WO2014123352A1 - 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치 Download PDF

Info

Publication number
WO2014123352A1
WO2014123352A1 PCT/KR2014/000985 KR2014000985W WO2014123352A1 WO 2014123352 A1 WO2014123352 A1 WO 2014123352A1 KR 2014000985 W KR2014000985 W KR 2014000985W WO 2014123352 A1 WO2014123352 A1 WO 2014123352A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink
uplink grant
transmitted
control information
Prior art date
Application number
PCT/KR2014/000985
Other languages
English (en)
French (fr)
Inventor
서인권
서한별
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/766,024 priority Critical patent/US9730243B2/en
Publication of WO2014123352A1 publication Critical patent/WO2014123352A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting an uplink signal.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the present invention is directed to a method of transmitting an uplink grant to be transmitted in a subframe in which uplink grant is difficult to be transmitted.
  • a first technical aspect of the present invention is a method for transmitting an uplink signal by a terminal in a wireless communication system, the method comprising: receiving downlink control information including an uplink grant; And transmitting uplink data in a k-th subframe from the subframe receiving the uplink grant, wherein the uplink grant is from the first subframe appearing after the subframe in which the uplink grant is received.
  • the uplink signal transmission method is also applied to the first subframe.
  • a second technical aspect of the present invention is a terminal device in a wireless communication system, comprising: a receiving module; And a processor, wherein the processor receives downlink control information including an uplink grant, transmits uplink data in a k-th subframe from the received subframe, and receives the uplink grant Is also applied to the l-th subframe from the first subframe that appears after the subframe receiving the uplink grant.
  • the first to second technical aspects of the present invention may include the following.
  • the uplink grant applied to the l-th subframe from the first subframe may be masked by UL Scheduling-Radio Network Temporary Identifier (US-RNTI).
  • US-RNTI UL Scheduling-Radio Network Temporary Identifier
  • the l may be indicated by a predetermined field included in the downlink control information.
  • the predetermined field may include an offset value between the subframe receiving the uplink grant and the first subframe.
  • the downlink control information may include an uplink index whose value is set to 11.
  • the uplink grant may not be applied to the l-th subframe.
  • the subframe may be a subframe through which a multimedia broadcast single frequency network (MBSFN) subframe is transmitted.
  • MMSFN multimedia broadcast single frequency network
  • the reception of the downlink control information and the transmission of the uplink data may be performed on a New Carrier Type (NCT).
  • NCT New Carrier Type
  • the subframe may be a subframe in which a resource other than resources for at least one of a physical multicast channel (PMCH) or a positioning reference signal (PRS) is smaller than a resource required for transmitting the downlink control information.
  • PMCH physical multicast channel
  • PRS positioning reference signal
  • the subframe may be a subframe in which PMCH or PRS is transmitted using a cyclic prefix (CP) different from the downlink control information.
  • CP cyclic prefix
  • the first subframe may be indicated by higher layer signaling to the terminal.
  • k and l may be the same value.
  • uplink grant information can be transmitted for a subframe in which an uplink grant is difficult to be transmitted, HARQ timing can be maintained, and thus uplink resources can be efficiently used.
  • 1 is a diagram illustrating a structure of a radio frame.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • 5 is a diagram for explaining a reference signal.
  • 6 to 8 are diagrams for explaining an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point (AP), and the like.
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • the term “terminal” may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), a subscriber station (SS), and the like.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-Advanced (LTE-A) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN-OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink signal packet transmission is performed in units of subframes, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • a time taken for one subframe to be transmitted is called a TTI (transmission time interval).
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has an extended CP (normal CP) and a normal CP (normal CP).
  • normal CP normal CP
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first two or three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each of which has five subframes, downlink pilot time slot (DwPTS), guard period (GP), and uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols in the case of a general cyclic prefix (CP), but one slot may include 6 OFDM symbols in the case of an extended-CP (CP).
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number of NDLs of resource blocks included in a downlink slot depends on a downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which a physical downlink shared channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE system include, for example, a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical HARQ indicator channel.
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK / NACK signal as a response of uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of the downlink shared channel (DL-SCH), resource allocation information of the uplink shared channel (UL-SCH), paging information of the paging channel (PCH), system information on the DL-SCH, on the PDSCH Resource allocation of upper layer control messages such as random access responses transmitted to the network, a set of transmit power control commands for individual terminals in an arbitrary terminal group, transmission power control information, and activation of voice over IP (VoIP) And the like.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCEs Control Channel Elements
  • the CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier called a Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the cell-RNTI (C-RNTI) identifier of the terminal may be masked to the CRC.
  • a paging indicator identifier P-RNTI
  • the PDCCH is for system information (more specifically, system information block (SIB))
  • SI-RNTI system information RNTI
  • RA-RNTI Random Access-RNTI
  • RA-RNTI may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the terminal.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • PUCCH for one UE is allocated to an RB pair in a subframe. Resource blocks belonging to a resource block pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • DCI formats 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, and 4 are defined.
  • DCI formats 0, 1A, 3, and 3A are defined to have the same message size in order to reduce the number of blind decoding, which will be described later.
  • These DCI formats are based on the purpose of the control information to be transmitted: i) DCI formats 0, 4, and ii) DCI formats 1, 1A, 1B, 1C, 1D, 2, and 2A used for downlink scheduling assignment. , 2B, 2C, and iii) DCI formats 3 and 3A for power control commands.
  • DCI format 0 used for uplink grant, a carrier indicator necessary for carrier aggregation to be described later, an offset used to distinguish DCI format 0 and 1A, and a flag for format 0 / format 1A differentiation
  • a frequency hopping flag indicating whether frequency hopping is used in link PUSCH transmission, information on resource block assignment that a UE should use for PUSCH transmission, modulation and coding scheme New data indicator used for emptying the buffer for initial transmission in relation to the HARQ process, TPC command for scheduled for PUSCH, and cyclic shift for demodulation reference signal (DMRS).
  • Information (cyclic shift for DMRS and OCC index), UL index and channel quality indicator required for TDD operation And the like (CSI request).
  • DCI format 0 uses synchronous HARQ, it does not include a redundancy version like DCI formats related to downlink scheduling allocation.
  • carrier offset if cross carrier scheduling is not used, it is not included in the DCI format.
  • DCI format 4 is new in LTE-A Release 10 and is intended to support spatial multiplexing for uplink transmission in LTE-A.
  • the DCI format 4 further includes information for spatial multiplexing as compared to the DCI format 0, and thus has a larger message size, and further includes additional control information in the control information included in the DCI format 0. That is, the DCI format 4 further includes a modulation and coding scheme for the second transport block, precoding information for multi-antenna transmission, and sounding reference signal request (SRS request) information.
  • SRS request sounding reference signal request
  • DCI formats 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, and 2C related to downlink scheduling allocation do not significantly support spatial multiplexing, but 1, 1A, 1B, 1C, 1D and 2, which support spatial multiplexing, It can be divided into 2A, 2B, and 2C.
  • DCI format 1C supports only frequency continuous allocation as a compact downlink allocation and does not include a carrier offset and a redundant version as compared to other formats.
  • DCI format 1A is a format for downlink scheduling and random access procedures. This includes an indicator indicating whether carrier offset, downlink distributed transmission is used, PDSCH resource allocation information, modulation and coding scheme, redundancy version, HARQ processor number to inform processor used for soft combining, HARQ
  • the process may include a new data offset used to empty the buffer for initial transmission, a transmit power control command for PUCCH, and an uplink index required for TDD operation.
  • DCI format 1 In the case of DCI format 1, most of the control information is similar to DCI format 1A. However, compared to DCI format 1A related to continuous resource allocation, DCI format 1 supports non-contiguous resource allocation. Therefore, DCI format 1 further includes a resource allocation header, so that control signaling overhead is somewhat increased as a trade-off of increasing flexibility of resource allocation.
  • DCI formats 1B and 1D are common in that precoding information is further included as compared with DCI format 1.
  • DCI format 1B includes PMI verification and DCI format 1D includes downlink power offset information.
  • the control information included in the DCI formats 1B and 1D is mostly identical to that of the DCI format 1A.
  • the DCI formats 2, 2A, 2B, and 2C basically include most of the control information included in the DCI format 1A, and further include information for spatial multiplexing. This includes the modulation and coding scheme, the new data offset, and the redundancy version for the second transport block.
  • DCI format 2 supports closed-loop spatial multiplexing, while 2A supports open-loop spatial multiplexing. Both contain precoding information.
  • DCI format 2B supports dual layer spatial multiplexing combined with beamforming and further includes cyclic shift information for DMRS.
  • DCI format 2C can be understood as an extension of DCI format 2B and supports spatial multiplexing up to eight layers.
