元组 ^(72为零功率 CSI RS, eNB在第二小区内 通知 UE在所述第一 RB对中的资源单元组 REG和第二 RB对中的资源单元组 REG为零功率 CSI RS。 由于所述两个小区在不同的两个 RB中使用的资源单元 组 REG.、 REG、 REG .和 REGh索引 i , i2 , j和 满足 i , i2 , j和 满足下述至少一种 关系: = + n) mod M , j2 = (i2 + ")m。dM或
Figure imgf000030_0001
i2, j2 其中, n表示取值为整 数的移位( shift )。一方面,使得所述各个小区内的 UE所配置的非零功率 CSI RS 与邻小区内的 UE所配置的非零功率 CSI RS相互错开即没有交集, 从而有效避 免所谓导频污染(Pilot Contamination ); 另一方面, 还可以使得所述各个小区 内的 UE均可以根据所述 eNB通知的非零功率和零功率的 CSI RS位置, 对 PDSCH进行正确的速率匹配, 即避免映射 PDSCH到所述非零功率和零功率的 CSI RS位置, 从而有效避免邻小区 CSI RS对 PDSCH造成干扰。
可选地, 当 CP ( Cyclic Prefix, 循环前缀)为常规 CP ( Normal CP, 简称 NCP ) 时, 资源单元 RE相对于其所在的 RB对的位置用三元组 W,/', m0d2)表 示, 以每个资源单元组含有 8个 RE为例, 所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
REG CP = {(9,5,0),(9,6,0),(8,5,0),(8,6,0),(3,5,0), (3,6,0), (2,5,0), (2,6,0)}; ( 1 ) ^^ - {(11,24)^11,34)^10^1),(10,3,1),(5,2,1),(5,3,1),(4,2,1),(4,3,1)}; ( 2 ) REG2 NCP = {(9,2,1),(9,3,1),(8,2,1),(8,3,1),(3,2,1),(3,3,1),(2,2,1),(2,3,1) } ; ( 3 ) REG^CP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)}; ( 4 ) REG4 NCP = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 ( 5 ) 其中, 所述资源单元组集合 A可用于子帧类型为 LTE第一帧结构类型 ( Frame Structure type 1, 简称 FS1 )或者第二帧结构类型( Frame Structure type 2, 简称 FS2)。
以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
{(9,5,0), (9,6,0), (8,5,0), (8,6,0)}; (6)
{(3,5,0), (3,6,0), (2,5,0), (2,6,0)}; (7)
{(11,2,1), (11,3,1), (10,2,1),(10,3,1)}; (8)
{(5,2,1), (5,3,1), (4,2,1), (4,3,1)}; (9)
{(9,2,1), (9,3,1), (8,2,1), (8,3,1)}; ( 10)
{(3,2,1), (3,3,1), (2,2,1), (2,3,1)}; ( 11 )
{(7,2,1), (7,3,1), (6,2,1), (6,3,1)}; ( 12)
{(1,2,1), (1,3,1), (0,2,1), (0,3,1)}; ( 13)
{(9,5,1), (9,6,1), (8,5,1), (8,6,1)}; ( 14)
{(3,5,1), (3,6,1), (2,5,1), (2,6,1)}。 ( 15) 其中, 所述资源单元组集合 A可用于子帧类型为 FS1或者 FS2。
以每个资源单元组含有 8个 RE为例,所述资源单元组集合 ^还可以包括以 下资源单元组中的两个或者多个:
{(11,5,0),(11,6,0),(11,5,1),(11,6,1), (10,5,0),(10,6,0), (10,5,1),(10,6,1) }; ( 16) {(6,5,0), (6,6,0), (6,5,1), (6,6,1), (5,5,0), (5,6,0), (5,5,1), (5,6,1) }; ( 17) {(1,5,0), (1,6,0), (1,5,1), (1,6,1), (0,5,0), (0,6,0), (0,5,1), (0,6,1) }; ( 18) 以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^还可以包括以 下资源单元组中的两个或者多个:
{(11,5,0), (11,6,0), (11,5,1), (11,6,1)}; ( 19 )
{(10,5,0), (10,6,0), (10,5,1), (10,6,1) }; (20)
{(6,5,0), (6,6,0), (6,5,1), (6,6,1) }; (21 )
{ (5,5,0), (5,6,0), (5,5,1), (5,6,1) }; (22)
{(1,5,0), (1,6,0), (1,5,1), (1,6,1) }; (23 )
{ (0,5,0), (0,6,0), (0,5,1), (0,6,1) }; (24) 其中, 所述资源单元组集合 A可用于子帧类型为 FS1。
可选地, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 W,/',"sm0d2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG^CP'FS1 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1),(4,3,1)}; ( 25 ) REG cp'FS2 = {(9,1,1),(9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1),(2,1,1), (2,3,1)}; ( 26 ) REG^CP'FS1 = {(7,1,1),(7,3,1), (6,1,1), (6,3,1), (1,1,1),(1,3,1), (0,1,1),(0,3,1)}。 ( 27 ) 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
{(11,1,1), (11,3,1), (10,1,1), (10,3,1)}; ( 28 )
{ (5,1,1), (5,3,1), (4,1,1), (4,3,1)}; ( 29 )
{(9,1,1), (9,3,1), (8,1,1), (8,3,1) }; (30)
{ (3,1,1), (3,3,1), (2,1,1), (2,3,1)}; (31 )
{(7,1,1), (7,3,1), (6,1,1), (6,3,1) }; (32)
{ (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。 ( 33 ) 其中, 所述资源单元组集合 A可用于子帧类型 FS2。 对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例 , 所述资
{(6,2,0),(6,3,0), (6,5,0),(6,6,0), (5,2,0),(5,3,0),(5,5,0),(5,6,0) }; (35)
{(1,2,0),(1,3,0),(1,5,0), (1,6,0), (0,2,0),(0,3,0),(0,5,0),(0,6,0) }; (36) 对于 LTE特殊子帧配置 1,2,6,7,以每个资源单元组含有 4个 RE为例, 所述资
{(11,2,0), (11,3,0), (11,5,0), (11,6,0)}; (37)
{(10,2,0), (10,3,0), (10,5,0), (10,6,0)}; (38)
{(6,2,0), (6,3,0), (6,5,0), (6,6,0)}; (39)
{ (5,2,0), (5,3,0), (5,5,0), (5,6,0)}; (40)
{(1,2,0), (1,3,0), (1,5,0), (1,6,0)}; (41)
{(0,2,0), (0,3,0), (0,5,0), (0,6,0)}; (42) 对于 LTE特殊子帧配置 3 ,4,8,9,以每个资源单元组含有 8个 RE为例, 所述资
{(11,2,0), (11,3,0),(11,2,1),(11,3,1),(10,2,0),(10,3,0), (10,2,1),(10,3,1) }; (43 )
{(6,2,0), (6,3,0), (6,2,1), (6,3,1), (5,2,0), (5,3,0), (5,2,1), (5,3,1) }; (44)
{(1,2,0), (1,3,0), (1,2,1), (1,3,1), (0,2,0), (0,3,0), (0,2,1), (0,3,1) }; (45) 对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 4个 RE为例, 所述资
{(11,2,0), (11,3,0), (11,2,1), (11,3,1)}; ( 46 )
{(10,2,0), (10,3,0), (10,2,1), (10,3,1) }; (47)
{(6,2,0), (6,3,0), (6,2,1), (6,3,1) }; (48)
{(5,2,0), (5,3,0), (5,2,1), (5,3,1) }; (49) {(1,2,0), (1,3,0), (1,2,1), (1,3,1) }; (50) {(0,2,0), (0,3,0), (0,2,1), (0,3,1) }; (51 ) 可选地, 当循环前缀 CP为扩展 CP (Extended CP, 简称 ECP)时, 资源单 元 RE相对于其所在的 RB对的位置用三元组 (c'j',ns mod 2)表示, 以每个资源单 元组含有 8个 RE为例,所述资源单元组集合 ^包括以下资源单元组中的两个或 者多个:
REG^CP = {(11,4,0),(11,5,0),(8,4,0),(8,5,0),(5,4,0),(5,5,0), (2,4,0), (2,5,0)}; ( 52 ) REG cp = {(9,4,0),(9,5,0), (6,4,0),(6,5,0),(3,4,0),(3,5,0),(0,4,0),(0,5,0)}; (53) i?EGfp = {(10,4,l),(10,5,l),(7,4,l),(7,5,l),(4,4,l),(4,5,l),(l,4,l),(l,5,l)}; (54) REG3 ECP = {(9,4,1),(9,5,1),(6,4,1),(6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 ( 55 ) 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS1或者 FS2。 以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
{(11,4,0), (11,5,0), (8,4,0), (8,5,0)}; (56)
{(5,4,0), (5,5,0), (2,4,0), (2,5,0)}; (57)
{(9,4,0), (9,5,0), (6,4,0), (6,5,0)}; (58)
{(3,4,0), (3,5,0), (0,4,0), (0,5,0)}; (59)
{(10,4,1), (10,5,1), (7,4,1), (7,5,1)}; (60)
{(4,4,1), (4,5,1), (1,4,1), (1,5,1)}; (61 )
{(9,4,1), (9,5,1), (6,4,1), (6,5,1)}; (62)
{(3,4,1), (3,5,1), (0,4,1), (0,5,1)}。 (63) 可选地, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括以下资源单元组中的两个或者多个: i^G。£CP'ra2 = {(l l,l,l),(l l,2,l),(8,l,l),(8,2,l),(5,l,l),(5,2,l),(2,l,l),(2,2,l)} ; ( 64 ) REG cp'FS1 = {(10,1, 1),(10,2,1),(7,1,1),(7,2,1),(4,1,1),(4,2,1),(1, 1,1), (1,2,1)} ; ( 65 )
Figure imgf000035_0001
{(9,l,l),(9,2,l),(6,l,l),(6,2,l),(3,l,l),(3,2,l),(0,l,l),(0,2,l)}。 ( 66 ) 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
{(11,1,1), (11,2,1), (8,1,1), (8,2,1)} ; ( 67 )
{ (5,1,1), (5,2,1), (2,1,1), (2,2,1)} ; ( 68 )
{(10,1,1), (10,2,1), (7,1,1), (7,2,1) } ; ( 69 )
{ (4,1,1), (4,2,1), (1,1,1), (1,2,1)} ; ( 70 )
{(9,1,1), (9,2,1), (6,1,1), (6,2,1) } ; ( 71 )
{ (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。 ( 72 ) 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
103、 用户设备根据确定的参考信号配置得到天线端口集合中的天线端口 上发送参考信号所用的资源单元 RE的位置并根据 RE的位置接收基站发送的 参考信号。
其中, 步骤 103中发送参考信号的主体为基站。
与现有技术相比, 本发明实施例中用户设备接收基站发送的参考信号资 源配置信息, 所述参考信号资源配置信息包括天线端口数信息和资源配置索 引; 用户设备根据所接收的所述天线端口数信息和所述资源配置索引从参考 信号配置集合中确定一个参考信号配置; 用户设备根据确定的所述参考信号 配置得到所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE 的位置并根据所述 RE的位置接收基站发送的所述参考信号。 能够解决现有的 参考信号不支持 8个以上天线口数的问题, 为 8个以上天线口数的天线配置提 供了可行的参考信号配置的设计方案; 同时, 所述两个天线端口子集在两个
RB对内所用的资源单元组互不相交, 一方面, 可以在重用已有 (Legacy ) 系 统的 CSI RS占用的 RE位置的同时减少对同一小区内已有 (legacy) UE的干 4尤; 另一方面, 多个不同的参考信号配置在两个 RB对内所用的资源单元组互不相 交可以降低小区间参考信号造成的干扰, 即降低所谓导频污染, 从而提高信 道状态信息的测量效率, 提高系统的吞吐量。 本发明又一实施例提供一种参考信号的发送方法, 如图 2所示, 所述方法 包括:
201、 基站向用户设备发送参考信号资源配置信息, 所述参考信号资源配 置信息包括天线端口数信息和资源配置索引。
其中, 所述天线端口数信息和所述资源配置索引用于指示参考信号配置 集合中的一个参考信号配置, 所述参考信号配置用于指示天线端口集合中的 天线端口上发送参考信号所用的资源单元 RE的位置信息; 所述参考信号配置 集合中至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线 端口集合中至少包含两个天线端口子集, 其中第一天线端口子集中的天线端 口上发送参考信号所用的资源单元 RE位于第一资源块 RB对内, 第二天线端口 子集中的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述第一 RB 对与所述第二 RB对不同。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。
进一步地, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组 为 REGt, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REG, ,其中 ?EG,. e A , REG, e A , ≠ 2;所述集合^ 4 = { ?EG,小 · = Ο,Ι,.,.,Μ - 1} , Μ > 2 , 所述集合 ^中不同的资源单元组的交集为空集, il,i2e{0,...,M-i},M>2 , i^i ^ 别为所述两个 RB对内所用的 REG的索引; 所述集合 ^中的每一个资源单元组 表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对中 的位置 / ', ns mod 2)的集合, 其中所述 '表示该资源单元 RE在其所在的 RB对 内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的 OFDM符号 的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, mod2表 示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REG , REG. e A, REGh eA, jx≠ j.J^j, e {0,l,..., -l}; 其中 ,i2,jx和 j2满足下述至少一种关系: = ; + n)modM, j2 = [i2 + n)modM或 7; = i2, j2 = , 其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。 此时, 对于 eNB如何通知已有 ( Legacy ) UE和 LTE R12以及未来系统中的 UE接收的 CSI RS以及 UE如何进 行正确的速率匹配, 从而使得所述参考信号配置可以在重用 LTE R10系统的 CSIRS占用的 RE位置的同时减少对同一小区内已有(Legacy) UE的干扰, 见 前面实施例步骤 102中所述, 此处不进一步赘述。
此外, 以两个小区为例, 对于如何在两个小区内通知 UE使用参考信号配 置接收 CSI RS, 从而有效避免所谓导频污染( Pilot Contamination ) 以及邻小 区 CSIRS对 PDSCH造成干扰, 见前面实施例步骤 102中所述, 此处不进一步赘 述。
可选地, 当 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对的位置用 三元组 mod 2)表示, 以每个资源单元组含有 8个 RE为例, 所述资源单元 组集合 ^包括如式(1 ) - (5)所示的资源单元组中的两个或者多个, 其中, 所述资源单元组集合 A可用于子帧类型 FS1或者 FS2。
以每个资源单元组含有 4个 RE为例, 所述资源单元组集合 ^包括如式(6) - ( 15 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A 可用于子帧类型为 FS1或者 FS2。
以每个资源单元组含有 8个 RE为例,所述资源单元组集合 ^还可以包括如 式(16) - ( 18)所示的资源单元组中的两个或者多个。 其中, 所述资源单元 组集合 A可用于子帧类型 FS1。
以每个资源单元组含有 4个 RE为例,所述资源单元组集合 ^还可以包括如 式(19) - (24)所示的资源单元组中的两个或者多个。 其中, 所述资源单元 组集合 A可用于子帧类型 FS1。
可选地, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(25) - (27)所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
以每个资源单元组含有 4个 RE为例 ,所述资源单元组集合 ^包括如式( 28 ) - (33 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A 可用于子帧类型 FS2。
对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如式(34) - (36)所示的资源单元组中的两个或 者多个; 对于 LTE特殊子帧配置 1,2,6,7,以每个资源单元组含有 4个 RE为例 , 所述资 源单元组集合 ^还可以包括如式(37 ) - ( 42 )所示的资源单元组中的两个或 者多个;
对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如式(43 ) - ( 45 )所示的资源单元组中的两个或 者多个;
对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 4个 RE为例, 所述资 源单元组集合 ^还可以包括如式(46 ) - ( 51 )所示的资源单元组中的两个或 者多个;
可选地, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式( 52 ) - ( 55 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS1或者 FS2。
以每个资源单元组含有 4个 RE为例 ,所述资源单元组集合 ^包括如式( 56 ) - ( 63 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或 者资源单元组可用于子帧类型 FS1或者 FS2。
可选地, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(64 ) - ( 66 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
