WO2014183278A1 - 信号传输方法、装置、通信系统、终端和基站 - Google Patents

信号传输方法、装置、通信系统、终端和基站 Download PDF

Info

Publication number
WO2014183278A1
WO2014183278A1 PCT/CN2013/075645 CN2013075645W WO2014183278A1 WO 2014183278 A1 WO2014183278 A1 WO 2014183278A1 CN 2013075645 W CN2013075645 W CN 2013075645W WO 2014183278 A1 WO2014183278 A1 WO 2014183278A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
channel
prach
pusch
sequence
Prior art date
Application number
PCT/CN2013/075645
Other languages
English (en)
French (fr)
Inventor
唐臻飞
李元杰
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13884731.4A priority Critical patent/EP2991419B1/en
Priority to PCT/CN2013/075645 priority patent/WO2014183278A1/zh
Priority to JP2016513191A priority patent/JP6216039B2/ja
Priority to CN201380076048.4A priority patent/CN105393618B/zh
Publication of WO2014183278A1 publication Critical patent/WO2014183278A1/zh
Priority to US14/940,625 priority patent/US10070464B2/en
Priority to US16/047,442 priority patent/US20180338327A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to communication technologies, and in particular, to a signal transmission method, apparatus, communication system, terminal, and base station. Background technique
  • Orthogonal Frequency Division Multiple Access is a system-critical multiple access for 3G systems and/or 4G systems. It is a subsequent evolution of Long Term Evolution (LTE)/Long Term Evolution. (LTE-Advanced, abbreviated as: LTE-A) A multiple access technology used in the system.
  • the resources used for transmitting signals in the multiple access technology are time-frequency resources, including time and frequency.
  • a radio frame is 10ms in length, contains 10 subframes, each subframe has a length of 1ms, each subframe contains 2 slots, and each slot contains 7 (normal cyclic prefix (Cyclic Prefix, Hereinafter referred to as CP)) or 6 Orthogonal Frequency Division Multiple (OFDM) symbols (extended CP); from the frequency dimension, a subcarrier under one OFDM symbol is called a resource.
  • a Resource Element hereinafter referred to as RE
  • 12 subcarriers and a time slot constitute a Resource Block (hereinafter referred to as RB).
  • the two resource blocks of a subframe are called a resource block pair, often referred to as a resource block.
  • a resource block includes a physical resource block and a virtual resource block. In the communication process, both business data and system information are transmitted on these time-frequency resources.
  • a physical random access channel Physical Random Access Channel, PRACH
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Share Channel
  • TTI transmission time interval
  • the PUSCH is transmitted, and the maximum number of times of PUSCH binding is 4 times, that is, the maximum transmission time is 4 subframes, that is, 4 ms.
  • the maximum transmission time of the PRACH and the PUSCH is small, and the maximum transmission power of the transmitting end is a fixed parameter. Therefore, the energy of the PRACH and the PUSCH is small, thereby causing the PRACH.
  • the maximum distance that PUSCH can transmit is shorter and the coverage is poor. Especially when the environment of signal transmission is not ideal, for example, there are many obstacles on the transmission path, or when the weather is bad, the coverage of the prior art PRACH and PUSCH cannot meet the usage requirements, and the receiving end, such as the base station, cannot be correct. Receive the signal sent by the sender. Summary of the invention
  • the present invention provides a signal transmission method, apparatus, communication system, terminal and base station to solve the problem of poor channel coverage in the prior art signal transmission method.
  • an embodiment of the present invention provides a signal transmission method, including:
  • the method before the determining the repetition factor or the extended sequence of the channel, the method further includes:
  • transmitting the signal by using the transmission subframe of the channel specifically: transmitting the signal by using the frequency resource of the channel and the transmission subframe.
  • the channel is a physical random access channel PRACH or a physical uplink shared channel PUSCH.
  • the channel is a PRACH
  • the frequency resource of the determining channel includes:
  • the subcarrier offset of the PRACH determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH is 1, 2, or 3, or n/12, where n is less than 12 The integer.
  • the channel is a PUSCH, and the determining the frequency resource of the channel includes:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • the resource unit set indication of the PUSCH is used to determine a virtual subcarrier.
  • any one of the first to the sixth possible implementation manners of the first aspect, in the seventh possible implementation, before the determining the repetition factor or the spreading sequence of the channel includes:
  • the channel is a PRACH
  • the notification message further includes a physical resource block offset of the PRACH and a sub-PRBoffset Carrier offset ⁇
  • the channel is a PUSCH
  • the notification message further includes a resource block indication and a resource unit set indication of the PUSCH.
  • the frequency resource of the channel included in the notification message corresponds to at least one repetition factor Or at least one extended sequence identifier.
  • the channel is a PRACH
  • the notification message is a system information block SIB message.
  • And/or downlink control information DCI message is a PRACH
  • the notification message is an SIB message, and the information about the frequency resource of the PRACH or the repetition factor or the extended sequence of the PRACH Identifying the physical random access channel configuration information PRACH-ConfigInfo field of the SIB message or the communication configuration information of the physical random access channel machine type In the PRACH-ConfigInfoX field.
  • the notification message is a DCI message
  • the identifier is located in an extension field of the DCI message, or the repetition factor or extension sequence identifier of the PRACH is indicated by joint coding with a preamble index of the PRACH.
  • the receiving, by the receiving base station, the notification message includes:
  • the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • DCI message includes information of one of the frequency resources of the set of PRACHs or one of the repetition factors of the set of PRACHs or one of the set of extended sequence identifiers Sequence identification.
  • the channel is a PUSCH
  • the notification message is an RRC message or a DCI message.
  • the notification message is an RRC message
  • the identifier is located in a physical uplink shared channel configuration PUSCH-Config field or a physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field of the RRC message.
  • the notification message is a DCI message, and the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence of the PUSCH
  • the identifier is located in an extension field of the DCI message; or the resource unit set indication or the repetition factor or the extended sequence identifier of the PUSCH is indicated by jointly coding with the resource block indication information of the PUSCH.
  • the notification message sent by the receiving base station includes:
  • Receiving an RRC message where the RRC message includes information about a frequency resource of a group of PUSCHs or a repetition factor or a spreading sequence identifier of a PUSCH; Receiving a DCI message, where the DCI message includes information of one frequency resource of information of a frequency resource of the group of PUSCHs or one of a repetition factor of the set of PUSCHs or the set of extended sequence identifiers An extended sequence identifier.
  • the determining a repetition factor or an extended sequence of the channel including :
  • the determining a repetition factor of the channel, or determining a length of the extended sequence of the channel, and determining the extension The extended sequence corresponding to the length of the sequence including:
  • a repetition factor of the channel is determined based on a maximum transmit power, a path loss, and a received target power of the channel, or a length of the extended sequence of the channel is determined and an extended sequence corresponding to the length of the extended sequence is determined.
  • the first to the twentieth possible implementation manners of the first aspect in the twenty-first possible implementation manner,
  • the spreading sequence is a Walsh Walsh sequence; or the spreading sequence is a generating sequence of a pseudo noise PN sequence.
  • the generating sequence of the spreading sequence that is a PN sequence includes:
  • the spreading sequence is a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a temporary identifier of a wireless network as an initialization parameter of a PN sequence; or
  • the spreading sequence is a sequence generated by using the extended sequence identifier, a cell identifier of a cell in which the terminal is located, and/or a wireless network temporary identifier as an initialization parameter of a PN sequence.
  • the channel is a PRACH
  • the time domain resource is determined according to the length of the repetition factor or the extended sequence
  • the time domain resource is a transmission subframe, and includes: a repetition factor or a length of the extension sequence and a format of the PRACH determining a number N of transmission subframes;
  • the transmission subframe is determined according to the random access configuration index and the number N of transmission subframes.
  • the determining, according to the random access configuration index and the number N of the transmission subframes, the transmission subframe Includes:
  • the channel is a PUSCH
  • the determining the time domain resource according to the length of the repetition factor or the extended sequence includes:
  • the transmission subframe of the original PUSCH is used as the starting subframe m, and N consecutive subframes starting from the starting subframe m are selected as the transmission subframe.
  • the channel is a PUSCH
  • the transmitting the signal by using the transmission subframe of the channel includes:
  • the current transmission is terminated in the ml+kl subframe, where k1 is a preset Integer.
  • the channel is a PRACH
  • the transmitting the signal by using the transmission subframe of the channel includes:
  • the transmission is terminated in the m2+k2 subframe, where k2 is a preset integer.