  • DCI formats 3 and 3A may be used to supplement transmission power control information included in DCI formats for uplink grant and downlink scheduling assignment, that is, to support semi-persistent scheduling.
  • DCI format 3 1 bit per terminal and 2 bit in 3A are used.
  • Any one of the above-described DCI formats may be transmitted through one PDCCH, and a plurality of PDCCHs may be transmitted in a control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the transmitted packet is transmitted through a wireless channel
  • signal distortion may occur during the transmission process.
  • the distortion In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information.
  • a method of transmitting the signal known to both the transmitting side and the receiving side and finding the channel information with the distortion degree when the signal is received through the channel is mainly used.
  • the signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal as an uplink reference signal,
  • DM-RS Demodulation-Reference Signal
  • SRS sounding reference signal
  • DM-RS Demodulation-Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. In the former, since the UE can acquire channel information on the downlink, it should be transmitted over a wide band, and even if the UE does not receive downlink data in a specific subframe, it should receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by measuring a channel by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • the CRS is used for two purposes of channel information acquisition and data demodulation, and the UE-specific reference signal is used only for data demodulation.
  • the CRS is transmitted every subframe for the broadband, and reference signals for up to four antenna ports are transmitted according to the number of transmit antennas of the base station.
  • CRSs for antenna ports 0 and 1 are transmitted, and for four antennas, CRSs for antenna ports 0 to 3 are transmitted.
  • FIG. 5 is a diagram illustrating a pattern in which a CRS and a DRS defined in an existing 3GPP LTE system (eg, Release-8) are mapped onto a downlink resource block pair (RB pair).
  • a downlink resource block pair as a unit to which a reference signal is mapped may be expressed in units of 12 subcarriers in one subframe ⁇ frequency in time. That is, one resource block pair has 14 OFDM symbol lengths in the case of a general CP (FIG. 5A) and 12 OFDM symbol lengths in the case of an extended CP (FIG. 5B).
  • FIG. 5 shows a position on a resource block pair of a reference signal in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted by '0', '1', '2' and '3' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • a resource element denoted by 'D' in FIG. 5 indicates a position of DMRS.
  • an Enhanced-PDCCH (EPDCCH) that can be transmitted through a conventional PDSCH region is considered.
  • the EPDCCH may perform channel estimation based on DMRS, unlike the conventional CRS based PDCCH.
  • EPDCCH transmission may be divided into localized EPDCCH transmission and distributed EPDCCH transmission according to the configuration of a Physical Resource Block (PRB) pair used for EPDCCH transmission.
  • Local EPDCCH transmission means that ECCE used for one DCI transmission is adjacent in the frequency domain, and specific precoding may be applied to obtain beamforming gain.
  • local EPDCCH transmission may be based on the number of consecutive ECCEs corresponding to the aggregation level.
  • distributed EPDCCH transmission means that one EPDCCH is transmitted in a PRB pair separated in the frequency domain, and has a gain in terms of frequency diversity.
  • distributed EPDCCH transmission may be based on ECCE consisting of four EREGs included in each PRB pair separated in the frequency domain.
  • EPDCCH PRB sets may be configured in the UE by higher layer signaling or the like, and each EPDCCH PRB set may be for either local EDPCCH transmission or distributed EPDCCH transmission. If two EPDCCH PRB sets exist, these two sets may overlap in part or in whole.
  • the base station may map and transmit control information to the REs of the EREG allocated for the EPDCCH in one or more EPDCCH PRB sets.
  • the EREG is used to define the mapping of the control channel to the RE, and 16 EREGs (EREG numbers 0 to 15) may exist in one PRB pair.
  • EREGs or eight in some cases
  • x ECCEs where x is any one of 1, 2, 4, 8, 16, 32
  • an EREG existing in multiple PRB pairs may configure one ECCE for diversity.
  • the EREG to ECCE mapping (hereinafter, referred to as the first ECCE number-EREG number-PRB number relationship) means that the ECCE index in the EPDCCH PRB set is the PRB pair index.
  • N is the number of EREGs per ECCE
  • ECCE index number 0 is 0 EREG and number 1 PRB of the 0 pair PRB pair. It consists of pair 4 EREG, pair 2 PRB pair 8 EREG, pair 4 PRB pair 12 EREG.
  • This mapping relationship of EREG to ECCE is shown in FIG. 7.
  • the UE may perform blind decoding similarly to the existing LTE / LTE-A system in order to receive / acquire control information (DCI) through the EPDCCH.
  • the UE may attempt (monitor) decoding a set of EPDCCH candidates for each aggregation level for DCI formats corresponding to the configured transmission mode.
  • the set of EPDCCH candidates to be monitored may be called an EPDCCH terminal specific search space, and the search space may be set / configured for each aggregation level.
  • the aggregation level is somewhat different from the existing LTE / LTE-A system described above, depending on the subframe type, the length of the CP, the amount of available resources in the PRB pair, and the like ⁇ 1, 2, 4, 8, 16, 32 ⁇ . Is possible.
  • the REs included in the PRB pairs may be indexed into the EREG, and the EREG may be indexed again in ECCE units. Based on this indexed ECCE, control information can be received by determining the EPDCCH candidate constituting the search space and performing blind decoding.
  • the UE may transmit an acknowledgment (ACK / NACK) for the EPDCCH on the PUCCH.
  • the index of the resource used that is, the PUCCH resource may be determined by the lowest ECCE index among the ECCEs used for EPDCCH transmission. That is, it can be represented by the following equation (1).
  • Equation 1 Is the PUCCH resource index, Is the lowest ECCE index among the ECCEs used for EPDCCH transmission, ( May be written as a value transmitted through higher layer signaling, and indicates a point where a PUCCH resource index starts.
  • a resource conflict problem may occur.
  • the ECCE indexing in each EPDCCH PRB set is independent, there may be a case where the lowest ECCE index in each EPDCCH PRB set is the same. In this case, it can be solved by changing the starting point of the PUCCH resource for each user.
  • changing the starting point of the PUCCH resource for every user is inefficient because it reserves a large number of PUCCH resources.
  • the DCI of multiple users may be transmitted in the same ECCE location as the MU-MIMO, a PUCCH resource allocation method considering such a point is required.
  • HARQ-ACK Resource Offset (ARO) has been introduced.
  • the ARO can avoid collision of the PUCCH resources by shifting the PUCCH resources determined by the lowest ECCE index and the starting offset of the PUCCH resources delivered through higher layer signaling among the ECCE indexes constituting the EPDCCH.
  • the ARO is indicated as shown in Table 1 through two bits of the DCI format 1A / 1B / 1D / 1 / 2A / 2 / 2B / 2C / 2D transmitted through the EPDCCH.
  • the base station may designate one of the ARO values of Table 3 for the specific terminal and inform the specific terminal of the ARO to be used when determining the PUCCH resource through the DCI format.
  • the UE detects the ARO field in its DCI format and may transmit an acknowledgment through the PUCCH resource determined using this value.
  • Multimedia Broadcast / Multicast Service is a service that multicasts or broadcasts specific information, and MBMS in LTE aims at 1 bps / Hz for spectral efficiency at the cell edge. do.
  • SFN Single Frequency Network
  • the same data is transmitted from several neighboring base stations, which are recognized as being transmitted to the terminal through a channel through which a signal spreads over time from one base station.
  • the time difference of each base station is limited to within the CP length (only the extended CP is used in the MBSFN subframe) to reduce intersymbol interference.
  • the PDSCH is not FDM to prevent mixing of the RS for the general RS and the MBSFN.
  • a subframe in which a synchronization signal, a paging signal, and the like are transmitted cannot be used as an MBSFN subframe.
  • subframes 0, 4, 5, and 9 in FDD and subframes 0, 1, 5, and 6 in TDD cannot be set to MBSFN.
  • PDCCH is transmitted in up to two OFDM symbols of the MBSFN subframe, but scheduling for MBSFN data is performed through a higher layer, and only an uplink grant is transmitted in this PDCCH.
  • NCT New Carrier Type
  • a subframe in which uplink grant is scheduled as well as in a subframe set to MBSFN in NCT Such a subframe is hereinafter referred to as a first subframe.
  • the first embodiment is a method of commonly indicating an uplink grant to be transmitted / scheduled in a first subframe in another subframe.
  • the terminal receiving the DCI including the uplink grant may transmit an uplink signal through the resource identified in the uplink grant in the kth subframe from the subframe in which the DCI is received.
  • the uplink grant may be set to be simultaneously applied to the l-th subframe from the first subframe appearing after (or before) the subframe receiving the uplink grant.
  • the uplink grant is regarded as an uplink grant that cannot be transmitted in the first subframe.