以每个资源单元组含有 4个 RE为例, 所述资源单元组集合 ^包括如式(67 ) - ( 72 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或 者资源单元组可用于子帧类型 FS2。
202、 基站根据所述参考信号配置信息所指示的参考信号配置, 确定所述 参考信号配置对应的天线端口集合中的天线端口上发送参考信号所用的资源 单元 RE的位置。
203、 基站在确定的位置上向用户设备发送参考信号。
与现有技术相比, 本发明实施例中基站向用户设备发送参考信号资源配 置信息, 其中所述参考信号资源配置信息包括天线端口数信息和资源配置索 引, 其天线端口集合包含的两个天线端口子集中的天线端口上发送参考信号 所用的资源单元 RE位于两个不同的资源块 RB对内;基站根据发送的所述参考 信号配置确定天线端口集合中的天线端口上发送参考信号所用的资源单元 RE 的位置并在所述资源单元 RE的位置上向所述用户设备发送参考信号。 能够解 决现有的参考信号不支持 8个以上天线口数的问题, 为 8个以上天线口数的天 线配置提供了可行的参考信号配置的设计方案; 同时, 所述两个天线端口子 集在两个 RB对内所用的资源单元组互不相交, 一方面, 可以在重用已有 ( Legacy ) 系统的 CSI RS占用的 RE位置的同时减少对同一' 区内 legacy UE的 干扰; 另一方面, 多个不同的参考信号配置在两个 RB对内所用的资源单元组 互不相交可以降低小区间参考信号造成的干扰, 即降低所谓导频污染, 从而 提高信道状态信息的测量效率, 提高系统的吞吐量。 本发明又一实施例提供一种参考信号的发送和接收方法, 如图 3所示, 所 述方法包括:
301、 基站向用户设备发送参考信号资源配置信息, 其中所述参考信号资 源配置信息包括天线端口数信息和资源配置索引。
具体地, 所述天线端口数信息可以是天线端口数, 例如, 天线端口数为 8 或者 16或者 32或者 64等。 所述天线端口数信息还可以是天线端口阵列结构信 息, 例如, 天线端口阵列为 2x8 ( 2行 8列 )或者 4x4 ( 4行 4列 )或者 8x2 ( 8行 2 列), 可以从该信息得到天线端口数为 16。 再如, 天线端口阵列为 4x8 ( 2行 8 列 )或者 2x16 ( 2行 16列 )或者 8x4 ( 8行 4列 ), 可以从该信息得到天线端口数 为 32。
其中, 资源配置索引为特定的天线端口数所对应的参考信号配置的索引。 当确定天线端口数后, 根据资源配置索引即可确定一个参考信号配置。
302、 用户设备根据所接收的天线端口数信息和资源配置索引从参考信号 配置集合中确定一个参考信号配置, 该参考信号配置对应的天线端口集合至 少包含两个天线端口子集, 所述两个天线端口子集中的天线端口上发送参考 信号所用的 RE位于两个不同的资源块 RB对内。
其中, 所述参考信号配置集合中至少包含一个参考信号配置, 所述参考 信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单 元 RE的位置信息。 所述两个天线端口子集中的天线端口上发送参考信号所用 的 RE所在的 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同 子带内。
所述子带为一个或者多个连续的 RB。 具体地, 所述子带大小可以为预编 码资源块组 ( Precoding Resource block Groups , 简称 PRG)的大小, 例如, 依 赖于系统带宽所述子带大小或者 PRG大小(以 RB为单位)可以为
Figure imgf000041_0001
所述子带大小还可以与 CSL^告的子带大小相等, 例如子带大小可以为
Figure imgf000041_0002
或者 系统带宽 子带大小
6-7 2
8-10 4
4
27-63 6
64-110 8 进一步地, 所述两个天线端口子集在两个 RB对内所用的资源单元组分别 为 REGi 和 REG, , 其 中 REGi e A , REGt ≡Α , ≠ 7 ; 所 述 集 合
Figure imgf000042_0001
, Μ>2 , 所述集合 ^中不同的资源单元组的交集为空 集, ^ {(),..., ^-1} , 和 2分别为所述两个 RB对内所用的资源单元组 REG的 索引;
其中, 所述集合 ^中的每一个资源单元组表示 RB对内可用于发送参考信 号所用的资源单元 RE相对于其所在的 RB对中的位置 ,/ 觸 d2)的集合, 其 中所述 ^表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示 该资源单元在其所在的 RB对内的正交频分复用 OFDM符号的索引, 所述 表 示该资源单元所在的时隙索引, mod表示取模操作, mod2表示对 取模2的运 算值。例如,一个无线帧内 的取值为 0到 19,每个 RB中 ^的取值为 0-11, /'的 取值为 0-6,
为了便于理解, 下面通过图 3a、 3b和图 3c对帧结构、 时隙结构和物理资源 单元以及资源块 RB进行说明。 在 3GPP ( 3rd Generation Partnership Project, 第 三代合作伙伴项目) LTE系统中, 上下行传输被组织成无线帧( radio frame ), 每个无线帧长 10毫秒,每个无线帧中包括 10个 1毫秒长的子帧(subframe), 包括 20个 0.5毫秒的时隙 (slot) , 时隙标号从 0到 19。 一个子帧定义为两个连续 的时隙。 共有类型 1和类型 2两种帧结构被支持, 分别用于 FDD系统和 TDD系统。 帧结构类型 1 (Frame Structure type 1,简称 FS1 )和帧结构类型 2 (FS2 )分 别如图 3a和 3b所示。
在每个时隙内发射的信号可以用一个或者几个资源格 (re source grid)表 示, 以下行系统为例,一个 ^个子载波和 个(^0¾^符号组成的资源格结 构, 如图 3c所示。 其中 为以资源块 ( Resource Block, 简称 RB ) 为单位 的系统带宽, N 为一个 RB内的子载波数, 为一个下行时隙内的 OFDM符号 数。 资源格中的每一个单元称为一个资源单元(Resouce Element, 简称 RE ), 每个 RE可以由时隙内的索引对 ,/ )唯一标识, 其中, =0,...,N -1为时隙 内频域的索引, /=0,...,N b -l为时隙内时域的索引。 时域内 个连续的 OF丽 符号和频域内 个连续的子载波定义为一个资源块(Resource Block, 简称 RB )。 对于物理 RB而言, 可以包含常规(Norma l )循环前缀(cycl ic pref ix, 简称 CP)和扩展 ( Extended ) CP两种配置, 其子载波个数和 OFDM符号数如下 表所示, 其中 Δ/为子载波间隔。
Figure imgf000043_0001
一个 RB对 ( RB Pair ) 定义为一个子帧内具有相同的 RB号的两个 RB。 显 然, 一个 RB对中的两个 RB的时隙号分别为偶数和奇数。
定义天线端口以便于在其上发送天线口上的符号的信道可以从在其上发 送相同天线口上的另一个符号的信道推断得到。 每个天线端口有一个资源格。 实际上, 每个天线端口可以对应一个物理天线, 也可以对应一个虚天线, 即 多个物理天线的组合。
每个天线端口使用一个资源格, 基站在该资源格对应的时域和频域上发 送参考信号或者数据信道。 资源格中的 RE可以分别用于发送参考信号和数据 信道例如 PDSCH。 UE通过接收所述资源格上的参考信号可以估计 UE与对应的 天线端口之间的信道, 根据所述信道估计值, UE可以对所述 UE与对应的天线 端口之间的信道进行信道状态测量或者对数据信道进行解调。
其中, 所述参考信号配置集合中包括多种参考信号配置, 其中, 所述参 考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源 单元 RE的位置信息。 一种参考信号配置中两个天线端口子集所用的资源单元 组可以由其他参考信号配置中两个天线端口子集所用的资源单元组在 RB中进 行循环移位 =(cyclic shift)和 /或交错 (interlace)得到。 例如, 定义第一参考信号 配置对应的天线端口集合中至少包含两个天线端口子集: 第一天线端口子集 和第二天线端口子集,所述两个天线端口子集在所述第一 RB对和所述第二 RB 对内所用的资源单元组分别为 ?E 和 REGi2 , ≠ i21? 2 e{0,l,..., -l}, >2 , 第二参考信号配置对应的天线端口集合中也至少包含所述第一天线端口子集 和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对内所用的 资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用的资源单 元组为 REG , A , REG. ≡A, REG.
Figure imgf000044_0001
M≥ 2。基于第一参考信号配置中 包含的两个天线端口子集所用的资源单元组, 第二参考信号配置中包含的两 个天线端口子集所用的资源单元组可以通过以下关系得到:
jl = ( j + n)mo&M, j2 = [i2 + n)mo&M ,
其中, ; = (iv + ")modM表示将 进行循环移位 (cyclic shift)得到 ; ,其中位移 (shift) 大小为 n, n>\; 2 =( 2+")modM表示将2进行循环移位得到 Λ, 其中位移 (shift) 大小也是 n。 其中所述循环移位对应一个总长度为 M的序列: 0,1,2, ...,M-1。 与之相对应, 第二参考信号配置中包含的两个天线端口子集所用的资源单元 组 REG.和 ?EG.可以由第一参考信号配置中包含的两个天线端口子集所用的 资源单元组 REGi 和 REGi 相对于一个长度为 M的资源单元组序列
^<¾,^ ,....,^<^— i循环移位得到, 其中位移为 n个资源单元组位置, 〃≥1。
基于第一参考信号配置中包含的两个天线端口子集所用的资源单元组, 第 二参考信号配置中包含的两个天线端口子集所用的资源单元组也可以通过以 下关系得到 其中 ji =i2意味着 REGj、 =REGh ,此时,第一参考信号配置在所述第一 RB对中所 用的资源单元组和第二参考信号配置在所述第二 RB对中所用的资源单元组相 同; 同理 =4, 表示第一参考信号配置在所述第二 RB对中所用的资源单元组 和第二参考信号配置在所述第一 RB对中所用的资源单元组相同。 因此, 同时 满足 ; = i2, j2 = 时,相当于第一参考信号配置包含的两个天线端口子集在两个 RB对上所用的资源单元组和第二参考信号配置包含的两个天线端口子集在两 个 RB对上所用的资源组单元进行了交错( interlace )„
需要说明的是, 以上所述方法或者关系可以不限于参考信号配置中的天 线端口集合包含两个天线端口子集的情况, 还可以是参考信号配置中的天线 端口集合包含三个或者更多天线端口子集的情况。 所述参考信号配置所用的 资源单元组之间的关系也不限于循环移位或者交错, 还可以是循环移位和交 错的组合。 以参考信号配置中的天线端口集合包含 K个天线端口子集为例, 第 二参考信号配置中包含的 K个天线端口子集所用的资源单元组 ?E , k = \,..,K 与第一参考信号配置中包含的 K个天线端口子集所用的资源单元组 ?EG,, = ΐ,.., 满足以下关系
jk =(ik+n)modM, k = \,2,...K, K>2 或者
Figure imgf000045_0001
或者
Figure imgf000045_0002
或者 」, 1,2,...,L 2」
' 2」,
Figure imgf000045_0003
K>2
(ik+n)modM, k = Kl+\,...,K 具体的, 以 16个天线端口、 其中的两个天线端口子集分别位于频域上相 邻的两个 RB为例, 分别对常规 CP和扩展 CP下的参考信号配置进行举例说明, 其中 4叚定天线端口子集中的天线端口编号分别为 x,x+l,...,x+7和 x+8, x+9,...,x+15 , 其中 X为起始编号, 例如可以是 x = 15 , 此处不作限定。 为了便 于理解, 通过表格和图示配合进行举例说明。
对于常规 CP, 参考信号配置所用的资源单元以及参考信号配置集合可以 如表一所示:
Figure imgf000046_0001
Figure imgf000046_0002
其中, 子帧类型为 FS1或者 FS2时参考信号配置集合包括 c0-c4共 5种参考 信号配置, 子帧类型为 FS2时参考信号配置集合包括 c20-c22共 3种参考信号配 置, 所述 c0-c4以及 c20-c22为资源配置索引, 其具体取值可以分别为 0-4以及 20-22, c0-c4以及 c20-c22可以联合编码,也可以独立编码。依赖于具体的编码, c0-c4以及 c20-c22的具体取值 , 此处不作限定;
所述¾表示该资源单元所在的 RB对索引, 所述¾可以是系统中的 RB号, 也可以是 RB号相对于指定的 RB号的索引。 表中第一天线端口子集(包含天线 端口号 x~x+7 )所在 RB对索引为¾51^(12 = ,..., , 或者 。,..., x22, 则第一天线端 口子集 (包含天线端口号 x x+7 ) 所在 RB对索引 g mod2 =l-x0,...,l- 或者 1-χ20,...,1 其中 mod表示取模操作, ¾ mod 2表示对¾取模 2的运算值, x。,..., x4或者 x2Q,..., x22取值为 0或者 1。
其中, 表格中分别给出了每个天线端口子集所用的资源单元组中第一个
RE (即 0号 RE)的位置即三元组 (t',/',«smod2)的取值, 每个资源单元组中其他 RE的位置可以基于 0号 RE得到。 在同一个 RB对内, 其它 RE相对于 0号 RE具有 指定的偏移量。 具体的, 资源单元组中各个 RE的位置如图 4a和图 4b所示, 横 向为时域, 以 OFDM符号为单位, 纵向为频域, 以子载波为单位, OFDM符号 0 - 6与 12个子载波组成的 RB位于时隙 0 , 0 F D M符号 7 - 13与 12个子载波组成的 RB位于时隙 1, 二者具有相同的 RB号, 组成一个 RB对。 上面的资源块为第一 个 RB对, 下面的资源块为第二个 RB对, 图中标记数字为 0〜15的 RE即为资源 单元 0〜15的位置, 其中每种参考信号配置中的两个天线端口子集所用的资源 单元组各占用 8个资源单元(RE)。
当子帧类型为 FS1或者 FS2时, 在第一个 RB对中, c0,cl,...,c4号参考信号 配置占用的资源单元组分别如式( 1 )-(5)所示;在第二个 RB对中, c0,cl,...,c4 号参考信号配置占用的资源单元组分别如(2) - (5), (1)所示。 其中, 每个 参考信号配置中两个天线端口子集所用的资源单元组 REG组成一个 REG对, 用 ( ^G^REG!)表示,则 c0,cl,...,c4号参考信号配置中两个天线端口子集所用的
REG对依次分别为 REG0 , REG, ), [REG, , REG2 ), (REG2 , REG3 ), (REG3 , REG4 ),
(REG4,REG0) , 其中^^ , = 0,1,..,4分别如(1) - (5)所示。 应注意到, 其中所 述任何一个参考信号配置所用的 REG对是另外一个参考信号配置所用的 REG 对循环移位, 例如 ( ^Gp ^ )相对于 ( G^ ^ )的移位为 1, ( ^G4, ?EG。)相 对于 ( REG0 , REG, )的移位为 4。
当子帧类型为 FS2时,在第一个 RB对中, c20,c21,c22号参考信号配置占用 的资源单元组分别如(25) - (27)所示; 在第二个 RB对中, c20,c21,c22号参 考信号配置占用的资源单元组分别如(26), (27)和(25)所示。即 c20,c21,c22 号参考信号配置中两个天线端口子集所用的 REG对依次分别为 (?。 , ^Gj, (REG^REG^, (REG2,REG0) , 其中 ?EG,., = 0,1,2分另1 J如( 25 ) - ( 27 )所示。 应注 意到, 其中所述任何一个参考信号配置所用的 REG对是另外一个参考信号配 置所用的 REG对循环移位, 例如 ( ^Gp ^ )相对于 ( ?E(?。, WE )的移位为 1 ,
(REG2 , REG0 )相对于 {REG0 , REG, )的移位为 2。
可选的, 对于常规 CP, 参考信号配置所用的资源单元以及参考信号配置 集合还可以如表二所示:
Figure imgf000048_0001
Figure imgf000048_0002
当子帧类型为 FS1或者 FS2时, c0,cl,...,c4号参考信号配置中两个天线端口子集 所用的 REG对依次分别为 REG0,REG4), {REG REG2), (REG2,REG3), [REG^REG,),
(REG4,REG0)„ 其中^¾?,., = 0,1,..,4分别如(1) - (5)所示。 应注意到, c0和 c4 号参考信号配置所用的 REG互为交错; cl,c2和 c3参考信号配置所用的 REG互 为循环移位。
当子帧类型为 FS2时, 其中 c20,c21,c22号参考信号配置中两个天线端口子 集所用的 REG对依次分别为 ( IEG0 , REG, ), (REG, , REG2 ), (REG2 , REG0 ), 其中
^ , = 0,1,2分别如 (25) - (27) 所示。 应注意到, c20,c21和 c22号参考信号 配置所用的 REG互为循环移位。 可选的, 对于常规 CP, 参考信号配置所用的资源单元以及参考信号配置 集合还可以如表三所示: 信配
考号置 表三
天线端口数为 16 天线端口号 x~x+7 天线端口号 x+8~x+15
mod2,«smod2) (¾gmxl2,«smDd2)
FS1 cO (9,5) xo,0) (9,5) (1-X4,1) 或者 FS2 cl (11,2) xi,l) (7,2) (1-X3,D
c2 (9,2) x2,l) (11,2) (l-xi,l)
c3 (7,2) x3,l) (9,2) (1-X2,D
c4 (9,5) X4,l) (9,5) (l-xo,0)
FS2 c20 (lU) X20,l) (7,1) (1-X22,1)
c21 X21,D iiUl (1-X20,1)
c22 (7,1) X22,l) (9,1) (1-X21,1)
其中, 表三中各个参数的具体含义同表一相同或者类似, 此处不赘述。 当子帧类型为 FS1或者 FS2时, c0,cl,...,c4号参考信号配置中两个天线端口子集 所用的 REG对依次分别为 REG0,REG4), (REG^REG,), {REG2,REG , (REG3,REG2),
(REG4,REG0) , 其中^¾?,., = 0,1,..,4分别如(1 ) - (5)所示。 应注意到, cO和 c4 号参考信号配置所用的 REG互为交错; cl,c2和 c3参考信号配置所用的 REG互 为循环移位。
当子帧类型为 FS2时, 其中 c20,c21,c22号参考信号配置中两个天线端口子 集所用的 REG对依次分别为 REG0 , REG2 ), (REG, , REG0 ), (REG2 , REG, ) , 其中 ^ , = 0,1,2分别如 (25) - (27) 所示。 应该注意到, c20,c21和 c22号参考信 号配置所用的 REG互为循环移位。
可选地, 对于扩展 CP, 参考信号配置所用的资源单元以及参考信号配置 :合还可以 ^口表四所示: 表四
Figure imgf000050_0002
其中, 子帧类型为 FS1或者 FS2时参考信号配置集合包括 c0-c3共 4种参考 信号配置, 子帧类型为 FS2时参考信号配置集合包括 cl6-cl8共 3种参考信号配 置, 所述 c0-c3以及 cl6-cl8为资源配置索引, 其具体取值可以分别为 0-3以及 16-18, c0-c4以及 cl6-cl8可以联合编码,也可以独立编码。依赖于具体的编码, c0-c3以及 c 16-C18的具体取值, 此处不作限定。
所述¾表示该资源单元所在的 RB对索引, 所述¾可以是系统中的 RB号, 也可以是 RB号相对于指定的 RB号的索引。 表中第一天线端口子集(包含天线 端口号 x~x+7 )所在 RB对索引为¾5
Figure imgf000050_0001
= ,..., , 或者 Xl6,..., Xl8, 则第一天线端 口子集 (包含天线端口号 x〜x+7 ) 所在 RB对索引 « jg mod2 =l-x0,...,l- X3 , 或者
1 -X16, . . . , 1 - X18。 Χθ,… , Χ3或者 X16, . . · , Χ18取值为 0或者 1。
其中, 表格中分别给出了每个天线端口子集所用的资源单元组中的第一 个 RE(即 0号 RE)的位置即三元组、k 'J ', ns mod 2)的取值, 每个资源单元组中其他
RE的位置可以基于 0号 RE得到。 在同一个 RB对内, 其它 RE相对于 0号 RE具有 指定的偏移量。 具体的, 资源单元组中各个 RE的位置如图 5a和图 5b所示, OFDM符号 0-5与 12个子载波组成的 RB位于时隙 0, OFDM符号 6-11与 12个子载 波组成的 RB位于时隙 1 , 二者具有相同的 RB号, 组成一个 RB对。 上面的资源 块为第一个 RB对, 下面的资源块为第二个 RB对, 图中标记数字为 0〜15的 RE 即为资源单元 0〜15的位置, 其中, 每种参考信号配置中的两个天线端口子集 所用的资源单元组各占用 8个资源单元(RE)。
当子帧类型为 FS1或者 FS2时,在第一个 RB对中, c0,cl,c2,c3号配置占用 的资源单元组分别如( 52) - ( 55 )所示。 在第二个 RB对中, c0号配置占用的 资源单元组为分别如( 53 ) - ( 55 )和(52)所示。 其中, 每个参考信号配置 中两个天线端口子集所用的资源单元组 REG组成一个 REG对, 用 ( iEG^REG^ 表示, 则 c0,cl,...,c3号参考信号配置中两个天线端口子集所用的 REG对依次分 别为 ( ^G^ ^Gj, {REG REG2), (REG2,REG3), (REG3,REG0) ,其中 ?EG,., = 0,1,..,3 分别如( 52) - ( 55 )所示。 应注意到, c0〜c3号参考信号配置所用的 REG互为 循环移位。