  • the subframe number w of the starting subframe of the determining time window includes:
  • an embodiment of the present invention provides a signal transmission method, including:
  • the signal is received by the transmission subframe of the channel.
  • the method before the determining the repetition factor or the extended sequence of the channel, the method further includes:
  • receiving the signal by using the transmission subframe of the channel specifically: using the frequency resource of the channel and the transmission subframe to receive a signal.
  • the channel is a physical random access channel (PRACH) or a physical uplink shared channel (PUSCH).
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the channel is a PRACH
  • the frequency resource of the determined channel includes:
  • the number of resource blocks corresponding to the PRACH and the subcarrier offset L_ of the PRACH. Ffsrt determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH is 1, 2, or 3, or n/12, where n is less than An integer of 12.
  • the channel is a PUSCH
  • the frequency resource of the determining channel includes:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • the resource unit set indication of the PUSCH is used to determine a virtual subcarrier.
  • any one of the first to the sixth possible implementation manners of the second aspect, in the seventh possible implementation manner, after determining the repetition factor or the spreading sequence of the channel includes:
  • the notification message includes a repetition factor or an extended sequence identifier of the channel, to indicate that the terminal determines a repetition factor or an extended sequence of the channel according to the notification message.
  • the channel is a PRACH
  • the notification message further includes a physical resource block offset of the PRACH, “ set and PRACH” Subcarrier offset, so that the terminal determines the frequency resource of the PRACH according to the notification message.
  • the channel is a PUSCH
  • the notification message further includes a resource block indication and a resource unit set indication of the PUSCH Sending a notification message to the terminal, so that the terminal determines a frequency resource of the PUSCH according to the notification message.
  • the frequency resource of the channel included in the notification message corresponds to at least one repetition factor Or at least one extended sequence identifier.
  • the channel is a PRACH
  • the notification message is a system information block SIB message and/or a downlink control information DCI message.
  • the notification message is an SIB message
  • the identifier is located in a physical random access channel configuration information PRACH-ConfigInfo field of the SIB message or a communication configuration information PRACH-ConfigInfoMTC field of a physical random access channel machine type.
  • the notification message is a DCI message, and the information about the frequency resource of the PRACH or the repetition factor or the extended sequence of the PRACH
  • the identifier is located in an extension field of the DCI message; or the repetition factor or extension sequence identifier of the PRACH is indicated by joint coding with a preamble index of the PRACH.
  • the sending the notification message to the terminal includes:
  • SIB message Sending, to the terminal, an SIB message, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • the channel is a PUSCH
  • the notification message is an RRC message or a DCI message.
  • the notification message is an RRC message
  • the identifier is located in a physical uplink shared channel configuration PUSCH-Config field or a physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field of the RRC message.
  • the notification message is a DCI message, and the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence of the PUSCH Identifying an extension field located in the DCI message; or the resource The unit set indication or the repetition factor or extension sequence identifier of the PUSCH is indicated by joint coding with the resource block indication information of the PUSCH.
  • the sending, by the terminal, the notification message includes:
  • the terminal Sending an RRC message to the terminal, where the RRC message includes information of a group of PUSCH frequency resources or a set of PUSCH repetition factors or a set of extended sequence identifiers;
  • a DCI message Transmitting, to the terminal, a DCI message, where the DCI message includes information of one frequency resource of information of a frequency resource of the group of PUSCHs or one repetition factor of the repetition factor of the group of PUSCHs or the set of extensions An extended sequence identifier in the sequence identifier.
  • any one of the first to the eighteenth possible implementation manners of the second aspect, in the nineteenth possible implementation, before the determining the repetition factor or the spreading sequence of the channel also includes:
  • the spreading sequence transmits a signal on the channel.
  • the system message further includes an available repetition factor; or an extended sequence identifier of the available extended sequence, where The extended sequence and the extended sequence identifier correspond to the length of the extended sequence.
  • any one of the first to the twentieth possible implementation manners of the second aspect, in the twenty-first possible implementation manner, the repetition factor or the number of the extended sequence of the channel At least two, Bay ij,
  • Determining the time domain resource according to the length of the repetition factor or the extended sequence includes: determining a transmission subframe corresponding to the at least two repetition factors or determining a length determination transmission subframe of each of the extension sequences;
  • the receiving the signal on the transmission subframe of the channel comprises: receiving a signal on a transmission subframe corresponding to at least two repetition factors of the channel or a length determination transmission subframe of each of the extension sequences.
  • the spreading sequence is a Walsh Walsh sequence; or the spreading sequence is a generating sequence of a pseudo noise PN sequence.
  • the generating sequence that is the PN sequence of the extended sequence includes:
  • the spreading sequence is a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a temporary identifier of a wireless network as an initialization parameter of a PN sequence; or
  • the spreading sequence is a sequence generated using the extended sequence identifier, the cell identity of the serving cell of the terminal, and/or the wireless network temporary identity as initialization parameters of the PN sequence.
  • the channel is a PRACH
  • the time domain resource is determined according to the length of the repetition factor or the extended sequence, where the time domain resource is a transmission subframe
  • the transmission subframe is determined according to the random access configuration index and the number N of transmission subframes.
  • the determining, according to the random access configuration index and the number N of the transmission subframes, the transmission subframe Includes:
  • the start subframe selects a continuous N subframe from the start subframe as a transmission subframe.
  • the channel is a PUSCH
  • the time domain resource is determined according to the length of the repetition factor or the extended sequence, where the time domain resource is a transmission subframe, including :
  • the N subframe is used as a transmission subframe.
  • the channel is a PUSCH
  • receiving a signal on the transmission subframe includes:
  • a DCI message or a hybrid automatic repeat request response HARQ-ACK message to the terminal in a subframe with a subframe number of ml, where the DCI message or the HARQ-ACK message indicates that the base station has successfully received the current PUSCH transmission.
  • a signal where the ml subframe is before the pl+4 subframe, and pi is the subframe number of the last subframe of the PUSCH transmission;
  • the signal of the current transmission is stopped in the ml+kl subframe, where m subframe is before p+4 subframe, and kl is a preset integer.
  • the first to fourth, second to eighth, tenth to fourteenth, nineteenth to twenty-fifth possible implementations of the second aspect includes:
  • the determining, by the determining, the subframe number w of the starting subframe of the time window includes:
  • an embodiment of the present invention provides a signal transmission apparatus, including:
  • a repetition factor or extension sequence determining module configured to determine a repetition factor or an extension sequence of the channel
  • a transmission subframe determining module configured to determine a time domain resource according to the repetition factor or a length of the extension sequence, where the time domain resource is a transmission sub frame
  • a sending module configured to send a signal by using the transmission subframe of the channel.
  • the method further includes:
  • a frequency resource determining module configured to determine a frequency resource of the channel
  • the sending module is specifically configured to: send the signal by using the frequency resource of the channel and the transmission subframe.
  • the channel is a physical random access channel PRACH or a physical uplink shared channel PUSCH.
  • the channel is a PRACH
  • the frequency resource determining module is specifically configured to:
  • ffSf!t the number of resource blocks corresponding to the PRACH and the subcarrier offset L_ of the PRACH.
  • Ffsrt determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH is 1, 2, or 3, or n/12, where n is less than 12 The integer.
  • the channel is a PUSCH
  • the frequency resource determining module is specifically configured to:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • the resource unit set of the PUSCH is used to determine a virtual subcarrier.
  • the method further includes:
  • a notification message receiving module configured to receive a notification message sent by the base station, where the notification message includes a repetition factor of the channel, where the repetition factor or the extended sequence determining module is specifically configured to acquire the information included in the notification message
  • the repetition factor of the channel determines a repetition factor
  • the notification message receiving module is configured to receive a notification message sent by the base station, where the notification message includes an extended sequence identifier; and the repetition factor or the extended sequence determining module Specifically, determining, according to the extended sequence identifier, an extended sequence.
  • the channel is a PRACH
  • the notification message further includes a physical resource block offset ⁇ PRBofTset of the PRACH and a subcarrier offset " ⁇ .
  • the channel is a PUSCH
  • the notification message further includes a resource block indication and a resource unit set indication of the PUSCH.
  • the frequency resource of the channel included in the notification message corresponds to at least one repetition factor Or at least one extended sequence identifier.
  • the channel is a PRACH
  • the notification message is a system information block SIB message.
  • And/or downlink control information DCI message is a PRACH
  • the notification message is an SIB message
  • the identifier is located in a physical random access channel configuration information PRACH-ConfigInfo field of the SIB message or a communication configuration information PRACH-ConfigInfoMTC field of a physical random access channel machine type.
