WO2014137170A1 - 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치 - Google Patents

무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치 Download PDF

Info

Publication number
WO2014137170A1
WO2014137170A1 PCT/KR2014/001836 KR2014001836W WO2014137170A1 WO 2014137170 A1 WO2014137170 A1 WO 2014137170A1 KR 2014001836 W KR2014001836 W KR 2014001836W WO 2014137170 A1 WO2014137170 A1 WO 2014137170A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
band
transmitted
transmission
Prior art date
Application number
PCT/KR2014/001836
Other languages
English (en)
French (fr)
Inventor
채혁진
이승민
김학성
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/771,461 priority Critical patent/US9894688B2/en
Priority to EP14761198.2A priority patent/EP2966825B1/en
Priority to CN201480012597.XA priority patent/CN105009538B/zh
Priority to KR1020157027714A priority patent/KR20160009534A/ko
Publication of WO2014137170A1 publication Critical patent/WO2014137170A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method for transmitting / receiving signals related to device-to-device (D2D) communication.
  • D2D device-to-device
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • D2D communication establishes a direct link between user equipments (UEs), and directly communicates voice and data between terminals without passing through an evolved NodeB (eNB).
  • UEs user equipments
  • eNB evolved NodeB
  • the D2D communication may include a scheme such as UE-to-UE communication, Peer-to-Peer communication, and the like.
  • the D2D communication scheme may be applied to machine-to-machine (M2M) communication, machine type communication (MTC), and the like.
  • M2M machine-to-machine
  • MTC machine type communication
  • D2D communication has been considered as a way to solve the burden on the base station due to the rapidly increasing data traffic.
  • the D2D communication unlike the conventional wireless communication system, since the data is exchanged between devices without passing through a base station, the network can be overloaded.
  • the D2D communication it is possible to expect the effect of reducing the procedure of the base station, the power consumption of the devices participating in the D2D, increase the data transmission speed, increase the capacity of the network, load balancing, cell coverage expansion.
  • the operation of the terminal for receiving a signal from the terminal performing D2D communication outside the cell coverage and the operation of the terminal receiving the signal as a technical problem.
  • a first technical aspect of the present invention is a method for performing transmission and reception related to device to device (D2D) communication by a first terminal in a wireless communication system, the uplink in a first band during a predetermined time interval. Stopping transmission and searching for a signal transmitted by the second terminal; And when a signal transmitted by the second terminal is found, performing a report to a third terminal, wherein the report includes information related to the presence of the second terminal and a band from which the signal is received from the second terminal. It includes, the transmission and reception method related to the D2D communication.
  • D2D device to device
  • a second technical aspect of the present invention is a first terminal device for performing transmission and reception related to device to device (D2D) communication in a wireless communication system, comprising: a receiving module; And a processor, wherein the processor stops uplink transmission in a first band and searches for a signal transmitted by a second terminal during a predetermined time interval, and when a signal transmitted by the second terminal is found, The third terminal performs a report, wherein the report includes information related to the existence of the second terminal and a band from which the signal is received from the second terminal.
  • D2D device to device
  • the first to second technical aspects of the present invention may include the following.
  • the information related to the band may include a request for limiting scheduling for the first terminal in a band in which a signal is received from the second terminal.
  • the first terminal may reduce uplink transmission power when a signal transmitted by the second terminal is found.
  • resource use of a boundary of the first band may be restricted.
  • the search for the signal transmitted by the second terminal may be indicated in downlink control information received from the third terminal.
  • the predetermined time interval may be a subframe four subframes after the subframe in which the downlink control information is received.
  • An acknowledgment that should be transmitted in a subframe corresponding to the predetermined time interval may be bundled in a preset subframe.
  • the third terminal may consider all of the acknowledgment response to be transmitted in the subframe corresponding to the predetermined time interval as ACK.
  • the signal transmitted by the second terminal may be one of a sounding reference signal, a random access preamble, a D2D synchronization signal, and a discovery signal.
  • the report may include information on how many hops a signal transmitted by the second terminal is transmitted from a sync cluster header outside coverage.
  • the parameter related to the transmission of the sounding reference signal or the random access preamble may be shared by the third terminal to the first terminal and the second terminal.
  • the discovery may be indicated by a paging signal.
  • the second terminal may be a terminal operating in a second band, which is a band related to public safety.
  • the first band and the second band may be different bands.
  • the signal transmitted by the second terminal may be an emergency signal.
  • the efficiency of D2D communication can be improved by recognizing a device performing D2D communication outside cell coverage and supporting operations of a base station and terminals.
  • 1 is a diagram illustrating a structure of a radio frame.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • 5 is a diagram for explaining a reference signal.
  • FIG. 6 is a diagram illustrating a network environment to which an embodiment of the present invention can be applied.
  • FIG. 7 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink signal packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • a time taken for one subframe to be transmitted is called a TTI (transmission time interval).
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each of which has five subframes, downlink pilot time slot (DwPTS), guard period (GP), and uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number of NDLs of resource blocks included in a downlink slot depends on a downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a physical downlink shared channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE system include, for example, a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical HARQ indicator channel.
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SI-RNTI system information RNTI
  • RA-RNTI Random Access-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire channel information on the downlink, it should be transmitted over a wide band, and even if the UE does not receive downlink data in a specific subframe, it should receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • the CRS is used for two purposes of channel information acquisition and data demodulation, and the UE-specific reference signal is used only for data demodulation.
  • the CRS is transmitted every subframe for the broadband, and reference signals for up to four antenna ports are transmitted according to the number of transmit antennas of the base station.
  • CRSs for antenna ports 0 and 1 are transmitted, and for four antennas, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 5 is a diagram illustrating a pattern in which a CRS and a DRS defined in an existing 3GPP LTE system (eg, Release-8) are mapped onto a downlink resource block pair (RB pair).
  • a downlink resource block pair as a unit to which a reference signal is mapped may be expressed in units of 12 subcarriers in one subframe ⁇ frequency in time. That is, one resource block pair has 14 OFDM symbol lengths in the case of a general CP (FIG. 5A) and 12 OFDM symbol lengths in the case of an extended CP (FIG. 5B).
  • FIG. 5 shows a position on a resource block pair of a reference signal in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted by '0', '1', '2' and '3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • a resource element denoted by 'D' in FIG. 5 indicates a position of DMRS.
  • a cUE is a terminal (which may correspond to either an RRC connected mode or an idle mode) for communicating with a base station eNB
  • an IdUE is a terminal within coverage of a base station among D2D communication terminals
  • an OdUE performs D2D communication. It refers to a terminal outside the coverage of the base station of the terminal to perform.
  • the OdUE may belong to a base station different from the base station eNB, or (in this case, the OdUE and the cUE are associated with different cells) or may be a terminal not connected to the network because there are no base stations around.
  • cUE is referred to as a first terminal
  • OdUE is referred to as a second terminal.
  • the base station may also be referred to as a third terminal, where the third terminal may include a base station, a synchronous cluster header terminal, or a general D2D terminal, etc.
  • the following description is made by the first terminal and the second terminal. It may be distinguished from a case of operating in the same frequency band and a case of operating in a different frequency band.
  • the first (frequency) band may be a band for commercial (or a band for public safety) and thus Both the first terminal and the second terminal may be a commercial terminal (or a public safety terminal).
  • the first band may be a concept including both an uplink transmission band and a downlink transmission band.
  • the first frequency band and the second frequency band are bands for commercial and public safety, respectively. (Of course, vice versa, that is, the first frequency band may be for public safety and the second frequency band may be for commercial).
  • the first embodiment relates to a case in which the first terminal and the second terminal operate in the same band (first band).
  • the first terminal may search for a signal transmitted by the second terminal in the first band, and if the signal transmitted by the second terminal is found, report to the third terminal.
  • the specific signal transmission and reception and the operation of the terminals whether the TDD or FDD, in the case of FDD whether the first terminal searches for a signal transmitted by the second terminal in the uplink band or the signal transmitted by the second terminal in the downlink band It can be different depending on whether you are searching for it.
  • Embodiment 1-1 FDD, Search for a Signal from a Second Terminal in Uplink Band
  • the first terminal stops uplink transmission in the first band for a predetermined time interval (because it cannot be received simultaneously when sharing a receiving circuit in D2D and cellular communication) and a signal transmitted by the second terminal (for example, a discovery signal) , Beacon signal, D2D synchronization signal, reference signal).
  • a signal transmitted by the second terminal for example, a discovery signal
  • Beacon signal for example, Beacon signal
  • D2D synchronization signal for example, Beacon signal
  • reference signal for example, the search for the signal transmitted by the second terminal may be based on an explicit / implicit indication of the base station.
  • the base station may instruct signal discovery to the first terminal through RRC signaling, MAC control element, physical layer signaling, and the like.
  • the discovery of the signal transmitted by the second terminal may be indicated by the DCI, in which case the first terminal transmits the uplink in the subframe n + 4 after the fourth from the subframe n receiving the DCI. 0 may be omitted and the signal of the second terminal may be searched.
  • the discovery may be indicated by a paging signal.
  • the predetermined time period may be a slot, one or more subframes, or may be a predetermined time.
  • the signal transmitted by the second terminal may be an uplink signal itself or a modified type signal defined in the existing LTE / LTE-A.
  • the signal transmitted by the second terminal may be a random access channel (RACH) or an SRS having a specific ID (promised to the first terminal and the second terminal in advance).
  • RACH random access channel
  • SRS SRS having a specific ID
  • a parameter related to the transmission of the SRS or RACH signal random access preamble
  • SRS before / some of the SRS parameters (SRS comb type, SRS bandwidth, frequency domain position, SRS hopping bandwidth, duration, SRS configuration index, SRS cyclic shift) are signaled to the first terminal and the second terminal in advance.
  • RACH all / some of the RACH parameters (eg, preamble format, preamble ID, etc.) may be signaled to the first terminal and the second terminal in advance.
  • SRS and RACH may be transmitted using the frequency band as defined in the existing LTE / LTE-A, but may be transmitted in a larger or smaller band.
  • the RACH may be sent on an RB greater than or less than 6 RBs. When transmitted in a smaller number of RBs than 6RB, interference to neighboring RBs can be reduced, and when transmitted in a larger number of RBs than 6RB, a detection probability is high.
  • the first terminal may search for a D2D synchronization signal, a reference signal (DM-RS), or a discovery signal of the second terminal.
  • DM-RS reference signal
  • the sequence ID of the specific signal (synchronization signal or reference signal) used by the second terminal may be signaled in advance or designated by the network operator for use of the second terminal.
  • an acknowledgment (ACK / NAK / DTX) not transmitted in the uplink is transmitted in another specific subframe.
  • bundling or channel selection in other specific subframes may be performed on a table that is as large as the number of acknowledgments to which the A value (the number of CCs) should be additionally transmitted in the channel selection table.
  • the base station may consider all of the acknowledgment that was not transmitted in a predetermined time interval as ACK / NAK.