当子帧类型为 FS2时,在第一个 RB对中, cl6,cl7,cl8号配置占用的资源单 元组分别如 (64), ( 65 )和(66) 所示。 在第二个 RB对中, cl6,cl7,cl8号配 置占用的资源单元组分别如( 65 ), (66)和(64)所示。 其中, cl6,cl7,cl8 号参考信号配置中两个天线端口子集所用的 REG对依次分别为 (?。 , ^Gj, (REG REG2), (REG2,REG0) , 其中 ?EG,., = 0,1,2分另1 J如( 64 ) - ( 66 )所示。 应注 意到, cl6〜cl8号参考信号配置所用的 REG互为循环移位。 可选地, 对于扩展 CP, 参考信号配置所用的资源单元以及参考信号配置 集合还可以如表五所示:
表五
参考 天线端口数为 16
信号
配置
天线端口号 x~x+7 天线端口号 x+8~x+15
{k',l') {k' ') (¾gmxl2,«smDd2)
FS1 c0 (11,4) (xo,0) (10,4) (l-x2,0) 或者 FS2 cl (9,4) (xi,0) (9,4) (l-x3,l)
c2 (10,4) (X2,D (11,4) (l-xo,l)
c3 (9,4) (X3,D (9,4) (l-xi,0)
cl6 (ΐι,ΐ) (Xl6,l) (ιο,ι) (l- xi7,l)
FS2 cl7 (ΐο,ΐ) ( ιν,Ι) (9,1) (1- X18,1)
cl8 (9,1) (Xl8,l) (lU) (1- X16,1) 其中, 表五中各个参数的具体含义同表四相同或者类似, 此处不赘述。 当子帧类型为 FS1或者 FS2时,其中, c0,cl,...,c3号参考信号配置中两个天线端 口子集所用的 REG对依次分别为 ( (?。, <¾), (REG、,REG3、, (REG2,REG0) ,
(REG,, REG,) , 其中 ?EG,., = 0,l,..,3分别如( 52) - ( 55 )所示。 应注意到, c0〜c3 号参考信号配置所用的 REG互为循环移位。
当子帧类型为 FS2时, 其中, cl6,cl7,cl8号参考信号配置中两个天线端口 子集所用的 REG对依次分别为 ( ?E(?。, WEGJ, (REG^REG,), (REG2,REG0) , 其中 ?EG,., = 0,1,2分别如 (64) - (66) 所示。 应注意到, cl6〜cl8号参考信号配置 所用的 REG互为循环移位。 可选地, 对于扩展 CP, 参考信号配置所用的资源单元以及参考信号配置 集合还可以如表六所示:
Figure imgf000052_0001
当子帧类型为 FS1或者 FS2时,其中, c0,cl,...,c3号参考信号配置中两个天线端 口子集所用的 REG对依次分别为 ( (?。, <¾), (REG、,REG3、, (REG2,REG0) ,
(REG,, REG,) , 其中 ?EG,., = 0,l,..,3分别如 ( 52 ) - ( 55 ) 所示。 应注意到, c0和 c2号参考信号配置所用的 REG互为交错, cl和 c3号参考信号配置所用的 REG 互为交错。
当子帧类型为 FS2时, 其中, cl6,cl7,cl8号参考信号配置中两个天线端口 子集所用的 REG对依次分别为 ( ?E(?。, ?EG2), (REG^REG,), (REG^REG,) , 其中 ?EG,., = 0,1,2分别如 (64) - (66) 所示。 应注意到, cl6〜cl8号参考信号配置 所用的 REG互为循环移位。 可选地, 对于扩展 CP, 参考信号配置所用的资源单元以及参考信号配置 集合还可以如表七所示: 表七
Figure imgf000053_0001
当子帧类型为 FS1或者 FS2时,其中, c0,cl,...,c3号参考信号配置中两个天线端 口子集所用的 REG对依次分别为 [REG0 , REG, ), {REG, , REG0 ), (REG2 , REG, ),
(REG3,REG2) , 其中 ?EG,., = 0,l,..,3分别如 ( 52) - ( 55 )所示。 应意到, c0和 cl 号参考信号配置所用的 REG互为交错, c2和 c3号参考信号配置所用的 REG互为 交错。
当子帧类型为 FS2时, 其中, cl6,cl7,cl8号参考信号配置中两个天线端口 子集所用的 REG对依次分别为 ( ?E(?。, ?EG2), (REG^REG,), (REG^REG,) , 其中 ?EG,., = 0,1,2分别如 (64) - (66) 所示。 应注意到, cl6〜cl8号参考信号配置 所用的 REG互为循环移位。
303、 用户设备根据确定的参考信号配置得到天线端口集合中的天线端口 上发送参考信号所用的资源单元 RE的位置。
304、 基站根据发送的参考信号配置所指示的参考信号配置, 在所述参考 信号配置对应的天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置, 向用户设备发送参考信号。
305、 用户设备在基站发送参考信号所用的 RE的位置接收参考信号。 需要说明的是, 本实施例中描述的参考信号的传输方法所使用的参考信 号是以 CSI RS ( Channel State Information Reference signal, 信道状态信息参考 信号) 为例, 本实施例并不对所使用的参考信号的具体类型进行限定。 对于 DMRS以及 CRS等其他类型的参考信号,同样可以根据本实施例所述的方法得 到相应的参考信号配置或者参考信号图案 (pattern ), 其中参考信号配置或者 参考信号图案中包含至少两个天线端口子集, 所述天线端口子集在不同的 RB 对内使用的资源单元组互不相交; 进一步地, 其中一个参考信号配置或者参 考信号图案所用的资源单元组是另一个参考信号配置或者参考信号图案所用 的资源单元组的循环移位或者交错。
以 DMRS为例, 以 16个天线端口, 包含两个天线端口子集, 其中每个天线 端口子集个含有 8个天线端口。
对于帧结构类型 FS1 , 釆用与上述 CSI RS实施例类似的方法, 可以基于资 源单元组集合 ^得到 DMRS的参考信号配置或者参考信号图案中各个天线端 口子集所用的资源单元组。 例如, 资源单元组集合^ 4 = { ?EG,小 · = 0,1,2}, 其中
REG, = {(11,5,0), (11,6,0), (11,5,1), (11,6,1), (10,5,0), (10,6,0), (10,5,1), (10,6,1) } ; REG, = {(6,5,0), (6,6,0), (6,5,1), (6,6,1), (5,5,0), (5,6,0), (5,5,1), (5,6,1) } ;
2 = {(1,5,0), (1,6,0), (1,5,1), (1,6,1), (0,5,0), (0,6,0), (0,5,1), (0,6,1) } ;
再如, 对于帧结构类型 FS2, 对于 LTE特殊子帧配置 1,2,6,7, 可以基于以 下资源单元组集合 ^得到 DMRS的参考信号配置或者参考信号图案中各个天 线端口子集所用的资源单元组: 资源单元组集合^ = | = 0, 1, 2}, 其中 REG, = {(11,2,0),(11,3,0), (11,5,0), (11,6,0), (10,2,0), (10,3,0), (10,5,0),(10,6,0) } ; REG, = {(6,2,0), (6,3,0), (6,5,0), (6,6,0), (5,2,0), (5,3,0), (5,5,0), (5,6,0) } ;
2 = {(1,2,0), (1,3,0), (1,5,0), (1,6,0), (0,2,0), (0,3,0), (0,5,0), (0,6,0) } ;
对于 LTE特殊子帧配置 3 ,4,8,9, 可以基于以下资源单元组集合 ^得到 DMRS的参考信号配置或者参考信号图案中各个天线端口子集所用的资源单 元组: 资源单元组集合^ = ^ = 0,1, 2}, 其中,
REG, = {(11,2,0), (11,3,0), (11,2,1), (11,3,1), (10,2,0), (10,3,0), (10,2,1), (10,3,1) } ; REG, = {(6,2,0), (6,3,0), (6,2,1), (6,3,1), (5,2,0), (5,3,0), (5,2,1), (5,3,1) } ;
^ = {(1,2,0), (1,3,0), (1,2,1), (1,3,1), (0,2,0), (0,3,0), (0,2,1), (0,3,1) }。
基于上述资源单元组集合 A, 得到各个 DMRS的参考信号配置或者参考信 号图案的过程, 此处不再赘述。
需要进一步说明的是, 以上所述 RB或者 RB对以及表一至表七中的 RB可 以位于相同的子帧或者时隙, 也可以位于不同子帧或者时隙内或者不同子帧 或者时隙与子带的组合。
此外, 需要进一步指出的是, 所述天线端口子集中的一个天线端口可以 使用所述资源单元组中的一个资源单元; 以 8个天线端口 x〜x+7构成的天线端 口子集为例,假定该天线端口子集所用的资源单元组由 RE0〜 RE7共 8资源单元 ( RE )构成, 则在天线端口 X , x+1 , x+7上发送参考信号使用的 RE可以 分别为 REO, RE1 , RE2, RE7;
另外, 天线端口子集中的不同天线端口上发送参考信号也可以通过码分 复用 ( Code Division Multiplexing, 简称 CDM )方式使用所述天线端口所用的 资源单元组中的多个资源单元。 以 8个天线端口 x〜x+7构成的天线端口子集为 例 , 假定该天线端口子集所用的资源单元组由 RE0〜 RE7共 8个资源单元( RE ) 构成, 则在天线端口 X上发送参考信号使用的 RE为 RE0和 RE1 , 天线端口 x+1 上发送参考信号使用的 RE也是 RE0和 RE1 , 两个参考信号通过码分复用 CDM 的方式使用 RE0和 RE1 , 例如二者分别使用码 [1 , 1]和 [1 , -1]。 类似地, x+2 和 x+3可以通过码分复用 CDM方式使用 RE2和 RE3 , ..., x+6和 x+7可以通过码 分复用 CDM方式使用 RE6和 RE7。 再如: 天线端口 x〜x+3可以通过码分复用 CDM方式使用 REO, RE1 , RE2和 RE3 , 天线端口 x+4〜x+7可以通过码分复用 CDM方式使用 RE4, RE5 , RE6和 RE7 , 其中天线端口 x〜x+3上或者 x+4〜x+7 发射参考信号所用的码可以分别为 [1,1, 1,1], [1,-1,1,-1], [1,1,-1,-1]和 [1,-1,-1,1]。 以 CDM码分复用 CDM方式使用多个资源单元发射和接收参考信号或者数据 是现有技术, 此处不赘述。
与现有技术相比, 本发明实施例中基站向用户设备发送参考信号资源配 置信息, 所述参考信号资源配置信息包括天线端口数信息和资源配置索引; 用户设备根据所接收的天线端口数信息和资源配置索引从参考信号配置集合 中确定一个参考信号配置, 所述参考信号配置对应的天线端口集合包含的两 个天线端口子集中的天线端口上发送参考信号所用的 RE位于两个不同的资源 块 RB对内; 用户设备根据确定的所述参考信号配置得到所述天线端口集合中 的天线端口上发送参考信号所用的资源单元 RE的位置; 基站在该资源单元 RE 的位置上向用户设备发送参考信号; 用户设备根据所述 RE的位置接收基站发 送的所述参考信号。 能够解决现有的参考信号不支持 8个以上天线口数的问 题, 为 8个以上天线口数的天线配置提供了可行的参考信号配置的设计方案; 同时, 所述两个天线端口子集在两个 RB对内所用的资源单元组互不相交, 一 方面, 可以在重用已有 (Legacy ) 系统的 CSI RS占用的 RE位置的同时减少对 同一小区内 legacy UE的干扰; 另一方面, 多个不同的参考信号配置在两个 RB 对内所用的资源单元组互不相交可以降低小区间参考信号造成的干扰, 即降 低所谓导频污染(Pilot Contamination ), 从而提高信道状态信息测量或者数据 解调的效率, 提高系统的吞吐量。 本发明又一实施例提供一种用户设备 40, 如图 6所示, 所述用户设备 40包 括:
接收单元 41 , 用于接收基站发送的参考信号资源配置信息, 所述参考信 号资源配置信息包括天线端口数信息和资源配置索引;
确定单元 42, 用于根据所述接收单元 41接收的所述天线端口数信息和所 述资源配置索引从参考信号配置集合中确定一个参考信号配置, 其中, 所述 参考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资 源单元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考信号 配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线端口 子集: 其中, 第一天线端口子集中的天线端口上发送参考信号所用的 RE位于 第一资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于所述第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
位置获取单元 43 , 用于根据所述确定单元 42确定的所述参考信号配置得 到所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位 置;
所述接收单元 41还用于根据所述位置获取单元 43得到的所述 RE的位置接 收所述参考信号。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。
其中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^ e REGh e A , ≠ 2;所述集合 ^ = { ?EG,小 · = 0, 1, ..., M— l} , M≥ 2 , 所述集 合 中不同的资源单元组的交集为空集, 和 2分别为所述两 个 RB对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组 表示 RB对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的 位置三元组 ',/', m0d2)的集合, 其中所述 ^表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频 分复用 OFDM符号的索引, 所述 表示该资源单元所在的时隙索引, mod表示 取模操作, "im。d2表示对 取模 2的运算值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REG , REG. e A, REGh eA , jx≠ j2 , j j2 e {0,l,..., -l}; 其中 ii,i2,ji和 j2满足下述至少一种关系: = + n)modM, j2 = (i2 + n)modM或
Figure imgf000058_0001
其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。 此时, 对于 eNB如何通知已有 ( Legacy ) UE和 LTE R12以及未来系统中的 UE接收的 CSI RS以及 UE如何进 行正确的速率匹配, 从而使得所述参考信号配置可以在重用 LTE R10系统的 CSIRS占用的 RE位置的同时减少对同一小区内已有(Legacy) UE的干扰, 见 前面实施例步骤 102中所述, 此处不进一步赘述。
此外, 以两个小区为例, 对于如何在两个小区内通知 UE使用参考信号配 置接收 CSI RS, 从而有效避免所谓导频污染以及邻小区 CSI RS对 PDSCH造成 干扰, 见前面实施例步骤 102中所述, 此处不进一步赘述。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/',"smod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(1 ) - ( 5 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A或者资源单元组可用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(25 ) - ( 27 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以如式(34 ) - ( 36 )所示的以下资源单元组中的两个或 者多个。
对于 LTE特殊子帧配置 3, 4,8,9,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如式(43 ) - ( 45 )所示的资源单元组中的两个或 者多个。
可选的, 对于常规 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表一或者表二或者表三所示, 相关描述请参考该 实施例, 此处不进一步赘述。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 W,/',"s m0d2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式( 52 ) - ( 55 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组适用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/',"s mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(64 ) - ( 66 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
可选的, 对于扩展 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表四、 表五、 表六或者表七所示, 相关描述请参 考该实施例, 此处不进一步赘述。
与现有技术相比, 本发明实施例中用户设备 40接收基站发送的参考信号 资源配置信息, 所述参考信号资源配置信息包括天线端口数信息和资源配置 索引; 用户设备 40根据所接收的所述天线端口数信息和所述资源配置索引从 参考信号配置集合中确定一个参考信号配置, 所述参考信号配置对应的天线 端口集合包含的两个天线端口子集中的天线端口上发送参考信号所用的 RE位 于两个不同的资源块 RB对内; 用户设备 40根据确定的所述参考信号配置得到 所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置并 根据所述 RE的位置接收基站发送的所述参考信号。 能够解决现有的参考信号 不支持 8个以上天线口数的问题, 为 8个以上天线口数的天线配置提供了可行 的参考信号配置的设计方案; 同时, 所述两个天线端口子集在两个 RB对内所 用的资源单元组互不相交, 一方面, 可以在重用已有(Legacy )系统的 CSI RS 占用的 RE位置的同时减少对同一小区内已有( Legacy ) UE的干扰; 另一方面, 小区间参考信号造成的干扰, 即降低所谓导频污染, 从而提高信道状态信息 的测量效率, 提高系统的吞吐量。 本发明又一实施例提供一种基站 50, 如图 7所示, 所述基站 50包括: 发送单元 51 , 用于向用户设备发送参考信号资源配置信息, 其中所述参 考信号资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数 信息和所述资源配置索引用于指示参考信号配置集合中的一个参考信号配 置, 所述参考信号配置用于指示天线端口集合中的天线端口上发送参考信号 所用的资源单元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参 考信号配置对应的天线端口集合中至少包含两个天线端口子集, 其中第一天 线端口子集中的天线端口上发送参考信号所用的资源单元 RE位于第一资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
确定单元 52, 用于根据所述发送单元 51发送的所述参考信号配置所指示 的参考信号配置, 确定所述参考信号配置对应的天线端口集合中的天线端口 上发送参考信号所用的资源单元 RE的位置; 设备发送参考信号。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。
其中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^ e REGh e A , ≠ 2;所述集合 ^ = { ?EG,小 · = 0, 1, ..., M— l} , M≥ 2 , 所述集 合 中不同的资源单元组的交集为空集, 和 2分别为所述两 个 RB对内所用的资源单元组 REG的索引;
所述集合 ^中的每一个资源单元组表示 RB对内可用于发送参考信号所用 的资源单元 RE相对于其所在的 RB对的位置三元组 / mod 2)的集合, 其中 所述 ^表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该 资源单元在其所在的 RB对内的正交频分复用 OFDM符号的索引, 所述 表示 该资源单元所在的时隙索引, mod表示取模操作, mod 2表示对 取模2的运算 值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 REGh , REG. e A, REGh eA , j,≠ j2,j j2 e {0,1,..., -l}; 其中 ii,i2,ji和 j2满足下述至少一种关系: = + n)modM, j2 = (¾ + n)modM或