  • the notification message is a DCI message
  • the identifier is located in an extension field of the DCI message, or the repetition factor or extension sequence identifier of the PRACH is indicated by joint coding with a preamble index of the PRACH.
  • the notification message receiving module includes:
  • An SIB receiving unit configured to receive an SIB message, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • a DCI receiving unit configured to receive a DCI message, where the DCI message includes information of one of the frequency resources of the set of PRACHs or one of a repetition factor of the set of PRACHs or the set of extensions An extended sequence identifier in the sequence identifier.
  • the notification message is RRC Interest or DCI message.
  • the notification message is an RRC message
  • the identifier is located in a physical uplink shared channel configuration PUSCH-Config field or a physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field of the RRC message.
  • the notification message is a DCI message, and the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence of the PUSCH
  • the identifier is located in an extension field of the DCI message; or the resource unit set indication or the repetition factor or the extended sequence identifier of the PUSCH is indicated by jointly coding with the resource block indication information of the PUSCH.
  • the notification message receiving module includes:
  • An RRC receiving unit configured to receive an RRC message, where the RRC message includes information about a group of PUSCH frequency resources or a PUSCH repetition factor or an extended sequence identifier;
  • a DCI receiving unit configured to receive a DCI message, where the DCI message includes information of one frequency resource of information of a frequency resource of the group of PUSCHs or one repetition factor of the repetition factor of the group of PUSCHs or the one An extended sequence identifier in the group extension sequence identifier.
  • the repetition factor or extended sequence determining module includes:
  • a target power acquiring unit configured to receive a system message sent by the base station, where the system message includes a receiving target power of the channel;
  • a determining unit configured to determine, according to a maximum transmit power, a path loss, and a received target power of the channel, whether the channel needs to be sent by using a repetition factor or a spreading sequence
  • Determining a unit if yes, determining a repetition factor of the channel; or determining a nineteenth possible implementation manner of the channel according to the third aspect, in the twentieth possible implementation manner, the determining The unit is specifically used to:
  • Determining the letter based on the maximum transmit power, the path loss, and the received target power of the channel The repetition factor of the track, or the length of the extended sequence of the channel is determined and the extended sequence corresponding to the length of the extended sequence is determined.
  • the extended sequence is a Walsh Walsh sequence;
  • the spreading sequence is a generating sequence of a pseudo noise PN sequence.
  • the generating sequence of the spreading sequence that is a PN sequence includes:
  • the spreading sequence is a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a temporary identifier of a wireless network as an initialization parameter of a PN sequence; or
  • the spreading sequence is a sequence generated by using the extended sequence identifier, a cell identifier of a cell in which the terminal is located, and/or a wireless network temporary identifier as an initialization parameter of a PN sequence.
  • the transmitting subframe determining module includes: a transmitting subframe number determining unit and a transmitting subframe determining unit, where the channel is PRACH,
  • the transmission subframe number determining unit is configured to determine, according to the repetition factor or the transmission subframe determining unit of the extension sequence, according to a random access configuration index and a number N of the transmission subframes. Transfer sub-frames.
  • the transmission subframe determining unit is specifically configured to:
  • the channel is a PUSCH, and a
  • the transmission subframe number determining unit is configured to be used according to the repetition factor or the extended sequence
  • the length and the format of the PUSCH determine the number N of transmission subframes
  • the transmission subframe determining unit is configured to use the transmission subframe of the original PUSCH as the starting subframe m, and select consecutive N subframes starting from the starting subframe m as the transmission subframe.
  • the sending module includes:
  • a HARQ-ACK message receiving unit configured to receive a DCI message or a hybrid automatic repeat request response HARQ-ACK message sent by the base station in a subframe with a subframe number of ml, where the ml subframe is before the pl+4 subframe, Pi is the subframe number of the last subframe of the primary PUSCH transmission;
  • a first termination unit configured to terminate the current transmission in the ml+kl subframe if the DCI message or the HARQ-ACK message indicates that the base station has successfully received the signal of the current PUSCH transmission, where k1 is a preset Integer.
  • the sending includes:
  • a time window determining unit configured to determine a subframe number w of the start subframe of the time window and a length of the time window, where the starting subframe w subframe of the time window is before the p2+3 subframe, and p2 is a PRACH The subframe number of the last subframe of the transmission;
  • An RAR receiving unit configured to receive a random access response RAR sent by the base station in a subframe with a subframe number m2 in the time window;
  • a second terminating unit configured to terminate the current transmission in the m2+k2 subframe, where k2 is a preset integer.
  • the time window determining unit includes:
  • an embodiment of the present invention provides a signal transmission apparatus, including: a repetition factor or extension sequence determining module, configured to determine a repetition factor or an extension sequence of the channel; a transmission subframe determining module, configured to determine a time domain resource according to the repetition factor or a length of the extension sequence, where the time domain resource is a transmission sub frame;
  • a receiving module configured to receive the signal by using the transmission subframe of the channel.
  • the method further includes:
  • a frequency resource determining module configured to determine a frequency resource of the channel
  • the receiving module is specifically configured to: receive the signal by using the frequency resource of the channel and the transmission subframe.
  • the channel is a physical random access channel PRACH or a physical uplink shared channel PUSCH.
  • the channel is a PRACH
  • the frequency resource determining module is specifically configured to:
  • Subcarrier offset L_ of PRACH. Ffsrt determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH is 1, 2, or 3, or n/12, where n is less than An integer of 12.
  • the channel is a PUSCH
  • the frequency resource determining module is specifically configured to:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • the resource unit set indication of the PUSCH is used to determine a virtual subcarrier.
  • the method further includes:
  • the notification message sending module is configured to send a notification message to the terminal, where the notification message includes a repetition factor or a extended sequence identifier of the channel, to indicate that the terminal determines a repetition factor or an extended sequence of the channel according to the notification message.
  • the channel is a PRACH
  • the notification message further includes a physical resource block offset of the PRACH, “ set and PRACH” Subcarrier offset, so that the terminal determines the frequency resource of the PRACH according to the notification message.
  • the channel is a PUSCH
  • the notification message further includes a resource block indication and a resource unit set indication of the PUSCH included in the Sending a notification message to the terminal, so that the terminal determines a frequency resource of the PUSCH according to the notification message.
  • the frequency resource of the channel included in the notification message corresponds to at least one repetition factor Or at least one extended sequence identifier.
  • the channel is a PRACH
  • the notification message is a system information block SIB message.
  • the notification message is an SIB message
  • the identifier is located in a physical random access channel configuration information PRACH-ConfigInfo field of the SIB message or a communication configuration information PRACH-ConfigInfoMTC field of a physical random access channel machine type.
  • the notification message is a DCI message, and the information about the frequency resource of the PRACH or the repetition factor or the extended sequence of the PRACH
  • the identifier is located in an extension field of the DCI message; or the repetition factor or extension sequence identifier of the PRACH is indicated by joint coding with a preamble index of the PRACH.
  • the notification message sending module includes:
  • An SIB sending unit configured to send an SIB message to the terminal, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • a DCI sending unit configured to The terminal sends a DCI message, where the DCI message includes information about one frequency resource of the information of the frequency resources of the group of PRACHs or the set of PRACHs One of the repetition factors or one of the set of extended sequence identifiers.
  • the channel is a PUSCH
  • the notification message is an RRC message or a DCI message.
  • the notification message is an RRC message
  • the identifier is located in a physical uplink shared channel configuration PUSCH-Config field or a physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field of the RRC message.
  • the notification message is a DCI message, and the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence of the PUSCH
  • the identifier is located in an extension field of the DCI message; or the resource unit set indication or the repetition factor or the extended sequence identifier of the PUSCH is indicated by jointly coding with the resource block indication information of the PUSCH.
  • the notification message sending module includes:
  • an RRC sending unit configured to send an RRC message to the terminal, where the RRC message includes information about a group of PUSCH frequency resources or a set of PUSCH repetition factors or a set of extended sequence identifiers;
  • a DCI sending unit configured to send a DCI message to the terminal, where the DCI message includes information of one frequency resource of information of frequency resources of the group of PUSCHs or one repetition factor of repetition factors of the group of PUSCHs Or an extended sequence identifier of the set of extended sequence identifiers.
  • a target power sending module configured to send a system message to the terminal, where the system message includes a received target power of the channel, so that the terminal according to a maximum transmit power, a path loss, and a received target power of the channel, Determining whether a signal needs to be transmitted on the channel using a repetition factor or a spreading sequence.
