WO2012169716A1 - 제어정보 송수신 방법 및 송수신 장치 - Google Patents

제어정보 송수신 방법 및 송수신 장치 Download PDF

Info

Publication number
WO2012169716A1
WO2012169716A1 PCT/KR2012/000713 KR2012000713W WO2012169716A1 WO 2012169716 A1 WO2012169716 A1 WO 2012169716A1 KR 2012000713 W KR2012000713 W KR 2012000713W WO 2012169716 A1 WO2012169716 A1 WO 2012169716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource allocation
information
pdcch
allocation scheme
control information
Prior art date
Application number
PCT/KR2012/000713
Other languages
English (en)
French (fr)
Inventor
천진영
김기태
김수남
강지원
임빈철
박성호
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/123,948 priority Critical patent/US9706536B2/en
Publication of WO2012169716A1 publication Critical patent/WO2012169716A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting and receiving control information in a multiple distributed node system.
  • the current wireless communication environment is based on the emergence and dissemination of various devices such as M2M devices to which Machine-to-Machine (M2M) communication is applied and smart phones and tablet computers that require high data transfer rates. This is growing very fast.
  • M2M Machine-to-Machine
  • communication technology has developed into a multi-antenna technology and a multi-base station cooperative technology to increase data capacity within a limited frequency such as carrier aggregation technology and cognitive radio technology to efficiently use more frequency bands.
  • the wireless communication environment is evolving toward increasing density of nodes that can be accessed around users. Systems with such high density nodes can exhibit higher system performance by cooperation between nodes.
  • each node can have a base station (e.g., base station, Advanced BS, Node-B, eNode-B), access point (AP), antenna, antenna group, radio remote header (RRH), radio Perform cooperative communication using a plurality of nodes, operating as a radio remote unit (RRU).
  • a base station e.g., base station, Advanced BS, Node-B, eNode-B
  • AP access point
  • AP antenna
  • antenna group e.g., antenna group
  • RRH radio remote header
  • RRU radio remote unit
  • this system can be viewed as a distributed multi node system (DMNS).
  • DMNS distributed multi node system
  • individual nodes may be given a separate Node ID, or may operate like some antennas in a cell without a separate Node ID.
  • nodes may be viewed as a multi-cell (eg, macro cell / femto cell / pico cell) system. If a plurality of nodes each configured in the form of overlaying the cells according to the coverage, it is referred to as a multi-tier (multi-tier) network.
  • multi-cell eg, macro cell / femto cell / pico cell
  • a base station BS
  • NB node-B
  • eNB eNode-B
  • PeNB pico-cell eNB
  • HeNB home eNB
  • RRH RRH
  • RRU RRU
  • relay RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • RRU RRU
  • a repeater may be nodes.
  • At least one antenna is installed in one node.
  • An antenna may mean a physical antenna and may also mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a node generally refers to an antenna group separated by a predetermined interval or more, but may also be applied when the node means any antenna group regardless of the interval.
  • the base station controls the node configured with the H-pol antenna and the node configured with the V-pol antenna.
  • the present invention provides a method and apparatus for transmitting and receiving control information that can efficiently support a terminal in DMNS.
  • the present invention provides a resource allocation scheme for an enhanced-physical downlink control channel (E-PDCCH) from a node in a method for receiving control information by a terminal in a multiple distributed node system. And receiving control information from the node through the E-PDCCH, based on the information on the received resource allocation scheme and the information on the received resource allocation scheme.
  • E-PDCCH enhanced-physical downlink control channel
  • an apparatus for receiving control information in a multiple distributed node system by controlling a transmitter, a receiver and a receiver, an E-PDCCH (Enhanced-Physical)
  • E-PDCCH Enhanced-Physical
  • a control information receiving apparatus including a processor for receiving information on a resource allocation scheme for a downlink control channel) and receiving control information from a node through an E-PDCCH based on the received information on the resource allocation scheme To provide.
  • a resource allocation scheme for an Enhanced-Physical Downlink Control Channel It provides a control information transmission method comprising the step of transmitting information on, and transmitting control information through the E-PDCCH according to the resource allocation scheme.
  • an apparatus for transmitting control information in a multiple distributed node system includes controlling an transmitter, a receiver, and a transmitter, thereby improving E-PDCCH (Enhanced-Physical Downlink Control).
  • the present invention provides a control information transmission apparatus including a processor for transmitting information about a resource allocation method for a channel) and transmitting control information through an E-PDCCH according to the resource allocation method.
  • the resource allocation scheme includes a continuous resource allocation scheme and a distributed resource allocation scheme.
  • RRC Radio Resource Control
  • the information about the resource allocation scheme is included in the downlink control information and received through the physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • the PDCCH in which information about a resource allocation method is received corresponds to an Enhanced-Physical Control Format indicator channel (E-PCFICH).
  • E-PCFICH Enhanced-Physical Control Format indicator channel
  • the information about the resource allocation scheme is received as a Channel State Information-Reference Signal (CSI-RS), and the resource allocation scheme is determined according to which CSI-RS configuration is received.
  • CSI-RS Channel State Information-Reference Signal
  • the E-PDCCH includes information on a resource allocation scheme for a corresponding physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the E-PDCCH is received in a data region of a subframe.
  • the terminal can transmit and receive control information quickly and efficiently.
  • FIG. 1 shows a configuration of a terminal and a base station to which the present invention is applied.
  • FIG. 2 illustrates a structure of a radio frame to which the present invention is applied.
  • 3 shows a resource grid for a downlink slot.
  • FIG. 5 illustrates an example of a multiple distributed node system applied to the present invention.
  • Figure 6 shows the structure of a DMNS to which the present invention is applied.
  • FIG. 7 illustrates a data transmission and reception process according to an embodiment of the present invention.
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency
  • MCD division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in wireless technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), and Enhanced Data Rates for GSM Evolution (EDGE).
  • OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802-20, and evolved-UTRA (E-UTRA).
  • UTRAN is part of Universal Mobile Telecommunication System (UMTS), and 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of E-UMTS using E-UTRAN.
  • 3GPP LTE adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-advanced is an evolution of 3GPP LTE.
  • LTE-A LTE-advanced
  • 3GPP LTE / LTE-A 3GPP LTE-advanced
  • the technical features of the present invention are not limited thereto.
  • the following description is described based on a wireless communication system in which the wireless communication system corresponds to a 3GPP LTE / LTE-A system, any other wireless communication except for those specific to 3GPP LTE / LTE-A Applicable to the system as well.
  • a terminal may be fixed or mobile, and collectively refers to devices that transmit and receive various data and control information by communicating with a base station.
  • the terminal may be a user equipment (UE), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. modem, handheld device, and the like.
  • a base station generally means a fixed station communicating with a terminal or another base station, and communicates with the terminal and other base stations to exchange various data and control information.
  • the base station includes an evolved-NodeB (eNB), a base transceiver system (BTS), an advanced base station (ABS), a base station (BS), a processing server (PS), a radio remote header (RRH), and an access point. It may be named in other terms.
  • the specific signal is assigned to the frame / subframe / slot / carrier / subcarrier means that the specific signal is transmitted through the corresponding carrier / subcarrier in the period or timing of the frame / subframe / slot.
  • the rank or transmission rank refers to the number of layers multiplexed or allocated on one OFDM symbol or one resource element (RE).
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic repeat request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • downlink ACK / NACK ACKnowlegement / Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • UCI Uplink Control Information
  • a resource element (RE) assigned to or belonging to PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH is assigned to PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH, respectively.
  • the expression that the terminal transmits the PUCCH / PUSCH / PRACH may be used in the same meaning as transmitting the uplink control information / uplink data / random access signal on the PUSCH / PUCCH / PRACH.
  • the expression that the base station transmits the PDCCH / PCFICH / PHICH / PDSCH may be used in the same meaning as transmitting downlink control information / downlink data and the like on the PDCCH / PCFICH / PHICH / PDSCH.
  • the terminal operates as a transmitter in uplink and as a receiver in downlink.
  • the base station operates as a receiver in uplink and as a transmitter in downlink.
  • a terminal and a base station are antennas 500a and 500b capable of receiving information, data, signals or messages, and a transmitter 100a for controlling the antennas to transmit information, data, signals or messages, and the like. 100b), receivers 300a and 300b for controlling the antenna to receive information, data, signals or messages, and memories 200a and 200b for temporarily or permanently storing various information in the wireless communication system.
  • the terminal and the base station each include a processor (400a, 400b) configured to control components such as a transmitter, a receiver, a memory.
  • the transmitter 100a, the receiver 300a, the memory 200a, and the processor 400a in the terminal may be embodied as separate components by separate chips, respectively, and two or more may be included in one chip. It may be implemented by.
  • the transmitter 100b, the receiver 300b, the memory 200b, and the processor 400b in the base station may be implemented as independent components by separate chips, respectively, and two or more chips may be used as one chip. It may also be implemented by).
  • the transmitter and the receiver may be integrated to be implemented as one transceiver in the terminal or the base station.
  • the antennas 500a and 500b transmit a signal generated by the transmitters 100a and 100b to the outside or receive a signal from the outside and transmit the signal to the receivers 300a and 300b.
  • Antennas 500a and 500b may also be referred to as antenna ports, antenna groups, virtual antennas, and the like.
  • the antenna port may correspond to one logical / physical antenna or may be configured by a combination of a plurality of logical / physical antennas.
  • a transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas may be connected to two or more antennas.
  • MIMO multi-input multi-output
  • Processors 400a and 400b typically control the overall operation of various components or modules within a terminal or base station.
  • the processor 400a or 400b includes various control functions for performing the present invention, a medium access control (MAC) frame variable control function according to service characteristics and a propagation environment, a power saving mode function for controlling idle mode operation, and a hand. Handover, authentication and encryption functions can be performed.
  • the processors 400a and 400b may also be referred to as controllers, microcontrollers, microprocessors or microcomputers. Meanwhile, the processors 400a and 400b may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function that performs the functions or operations of the present invention, and is configured to perform the present invention.
  • the firmware or software may be provided in the processors 400a and 400b or may be stored in the memory 200a and 200b to be driven by the processors 400a and 400b.
  • the transmitters 100a and 100b perform a predetermined coding and modulation on a signal or data to be transmitted to the outside, which is scheduled from the processor 400a or 400b or a scheduler connected to the processor, and then the antennas 500a and 500b. To pass).
  • the transmitters 100a and 100b and the receivers 300a and 300b of the terminal and the base station may be configured differently according to a process of processing a transmission signal and a reception signal.
  • the memories 200a and 200b may store a program for processing and controlling the processors 400a and 400b and may temporarily store information input and output.
  • the memory 200a or 200b may be utilized as a buffer.
  • the memory may be a flash memory type, a hard disk type, a multimedia card micro type or a card type memory (e.g. SD or XD memory, etc.), RAM Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic Disk, and It can be implemented using an optical disk or the like.
  • the terminal and the base station can perform the method of the various embodiments described below.
  • FIG. 2 illustrates a structure of a radio frame to which the present invention is applied.
  • uplink / downlink data transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • the resource block RB may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of Cyclic Prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one slot includes 7 OFDM symbols, so one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the second type radio frame is composed of two half frames, each half frame having five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). ) And one subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers, but is not limited thereto.
  • Each element on the resource grid is called a resource element (RE).
  • the value ak, l of the resource element corresponds to the resource element located in the k-th subcarrier and the l-th OFDM symbol.
  • one resource block includes 12 ⁇ 7 resource elements (in the case of an extended CP, 12 ⁇ 6 resource elements). Since the interval of each subcarrier is 15 kHz, one resource block includes about 180 kHz in the frequency domain.
  • NDLRB represents the number of resource blocks included in a downlink slot. The value of the NDLRB may be determined according to a downlink transmission bandwidth set by scheduling of the base station.
  • downlink control channels 4 shows an example of a downlink subframe.
  • three OFDM symbols located at the front of the first slot in the subframe correspond to the control region allocated to the control channel.
  • the remaining OFDM symbols correspond to the data regions allocated to the PDSCH.
  • downlink control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH).
  • PCFICH physical control format indicator channel
  • PDCH physical downlink control channel
  • PHICH physical hybrid ARQ indicator channel
  • the PCFICH is transmitted in the first OFDM symbol of one subframe and transmits information related to the number of OFDM symbols used for transmission of the control channel in the subframe.
  • the PHICH transmits a HARQ Acknowledgment (ACK) / Negative Acknowledgment (NACK) signal as a response to uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI), and includes uplink or downlink scheduling information or information about an uplink transmission power control command for an arbitrary user group.
  • DCI downlink control information
  • the PDCCH includes a transport format, resource allocation information of a downlink shared channel (DL-SCH), resource allocation information of an uplink shared channel (ULSCH), paging information on a paging channel (DL), and DL.
  • the plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted by a set of one or a plurality of consecutive control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate to the PDCCH based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of usable bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the UE and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC is masked with a unique ID (Radio Network Temporary Identifier (RNTI)) according to the usage of the PDCCH or the user.
  • RNTI Radio Network Temporary Identifier
  • the unique ID of the UE eg, Cell-RNTI: C-RNTI
  • a paging indicator identifier eg, Paging-RNTI: P-RNTI
  • SIB System Information Block
  • SI-RNTI system information ID and the system information RNTI
  • RA-RNTI random access random access RNTI
  • the UE may receive data information through a PDSCH indicated by control information transmitted through a PDCCH.
  • the control region is composed of a set of CCEs which are a plurality of control channel elements (CCEs).
  • the CCE corresponds to a plurality of resource element groups.
  • a plurality of PDCCHs may be transmitted to a plurality of terminals in a control region.
  • the PDCCH is transmitted through aggregation of at least one CCE.
  • the number of CCEs used for PDCCH transmission is named as aggregation level of CCE.
  • the aggregation level may be one of 1, 2, 4, and 8.
  • the aggregation level is the number of CCEs used for PDCCH transmission and is a unit of CCE for searching a PDCCH.
  • the aggregation level of the CCE may be different for each UE.
  • the MCS level refers to a code rate and a modulation order used for data coding. For example, when the modulation order is 2, binary phase shift keying (BPSK) is used, and when the modulation order is 4, quadrature phase shift keying (QPSK) is used. If the modulation order is 6, 16 quadrature amplitude modulation (QAM) may be used.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • the modulation order is fixed and only the coding rate is different, for example, the modulation order is fixed to QPSK, and the useful bit / total bit is 2/3, 1/3, 1/6, or 1