Figure imgf000062_0001
其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。 此时, 对于 eNB如何通知已有 ( Legacy ) UE和 LTE R12以及未来系统中的 UE接收的 CSI RS以及 UE如何进 行正确的速率匹配, 从而使得所述参考信号配置可以在重用 LTE R10系统的 CSI RS占用的 RE位置的同时减少对同一小区内已有 (Legacy) UE的干 4尤, 见前面实施例步骤 102中所述, 此处不进一步赘述。
此外, 以两个小区为例, 对于如何在两个小区内通知 UE使用参考信号配 置接收 CSI RS, 从而有效避免所谓导频污染( Pilot Contamination ) 以及邻小 区 CSIRS对 PDSCH造成干扰, 见前面实施例步骤 102中所述, 此处不进一步赘 述。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/',"smod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(1) - (5)所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A或者资源单元组适用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(25) - (27)所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如式(34 ) - ( 36 )所示的资源单元组中的两个或 者多个。
对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如式(43 ) - ( 45 )所示的资源单元组中的两个或 者多个。
可选的, 对于常规 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表一、 表二或者表三所示, 相关描述请参考该实 施例, 此处不进一步赘述。。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 W,/',"s m0d2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式( 52 ) - ( 55 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组适用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如式(64 ) - ( 66 )所示的资源单元组中的两个或者多 个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
可选的, 对于扩展 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表四、 表五、 表六或者表七所示, 相关描述请参 考该实施例, 此处不进一步赘述。
与现有技术相比, 本发明实施例中装置 50向用户设备发送参考信号资源 配置信息, 其中所述参考信号资源配置信息包括天线端口数信息和资源配置 索引, 其天线端口集合包含的两个天线端口子集中的天线端口上发送参考信 号所用的资源单元 RE位于两个不同的资源块 RB对内; 装置 50根据发送的所述 参考信号配置确定天线端口集合中的天线端口上发送参考信号所用的资源单 元 RE的位置并在所述资源单元 RE的位置上向所述用户设备发送参考信号。 能 够解决现有的参考信号不支持 8个以上天线口数的问题, 为 8个以上天线口数 的天线配置提供了可行的参考信号配置的设计方案, 从而提高信道状态信息 的测量效率; 同时, 所述两个天线端口子集在两个 RB对内所用的资源单元组 互不相交, 一方面, 可以在重用已有 (Legacy ) 系统的 CSI RS占用的 RE位置 的同时减少对同一小区内已有(Legacy ) UE的干 4尤; 另一方面, 多个不同的 信号造成的干扰, 即降低所谓导频污染(Pilot Contamination ), 提高系统的吞 吐量。 本发明又一实施例提供一种用户设备 60, 如图 8所示, 所述用户设备 60包 括:
接收器 61 , 用于接收基站发送的参考信号资源配置信息, 所述参考信号 资源配置信息包括天线端口数信息和资源配置索引;
处理器 62, 用于根据所接收的所述天线端口数信息和所述资源配置索引 从参考信号配置集合中确定一个参考信号配置, 其中, 所述参考信号配置用 于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置 信息;
所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参 考信号配置对应的天线端口集合中至少包含两个天线端口子集: 其中, 第一 天线端口子集中的天线端口上发送参考信号所用的 RE位于第一资源块 RB对 内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对 内, 所述第一 RB对与所述第二 RB对不同; 以及, 用于根据所述确定单元确定 的所述参考信号配置得到所述天线端口集合中的天线端口上发送参考信号所 用的资源单元 RE的位置;
所述接收器 61还用于根据所述 RE的位置接收所述参考信号。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。
其中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?E(^ e REGh e A , ≠ 2;所述集合 ^ = { ?EG,小 · = 0,1,...,M— l},M≥ 2 , 所述集 合 中不同的资源单元组的交集为空集, ^^{O^.'M-l^M S , 和 2分别为 所述两个 RB对内所用的资源单元组 REG的索引;
所述集合 ^中的每一个资源单元组表示 RB对内可用于发送参考信号所用 的资源单元 RE相对于其所在的 RB对中的位置 ',/^mod2)的集合, 其中所述 '表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该资源 单元在其所在的 RB对内的正交频分复用 OFDM符号的索引, 所述 表示该资 源单元所在的时隙索引, mod表示取模操作, m。d2表示对 取模 2的运算值。
其中, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线端口子 集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对内所用 的资源单元组为 REGj、,所述第二天线端口子集在所述第二 RB对内所用的资源 卑元组为 REGh , REGA e A , REGh E A , 7 ≠ Λ,Λ,Λ e {0,l,..., -l};
其中 ^ , 和 2满足下述至少一种关系: ^ + modM, j2 =(i2+n)modM 或 j、 = i2, j2 = ii, 其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。 此时, 对于 eNB如何通知已有 ( Legacy ) UE和 LTE R12以及未来系统中的 UE接收的 CSI RS以及 UE如何进 行正确的速率匹配, 从而使得所述参考信号配置可以在重用 LTE R10系统的 CSI RS占用的 RE位置的同时减少对同一小区内已有(Legacy ) UE的干扰, 见 前面实施例步骤 102中所述, 此处不进一步赘述。
此外, 以两个小区为例, 对于如何在两个小区内通知 UE使用参考信号配 置接收 CSI RS, 从而有效避免所谓导频污染( Pilot Contamination ) 以及邻小 区 CSI RS对 PDSCH造成干扰, 见前面实施例步骤 102中所述, 此处不进一步赘 述。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/ ',"s mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(1 ) - ( 5 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A或者资源单元组可用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(25 ) - ( 27 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如(34 ) - ( 36 ) 所示的资源单元组中的两个或者 多个。
对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如(43 ) - ( 45 ) 所示的资源单元组中的两个或者 多个。 可选的, 对于常规 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表一、 表二或者表三所示, 相关描述请参考该实 施例, 此处不进一步赘述。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对的 位置用三元组
Figure imgf000067_0001
mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^包括如( 52 ) - ( 55 ) 所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/',"s mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(64 ) - ( 66 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
可选的, 对于扩展 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表四、 表五、 表六或者表七所示, 相关描述请参 考该实施例, 此处不进一步赘述。
与现有技术相比, 本发明实施例中用户设备 60接收基站发送的参考信号 资源配置信息, 所述参考信号资源配置信息包括天线端口数信息和资源配置 索引; 用户设备 60根据所接收的所述天线端口数信息和所述资源配置索引从 参考信号配置集合中确定一个参考信号配置, 所述参考信号配置对应的天线 端口集合包含的两个天线端口子集中的天线端口上发送参考信号所用的 RE位 于两个不同的资源块 RB对内; 用户设备 60根据确定的所述参考信号配置得到 所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置并 根据所述 RE的位置接收基站发送的所述参考信号。 能够解决现有的参考信号 不支持 8个以上天线口数的问题, 为 8个以上天线口数的天线配置提供了可行 的参考信号配置的设计方案; 同时, 所述两个天线端口子集在两个 RB对内所 用的资源单元组互不相交, 一方面, 可以在重用已有(Legacy )系统的 CSI RS 占用的 RE位置的同时减少对同一小区内 legacy UE的干扰; 另一方面, 多个不 参考信号造成的干扰, 即降低所谓导频污染, 从而提高信道状态信息的测量 效率, 提高系统的吞吐量。 本发明又一实施例提供一种基站 70, 如图 9所示, 所述基站 70包括: 发送器 71 , 用于向用户设备发送参考信号资源配置信息, 其中所述参考 信号资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数信 息和所述资源配置索引用于指示参考信号配置集合中的一个参考信号配置, 所述参考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用 的资源单元 RE的位置信息;
所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参 考信号配置对应的天线端口集合中至少包含两个天线端口子集, 其中第一天 线端口子集中的天线端口上发送参考信号所用的资源单元 RE位于第一资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
处理器 72, 用于根据发送的所述参考信号配置所指示的参考信号配置, 确定所述参考信号配置对应的天线端口集合中的天线端口上发送参考信号所 用的资源单元 RE的位置,
所述发送器 71还用于在所述处理器 72确定的所述位置上向所述用户设备 发送参考信号。
其中,所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位 置或者不同子帧的相同子带内。 其中, 所述第一天线端口子集在所述第一 RB对内所用的资源单元组为 REG,, 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGj , 其中 ?EG, e REG, eA, ≠ 2;所述集合 ^ = { ?EG,小 · = 0,1,...,M- l},M≥ 2 , 所述集 合 中不同的资源单元组的交集为空集, 和 2分别为所述两 个 RB对内所用的资源单元组 REG的索引;
所述集合 ^中的每一个资源单元组表示 RB对内可用于发送参考信号所用 的资源单元 RE相对于其所在的 RB对的位置三元组 / mod 2)的集合, 其中 所述 ^表示该资源单元 RE在其所在的 RB对内的子载波的索引, 所述 /'表示该 资源单元在其所在的 RB对内的正交频分复用 OFDM符号的索引, 所述 表示 该资源单元所在的时隙索引, mod表示取模操作, mod2表示对 取模2的运算 值。
进一步地, 所述参考信号配置集合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口集合中至少包含所述第一天线 端口子集和所述第二天线端口子集, 所述第一天线端口子集在所述第一 RB对 内所用的资源单元组为 REGA, 所述第二天线端口子集在所述第二 RB对内所用 的资源单元组为 ?E<¾ , REGA eA, REGj2 eA ,
Figure imgf000069_0001
-\};
其中 ^ , 和 2满足下述至少一种关系: ^ + modM, j2 =(i2+n)modM 或 j、 = i2, j2 = ii, 其中, n表示取值为整数的移位( shift )。
具体地, 所述集合 ^中不同的资源单元组可以是 LTE R10系统中不同的 8 天线端口上发送 CSI RS所用的 RE的位置集合。 此时, 所述两个天线端口子集 在两个 RB对内所用的资源单元组互不相交。 此时, 对于 eNB如何通知已有 ( Legacy ) UE和 LTE R12以及未来系统中的 UE接收的 CSI RS以及 UE如何进 行正确的速率匹配, 从而使得所述参考信号配置可以在重用 LTE R10系统的 CSIRS占用的 RE位置的同时减少对同一小区内已有(Legacy) UE的干扰, 见 前面实施例步骤 102中所述, 此处不进一步赘述。
此外, 以两个小区为例, 对于如何在两个小区内通知 UE使用参考信号配 置接收 CSI RS, 从而有效避免所谓导频污染( Pilot Contamination ) 以及邻小 区 CSI RS对 PDSCH造成干扰, 见前面实施例步骤 102中所述, 此处不进一步赘 述。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 t',/ ',"s mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(1 ) - ( 5 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A或者资源单元组可用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为常规 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(25 ) - ( 27 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合 A可用于子帧类型 FS2。
对于 LTE特殊子帧配置 1 ,2,6,7,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如(34 ) - ( 36 ) 所示的资源单元组中的两个或者 多个。
对于 LTE特殊子帧配置 3,4,8,9,以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^还可以包括如(43 ) - ( 45 ) 所示的资源单元组中的两个或者 多个。
可选的, 对于常规 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表一、 表二、 表三所示, 相关描述请参考该实施 例, 此处不进一步赘述。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对的 位置用三元组
Figure imgf000070_0001
mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述资 源单元组集合 ^包括如( 52 ) - ( 55 ) 所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS1或者 FS2。
可选的, 当循环前缀 CP为扩展 CP时, 资源单元 RE相对于其所在的 RB对 的位置用三元组 mod2)表示, 以每个资源单元组含有 8个 RE为例, 所述 资源单元组集合 ^包括如(64 ) - ( 66 )所示的资源单元组中的两个或者多个。 其中, 所述资源单元组集合或者资源单元组可用于子帧类型 FS2。
可选的, 对于扩展 CP, 参考信号配置所用的资源单元组以及参考信号配 置集合可以如前面实施例中表四、 表五、 表六或者表七所示, 相关描述请参 考该实施例, 此处不进一步赘述。
与现有技术相比, 本发明实施例中基站 70向用户设备发送参考信号资源 配置信息, 其中所述参考信号资源配置信息包括天线端口数信息和资源配置 索引, 其天线端口集合包含的两个天线端口子集中的天线端口上发送参考信 号所用的资源单元 RE位于两个不同的资源块 RB对内;基站 70根据发送的所述 参考信号配置确定天线端口集合中的天线端口上发送参考信号所用的资源单 元 RE的位置并在所述资源单元 RE的位置上向所述用户设备发送参考信号。 能 够解决现有的参考信号不支持 8个以上天线口数的问题, 为 8个以上天线口数 的天线配置提供了可行的参考信号配置的设计方案; 同时, 所述两个天线端 口子集在两个 RB对内所用的资源单元组互不相交, 一方面, 可以在重用已有 ( Legacy ) 系统的 CSI RS占用的 RE位置的同时减少对同一小区内已有 ( Legacy ) UE的干扰; 另一方面, 多个不同的参考信号配置在两个 RB对内所 用的资源单元组互不相交可以降低小区间参考信号造成的干扰, 即降低所谓 导频污染(Pilot Contamination ), 从而提高信道状态信息的测量效率, 提高系 统的吞吐量。
本发明实施例提供的参考信号的传输装置可以实现上述提供的方法实施 例, 具体功能实现请参见方法实施例中的说明, 在此不再赘述。 本发明实施 例提供的参考信号的传输方法及装置可以适用于 LTE系统中参考信号的发送, 但不仅限于此。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存^ |i己忆体 ( Random Access Memory, RAM )等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求的保护范围为准。

Claims

权利要求 书
1、 一种参考信号的传输方法, 其特征在于, 包括:
接收基站发送的参考信号资源配置信息 , 所述参考信号资源配置信息包括 天线端口数信息和资源配置索引;
根据所述天线端口数信息和所述资源配置索引从参考信号配置集合中确定 一个参考信号配置, 其中, 所述参考信号配置用于指示天线端口集合中的天线 端口上发送参考信号所用的资源单元 RE的位置信息; 所述参考信号配置集合中 至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线端口集合 中至少包含两个天线端口子集: 其中, 第一天线端口子集中的天线端口上发送 参考信号所用的 RE位于第一资源块 RB对内, 第二天线端口子集中的天线端口上 发送参考信号所用的 RE位于第二 RB对内,所述第一 RB对与所述第二 RB对不同; 根据确定的所述参考信号配置得到所述天线端口集合中的天线端口上发送 参考信号所用的资源单元 RE的位置;
根据所述 RE的位置接收所述参考信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一 RB对和所述第二 RB 对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述第一天线端口子集在 所述第一 RB对内所用的资源单元组为 , 所述第二天线端口子集在所述第二 RB对内所用的资源单元组为 REGk , 其中 REGk e A, REGh e A , ¾≠ i2; 所述集合 A = {REG, \i = 0,l, ..., -l} , > 2 , i i2 e {θ, ..., -l} , ¾和 i2分别为所述两个 RB对内所 用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB对内可 用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元组 (k l ns mod 2)的集合, 其中所述 表示该资源单元 RE在其所在的 RB对内的子载 波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM符 号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, mod2表 示对 取模 2的运算值。