  • the system message further includes an available repetition factor; or an extended sequence identifier of the available extended sequence, where The extended sequence and the extended sequence identifier correspond to the length of the extended sequence.
  • the transmission subframe determining module is specifically configured to: determine a transmission subframe corresponding to the at least two repetition factors or determine a length determination transmission subframe of each of the extension sequences;
  • the receiving module is specifically configured to: receive a signal on a transmission subframe corresponding to at least two repetition factors of the channel or a length determination transmission subframe of each of the extension sequences.
  • the spreading sequence is a Walsh Walsh sequence; or the spreading sequence is a generating sequence of a pseudo noise PN sequence.
  • the generating sequence that is the PN sequence of the extended sequence includes:
  • the spreading sequence is a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a temporary identifier of a wireless network as an initialization parameter of a PN sequence; or
  • the spreading sequence is a sequence generated using the extended sequence identifier, the cell identity of the serving cell of the terminal, and/or the wireless network temporary identity as initialization parameters of the PN sequence.
  • the transmission subframe determining module includes a transmission subframe number determining unit and a transmission subframe determining unit, where, if the channel is a PRACH,
  • the number of transmission subframes determining unit is used to determine the number N of transmission subframes according to the repetition factor or the length of the extension sequence and the format of the PRACH;
  • the transmission subframe determining unit is configured to determine a transmission subframe according to the random access configuration index and the number N of the transmission subframes.
  • the transmission subframe determining unit is specifically configured to:
  • the start subframe selects a continuous N subframe from the start subframe as a transmission subframe.
  • any of the first to third, fifth to seventh, ninth to tenth, fifteenth to twenty-third possible implementations of the fourth aspect In a twenty-sixth possible implementation manner, if the channel is PUSCH,
  • the transmission subframe number determining unit is configured to determine, according to the repetition factor or the length of the extended sequence and the format of the PUSCH, the number N of transmission subframes;
  • the transmission subframe determining unit is configured to use the transmission subframe of the original PUSCH as the starting subframe, and select the consecutive N subframes starting from the starting subframe as the transmission subframe.
  • the channel is a PUSCH
  • the receiving module includes:
  • a HARQ-ACK message sending unit configured to send a DCI message or a hybrid automatic repeat request response HARQ-ACK message to the terminal in a subframe with a subframe number of ml, where the DCI message or HARQ-ACK message indicates The base station has successfully received the signal of the PUSCH transmission, where the ml subframe is before the pl+4 subframe, and pi is the subframe number of the last subframe of the PUSCH transmission;
  • the first termination unit is configured to stop receiving the signal of the current transmission in the ml+kl subframe, where the m subframe is before the p+4 subframe, and k1 is a preset integer.
  • the channel is a PRACH
  • the receiving module includes: a time window determining unit, configured to determine a subframe number w of a start subframe of the time window. And a length of the time window, wherein the starting subframe w subframe of the time window is before the p2+3 subframe, and p2 is the subframe number of the last subframe of the primary PRACH transmission;
  • An RAR sending unit configured to send a random access response RAR to the terminal in a subframe with a subframe number of m2 in the time window;
  • a second termination unit configured to stop receiving the signal of the current transmission in the m2+k2 subframe, where k2 is a preset integer.
  • the time window determining unit includes:
  • an embodiment of the present invention provides a communication system, including: at least one terminal and one base station, where the terminal includes any signal transmission device according to an embodiment of the signal transmission device that can be integrated on the terminal according to the present invention;
  • the base station includes any of the signal transmission devices of any of the signal transmission device embodiments of the present invention that can be integrated on a base station.
  • an embodiment of the present invention provides a terminal, including: a receiver, a transmitter, a memory, and a processor, where
  • a memory for storing instructions
  • processor coupled to the memory, the processor configured to execute instructions stored in the memory, and the processor configured to perform signal transmission performed by a corresponding terminal in any method embodiment of the present invention method.
  • an embodiment of the present invention provides a base station, including: a receiver, a transmitter, a memory, and a processor, where
  • a memory for storing instructions
  • processor coupled to the memory, the processor configured to execute instructions stored in the memory, and the processor configured to perform signal transmission performed by a corresponding base station in any of the method embodiments of the present invention method.
  • the terminal increases the transmission subframe of the channel according to the repetition factor or the extension sequence of the channel, and extends the transmission subframe of the channel according to the repetition factor or the length of the extension sequence.
  • the transmission time increases the transmission energy of the channel, thereby expanding the coverage of the channel;
  • the base station increases the reception time by determining the repetition factor or the spreading sequence of the channel, and increasing the transmission subframe for receiving the channel, thereby increasing the reception time.
  • the channel is connected The energy is collected, thereby making it easier to demodulate the signals on the channel, thereby improving the communication quality.
  • Embodiment 1 is a signaling flowchart of Embodiment 1 of a signal transmission method according to the present invention
  • Figure 2 is a schematic diagram of the regularity of the Walsh sequence
  • Embodiment 4 of a signal transmission method according to the present invention is a flowchart of Embodiment 4 of a signal transmission method according to the present invention.
  • Embodiment 5 of a signal transmission method according to the present invention
  • Embodiment 6 of a signal transmission method according to the present invention
  • Embodiment 7 of a signal transmission method according to the present invention is a flowchart of Embodiment 7 of a signal transmission method according to the present invention.
  • Figure ⁇ is a flowchart of Embodiment 8 of the signal transmission method of the present invention.
  • Embodiment 14 of a signal transmission method according to the present invention is a flowchart of Embodiment 14 of a signal transmission method according to the present invention.
  • Embodiment 15 of a signal transmission method according to the present invention is a flowchart of Embodiment 15 of a signal transmission method according to the present invention.
  • Embodiment 16 is a flowchart of Embodiment 16 of a signal transmission method according to the present invention.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a signal transmission apparatus according to the present invention
  • Embodiment 12 is a schematic structural diagram of Embodiment 2 of a signal transmission apparatus according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a signal transmission apparatus according to the present invention.
  • Embodiment 4 of a signal transmission apparatus according to the present invention.
  • Embodiment 5 is a schematic structural diagram of Embodiment 5 of a signal transmission apparatus according to the present invention.
  • Embodiment 6 is a schematic structural diagram of Embodiment 6 of a signal transmission apparatus according to the present invention.
  • Embodiment 7 of a signal transmission apparatus is a schematic structural diagram of Embodiment 7 of a signal transmission apparatus according to the present invention.
  • Embodiment 8 of a signal transmission apparatus according to the present invention.
  • Embodiment 9 of a signal transmission apparatus according to the present invention.
  • Embodiment 10 is a schematic structural diagram of Embodiment 10 of a signal transmission apparatus according to the present invention.
  • 21 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • FIG. 22 is a schematic structural diagram of a terminal embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Coverage refers to the transmission distance that satisfies a certain channel transmission requirement under certain transmitter, receiver and transmission channel conditions. Among them, there are many factors affecting the coverage performance of the channel, including transmission time, maximum transmission power, reception time, reception algorithm, channel structure, etc. Under other conditions, the longer the transmission time, the accumulated energy on the channel. The more the channel can travel, the better the coverage.
  • a method for increasing the transmission time is specifically provided for the PRACH and the PUSCH, respectively, thereby improving the coverage of the two channels. The method can also be used for other channels, which is not limited by the embodiment of the present invention.
  • the embodiment of the present invention provides a method for the interaction between the transmitting end and the receiving end of the signal.
  • the sending end may be a terminal, and the receiving end may be a base station.
  • the preset integers described in the embodiments of the present invention include pre-configured integers or pre-agreed integers.
  • the embodiment of the present invention provides a signal transmission method, where the terminal corresponding to the execution may include: determining a repetition factor or an extension sequence of the channel;
  • the technical effect of the method for transmitting a signal by the terminal in this embodiment is that the terminal increases the transmission subframe of the channel according to the repetition factor or the extension sequence of the channel, and increases the transmission time according to the repetition factor or the length of the extension sequence, thereby increasing the transmission time.
  • the transmission energy of the channel is extended; the coverage of the channel is extended by the above method.
  • the terminal before determining the repetition factor or the extended sequence of the channel, the terminal further includes:
  • transmitting the signal by using the transmission subframe of the channel specifically: transmitting the signal by using the frequency resource of the channel and the transmission subframe.