  • the first terminal may report to the base station or neighboring terminals.
  • the report may include information related to the presence of the second terminal, the band from which the signal is received from the second terminal.
  • the band-related information includes information on the band, in which a signal is actually received from a second terminal, and a request for limiting scheduling for the first terminal. May be included).
  • the report may include an average of the measured power of the signal, the variance or the index of the RB over which the received power exceeds a certain threshold. If a plurality of signals of the second terminal is observed, the reporting may be performed separately (for each of the plurality of signals).
  • the signal of the second terminal may be a D2D synchronization signal (D2DSS, D2D synchronization signal) or discovery signal transmitted by the second terminal, the information reported to the network at this time, the ID of the D2DSS, the received measurement value of the D2DSS, corresponding All or part of information on how many hops the D2DSS came from out of coverage sync cluster header may be included.
  • the RLM / RRM / CSI measurement may be separately performed in some radio frames or may not be included in a previous measurement result. This operation may be performed in n subframes / frames after the first terminal detects a signal of the second terminal.
  • the first terminal when it detects / detects a signal from the second terminal, it may be predetermined to transmit a specific signal. For example, when the first terminal detects a specific signal (from the second terminal), the first terminal may transmit a D2DSS or discovery signal after a predetermined time, wherein the D2DSS or discovery signal is transmitted to the neighboring terminal by the second terminal. This may mean that it has been found.
  • the signal may inform the second terminal that the first terminal is present nearby, and at the same time, may request that the second terminal synchronize with the corresponding signal.
  • the third terminal may be configured / instructed to operate as a 'network-to / from-out coverage UE relay' in which all / some or specific terminals among the terminals relay the base station signal. have.
  • Embodiment 1-2 Search for a Signal from a Second Terminal in FDD, Downlink Band
  • Embodiment 1-2 is a case in which the second terminal transmits a signal in the downlink band, and details not separately described below may be replaced by the above-described embodiment 1-1.
  • the first terminal may empty a specific resource (subframe or radio frame unit) or may receive a signal transmitted by the second terminal with the reception of another signal. For example, the first terminal may search for a signal of the second terminal during PDSCH reception, where the MCS of the PDSCH may be the same or lower than the MCS fed back by the first terminal.
  • the first terminal may not properly receive an acknowledgment for uplink transmission due to interference from the second terminal. Accordingly, the PHICH in the subframe receiving the signal from the second terminal may be transmitted in another subframe or bundled with ACK / NACK in another subframe. Alternatively, the UE may always regard the acknowledgment response in the corresponding subframe as ACK or NACK.
  • the signal transmitted by the second terminal may be a downlink signal itself or a modified form defined in the existing LTE / LTE-A. Or it may be a sequence of a specific format, in a predetermined specific pattern. Here, the sequence of a specific format should be common to both the first terminal and the second terminal.
  • a CRS a primary synchronous signal (PSS) / secondary synchronous signal (SSS) of a specific ID may be used.
  • PSS primary synchronous signal
  • SSS secondary synchronous signal
  • the specific ID used by the second terminal may be previously signaled or designated by the network operator for use of the second terminal.
  • the first terminal may report to the base station or a neighboring terminal.
  • the report may include an average of the measured power of the signal, the dispersion, or the index of the RB whose received power exceeds a specific threshold. If a plurality of signals of the second terminal is observed, the reporting may be performed separately (for each of the plurality of signals).
  • the signal of the second terminal may be a D2D synchronization signal (D2DSS, D2D synchronization signal) or discovery signal transmitted by the second terminal, the information reported to the network at this time, the ID of the D2DSS, the received measurement value of the D2DSS, corresponding All or part of information on how many hops the D2DSS came from out of coverage sync cluster header may be included.
  • the RLM / RRM / CSI measurement may be separately performed in some radio frames or may not be included in a previous measurement result. This operation may be performed in n subframes / frames after the first terminal detects a signal of the second terminal.
  • the first terminal when it detects / detects a signal from the second terminal, it may be predetermined to transmit a specific signal. For example, when the first terminal detects a specific signal (from the second terminal), the first terminal may transmit a D2DSS or discovery signal after a predetermined time, wherein the D2DSS or discovery signal is transmitted to the neighboring terminal by the second terminal. This may mean that it has been found.
  • the signal may inform the second terminal that the first terminal is present nearby, and at the same time, may request that the second terminal synchronize with the corresponding signal.
  • the third terminal may be configured / instructed to operate as a 'network-to / from-out coverage UE relay' in which all / some or specific terminals among the terminals relay the base station signal. have.
  • the first terminal may search for the signal of the second terminal regardless of the UL / DL subframe for a certain period. This is considered that there is a possibility that subframe boundaries between the first terminal and the second terminal are shifted in the TDD, so that the UL / DL resource classification is not significant.
  • the signal search of the first terminal may be indicated by a base station or predetermined.
  • An acknowledgment response to be received / transmitted in a subframe for signal discovery from the second terminal may be transmitted in another subframe, bundled in another subframe, and channel selected as described in the foregoing embodiment, and a detailed description thereof will be omitted. .
  • PSS / SSS or CRS / CSI-RS may be transmitted after inferring a downlink subframe transmission time point based on a time point for receiving the Chan-link signal from the first terminal (for example, RACH, SRS, etc.). have.
  • the first terminal may report to the base station or a neighboring terminal.
  • the report may include an average of the measured power of the signal, the dispersion, or the index of the RB whose received power exceeds a specific threshold. If a plurality of signals of the second terminal is observed, the reporting may be performed separately (for each of the plurality of signals).
  • the signal of the second terminal may be a D2D synchronization signal (D2DSS, D2D synchronization signal) or discovery signal transmitted by the second terminal, the information reported to the network at this time, the ID of the D2DSS, the received measurement value of the D2DSS, corresponding All or part of information on how many hops the D2DSS came from out of coverage sync cluster header may be included.
  • the RLM / RRM / CSI measurement may be separately performed in some radio frames or may not be included in a previous measurement result. This operation may be performed in n subframes / frames after the first terminal detects a signal of the second terminal.
  • the subframe boundary of the signal transmitted by the second terminal can be corrected to some extent by the signal transmitted by the first terminal.
  • a time point at which the first terminal receives the RACH, SRS, etc. transmitted in the uplink is a subframe boundary of the first terminal.
  • the first terminal may periodically transmit a signal in a broadcast format to detect a signal of a specific format of the second terminal and update the timing.
  • the first terminal when it detects / detects a signal from the second terminal, it may be predetermined to transmit a specific signal. For example, when the first terminal detects a specific signal (from the second terminal), the first terminal may transmit a D2DSS or discovery signal after a predetermined time, wherein the D2DSS or discovery signal is transmitted to the neighboring terminal by the second terminal. This may mean that it has been found.
  • the signal may inform the second terminal that the first terminal is present nearby, and at the same time, may request that the second terminal synchronize with the corresponding signal.
  • the third terminal may be configured / instructed to operate as a 'network-to / from-out coverage UE relay' in which all / some or specific terminals among the terminals relay the base station signal. have.
  • the second embodiment relates to a case in which the first terminal and the second terminal operate in different frequency bands. Since the frequency bands are different, the first terminal can search for signals of the second terminal without limitation.
  • the first frequency band in which the first terminal operates may be a band for commercial use
  • the second frequency band may be a band for public safety (or vice versa).
  • the first terminal may be called a commercial terminal and the second terminal may be called a public safety terminal.
  • the first terminal and the second terminal may belong to a macro cell and a small cell operating in different frequency bands, respectively.
  • the signal transmitted by the second terminal may be an emergency signal. Since the frequency bands in which the first terminal and the second terminal operate are different, signal transmission of the second terminal and discovery of the first terminal may be performed in the following two aspects.
  • the second terminal transmits an emergency signal in a first band which is an operating frequency band of the first terminal, and the first terminal searches for it.
  • the first embodiment described above may be applied to the details related to the signal search of the first terminal.
  • the second terminal transmits an emergency signal in a second band which is its operating frequency band, and the first terminal performs a signal search from the second terminal in the second band.
  • the signal transmission / reception with the base station is stopped and the search is performed according to the capability of the first terminal, or the signal transmission / reception with the base station is performed in the first band, and the emergency signal is searched in the second band. Can be done.
  • the first terminal When the first terminal detects a signal from the second terminal, the first terminal can reduce the uplink transmission power. This reduces the interference when the first band and the second band are adjacent to protect the second band.
  • resource use of the boundary portion of the first band may be limited. For example, in the case of PUCCH transmission, the transmission may be performed by shifting to the center portion of the first band.
  • the first terminal when the first terminal can access only one frequency band, signal transmission / reception with the base station should be stopped for signal searching from the second terminal.
  • the first terminal will require additional discovery time, such as inter-band RRM measurement, the first terminal is the second terminal in its own communication or a predefined DRX / UL subframe Perform a signal search operation.
  • the first terminal since transmission and reception are not possible in the first band during the signal search period of the second terminal, the first terminal does not perform RLM, RRM, or CSI measurement in the corresponding region.
  • the DRX / DTX interval may be previously promised between the base station and the first terminal or signaled to the first terminal.
  • FIG. 7 is a diagram illustrating the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the transmission point apparatus 10 may include a reception module 11, a transmission module 12, a processor 13, a memory 14, and a plurality of antennas 15. .
  • the plurality of antennas 15 refers to a transmission point apparatus that supports MIMO transmission and reception.
  • the receiving module 11 may receive various signals, data, and information on the uplink from the terminal.
  • the transmission module 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the overall operation of the transmission point apparatus 10.
  • the processor 13 of the transmission point apparatus 10 may process matters necessary in the above-described embodiments.
  • the processor 13 of the transmission point apparatus 10 performs a function of processing the information received by the transmission point apparatus 10, information to be transmitted to the outside, and the memory 14 stores the calculated information and the like. It may be stored for a predetermined time and may be replaced by a component such as a buffer (not shown).
  • the terminal device 20 may include a receiving module 21, a transmission module 22, a processor 23, a memory 24, and a plurality of antennas 25. have.
  • the plurality of antennas 25 refers to a terminal device that supports MIMO transmission and reception.
  • the receiving module 21 may receive various signals, data, and information on downlink from the base station.
  • the transmission module 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal device 20.
  • the processor 23 of the terminal device 20 may process matters necessary in the above-described embodiments.
  • the processor 23 of the terminal device 20 performs a function of processing the information received by the terminal device 20, information to be transmitted to the outside, etc., and the memory 24 stores the calculated information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
  • the description of the transmission point apparatus 10 may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal device 20 is a downlink. The same may be applied to a relay apparatus as a receiving subject or an uplink transmitting subject.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Abstract