4、 根据权利要求 3所述的方法, 其特征在于, 所述参考信号配置集合中至 少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端口 集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述第一天 线端口子集在所述第一 RB对内所用的资源单元组为 REGA, 所述第二天线端口子 集在所述第二 RB对内所用的资源单元组为 REGh , REGA e A, REGh e A ,
Figure imgf000074_0001
j2 ,
..., M - l} ; 其中 , 和 Λ满足下述至少一种关系:
Figure imgf000074_0002
(¾ + ")m。dM, j2 = (i2 + ")m。dM, 或 = i2, j2 = , 其中, n表示取值为整数 的移位。
5、 根据权利要求 3或 4所述的方法, 其特征在于, 当循环前缀 CP为常规 CP 时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG p = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)} ; REG p = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) } ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
6、 根据权利要求 3或 4所述的方法, 其特征在于, 当循环前缀 CP为常规 CP 且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以 下资源单元组中的两个或者多个:
REGNCP,FSI = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)} ; REGNCP,FSI = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)} ; REGNCP,FS2 = ?山丄),(7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
7、 根据权利要求 3或 4所述的方法, 其特征在于, 当循环前缀 CP为扩展 CP 时, 所述资源单元组集合 包括以下资源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)};
REG p = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
8、 根据权利要求 3或 4所述的方法, 其特征在于, 当循环前缀 CP为扩展 CP 且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下资源单 元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)}; REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)}; REG2 ECP'FS2 = {{9,\,\), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
9、 根据权利要求 5所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 )
Figure imgf000075_0001
为 (^REG^REG 或
[REG cp ,REG p) 或 REG p ,REG3 NCP、 ^REG3 NCP 'REG ) ^REG CP ,REG cpj。
10、 根据权利要求 6所述的方法, 其特征在于, 第一所述参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?EG , REG )为 (REG^P'FS1 , REG^CP'FS2 )或 {REG CP'FS2,REG P'FS1) 或 ( ?EC f )。
11、 根据权利要求 5所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对、REGk,REGh )为 (REG , REG pj或
,REG cp)j。
Figure imgf000075_0002
12、 根据权利要求 6所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?EG , REGh )为 REG CP'FS2 , REG2 NCP'FS1 )或
(REG^CP'FS2,REG^CP'FS2) 或 ( ?EG p'ra2, ?EG cp'ra2)。
13、 根据权利要求 5所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 REGk,REGh )为 (REG CP ,REG CP
Figure imgf000076_0001
REG CP ,REG cp)j。
14、 根据权利要求 7所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?E , ?EG,2)为 (^REG^P'REGf 或
[REG CP ,REG2 ECP) 或 REG CP ,REG3 ECP) ^REG3 ECP ,RE CP)。
15、 根据权利要求 8所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?EG , REG )为 REG CP'FS1 , REG cp'FS1 )或
Figure imgf000076_0002
16、 根据权利要求 7所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 REG ,REG cp)或
17、 根据权利要求 8所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?EG , REGh )为 (REG FS2 , REG2 ECP'FS1 )或
Figure imgf000076_0003
2)1。
18、 根据权利要求 7所述的方法, 其特征在于, 所述第一参考信号配置中两 个天线端口子集所用的资源单元组对 ( ?E , ?EG,2)为 (^REG^P'REGf 或
[REG CP ,REG0 ECP) 或 REG CP ,REG3 ECP) ^REG3 ECP ,REG CP)。
19、 一种参考信号的传输方法, 其特征在于, 包括:
向用户设备发送参考信号资源配置信息 , 其中所述参考信号资源配置信息 包括天线端口数信息和资源配置索引, 所述天线端口数信息和所述资源配置索 引用于指示参考信号配置集合中的一个参考信号配置, 所述参考信号配置用于 指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置信 息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参考 信号配置对应的天线端口集合中至少包含两个天线端口子集, 其中第一天线端 口子集中的天线端口上发送参考信号所用的 RE位于第一资源块 RB对内, 第二天 线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
根据所述参考信号配置信息所指示的参考信号配置, 确定所述参考信号配 置对应的天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位 置;
在所述位置上向所述用户设备发送参考信号。
20、 根据权利要求 19所述的方法, 其特征在于, 所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
21、 根据权利要求 19或 20所述的方法, 其特征在于, 所述第一天线端口子 集在所述第一 RB对内所用的资源单元组为 ?EG,., 所述第二天线端口子集在所述 第二 RB对内所用的资源单元组为 ?EG , 其中 ?E<^ e REGh e A , i,≠ i2; 所述集 ^A = {REGi\i = Q,\,...,M-\},M>2 , 1? 2 e {0,..., -l} , 和2分别为所述两个 RB对内 所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB对内 可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元组 (k l ns mod 2)的集合, 其中所述 A '表示该资源单元 RE在其所在的 RB对内的子载 波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM符 号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, mod2表 示对 取模 2的运算值。
22、 根据权利要求 21所述的方法, 其特征在于, 所述参考信号配置集合中 至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端 口集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述第一 天线端口子集在所述第一 RB对内所用的资源单元组为 REG , 所述第二天线端口 子集在所述第二 RB对内所用的资源单元组为 REGh , REG . e A, REGh≡A ,
Figure imgf000078_0001
j2, , j2 {0, \, ..., M - l} ; 其 中 , i2 , Λ 满 足 下 述 至 少 一种 关 系 :
Figure imgf000078_0002
= (¾ + n) mod Mf j2 = (/2 + η)να ά Μ, = i2, j2 = i{ , 其中, n表示取值为整数的移 位。
23、 根据权利要求 21或 22所述的方法, 其特征在于, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG CP = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG^CP = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)} ; REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) } ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
24、 根据权利要求 21或 22所述的方法, 其特征在于, 当循环前缀 CP为常规 CP且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括 以下资源单元组中的两个或者多个:
^<^°^2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1),(4,3,1)}; REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)} ; REGNCP,FS2 = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
25、 根据权利要求 21或 22所述的方法, 其特征在于, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)} ;
REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)} ;
REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)} ;
REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
26、 根据权利要求 21或 22所述的方法, 其特征在于, 当循环前缀 CP为扩展 CP且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)};
REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)};
fp'ra2 = {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
27、 根据权利要求 23所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000079_0001
G^ 或 {REG^CP ,REG2 NCP) 或 REG ,REG P、 ^ REG P ,REG cp)j ^REG CP ,REG cp)j。
28、 根据权利要求 24所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (^EG^'FS2,REG 'FS2)l或 (REG^CP'FS2,REG^CP'FS2) 或 (REG p'FS2,REG p'FS
29、 根据权利要求 23所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 „ ^ )为 (^O G^或
[REG cp ,REG^CP) 或 ( ^G ^ ^G )或 ( ?EG p, ?EG p) ^REG CP ,REG cpj。
30、 根据权利要求 24所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG CP'FS2,REG CP'FS2、或
(REG^CP'FS2,REG^CP'FS2) 或 ( ?EC f )。
31、 根据权利要求 23所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对、REGk,REGh )为 (REG , REG pj或
Figure imgf000079_0002
或 ( ^G ^ ^i^03)。
32、 根据权利要求 25所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000079_0003
)为 i^REG 'REGD或 [REG cp ,REG2 ECP) 或 REG CP) ^REG
Figure imgf000079_0004
CP ,REG )。
33、 根据权利要求 26所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 (REGr'FS2,REGr'FS2j
r2
Figure imgf000080_0001
或 (i?EGfp'ra2,i?EG0 £CP'a )。
34、 根据权利要求 25所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ,REG
Figure imgf000080_0002
cpj或
[REG CP
Figure imgf000080_0003
)。
35、 根据权利要求 26所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 (REG p'FS2,REG^'FS2)
{REG cp'FS2,REGQ Ecp'FS1) 或 (i?EGfp'ra2,i?EGfcp'ra2)。
36、 根据权利要求 25所述的方法, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000080_0004
)为 i^REG 'REGD或 [REG cp ,REG0 ECP) 或 、REG CP ,REG CP、 ^REG CP ,REG CP、。
37、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收基站发送的参考信号资源配置信息, 所述参考信号资 源配置信息包括天线端口数信息和资源配置索引;
确定单元, 用于根据所述接收单元接收的所述天线端口数信息和所述资源 配置索引从参考信号配置集合中确定一个参考信号配置, 其中, 所述参考信号 配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的 位置信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第 一参考信号配置对应的天线端口集合中至少包含两个天线端口子集: 其中, 第 一天线端口子集中的天线端口上发送参考信号所用的 RE位于第一资源块 RB对 内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对 内, 所述第一 RB对与所述第二 RB对不同;
位置获取单元, 用于根据所述确定单元确定的所述参考信号配置得到所述 天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置; 所述接收单元还用于根据所述位置获取单元得到的所述 RE的位置接收所述 参考信号。
38、 根据权利要求 37所述的用户设备, 其特征在于, 所述第一 RB对和所述 第二 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
39、 根据权利要求 37或 38所述的用户设备, 其特征在于, 所述第一天线端 口子集在所述第一 RB对内所用的资源单元组为 REG;
h, 所述第二天线端口子集在 所述第二 RB对内所用的资源单元组为 其中 REGh e A , ix≠ i2; 所 述集合 ^ = { ?EG,小 · = 0,1,...,Μ— l}, kf≥2 , 1? 2 e{0,..., -l} , 和2分别为所述两个 RB 对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB 对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元 组 ^, / ', ns mod 2)的集合, 其中所述 A '表示该资源单元 RE在其所在的 RB对内的子 载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM 符号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, ^mod2 表示对 ns取模 2的运算值。
40、 根据权利要求 39所述的用户设备, 其特征在于, 所述参考信号配置集 合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天 线端口集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述 第一天线端口子集在所述第一 RB对内所用的资源单元组为 REGh, 所述第二天线 端口子集在所述第二 RB对内所用的资源单元组为 ?EG. , REG A , REG A , J ≠j2, Λ,Λ^{0,1,..., -1} ; 其中 m和 满足下述至少一种关系:
Figure imgf000081_0001
= (¾ + ")modM, j2 = (i2 + ")modM, = i2, j2 =ix , 其中, n表示取值为整数的移 位。
41、 根据权利要求 39或 40所述的用户设备, 其特征在于, 当循环前缀 CP为 常规 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个: REG = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)} ; REG p = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) } ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
42、 根据权利要求 39或 40所述的用户设备, 其特征在于, 当循环前缀 CP为 常规 CP且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 包括以下资源单元组中的两个或者多个:
REGNCP,FSI = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)} ; REGNCP,FSI = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)} ; REGNCP,FS2 = ?山丄),(7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
43、 根据权利要求 39或 40所述的用户设备, 其特征在于, 当循环前缀 CP为 扩展 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG CP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)} ; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)} ;
REG p = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)} ; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
44、 根据权利要求 39或 40所述的用户设备, 其特征在于, 当循环前缀 CP为 扩展 CP且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下 资源单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)} ; REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)} ; REG2 ECP'FS2 = {{9,\,\), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