  • the technical effect of the method for transmitting a signal by the terminal in this embodiment is that the terminal transmits the signal on the narrow frequency resource by determining the frequency resource of the channel, thereby improving the power generated on the single resource and improving the received signal to noise ratio on the single resource. And determining a repetition factor or a spreading sequence of the channel, and increasing a transmission subframe of the channel according to the length of the repetition factor or the extension sequence, extending the transmission time Therefore, the transmission energy of the channel is increased; the coverage of the channel is extended by the above method.
  • the repetition factor or the extension sequence may be determined by the base station and then notified to the terminal, or may be obtained by the terminal through calculation.
  • the part that the base station performs correspondingly may include: determining a repetition factor or an extended sequence of the channel;
  • the signal is received by the transmission subframe of the channel.
  • the technical effect of the method for receiving a signal by the base station in this embodiment is that the base station increases the receiving time by determining the repetition factor or the spreading sequence of the channel and increasing the transmission subframe that receives the channel, thereby increasing the receiving energy of the channel, thereby increasing the receiving energy of the channel. It is more convenient to demodulate the signal on the channel; the communication quality is improved by the above method.
  • the base station before determining the repetition factor or the extended sequence of the channel, the base station further includes: determining a frequency resource of the channel;
  • receiving the signal by using the transmission subframe of the channel specifically: using the frequency resource of the channel and the transmission subframe to receive a signal.
  • the technical effect of the method for receiving a signal by the base station in this embodiment is that the base station receives the signal on the narrow frequency resource by determining the frequency resource of the channel, thereby improving the receiving power on the single resource and improving the received signal to noise ratio on the single resource. And by determining the repetition factor or spreading sequence of the channel, and increasing the transmission subframe receiving the channel, the receiving time is extended, thereby increasing the receiving energy of the channel, thereby facilitating demodulation of the signal on the channel; Improve communication quality.
  • Embodiment 1 is a signaling flowchart of Embodiment 1 of a signal transmission method according to the present invention.
  • the method may be implemented by any one of a transmitting end device (terminal) and any one of the receiving end devices (base stations), and the method may be implemented by hardware and/or software.
  • the part corresponding to the execution of the terminal in the method may be integrated in the terminal, and the part corresponding to the execution of the base station may be integrated in the base station.
  • the signal transmission method of this embodiment may include:
  • Step 101 The base station determines a frequency resource of the channel.
  • the base station may determine the frequency resource of the channel according to the distance of the terminal and the base station according to the distance between the terminal and the base station, or according to factors such as the status of the transmission path of the terminal signal to the base station signal.
  • the channel is a PRACH
  • the physical resource block offset of the PRACH may be offset.
  • the number of resource blocks corresponding to the ffSf!t and the PRACH determines the frequency resource of the PRACH.
  • the first physical resource block of the PRACH may be determined as "p" according to the physical resource block offset "p.f ⁇ t" of the PRACH. Ff ⁇ , determining the PRACH bandwidth according to the number of resource blocks corresponding to the PRACH.
  • the number of resource blocks corresponding to the PRACH may be an integer, for example, may be 1.
  • the minimum granularity of the frequency resource determined in this manner is one resource block (12 subcarriers).
  • the number of subcarriers corresponding to the PRACH and the subcarrier offset of the PRACH determine the frequency resource of the PRACH.
  • the first physical resource block of the PRACH may be determined according to the physical resource block offset "p.ff ⁇ of the PRACH".
  • the subcarrier offset of the PRACH determines the first subcarrier position in the first physical resource block, and determines the PRACH bandwidth according to the number of subcarriers corresponding to the PRACH.
  • the number of resource blocks corresponding to the PRACH may be an integer or ⁇ /12, where n is an integer less than 12, for example, may be 1, 2, or 3, or may be 1/4, 1 /6. That is, the minimum granularity of the frequency resource determined in this manner is one subcarrier.
  • the frequency resource of the PUSCH may be determined according to the resource block indication of the PUSCH and the resource unit set indication.
  • the resource unit set indication of the PUSCH indicates a set of resource units, such as one or more virtual subcarriers, and may also represent a set of resource units in the time-frequency domain, such as an Enhanced Resource Element Group (EREG). Or enhance the Control Channel Element (ECCE).
  • EREG Enhanced Resource Element Group
  • ECCE Control Channel Element
  • the virtual subcarrier is a logical number of the physical subcarrier, which may vary with the slot number or the subframe number.
  • the resource unit set indication of the PUSCH is used to determine a virtual subcarrier.
  • the number of resource blocks may be preset by the terminal, where the physical resource block of the PRACH is offset.
  • the ffsrt and the subcarrier offset of the PRACH may be included in the base station sending a notification message to the terminal,
  • the resource block indication and the resource unit set indication of the PUSCH may be included in a base station sending a notification message to the terminal, so that the terminal is configured according to the terminal
  • the notification message determines a frequency resource of the PUSCH.
  • Step 102 The base station determines a repetition factor or an extended sequence of the channel. Specifically, the base station may determine a repetition factor or a spreading sequence of the channel according to factors such as a cell where the terminal is located, or a distance between the terminal and the base station, or a condition of a transmission path of the terminal signal to the base station signal.
  • the repetition factor is the number of times the signal is repeatedly transmitted on the channel, i.e., the multiple of the number of transmission subframes of the channel.
  • a PRACH with a preamble format of 2 is originally transmitted in 2 subframes. If the repetition factor is 4, the PRACH is extended to be transmitted in 8 subframes, and the signal transmitted on the added subframe is compared with the original 2 subframes.
  • the transmitted signals are the same.
  • the repetition factor described in the embodiment of the present invention may be 1, that is, the case where no extension is performed; and the repetition factor may also be other integer values, which represents a case of performing expansion.
  • the spreading sequence is used to repeatedly transmit the signal on the channel as a weight of the signal amplitude in the extended sequence, the number of repetitions being the number of values in the spreading sequence, i.e., the length of the spreading sequence.
  • a PRACH with a preamble format of 0 is originally transmitted in one subframe. If the spreading sequence is ⁇ 1, -1, 1, and -1 ⁇ , the PRACH is extended to be transmitted in 4 subframes, and the first sub-expansion is transmitted.
  • the phase of the frame and the third sub-frame are the same as the phase of the original signal, and the amplitudes of the second sub-frame and the fourth sub-frame are the same as the amplitude of the original signal amplitude but opposite in phase.
  • Step 103 The terminal determines a frequency resource of the channel.
  • the terminal may offset " B " according to the physical resource block of the PRACH.
  • The number of resource blocks corresponding to the PRACH, determining the frequency resource of the PRACH; or, according to the physical resource block offset of the PRACH, P ⁇ B .
  • Ffss:t the number of resource blocks corresponding to the PRACH and the subcarrier offset of the PRACH.
  • determine the frequency resource of PRACH.
  • the terminal may determine the frequency resource of the PUSCH according to the resource block indication of the PUSCH and the resource unit set indication.
  • the parameter for determining the frequency resource of the channel may be obtained by the terminal by receiving a notification message sent by the base station.
  • Step 104 The terminal determines a repetition factor or an extended sequence of the channel.
  • the manner in which the terminal determines the repetition factor or the extension sequence of the channel in step 104 may be determined according to the configuration in the notification message sent by the base station.
  • the determining the repetition factor of the channel may include:
  • the repetition factor included in the notification message may be one value or multiple numbers. Value, from which the terminal can randomly select one as the repetition factor of the channel.
  • the determining the extended sequence of the channel may include:
  • the base station and the terminal may predefine a set of extended sequences, and each extended sequence may correspond to one extended sequence identifier.
  • a plurality of extended sequences and an identifier of each extended sequence may be configured by the base station, and the mapping relationship between the extended sequence and the extended sequence identifier is sent to the terminal by using a system message, where the mapping relationship may be, for example, when the base station detects that the terminal is powered on, or It is sent to the terminal when the terminal performs location update.
  • the mapping relationship may also include the length of the extended sequence.
  • the extended sequence may be designed as follows: The length of each extended sequence corresponds to an extended sequence, and the length of the extended sequence may be directly used as an extended sequence identifier; the extended sequence may also be The design is as follows: The length of an extended sequence corresponds to multiple extended sequences. In this case, the mapping relationship can be three-dimensional, and the correspondence between the extended sequence identifier and the extended sequence and the extended sequence length can be clearly defined, so that the terminal can identify by using the extended sequence. Query the corresponding extended sequence and the length of the extended sequence.
  • the repetition factor or the extended sequence determined by the base station in step 102 may correspond to the frequency resource of the channel, and correspondingly, the notification message may include a frequency resource of the channel and the frequency resource corresponding to the frequency resource. Repeat factor or extended sequence identifier.