  • Figure 6 shows an example of such a first embodiment. In FIG. 6, FDD is assumed, and k and
  • the first subframe is subframe n + 2 and is indicated by shading.
  • the terminal receives an uplink grant in subframe n.
  • the uplink grant indicates resource allocation in uplink subframe n + 4 and simultaneously indicates resource allocation in subframe n + 6. It may be.
  • the uplink grant may be used for the k th subframe from the subframe receiving the uplink grant and the l th subframe from the first subframe, which of which is determined by the RNTI. Can be distinguished. More specifically, when the control information including the uplink grant is masked with an RNTI for the first subframe (eg, a UL Scheduling (RNTI), etc.), the uplink grant is the lth subframe from the first subframe. It may be for a frame. That is, when the UE decodes the control information using the US-RNTI, the UE recognizes that the uplink grant is applied to the l-th subframe from the first subframe, and uses the RNTI other than the US-RNTI as the control information.
  • RNTI UL Scheduling
  • the uplink grant may be recognized as being applied to the k-th subframe from the subframe in which the uplink grant is received. If there are a plurality of first subframes, a plurality of US-RNTIs may be used.
  • an offset between the subframe receiving the uplink grant and the first subframe may be indicated through a specific / preliminary field of a new DCI or an existing DCI format.
  • an uplink grant that is not masked with US-RNTI may use a conventional DCI format, and an uplink grant that is masked with US-RNTI may use a new DCI format. If three or more uplink grants are received in one subframe, the base station may indicate to the terminal how many uplink grants are transmitted. As a specific example, the number of uplink grants transmitted in the subframe may be determined according to the pattern of the US-RNTI.
  • the meaning of the value of the uplink index field defined in the conventional DCI format may be newly defined.
  • the uplink grant is pre-scheduled using the uplink index field.
  • FIG. 7 a downlink grant is received in subframe 1 of radio frame n, but if the uplink index field value is 01, the uplink grant may indicate that the uplink grant is for subframe 7 as previously defined. have. If the uplink index field value is 10, the uplink grant may indicate that the uplink grant relates to the first subframe (the subframe indicated by M). In addition, when the uplink index field value is 11, the uplink grant may indicate that the uplink grant is related to both the subframe in which the uplink grant is received and the first subframe.
  • the uplink grant to be transmitted in the first subframe is the most out of the downlink subframes 4 ms (or a predefined value) before the PUSCH transmission point associated with the uplink HARQ timeline based on the existing uplink HARQ timeline. It may be (re) transmitted in a nearby downlink subframe.
  • the uplink grant that cannot be transmitted in the first subframe (1st SF) is 4 ms from subframe 8, which is a PUSCH transmission time associated with an uplink transmission time based on an existing timeline. It is transmitted in subframe 1, which is the closest subframe among subframes 0 and 1, which are the previous downlink subframes.
  • the downlink subframe in which the uplink grant is transmitted is a downlink subframe (for example, standalone DL SF) in which uplink grant transmission is not performed based on the existing uplink HARQ timeline, based on the existing uplink HARQ timeline. It may be a downlink subframe and / or all downlink subframes in which uplink grant transmission is performed.
  • the base station and the UE may assume that the uplink grant-based PUSCH transmission is not performed. That is, when the uplink grant fails in the subframe in which the uplink grant is to be released, the PUSCH transmission linked to the corresponding uplink grant may be previously defined.
  • the UE may perform retransmission in the subframe corresponding to the uplink grant (which has been scheduled for transmission) even if there is no separate uplink grant. For example, in FIG. 8, the UE may perform uplink transmission in subframe 8 even if there is no uplink approval. In this case, the base station may request the MCS higher than the optimal MCS. Or, if the PHICH and uplink grants associated with one uplink subframe are transmitted in different subframes and the uplink grant is not transmitted, the UE may operate based on the PHICH.
  • the configuration of the MBSFN subframe may be restricted.
  • a subframe performing the MBSFN operation may be limited to a downlink subframe in which an uplink grant is not transmitted.
  • the uplink-downlink configuration 2 in TDD is DSUDDDSUDD (D: downlink subframe, U: uplink subframe, S: special subframe), and uplink grant is performed in subframes 3 and 8. Can be sent.
  • subframes 0, 1, 2, 5, and 6 cannot be configured as MBSFN subframes, and thus, subframes performing MBSFN subframe operations can be limited to subframes 4 and 9 in consideration of this. have.
  • the first subframe may be a subframe corresponding to the following description as well as MBSFN in the NCT.
  • the first subframe may be a subframe in which stable DCI detection is impossible due to intercell interference.
  • the first subframe may be a subframe in which a physical multicast channel (PMCH) and / or a positioning reference signal (PRS) is transmitted over a wide band so that resources for DCI transmission are insufficient.
  • the first subframe may be a subframe in which resources other than resources for one or more of PMCH and / or PRS are smaller than those required for DCI transmission.
  • DCI transmission includes transmission on the EPDCCH.
  • the first subframe may be a subframe in which a signal such as PMCH and / or PRS is transmitted using a CP different from an existing subframe or a subframe in which DCI is transmitted.
  • a signal such as PMCH and / or PRS
  • EPDCCH may use normal CP but PMCH / PRS may not be transmitted simultaneously in one subframe using extended CP. That is, when PMCH / PRS is transmitted but EPDCCH can be transmitted due to the presence of free resources, reception may be difficult depending on the UE if the CP length used in PMCH / PRS and the CP length used in EPDCCH are different.
  • the first subframe may be a subframe having less resources for downlink transmission among TDD special subframes.
  • normal CP, special subframes 0 and 5, or extended CP, special subframes 0 and 4 may correspond to this.
  • the first subframe may be a subframe in which it is difficult to define the DMRS for the EPDCCH and thus cannot transmit the EPDCCH.
  • the seventh special subframe of the extended CP may correspond to the first subframe since the transmission of the EPDCCH is impossible because the DwPTS region is not completely present.
  • the subframe corresponds to the first subframe. can do.
  • the first subframe may be a subframe included in a set of subframes informed by higher layer signaling.
  • the base station may transmit an uplink grant for the subframe n + 4 in the downlink subframe before the subframe n.
  • the uplink grant for subframe n may be transmitted in subframe n-4 or a previous subframe.
  • FIG. 9 is a diagram showing the configuration of a transmission point apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the transmission point apparatus 10 may include a reception module 11, a transmission module 12, a processor 13, a memory 14, and a plurality of antennas 15. .
  • the plurality of antennas 15 refers to a transmission point apparatus that supports MIMO transmission and reception.
  • the receiving module 11 may receive various signals, data, and information on the uplink from the terminal.
  • the transmission module 12 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 13 may control the overall operation of the transmission point apparatus 10.
  • the processor 13 of the transmission point apparatus 10 may process matters necessary in the above-described embodiments.
  • the processor 13 of the transmission point apparatus 10 performs a function of processing the information received by the transmission point apparatus 10, information to be transmitted to the outside, and the memory 14 stores the calculated information and the like. It may be stored for a predetermined time and may be replaced by a component such as a buffer (not shown).
  • the terminal device 20 may include a receiving module 21, a transmission module 22, a processor 23, a memory 24, and a plurality of antennas 25. have.
  • the plurality of antennas 25 refers to a terminal device that supports MIMO transmission and reception.
  • the receiving module 21 may receive various signals, data, and information on downlink from the base station.
  • the transmission module 22 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 23 may control operations of the entire terminal device 20.
  • the processor 23 of the terminal device 20 may process matters necessary in the above-described embodiments.
  • the processor 23 of the terminal device 20 performs a function of processing the information received by the terminal device 20, information to be transmitted to the outside, etc., and the memory 24 stores the calculated information and the like for a predetermined time. And may be replaced by a component such as a buffer (not shown).
  • the description of the transmission point apparatus 10 may be equally applicable to a relay apparatus as a downlink transmission entity or an uplink reception entity, and the description of the terminal device 20 is a downlink. The same may be applied to a relay apparatus as a receiving subject or an uplink transmitting subject.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Abstract

본 발명은 일 실시예는, 무선통신시스템에서 단말이 상향링크 신호를 전송하는 방법에 있어서, 상향링크 승인을 포함하는 하향링크제어정보를 수신하는 단계; 및 상기 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에서 상향링크 데이터를 전송하는 단계를 포함하며, 상기 상향링크 승인은 상기 상향링크 승인을 수신한 서브프레임 이후에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 적용되는, 상향링크 신호 전송 방법이다.