  • the PDCCH carrying control information using a coding rate of 2/3 has an aggregation level of CCE of 1
  • the PDCCH carrying control information using a coding rate of 1/3 has an aggregation level of 2; to be.
  • a PDCCH carrying control information using a coding rate of 1/6 has an aggregation level of 4
  • a PDCCH carrying control information using a coding rate of 1/12 has an aggregation level of 8.
  • Increasing the coding rate means that the repetition of the same data in the CCE is reduced. If the repetition of the same data in the CCE is increased, it is possible to increase the transmission reliability of the message or signal. On the other hand, increasing repetition of the same data may be a waste in terms of radio resources.
  • the configuration process of the PDCCH is performed independently for each corresponding PDCCH. Since the base station does not provide the terminal with information about where the corresponding PDCCH is located in the control region in the subframe, the terminal has a possible aggregation level for all CCEs in the control region every subframe in order to receive the PDCCH transmitted to the terminal. It is necessary to perform blind decoding.
  • a signal that is known to both the transmitting side and the receiving side is transmitted.
  • a method of finding the channel information with the degree of distortion of the signal is mainly used.
  • a signal known to both the transmitting side and the receiving side is called a pilot signal or a reference signal (RS).
  • RS reference signal
  • the reference signal includes a common reference signal (CRS) shared by all terminals in a cell and a dedicated reference signal (DRS) for a specific terminal.
  • CRS common reference signal
  • DRS dedicated reference signal
  • the receiver may estimate the state of the channel from the CRS and feed back channel information such as channel quality such as channel quality indicator (CQI), precoding matrix index (PMI), and rank indicator (RI) to the transmitter.
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • the CRS may be named a cell-specific reference signal.
  • the DRS may be transmitted through the corresponding resource element when demodulation of data on the PDSCH is required.
  • the DRS may be referred to as a UE-specific reference signal or a demodulation reference signal (DMRS).
  • the CRS is a reference signal that can be commonly received by all terminals in a cell and is distributed over the entire band of frequencies.
  • the CRS may be defined in various forms according to the antenna configuration of the transmitting side.
  • a CRS for a single antenna port is arranged.
  • CRSs for the two antenna ports are arranged in a time division multiplexing and / or frequency division multiplexing scheme. That is, the CRSs for the two antenna ports can be placed in different time resources and / or different frequency resources to distinguish them from each other.
  • CRSs for four antenna ports are arranged in a TDM / FDM scheme.
  • CSI-RS channel state information reference signal
  • CSI-RS supports heterogeneous networks (HetNet), and up to 32 different configurations have been proposed to reduce inter-cell interference (ICI) in multiple cells.
  • HetNet heterogeneous networks
  • ICI inter-cell interference
  • the configuration of the CSI-RS is different depending on the number of antenna ports in a cell, and is configured to have a different configuration as much as possible between adjacent cells. In addition, this is classified according to the type of CP, and divided into a case of applying to both FS1 and FS2 and a case of supporting only FS2 according to a frame structure (FS).
  • Resource allocation basically relates to a method of allocating an RB to a PDSCH, which is a data region in a subframe.
  • the resource allocation method may be largely classified into a localized resource assignment method and a distributed resource assignment method.
  • the RBs that are indexed in the frequency domain in order are called physical resource blocks (PRBs), and the method of directly mapping these PRBs to data (or virtual resource blocks (VRBs)) is a continuous resource allocation. It is called a localized resource assignment method. It may also be called "VRB of localized type.”
  • PRBs physical resource blocks
  • VRBs virtual resource blocks
  • a method of distributing PRBs to specific rules and mapping them to data is called a distributed resource assignment method.
  • This can also be called the "VRB of distributed type.” This is to separate the PRBs in the frequency domain and map them to data (or VRB), which may be useful as a means of obtaining frequency diversity.
  • This resource allocation scheme informs whether downlink control information (DCI) carried by the PDCCH is applied to a continuous resource allocation scheme or a distributed resource allocation scheme for resources of the corresponding PDSCH. For example, by using the 'Localized / Distributed VRB assignment flag' included in DCI formats 1A, 1B, 1C, and 1D, whether the PDSCH resource is configured as 'VRBs of localized type' or 'VRBs of distributed type' It tells you if it is.
  • DCI downlink control information
  • DMNS distributed multi-node system
  • CAS centralized antenna system
  • DMNS refers to a system that manages nodes spread at various locations in a cell in a single base station.
  • DMNS is distinguished from femto / pico cells in that multiple nodes constitute one cell.
  • Early DMNS was used to replicate and install more nodes or antenna nodes to cover the shadow area.
  • Larger, DMNS can be viewed as a kind of multiple input multiple output (MIMO) system in that base station antennas can send or receive multiple data at the same time to support one or multiple users, and MIMO system has high spectral efficiency. ) Is recognized as an essential requirement to meet the requirements of next generation communication.
  • MIMO multiple input multiple output
  • DMNS is relatively uniform regardless of the user's position in the cell, high power efficiency, low correlation between base station antennas and high channel efficiency due to the smaller distance between user and antenna than CAS. It has advantages such as ensuring quality communication performance.
  • DMNS is composed of a plurality of nodes. Among the plurality of nodes, one macro node may be included. Macro nodes can act as main nodes. Each node is wired / wirelessly connected to the macro node and may include one or more antennas. In general, the antennas belonging to a node have a characteristic that the distance between the nearest antennas is within a few meters, and belongs to the same point locally, and the node serves as an access point to which a terminal can access.
  • DMNS in which multiple nodes including macro nodes exist in the same cell and all use the same cell ID
  • different types of resource allocation schemes may be used for each node. That is, some nodes may apply a contiguous resource allocation method, and others may apply a distributed resource allocation method.
  • a terminal for example, a terminal before LTE Rel-11
  • one resource allocation method must be supported in a cell.
  • each node should be able to simultaneously support a continuous resource allocation scheme and a distributed resource allocation scheme for a terminal that supports DMNS and a terminal that does not support DMNS (hereinafter, referred to as a legacy terminal).
  • a legacy terminal a terminal that does not support DMNS
  • the present invention provides a resource allocation scheme applicable to both a new terminal and a legacy terminal.
  • the legacy terminal may decode a downlink control channel (eg, PDCCH) allocated to itself without recognition of nodes in a cell, and proceed with a resource allocation method accordingly.
  • a downlink control channel eg, PDCCH
  • the resource allocation scheme may be obtained through a 'Localized / Distributed VRB assignment flag' included in the downlink control information (DCI) in the PDCCH.
  • DCI downlink control information
  • the new terminal may also decode the downlink control channel assigned to it, and proceed with the subsequent procedure in the resource allocation method accordingly.
  • the downlink control channel that can be decoded by the new terminal may be distinguished from the existing downlink control channel (for example, PDCCH).
  • PDCCH existing downlink control channel
  • Such a downlink control channel that can be decoded by a new UE can be defined and used as an E-PDCCH (Enhanced PDCCH).
  • E-PDCCH Enhanced PDCCH
  • the format of the E-PDCCH or information transmitted through it may be the same as the PDCCH.
  • FIG. 6 shows the structure of a DMNS to which the present invention is applied.
  • DMNS is applicable to the LTE Rel-11 system which is an example of a wireless communication system.
  • DMNS may not be applied to a system before LTE Rel-11.
  • FIG. 6 it will be described assuming that an E-PDCCH is defined, including a terminal supporting an LTE Rel-11 system and a terminal (legacy terminal) before LTE Rel-11, supporting a plurality of nodes, and defined.
  • the present invention is not limited thereto.
  • data may be received by decoding the corresponding PDSCH in a resource allocation scheme indicated by downlink control information (DCI) in the PDCCH.
  • DCI downlink control information
  • new terminals may receive data by decoding a corresponding PDSCH in a resource allocation scheme informed by the E-PDCCH.
  • the Rel-11 terminal receiving the service of node 1 decodes the E-PDCCH transmitted from node 1, and knows that the resource allocation scheme of the corresponding PDSCH is using a distributed resource allocation scheme, and based on this PDSCH
  • the Rel-11 terminal receiving the service of the node 2 decodes the E-PDCCH of the node 2, and knows that the resource allocation scheme of the corresponding PDSCH uses a continuous resource allocation scheme.
  • the PDSCH is decoded to obtain data.
  • Legacy terminals decode the PDCCH of the macro node, knowing that the resource allocation scheme of the corresponding PDSCH uses a distributed resource allocation scheme, and based on this, can acquire data by decoding the PDSCH, and a node located nearby By decoding the PDCCH transmitted from, it is possible to know the resource allocation scheme of the PDSCH. Based on such a resource allocation scheme, data may be obtained by decoding the corresponding PDSCH.
  • each node can support both resource allocation schemes in the same band, and can appropriately adjust them through scheduling, and acquire only the resource allocation scheme of PDSCH allocated to itself without considering the nodes from the viewpoint of the UE. Just do it.
  • the position and format of the PDCCH in the control region of the subframe can be confirmed by the PCFICH or by blind decoding the control region of the subframe.
  • the newly defined E-PDCCH a method of informing its location and format has not been studied yet.
  • the E-PDCCH may be decoded only when the resource allocation method is known.
  • a method of notifying a resource allocation method for the E-PDCCH will be described in detail.
  • DMNS can be divided into two types of resource allocation schemes within a cell.
  • the resource allocation scheme for the E-PDCCH is applied to the same resource allocation scheme as the macro node in the cell, or the distributed resource allocation scheme is always applied for diversity gain. do.
  • the UE Since the UE knows the resource allocation scheme for the E-PDCCH in advance, the UE can blindly decode the E-PDCCH in the data region of the subframe to obtain information in the E-PDCCH.
  • the obtained information may include a resource allocation scheme for the PDSCH.
  • the UE may obtain data by decoding the PDSCH by applying a resource allocation scheme for the PDSCH.
  • decoding of resource elements used as the corresponding E-PDCCH may be omitted. In other words, unnecessary resource waste can be reduced by limiting decoding of unnecessary areas.
  • the search space of the E-PDCCH may be known through the common search area (cell specific area) or the E-PCFICH of the E-PDCCH.
  • the E-PCFICH may be defined as a PDCCH including information about a resource allocation scheme for the E-PDCCH.
  • the UE can decode the E-PDCCH only by knowing information of which resource allocation scheme is applied to the E-PDCCH. In addition, the decoding of the corresponding PDSCH is possible only when the decoding of the E-PDCCH is possible.
  • decoding may be performed by applying all resource allocation schemes to the E-PDCCH.
  • decoding of the E-PDCCH may be performed through two blind decoding methods of a distributed resource allocation method and a continuous resource allocation method. In this case, the number of blind decoding is doubled than before.
  • the resource allocation scheme for the E-PDCCH may be informed through a cell-specific signal or a node-specific signal.
  • a resource allocation method may be distinguished using a flag of 1 bit.
  • the distributed allocation scheme may be expressed as' 0 (or 1), and the continuous allocation scheme may be expressed as' 1 (or 0). '
  • a resource allocation scheme for E-PDCCH of nodes (all or part) in a cell may be informed through the E-PCFICH.
  • a format of downlink control information (DCI) indicating a resource allocation scheme for the E-PDCCH may be further defined and transmitted through a common search region (cell-specific region) of the PDCCH.
  • the additionally defined PDCCH may be referred to as an E-PCFICH.
  • the node-specific information may be further included in the E-PCFICH.
  • RRC message signaling may indicate a resource allocation scheme for E-PDCCH of nodes (all or part) in the cell.
  • the RRC message may correspond to a cell specific (common in cell) RRC message.
  • a node specific signal in which a specific value capable of distinguishing nodes and a resource allocation scheme for the E-PDCCH may be transmitted.
  • a method of associating a node with a configuration of the CSI-RS may be proposed.
  • the CSI-RS configuration and the resource allocation scheme may be represented by a bitmap signal. That is, the distributed allocation method is defined as '0 (or 1)', and the continuous allocation method is defined as '1 (or 0)'.
  • the distributed allocation method is defined as '0 (or 1)'
  • the continuous allocation method is defined as '1 (or 0)'.
  • only some CSI-RS configurations may be represented as bitmaps.
  • the UE should recognize information such as a CSI-RS configuration index in advance.
  • divide the CSI-RS configurations into two groups e.g., divide into odd and even indices, and define one group as a distributed allocation scheme and the other as a continuous allocation scheme. Can be.
  • the UE may know the resource allocation method for the E-PDCCH according to the index of the CSI-RS configuration allocated to the UE.
  • a resource allocation method for the E-PDCCH is determined based on one predetermined CSI-RS configuration. For example, among the allocated CSI-RS configurations, the index may be determined based on the configuration of the smallest or largest CRI-RS, or based on the first assigned CSI-RS configuration. In this case, the remaining CSI-RS configurations other than the CSI-RS configuration as a reference may not be signaled or the UE may ignore the signaling even if signaling.
  • node specific information may be transmitted in the E-PCFICH for decoding the E-PDCCH.
  • information about a resource allocation scheme for the E-PDCCH of each node included in the E-PCFICH may be obtained.
  • the resource allocation scheme for the E-PDCCH may be informed through a user specific signal of a PDCCH or an RRC message.
  • a resource allocation method for E-PDCCHs may be informed using PDCCH.
  • the resource allocation scheme for the E-PDCCH is defined in the same manner as the resource allocation scheme of the corresponding PDSCH. It may be informed as the downlink control information transmitted through.
  • the UE After decoding the PDCCH, the UE proceeds with a two-step procedure for decoding the E-PDCCH according to the contents thereof. Meanwhile, in order to minimize resource waste, the downlink control information transmitted through the PDCCH may include only minimal information for decoding the E-PDCCH.
  • the resource allocation scheme of the E-PDCCHs may be informed by using a signal related to a specific terminal of a radio resource control (RRC) layer.
  • RRC radio resource control
  • a node transmits information on a resource allocation method for an Enhanced-Physical Downlink Control Channel (E-PDCCH) to a UE (S110).
  • the resource allocation scheme may include a continuous resource allocation scheme and a distributed resource allocation scheme.
  • the information about the resource allocation scheme may be transmitted through cell-specific RRC signaling or node-specific RRC signaling or terminal-specific RRC signaling.
  • information about a resource allocation scheme may be transmitted through a common search region (cell specific region) of the PDCCH or through a user specific region of the PDCCH.
  • a PDCCH may be referred to as an E-PCFICH.
  • the information about the resource allocation scheme may be transmitted as the CSI-RS. That is, the configuration of the CSI-RS and the resource allocation method may be mapped to distinguish the continuous resource allocation method from the distributed resource allocation method according to the CSI-RS configuration.
  • the node transmits downlink control information through the E-PDCCH that follows the transmitted resource allocation scheme (S120).
  • the control information may include information about a resource allocation scheme of the PDSCH corresponding to the E-PDCCH.
  • the UE may decode the E-PDCCH by applying a resource allocation scheme for the received E-PDCCH (S130).
  • information about a resource allocation scheme for the PDSCH may be obtained (S140).
  • the node transmits data through the PDSCH (S150).
  • the UE may obtain a data by decoding the PDSCH by applying a resource allocation scheme for the PDSCH (S160).
  • the method for transmitting and receiving control information according to the present invention can be used in various wireless communication systems such as 3GPP LTE / LTE-A and IEEE 802.