45、 根据权利要求 41所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G'^E )为 REGnEG )或
,REG CP
Figure imgf000083_0001
、。
46、 根据权利要求 42所述的用户设备, 其特征在于, 所述第一参考信号配 置 中 两 个 天线端 口 子 集所用 的 资 源 单元组对 REG^REG 为
、REGi'CP'FS2
Figure imgf000083_0002
,REG CP'FS1、 或 (REG;'cp'FS2 ,REG CP'FS2、。
47、 根据权利要求 41所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为、REG cp,REG p)
[REG CP,REG P) 或
Figure imgf000083_0003
REG CP) ^ REG P ,REG CP) ^REG , ^。
48、 根据权利要求 42所述的用户设备, 其特征在于, 所述第一参考信号配 置 中 两 个 天线端 口 子 集所用 的 资 源 单元组对 (REG ,REG. ) 为
^(REG P'FS2 ,REG P'FS2)
Figure imgf000083_0004
或 、REG;CP'FS2 ,REG?CP'FS2、。
49、 根据权利要求 41所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^C^WEi^)为
Figure imgf000083_0005
,REG CP
Figure imgf000083_0006
、。
50、 根据权利要求 43所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 (^ ^E )为 (WEG ^ G^)或
[REG CP ,REG2 ECP) 或 REG CP ,REG3 ECP) ^REG3 ECP ,RE cp)。
51、 根据权利要求 44所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 )为 REG CP'FS1,REG P'FS1
HREG P'FS ,REG ep'FS2)或 REG^'FS2,REG^'FS1)。
52、 根据权利要求 43所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 REG ,REGcp)
(REG cp ,REG^CP) 或 REG CP ,REG P) ^^REG3 ECP ,RE CP)。
53、 根据权利要求 44所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG^CP'FS2,REG^'FS2)I 或 ( ?EGf cp'ra2 , REG0 ECP'FS1 ) 或 , REG cp'FS1 )
Figure imgf000084_0001
54、 根据权利要求 43所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 REG )
Figure imgf000084_0002
[REG CP ,REG0 ECP) 或 REG CP ,REG3 ECP) ^REG3 ECP ,REG CP)。
55、 一种基站, 其特征在于, 包括:
发送单元, 用于向用户设备发送参考信号资源配置信息, 其中所述参考信 号资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数信息和 所述资源配置索引用于指示参考信号配置集合中的一个参考信号配置, 所述参 考信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单 元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参考信号配置对应的天线端口集合中至少包含两个天线端口子集, 其 中第一天线端口子集中的天线端口上发送参考信号所用的资源单元 RE位于第一 资源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于 第二 RB对内, 所述第一 RB对与所述第二 RB对不同;
确定单元, 用于根据所述发送单元发送的所述参考信号配置所指示的参考 信号配置, 确定所述参考信号配置对应的天线端口集合中的天线端口上发送参 考信号所用的资源单元 RE的位置;
送参考信号。
56、 根据权利要求 55所述的基站, 其特征在于, 所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
57、 根据权利要求 55或 56所述的基站, 其特征在于, 所述第一天线端口子 集在所述第一 RB对内所用的资源单元组为 ?EG,., 所述第二天线端口子集在所述 第二 RB对内所用的资源单元组为 ?EG , 其中 ?E<^ e REGh e A , i,≠ i2; 所述集 ^A = {REGi\i = 0,\,...,M~'i],M>2 , 1? 2 e {0,..., -l} , ^和2分另1 J为所述两个 RB对 内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB对 内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元组 (k l ns mod 2)的集合, 其中所述 A '表示该资源单元 RE在其所在的 RB对内的子载 波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM符 号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, mod2表 示对 取模 2的运算值。
58、 根据权利要求 57所述的基站, 其特征在于, 所述参考信号配置集合中 至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端 口集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述第一 天线端口子集在所述第一 RB对内所用的资源单元组为 REG , 所述第二天线端口 子集在所述第二 RB对内所用的资源单元组为 REG , REG. e A, REGh≡A ,
Figure imgf000085_0001
j2
·2 满 足 下 述 至 少 一种 关 系 :
Figure imgf000085_0002
= i2, j2 = i{ , 其中, n表示取值为整数的移 位。
59、 根据权利要求 57或 58所述的基站, 其特征在于, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG CP = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)};
REG^CP = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)}; REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) };
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)};
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
60、 根据权利要求 57或 58所述的基站, 其特征在于, 当循环前缀 CP为常规 CP且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括 以下资源单元组中的两个或者多个:
REGNCP,FS2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)};
REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)};
REGNCP,FS2 = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
61、 根据权利要求 57或 58所述的基站, 其特征在于, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)};
REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
62、 根据权利要求 57或 58所述的基站, 其特征在于, 当循环前缀 CP为扩展 CP且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)}; REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)}; fp'ra2 = {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
63、 根据权利要求 59所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 REG^REGh )为 (^O G^ 或 {REG^CP ,REG2 NCP) 或 REG ,REG P、 ^ REG P ,REG cp)j ^REG CP ,REG cp)j。
64、 根据权利要求 60所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (^EG^'FS2,REG 'FS2)l或 (REG^CP'FS2,REG^CP'FS2) 或 (REG p'FS2,REG p'FS
65、 根据权利要求 59所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000087_0001
)为 (REG CP ,REG CP、或 [REG cp ,REG^CP) 或 ( ^G ^ ^G )或 ( ?EG p, ?EG p) ^REG CP ,REG cpj。
66、 根据权利要求 60所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG CP'FS2,REG CP'FS2、或
(REG^CP'FS2,REG^CP'FS2) 或 (REG CP'FS2,REG CP'FS2
67、 根据权利要求 59所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对、REGk,REGh )为 (REG , REG pj或
Figure imgf000087_0002
68、 根据权利要求 61所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000087_0003
)为 i^REG 'REGD或 [REG cp ,REG2 ECP) 或 REG CP) ^REG
Figure imgf000087_0004
CP ,REG )。
69、 根据权利要求 62所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 REGlT'FS2,REG FS2)
Figure imgf000087_0005
或 (i?EGfp'ra2,i?EG0 £CP'ra2)。
70、 根据权利要求 61所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ,REG cpj
Figure imgf000087_0006
[REG CP
Figure imgf000087_0007
)。
71、 根据权利要求 62所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 (REG p'FS2,REG^'FS2)
{REG cp'FS2,REGQ Ecp'FS1) 或 (i?EGfp'ra2,i?EGfcp'ra2)。
72、 根据权利要求 61所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000087_0008
)为 i^REG 'REGD或 [REG cp ,REG0 ECP) 或 (REG p,REG cp、^(REG cp,REG p
73、 一种用户设备, 其特征在于, 包括:
接收器, 用于接收基站发送的参考信号资源配置信息, 所述参考信号资源 配置信息包括天线端口数信息和资源配置索引;
处理器, 用于根据所述接收器接收的所述天线端口数信息和所述资源配置 索引从参考信号配置集合中确定一个参考信号配置, 其中, 所述参考信号配置 用于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置 信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所述第一参 考信号配置对应的天线端口集合中至少包含两个天线端口子集: 其中, 第一天 线端口子集中的天线端口上发送参考信号所用的 RE位于第一资源块 RB对内, 第 二天线端口子集中的天线端口上发送参考信号所用的 RE位于第二 RB对内, 所述 第一 RB对与所述第二 RB对不同; 以及, 用于根据确定的所述参考信号配置得到 所述天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置; 所述接收器还用于根据所述处理器得到的所述 RE的位置接收所述参考信 号。
74、 根据权利要求 73所述的用户设备, 其特征在于, 所述第一 RB对和所述 第二 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
75、 根据权利要求 73或 74所述的用户设备, 其特征在于, 所述第一天线端 口子集在所述第一 RB对内所用的资源单元组为 REG;, 所述第二天线端口子集在 所述第二 RB对内所用的资源单元组为 其中 REGh e A , ix≠ i2; 所 述集合 ^ = { ?EG,小 · = 0,1, ..., Μ— l} , kf≥2 , 1 ? 2 e {0, ..., -l} , 和2分别为所述两个 RB 对内所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB 对内可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元 组 ^, / ', ns mod 2)的集合, 其中所述 A '表示该资源单元 RE在其所在的 RB对内的子 载波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM 符号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, ns mo&2 表示对 ns取模 2的运算值。
76、 根据权利要求 75所述的用户设备, 其特征在于, 所述参考信号配置集 合中至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天 线端口集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述 第一天线端口子集在所述第一 RB对内所用的资源单元组为 REGh, 所述第二天线 端口子集在所述第二 RB对内所用的资源单元组为 ?EG. , REG A , REG A , J ≠j2 , Λ,Λ ^ {0,1, ..., - 1} ; 其中 m和 满足下述至少一种关系:
Figure imgf000089_0001
= (¾ + ")modM, j2 = (i2 + ")modM, = i2, j2 = ix , 其中, n表示取值为整数的移 位。
77、 根据权利要求 75或 76所述的用户设备, 其特征在于, 当循环前缀 CP为 常规 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG p = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)} ; REG p = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) } ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
78、 根据权利要求 75或 76所述的用户设备, 其特征在于, 当循环前缀 CP为 常规 CP且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 包括以下资源单元组中的两个或者多个:
REGNCP,FSI = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)} ; REGNCP,FSI = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)} ; REGNCP,FS2 = ?山丄),(7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
79、 根据权利要求 75或 76所述的用户设备, 其特征在于, 当循环前缀 CP为 扩展 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个: REG CP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)}; REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)};
REG p = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)}; REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
80、 根据权利要求 75或 76所述的用户设备, 其特征在于, 当循环前缀 CP为 扩展 CP且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下 资源单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)}; REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)}; REG2 ECP'FS2 = {{9,\,\), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
81、 根据权利要求 77所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG cp,REG 、 [REG cp ,REG p) 或 REG p ,REG3 NCP、 ^REG3 NCP 'REG ) ^REG CP ,REG cpj。
82、 根据权利要求 78所述的用户设备, 其特征在于, 所述第一参考信号配 置 中 两 个 天线端 口 子 集所用 的 资 源 单元组对 REGh,REG 为
[REG P'FS1 , REG CP'FS1 )或 (REG CP'FS2 , REG^CP'FS2 ) 或 REG FS2 , REG P'FS1 )。
83、 根据权利要求 77所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG^CP,REG CP
,REG cp)j。
Figure imgf000090_0001
84、 根据权利要求 78所述的用户设备, 其特征在于, 所述第一参考信号配 置 中 两 个 天线端 口 子 集所用 的 资 源 单元组对
Figure imgf000090_0002
(REG^CP'FS2 , REG^CP'FS2 )或、REG FS1 , REG^CP'FS1 ) 或 REG P'FS2 , REG^CP'FS2 )。
85、 根据权利要求 77所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG CP,REG CP
REG^CP ,REG^CP) 或 (REG CP,REG REG, , REG, REG, , REG,
86、 根据权利要求 79所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG^'REGr)
REG CP ,REG2 ECP) 或 REG CP ,REG CP) ^REG CP ,REG、
87、 根据权利要求 80所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2 )为 (REG 'FS2 REG, 或 ( ?EGf cp'ra2 , REG2 ECP'FS2 ) 或 ( ?EGf p'ra2 , REG0 ECP'FS2
88、 根据权利要求 79所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 REG ,REG cp)
REG cp , REG3 ECP ) 或 ( REG2 ECP , REG )或 ( REG3 ECP , REG,
89、 根据权利要求 80所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ?EG , ?EG,2 )为 REGT REG,
Figure imgf000091_0001
90、 根据权利要求 79所述的用户设备, 其特征在于, 所述第一参考信号配 置中两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 REG 'REGr、
REG CP,REG,ECP) 或 (REG CP,REG REGlCP ,REG P