Description

무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 상향링크 신호의 전송 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명은 상향링크 승인의 전송이 어려운 서브프레임에서 전송되어야 할 상향링크 승인의 전송 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 기술적인 측면은, 무선통신시스템에서 단말이 상향링크 신호를 전송하는 방법에 있어서, 상향링크 승인을 포함하는 하향링크제어정보를 수신하는 단계; 및 상기 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에서 상향링크 데이터를 전송하는 단계를 포함하며, 상기 상향링크 승인은 상기 상향링크 승인을 수신한 서브프레임 이후에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 적용되는, 상향링크 신호 전송 방법이다.
본 발명의 제2 기술적인 측면은, 무선 통신 시스템에서 단말 장치에 있어서, 수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는, 상향링크 승인을 포함하는 하향링크제어정보를 수신하고, 상기 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에서 상향링크 데이터를 전송하며, 상기 상향링크 승인은 상기 상향링크 승인을 수신한 서브프레임 이후에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 적용되는, 단말 장치이다.
본 발명의 제1 내지 제2 기술적인 측면은 다음 사항들을 포함할 수 있다.
상기 제1 서브프레임으로부터 l 번째 서브프레임에 적용되는 상향링크 승인은 US-RNTI(UL Scheduling-Radio Network Temporary Identifier)로 마스킹된 것일 수 있다.
상기 l 은 상기 하향링크제어정보에 포함된 소정 필드에 의해 지시될 수 있다.
상기 소정 필드는 상기 상향링크 승인을 수신한 서브프레임과 상기 제1 서브프레임 사이의 오프셋 값을 포함할 수 있다.
상기 하향링크제어정보는 값이 11로 세팅된 상향링크 인덱스를 포함할 수 있다.
상기 상향링크 인덱스의 값이 01인 경우, 상기 상향링크 승인은 상기 l 번째 서브프레임에는 적용되지 않을 수 있다.
상기 서브프레임은 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임이 전송되는 서브프레임일 수 있다.
상기 하향링크제어정보의 수신 및 상기 상향링크 데이터의 전송은 NCT(New Carrier Type) 상에서 수행될 수 있다.
상기 서브프레임은 PMCH(physical multicast channel) 또는 PRS(positioning reference signal) 중 하나 이상을 위한 자원 이외의 자원이 상기 하향링크제어정보를 전송하기 위해 필요한 자원보다 작은 서브프레임일 수 있다.
상기 서브프레임은 PMCH 또는 PRS가 상기 하향링크제어정보와는 다른 CP(Cyclic Prefix)를 사용하여 전송되는 서브프레임일 수 있다.
상기 제1 서브프레임은 상기 단말에게 상위계층시그널링으로 지시될 수 있다.
상기 단말의 듀플렉스 모드가 FDD인 경우, 상기 k 와 l 은 동일한 값일 수 있다.
본 발명에 따르면 상향링크 승인이 전송되기 어려운 서브프레임에 관한 상향링크 승인 정보의 전송이 가능하여 HARQ 타이밍을 유지할 수 있으므로 상향링크 자원을 효율적으로 사용할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 참조신호를 설명하기 위한 도면이다.
도 6 내지 도 8은 본 발명의 실시예를 설명하기 위한 도면이다.
도 9는 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1를 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 신호 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(전송 time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용 가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
DCI 포맷
현재 LTE-A(release 10)에 의하면 DCI 포맷 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 3, 3A, 4 가 정의되어 있다. 여기서 DCI 포맷 0, 1A, 3, 3A는, 후술할 블라인드 복호 횟수를 줄이기 위해 동일한 메시지 크기를 갖도록 규정되어 있다. 이러한 DCI 포맷들은 전송하려는 제어정보의 용도에 따라 i)상향링크 승인에 사용되는 DCI 포맷 0, 4, ii)하향링크 스케줄링 할당에 사용되는 DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, iii)전력제어 명령을 위한 DCI 포맷 3, 3A로 구분할 수 있다.
상향링크 승인에 사용되는 DCI 포맷 0의 경우, 후술할 반송파 병합에 관련하여 필요한 반송파 오프셋(carrier indicator), DCI 포맷 0과 1A를 구분하는데 사용되는 오프셋(flag for format 0/format 1A differentiation), 상향링크 PUSCH 전송에서 주파수 호핑이 사용되는지 여부를 알려주는 호핑 플래그(frequency hopping flag), 단말이 PUSCH 전송에 사용해야 할 자원블록 할당에 대한 정보(resource block assignment), 변조 및 부호화 방식(modulation and coding scheme), HARQ 프로세스와 관련해 초기전송을 위해 버퍼를 비우는데 사용되는 새 데이터 지시자(new data indicator), PUSCH를 위한 전송전력 제어명령(TPC command for scheduled for PUSCH), DMRS(Demodulation reference signal)를 위한 순환이동 정보(cyclic shift for DMRS and OCC index), TDD 동작에서 필요한 상향링크 인덱스(UL index) 및 채널품질정보(Channel Quality Indicator) 요구 정보(CSI request) 등을 포함할 수 있다. 한편, DCI 포맷 0의 경우 동기식 HARQ를 사용하므로 하향링크 스케줄링 할당에 관련된 DCI 포맷들처럼 리던던시 버전(redundancy version)을 포함하지 않는다. 반송파 오프셋의 경우, 크로스 반송파 스케줄링이 사용되지 않는 경우에는 DCI 포맷에 포함되지 않는다.
DCI 포맷 4는 LTE-A 릴리즈 10에서 새로이 추가된 것으로서 LTE-A에서 상향링크 전송에 공간 다중화가 적용되는 것을 지원하기 위한 것이다. DCI 포맷 4의 경우 DCI 포맷 0과 비교하여 공간 다중화를 위한 정보들을 더 포함하므로 더 큰 메시지 크기를 가지며, DCI 포맷 0에 포함되는 제어정보에 추가적인 제어정보를 더 포함한다. 즉, DCI 포맷 4의 경우, 두 번째 전송블록을 위한 변조 및 부호화 방식, 다중 안테나 전송을 위한 프리코딩 정보, 사운딩참조신호 요청(SRS request) 정보를 더 포함한다. 한편, DCI 포맷 4는 DCI 포맷 0보다 큰 크기를 가지므로 DCI 포맷 0과 1A를 구분하는 오프셋은 포함하지 않는다.
하향링크 스케줄링 할당에 관련된 DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C는 크게 공간 다중화를 지원하지 않는 1, 1A, 1B, 1C, 1D 와 공간 다중화를 지원하는 2, 2A, 2B, 2C 로 구분될 수 있다.
DCI 포맷 1C는 컴팩트 하향링크 할당으로서 주파수 연속적 할당만을 지원하며, 다른 포맷들과 비교해 반송파 오프셋, 리던던시 버전을 포함하지 않는다.
DCI 포맷 1A는 하향링크 스케줄링 및 랜덤 액세스 절차를 위한 포맷이다. 여기에는 반송파 오프셋, 하향링크 분산형 전송이 사용되는지 여부를 알려주는 표시자, PDSCH 자원 할당 정보, 변조 및 부호화 방식, 리던던시 버전, 소프트 컴바이닝을 위해 사용되는 프로세서를 알려주기 위한 HARQ 프로세서 번호, HARQ 프로세스와 관련해 초기전송을 위해 버퍼를 비우는데 사용되는 새 데이터 오프셋, PUCCH를 위한 전송전력 제어명령, TDD 동작에서 필요한 상향링크 인덱스 등을 포함할 수 있다.
DCI 포맷 1의 경우 대부분의 제어정보가 DCI 포맷 1A과 유사하다. 다만, DCI 포맷 1A가 연속적인 자원 할당에 관련된 것과 비교해, DCI 포맷 1은 비연속적 자원 할당을 지원한다. 따라서 DCI 포맷 1은 자원할당 헤더를 더 포함하므로 자원할당의 유연성이 증가하는 것의 트레이드 오프로서 제어 시그널링 오버헤드는 다소 증가한다.
DCI 포맷 1B, 1D의 경우에는 DCI 포맷 1과 비교해 프리코딩 정보를 더 포함하는 점에서 공통된다. DCI 포맷 1B는 PMI 확인을, DCI 포맷 1D는 하향링크 전력 오프셋 정보를 각각 포함한다. 그 외 DCI 포맷 1B, 1D에 포함된 제어정보는 DCI 포맷 1A의 경우와 대부분 일치한다.
DCI 포맷 2, 2A, 2B, 2C는 기본적으로 DCI 포맷 1A에 포함된 제어정보들을 대부분 포함하면서, 공간 다중화를 위한 정보들을 더 포함한다. 여기에는 두 번째 전송 블록에 관한 변조 및 부호화 방식, 새 데이터 오프셋 및 리던던시 버전이 해당된다.