본 발명의 실시예는, 무선통신시스템에서 제1 단말이 장치 대 장치(Device to Device, D2D) 통신에 관련된 송수신을 수행하는 방법에 있어서, 소정 시간 구간 동안 제1 대역에서의 상향링크 송신을 중지하고 제2 단말이 전송하는 신호를 탐색하는 단계; 및 상기 제2 단말이 전송하는 신호가 탐색된 경우, 제3 단말로 보고를 수행하는 단계를 포함하며, 상기 보고는 상기 제2 단말의 존재, 상기 제2 단말로부터 신호가 수신된 대역에 관련된 정보를 포함하는, D2D 통신에 관련된 송수신 방법이다.

Description

무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 장치 대 장치(Device-to-Device; D2D)통신에 관련된신호 송수신 방법에 관련된 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
장치 대 장치(Device-to-Device; D2D) 통신이란 단말(User Equipment; UE)들 간에 직접적인 링크를 설정하여, 기지국(evolved NodeB; eNB)을 거치지 않고 단말 간에 음성, 데이터 등을 직접 주고 받는 통신 방식을 말한다. D2D 통신은 단말-대-단말(UE-to-UE) 통신, 피어-대-피어(Peer-to-Peer) 통신 등의 방식을 포함할 수 있다. 또한, D2D 통신 방식은 M2M(Machine-to-Machine) 통신, MTC(Machine Type Communication) 등에 응용될 수 있다.
D2D 통신은 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. 예를 들어, D2D 통신에 의하면 기존의 무선 통신 시스템과 달리 기지국을 거치지 않고 장치 간에 데이터를 주고 받기 때문에 네트워크의 과부하를 줄일 수 있게 된다. 또한, D2D 통신을 도입함으로써, 기지국의 절차 감소, D2D에 참여하는 장치들의 소비 전력 감소, 데이터 전송 속도 증가, 네트워크의 수용 능력 증가, 부하 분산, 셀 커버리지 확대 등의 효과를 기대할 수 있다.
본 발명에서는 셀 커버리지 밖에서 D2D 통신을 수행하는 단말로부터의 신호를 수신하기 위한 단말의 동작, 상기 신호를 수신한 단말의 동작을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 기술적인 측면은, 무선통신시스템에서 제1 단말이 장치 대 장치(Device to Device, D2D) 통신에 관련된 송수신을 수행하는 방법에 있어서, 소정 시간 구간 동안 제1 대역에서의 상향링크 송신을 중지하고 제2 단말이 전송하는 신호를 탐색하는 단계; 및 상기 제2 단말이 전송하는 신호가 탐색된 경우, 제3 단말로 보고를 수행하는 단계를 포함하며, 상기 보고는 상기 제2 단말의 존재, 상기 제2 단말로부터 신호가 수신된 대역에 관련된 정보를 포함하는, D2D 통신에 관련된 송수신 방법이다.
본 발명의 제2 기술적인 측면은, 무선 통신 시스템에서 장치 대 장치(Device to Device, D2D) 통신에 관련된 송수신을 수행하는 제1 단말 장치에 있어서, 수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는, 소정 시간 구간 동안 제1 대역에서의 상향링크 송신을 중지하고 제2 단말이 전송하는 신호를 탐색하고, 상기 제2 단말이 전송하는 신호가 탐색된 경우, 제3 단말로 보고를 수행하며, 상기 보고는 상기 제2 단말의 존재, 상기 제2 단말로부터 신호가 수신된 대역에 관련된 정보를 포함하는, 단말 장치이다.
본 발명의 제1 내지 제2 기술적인 측면은 다음 사항들을 포함할 수 있다.
상기 대역에 관련된 정보는, 상기 제2 단말로부터 신호가 수신된 대역에서 상기 제1 단말을 위한 스케줄링의 제한 요청을 포함할 수 있다.
상기 제1 단말은 상기 제2 단말이 전송하는 신호가 탐색되면 상향링크 전송 전력을 감소시킬 수 있다.
상기 제2 단말이 전송하는 신호가 탐색되면 상기 제1 대역 중 경계부분의 자원 사용이 제한될 수 있다.
상기 제2 단말이 전송하는 신호의 탐색은 상기 제3 단말로부터 수신된 하향링크제어정보에서 지시된 것일 수 있다.
상기 소정 시간 구간은 상기 하향링크제어정보가 수신된 서브프레임으로부터 4 서브프레임 이후의 서브프레임일 수 있다.
상기 소정 시간 구간에 해당하는 서브프레임에서 전송되어야 하는 수신확인응답은 미리 설정된 서브프레임에서 번들링될 수 있다.
상기 제3 단말은, 상기 소정 시간 구간에 해당하는 서브프레임에서 전송되어야 하는 수신확인응답을 모두 ACK으로 간주할 수 있다.
상기 제2 단말이 전송하는 신호는 사운딩 참조신호, 랜덤 액세스 프리앰블, D2D 동기 신호, 디스커버리 신호 중 하나일 수 있다.
상기 보고는 상기 제2 단말이 전송하는 신호가 커버리지 외부의 동기 클러스터 헤더로부터 몇 개의 홉(hop)을 통해 전송된 것인지에 대한 정보를 포함할 수 있다.
상기 사운딩 참조신호 또는 랜덤 액세스 프리앰블의 전송에 관련된 파라미터는 상기 제3 단말에 의해 상기 제1 단말 및 상기 제2 단말에게 공유된 것일 수 있다.
상기 제1 단말이 유휴 상태에 있는 단말인 경우 상기 탐색은 페이징 신호에 의해 지시될 수 있다.
상기 제2 단말은 퍼블릭 세이프티(Public safety)에 관련된 대역인 제2 대역에서 동작하는 단말일 수 있다.
상기 제1 대역과 상기 제2 대역은 상이한 대역일 수 있다.
상기 제2 단말이 전송하는 신호는 긴급 신호(emergency signal)일 수 있다.
본 발명에 따르면 셀 커버리지 바깥에서 D2D 통신을 수행하는 장치의 인지, 그에 따른 기지국과 단말들의 지원 동작을 통해 D2D 통신의 효율성을 높일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 참조신호를 설명하기 위한 도면이다.
도 6은 본 발명의 실시예가 적용될 수 있는 네트워크 환경을 나타내는 도면이다.
도 7은 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1를 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 신호 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(전송 time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용 가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브 프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
도 5는 기존의 3GPP LTE 시스템 (예를 들어, 릴리즈-8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임×주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우(도 5(a))에는 14 개의 OFDM 심볼 길이, 확장된 CP의 경우(도 5(b))에는 12 개의 OFDM 심볼 길이를 가진다.
도 5는 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 5에서 '0', '1', '2' 및 '3'으로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 5에서 'D'로 표시된 자원 요소는 DMRS의 위치를 나타낸다.
이하에서는 상술한 설명들을 바탕으로, 도 6과 같이 셀 커버리지 안/밖에 단말들이 혼재해 있을 경우 커버리지 내(특히 셀 경계)의 단말의 신호 송수신 방법에 대해 살펴본다. 도 6에서 cUE는 기지국(eNB)과 통신하는 단말(RRC 연결 모드 또는 유휴 모드 어느 하나에 해당할 수 있음), IdUE는 D2D 통신을 수행하는 단말 중 기지국의 커버리지 안에 있는 단말, OdUE는 D2D 통신을 수행하는 단말 중 기지국의 커버리지 밖에 있는 단말을 의미한다. 여기서 OdUE는 기지국(eNB)와는 다른 기지국에 속해 있는 것일 수도 있고, (이 경우 OdUE와 cUE는 서로 다른 셀에 연관되어 있는 것이다) 아예 주변에 기지국이 없어서 네트웍에 연결되지 않은 단말일 수 있다. 이하의 설명에서는 cUE는 제1 단말, OdUE는 제2 단말로 칭하기로 한다. 또한, 기지국은 제3 단말로도 불릴 수 있으며, 여기서 제3 단말은 기지국, 동기 클러스터 헤더 단말, 혹은 일반 D2D 단말 등을 포함하는 의미일 수 있다) 이하의 설명은 제1 단말과 제2 단말이 동일한 주파수 대역에서 동작하는 경우와 상이한 주파수 대역에서 동작하는 경우로 구별될 수 있다. 제1 단말과 제2 단말이 동일한 제1 (주파수) 대역에서 동작하는 경우 제1 (주파수) 대역은 커머셜(commercial)을 위한 대역(또는 퍼블릭 세이프티(public safety)를 위한 대역) 일 수 있으며 따라서 제1 단말 및 제2 단말은 모두 커머셜 단말(또는 퍼블릭 세이프티 단말)일 수 있다. 또한, 이러한 경우 제1 대역은 상향링크 전송 대역과 하향링크 전송 대역을 모두 포함하는 개념일 수 있다. 제1 단말과 제2 단말이 서로 상이한 제1 (주파수) 대역과 제2 (주파수) 대역에서 동작하는 경우, 제1 주파수 대역 및 제2 주파수 대역은 각각 커머셜을 위한 대역 및 퍼블릭 세이프티를 위한 대역일 수 있다(물론, 반대의 경우, 즉 제1 주파수 대역은 퍼블릭 세이프티를 위한, 제2 주파수 대역은 커머셜을 위한 것일 수도 있다).