  • Step 105 The terminal determines a time domain resource according to the repetition factor or a length of the extended sequence, where the time domain resource is a transmission subframe.
  • the length of the extended sequence is the number of values in the extended sequence, for example, the extended sequence is ⁇ 1,1 .
  • the extended sequence contains 3 values, that is, the extended sequence has a length of 3.
  • the transmission subframe of the channel is expanded.
  • the number is 8.
  • 8 subframes are selected as a transmission subframe in a radio frame, wherein the preset rule may also be agreed by the base station and the terminal in advance, and the specific preset rule will be used in the specific rule. Subsequent descriptions of specific channel embodiments are provided.
  • Step 106 The terminal sends a signal by using the transmission subframe of the channel.
  • Step 107 The base station determines a time domain resource according to the repetition factor or a length of the extended sequence, where the time domain resource is a transmission subframe.
  • Step 108 The base station receives the signal by using the transmission subframe of the channel.
  • step 108 are two sets of steps performed by the terminal in parallel with the base station, where step 105 and step 107 may be performed strictly in absolute time without being strictly performed. 106 and step 108 need to be performed synchronously in absolute time.
  • the terminal increases the transmission subframe of the channel according to the repetition factor or the length of the extension sequence, thereby prolonging the transmission time, thereby increasing the transmission energy of the channel, thereby extending coverage of the channel; and receiving the channel by using the base station.
  • the transmission subframe lengthens the reception time, thereby increasing the reception energy of the channel, thereby facilitating demodulation of signals on the channel, thereby improving communication quality.
  • the channel may be a physical random access channel PRACH or a physical uplink shared channel PUSCH.
  • the extended sequence may be a Walsh sequence.
  • the Walsh sequence is an orthogonal sequence with good orthogonality between the sequences.
  • 2 is a schematic diagram of the regularity of the Walsh sequence.
  • C represents the Walsh sequence
  • the subscript of C represents the spreading factor
  • the second bit of the spreading factor represents the length of the sequence
  • the third bit of the subscript of C represents the same length.
  • the sequence number of the Walsh sequence for example, Cch
  • represents the first Walsh sequence of length 1
  • the length N of the Walsh sequence may be 1, 2, 4 2 n n is an integer, and the number of Walsh sequences of length N is N.
  • the extended sequence may be a generated sequence of a pseudo-noise (PN: PN) sequence.
  • PN pseudo-noise
  • the PN sequence is a pseudo-random sequence, c(w) in the following formula (1 )
  • x 2 (w + 31) (x 2 (w + 3) + x 2 ⁇ n + 2) + x 2 (w + 1) + x 2 (w)) mod 2
  • W R ⁇ tltl . n is a repetition factor, which is an integer value. When not repeated, the value may be 1, and m is an intermediate parameter.
  • the initialization parameter may use a value determined according to the cell identifier ⁇ 11 and/or the wireless network temporary identifier of the cell where the terminal is located. For example, you can use formula (3) or (4) to determine C mit;
  • the initialization parameter c ""t may also use the extended sequence identifier, the cell identifier N of the cell where the terminal is located, and/or the value determined by the wireless network temporary identifier, for example, formula (5) or (6) may be used.
  • c imt 2 y -n sequence + rN ⁇ + n Rmi (6)
  • is the extended sequence identifier
  • X, y, z are preset integer values.
  • a specific method for determining a repetition factor or a spreading sequence by a terminal is introduced by using a PRACH channel as an example.
  • the repetition factor or the extension sequence is determined by the base station, and the terminal determines by receiving a notification message that is sent by the base station and includes the repetition factor or the extended sequence identifier.
  • the notification message further includes a physical resource block offset of the PRACH.
  • ⁇ and the subcarrier offset "__ ⁇ " are used to enable the terminal to determine the frequency resource corresponding to the PRACH.
  • the frequency resource of the channel included in the notification message corresponds to at least one repetition factor or at least one extended sequence identifier.
  • the notification message may be a System Information Block (SIB) message, and/or a Downlink Control Information (DCI) message.
  • SIB System Information Block
  • DCI Downlink Control Information
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH is located in a physical random access channel configuration information PRACH-ConfigInfo field of the SIB message or The communication configuration information of the physical random access channel machine type is in the PRACH-ConfigInfoMTC field.
  • the repetition factor can be Corresponding to the frequency resource
  • the PRACH-ConfigInfo field or the PRACH-ConfigInfoT field may include information about the frequency resource information and its corresponding repetition factor; the extended sequence may also correspond to the frequency resource, the PRACH-ConfigInfo field or the PRACH-ConfigInfoMTC field.
  • the frequency resource information and its corresponding extended sequence identifier can be included at the same time.
  • the notification message is a DCI message
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH is located in an extended field of the DCI message; or, the repetition factor or the extended sequence of the PRACH
  • the identifier may be indicated by jointly coding with a preamble index (Preamble Index) of the PRACH in the DCI message or jointly coding with a PRACH Mask Index of the PRACH.
  • the receiving, by the terminal, the notification message that is sent by the base station and includes the repetition factor or the extended sequence identifier may include:
  • Step 1 Receive an SIB message, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • Step 2 Receive a DCI message, where the DCI message includes information about one of the frequency resources of the set of PRACHs or one of the repetition factors of the set of PRACHs or the set of extended sequence identifiers An extended sequence identifier.
  • the information about the frequency resource of the channel or the repetition factor or the extended sequence identifier may also be located in other fields, or may be indicated by other means, or other types of messages may be used as the notification message. This embodiment of the present invention does not limit this.
  • the terminal obtains a repetition factor or a spreading code of the PRACH channel by receiving a SIB message or a DCI message that is sent by the base station and includes a repetition factor or a spreading code identifier.
  • a PUSCH channel is taken as an example to describe a specific method for determining a repetition factor or an extension sequence by a terminal.
  • the repetition factor or the extension sequence is determined by the base station, and the terminal determines by receiving a notification message that is sent by the base station and includes the repetition factor or the extended sequence identifier.
  • the notification message further includes a resource block indication and a resource unit set indication of the PUSCH.
  • the notification message may be a Radio Resource Control (RRC) message, or a DCI message.
  • RRC Radio Resource Control
  • the information of the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH may be located in a physical uplink shared channel configuration PUSCH-Config field of the RRC message, or It is located in the physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field.
  • the PUSCH-Config field or the PUSCH-ConfigDedicated field may include information about the frequency resource information and its corresponding repetition factor at the same time.
  • the extended sequence may also correspond to the frequency resource, and the PUSCH-Config field is used.
  • the PUSCH-ConfigDedicated field may contain both frequency resource information and its corresponding extended sequence identifier.
  • the information of the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH may be located in an extension field of the DCI message; or, the resource unit set indication of the PUSCH Or the repetition factor or the extended sequence identifier of the PUSCH may be indicated by jointly coding with the resource block indication information of the PUSCH in the DCI message.
  • the receiving, by the terminal, the notification message sent by the base station may include:
  • Step 1 Receive an RRC message, where the RRC message includes information about a group of PUSCH frequency resources or a PUSCH repetition factor or an extended sequence identifier.
  • Step 2 Receive a DCI message, where the DCI message includes information about one frequency resource in the information of the frequency resources of the group of PUSCHs or one repetition factor of the repetition factor of the set of PUSCHs or the set of extended sequences An extended sequence identifier in the identity.
  • the repetition factor or the extended sequence identifier of the channel may be located in other fields, or may be indicated by other means, and other types of messages may be used as the notification message. This is not limited.
  • the terminal obtains a repetition factor or a spreading code of the PUSCH channel by receiving an RRC message or a DCI message that is sent by the base station and includes a repetition factor or a spreading code identifier.
  • FIG. 3 is a flowchart of Embodiment 4 of a signal transmission method according to the present invention.
  • this embodiment further provides a specific method for determining, by the terminal, a transmission subframe according to a repetition factor or a length of a spreading sequence.
  • the execution body of this embodiment is a terminal.
  • the method for determining a transmission subframe in this embodiment may include:
  • Step 301 According to the repetition factor or the length of the extended sequence and the PRACH The format determines the number N of transmitted subframes.
  • the PRACH format is 0 or 1, and the number of transmission subframes is one; the PRACH format is 2 or 3, and the number of transmission subframes is two, if the repetition factor is 4, or the extension sequence If the length of the PRACH is 0 or 1, the number of transmitted subframes is 4, and the number of transmitted subframes with the format 2 or 3 is 8.