Abstract

본 발명은 다중 분산 노드 시스템에서, 단말이 제어정보를 수신하는 방법에 있어서, 노드(node)로부터 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 수신하는 단계 및 수신된 자원 할당 방식에 관한 정보에 기초하여, 노드로부터, E-PDCCH를 통하여, 제어정보를 수신하는 단계를 포함하는 제어정보 수신방법을 제공한다.

Description

제어정보 송수신 방법 및 송수신 장치
본 발명은 무선통신에 관한 것으로, 보다 구체적으로는 다중 분산 노드 시스템에서 제어정보를 송수신하는 방법 및 장치에 관한 것이다.
현재의 무선통신환경은 Machine-to-Machine(M2M) 통신이 적용되는 M2M 기기, 높은 데이터 전송량을 요구하는 스마트폰 및 태블릿 컴퓨터 등의 다양한 디바이스의 출현과 보급으로 무선통신시스템 내 네트워크에 대한 데이터 요구량이 매우 빠르게 증가하고 있다. 이러한 많은 데이터 요구량을 만족시키기 위해, 통신기술은 더 많은 주파수 대역을 효율적으로 사용하기 위한 carrier aggregation 기술 및 cognitive radio 기술 등과 한정된 주파수 내에서 데이터 용량을 높이기 위해 다중 안테나 기술 및 다중 기지국 협력기술 등으로 발전하고 있고, 무선통신환경은 사용자 주변에 액세스 할 수 있는 노드(node)의 밀도가 높아지는 방향으로 진화하고 있다. 이러한 높은 밀도의 노드를 갖춘 시스템은 노드들 간의 협력에 의해 더 높은 시스템 성능을 보일 수 있다. 이러한 방식은 각 노드가 기지국(예를 들어, Base station, Advanced BS, Node-B, eNode-B), 엑세스 포인트(AP), 안테나, 안테나 그룹, 무선 리모트 헤드(radio remote header: RRH), 무선 리모트 유닛(radio remote unit: RRU)로서 동작하는, 복수의 노드를 사용하여 협력 통신을 수행한다.
나아가서, 모든 노드가 하나의 컨트롤러(controller)에 의해 송수신을 관리 받아 개별 노드가 하나의 기지국의 일부 안테나 집단처럼 동작을 한다면, 이 시스템은 하나의 DMNS(distributed multi node system)으로 볼 수 있다. 이 때 개별 노드들은 별도의 Node ID를 부여 받을 수도 있고, 별도의 Node ID없이 셀 내의 일부 안테나처럼 동작할 수도 있다.
한편, DMNS에서 노드들이 서로 다른 셀 ID를 갖는다면, 이는 다중 셀(예를 들어, 매크로 셀/펨토 셀/피코 셀) 시스템으로 볼 수 있다. 복수의 노드들 각각이 형상한 다중 셀들이 커버리지에 따라 오버레이되는 형태로 구성된다면, 이를 다중 계층(multi-tier) 네트워크로 명명한다.
한편, 다양한 형태의 기지국들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 즉, BS(Base Station), NB(Node-B), eNB(eNode-B), 피코-셀 eNB(PeNB), 홈 eNB(HeNB), RRH, RRU, 릴레이, 리피터 등이 노드가 될 수 있다. 하나의 노드에는 최소 하나의 안테나가 설치된다. 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 또한, 노드는 포인트(point)라고 불리기도 한다.
노드는 통상 일정 간격이상으로 떨어진 안테나 그룹을 일컫지만, 노드가 간격에 상관없이 임의의 안테나 그룹을 의미하는 경우에도 적용할 수 있다. 예를 들어, 기지국이 H-pol 안테나로 구성된 노드와 V-pol 안테나로 구성된 노드를 제어한다고 정의할 수 있다.
본 발명에서는 DMNS에서 단말을 효율적으로 지원할 수 있는 제어정보 송수신방법 및 이를 위한 장치를 제공한다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위하여, 본 발명은 다중 분산 노드 시스템에서, 단말이 제어정보를 수신하는 방법에 있어서, 노드(node)로부터 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 수신하는 단계 및 수신된 자원 할당 방식에 관한 정보에 기초하여, 노드로부터, E-PDCCH를 통하여, 제어정보를 수신하는 단계를 포함하는 제어정보 수신방법을 제공한다.
한편, 상기의 기술적 과제를 달성하기 위하여 본 발명의 다른 일 측면에서는 다중 분산 노드 시스템에서, 제어정보를 수신하는 장치에 있어서, 송신기, 수신기 및 수신기를 제어하여, 노드로부터 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 수신하고, 수신된 자원 할당 방식에 관한 정보에 기초하여, 노드로부터, E-PDCCH를 통하여, 제어정보를 수신하는 프로세서를 포함하는 제어정보 수신장치를 제공한다.
한편, 상기의 기술적 과제를 달성하기 위하여 본 발명의 다른 일 측면에서는 다중 분산 노드 시스템에서, 노드가 제어정보를 전송하는 방법에 있어서, E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 전송하는 단계 및 자원 할당 방식에 따른 E-PDCCH를 통하여, 제어정보를 전송하는 단계를 포함하는 제어정보 전송방법을 제공한다.
한편, 상기의 기술적 과제를 달성하기 위하여 본 발명의 다른 일 측면에서는 다중 분산 노드 시스템에서, 제어정보를 전송하는 장치에 있어서, 송신기, 수신기 및 송신기를 제어하여, E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 전송하고, 자원 할당 방식에 따른 E-PDCCH를 통하여, 제어정보를 전송하는 프로세서를 포함하는 제어정보 전송장치를 제공한다.
또한, 자원 할당 방식은 연속된 자원 할당 방식과 분산된 자원 할당 방식을 포함한다.
또한, 자원 할당 방식에 관한 정보는 RRC(Radio Resource Control) 시그널링을 통하여 수신된다.
또한, 자원 할당 방식에 관한 정보는 하향링크 제어정보 내에 포함되어, PDCCH(Physical Downlink Control Channel)를 통하여 수신된다.
또한, 자원 할당 방식에 관한 정보가 수신되는 PDCCH는 E-PCFICH(Enhanced-Physical Control Format indicator channel)에 해당한다.
또한, 자원 할당 방식에 관한 정보는 CSI-RS(Channel State Information-Reference Signal)로서 수신되고, 자원 할당 방식은 어떤 CSI-RS 구성이 수신되는 가에 따라서 결정된다.
또한, E-PDCCH는 대응되는 PDSCH(Physical Downlink Shared Channel)에 대한 자원 할당 방식에 관한 정보를 포함한다.
또한, E-PDCCH는 서브프레임의 데이터 영역으로 수신된다.
본 발명의 실시예에 따르면, 노드들에게 각각의 자원 할당 방식을 지원할 수 있도록 함으로써 자원의 효율을 극대화할 수 있다. 또한, 단말은 제어정보를 신속하고 효율적으로 송수신할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명이 적용되는 단말 및 기지국의 구성을 도시한 것이다.
도 2는 본 발명이 적용되는 무선 프레임의 구조를 도시한 것이다.
도 3은 하향링크 슬롯에 대한 자원 그리드(resource grid)를 도시한 것이다.
도 4는 하향링크 서브프레임의 일 예를 도시한 것이다.
도 5는 본 발명에 적용되는 다중 분산 노드 시스템의 일 예를 도시한 것이다.
도 6은 본 발명이 적용되는 DMNS의 구조를 도시한 것이다.
도 7은 본 발명의 일 실시예에 따른 데이터 송수신 과정을 도시한 것이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 하지만, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중접속 시스템에 적용될 수 있다. 다중접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 및 MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service) 및 EDGE(Enhanced Data Rates for GSM Evolution) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE802-20 및 E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRAN은 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRAN를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크에서는 OFDMA를 채택하고, 상향링크에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 무선통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 무선통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 무선통신 시스템에도 적용 가능하다.
몇몇의 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에서, 단말은 고정되거나 이동성을 가질 수 있으며, 기지국과 통신하여 각종 데이터 및 제어정보를 송수신하는 기기들을 통칭한다. 단말은 UE(User Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 명명될 수 있다.
또한, 기지국은 일반적으로 단말 또는 다른 기지국과 통신하는 고정국(fixed station)을 의미하며, 단말 및 다른 기지국과 통신하여 각종 데이터 및 제어정보를 교환한다. 기지국은 eNB(evolved-NodeB), BTS(Base Transceiver System), ABS(Advanced Base station), BS(Base station), PS(Processing Server), RRH(Radio Remote Header) 및 엑세스 포인트(Access Point) 등의 다른 용어로 명명될 수 있다.
본 발명에서 특정 신호가 프레임/서브프레임/슬롯/반송파/부반송파에 할당된다는 것은 특정 신호가 해당 프레임/서브프레임/슬롯의 기간 또는 타이밍에 해당 반송파/부반송파를 통해 전송되는 것을 의미한다.
본 발명에서 랭크 혹은 전송 랭크는 하나의 OFDM 심볼 또는 하나의 자원 요소(RE: Resource Element) 상에 다중화되거나 할당된 레이어의 수를 의미한다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic repeat request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는데 사용된다.
또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는데 사용된다.
특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 자원요소(Resource Element: RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라 명명한다.
따라서, 단말이 PUCCH/PUSCH/PRACH를 전송한다는 표현은 PUSCH/PUCCH/PRACH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 접속 신호를 전송한다는 것과 동일한 의미로 사용될 수 있다. 또한, 기지국이 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은 PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 제어정보/하향링크 데이터 등을 전송한다는 것과 동일한 의미로 사용될 수 있다.
도 1은 본 발명이 적용되는 단말 및 기지국의 구성을 도시한 것이다. 단말은 상향링크에서는 송신장치로 동작하고 하향링크에서는 수신장치로 동작한다. 반대로, 기지국은 상향링크에서는 수신장치로 동작하고, 하향링크에서는 송신장치로 동작한다.