DCI 포맷 2는 폐루프 공간 다중화를 지원하며, 2A는 개루프 공간 다중화를 지원한다. 양자 모두 프리코딩 정보를 포함한다. DCI 포맷 2B는 빔 포밍과 결합된 듀얼 레이어 공간 다중화를 지원하며 DMRS를 위한 순환이동 정보를 더 포함한다. DCI 포맷 2C는 DCI 포맷 2B의 확장으로 이해될 수 있으며 여덟개의 레이어까지 공간 다중화를 지원한다.
DCI 포맷 3, 3A는 전술한 상향링크 승인 및 하향링크 스케줄링 할당을 위한 DCI 포맷들에 포함되어 있는 전송전력 제어정보를 보완, 즉 반-지속적(semi-persistent) 스케줄링을 지원하기 위해 사용될 수 있다. DCI 포맷 3의 경우 단말당 1bit, 3A의 경우 2bit의 명령이 사용된다.
상술한 바와 같은 DCI 포맷 중 어느 하나는 하나의 PDCCH를 통해 전송되며, 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조신호(Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트(안테나 포트)별로 별도의 참조신호가 존재하여야 한다.
참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE 시스템에는 상향링크 참조신호로써,
i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트(coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호(DeModulation-Reference Signal, DM-RS)
ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한 사운딩 참조신호(Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀-특정 참조신호(Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말-특정 참조신호(UE-specific Reference Signal)
iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보(Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호(Channel State Information- Reference Signal, CSI-RS)
v) MBSFN(Multimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호(MBSFN Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호(Positioning Reference Signal)가 있다.
참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득할 수 있는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드 오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조 할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브 프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
도 5는 기존의 3GPP LTE 시스템 (예를 들어, 릴리즈-8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임×주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우(도 5(a))에는 14 개의 OFDM 심볼 길이, 확장된 CP의 경우(도 5(b))에는 12 개의 OFDM 심볼 길이를 가진다.
도 5는 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 5에서 '0', '1', '2' 및 '3'으로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 5에서 'D'로 표시된 자원 요소는 DMRS의 위치를 나타낸다.
Enhanced-PDCCH(EPDCCH)
릴리즈 11 이후의 LTE 시스템에서는 CoMP(Coordinate Multi Point), MU-MIMO(Multi User-Multiple Input Multiple Output) 등으로 인한 PDCCH의 용량 부족 및 셀 간 간섭(inter-cell interference)으로 인한 PDCCH 성능 감소 등에 대한 해결책으로 종래 PDSCH 영역을 통해 전송될 수 있는 Enhanced-PDCCH(EPDCCH)가 고려되고 있다. 또한 EPDCCH에서는 프리코딩(pre-coding) 이득 등을 얻기 위해 기존의 CRS 기반의 PDCCH와 다르게 DMRS를 기반으로 채널 추정을 수행할 수 있다.
EPDCCH 전송은, EPDCCH 전송에 사용되는 PRB(Physical Resource Block)페어의 구성에 따라 국부형(localized) EPDCCH 전송과 분산형(distributed) EPDCCH 전송으로 나뉠 수 있다. 국부형 EPDCCH 전송은 하나의 DCI 전송에 사용되는 ECCE가 주파수 도메인에서 인접해 있는 경우를 의미하며, 빔포밍 이득을 얻기 위해 특정 프리코딩이 적용될 수 있다. 예를 들어, 국부형 EPDCCH 전송은 집합 레벨에 해당하는 개수의 연속된 ECCE에 기반할 수 있다. 반면에 분산형 EPDCCH 전송은 하나의 EPDCCH가 주파수 도메인에서 분리된 PRB 페어에서 전송되는 것을 의미하며, 주파수 다이버시티 측면의 이득이 있다. 예를 들어, 분산형 EPDCCH 전송은, 주파수 도메인에서 분리된 PRB 페어 각각에 포함된 EREG 4개로 이루어진 ECCE에 기반할 수 있다. 단말에게는 하나 또는 두 개의 EPDCCH (PRB) 세트가 상위계층 시그널링 등에 의해 설정(configured)될 수 있고, 각 EPDCCH PRB 세트는 국부형 EDPCCH 전송 또는 분산형 EPDCCH 전송 중 어느 하나를 위한 것일 수 있다. 두 개의 EPDCCH PRB 세트가 존재하는 경우, 이 두 개의 세트는 전/일부가 오버랩될 수 있다.
기지국은 제어정보를 하나 이상의 EPDCCH PRB 세트에서 EPDCCH를 위해 할당된 EREG의 RE들에 매핑하여 전송할 수 있다. 여기서, EREG는 RE에 제어채널의 매핑을 정의하기 위해 사용되는 것으로, 하나의 PRB 페어에는 16개의 EREG(EREG number 0~15)가 존재할 수 있다. EREG 4개(또는 경우에 따라 8개)는 하나의 ECCE를 구성할 수 있으며, ECCE x개(x는 1, 2, 4, 8, 16, 32 개 중 어느 하나)는 하나의 EPDCCH를 구성할 수 있다. 분산형 EPDCCH 전송의 경우, 다이버시티를 위해 여러 개의 PRB 페어에 존재하는 EREG가 하나의 ECCE를 구성할 수 있다. 보다 상세히, 분산형 EPDCCH 전송의 경우 EREG 대 ECCE 매핑(이하, 제1 ECCE 번호-EREG 번호-PRB 번호 관계)은‘EPDCCH PRB 세트에서 ECCE 인덱스는 PRB 페어 인덱스
Figure PCTKR2014000985-appb-I000001
내에서 EREG 인덱스
Figure PCTKR2014000985-appb-I000002
에 상응하는 것’일 수 있다. 여기서, 상기 N은 ECCE당 EREG 개수,
Figure PCTKR2014000985-appb-I000003
는 PRB 페어당 ECCE 개수,
Figure PCTKR2014000985-appb-I000004
은 상기 제1 EPDCCH PRB 세트의 PRB 페어 개수,
Figure PCTKR2014000985-appb-I000005
는 제2 EPDCCH PRB 페어의 PRB 페어 개수, i = 0, 1, …, N-1 를 의미한다. 예를 들어, EPDCCH PRB 세트에 4개의 PRB 페어가 포함되어 있는 경우, 상술한 제1 ECCE 번호-EREG 번호-PRB 번호 관계에 따르면, ECCE 인덱스 0번은 0번 PRB 페어의 0번 EREG, 1번 PRB 페어의 4번 EREG, 2번 PRB 페어의 8번 EREG, 4번 PRB 페어의 12번 EREG로 구성된다. 이와 같은 EREG 대 ECCE의 매핑 관계가 도 7에 도시되어 있다.
단말은 EPDCCH를 통해 제어정보(DCI)를 수신/획득하기 위해, 기존 LTE/LTE-A 시스템에서와 유사하게 블라인드 복호를 수행할 수 있다. 보다 상세히, 단말은 설정된 전송 모드에 해당되는 DCI 포맷들을 위해, 집합 레벨 별로 EPDCCH 후보의 세트에 대해 복호를 시도(모니터링)할 수 있다. 여기서, 모니터링의 대상이 되는 EPDCCH 후보의 세트는 EPDCCH 단말 특정 탐색공간으로 불릴 수 있으며, 이 탐색공간은 집합 레벨 별로 설정/구성될 수 있다. 또한, 집합 레벨은, 앞서 설명된 기존 LTE/LTE-A 시스템과는 다소 상이하게, 서브프레임 타입, CP의 길이, PRB 페어 내의 가용 자원량 등에 따라 {1, 2, 4, 8, 16, 32}가 가능하다.
EPDCCH가 설정(configured)된 단말의 경우, PRB 페어들에 포함된 RE들을 EREG로 인덱싱하고, 이 EREG를 다시 ECCE 단위로 인덱싱할 수 있다. 이 인덱싱된 ECCE에 기초해 탐색공간을 구성하는 EPDCCH 후보를 결정하고 블라인드 복호를 수행함으로써, 제어정보를 수신할 수 있다.
EPDCCH를 수신한 단말은, EPDCCH에 대한 수신확인응답(ACK/NACK)을 PUCCH 상으로 전송할 수 있다. 이 때 사용되는 자원, 즉, PUCCH 자원의 인덱스는 EPDCCH 전송에 사용된 ECCE 중 가장 낮은 ECCE 인덱스에 의해 결정될 수 있다. 즉, 다음 수학식 1로써 표현될 수 있다.
수학식 1
Figure PCTKR2014000985-appb-M000001
상기 수학식 1에서,
Figure PCTKR2014000985-appb-I000006
는 상기 PUCCH 자원 인덱스,
Figure PCTKR2014000985-appb-I000007
는 EPDCCH 전송에 사용된 ECCE 중 가장 낮은 ECCE 인덱스,
Figure PCTKR2014000985-appb-I000008
(
Figure PCTKR2014000985-appb-I000009
로 쓸 수도 있음)는 상위계층 시그널링으로 전달된 값으로써, PUCCH 자원 인덱스가 시작되는 지점을 의미한다.