실시예 1
첫 번째 실시예는 제1 단말과 제2 단말이 동일한 대역(제1 대역)에서 동작하는 경우에 관한 것이다. 제1 단말은 제1 대역에서 제2 단말이 전송하는 신호를 탐색하고, 그 제2 단말이 전송하는 신호가 탐색된 경우 제3 단말에게 보고를 수행할 수 있다. 여기서, 구체적인 신호 송수신 및 단말들의 동작은 TDD인지 FDD인지 여부, FDD인 경우 제1 단말이 상향링크 대역에서 제2 단말이 전송하는 신호를 탐색하는 것인지 하향링크 대역에서 제2 단말이 전송하는 신호를 탐색하는 것인지에 따라 상이할 수 있는데, 이하 이에 대해 개별적으로 살펴본다.
실시예 1-1 : FDD, 상향링크 대역에서 제2 단말로부터의 신호를 탐색
제1 단말은 소정 시간 구간 동안 제1 대역에서 상향링크 송신을 중지(D2D와 cellular 통신에서 수신 circuit을 공유하는 경우 동시에 수신 불가능하기 때문)하고 제2 단말이 전송하는 신호(예를 들어, 디스커버리 신호, 비콘 신호, D2D synchronization signal, reference signal)를 탐색할 수 있다. 여기서, 제2 단말이 전송하는 신호의 탐색은 기지국의 명/묵시적 지시에 의한 것일 수 있다. 예를 들어, 기지국은 RRC 시그널링, MAC 제어 요소, 물리계층 시그널링 등을 통해 제1 단말에게 신호 탐색을 지시할 수 있다. 구체적으로 예를 들면, 제2 단말이 전송하는 신호의 탐색은 DCI에 의해 지시될 수 있는데, 이 경우 제1 단말은 DCI를 수신한 서브프레임 n으로부터 4번째 후의 서브프레임 n+4에서 상향링크 전송을 생략하고 제2 단말의 신호를 탐색할 수 있다. 제1 단말이 유휴 상태에 있는 단말인 경우 상기 탐색은 페이징 신호에 의해 지시될 수도 있다. 상기 소정 시간 구간은 슬롯, 서브프레임 하나 또는 그 이상일 수 있으며, 또는 미리 정해진 시간일 수도 있다.
제2 단말이 전송하는 신호는 기존 LTE/LTE-A에서 정의된 상향링크 신호 자체 또는 수정된 형태의 신호일 수 있다. 예를 들어, 제2 단말이 전송하는 신호는 (사전에 제1 단말과 제2 단말에게 약속된) 특정 ID를 가지는 RACH(Random access Channel) 또는 SRS 일 수 있다. 이 때 SRS 또는 RACH 신호(랜덤 액세스 프리앰블)의 전송에 관련된 파라미터는 (기지국에 의해) 제1 단말과 제2 단말에게 공유되는 것일 수 있다. 예를 들어, SRS의 경우, SRS 파라미터(SRS comb type, SRS bandwidth, frequency domain position, SRS hopping bandwidth, duration, SRS configuration index, SRS cyclic shift) 전/일부는 제1 단말 및 제2 단말에게 미리 시그널링 된 것일 수 있다. RACH의 경우, RACH 파라미터(예를 들어, 프리앰블 포맷, 프리앰블 ID 등)의 전/일부가 제1 단말 및 제2 단말에게 미리 시그널링 된 것일 수 있다. SRS와 RACH는 기존 LTE/LTE-A에서 정의된 바와 같은 주파수 대역을 사용하여 전송될 수도 있으나, 그보다 크거나 작은 대역에서 전송될 수도 있다. 예를 들어, RACH는 6RB보다 크거나 또는 작은 RB 상에서 전송될 수 있다. 6RB 보다 작은 개수의 RB에서 전송되는 경우 인접 RB에 미치는 간섭을 줄일 수 있고, 6RB 보다 많은 개수의 RB에서 전송되는 경우 검출 확률이 높다는 이점이 있다. 혹은 제 1단말이 제 2단말의 동기 신호 (D2D synchronization signal) 혹은 참조 신호 (DM-RS), 혹은 디스커버리 신호등을 탐색할 수 있다. 이때 제2 단말이 사용하는 특정 신호 (동기신호 혹은 참조 신호)의 sequence ID는 사전에 시그널링 된 것 또는 네트워크 오퍼레이터가 제2 단말 용도로 지정해 둔 것일 수 있다.
제1 단말이 제2 단말로부터 전송되는 신호를 수신하기 위해 소정 시간 구간 동안 상향링크 전송을 중단하므로, 그 상향링크에서 전송되지 못한 수신확인응답(ACK/NAK/DTX)은 다른 특정 서브프레임에서 전송되거나 또는 다른 특정 서브프레임에서 번들링 또는 채널 셀렉션(channel selection)될 수 있다. 이때 채널 셀렉션 테이블에서 A값(CC개수)을 추가로 전송해야 할 수신확인응답의 개수만큼 큰 테이블에서 채널 셀렉션을 수행할 수 있다. 또는, 기지국은 소정 시간 구간에서 전송되지 못한 수신확인응답은 모두 ACK/NAK으로 간주할 수 있다.
계속해서 제1 단말이, 제2 단말이 전송하는 신호를 탐색한 경우 기지국 또는 주변 단말들에게 보고를 수행할 수 있다. 이 때, 보고에는 제2 단말의 존재, 제2 단말로부터 신호가 수신된 대역에 관련된 정보가 포함될 수 있다. 여기서, 대역에 관련된 정보에는, 실제 제2 단말로부터 신호가 수신된 대역 정보, 제1 단말을 위한 스케줄링의 제한 요청(상기 제2 단말로부터 신호가 수신된 대역 중 간섭이 심한 것으로 판단된 대역에서 스케줄링을 하지 말 것을 요구하는 요청)이 포함될 수 있다. 또한, 상기 보고는 신호의 측정 전력의 평균, 분산 또는 수신 전력이 특정 임계값을 넘는 RB의 인덱스 등을 포함할 수 있다. 만약 제2 단말의 신호가 복수개 관측된 경우, 보고는 구분되어(복수개의 신호 각각에 대해) 수행될 수 있다. 여기서, 제2 단말의 신호는 제2 단말이 전송한 D2D 동기 신호(D2DSS, D2D synchronization signal) 또는 디스커버리 신호일 수 있는데, 이 때 네트워크로 보고하는 정보에는 D2DSS의 ID와, D2DSS의 수신 측정 값, 해당 D2DSS가 커버리지 외부의 동기 클러스터 헤더로부터 몇 홉(hop)을 거쳐서 온 것인지에 대한 정보의 전체 혹은 일부가 포함될 수 있다. 제2 단말의 신호가 검출된 후 일부 라디오 프레임에서 RLM/RRM/CSI 측정은 별도로 수행되거나 또는 이전 측정 결과에는 포함시키지 않을 수 있다. 이러한 동작은 제1 단말이 제2 단말의 신호를 검출한 이후 n개의 서브프레임/프레임에서 수행될 수 있다.
또 다른 예시로써, 제1 단말이 제2 단말로부터 신호를 발견/검출한 경우, 특정 신호를 송신하도록 미리 정해질 수 있다. 예를 들어, 제1 단말은 (제2 단말로부터) 특정 신호를 검출한 경우, 소정 시간 이후에 D2DSS 또는 디스커버리 신호를 송신할 수 있으며, 이 때 D2DSS 또는 디스커버리 신호는 주변 단말에게 자신이 제2 단말을 발견하였음을 알리는 의미일 수 있다. 또한 이 신호는 제2 단말에게 근처에 제1 단말이 존재한다는 것을 알리며, 동시에 제2 단말이 해당 신호에 동기를 맞추도록 요청하는 의미일 수 있다.
제1 단말로부터 보고를 수신한 제3 단말은 이에 기초하여 단말들 중 전/일부 또는 특정 단말이 기지국 신호를 릴레이하는 ‘Network-to/from-out coverage UE relay’로 동작하도록 설정/지시할 수 있다.
실시예 1-2 : FDD, 하향링크 대역에서 제2 단말로부터의 신호를 탐색
실시예 1-2는 제2 단말이 하향링크 대역에서 신호를 전송하는 경우로써, 이하에서 별도로 언급되지 않는 내용들은 앞서 설명된 실시예 1-1에 의해 대체될 수 있다. 제1 단말은 특정 자원(서브프레임 또는 라디오 프레임 단위)을 비우고 또는 다른 신호의 수신과 함께 제2 단말이 전송하는 신호를 수신할 수 있다. 예를 들어, 제1 단말은 PDSCH 수신 중에 제2 단말의 신호를 탐색할 수 있는데, 이 때 PDSCH의 MCS는 제1 단말이 피드백한 MCS와 비교해 동일 또는 낮은 수준일 수 있다.
제1 단말이 제2 단말로부터의 신호를 수신하는 과정에서 상향링크 전송에 대한 수신확인응답을 제2 단말로부터의 간섭으로 인해 제대로 수신하지 못할 수도 있다. 따라서, 제2 단말로부터의 신호를 수신하는 서브프레임에서의 PHICH는 다른 서브프레임에서 전송되거나 다른 서브프레임에서의 ACK/NACK과 번들링(logical and operation)될 수 있다. 또는 단말은 해당 서브프레임에서의 수신확인응답은 항상 ACK 또는 NACK으로 간주할 수 있다.
제2 단말이 전송하는 신호는 기존 LTE/LTE-A에서 정의된 하향링크 신호 자체 또는 수정된 형태일 수 있다. 또는 미리 정해진 특정 패턴의, 특정 포맷의 시퀀스일 수도 있다. 여기서, 특정 포맷의 시퀀스는 제1 단말과 제2 단말이 공통적으로 알고 있는 것이어야 할 것이다. 제2 단말이 전송하는 신호의 구체적인 예시로써, 특정 ID의 CRS, PSS(Primary synchronous signal)/SSS(Secondary synchronous signal)가 사용될 수 있다. 제2 단말이 사용하는 특정 ID는 사전에 시그널링 된 것 또는 네트워크 오퍼레이터가 제2 단말 용도로 지정해 둔 것일 수 있다.