  • Step 302 Determine a transmission subframe according to the random access configuration index and the number N of the transmission subframes.
  • the value of the random access configuration index may be randomly generated by the terminal, or may be configured by the base station and sent to the terminal through a SIB message or a DCI message.
  • step 302 may specifically include:
  • Step 302a Determine, according to the random access configuration index, an available subframe number of the PRACH in one radio frame.
  • the subframe is used as the transmission subframe; or, the subframe corresponding to any one of the available subframe numbers is used as the starting subframe, and the consecutive subframes starting from the initial subframe are selected as the transmission subframe. frame.
  • a method for determining a transmission subframe is specifically described in conjunction with a specific random access configuration table, and both the terminal and the base station may store the random access configuration table.
  • Table 1 shows the random access configuration table in the preamble format 0-3.
  • the first column in Table 1 is the PRACH configuration index, and the second, third, and fourth columns are the preamble format, system frame number, and subframe number corresponding to the PRACH configuration index.
  • Step 302a may specifically be: determining, according to the value of the random access configuration, the preamble format, that is, the preamble format "Preamble Format” in the fourth column, and the possible starting subframe of the PRACH, that is, the child in the fourth column.
  • the frame number "Subframe number” determines the number of subframes for PRACH-transmission. For example, if the random access configuration index is 41, the preamble format is 2, and the number of subframes before the extension is 2. If the repetition factor or the length of the extension sequence is 8, that is, the extended PRACH determined according to step 301. The number of subframes is 16.
  • the UE randomly selects or selects an optional subframe according to the indication of the base station to perform PRACH transmission.
  • the N corresponding subframes may be cyclically used to determine N corresponding subframes as the transmission subframe.
  • 8 such options may be selected.
  • the 16 subframes actually used can be: ⁇ 1 , 2; 4, 5; 7, 8; 1, 2; 4, 5; 7, 8; 1, 2; 4, 5 ⁇ ; or, in any of the available subframe numbers, in a radio frame
  • the corresponding subframe is used as the starting subframe, and the consecutive N subframes starting from the starting subframe are selected as the transmission subframe.
  • such 16 subframes can be selected: ⁇ 1, 2, 3, 4, 5 , 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6 ⁇ , or ⁇ 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ⁇ , or ⁇ 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2 ⁇ .
  • the format of the PRACH determines the number of transmission subframes, and in combination with part or all of the random access configuration table, determines the extended transmission subframe according to the random access configuration index.
  • the method for determining a transmission subframe provided in the fourth embodiment is a preferred method, and other methods may be used to determine the transmission subframe, which is not limited by the embodiment of the present invention.
  • 4 is a flowchart of Embodiment 5 of a signal transmission method according to the present invention.
  • this embodiment further provides a specific method for determining, by the terminal, a transmission subframe according to a repetition factor or a length of a spreading sequence.
  • the execution body of this embodiment is a terminal.
  • the method for determining a transmission subframe in this embodiment may include:
  • Step 401 Determine the number N of transmission subframes according to the repetition factor or the length of the extension sequence and the format of the PUSCH.
  • Step 402 The transmission subframe of the original PUSCH is used as the starting subframe, and the consecutive N subframes starting from the starting subframe are selected as the transmission subframe.
  • the transmission subframe of the original PUSCH can be directly used as the starting subframe.
  • step 401 if the number of transmission subframes determined in step 401 is 4, and the transmission subframe of the PUSCH before the extension is subframe 2, then 4 subframes may be selected after expansion: ⁇ 2, 3, 4, 5 ⁇ .
  • the number of transmission subframes is determined according to the repetition factor or the length of the extension sequence and the format of the PUSCH, and the consecutive N subframes starting from the original subframe are selected as the transmission subframe as an extension. After the transmission of the subframe.
  • the method for determining a transmission subframe provided in the fourth embodiment is a preferred method, and other methods may be used to determine the transmission subframe, which is not limited by the embodiment of the present invention.
  • FIG. 5 is a flowchart of Embodiment 6 of a signal transmission method according to the present invention.
  • this embodiment further provides a specific method for a terminal to send a signal on the transmission subframe for a PUSCH channel.
  • the execution body of this embodiment is a terminal.
  • the method for transmitting a signal on the transmission subframe in this embodiment may include:
  • Step 501 Receive a DCI message sent by a base station or a hybrid automatic repeat request response HARQ-ACK message in a subframe with a subframe number of ml, where the ml subframe is before the pl+4 subframe, and p1 is a PUSCH transmission. The subframe number of the last subframe.
  • Step 502 If the DCI message or the HARQ-ACK message indicates that the base station has successfully received the signal of the PUSCH transmission, the current transmission is terminated in the ml+kl subframe, where k1 is a preset integer.
  • k1 may be set to, for example, 3, and the setting of k1 may be used to enable the terminal to analyze the DCI message or the HARQ-ACK message during k1 subframes after receiving the DCI message or the HARQ-ACK message to determine the Whether it indicates that the base station has successfully received this time The signal transmitted by PUSCH.
  • the terminal may not perform any processing on the current PUSCH, and still transmits a signal according to the determined transmission subframe in the above embodiment, for example, step 302.
  • a subframe after a pl+4 subframe or a pl+4 subframe usually receives a DCI message sent by a base station or a hybrid automatic repeat request response HARQ-ACK message, that is, a PUSCH transmission needs to be completed once. After at least 4 milliseconds (4 subframes), the DCI message sent by the base station or the hybrid automatic repeat request response HARQ-ACK message is received, which causes the base station to successfully receive the PUSCH transmission before the completion of the PUSCH transmission.
  • the signal sent by the terminal but will continue to receive repeated signals, resulting in prolonged signal transmission time and waste of transmission resources. For example, the number of subframes in a PUSCH transmission is 8 , which may occur.
  • the base station successfully receives the signal sent by the terminal in the 4th subframe, but in the prior art solution, the terminal needs to wait until at least the 12th subframe to start. Receiving the response message sent by the base station, that is, the transmission of 8 subframes after the 4th subframe is actually unnecessary.
  • the time of receiving the DCI message or the hybrid automatic repeat request response HARQ-ACK message is advanced to before the pl+4 subframe, and if the DCI message or the HARQ-ACK message indicates that the base station is successful.
  • the terminal may terminate the PUSCH transmission in advance, thereby saving transmission resources.
  • FIG. 6 is a flowchart of Embodiment 7 of a signal transmission method according to the present invention.
  • this embodiment further provides a specific method for a terminal to send a signal on the transmission subframe for a PRACH channel.
  • the execution body of this embodiment is a terminal.
  • the method for transmitting a signal on the transmission subframe in this embodiment may include:
  • Step 601 Determine a subframe number w of the start subframe of the time window and a length of the time window, where the start subframe w subframe of the time window is before the p2+3 subframe, and p2 is the last tail of the PRACH transmission.
  • the subframe number of the frame is the subframe number of the frame.
  • the subframe number of the subframe of one PRACH transmission may be a non-contiguous integer, for example, ⁇ 7, 8, 9, 0, 1, 2, 3, 4 ⁇ , the value of tl or t2 needs to be used with this PRACH transmission.
  • the subframes are adapted such that the starting subframe w of the time window is located within the subframe used for the current PRACH transmission and the three subframes after the last subframe of the current PRACH transmission, so as to save transmission resources.
  • Step 602 Receive a random access response RAR sent by the base station in a subframe with the subframe number m2 in the time window.
  • Step 603 Terminate the current transmission in the m2+k2 subframe, where k2 is a preset integer. Specifically, k2 may be set to, for example, 3, and the setting of k2 may be used to enable the terminal to analyze the RAR during k2 subframes after receiving the RAR to determine whether it is a response to the current PRACH transmission, and Whether it indicates that the base station has successfully received the signal of the current PRACH transmission.
  • step 601 is different from the prior art in that the starting subframe of the time window in the prior art is set after p2+3, and the start of the time window is performed in step 601 of this embodiment.
  • the subframe is set before p2+3.
  • the time window for receiving the response message sent by the base station is started after 3 milliseconds (3 subframes) after the completion of the primary PRACH transmission, which results in, even if the receiving end, that is, the base station, is in a PRACH.
  • the transmitting end that is, the terminal device, the transmitted signal is successfully received, but the repeated signal will continue to be received, resulting in prolonged signal transmission time and waste of transmission resources.
  • the terminal by advancing the time window for receiving the RAR, the terminal terminates the PRACH transmission early after determining that the base station has successfully received the signal of the PRACH transmission, thereby saving transmission resources.