도 1을 참조하면, 단말과 기지국은 정보, 데이터, 신호 또는 메시지 등을 수신할 수 있는 안테나(500a, 500b)와, 안테나를 제어하여 정보, 데이터, 신호 또는 메시지 등을 전송하는 송신기(100a, 100b), 안테나를 제어하여 정보, 데이터, 신호 또는 메시지 등을 수신하는 수신기(300a, 300b), 무선통신 시스템 내 각종 정보를 일시적으로 또는 영구적으로 저장하는 메모리(200a, 200b)를 포함한다. 또한, 단말과 기지국은 송신기 및 수신기, 메모리 등의 구성요소를 제어하도록 구성되는 프로세서(400a, 400b)를 각각 포함한다.
단말 내 송신기(100a), 수신기(300a), 메모리(200a), 프로세서(400a)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 또한, 기지국 내 송신기(100b), 수신기(300b), 메모리(200b), 프로세서(400b)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 송신기와 수신기가 통합되어 단말 또는 기지국 내에서 하나의 송수신기(transceiver)로 구현될 수도 있다.
안테나(500a, 500b)는 송신기(100a, 100b)에서 생성된 신호를 외부로 전송하거나, 외부로부터 신호를 수신하여 수신기(300a, 300b)로 전달하는 기능을 수행한다. 안테나(500a, 500b)는 안테나 포트, 안테나 그룹 및 virtual 안테나 등으로 불리기도 한다. 안테나 포트는 하나의 논리/물리 안테나에 해당하거나 복수개의 논리/물리 안테나의 조합에 의해 구성될 수 있다. 다수의 안테나를 이용하여 데이터 등을 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 송수신기의 경우에는 2개 이상의 안테나와 연결될 수 있다.
프로세서(400a, 400b)는 통상적으로 단말 또는 기지국 내의 각종 구성요소 또는 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(400a, 400b)는 본 발명을 수행하기 위한 각종 제어 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 유휴모드 동작을 제어하기 위한 전력절약모드 기능, 핸드오버(Handover) 기능, 인증 및 암호화 기능 등을 수행할 수 있다. 프로세서(400a, 400b)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor) 또는 마이크로 컴퓨터(microcomputer) 등으로도 명명될 수 있다. 한편, 프로세서(400a, 400b)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어 또는 이들의 결합에 의해 구현될 수 있다.
하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다.
또한, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(400a, 400b) 내에 구비되거나 메모리(200a, 200b)에 저장되어 프로세서(400a, 400b)에 의해 구동될 수 있다.
송신기(100a, 100b)는 프로세서(400a, 400b) 또는 프로세서와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 안테나(500a, 500b)에 전달한다. 단말 및 기지국의 송신기(100a, 100b) 및 수신기(300a, 300b)는 송신신호 및 수신신호를 처리하는 과정에 따라 다르게 구성될 수 있다.
메모리(200a, 200b)는 프로세서(400a, 400b)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입출력되는 정보를 임시 저장할 수 있다. 또한, 메모리(200a, 200b)가 버퍼로서 활용될 수 있다. 메모리는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type) 또는 카드 타입의 메모리(예를 들어, SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크 및 광디스크 등을 이용하여 구현될 수 있다.
또한, 이와 같은 구조를 가지고 단말과 기지국은 이하에서 설명한 다양한 실시형태의 방법을 수행할 수 있다.
도 2는 본 발명이 적용되는 무선 프레임의 구조를 도시한 것이다. OFDM 무선통신 시스템에서, 상향링크/하향링크 데이터 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2(a)는 제 1 타입의 무선 프레임 구조를 나타낸다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원 블록(Resource Block: RB)을 포함한다. 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 Cyclic Prefix(CP)의 구성에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
표준 CP가 사용되는 경우, 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 2(b)는 제 2 타입의 무선 프레임 구조를 나타낸다. 제 2 타입 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
한편, 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 3은 하향링크 슬롯에 대한 자원 그리드(resource grid)를 도시한 것이다. 구체적으로는 OFDM 심볼이 일반 CP로 구성된 경우를 도시한다. 도 3을 참조하면, 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원 블록(RB)을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 12개의 부반송파(subcarrier)를 포함하는 것을 예시적으로 기술하나, 이에 제한되는 것은 아니다. 자원 그리드 상의 각 요소(element)를 자원 요소(resource element: RE)라 한다. 예를 들어, 자원 요소의 값 ak,l은 k 번째 부반송파와 l 번째 OFDM 심볼에 위치한 자원 요소에 대응된다. 일반 CP의 경우, 하나의 자원블록은 12 × 7 자원 요소를 포함한다(확장 CP의 경우에는 12 × 6 자원 요소를 포함). 각 부반송파의 간격은 15kHz이므로, 하나의 자원 블록은 주파수 영역에서 약 180kHz을 포함한다. NDLRB은 하향링크 슬롯에 포함되는 자원 블록의 수를 나타낸다. NDLRB의 값은 기지국의 스케줄링에 의해 설정되는 하향링크 전송 대역폭(bandwidth)에 따라 결정될 수 있다.
도 4는 하향링크 서브프레임의 일 예를 도시한 것이다. 도 4를 참조하면, 서브프레임 내에 첫번째 슬롯의 앞 부분에 위치한 3개의 OFDM 심볼은 제어 채널에 할당된 제어 영역에 대응한다. 나머지 OFDM 심볼들은 PDSCH에 할당된 데이터 영역에 대응한다. 3GPP LTE 에서 사용되는 하향링크 제어 채널의 예로는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel)과 PHICH(Physical Hybrid ARQ Indicator Channel) 등이 있다.
PCFICH는 한 서브프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수와 관련된 정보를 전송한다. PHICH는 상향링크 전송에 대한 응답으로서, HARQ ACK(Acknowledgment)/NACK(Negative Acknowledgment) 신호를 전송한다. PDCCH를 통해 전송되는 제어 정보는 하향링크 제어정보(Downlink Control Information: DCI)로 명명되며, 상향링크 또는 하향링크 스케줄링 정보 또는 임의의 사용자 그룹을 위한 상향링크 전송 전력 제어 명령에 관한 정보를 포함한다. PDCCH는 전송 포맷, 하향링크 공유채널(Downlink Shared Channel; DL-SCH)의 자원 할당 정보와 상향링크 공유 채널(Uplink Shared Channel: ULSCH)의 자원 할당 정보, PCH(Paging Channel) 상에서의 페이징 정보, DL-SCH상의 시스템 정보, PDSCH 상의 랜덤 억세스(random access) 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내에서 각 단말에 대한 전송 전력 제어 명령의 집합, VolP(Voice over IP)의 활성화 등을 전송할 수 있다. 복수의 PDCCH는 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수개의 연속적인 제어 채널 요소들(Control Channel Elements: CCEs)의 집합에 의해 전송된다.
CCE는 무선 채널의 상태에 기초하여 PDCCH에 부호화율(coding rate)을 제공하는데 사용되는 논리 할당 유닛이다. CCE는 복수의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 PDCCH의 사용 가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 부호화율의 상관관계에 따라 결정된다. 기지국은 UE에 전송되는 DCI에 따라 PDCCH 포맷을 결정하고 CRC(Cyclic Redundancy Check)를 제어 정보에 부착한다.
CRC는 PDCCH의 용법(usage) 또는 사용자에 따라 고유한 ID(Radio Network Temporary Identifier: RNTI)로 마스킹(masking)된다. 만약, PDCCH가 특정 UE를 위한 것이면, UE의 고유한 ID(예를 들어, Cell-RNTI: C-RNTI)는 CRC로 마스킹될 수 있다. 만약, PDCCH가 페이징 메시지(paging message)를 위한 것이라면, 페이징 지칭 ID(paging indicator Identifier) (예를 들어, Paging-RNTI: P-RNTI)는 CRC에 마스킹될 수 있다. 만약, PDCCH가 시스템 정보(보다 상세하게, 이하에서는 System Information Block; SIB)를 위한 것이라면, 시스템 정보 ID와 시스템 정보 RNTI(SI-RNTI)는 CRC에 마스킹될 수 있다. 단말의 랜덤 억세스 프리엠블의 전송에 대한 응답인 랜덤 엑세스 응답을 표시하기 위하여, 랜덤 억세스 RNTI(Random Access-RNTI: RA-RNTI)는 CRS에 마스킹될 수 있다.
단말은 PDCCH를 통해 전송되는 제어정보에 의해 지시되는 PDSCH를 통해 데이터 정보를 수신할 수 있다. 제어영역은 복수의 CCE(control channel elements)인 CCE 집합으로 구성된다. CCE는 복수의 자원요소그룹(resource element group)에 대응된다. 복수의 단말에 대하여 복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 적어도 하나의 CCE의 aggregation을 통하여 전송된다. 이때, PDCCH 전송을 위해 사용되는 CCE의 수를 CCE의 aggregation level으로 명명한다. 예를 들어, aggregation level은 1, 2, 4 및 8 중 하나일 수 있다. aggregation level은 PDCCH 전송을 위해 사용되는 CCE의 수이며, PDCCH를 검색하기 위한 CCE의 단위이다. 단말마다 CCE의 aggregation level이 다를 수 있다.