다만, 상술한 수학식 1에 의해 일률적으로 PUCCH 자원 인덱스를 결정할 경우 자원 충돌 문제가 발생할 수 있다. 예를 들어, 두 개의 EPDCCH PRB 세트가 설정되는 경우, 각 EPDCCH PRB 세트에서의 ECCE 인덱싱은 독립적이므로 각 EPDCCH PRB 세트에서의 가장 낮은 ECCE 인덱스가 동일한 경우가 있을 수 있다. 이러한 경우, 사용자 별로 PUCCH 자원의 시작점을 달리함으로써 해결할 수도 있지만, 모든 사용자 별로 PUCCH 자원의 시작점을 달리하는 것은 많은 PUCCH 자원을 예약하는 것이 되므로 비효율적이다. 또한 EPDCCH에서는 MU-MIMO와 같이 같은 ECCE 위치에서 여러 사용자의 DCI가 전송될 수 있으므로 이러한 점을 고려하는 PUCCH 자원 할당 방법이 필요하기도 하다. 이와 같은 문제를 해결하기 위해 ARO(HARQ-ACK Resource Offset)가 도입되었다. ARO는 EPDCCH를 구성하는 ECCE 인덱스 중 가장 낮은 ECCE 인덱스, 상위계층 시그널링으로 전달되는 PUCCH 자원의 시작 오프셋에 의해 결정되는 PUCCH 자원을 소정 정도 시프트 시킴으로써 PUCCH 자원의 충돌을 피할 수 있게 한다. ARO는 EPDCCH를 통해 전송되는 DCI 포맷1A/1B/1D/1/2A/2/2B/2C/2D의 2 비트를 통해 다음 표 1과 같이 지시된다.
표 1
ACK/NACK Resource offset field in DCI format 1A/1B/1D/1/2A/2/2B/2C/2D delta ARO
0 0
1 -1
2 -2
3 2
기지국은 특정 단말을 위해, 상기 표 3의 ARO 값들 중 어느 하나의 값을 지정한 후 DCI 포맷을 통해 그 특정 단말에게 PUCCH 자원 결정시 사용할 ARO를 알려 줄 수 있다. 단말은 자신의 DCI 포맷에서 ARO 필드를 검출해보고, 이 값을 사용하여 결정된 PUCCH 자원을 통해 수신확인응답을 전송할 수 있다.
MBSFN(Multimedia Broadcast Single Frequency Network) 전송
멀티미디어 브로드캐스트/멀티캐스트 서비스(Multimedia Broadcast/Multicast Service, MBMS)는 특정 정보를 멀티캐스트 또는 브로드캐스트하는 서비스로써, LTE에서의 MBMS는 셀 가장자리에서 스펙트럼 효율(spectral efficiency)을 1 bps/Hz로 목표한다. 이를 위해 SFN(Single Frequency Network) 전송이 도입되었다. MBMS의 SFN 전송을 MBSFN 전송이라 한다.
MBSFN 오퍼레이션에서, 주변의 여러 기지국들로부터 동일한 데이터가 전송되며 이는 단말에게 하나의 기지국으로부터 시간에 다라 신호가 퍼지는 채널을 거쳐 전송되는 것처럼 인식된다. 이를 위해, 각 기지국들의 시간 차이(time difference)는 심볼간 간섭을 줄이기 위해 CP 길이(MBSFN 서브프레임에서는 확장 CP만 사용됨) 이내로 제한된다. 또한, 일반적인 RS와 MBSFN을 위한 RS가 섞이는 것을 방지하기 위해 PDSCH와는 FDM 되지 않는다. 또한, 동기 신호, 페이징 신호 등이 전송되는 서브프레임은 MBSFN 서브프레임으로 사용될 수 없다. 보다 상세히, FDD에서는 0, 4, 5, 9번 서브프레임이, TDD에서는 0, 1, 5, 6번 서브프레임이 MBSFN으로 설정될 수 없다.
MBSFN 서브프레임의 최대 2개의 OFDM 심볼에서 PDCCH는 전송되지만, MBSFN 데이터에 대한 스케줄링은 상위계층을 통해 수행되며, 이 PDCCH에서는 상향링크 승인만이 전송된다.
상술한 바와 같은 MBSFN 서브프레임이 NCT(New Carrier Type)상에서 설정되는 경우, 이에 해당하는 서브프레임에서는 상향링크 승인이 전송될 수 없다. 보다 상세히, NCT는 CRS 및 PDCCH가 전송되지 않는 새로운 형태의 반송파를 의미하며, PDCCH가 전송되지 않고, MBSFN 전송을 위한 영역으로 인해 EPDCCH도 전송할 수 없다. 즉, NCT에서 MBSFN으로 설정된 서브프레임에서는 상향링크 승인을 전송할 수 없는 것이다. 따라서 이하 본 발명의 실시예에서는 상기와 같은 서브프레임에서 전송되어야 할 상향링크 승인을 전송하는 방법이 개시된다. 후술하겠지만, 이하의 실시예는 NCT에서 MBSFN으로 설정된 서브프레임의 경우뿐 아니라, 상향링크 승인의 전송이 예정된 서브프레임에 제어 정보를 전송할 수 없는 경우에 적용될 수 있다. 이와 같은 서브프레임을 이하에서는 제1 서브프레임이라 칭한다.
실시예 1
첫 번째 실시예는 제1 서브프레임에서 전송되어야 할/전송이 예정되었던 상향링크 승인을 다른 서브프레임에서 공통적으로 지시하는 방법이다. 보다 상세히, 상향링크 승인을 포함하는 DCI를 수신한 단말은 그 DCI가 수신된 서브프레임으로부터 k 번째 서브프레임에서 상향링크 승인에서 식별된 자원을 통해 상향링크 신호를 전송할 수 있다. 여기서, 위 상향링크 승인을, 상향링크 승인을 수신한 서브프레임 이후(또는 이전)에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 동시에 적용되는 것으로 설정할 수 있다. 다시 말해, 상기 상향링크 승인을 제1 서브프레임에서 전송되지 못하는 상향링크 승인으로 간주하는 것이다. 도 6에는 이와 같은 실시예 1의 일 예가 도시되어 있다. 도 6에서는 FDD를 전제하였으며, 따라서 k, ㅣ은 4로 동일하다. 또한, 제1 서브프레임은 서브프레임 n+2이며, 음영으로 표시되어 있다. 도 6을 참조하면, 단말은 서브프레임 n에서 상향링크 승인을 수신하는데, 이 상향링크 승인은 상향링크 서브프레임 n+4에서의 자원 할당을 지시하면서 동시에 서브프레임 n+6에서의 자원 할당을 지시하는 것일 수 있다.
상술한 바와 같이, 상향링크 승인이, 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임 및 제1 서브프레임으로부터 l 번째 서브프레임을 위한 용도로 사용될 수 있는데, 둘 중 어느 것을 위한 것인지는 RNTI에 의해 구별될 수 있다. 보다 상세히, 상향링크 승인을 포함하는 제어정보가 제1 서브프레임을 위한 RNTI(예를 들어, US(UL Scheduling) RNTI 등)으로 마스킹되어 있는 경우, 상향링크 승인은 제1 서브프레임으로부터 l 번째 서브프래임을 위한 것일 수 있다. 즉, 단말은 제어정보를 US-RNTI를 사용하여 복호한 경우 상향링크 승인이 제1 서브프레임으로부터 l 번째 서브프레임에 적용되는 것으로 인지하고, 또한, 제어정보를 US-RNTI가 아닌 다른 RNTI를 사용하여 복호한 경우 상향링크 승인이 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에 적용되는 것으로 인식할 수 있다. 제1 서브프레임이 복수개인 경우, 복수개의 US-RNTI가 사용될 수도 있을 것이다.
또는, 새로운 DCI 또는 기존 DCI 포맷의 특정/예비 필드를 통해, 상향링크 승인을 수신한 서브프레임과 제1 서브프레임 사이의 오프셋을 지시해 줄 수 있다.
또 다른 예시로, US-RNTI로 마스킹되어 있지 않은 상향링크 승인은 종래의 DCI 포맷을 사용하고, US-RNTI로 마스킹되어 있는 상향링크 승인은 새로운 DCI 포맷을 사용하는 것일 수 있다. 만약, 세 개 이상의 상향링크 승인을 하나의 서브프레임에 수신하는 경우, 기지국은 몇 개의 상향링크 승인이 전송되는지를 단말에게 지시해 줄 수 있다. 구체적인 예시로써, US-RNTI의 패턴에 따라 서브프레임에서 전송되는 상향링크 승인의 개수가 결정될 수도 있다.