제2 단말이 전송하는 신호가 발견되면, 제1 단말은 기지국 또는 주변 단말에게 보고할 수 있다. 이 때 보고는 신호의 측정 전력의 평균, 분산 또는 수신 전력이 특정 임계값을 넘는 RB의 인덱스 등을 포함할 수 있다. 만약 제2 단말의 신호가 복수개 관측된 경우, 보고는 구분되어(복수개의 신호 각각에 대해) 수행될 수 있다. 여기서, 제2 단말의 신호는 제2 단말이 전송한 D2D 동기 신호(D2DSS, D2D synchronization signal) 또는 디스커버리 신호일 수 있는데, 이 때 네트워크로 보고하는 정보에는 D2DSS의 ID와, D2DSS의 수신 측정 값, 해당 D2DSS가 커버리지 외부의 동기 클러스터 헤더로부터 몇 홉(hop)을 거쳐서 온 것인지에 대한 정보의 전체 혹은 일부가 포함될 수 있다. 제2 단말의 신호가 검출된 후 일부 라디오 프레임에서 RLM/RRM/CSI 측정은 별도로 수행되거나 또는 이전 측정 결과에는 포함시키지 않을 수 있다. 이러한 동작은 제1 단말이 제2 단말의 신호를 검출한 이후 n개의 서브프레임/프레임에서 수행될 수 있다.
또 다른 예시로써, 제1 단말이 제2 단말로부터 신호를 발견/검출한 경우, 특정 신호를 송신하도록 미리 정해질 수 있다. 예를 들어, 제1 단말은 (제2 단말로부터) 특정 신호를 검출한 경우, 소정 시간 이후에 D2DSS 또는 디스커버리 신호를 송신할 수 있으며, 이 때 D2DSS 또는 디스커버리 신호는 주변 단말에게 자신이 제2 단말을 발견하였음을 알리는 의미일 수 있다. 또한 이 신호는 제2 단말에게 근처에 제1 단말이 존재한다는 것을 알리며, 동시에 제2 단말이 해당 신호에 동기를 맞추도록 요청하는 의미일 수 있다.
제1 단말로부터 보고를 수신한 제3 단말은 이에 기초하여 단말들 중 전/일부 또는 특정 단말이 기지국 신호를 릴레이하는 ‘Network-to/from-out coverage UE relay’로 동작하도록 설정/지시할 수 있다.
실시예 1-3 : TDD
TDD의 경우, 제1 단말은 일정 주기 동안 UL/DL 서브프레임 여부에 관계없이 제2 단말의 신호를 탐색할 수 있다. 이는 TDD에서 제1 단말과 제2 단말의 서브프레임 경계가 어긋나 있을 가능성이 있어서 UL/DL 자원 구분이 큰 의미가 없음을 고려한 것이다. 이러한 제1 단말의 신호 탐색은 기지국에 의해 지시되거나 또는 미리 정해진 것일 수 있다.
제2 단말로부터 신호 탐색을 위한 서브프레임에서 수신/전송되어야 하는 수신확인응답은 앞선 실시예에서 설명된 바와 같이 다른 서브프레임에서 전송, 다른 서브프레임에서 번들링, 채널 셀렉션 될 수 있으며 자세한 설명은 생략한다.
제1 단말과 제2 단말의 서브프레임 경계가 크게 다를 경우, 제1 단말이 예측하지 못한 서브프레임에서 제2 단말로부터의 신호가 수신될 수 있기 때문에, 제2 단말은 제1 단말의 상향링크 신호(예를 들어, RACH, SRS 등)을 탐색하여 제1 단말로부터 그 샹향링크 신호를 수신한 시점을 기준으로 하향링크 서브프레임 송신 시점을 유추한 후 PSS/SSS 또는 CRS/CSI-RS를 전송할 수 있다.
제2 단말이 전송하는 신호가 발견되면, 제1 단말은 기지국 또는 주변 단말에게 보고할 수 있다. 이 때 보고는 신호의 측정 전력의 평균, 분산 또는 수신 전력이 특정 임계값을 넘는 RB의 인덱스 등을 포함할 수 있다. 만약 제2 단말의 신호가 복수개 관측된 경우, 보고는 구분되어(복수개의 신호 각각에 대해) 수행될 수 있다. 여기서, 제2 단말의 신호는 제2 단말이 전송한 D2D 동기 신호(D2DSS, D2D synchronization signal) 또는 디스커버리 신호일 수 있는데, 이 때 네트워크로 보고하는 정보에는 D2DSS의 ID와, D2DSS의 수신 측정 값, 해당 D2DSS가 커버리지 외부의 동기 클러스터 헤더로부터 몇 홉(hop)을 거쳐서 온 것인지에 대한 정보의 전체 혹은 일부가 포함될 수 있다. 제2 단말의 신호가 검출된 후 일부 라디오 프레임에서 RLM/RRM/CSI 측정은 별도로 수행되거나 또는 이전 측정 결과에는 포함시키지 않을 수 있다. 이러한 동작은 제1 단말이 제2 단말의 신호를 검출한 이후 n개의 서브프레임/프레임에서 수행될 수 있다.
앞선 실시예들에서는 제1 단말과 제2 단말의 서브프레임 경계가 독립적인 경우에 관한 것인데, 제2 단말이 전송하는 신호의 서브프레임 경계는 제1 단말이 전송하는 신호에 의해 어느 정도 보정될 수 있다. 예를 들어, 제1 단말이 상향링크에서 전송하는 RACH, SRS 등을 수신하는 시점을 제1 단말의 서브프레임 경계라 가정할 수 있다. 제1 단말은 주기적으로 제2 단말의 특정 포맷의 신호를 검출하고 타이밍을 업데이트 할 것을 브로드캐스트 형식으로 전송할 수 있다.
또 다른 예시로써, 제1 단말이 제2 단말로부터 신호를 발견/검출한 경우, 특정 신호를 송신하도록 미리 정해질 수 있다. 예를 들어, 제1 단말은 (제2 단말로부터) 특정 신호를 검출한 경우, 소정 시간 이후에 D2DSS 또는 디스커버리 신호를 송신할 수 있으며, 이 때 D2DSS 또는 디스커버리 신호는 주변 단말에게 자신이 제2 단말을 발견하였음을 알리는 의미일 수 있다. 또한 이 신호는 제2 단말에게 근처에 제1 단말이 존재한다는 것을 알리며, 동시에 제2 단말이 해당 신호에 동기를 맞추도록 요청하는 의미일 수 있다.
제1 단말로부터 보고를 수신한 제3 단말은 이에 기초하여 단말들 중 전/일부 또는 특정 단말이 기지국 신호를 릴레이하는 ‘Network-to/from-out coverage UE relay’로 동작하도록 설정/지시할 수 있다.
실시예 2
두 번째 실시예는 제1 단말과 제2 단말이 서로 다른 주파수 대역에서 동작하는 경우에 관한 것이다. 주파수 대역이 상이하므로 제1 단말은 제한 없이 제2 단말의 신호를 탐색할 수 있다. 앞서 언급된 바와 같이, 제1 단말이 동작하는 제1 주파수 대역은 커머셜을 위한 대역, 제2 주파수 대역은 퍼블릭 세이프티를 위한 대역(그 역도 가능)일 수 있다. 이 경우, 제1 단말은 커머셜 단말, 제2 단말은 퍼블릭 세이프티 단말로 불릴 수 있다. 또는, 제1 단말과 제2 단말은 각각, 서로 다른 주파수 대역에서 동작하는 매크로 셀과 스몰 셀에 속하는 것일 수도 있다.
제2 단말이 전송하는 신호는 긴급 신호(emergency signal)일 수 있다. 제1 단말과 제2 단말이 동작하는 주파수 대역이 상이하므로, 제2 단말의 신호 전송과 제1 단말의 탐색은 다음 두 가지 양태로 수행될 수 있다.
첫 번쩨로, 제2 단말이 제1 단말의 동작 주파수 대역인 제1 대역에서 긴급 신호를 전송하고, 제1 단말이 이를 탐색하는 것이다. 이러한 경우, 제1 단말의 신호 탐색과 관련된 구체적인 내용들은 앞서 설명된 실시예 1이 적용될 수 있다.
두 번째로, 제2 단말은 자신의 동작 주파수 대역인 제2 대역에서 긴급 신호를 전송하고, 제1 단말이 제2 단말로부터 신호 탐색을 제2 대역에서 수행하는 것이다. 이 때, 제1 단말의 능력(capability)에 따라 기지국과의 신호 송/수신을 중단하고 탐색을 수행하거나 또는 제1 대역에서는 기지국과의 신호 송/수신을, 제2 대역에서는 긴급 신호의 탐색을 수행할 수 있다.
제1 단말이 제2 단말로부터의 신호를 검출한 경우, 제1 단말은 상향링크 전송 전력을 줄일 수 있다. 이는 제1 대역과 제2 대역이 인접한 경우 간섭을 줄여 제2 대역을 보호하는 효과가 있다. 같은 맥락에서, 제2 단말의 신호가 검출되는 경우, 제1 대역 중 경계 부분의 자원 사용은 제한될 수 있다. 예를 들어, PUCCH 전송의 경우 제1 대역의 중심 부분으로 시프트되어 전송이 수행될 수 있다.
한편, 제1 단말이 하나의 주파수 대역만 액세스 할 수 있는 경우, 제2 단말로부터 신호 탐색을 위해서는 기지국과의 신호 송/수신을 중단해야 한다. 이러한 경우, 제1 단말은 인터 밴드(Inter-Band) RRM 측정처럼 추가적인 탐색 시간이 요구될 것이고, 제1 단말은 자신의 통신이 수행되지 않는 또는 사전에 정의된 DRX/UL서브프레임에서 제2 단말로부터의 신호 탐색 동작을 수행할 수 있다. TDD의 경우, 제2 단말의 신호 탐색 구간 동안 제1 대역에서 송수신이 모두 불가할 것이기 때문에, 해당 영역에서 제1 단말은 RLM, RRM, CSI 측정을 수행하지 않는다. 이러한 DRX/DTX구간은 사전에 기지국과 제1 단말 사이에 약속되어 있거나 또는 제1 단말에게 시그널링 될 수 있다.
본 발명의 실시예에 의한 장치 구성
도 7은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 7을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신모듈(11), 전송모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모듈(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 7을 참조하면 본 발명에 따른 단말 장치(20)는, 수신모듈(21), 전송모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 7에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (16)