단말마다 aggregation level이 다른 원인 중 하나는 MCS(Modulation and Coding Scheme) 레벨이 다르기 때문이다. MCS 레벨은 데이터 코딩에 사용되는 코딩율(code rate)와 변조차수(modulation order)를 의미한다. 예를 들어, 변조차수가 2인 경우, BPSK(Binary Phase Shift Keying)를 사용하고, 변조차수가 4인 경우, QPSK(Quadrature Phase Shift Keying)를 사용한다. 변조차수가 6인 경우에는 16 QAM(Quadrature Amplitude Modulation)을 사용할 수 있다. 한편, 변조차수를 고정시키고, 코딩율만 다르게 하는 경우, 예를 들어 변조차수를 QPSK로 고정하고, 코딩율(useful bit/total bit)을 2/3, 1/3, 1/6, 또는 1/12를 사용할 때, 코딩율이 2/3을 사용하는 제어정보가 실리는 PDCCH가 CCE의 aggregation level이 1이면, 코딩율이 1/3을 사용하는 제어정보가 실리는 PDCCH는 aggregation level이 2이다. 코딩율이 1/6을 사용하는 제어정보가 실리는 PDCCH는 aggregation level이 4이며, 코딩율이 1/12을 사용하는 제어정보가 실리는 PDCCH는 aggregation level이 8이다. 코딩율의 증가는 CCE 내에서 동일한 데이터의 반복이 감소함을 의미한다. CCE 내에서 동일한 데이터의 반복이 증가하면, 해당 메시지 또는 신호 등의 전송 신뢰도를 증가시킬 수 있다. 반면에, 동일한 데이터의 반복이 증가하면 무선자원의 측면에서 낭비가 될 수 있다.
한편, PDCCH의 구성과정은 해당 PDCCH마다 독립적으로 수행된다. 기지국이 단말에게 서브프레임 내의 제어영역에서 해당 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않기 때문에, 단말은 자신에게 전송되는 PDCCH를 수신하기 위하여 매 서브프레임마다 제어영역 내의 모든 CCE에 대하여 가능한 aggregation level로 블라인드 디코딩(blind decoding)을 수행해야 한다.
무선통신 시스템에서 신호를 전송할 때, 전송되는 데이터는 무선 채널을 통해서 전송되기 때문에 전송 과정에서 신호의 왜곡이 발생할 수 있다. 이렇게 왜곡된 신호를 수신 측에서 올바로 수신하기 위해서는 채널 정보를 알아내어 수신 신호에서 그 채널 정보만큼 신호의 왜곡을 보정하여야만 한다. 채널 정보를 알아내기 위해서 송신 측과 수신 측에서 모두 알고 있는 신호를 전송하여 그 신호가 채널을 통해 수신될 때, 그 신호의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 송신 측과 수신 측이 모두 알고 있는 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal: RS)라고 한다. 다중 안테나 포트를 사용하여 신호를 송수신하는 경우에는 각 송신 안테나 포트와 수신 안테나 포트 사이의 채널 정보를 알아야 올바른 신호를 수신할 수 있으므로, 각 송신 안테나 포트마다 별도의 참조 신호가 필요하다.
참조신호는 셀 내의 모든 단말이 공유하는 공용 참조신호(Common Reference Signal: CRS)와 특정 단말을 위한 전용 참조신호(Dedicated Reference Signal: DRS)가 있다. 이러한 참조신호들에 의해 채널 추정 및 복조를 위한 정보가 제공될 수 있다.
수신 측은 CRS로부터 채널의 상태를 추정하여 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및 RI(Rank Indicator)와 같은 채널 품질과 같은 채널 정보를 송신 측으로 피드백할 수 있다. CRS는 셀 특정(cell-specific) 참조신호로 명명될 수 있다. DRS는 PDSCH 상의 데이터의 복조가 필요한 경우에 해당 자원 요소를 통하여 전송될 수 있다. DRS는 단말 특정(UE-specific) 참조신호 또는 복조용 참조신호(Demodulation Reference Signal: DMRS)로 명명될 수 있다.
CRS는 셀 내의 모든 단말들이 공통적으로 수신할 수 있는 참조 신호로서, 주파수의 전 대역에 걸쳐 분포한다. CRS는 송신 측의 안테나 구성에 따라 다양한 형태로 정의될 수 있다. 송신 측이 단일 안테나 전송을 하는 경우에는 단일 안테나 포트를 위한 CRS가 배치된다. 송신 측이 2개의 안테나 포트 전송을 하는 경우에는 2 개의 안테나 포트를 위한 CRS가 시간분할다중화(Time Division Multiplexing) 및/또는 주파수분할다중화(Frequency Division Multiplexing) 방식으로 배치된다. 즉, 2개의 안테나 포트를 위한 CRS가 상이한 시간 자원 및/또는 상이한 주파수 자원에 배치되어 서로 구별될 수 있다. 또한, 송신 측이 4 개의 안테나 포트 전송을 하는 경우에는 4개의 안테나 포트를 위한 CRS가 TDM/FDM 방식으로 배치된다.
한편, LTE-A Release 10 (이하, Rel-10) 시스템에서는 최대 8개의 안테나 포트를 통해서 데이터를 송수신이 가능하다. 이 때문에, 기존 LTE 시스템에서의 CRS와 같은 방식으로 최대 8개의 안테나 포트에 대한 참조신호 패턴을 매 서브프레임마다 전 대역에 추가하게 되면, 오버헤드가 지나치게 커지는 문제가 발생한다. 이에, 기존의 CRS와는 별도로 Rel-10 단말을 위한 PDSCH의 채널 측정을 목적으로 CSI-RS(Channel State Information Reference Signal)이 제안되었다. CSI-RS는 채널 상태에 대한 정보를 얻는 목적으로만 전송되며, CRS와 달리 매 서브프레임마다 전송되지 않아도 되는 특징이 있다. 또한, CSI-RS는 이기종 네트워크(Heterogeneous Network: HetNet)를 지원하며, 다중 셀 내에서 셀 간 간섭(Inter-Cell Interference: ICI)을 줄이기 위하여, 최대 32가지의 서로 다른 구성이 제안되어 있다. CSI-RS에 대한 구성은 셀 내 안테나 포트 수에 따라 따라 서로 다르며, 인접 셀 간에 최대한 다른 구성을 갖도록 설정된다. 또한, 이는 CP의 종류에 따라 구분되며, 프레임 구조(frame structure: FS)에 따라 FS1과 FS2 모두에 적용하는 경우와 FS2만 지원하는 경우로 나누어 진다. CSI-RS는 CRS와 달리 최대 8개의 안테나 포트(p=15, p=15,16, p=15,16,17,18 and p=15,16,17,18,19,20,21,22)까지 지원하며, Δf=15khz에 대해서만 정의된다.
이하, 무선통신시스템의 일 예인 LTE 시스템에서 자원 할당 방식을 알려주는 방법에 대하여 간단히 설명한다. 자원 할당은 기본적으로, RB를 서브프레임 내 데이터 영역인 PDSCH에 할당하는 방법과 관련된다. 자원 할당 방식은 크게 연속된 자원 할당(localized resource assignment) 방식과 분산된 자원 할당(distributed resource assignment) 방식으로 구분될 수 있다.
RB가 주파수 영역(frequency domain)에서 순서대로 인덱싱된 것을 PRB(physical resource block)이라고 하며, 이러한 PRB를 데이터(혹은 VRB(virtual resource block))로 바로 매핑(directly mapping)하는 방법을 연속된 자원 할당(localized resource assignment) 방식이라 한다. 이는 ‘VRB of localized type’로 명명될 수도 있다.
반면, PRB를 특정 규칙으로 분산하여, 데이터(혹은 VRB)로 매핑하는 방법을 분산된 자원 할당(distributed resource assignment) 방식이라 한다. 이는 ‘VRB of distributed type’로 명명될 수도 있다. 이는 PRB들을 주파수 영역에서 분리하여, 데이터(혹은 VRB)에 매핑하는 것으로, 주파수 다이버시티를 획득하는 수단으로 유용할 수 있다.
이러한, 자원 할당 방식은 PDCCH가 나르는 하향링크 제어정보(downlink control information: DCI) 내에, 해당 PDSCH의 자원이 연속된 자원 할당 방식이 적용되었는지 또는 분산된 자원 할당 방식이 적용되었는지를 알려준다. 예를 들어, DCI 포맷 1A, 1B, 1C 및 1D에 포함된 ‘Localized/Distributed VRB assignment flag’를 이용하여, PDSCH의 자원이 ‘VRBs of localized type’로 구성되어 있는지 ‘VRBs of distributed type’로 구성되어 있는지를 알려준다.
이하, 앞서 설명한 다중 분산 노드 시스템(distributed multi-node system: DMNS)에 대하여 좀 더 구체적으로 설명한다. DMNS는 기지국 안테나들이 셀 중앙에 몰려 있는 중앙 집중형 안테나 시스템(Centralized Antenna System: CAS)과 달리, 셀 내의 다양한 위치에 퍼져 있는 노드들을 단일 기지국에서 관리하는 시스템을 의미한다. DMNS는 다수의 노드들이 하나의 셀을 구성한다는 점에서 펨토(femto)/피코(pico) 셀과 구별된다. 초기의 DMNS는 음영지역을 커버하기 위해 노드들 또는 안테나 노드들을 더 설치하여 리피티션(repetition)하는 용도로 사용되었다. 크게 볼 때 DMNS는 기지국 안테나들이 동시에 여러 데이터를 보내거나 받아서 한 명 혹은 여러 명의 사용자를 지원할 수 있다는 점에서 일종의 MIMO(multiple input multiple output) 시스템으로 볼 수 있고, MIMO 시스템은 높은 주파수 효율(spectral efficiency)로 인해 차세대 통신의 요구사항을 만족시키기 위한 필수적인 요건으로 인식되고 있다.
MIMO 시스템의 관점에서, DMNS는 CAS보다 사용자와 안테나 간의 거리가 작아짐으로써 얻게 되는 높은 전력효율, 낮은 기지국 안테나 간의 상관도 및 간섭으로 인한 높은 채널용량, 셀 내의 사용자의 위치와 상관없이 상대적으로 균일한 품질의 통신성능이 확보되는 등의 장점을 갖게 된다.
도 5는 본 발명에 적용되는 다중 분산 노드 시스템의 일 예를 도시한 것이다. 도 5를 참조하면, DMNS는 복수개의 노드들로 구성된다. 복수개의 노드들 중에는 하나의 매크로 노드를 포함할 수 있다. 매크로 노드는 메인 노드로 동작할 수 있다. 각 노드들은 매크로 노드와 유/무선으로 연결되어 있으며, 하나 이상의 안테나를 포함할 수 있다. 일반적으로 노드 내에 속해있는 안테나들은 가장 가까운 안테나 간의 거리가 수 미터 이내로, 지역적으로 같은 지점에 속해 있는 특성을 지니며, 노드는 단말이 접속할 수 있는 액세스 포인트(access point)와 같은 역할을 한다.
한편, 동일한 셀 내에 매크로 노드를 포함한 다수의 노드들이 존재하고, 모두 동일한 셀 ID를 사용하는 DMNS의 경우에도, 각 노드 별로 서로 다른 종류의 자원 할당 방식을 사용할 수 있다. 즉, 일부 노드들은 연속된 자원 할당 방식을 적용할 수 있으며, 다른 노드들은 분산된 자원 할당 방식을 적용할 수 있다. 하지만, 한 셀 내에 다수의 노드들이 존재하는 DMNS 시스템을 지원하지 않는 단말(예를 들어, LTE Rel-11 이전의 단말)을 위해서는 셀 내에서 하나의 자원 할당 방식을 지원해야 한다.
따라서, 각 노드들은 DMNS를 지원하는 단말과 DMNS를 지원하지 않는 단말(이하, 레거시 단말)을 위하여, 연속된 자원 할당 방식과 분산된 자원 할당 방식을 동시에 지원할 수 있어야 한다. 이하, 본 발명에서는 새로운 단말과 레거시 단말 모두에게 적용 가능한, 자원 할당 방식을 제공한다.
레거시 단말은 셀 내 노드들에 대한 인식 없이, 자신에게 할당된 하향링크 제어채널(예를 들어, PDCCH)을 디코딩하여, 그에 따른 자원 할당 방식으로 절차를 진행할 수 있다. 이는 앞서 설명한 바와 같이, PDCCH 내의 하향링크 제어정보(DCI) 내에 포함된 ‘Localized/Distributed VRB assignment flag’를 통하여 자원 할당 방식을 획득할 수 있다.