상술한 설명에서 종래 DCI 포맷에 정의되어 있는 상향링크 인덱스 필드의 값이 의미하는 바가 새로이 정의될 수 있다. 즉, 상향링크 인덱스 필드를 사용하여 상향링크 승인을 프리-스케줄링하는 것이다. 이에 관련된 예시가 도 7에 도시되어 있다. 도 7을 참조하면, 라디오 프레임 n의 1번 서브프레임에서 하향링크 승인을 수신하되, 상향링크 인덱스 필드 값이 01이면 상향링크 승인은 기존에 정의된 대로 7번 서브프레임에 관한 것 임을 지시할 수 있다. 만약, 상향링크 인덱스 필드 값이 10이면 상향링크 승인은 제1 서브레임(M으로 표시된 서브프레임)에 관한 것임을 지시할 수 있다. 또한, 상향링크 인덱스 필드 값이 11이면 상향링크 승인은 상향링크 승인이 수신된 서브프레임 및 제1 서브프레임 모두에 관한 것임을 지시할 수 있다.
실시예 2
제1 서브프레임에서 전송되어야 할 상향링크 승인은, 기존 상향링크 HARQ 타임 라인 기반의 상향링크 승인 전송 시점과 연동된 PUSCH 전송 시점으로부터 4ms(또는 미리 정의된 값) 이전의 하향링크 서브프레임들 중 가장 가까운 하향링크 서브프레임에서 (재)전송될 수 있다. 예를 들어, 도 8을 참조하면, 제1 서브프레임(1st SF)에서 전송되지 못하는 상향링크 승인이, 기존 타임라인 기반의 상향링크 전송 시점과 연동된 PUSCH 전송 시점인 8번 서브프레임으로부터, 4ms 이전의 하향링크 서브프레임들인 0번, 1번 서브프레임 중 가장 가까운 서브프레임인 1번 서브프레임에서 전송되는 것이다. 여기서, 상향링크 승인이 전송되는 하향링크 서브프레임은 기존 상향링크 HARQ 타임라인 기반의 상향링크 승인 전송이 수행되지 않는 하향링크 서브프레임(예를 들어, Standalone DL SF), 기존 상향링크 HARQ 타임라인 기반의 상향링크 승인 전송이 수행되는 하향링크 서브프레임 및/또는 모든 하향링크 서브프레임일 수 있다.
만약, 실시예 2에 따라 동작하되, 상향링크 승인 전송 시점이 특정한 하향링크 서브프레임으로 지정될 수 없는 경우, 기지국과 단말은 해당 상향링크 승인 기반의 PUSCH 전송이 수행되지 않는다고 가정할 수도 있다. 즉, 상향링크 승인이 내려올 서브프레임에서 상향링크 승인이 내려오지 못할 경우, 해당 상향링크 승인에 연동되는 PUSCH 전송은 생략된다고 사전에 정의될 수 있다.
실시예 3
제1 서브프레임에서 상향링크 승인의 전송이 어려울 경우, 단말은 별도의 상향링크 승인이 없더라도 (전송이 예정되었던) 상향링크 승인에 대응하는 서브프레임에서 재전송을 수행할 수 있다. 예를 들어, 도 8에서 단말은 상향링크 승인이 없더라도 8번 서브프레임에서 상향링크 전송을 수행할 수 있다. 이러한 경우, 기지국은 최적 MCS보다 높은 MCS를 단말에게 요구할 수 있다. 또는, 하나의 상향링크 서브프레임에 연관된 PHICH와 상향링크 승인이 서로 다른 서브프레임에 전송되고 상향링크 승인이 전송되지 못할 경우, 단말은 PHICH에 근거하여 동작할 수 있다. 즉, ACK일 경우, 해당 상향링크 서브프레임에서는 PUSCH 전송이 수행되지 않는다고 가정하고, NACK일 경우 해당 상향링크 서브프레임에서는 재전송을 수행하되, 가장 최근에 수신한 상향링크 승인을 기반으로 PUSCH 구성을 결정할 수 있다.
실시예 4
또 다른 실시예로써, 제1 서브프레임이 NCT에서 MBSFN 서브프레임인 경우, MBSFN 서브프레임 구성을 제한할 수 있다. 다시 말해, MBSFN 동작을 수행하는 서브프레임을 상향링크 승인이 전송되지 않는 하향링크 서브프레임으로 한정할 수 있다. 예를 들어, TDD에서 상향링크-하향링크 구성 2는 DSUDDDSUDD (D : 하향링크 서브프레임, U : 상향링크 서브프레임, S : 스페셜 서브프레임)이며, 3번, 8번 서브프레임에서 상향링크 승인이 전송될 수 있다. 또한, TDD에서는 0, 1, 2, 5, 6번 서브프레임은 MBSFN 서브프레임으로 설정될 수 없으므로, 이를 고려하여 MBSFN 서브프레임 동작을 수행하는 서브프레임을 4번, 9번 서브프레임으로 한정할 수 있다.
제1 서브프레임의 예시
상술한 설명에서, 제1 서브프레임은 NCT에서 MBSFN 뿐 아니라 다음 설명에 해당하는 서브프레임일 수도 있다.
제1 서브프레임은 셀 간 간섭으로 인해 안정적인 DCI 검출이 불가능한 서브프레임일 수 있다.
제1 서브프레임은 PMCH(physical multicast channel) 및/또는 PRS(positioning reference signal)가 광대역으로 전송되어 DCI 전송에 사용할 자원이 부족한 서브프레임일 수 있다. 다시 말해, 제1 서브프레임은 PMCH 및/또는 PRS 중 하나 이상을 위한 자원 이외의 자원이 DCI 전송을 위해 필요한 자원보다 작은 서브프레임일 수 있다. 여기서, DCI 전송은 EPDCCH를 통한 전송을 포함한다.
제1 서브프레임은 PMCH 및/또는 PRS와 같은 신호가 기존 서브프레임 또는 DCI가 전송되는 서브프레임과 상이한 CP를 사용하여 전송되는 서브프레임일 수 있다. 예를 들어, NCT에서 EPDCCH가 전송되는 경우, EPDCCH는 노멀 CP를 사용하지만 PMCH/PRS는 확장 CP를 사용하여 하나의 서브프레임에서 동시에 전송되지 못할 수 있다. 즉, PMCH/PRS가 전송되지만 여유 자원이 존재하여 EPDCCH를 전송할 수 있는 경우, PMCH/PRS에서 사용하는 CP 길이와 EPDCCH에서 사용하는 CP 길이가 다르다면 UE에 따라 수신이 어려울 수 있다
제1 서브프레임은 TDD 스페셜 서브프레임 중 하향링크 전송을 위한 자원이 적은 서브프레임일 수 있다. 예를 들어, 노멀 CP, 스페셜 서브프레임 0, 5의 경우 또는 확장 CP, 스페셜 서브프레임 0, 4가 이에 해당할 수 있다.
제1 서브프레임은 EPDCCH를 위한 DMRS를 정의하기 어려워 EPDCCH를 전송하지 못하는 서브프레임일 수 있다. 예를 들어, 확장 CP의 7번 스페셜 서브프레임은 DwPTS 영역이 온전히 존재하지 못해 EPDCCH의 전송이 불가능하므로 제1 서브프레임에 해당할 수 있다.
PSS/SSS/PBCH/SIB/페이징 신호가 전송됨으로 인해 EPDCCH를 전송할 자원이 부족하거나, 제어채널 전송에 영향을 주는 경우(예를 들어 DMRS 전송에 영향), 그 서브프레임은 제1 서브프레임에 해당할 수 있다.
제1 서브프레임은 기지국이 상위계층 시그널링으로 알려준 서브프레임 세트에 포함되는 서브프레임일 수 있다.
상술한 설명은 하향링크 승인 뿐 아니라 아니라 하향링크 할당(DL grant), (E)PHICH, D2D에도 적용 가능하다. 또한, TDD에서 특정 서브프레임의 용도를 변경하여 사용하는 경우에도 적용 가능하다. 구체적으로, 하향링크 서브프레임 n을 상향링크 전송을 위한 것으로 용도 변경하여 사용할 때, 기지국은 서브프레임 n+4에 대한 상향링크 승인을 서브프레임 n 이전의 하향링크 서브프레임에서 전송할 수 있다. 또한, 서브프레임 n에 대한 상향링크 승인은 서브프레임 n-4 또는 그 이전 서브프레임에서 전송할 수 있다.