  1. 무선통신시스템에서 제1 단말이 장치 대 장치(Device to Device, D2D) 통신에 관련된 송수신을 수행하는 방법에 있어서,
    소정 시간 구간 동안 제1 대역에서의 상향링크 송신을 중지하고 제2 단말이 전송하는 신호를 탐색하는 단계; 및
    상기 제2 단말이 전송하는 신호가 탐색된 경우, 제3 단말로 보고를 수행하는 단계;
    를 포함하며,
    상기 보고는 상기 제2 단말의 존재, 상기 제2 단말로부터 신호가 수신된 대역에 관련된 정보를 포함하는, D2D 통신에 관련된 송수신 방법.
  2. 제1항에 있어서,
    상기 대역에 관련된 정보는, 상기 제2 단말로부터 신호가 수신된 대역에서 상기 제1 단말을 위한 스케줄링의 제한 요청을 포함하는, D2D 통신에 관련된 송수신 방법.
  3. 제1항에 있어서,
    상기 제1 단말은 상기 제2 단말이 전송하는 신호가 탐색되면 상향링크 전송 전력을 감소시키는, D2D 통신에 관련된 송수신 방법.
  4. 제1항에 있어서,
    상기 제2 단말이 전송하는 신호가 탐색되면 상기 제1 대역 중 경계부분의 자원 사용이 제한되는, D2D 통신에 관련된 송수신 방법.
  5. 제1항에 있어서,
    상기 제2 단말이 전송하는 신호의 탐색은 상기 제3 단말로부터 수신된 하향링크제어정보에서 지시된 것인, D2D 통신에 관련된 송수신 방법.
  6. 제5항에 있어서,
    상기 소정 시간 구간은 상기 하향링크제어정보가 수신된 서브프레임으로부터 4 서브프레임 이후의 서브프레임인, D2D 통신에 관련된 송수신 방법.
  7. 제6항에 있어서,
    상기 소정 시간 구간에 해당하는 서브프레임에서 전송되어야 하는 수신확인응답은 미리 설정된 서브프레임에서 번들링되는, D2D 통신에 관련된 송수신 방법.
  8. 제6항에 있어서,
    상기 제3 단말은, 상기 소정 시간 구간에 해당하는 서브프레임에서 전송되어야 하는 수신확인응답을 모두 ACK으로 간주하는, D2D 통신에 관련된 송수신 방법.
  9. 제1항에 있어서,
    상기 제2 단말이 전송하는 신호는 사운딩 참조신호, 랜덤 액세스 프리앰블, D2D 동기 신호, 디스커버리 신호 중 하나인, D2D 통신에 관련된 송수신 방법.
  10. 제1항에 있어서,
    상기 보고는 상기 제2 단말이 전송하는 신호가 커버리지 외부의 동기 클러스터 헤더로부터 몇 개의 홉(hop)을 통해 전송된 것인지에 대한 정보를 포함하는, D2D 통신에 관련된 송수신 방법.
  11. 제1항에 있어서,
    상기 사운딩 참조신호 또는 랜덤 액세스 프리앰블의 전송에 관련된 파라미터는 상기 제3 단말에 의해 상기 제1 단말 및 상기 제2 단말에게 공유된 것인, D2D 통신에 관련된 송수신 방법.
  12. 제1항에 있어서,
    상기 제1 단말이 유휴 상태에 있는 단말인 경우 상기 탐색은 페이징 신호에 의해 지시되는, D2D 통신에 관련된 송수신 방법.
  13. 제1항에 있어서,
    상기 제2 단말은 퍼블릭 세이프티(Public safety)에 관련된 대역인 제2 대역에서 동작하는 단말인, D2D 통신에 관련된 송수신 방법.
  14. 제13항에 있어서,
    상기 제1 대역과 상기 제2 대역은 상이한 대역인, D2D 통신에 관련된 송수신 방법.
  15. 제12항에 있어서,
    상기 제2 단말이 전송하는 신호는 긴급 신호(emergency signal)인, D2D 통신에 관련된 송수신 방법.
  16. 무선 통신 시스템에서 장치 대 장치(Device to Device, D2D) 통신에 관련된 송수신을 수행하는 제1 단말 장치에 있어서,
    수신 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는, 소정 시간 구간 동안 제1 대역에서의 상향링크 송신을 중지하고 제2 단말이 전송하는 신호를 탐색하고, 상기 제2 단말이 전송하는 신호가 탐색된 경우, 제3 단말로 보고를 수행하며, 상기 보고는 상기 제2 단말의 존재, 상기 제2 단말로부터 신호가 수신된 대역에 관련된 정보를 포함하는, 단말 장치.
PCT/KR2014/001836 2013-03-07 2014-03-06 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치 WO2014137170A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/771,461 US9894688B2 (en) 2013-03-07 2014-03-06 Method and apparatus for transmitting/receiving signal related to device-to-device communication in wireless communication system
EP14761198.2A EP2966825B1 (en) 2013-03-07 2014-03-06 Method and apparatus for transmitting/receiving signal related to device-to-device communication in wireless communication system
CN201480012597.XA CN105009538B (zh) 2013-03-07 2014-03-06 在无线通信系统中发送/接收与设备对设备通信有关的信号的方法和设备
KR1020157027714A KR20160009534A (ko) 2013-03-07 2014-03-06 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361773836P 2013-03-07 2013-03-07
US61/773,836 2013-03-07
US201461944583P 2014-02-26 2014-02-26
US61/944,583 2014-02-26