91、 一种基站, 其特征在于, 包括:
发送器, 用于向用户设备发送参考信号资源配置信息, 其中所述参考信号 资源配置信息包括天线端口数信息和资源配置索引, 所述天线端口数信息和所 述资源配置索引用于指示参考信号配置集合中的一个参考信号配置, 所述参考 信号配置用于指示天线端口集合中的天线端口上发送参考信号所用的资源单元 RE的位置信息; 所述参考信号配置集合中至少包含一个第一参考信号配置, 所 述第一参考信号配置对应的天线端口集合中至少包含两个天线端口子集, 其中 第一天线端口子集中的天线端口上发送参考信号所用的资源单元 RE位于第一资 源块 RB对内, 第二天线端口子集中的天线端口上发送参考信号所用的 RE位于第 二 RB对内, 所述第一 RB对与所述第二 RB对不同;
处理器, 用于根据所述发送器发送的所述参考信号配置所指示的参考信号 配置, 确定所述参考信号配置对应的天线端口集合中的天线端口上发送参考信 号所用的资源单元 RE的位置;
所述发送器还用于在所述处理器确定的所述位置上向所述用户设备发送参 考信号。
92、 根据权利要求 91所述的基站, 其特征在于, 所述第一 RB对和所述第二 RB对分别位于相同子帧内不同的频域位置或者不同子帧的相同子带内。
93、 根据权利要求 90或 91所述的基站, 其特征在于, 所述第一天线端口子 集在所述第一 RB对内所用的资源单元组为 ?EG,., 所述第二天线端口子集在所述 第二 RB对内所用的资源单元组为 ?EG , 其中 ?E<^ e REGh e A , i,≠ i2; 所述集 ^A = {REGi\i = Q,\,...,M-\},M>2 , 1? 2 e {0,..., -l} , 和2分别为所述两个 RB对内 所用的资源单元组 REG的索引; 所述集合 ^中的每一个资源单元组表示 RB对内 可用于发送参考信号所用的资源单元 RE相对于其所在的 RB对的位置三元组 (k l ns mod 2)的集合, 其中所述 A '表示该资源单元 RE在其所在的 RB对内的子载 波的索引, 所述 /'表示该资源单元在其所在的 RB对内的正交频分复用 OFDM符 号的索引,所述 表示该资源单元所在的时隙索引, mod表示取模操作, mod2表 示对 取模 2的运算值。
94、 根据权利要求 93所述的基站, 其特征在于, 所述参考信号配置集合中 至少包含一个第二参考信号配置, 其中, 所述第二参考信号配置对应的天线端 口集合中至少包含所述第一天线端口子集和所述第二天线端口子集, 所述第一 天线端口子集在第一 RB对内所用的资源单元组为 REGj、, 所述第二天线端口子集 在所述第二 RB对内所用的资源单元组为 REGh , REGj、 e A, REGh≡A ,
Figure imgf000093_0001
j2, , j2 {0, \, ..., M - l} ; 其 中 , i2 , Λ 满 足 下 述 至 少 一种 关 系 :
Figure imgf000093_0002
= (¾ + n) mod Mf j2 = (/2 + η)να ά Μ, = i2, j2 = ¾ , 其中, n表示取值为整数的移 位。
95、 根据权利要求 93或 94所述的基站, 其特征在于, 当循环前缀 CP为常规 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG CP = {(9,5,0), (9,6,0), (8,5,0), (8,6,0), (3,5,0), (3,6,0), (2,5,0), (2,6,0)} ;
REG^CP = {(11,2,1), (11,3,1), (10,2,1), (10,3,1), (5,2,1), (5,3,1), (4,2,1), (4,3,1)} ; REG^CP = {(9,2,1), (9,3,1), (8,2,1), (8,3,1), (3,2,1), (3,3,1), (2,2,1), (2,3,1) } ;
REG3 NCP = {(7,2,1), (7,3,1), (6,2,1), (6,3,1), (1,2,1), (1,3,1), (0,2,1), (0,3,1)} ;
REG p = {(9,5,1), (9,6,1), (8,5,1), (8,6,1), (3,5,1), (3,6,1), (2,5,1), (2,6,1)}。
96、 根据权利要求 93或 94所述的基站, 其特征在于, 当循环前缀 CP为常规 CP且子帧类型为长期演进 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括 以下资源单元组中的两个或者多个:
REGNCP,FS2 = {(11,1,1),(11,3,1),(10,1,1),(10,3,1),(5,1,1),(5,3,1),(4,1,1), (4,3,1)} ; REGNCP,FS2 = (9,1,1), (9,3,1), (8,1,1), (8,3,1), (3,1,1), (3,3,1), (2,1,1), (2,3,1)} ; REGNCP,FS2 = KV ^ (7,3,1), (6,1,1), (6,3,1), (1,1,1), (1,3,1), (0,1,1), (0,3,1)}。
97、 根据权利要求 93或 94所述的基站, 其特征在于, 当循环前缀 CP为扩展 CP时, 所述资源单元组集合 ^包括以下资源单元组中的两个或者多个:
REG,ECP = {(11,4,0), (11,5,0), (8,4,0), (8,5,0), (5,4,0), (5,5,0), (2,4,0), (2,5,0)} ;
REG cp = {(9,4,0), (9,5,0), (6,4,0), (6,5,0), (3,4,0), (3,5,0), (0,4,0), (0,5,0)} ;
REG2 ECP = {(10,4,1), (10,5,1), (7,4,1), (7,5,1), (4,4,1), (4,5,1), (1,4,1), (1,5,1)} ;
REG3 ECP = {(9,4,1), (9,5,1), (6,4,1), (6,5,1), (3,4,1), (3,5,1), (0,4,1), (0,5,1)}。
98、 根据权利要求 93或 94所述的基站, 其特征在于, 当循环前缀 CP为扩展 CP且子帧类型为 LTE帧结构类型二 FS2时, 所述资源单元组集合 ^包括以下资源 单元组中的两个或者多个:
REGECP,FS2 = {(11,1,1), (11,2,1), (8,1,1), (8,2,1), (5,1,1), (5,2,1), (2,1,1), (2,2,1)};
REGECP,FS2 = {(ιο,ΐ,ΐ), (10,2,1), (7,1,1), (7,2,1), (4,1,1), (4,2,1), (1,1,1), (1,2,1)};
fp'ra2 = {(9,1,1), (9,2,1), (6,1,1), (6,2,1), (3,1,1), (3,2,1), (0,1,1), (0,2,1)}。
99、 根据权利要求 95所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000094_0001
G^ 或 {REG^CP ,REG2 NCP) 或 REG ,REG P、 ^ REG P ,REG cp)j ^REG CP ,REG cp)j。
100、 根据权利要求 96所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (^EG^'FS2,REG 'FS2)l或 (REG^CP'FS2,REG^CP'FS2) 或 (REG p'FS2,REG p'FS
101、 根据权利要求 95所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 „ ^ )为 (^O G^或
[REG cp ,REG^CP) 或 ( ^G ^ ^G )或 ( ?EG p, ?EG p) ^REG CP ,REG cpj。
102、 根据权利要求 96所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ^G , ?EG,2)为 (REG CP'FS2,REG CP'FS2、或
(REG^CP'FS2,REG^CP'FS2) 或 ( ?EC f )。
103、 根据权利要求 95所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对、REGk,REGh )为 (REG , REG pj或
Figure imgf000094_0002
或 ( ^G ^ ^i^03)。
104、 根据权利要求 97所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000094_0003
)为 i^REG 'REGD或 [REG cp ,REG2 ECP) 或 REG CP) ^REG
Figure imgf000094_0004
CP ,REG )。
105、 根据权利要求 98所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 (REGr'FS2,REGr'FS2j
r2
Figure imgf000095_0001
或 (i?EGfp'ra2,i?EG0 £CP'a )。
106、 根据权利要求 97所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ,REG
Figure imgf000095_0002
cpj或
[REG CP
Figure imgf000095_0003
)。
107、 根据权利要求 98所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对 ( ?EG , ?EG,2)为 (REG p'FS2,REG^'FS2)
{REG cp'FS2,REGQ Ecp'FS1) 或 (i?EGfp'ra2,i?EGfcp'ra2)。
108、 根据权利要求 97所述的基站, 其特征在于, 所述第一参考信号配置中 两个天线端口子集所用的资源单元组对
Figure imgf000095_0004
)为 i^REG 'REGD或 [REG cp ,REG0 ECP) 或 (REG p,REG cp、^(REG cp,REG p、。
PCT/CN2013/078062 2013-06-26 2013-06-26 参考信号的传输方法及装置 WO2014205699A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
KR1020167001307A KR101805744B1 (ko) 2013-06-26 2013-06-26 참조 신호를 전송하는 방법 및 장치
CN201380001630.4A CN104782054B (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置
KR1020177034679A KR101893455B1 (ko) 2013-06-26 2013-06-26 참조 신호를 전송하는 방법 및 장치
CN201910104917.9A CN109743081B (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置
CN201910105182.1A CN109756250A (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置
CN201910106686.5A CN110034789A (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置
EP17191800.6A EP3309973B1 (en) 2013-06-26 2013-06-26 Reference signal transmission method and apparatus
KR1020187024435A KR101928879B1 (ko) 2013-06-26 2013-06-26 참조 신호를 전송하는 방법 및 장치
PCT/CN2013/078062 WO2014205699A1 (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置
KR1020187035540A KR102025715B1 (ko) 2013-06-26 2013-06-26 참조 신호를 전송하는 방법 및 장치
EP13887927.5A EP3001577B1 (en) 2013-06-26 2013-06-26 Method and device for transmitting reference signal
US14/979,967 US9800385B2 (en) 2013-06-26 2015-12-28 Reference signal transmission method and apparatus
US15/785,881 US10333677B2 (en) 2013-06-26 2017-10-17 Reference signal transmission method and apparatus
US16/418,131 US10855429B2 (en) 2013-06-26 2019-05-21 Reference signal transmission method and apparatus
US17/096,703 US11496269B2 (en) 2013-06-26 2020-11-12 Reference signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078062 WO2014205699A1 (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/979,967 Continuation US9800385B2 (en) 2013-06-26 2015-12-28 Reference signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2014205699A1 true WO2014205699A1 (zh) 2014-12-31

Family

ID=52140803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078062 WO2014205699A1 (zh) 2013-06-26 2013-06-26 参考信号的传输方法及装置

Country Status (5)

Country Link
US (4) US9800385B2 (zh)
EP (2) EP3001577B1 (zh)
KR (4) KR101928879B1 (zh)
CN (4) CN109743081B (zh)
WO (1) WO2014205699A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179791A1 (en) 2015-05-12 2016-11-17 Nec Corporation Method and apparatus for transmission pattern configuration and signal detection
CN109314960A (zh) * 2016-09-05 2019-02-05 Oppo广东移动通信有限公司 传输参考信号的方法、网络设备和终端设备
US10224996B2 (en) 2014-04-10 2019-03-05 Huawei Technologies Co., Ltd Method for reporting channel state information user equipment, and base station

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743081B (zh) * 2013-06-26 2020-03-10 华为技术有限公司 参考信号的传输方法及装置
US10250366B2 (en) * 2014-09-24 2019-04-02 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and apparatus therefor
US10009153B2 (en) * 2015-01-30 2018-06-26 Motorola Mobility Llc Apparatus and method for reception and transmission of control channels
CN110247747B (zh) 2015-01-30 2021-01-05 华为技术有限公司 通信系统中反馈信息的传输方法及装置
EP3269189B1 (en) * 2015-04-10 2020-04-29 Sony Corporation Infrastructure equipment, communications device and methods
WO2017007240A1 (ko) * 2015-07-06 2017-01-12 삼성전자 주식회사 이동 통신 시스템에서 채널을 측정하는 방법 및 장치
EP3365997B1 (en) 2015-10-22 2021-03-24 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus relating to selective enhancement of radio signals
KR20180109849A (ko) * 2016-02-05 2018-10-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 엔드 투 엔드 데이터 전송 방법, 기기 및 시스템
JP6769497B2 (ja) * 2016-03-30 2020-10-14 日本電気株式会社 基地局およびueによって実行される方法
US9736794B1 (en) * 2016-03-30 2017-08-15 T-Mobile Usa, Inc. Dynamic antenna reference signal transmission
BR112018072715A2 (pt) * 2016-05-06 2019-02-19 Huawei Tech Co Ltd método e aparelho de transmissão de sinal de referência
CN107370582A (zh) * 2016-05-12 2017-11-21 株式会社Ntt都科摩 参考信号发送方法、检测方法、基站和移动台
CN107888360B (zh) * 2016-09-30 2020-10-16 华为技术有限公司 参考信号传输方法、设备及系统
CN108024339B (zh) * 2016-11-03 2023-10-24 华为技术有限公司 一种确定参考信号映射的时域资源的方法和装置
CN111182641B (zh) * 2016-11-16 2022-11-25 上海朗帛通信技术有限公司 一种被用于用户和基站中的方法和设备
JP7338972B2 (ja) * 2017-01-06 2023-09-05 株式会社Nttドコモ ネットワークノード及び通信制御方法
CN115347993A (zh) * 2017-02-03 2022-11-15 Idac控股公司 Urllc/embb复用中的参考符号的干扰减少
CN108418664B (zh) * 2017-02-10 2020-02-21 华为技术有限公司 信息指示方法、设备及系统
US10536209B2 (en) * 2017-03-24 2020-01-14 Qualcomm Incorporated Techniques for beam discovery and beamforming in wireless communications
US11219025B2 (en) * 2017-04-24 2022-01-04 Lg Electronics Inc. Method by which D2D terminal transmits RS for PDoA in wireless communication system and device therefor
US10326576B2 (en) * 2017-04-28 2019-06-18 Qualcomm Incorporated Reusing long-term evolution (LTE) reference signals for nested system operations
CN108809581B (zh) * 2017-05-05 2021-12-21 华为技术有限公司 一种传输资源分配方法、数据发送方法及装置
US20210153049A1 (en) * 2017-08-08 2021-05-20 Apple Inc. New quality based measurement definition for new radio systems
US11234227B2 (en) * 2017-09-07 2022-01-25 Qualcomm Incorporated Search space-based reuse exception rules
GB2566306B (en) * 2017-09-08 2021-06-16 Samsung Electronics Co Ltd Phase tracking reference signal
CN113225170A (zh) * 2017-09-30 2021-08-06 中兴通讯股份有限公司 一种无线通信方法及装置
CN109802786B (zh) * 2017-11-17 2021-09-07 华为技术有限公司 一种用户设备和信道测量方法
CN110875762A (zh) * 2018-09-03 2020-03-10 华为技术有限公司 参数配置方法和装置