또한, 새로운 단말도 자신에게 할당된 하향링크 제어채널을 디코딩하여, 그에 따른 자원 할당 방식으로 이후 절차를 진행할 수 있다. 이때, 새로운 단말이 디코딩할 수 있는 하향링크 제어채널은 기존의 하향링크 제어채널(예를 들어, PDCCH)과 구분될 수 있다. 이러한, 새로운 단말이 디코딩할 수 있는 하향링크 제어채널을 E-PDCCH(Enhanced PDCCH)로 정의하여 사용할 수 있다. E-PDCCH의 포맷 또는 이를 통해 전송되는 정보는 PDCCH와 동일할 수 있다.
도 6은 본 발명이 적용되는 DMNS의 구조를 도시한 것이다. DMNS는 무선통신시스템의 일 예인 LTE Rel-11 시스템에서 적용이 가능하다. 하지만, LTE Rel-11 이전의 시스템에서는 DMNS가 적용되지 않을 수 있다. 도 6을 참조하면, LTE Rel-11 시스템을 지원하는 단말과 LTE Rel-11 이전의 단말(레거시 단말)을 포함하고, 다수의 노드들을 지원하며, E-PDCCH가 정의되는 것을 가정하여 설명한다. 하지만, 본 발명이 이에 제한되는 것은 아니다.
레거시 단말들의 경우, PDCCH 내의 하향링크 제어정보(DCI)에서 알려준 자원 할당 방식으로, 해당 PDSCH를 디코딩하여, 데이터를 수신할 수 있다. 또한, 새로운 단말들은 E-PDCCH에서 알려주는 자원 할당 방식으로, 해당하는 PDSCH를 디코딩하여 데이터를 수신할 수 있다.
즉, 노드1의 서비스를 받는 Rel-11 단말은 노드1에서 전송되는 E-PDCCH를 디코딩하여, 대응되는 PDSCH의 자원 할당 방식이 분산된 자원 할당 방식을 사용하고 있음을 알고, 이를 기초로 해당 PDSCH를 디코딩하여 데이터를 획득하며, 노드2의 서비스를 받는 Rel-11 단말은 노드2의 E-PDCCH를 디코딩하여, 대응되는 PDSCH의 자원 할당 방식이 연속된 자원 할당 방식을 사용하고 있음을 알고, 이를 기초로 해당 PDSCH를 디코딩하여 데이터를 획득한다.
레거시 단말들은 매크로 노드의 PDCCH를 디코딩하여, 해당 PDSCH의 자원 할당 방식이 분산된 자원 할당 방식을 사용하고 있음을 알고, 이를 기초로 해당 PDSCH를 디코딩하여 데이터를 획득할 수 있으며, 가까이에 위치하는 노드에서 전송되는 PDCCH를 디코딩하여, 해당 PDSCH의 자원 할당 방식을 알 수 있다. 이러한 자원 할당 방식을 기초로, 해당 PDSCH를 디코딩하여 데이터를 획득할 수 있다.
따라서, 각 노드는 같은 대역에서 두 가지 자원 할당 방식을 모두 지원할 수 있고, 스케쥴링을 통해 이를 적절히 조절할 수 있으며, 단말의 입장에서는 노드들을 고려하지 않고, 자신에게 할당된 PDSCH의 자원의 할당 방식만을 획득하면 된다.
한편, 앞서 언급한 바와 같이, 서브프레임의 제어영역 내 PDCCH의 위치 및 포맷 등은 PCFICH에서 알려주거나 서브프레임의 제어영역을 블라인드 디코딩(blind decoding)하여 확인할 수 있다. 하지만, 새롭게 정의된 E-PDCCH의 경우, 그 위치 및 포맷을 알려주는 방식에 대하여 아직까지 연구된 바가 없다. 특히, E-PDCCH가 서브프레임의 제어영역이 아닌 데이터영역(PDSCH가 전송되는 영역)에 위치하는 경우, 자원 할당 방식을 알아야 E-PDCCH를 디코딩할 수 있다. 이하, E-PDCCH에 대한 자원 할당 방식을 알려주는 방법에 대하여 구체적으로 설명한다.
DMNS에서 셀 내 자원 할당 방식의 구성을 크게 두 가지로 구분할 수 있다.
우선, 셀 내의 E-PDCCH에 대한 자원 할당 방식은 동일하고, PDSCH에 대한 자원 할당 방식은 노드별로 다른 경우에, 자원 할당 방식을 알려주는 방법을 설명한다.
예를 들어, 각 노드들에 대하여, E-PDCCH에 대한 자원 할당 방식은 셀 내 매크로 노드와 동일한 자원 할당 방식이 적용되거나, 다이버시티 이득을 위하여 항상 분산된 자원 할당 방식이 적용되는 경우가 이에 해당한다.
단말은 E-PDCCH에 대한 자원 할당 방식을 미리 알고 있기 때문에, 서브프레임의 데이터영역에서 E-PDCCH를 블라인드 디코딩하여, E-PDCCH 내의 정보들을 획득할 수 있다. 획득한 정보들에는 해당 PDSCH에 대한 자원 할당 방식이 포함될 수 있다. 단말은 PDSCH에 대한 자원 할당 방식을 적용하여, 해당 PDSCH를 디코딩하여, 데이터를 획득할 수 있다.
한편, 단말은 PDSCH를 디코딩할 때, 해당 E-PDCCH로 사용된 자원 요소들에 대한 디코딩은 생략할 수 있다. 즉, 불필요한 영역의 디코딩을 제한함으로써, 불필요한 자원낭비 등을 줄일 수 있다.
E-PDCCH의 검색 영역(search space), 즉 블라인드 디코딩이 수행되는 영역은 E-PDCCH의 공통 검색 영역(셀 특정 영역) 또는 E-PCFICH를 통해 알 수 있다. E-PCFICH는 E-PDCCH에 대한 자원 할당 방식에 관한 정보를 포함하는 PDCCH로 정의될 수 있다.
다음으로, E-PDCCH에 대한 자원 할당 방식과 PDSCH에 대한 자원 할당 방식이 셀 내 노드 별로 다른 경우에, 이에 대한 자원 할당 방식을 알려주는 방법을 설명한다. 단말은 E-PDCCH가 어떤 자원 할당 방식이 적용되는 지의 정보를 알아야 E-PDCCH의 디코딩이 가능하다. 또한, E-PDCCH의 디코딩이 가능해야, 해당하는 PDSCH의 디코딩이 가능하다.
제 1 실시예로서, E-PDCCH에 대하여, 모든 자원 할당 방식을 적용하여 디코딩을 수행할 수 있다. 구체적으로, 분산된 자원 할당 방식과 연속된 자원 할당 방식의 두 번의 블라인드 디코딩을 통하여 E-PDCCH에 대한 디코딩을 수행할 수 있다. 이 경우, 블라인드 디코딩의 횟수가 기존에 비해 두 배로 늘어나게 된다.
제 2 실시예로서, E-PDCCH에 대한 자원 할당 방식을 셀 특정 신호(cell-specific signal) 또는 노드 특정 신호(node-specific signal)를 통하여 알려줄 수 있다. 이때, 1 비트의 플래그를 이용하여 자원 할당 방식을 구분할 수 있다. 예를 들어, 분산된 할당 방식은 ‘0(혹은 1)’으로, 연속된 할당 방식은 ‘1(혹은 0)’으로 표현할 수 있다.
첫째로, E-PCFICH을 통하여 셀 내의 노드들(전부 또는 일부)의 E-PDCCH에 대한 자원 할당 방식을 알려줄 수 있다. 이를 위하여, E-PDCCH에 대한 자원 할당 방식을 알려주는 하향링크 제어정보(DCI)의 포맷을 추가로 정의하여, 이를 PDCCH의 공통 검색 영역(셀-특정 영역)을 통하여 전송할 수 있다. 이때, 추가로 정의된 PDCCH를 E-PCFICH로 명명할 수 있다. 한편, E-PCFICH 내에는 노드 특정의 정보들을 추가로 포함할 수 있다.
둘째로, RRC 메시지 시그널링을 통하여 셀 내의 노드들(전부 또는 일부)의 E-PDCCH에 대한 자원 할당 방식을 알려줄 수 있다. RRC 메시지는 셀 특정(셀 내 공통된) RRC 메시지에 해당할 수 있다.
셋째로, 노드들을 구별할 수 있는 특정 값과 E-PDCCH에 대한 자원 할당 방식을 매핑한 노드 특정 신호를 전송할 수 있다. 예를 들어, 노드와 CSI-RS의 구성을 연계시키는 방안이 제안될 수 있다. 단말이 노드에 대해서는 알지 못하고, CSI-RS의 구성에 대해서는 아는 경우, 비트맵 방식의 신호로 CSI-RS 구성과 자원 할당 방식을 표현할 수 있다. 즉, 분산된 할당 방식은 ‘0(혹은 1)’으로 연속된 할당 방식은 ‘1(혹은 0)’으로 정의하고, CSI-RS 구성이 0부터 31번까지 존재하면, 총 32 비트로서 CSI-RS 구성 별 자원 할당 방식을 표현할 수 있다. 또는, 일부 CSI-RS 구성에 대해서만 비트맵으로 표현할 수 있다. 이 경우, 비트맵으로 표현된 일부 CSI-RS 구성에 대해서는 단말이 CSI-RS 구성 인덱스 등의 정보를 사전에 인지해야 한다. 또는, CSI-RS 구성들을 두 개의 그룹으로 나누고(예를 들어, 홀수 인덱스들과 짝수 인덱스들로 구분), 한 그룹은 분산된 할당 방식을 나타내고, 다른 그룹은 연속된 할당 방식을 나타내는 것으로 정의할 수 있다.
단말은 자신에게 할당된 CSI-RS 구성의 인덱스에 따라서 E-PDCCH에 대한 자원 할당 방식을 알 수 있다. 하나의 단말에게 여러 개의 CSI-RS 구성이 할당된 경우, 기 결정된 하나의 CSI-RS 구성을 기준으로 E-PDCCH에 대한 자원 할당 방식이 결정된다. 예를 들어, 할당된 CSI-RS 구성들 중에서 인덱스가 가장 작거나 가장 큰 CRI-RS의 구성을 기준으로 하거나, 가장 먼저 할당된 CSI-RS 구성을 기준으로 결정할 수 있다. 이때, 기준이 되는 CSI-RS 구성을 제외한 나머지 CSI-RS 구성들에 대해서는 시그널링하지 않거나, 시그널링하더라도 단말이 이를 무시할 수 있다.
마지막으로, E-PDCCH를 디코딩하기 위한 E-PCFICH 내에 노드 특정 정보를 전송할 수 있다. 서브프레임 내의 공통 검색 영역(셀-특정 영역)에서 E-PCFICH를 블라인드 디코딩하여, E-PCFICH 내에 포함된 각 노드의 E-PDCCH에 대한 자원 할당 방식에 관한 정보를 획득할 수 있다.
제 3 실시예로서, E-PDCCH에 대한 자원 할당 방식을 PDCCH나 RRC 메시지의 사용자 특정 신호를 통해서 알려줄 수 있다.
우선, E-PDCCH들에 대한 자원 할당 방식을 PDCCH를 이용하여 알려줄 수 있다. 구체적으로는, PDCCH의 사용자 특정 영역을 통해 전송되는 하향링크 제어 정보(DCI) 내에, 해당되는 PDSCH의 자원 할당 방식을 알려주는 것과 동일하게, E-PDCCH에 대한 자원 할당 방식을 PDCCH의 사용자 특정 영역을 통해 전송되는 하향링크 제어 정보로서 알려줄 수 있다. 단말은 PDCCH를 디코딩한 후에, 그 내용에 따라서 E-PDCCH를 디코딩하는 2 단계의 절차를 진행한다. 한편, 자원 낭비를 최소화하기 위하여, PDCCH를 통해 전송되는 하향링크 제어정보에는 E-PDCCH를 디코딩하기 위한 최소한의 정보만을 포함할 수 있다.
또한, E-PDCCH들의 자원 할당 방식을 RRC(Radio Resource Control) 계층의 특정 단말과 관련된 신호(user-specific signal)를 이용하여 알려줄 수 있다.
도 7은 본 발명의 일 실시예에 따른 데이터 송수신 과정을 도시한 것이다. DMNS 내에, 다수의 노드들이 존재하며, E-PDCCH가 정의된 환경을 가정하여 설명한다. 하지만, 본 발명이 이에 제한되는 것은 아니다. 도 7을 참조하면, 노드는 단말로 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 전송한다(S110). 자원 할당 방식은 연속된 자원 할당 방식과 분산된 자원 할당 방식을 포함할 수 있다. 자원 할당 방식에 관한 정보는 셀 특정의 RRC 시그널링 또는 노드 특정의 RRC 시그널링 또는 단말 특정의 RRC 시그널링을 통하여 전송될 수 있다. 또한, 자원 할당 방식에 관한 정보는 PDCCH의 공통 검색 영역(셀 특정 영역)을 통하여 전송되거나 PDCCH의 사용자 특정 영역을 통하여 전송될 수 있다. 이러한, PDCCH를 E-PCFICH로 명명할 수 있다. 또한, 자원 할당 방식에 관한 정보는 CSI-RS로서 전송될 수 있다. 즉, CSI-RS의 구성과 자원 할당 방식을 매핑하여, 해당 CSI-RS 구성에 따라 연속된 자원 할당 방식과 분산된 자원 할당 방식을 구분하게 할 수 있다.
노드는 전송된 자원 할당 방식을 따르는 E-PDCCH를 통하여, 하향링크 제어정보를 전송한다(S120). 제어정보에는 E-PDCCH에 대응되는 PDSCH의 자원 할당 방식에 관한 정보를 포함할 수 있다. 단말은 수신한 E-PDCCH에 대한 자원 할당 방식을 적용하여, E-PDCCH를 디코딩할 수 있다(S130). 또한, 디코딩한 E-PDCCH를 통하여, 해당 PDSCH에 대한 자원 할당 방식에 관한 정보를 획득할 수 있다(S140). 노드는 PDSCH를 통하여 데이터를 전송한다(S150). 단말은 PDSCH에 대한 자원 할당 방식을 적용하여, PDSCH를 디코딩하여, 데이터를 획득할 수 있다(S160).
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명에 따른 제어정보를 송수신하는 방법은 3GPP LTE/LTE-A 및 IEEE 802 등 다양한 무선통신시스템에서 이용 가능하다.