Publications (1)

Publication Number Publication Date
WO2014137170A1 true WO2014137170A1 (ko) 2014-09-12

Family

ID=51491619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001836 WO2014137170A1 (ko) 2013-03-07 2014-03-06 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치

Country Status (5)

Country Link
US (1) US9894688B2 (ko)
EP (1) EP2966825B1 (ko)
KR (1) KR20160009534A (ko)
CN (1) CN105009538B (ko)
WO (1) WO2014137170A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049517A1 (en) * 2014-09-26 2016-03-31 Kyocera Corporation Device-to-device synchronization signal (d2dss) management
WO2016048068A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 D2d 신호의 송신 방법 및 이를 위한 단말
WO2016072771A1 (ko) * 2014-11-05 2016-05-12 주식회사 아이티엘 D2d 통신을 위한 동기화 신호 구성 방법 및 장치
WO2016056877A3 (ko) * 2014-10-09 2016-05-26 엘지전자 주식회사 D2d 동기화 신호의 송신 방법 및 이를 위한 단말
JP2016158219A (ja) * 2015-02-26 2016-09-01 シャープ株式会社 通信システム
CN106664674A (zh) * 2014-10-07 2017-05-10 Lg 电子株式会社 在无线通信系统中发送用于设备对设备通信的同步信号的方法及其装置
WO2017111421A1 (ko) * 2015-12-22 2017-06-29 삼성전자 주식회사 무선 통신 시스템의 d2d 신호 전송 지원을 위한 기지국 동작 방법 및 장치
CN107005787A (zh) * 2014-10-31 2017-08-01 Lg电子株式会社 在无线通信系统中终端发送用于装置对装置(d2d)操作的同步信号的方法及使用该方法的终端
EP3349489A4 (en) * 2015-09-09 2019-03-20 LG Electronics Inc. METHOD FOR DIRECT COMMUNICATION OF DEVICE DEVICE IN WIRELESS COMMUNICATION SYSTEM, AND APPARATUS THEREOF

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761518A1 (en) * 2013-07-11 2021-01-06 Interdigital Patent Holdings, Inc. Method and apparatus for supporting sectorization coordination
US10462802B2 (en) * 2013-08-07 2019-10-29 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
US20160192310A1 (en) * 2013-08-11 2016-06-30 Telefonaktiebolaget L M Ericsson (Publ) Method and a Device for Sending a Synchronization Signal
EP3007497A4 (en) * 2013-09-27 2016-07-13 Huawei Device Co Ltd METHOD AND USER DEVICE FOR SENDING DIRECT CONNECTION COMMUNICATION SIGNALS FROM USER DEVICES
CN104541536B (zh) 2014-03-21 2017-04-26 华为终端有限公司 检测设备对设备信号的方法、用户设备和基站
KR20160140872A (ko) * 2014-05-08 2016-12-07 후지쯔 가부시끼가이샤 무선 통신 시스템, 단말기, 기지국 및 처리 방법
WO2016019512A1 (zh) * 2014-08-05 2016-02-11 华为技术有限公司 D2d终端、系统及d2d发现方法
CN106211027B (zh) * 2014-12-25 2021-06-18 北京三星通信技术研究有限公司 一种实现d2d终端时频同步的方法和设备
US10292176B2 (en) 2015-07-16 2019-05-14 Qualcomm Incorporated Subframe availability for machine type communications (MTC)
WO2017128289A1 (zh) * 2016-01-29 2017-08-03 富士通株式会社 信道状态信息反馈方法、资源分配方法、装置和通信系统
KR102406213B1 (ko) 2016-02-03 2022-06-07 한화테크윈 주식회사 이동단말기의 데이터 전송 방법
AU2017215885B2 (en) * 2016-02-04 2021-09-09 Ntt Docomo, Inc. User equipment and random access method
WO2017156789A1 (zh) * 2016-03-18 2017-09-21 广东欧珀移动通信有限公司 基于设备到设备的通信方法和终端
CN108464048A (zh) * 2016-03-30 2018-08-28 Oppo广东移动通信有限公司 数据传输的方法、终端及基站
US11057931B2 (en) * 2016-03-31 2021-07-06 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
KR101996905B1 (ko) * 2016-10-27 2019-07-08 숭실대학교 산학협력단 재난 무선 통신 시스템 및 그것을 이용한 주파수 자원 확보 방법
EP3579627B1 (en) * 2017-02-06 2022-03-30 LG Electronics Inc. Method for performing paging-related operation of second ue having connection with first ue in wireless communication system, and apparatus therefor
US10237691B2 (en) * 2017-08-09 2019-03-19 Quintrax Limited Proximal physical location tracking and management systems and methods
US10873938B2 (en) * 2017-10-09 2020-12-22 Qualcomm Incorporated Rate matching for broadcast channels
WO2020037687A1 (en) * 2018-08-24 2020-02-27 Nec Corporation Sdm iab transmission
JP7148565B2 (ja) * 2019-05-10 2022-10-05 華碩電腦股▲ふん▼有限公司 無線通信システムにおいて、SLRB(Sidelink Radio Bearer)設定のためのUE(User Equipment)能力情報を報告するための方法および装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128505A2 (ko) * 2011-03-18 2012-09-27 엘지전자 주식회사 장치-대-장치 통신 방법 및 장치
WO2013013412A1 (en) * 2011-07-28 2013-01-31 Renesas Mobile Corporation Switching between cellular and license-exempt (shared) bands