본 발명의 실시예에 의한 장치 구성
도 9는 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 9를 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신모듈(11), 전송모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모듈(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 9를 참조하면 본 발명에 따른 단말 장치(20)는, 수신모듈(21), 전송모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 9에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 단말이 상향링크 신호를 전송하는 방법에 있어서,
    상향링크 승인을 포함하는 하향링크제어정보를 수신하는 단계; 및
    상기 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에서 상향링크 데이터를 전송하는 단계;
    를 포함하며,
    상기 상향링크 승인은 상기 상향링크 승인을 수신한 서브프레임 이후에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 적용되는, 상향링크 신호 전송 방법.
  2. 제1항에 있어서,
    상기 제1 서브프레임으로부터 l 번째 서브프레임에 적용되는 상향링크 승인은 US-RNTI(UL Scheduling-Radio Network Temporary Identifier)로 마스킹된 것인, 상향링크 신호 전송 방법.
  3. 제1항에 있어서,
    상기 l 은 상기 하향링크제어정보에 포함된 소정 필드에 의해 지시되는, 상향링크 신호 전송 방법.
  4. 제3항에 있어서,
    상기 소정 필드는 상기 상향링크 승인을 수신한 서브프레임과 상기 제1 서브프레임 사이의 오프셋 값을 포함하는, 상향링크 신호 전송 방법.
  5. 제4항에 있어서,
    상기 하향링크제어정보는 값이 11로 세팅된 상향링크 인덱스를 포함하는, 상향링크 신호 전송 방법.
  6. 제1항에 있어서,
    상기 상향링크 인덱스의 값이 01인 경우, 상기 상향링크 승인은 상기 l 번째 서브프레임에는 적용되지 않는, 상향링크 신호 전송 방법.
  7. 제1항에 있어서,
    상기 서브프레임은 MBSFN(Multimedia Broadcast Single Frequency Network) 서브프레임이 전송되는 서브프레임인, 상향링크 신호 전송 방법.
  8. 제7항에 있어서,
    상기 하향링크제어정보의 수신 및 상기 상향링크 데이터의 전송은 NCT(New Carrier Type) 상에서 수행되는, 상향링크 신호 전송 방법.
  9. 제1항에 있어서,
    상기 서브프레임은 PMCH(physical multicast channel) 또는 PRS(positioning reference signal) 중 하나 이상을 위한 자원 이외의 자원이 상기 하향링크제어정보를 전송하기 위해 필요한 자원보다 작은 서브프레임인, 상향링크 신호 전송 방법.
  10. 제1항에 있어서,
    상기 서브프레임은 PMCH 또는 PRS가 상기 하향링크제어정보와는 다른 CP(Cyclic Prefix)를 사용하여 전송되는 서브프레임인, 상향링크 신호 전송 방법.
  11. 제1항에 있어서,
    상기 제1 서브프레임은 상기 단말에게 상위계층시그널링으로 지시되는, 상향링크 신호 전송 방법.
  12. 제1항에 있어서,
    상기 단말의 듀플렉스 모드가 FDD인 경우, 상기 k 와 l 은 동일한 값인, 상향링크 신호 전송 방법.
  13. 무선 통신 시스템에서 단말 장치에 있어서,
    수신 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는, 상향링크 승인을 포함하는 하향링크제어정보를 수신하고, 상기 상향링크 승인을 수신한 서브프레임으로부터 k 번째 서브프레임에서 상향링크 데이터를 전송하며,
    상기 상향링크 승인은 상기 상향링크 승인을 수신한 서브프레임 이후에 나타나는 제1 서브프레임으로부터 l 번째 서브프레임에도 적용되는, 단말 장치.
PCT/KR2014/000985 2013-02-06 2014-02-05 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치 WO2014123352A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/766,024 US9730243B2 (en) 2013-02-06 2014-02-05 Method and device for transmitting uplink signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361761695P 2013-02-06 2013-02-06
US61/761,695 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014123352A1 true WO2014123352A1 (ko) 2014-08-14

Family

ID=51299902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000985 WO2014123352A1 (ko) 2013-02-06 2014-02-05 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치

Country Status (2)

Country Link
US (1) US9730243B2 (ko)
WO (1) WO2014123352A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436101A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641708B (zh) * 2012-09-17 2019-07-09 Lg电子株式会社 在无线通信系统中接收下行链路信号的方法和设备
CN107040358A (zh) * 2016-02-04 2017-08-11 株式会社Kt 用于NB‑IoT UE发送和接收上行信号的方法及其装置
US10616869B2 (en) * 2016-02-12 2020-04-07 Qualcomm Incorporated Uplink channel design for slot-based transmission time interval (TTI)
US10116483B2 (en) 2016-04-18 2018-10-30 Qualcomm Incorporated Dynamically convey information of demodulation reference signal and phase noise compensation reference signal
US10419244B2 (en) 2016-09-30 2019-09-17 Qualcomm Incorporated Demodulation reference signal management in new radio
EP3761745B1 (en) * 2018-03-27 2024-02-21 Sony Group Corporation Communication device and communication system
WO2019230002A1 (ja) * 2018-06-01 2019-12-05 株式会社Nttドコモ ユーザ端末及び無線基地局

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052566A2 (en) * 2008-11-10 2010-05-14 Nokia Corporation Reduction of unnecessary downlink control channel reception and decoding
KR20100091926A (ko) * 2009-02-11 2010-08-19 엘지전자 주식회사 상향링크 신호 및 피드백 정보 전송 방법과 그 방법을 이용하는 중계기 장치
WO2011127098A1 (en) * 2010-04-05 2011-10-13 Qualcomm Incorporated Feedback of control information for multiple carriers
KR20110121673A (ko) * 2009-02-17 2011-11-08 엘지전자 주식회사 중계기와 기지국 간의 데이터 송수신 방법
WO2013006010A2 (ko) * 2011-07-06 2013-01-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 송수신 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721015B1 (ko) * 2010-06-21 2017-03-29 삼성전자주식회사 이동 통신 시스템에서 블라인드 스케쥴링 장치 및 방법
CA2886634C (en) * 2012-09-26 2020-03-24 Interdigital Patent Holdings, Inc. Methods for dynamic tdd uplink/downlink configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052566A2 (en) * 2008-11-10 2010-05-14 Nokia Corporation Reduction of unnecessary downlink control channel reception and decoding
KR20100091926A (ko) * 2009-02-11 2010-08-19 엘지전자 주식회사 상향링크 신호 및 피드백 정보 전송 방법과 그 방법을 이용하는 중계기 장치
KR20110121673A (ko) * 2009-02-17 2011-11-08 엘지전자 주식회사 중계기와 기지국 간의 데이터 송수신 방법
WO2011127098A1 (en) * 2010-04-05 2011-10-13 Qualcomm Incorporated Feedback of control information for multiple carriers
WO2013006010A2 (ko) * 2011-07-06 2013-01-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 harq 송수신 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436101A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US20150373739A1 (en) 2015-12-24
US9730243B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
WO2014209035A1 (ko) 무선 통신 시스템에서 제어정보 획득 방법 및 장치
WO2017146556A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2014137170A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
WO2016028001A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2016144076A1 (en) Method and apparatus for configuring frame structure and frequency hopping for mtc ue in wireless communication system
WO2012150836A2 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 이를 위한 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2014133341A1 (ko) 무선 통신 시스템에서 제어정보 수신방법 및 장치
WO2013109036A1 (ko) 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
WO2013009089A2 (en) Method for transmitting or receiving pdcch and user equipment or base station for the method
WO2013055193A2 (ko) 무선 통신 시스템에서 제어 정보의 수신 방법 및 장치
WO2013035974A1 (en) Method for transmitting uplink signals from a user equipment to a base station in a wireless communication system and method for the same
WO2013105821A1 (ko) 무선 통신 시스템에서 신호 수신 방법 및 장치
WO2014142623A1 (ko) 무선 통신 시스템에서 디스커버리 신호 송수신 방법 및 장치
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2014123352A1 (ko) 무선 통신 시스템에서 상향링크 신호 전송 방법 및 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2016018034A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2014119939A1 (ko) 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
WO2018143725A1 (ko) 무선 통신 시스템에서 단말이 cr을 측정하고 전송을 수행하는 방법 및 장치
WO2018084570A1 (ko) 무선 통신 시스템에서 오프셋을 적용한 d2d 신호 전송 방법 및 장치
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2013055159A2 (ko) 데이터 송수신 방법 및 이를 위한 장치
WO2012169716A1 (ko) 제어정보 송수신 방법 및 송수신 장치
WO2016036219A1 (ko) 무선 통신 시스템에서 비 면허 대역 상의 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749452

Country of ref document: EP

Kind code of ref document: A1