Claims (20)

  1. 다중 분산 노드 시스템에서, 단말이 제어정보를 수신하는 방법에 있어서,
    노드(node)로부터 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 수신하는 단계; 및
    상기 수신된 자원 할당 방식에 관한 정보에 기초하여, 상기 노드로부터, 상기 E-PDCCH를 통하여, 제어정보를 수신하는 단계를 포함하는 제어정보 수신방법.
  2. 제 1 항에 있어서,
    상기 자원 할당 방식은 연속된 자원 할당 방식과 분산된 자원 할당 방식을 포함하는 제어정보 수신방법.
  3. 제 1 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 RRC(Radio Resource Control) 시그널링을 통하여 수신되는 제어정보 수신방법.
  4. 제 1 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 하향링크 제어정보 내에 포함되어, PDCCH(Physical Downlink Control Channel)를 통하여 수신되는 제어정보 수신방법.
  5. 제 4 항에 있어서,
    상기 자원 할당 방식에 관한 정보가 수신되는 PDCCH는 E-PCFICH(Enhanced-Physical Control Format indicator channel)에 해당하는 제어정보 수신방법.
  6. 제 1 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 CSI-RS(Channel State Information-Reference Signal)로서 수신되고, 상기 자원 할당 방식은 어떤 CSI-RS 구성이 수신되는 가에 따라서 결정되는 제어정보 수신방법.
  7. 제 1 항에 있어서,
    상기 E-PDCCH는 대응되는 PDSCH(Physical Downlink Shared Channel)에 대한 자원 할당 방식에 관한 정보를 포함하는 제어정보 수신방법.
  8. 제 1 항에 있어서,
    상기 E-PDCCH는 서브프레임의 데이터 영역으로 수신되는 제어정보 수신방법.
  9. 다중 분산 노드 시스템에서, 제어정보를 수신하는 장치에 있어서,
    송신기;
    수신기; 및
    상기 수신기를 제어하여, 노드(node)로부터 E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 수신하고, 상기 수신된 자원 할당 방식에 관한 정보에 기초하여, 상기 노드로부터, 상기 E-PDCCH를 통하여, 제어정보를 수신하는 프로세서를 포함하는 제어정보 수신장치.
  10. 제 9 항에 있어서,
    상기 자원 할당 방식은 연속된 자원 할당 방식과 분산된 자원 할당 방식을 포함하는 제어정보 수신장치.
  11. 제 9 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 RRC(Radio Resource Control) 시그널링을 통하여 수신되는 제어정보 수신장치.
  12. 제 9 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 하향링크 제어정보 내에 포함되어, PDCCH(Physical Downlink Control Channel)를 통하여 수신되는 제어정보 수신장치.
  13. 제 12 항에 있어서,
    상기 자원 할당 방식에 관한 정보가 수신되는 PDCCH는 E-PCFICH(Enhanced-Physical Control Format indicator channel)에 해당하는 제어정보 수신장치.
  14. 제 9 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 CSI-RS(Channel State Information-Reference Signal)로서 수신되고, 상기 자원 할당 방식은 어떤 CSI-RS 구성이 수신되는 가에 따라서 결정되는 제어정보 수신장치.
  15. 제 9 항에 있어서,
    상기 E-PDCCH는 대응되는 PDSCH(Physical Downlink Shared Channel)에 대한 자원 할당 방식에 관한 정보를 포함하는 제어정보 수신장치.
  16. 제 9 항에 있어서,
    상기 E-PDCCH는 서브프레임의 데이터 영역으로 수신되는 제어정보 수신장치.
  17. 다중 분산 노드 시스템에서, 노드(node)가 제어정보를 전송하는 방법에 있어서,
    E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 전송하는 단계; 및
    상기 자원 할당 방식에 따른 E-PDCCH를 통하여, 제어정보를 전송하는 단계를 포함하는 제어정보 전송방법.
  18. 제 17 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 CSI-RS(Channel State Information-Reference Signal)로서 전송되고, 상기 자원 할당 방식은 어떤 CSI-RS 구성이 전송되는 가에 따라서 결정되는 제어정보 전송방법.
  19. 다중 분산 노드 시스템에서, 제어정보를 전송하는 장치에 있어서,
    송신기;
    수신기; 및
    상기 송신기를 제어하여, E-PDCCH(Enhanced-Physical Downlink Control Channel)에 대한 자원 할당 방식에 관한 정보를 전송하고, 상기 자원 할당 방식에 따른 E-PDCCH를 통하여, 제어정보를 전송하는 프로세서를 포함하는 제어정보 전송장치.
  20. 제 19 항에 있어서,
    상기 자원 할당 방식에 관한 정보는 CSI-RS(Channel State Information-Reference Signal)로서 전송되고, 상기 자원 할당 방식은 어떤 CSI-RS 구성이 전송되는 가에 따라서 결정되는 제어정보 전송장치.
PCT/KR2012/000713 2011-06-07 2012-01-31 제어정보 송수신 방법 및 송수신 장치 WO2012169716A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/123,948 US9706536B2 (en) 2011-06-07 2012-01-31 Method for transmitting/receiving control information and apparatus for transmitting/receiving