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622677A (zh) * 2003-11-27 2005-06-01 皇家飞利浦电子股份有限公司 一种无线通信网络中支持点到点通信切换的方法
GB2437348B (en) 2006-08-18 2008-03-26 Iti Scotland Ltd Wireless device and method
WO2010121395A1 (zh) * 2009-04-21 2010-10-28 上海贝尔股份有限公司 无线中继的方法及其装置
CN107104780B (zh) * 2009-10-01 2020-10-16 交互数字专利控股公司 上行链路控制数据传输
WO2011109941A1 (en) * 2010-03-11 2011-09-15 Nokia Corporation Method and apparatus for device-to-device communication setup
CN102480775B (zh) * 2010-11-22 2014-01-08 大唐移动通信设备有限公司 物理上行控制信道的功率控制方法及设备
EP2652998A4 (en) * 2010-12-13 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) Methods and user equipments for device to device communication
KR102524731B1 (ko) * 2012-01-27 2023-04-21 인터디지탈 패튼 홀딩스, 인크 다중 캐리어 기반형 및/또는 의사 조합형 네트워크에서 epdcch를 제공하는 시스템 및/또는 방법
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128505A2 (ko) * 2011-03-18 2012-09-27 엘지전자 주식회사 장치-대-장치 통신 방법 및 장치
WO2013013412A1 (en) * 2011-07-28 2013-01-31 Renesas Mobile Corporation Switching between cellular and license-exempt (shared) bands

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT ET AL.: "LTE device to device evaluation methodology", 3GPP TSG-RAN WG1 MEETING #72 R1-130469, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA, XP050663751 *
INTERDIGITAL: "Recommendations for D2D evaluation methodology and assumptions", 3GPP TSG-RAN WG1 MEETING #72 R1-130236, 28 January 2013 (2013-01-28), ST JULIAN'S, MALTA., XP050663612 *
LG ELECTRONICS: "Considerations for D2D Proximity Services Evaluation", 3GPP TSG-RAN WG1 MEETING #72 R1-130271, 28 February 2013 (2013-02-28), ST JULIAN'S, MALTA, XP050663617 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10582466B2 (en) 2014-09-24 2020-03-03 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US10681661B2 (en) 2014-09-24 2020-06-09 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US10172108B2 (en) 2014-09-24 2019-01-01 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US10517057B2 (en) 2014-09-24 2019-12-24 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
WO2016048068A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 D2d 신호의 송신 방법 및 이를 위한 단말
US10856245B2 (en) 2014-09-24 2020-12-01 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US10039070B2 (en) 2014-09-24 2018-07-31 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
US11218983B2 (en) 2014-09-24 2022-01-04 Lg Electronics Inc. Method for transmitting D2D signal and terminal therefor
WO2016049517A1 (en) * 2014-09-26 2016-03-31 Kyocera Corporation Device-to-device synchronization signal (d2dss) management
CN106664674A (zh) * 2014-10-07 2017-05-10 Lg 电子株式会社 在无线通信系统中发送用于设备对设备通信的同步信号的方法及其装置
US11082934B2 (en) 2014-10-09 2021-08-03 Lg Electronics Inc. Method for transmitting D2D synchronization signal and terminal therefor
WO2016056877A3 (ko) * 2014-10-09 2016-05-26 엘지전자 주식회사 D2d 동기화 신호의 송신 방법 및 이를 위한 단말
US10383071B2 (en) 2014-10-09 2019-08-13 Lg Electronics Inc. Method for transmitting D2D synchronization signal and terminal therefor
CN107005787A (zh) * 2014-10-31 2017-08-01 Lg电子株式会社 在无线通信系统中终端发送用于装置对装置(d2d)操作的同步信号的方法及使用该方法的终端
CN107005787B (zh) * 2014-10-31 2020-07-07 Lg电子株式会社 在无线通信系统中终端发送用于装置对装置(d2d)操作的同步信号的方法及使用该方法的终端
US10602467B2 (en) 2014-11-05 2020-03-24 Innovative Technology Lab Co., Ltd. Apparatus and method for configuring synchronization signal for D2D communication
WO2016072771A1 (ko) * 2014-11-05 2016-05-12 주식회사 아이티엘 D2d 통신을 위한 동기화 신호 구성 방법 및 장치
US11452056B2 (en) 2014-11-05 2022-09-20 Innovative Technology Lab Co., Ltd. Apparatus and method for configuring synchronization signal for communication between user devices
US10285142B2 (en) 2014-11-05 2019-05-07 Innovative Technology Lab Co., Ltd. Apparatus and method for configuring synchronization signal for D2D communication
US10912049B2 (en) 2014-11-05 2021-02-02 Innovative Technology Lab Co., Ltd. Apparatus and method for configuring synchronization signal for communication between user devices
JP2016158219A (ja) * 2015-02-26 2016-09-01 シャープ株式会社 通信システム
US10681528B2 (en) 2015-09-09 2020-06-09 Lg Electronics Inc. Method for device-to-device direct communication in wireless communication system, and apparatus therefor
EP3349489A4 (en) * 2015-09-09 2019-03-20 LG Electronics Inc. METHOD FOR DIRECT COMMUNICATION OF DEVICE DEVICE IN WIRELESS COMMUNICATION SYSTEM, AND APPARATUS THEREOF
US10728908B2 (en) 2015-12-22 2020-07-28 Samsung Electronics Co., Ltd. Base station operation method and device for supporting D2D signal transmission in wireless communication system
KR20170074636A (ko) * 2015-12-22 2017-06-30 삼성전자주식회사 무선 통신 시스템의 d2d 신호 전송 지원을 위한 기지국 동작 방법 및 장치
WO2017111421A1 (ko) * 2015-12-22 2017-06-29 삼성전자 주식회사 무선 통신 시스템의 d2d 신호 전송 지원을 위한 기지국 동작 방법 및 장치
KR102514908B1 (ko) * 2015-12-22 2023-03-28 삼성전자 주식회사 무선 통신 시스템의 d2d 신호 전송 지원을 위한 기지국 동작 방법 및 장치

Also Published As

Publication number Publication date
CN105009538B (zh) 2018-09-18
KR20160009534A (ko) 2016-01-26
EP2966825A4 (en) 2016-11-09
CN105009538A (zh) 2015-10-28
US20160007383A1 (en) 2016-01-07
EP2966825B1 (en) 2018-06-27
EP2966825A1 (en) 2016-01-13
US9894688B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2014098522A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 방법 및 장치
WO2018062898A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2015199513A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 측정 방법 및 장치
WO2016048075A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 인접 셀 신호 수신 방법 및 장치
WO2014104627A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2015194830A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2014209035A1 (ko) 무선 통신 시스템에서 제어정보 획득 방법 및 장치
WO2014142623A1 (ko) 무선 통신 시스템에서 디스커버리 신호 송수신 방법 및 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2012150836A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
WO2014107091A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 수행 방법 및 장치
WO2013109036A1 (ko) 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
WO2015174805A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
WO2016072705A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
WO2016036219A1 (ko) 무선 통신 시스템에서 비 면허 대역 상의 신호 송수신 방법 및 장치
WO2013129866A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2013105821A1 (ko) 무선 통신 시스템에서 신호 수신 방법 및 장치
WO2013019046A2 (ko) 무선 접속 시스템에서 채널 품질 측정 방법 및 이를 위한 장치
WO2015130067A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말 신호 생성 방법 및 장치
WO2016085310A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018030788A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 신호 송수신 방법
WO2018038496A1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치
WO2015020398A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
WO2017111565A1 (ko) 무선 통신 시스템에서 v2x 단말의 데이터 송신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014761198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027714

Country of ref document: KR

Kind code of ref document: A