WO2020199005A1 (en) 2019-03-29 2020-10-08 Zte Corporation System and method for reference signaling configuration
CN112187320B (zh) * 2019-07-05 2022-09-16 大唐移动通信设备有限公司 一种天线端口确定方法和通信设备
US11219027B2 (en) * 2020-01-03 2022-01-04 Qualcomm Incorporated Methods for beam management in millimeter wave relays
US11856570B2 (en) 2020-01-27 2023-12-26 Qualcomm Incorporated Dynamic mixed mode beam correspondence in upper millimeter wave bands
US20210234598A1 (en) * 2020-01-27 2021-07-29 Qualcomm Incorporated Antenna group-specific parameter configuration in millimeter wave communications
US20210234597A1 (en) * 2020-01-27 2021-07-29 Qualcomm Incorporated Asymmetric uplink-downlink beam training in frequency bands
US11831383B2 (en) 2020-01-27 2023-11-28 Qualcomm Incorporated Beam failure recovery assistance in upper band millimeter wave wireless communications
WO2021258242A1 (en) * 2020-06-22 2021-12-30 Qualcomm Incorporated Support of flexible sounding reference signal switching capability
CN115087101A (zh) * 2021-03-11 2022-09-20 北京三星通信技术研究有限公司 用于发送和接收信号的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207428A (zh) * 2006-12-21 2008-06-25 京信通信技术(广州)有限公司 直放站系统抗自激方法
CN102239647A (zh) * 2009-02-01 2011-11-09 华为技术有限公司 发送参考信号的方法
CN102624495A (zh) * 2011-01-30 2012-08-01 华为技术有限公司 无线通信系统中参考信号配置信息的处理方法及基站、终端

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213943B2 (en) * 2007-05-02 2012-07-03 Qualcomm Incorporated Constrained hopping of DL reference signals
US9344259B2 (en) * 2007-06-20 2016-05-17 Google Technology Holdings LLC Control channel provisioning and signaling
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
CN101378595B (zh) 2008-09-28 2012-05-23 中兴通讯股份有限公司 确定随机接入信道数量的方法及测量参考信号的发送方法
CN105141402A (zh) * 2009-02-08 2015-12-09 Lg电子株式会社 在无线移动通信系统中发送终端解调的参考信号的方法以及实现该方法的装置
US9647810B2 (en) * 2009-03-17 2017-05-09 Samsung Electronics Co., Ltd. Method and system for mapping pilot signals in multi-stream transmissions
WO2010110576A2 (en) * 2009-03-24 2010-09-30 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
KR101585698B1 (ko) * 2009-07-28 2016-01-14 엘지전자 주식회사 다중 입출력 통신 시스템의 기준신호 전송방법 및 장치
US9083482B2 (en) * 2009-09-27 2015-07-14 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
CN102056220B (zh) * 2009-10-28 2014-02-19 华为技术有限公司 实现信道测量的方法及装置
CN102076076B (zh) 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
US8908617B2 (en) * 2009-12-31 2014-12-09 Samsung Electronics Co., Ltd. Uplink demodulation reference signal design for MIMO transmission
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
WO2011132942A2 (ko) * 2010-04-20 2011-10-27 엘지전자 주식회사 무선 통신 시스템에서 참조 신호 전송 방법 및 장치
US8750887B2 (en) * 2010-07-16 2014-06-10 Texas Instruments Incorporated Multi-cell signaling of channel state information-reference signal and physical downlink shared channel muting
CN102438312B (zh) * 2010-09-29 2015-06-03 中兴通讯股份有限公司 一种移动通信系统及其信道状态指示参考信号的配置方法
US9252930B2 (en) * 2011-01-07 2016-02-02 Futurewei Technologies, Inc. Reference signal transmission and reception method and equipment
GB201107363D0 (en) * 2011-05-03 2011-06-15 Renesas Mobile Corp Method and apparatus for configuring resource elements for the provision of channel state information reference signals
WO2012169716A1 (ko) * 2011-06-07 2012-12-13 엘지전자 주식회사 제어정보 송수신 방법 및 송수신 장치
JP5906529B2 (ja) * 2011-08-02 2016-04-20 シャープ株式会社 基地局、端末、通信システムおよび通信方法
JP5927802B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
EP2755338A4 (en) * 2011-09-06 2016-01-13 Lg Electronics Inc METHOD AND APPARATUS FOR MEASURING INTERFERENCE IN A WIRELESS COMMUNICATION SYSTEM
WO2013048567A1 (en) * 2011-09-30 2013-04-04 Intel Corporation Methods to transport internet traffic over multiple wireless networks simultaneously
WO2013062386A1 (ko) * 2011-10-27 2013-05-02 엘지전자 주식회사 협력 멀티 포인트 통신 시스템에서 병합 채널상태정보 피드백 방법 및 장치
JP5990815B2 (ja) * 2011-11-07 2016-09-14 シャープ株式会社 基地局、端末、通信システムおよび通信方法
BR112014010289B1 (pt) * 2011-11-07 2022-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Método em um nó de transmissão para transmitir um canal de controle de downlink aprimorado, nó de transmissão, método em um equipamento de usuário para receber um canal de controle de downlink aprimorado, e, nó de recebimento
CN104067583B (zh) * 2011-12-09 2018-04-10 瑞典爱立信有限公司 在无线网络中初始化参考信号生成
WO2013115598A1 (ko) * 2012-02-03 2013-08-08 엘지전자 주식회사 상향링크 신호 또는 하향링크 신호 송수신 방법 및 이를 위한 장치
CN104272608B (zh) * 2012-04-30 2018-03-20 Lg电子株式会社 用于在无线通信系统中动态分配无线资源的方法及其装置
EP2849358B1 (en) * 2012-05-06 2019-08-07 LG Electronics Inc. Method and apparatus for transmitting data
US11546787B2 (en) * 2012-05-09 2023-01-03 Samsung Electronics Co., Ltd. CSI definitions and feedback modes for coordinated multi-point transmission
US9198070B2 (en) * 2012-05-14 2015-11-24 Google Technology Holdings LLC Radio link monitoring in a wireless communication device
US8923207B2 (en) * 2012-05-17 2014-12-30 Industrial Technology Research Institute Method for initializing sequence of reference signal and base station using the same
WO2013173989A1 (zh) * 2012-05-23 2013-11-28 华为技术有限公司 参考信号序列的传输方法及设备
JP5990793B2 (ja) * 2012-06-07 2016-09-14 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
US9554371B2 (en) * 2012-07-16 2017-01-24 Lg Electronics Inc. Method and device for reporting channel state information in wireless communication system
US9106386B2 (en) * 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint
KR101753594B1 (ko) * 2012-09-16 2017-07-19 엘지전자 주식회사 협력적 송신을 지원하는 무선 통신 시스템에서 데이터를 수신하는 방법 및 장치
WO2014077741A1 (en) * 2012-11-13 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Transmission and reception of reference signals in wireless networks
CN109743081B (zh) * 2013-06-26 2020-03-10 华为技术有限公司 参考信号的传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207428A (zh) * 2006-12-21 2008-06-25 京信通信技术(广州)有限公司 直放站系统抗自激方法
CN102239647A (zh) * 2009-02-01 2011-11-09 华为技术有限公司 发送参考信号的方法
CN102624495A (zh) * 2011-01-30 2012-08-01 华为技术有限公司 无线通信系统中参考信号配置信息的处理方法及基站、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001577A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224996B2 (en) 2014-04-10 2019-03-05 Huawei Technologies Co., Ltd Method for reporting channel state information user equipment, and base station
WO2016179791A1 (en) 2015-05-12 2016-11-17 Nec Corporation Method and apparatus for transmission pattern configuration and signal detection
EP3146792A4 (en) * 2015-05-12 2017-07-19 Nec Corporation Method and apparatus for transmission pattern configuration and signal detection
CN107409426A (zh) * 2015-05-12 2017-11-28 日本电气株式会社 用于传输模式配置和信号检测的方法和装置
JP2018514115A (ja) * 2015-05-12 2018-05-31 日本電気株式会社 送信パターン構成および信号検出のための方法および装置
CN107409426B (zh) * 2015-05-12 2021-02-12 日本电气株式会社 用于传输模式配置和信号检测的方法和装置
US11405085B2 (en) 2015-05-12 2022-08-02 Nec Corporation Method and apparatus for transmission pattern configuration and signal detection
CN109314960A (zh) * 2016-09-05 2019-02-05 Oppo广东移动通信有限公司 传输参考信号的方法、网络设备和终端设备
CN109314960B (zh) * 2016-09-05 2021-01-15 Oppo广东移动通信有限公司 传输参考信号的方法、网络设备和终端设备

Also Published As

Publication number Publication date
CN104782054B (zh) 2019-02-26
US20190273596A1 (en) 2019-09-05
US20180041323A1 (en) 2018-02-08
KR20180099906A (ko) 2018-09-05
KR102025715B1 (ko) 2019-11-26
US20160112173A1 (en) 2016-04-21
KR101893455B1 (ko) 2018-08-30
CN109743081A (zh) 2019-05-10
US10855429B2 (en) 2020-12-01
KR20180133261A (ko) 2018-12-13
US20210067302A1 (en) 2021-03-04
EP3001577A4 (en) 2016-05-25
CN104782054A (zh) 2015-07-15
EP3001577B1 (en) 2017-10-25
CN109756250A (zh) 2019-05-14
US10333677B2 (en) 2019-06-25
KR20170137221A (ko) 2017-12-12
KR101805744B1 (ko) 2017-12-07
KR20160030947A (ko) 2016-03-21
KR101928879B1 (ko) 2018-12-13
CN109743081B (zh) 2020-03-10
EP3309973A1 (en) 2018-04-18
EP3309973B1 (en) 2021-05-19
CN110034789A (zh) 2019-07-19
EP3001577A1 (en) 2016-03-30
US11496269B2 (en) 2022-11-08
US9800385B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2014205699A1 (zh) 参考信号的传输方法及装置
CN113162720B9 (zh) 发送信号的基站、接收信号的终端以及相应的方法
CN109314592B (zh) 用于测量参考信号和同步的方法和装置
US10609702B2 (en) Base station apparatus, terminal apparatus, and communication method
EP3522579B1 (en) Control channel transmission and reception method and system
RU2593394C1 (ru) Способ и устройство для приема сигнала нисходящей линии связи в системе беспроводной связи
CN104429012B (zh) 无线通信系统中的上行链路混合确认信令
US11452093B2 (en) Method for indicating preemption in a communication system using a bitmap corresponding to resources
KR101709024B1 (ko) 기지국 장치, 이동국 장치, 통신 방법 및 집적 회로
EP3522402B1 (en) Method and apparatus for measuring channel in wireless communication system
US20140286297A1 (en) Method and apparatus for transmitting downlink control information
CN110583056A (zh) 无线电系统的同步信号传输和接收
US11329761B2 (en) Base station apparatus, terminal apparatus, and communication method
WO2014101810A1 (zh) 系统信息的发送和接收方法以及基站和用户设备
CN109983726B (zh) 量化的k资源元素行列交织器
EP2882240B1 (en) Transmission and receiving methods of control channel, base station and user equipment
US9236980B2 (en) Control channel transmitting, receiving method, base station and terminal
KR20140134276A (ko) 무선통신시스템에서 하향링크 제어 채널 전송을 위한 방법 및 장치
WO2015172364A1 (zh) 一种基站、用户设备及通信信号的发送、接收方法
WO2012006931A1 (zh) 一种csi-rs的发送方法、检测方法及其装置
KR20140057324A (ko) 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 다중화하는 방법 및 이를 위한 장치
WO2019098274A1 (ja) 端末装置、基地局装置、および、通信方法
WO2013010408A1 (zh) Phich符号数据的传输方法和装置
WO2018020942A1 (ja) 基地局装置、端末装置および通信方法
CN109891770B (zh) 波束成形系统中的共用控制的传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887927

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013887927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013887927

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001307

Country of ref document: KR

Kind code of ref document: A