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161494392P 2011-06-07 2011-06-07
US61/494,392 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169716A1 true WO2012169716A1 (ko) 2012-12-13

Family

ID=47296249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000713 WO2012169716A1 (ko) 2011-06-07 2012-01-31 제어정보 송수신 방법 및 송수신 장치

Country Status (2)

Country Link
US (1) US9706536B2 (ko)
WO (1) WO2012169716A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525723B1 (ko) * 2011-06-15 2015-06-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 할당 방법 및 장치
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US8427976B1 (en) * 2011-12-04 2013-04-23 Ofinno Technology, LLC Carrier information exchange between base stations
US20140126513A1 (en) * 2012-03-14 2014-05-08 Nec Corporation Method of providing control information for user equipment
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
CN103781177B (zh) * 2012-10-19 2018-10-30 株式会社Ntt都科摩 一种信息传输方法、装置及基站
WO2014110822A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 Pdsch的传输方法及装置
KR102053333B1 (ko) * 2013-01-31 2019-12-06 삼성전자주식회사 무선 통신 시스템에서 개선된 네트워크 코딩 방법 및 장치
CN109743081B (zh) * 2013-06-26 2020-03-10 华为技术有限公司 参考信号的传输方法及装置
EP2952018B1 (en) * 2014-01-17 2018-05-02 Nec Corporation Method and system for machine type communication
KR102258289B1 (ko) * 2014-05-22 2021-05-31 삼성전자 주식회사 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 채널 피드백의 생성 및 전송 방법 및 장치
US9660765B1 (en) * 2015-07-13 2017-05-23 Mbit Wireless, Inc. Method and apparatus for broadcast information reception in wireless communication systems
KR20180013660A (ko) * 2016-07-29 2018-02-07 삼성전자주식회사 이동 통신 시스템에서의 채널 상태 정보 보고 방법 및 장치
CN108023667B (zh) * 2016-11-03 2020-06-02 华为技术有限公司 传输控制方法及装置
EP3692678A4 (en) * 2017-10-02 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) UNIFIED INTERFERENCE OF REFERENCE SIGNALS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549944B (zh) * 2009-09-28 2014-11-26 三星电子株式会社 扩展物理下行链路控制信道
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
KR101915271B1 (ko) * 2010-03-26 2018-11-06 삼성전자 주식회사 무선 통신 시스템에서 자원 할당을 위한 하향링크 제어 지시 방법 및 장치
US8873489B2 (en) * 2011-05-05 2014-10-28 Mediatek Inc. Signaling methods for UE-specific dynamic downlink scheduler in OFDMA systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIA TEK INC.: "Discussion on PDCCH Enhancement for DL MU-MIMO and CoMP", 3GPP TSG RAN WG1 #65 R1-111531, 9 May 2011 (2011-05-09) *
PANASONIC: "Considerations on PDCCH Enhancements for Release 11", 3GPP TSG RAN WG1 #65 R1-111589, 9 May 2011 (2011-05-09) *
RESEARCH IN MOTION ET AL.: "PDCCH Enchancement Considerations", 3GPP TSG RAN WG1 #65 R1-111661, 13 May 2011 (2011-05-13) *
ZTE: "Aspects on DL control signaling enhancements", 3GPP TSG RAN WG1 #65 R1-111521, 9 May 2011 (2011-05-09) *

Also Published As

Publication number Publication date
US9706536B2 (en) 2017-07-11
US20140153515A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012169716A1 (ko) 제어정보 송수신 방법 및 송수신 장치
WO2013009005A2 (ko) 무선 통신 시스템에서 자원을 할당하는 방법 및 이를 위한 장치
WO2017209478A1 (en) Resource scheduling method and apparatus
WO2013015637A2 (ko) 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
WO2014123335A1 (en) Method and apparatus for performing resource allocation in wireless communication system
WO2015160198A1 (en) Method and apparatus for processing aperiodic channel state information in wireless communication system
WO2018143621A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2014104627A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2014069946A1 (en) Method and apparatus for supporting scheduling groups of devices characteristics in a wireless communication system
WO2012115362A2 (en) Method of controlling uplink transmission power at ue in wireless communication system and apparatus thereof
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2011010904A2 (ko) CoMP 참조신호 송수신 방법
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2015016567A1 (ko) 무선 통신 시스템에서 링크 적응 수행 방법 및 장치
WO2015174805A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2012118345A2 (ko) 무선통신 시스템에서 d-tdd(dynamic-time division duplex) 하향링크-상향링크 구성을 지원하는 방법 및 이를 위한 장치
WO2017026777A1 (ko) 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치
WO2013129866A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2013133607A1 (ko) 신호 전송 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2014123352A1 (ko) 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치
KR102063080B1 (ko) 무선 통신 시스템에서 간섭 제어 방법 및 이를 위한 장치
WO2013115519A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123948

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12796472

Country of ref document: EP

Kind code of ref document: A1