  • FIG. 7 is a flowchart of Embodiment 8 of a signal transmission method according to the present invention.
  • This embodiment further introduces a method for selecting a repetition factor or an extension sequence before a signal is transmitted on the basis of any of the above embodiments.
  • the executor of the embodiment is a terminal.
  • the terminal may obtain a plurality of possible repetition factors or extension sequences by using a notification message sent by the base station, and the terminal may perform calculation or evaluation by using a certain algorithm before transmitting the signal to determine whether A repetition factor or a spreading sequence is required to transmit the signal.
  • the method in this embodiment may include:
  • Step 701 Receive a system message sent by a base station, where the system message includes the channel Receive target power.
  • Step 702 Determine, according to the maximum transmit power, the path loss, and the received target power of the channel, whether the channel needs to be sent by using a repetition factor or a spreading sequence.
  • step 703 If yes, go to step 703; if no, go to step 704.
  • Step 703 Determine a repetition factor of the channel, or determine a length of the extended sequence of the channel, and determine a spreading sequence corresponding to a length of the extended sequence.
  • the repetition factor of the channel may be one or more values agreed in advance with the base station, and the extended sequence of the channel may also be one or more sequences that are agreed with the base station in advance, and the length of the multiple sequences. Can be different.
  • the one or more repetition factors or one or more extension sequences may be agreed by the system message in step 701, or may be notified by any one of the foregoing embodiment 3 or embodiment 4. The agreement is made, or the agreement may be made by other means, which is not limited by the present invention.
  • step 703 can select one of the agreed one or more repetition factors, or select one of the one or more extension sequences.
  • determining the repetition factor of the channel or determining the length of the extended sequence of the channel in step 703 may include:
  • the repetition factor of the channel is determined according to the maximum transmit power, the path loss, and the received target power of the channel, or the length of the extended sequence is determined, and then an extended sequence is selected according to the length of the extended sequence.
  • the maximum transmit power of the terminal is 23 dB
  • the path loss is 100 dB
  • the received target power of the channel is -60 dB.
  • the repetition factor or the length of the spreading sequence can be set to 20.
  • Step 704 Send the channel in a conventional manner.
  • the channel may be spread without using a repetition factor or a spreading sequence, and the signal on the channel may be transmitted in a conventional manner.
  • the terminal first determines whether it is necessary to use a repetition factor or an extended sequence to spread the channel before transmitting the signal, and can select the most suitable repetition factor or extension sequence by calculation, thereby enabling the terminal to utilize the transmission resource more reasonably.
  • the base station cannot know whether the terminal is used before receiving. It is also impossible to know which repetition factor or extension sequence is selected by the repetition factor or the extension sequence. Therefore, it is necessary to receive on the transmission subframe determined by all possible repetition factors or extension sequences at the same time.
  • the signal is received using the frequency resource and the transmission subframe of the channel.
  • the base station sends the information of the determined repetition factor or the extended sequence to the terminal by sending a notification message to the terminal.
  • the notification message includes a repetition factor or a spreading sequence identifier of the channel, to indicate that the terminal determines a repetition factor or an extended sequence of the channel according to the notification message.
  • the repetition factor or the extended sequence may correspond to the frequency resource of the channel. Therefore, the notification message may include a frequency resource of the channel and a repetition factor or extended sequence identifier corresponding to the frequency resource.
  • the specific form of the notification message is further described by taking the PRACH channel as an example.
  • the notification message may be a SIB message, or a DCI message. Since PRACH is divided into a competitive PRACH and a non-competitive PRACH, in general, for a non-competitive PRACH, a DCI message needs to be used as a notification message.
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH may be located in a PRACH-ConfigInfo field of the SIB message or in a PRACH-ConfigInfoMTC field.
  • the repetition factor may correspond to the frequency resource
  • the PRACH-ConfigInfo field or the PRACH-ConfigInfo MTC field may include information of the frequency resource information and its corresponding repetition factor at the same time;
  • the extension sequence may also correspond to the frequency resource, and the foregoing PRACH-ConfigInfo field Or the PRACH-ConfigInfo MTC field may contain both frequency resource information and its corresponding extended sequence identifier.
  • the notification message is a DCI message
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH is located in an extended field of the DCI message; or, the repetition factor or the extended sequence of the PRACH
  • the identifier may be indicated by jointly coding with a preamble index (Preamble Index) of the PRACH in the DCI message or jointly coding with a PRACH Mask Index of the PRACH.
  • the sending, by the base station, the notification message to the terminal may include: Step 1: Send an SIB message to the terminal, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • Step 2 Send a DCI message to the terminal, where the DCI message includes information of one frequency resource in the information of the frequency resource of the group of PRACH or one repetition factor of the repetition factor of the set of PRACH or the An extended sequence identifier in a set of extended sequence identifiers.
  • the repetition factor or the extended sequence identifier of the channel may be located in other fields, or may be indicated by other means, and other types of messages may be used as the notification message. This is not limited.
  • the base station notifies the terminal of the repetition factor or the spreading code of the PRACH channel by using the SIB message or the DCI message that is sent to the terminal and includes the repetition factor or the spreading code identifier.
  • the eleventh embodiment of the signal transmission method of the present invention based on the foregoing embodiment, a specific method for the base station to notify the terminal of the repetition factor or the extension sequence is described by taking the PUSCH channel as an example.
  • the notification message may be a radio resource control (Radio)
  • RRC Resource Control
  • the information of the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH may be located in a physical uplink shared channel configuration PUSCH-Config field of the RRC message, or It is located in the physical uplink shared channel dedicated configuration PUSCH-ConfigDedicated field.
  • the PUSCH-Config field or the PUSCH-ConfigDedicated field may include information about the frequency resource information and its corresponding repetition factor at the same time.
  • the extended sequence may also correspond to the frequency resource, and the PUSCH-Config field is used.
  • the PUSCH-ConfigDedicated field may contain both frequency resource information and its corresponding extended sequence identifier.
  • the frequency of the PUSCH is The information of the source or the repetition factor or the extended sequence identifier of the PUSCH is located in an extension field of the DCI message; or the resource element set indication of the PUSCH or the repetition factor or extended sequence identifier of the PUSCH may be through the PUSCH in the DCI message
  • the resource block indicates that the information is jointly encoded to indicate.
  • the sending the notification message to the terminal may include:
  • Step 1 Send an RRC message to the terminal, where the RRC message includes information about a group of PUSCH frequency resources or a set of PUSCH repetition factors or a set of extended sequence identifiers;
  • Step 2 Send a DCI message to the terminal, where the DCI message includes information of one frequency resource in the information of the frequency resources of the set of PUSCH or one repetition factor of the repetition factor of the set of PUSCH or the An extended sequence identifier in a set of extended sequence identifiers.
  • the repetition factor or the extended sequence identifier of the channel may be located in other fields, or may be indicated by other means, and other types of messages may be used as the notification message. This is not limited.
  • the base station notifies the terminal of the repetition factor or the spreading code of the PUSCH channel by using an RRC message or a DCI message that is sent to the terminal and includes a repetition factor or a spreading code identifier.
  • a method for determining, by the base station, a transmission subframe according to a repetition factor or a length of a spreading sequence is introduced for PRACH.
  • the executor of this embodiment is a base station.
  • the method for determining a transmission subframe according to the repetition factor or the length of the extension sequence performed by the base station may be compared with the repetition factor or extension performed by the terminal in the fourth embodiment of the signal transmission method of the present invention.
  • the method of determining the length of the sequence is the same as the method for transmitting the subframe. Please refer to the fourth embodiment of the signal transmission method of the present invention and the method shown in FIG. 3, and details are not described herein again.
  • the value of the random access configuration index may be randomly generated by the terminal, or may be configured by the base station in advance and sent to the SIB message or the DCI message.
  • the terminal in the eleventh embodiment, the value of the random access configuration index may be configured by the base station according to a certain algorithm, or randomly generated.
  • a method for determining, by the base station, a transmission subframe according to a repetition factor or a length of a spreading sequence is introduced for a PUSCH.
  • the executor of this embodiment is a base station.
  • the method for determining a transmission subframe according to the repetition factor or the length of the extension sequence performed by the base station may be compared with the repetition factor or extension performed by the terminal in the fifth embodiment of the signal transmission method of the present invention.
  • Preface The length of the column is determined to be the same as the method for transmitting the subframe. Please refer to the fifth embodiment of the signal transmission method of the present invention and the method shown in FIG. 4, and details are not described herein again.
  • FIG. 8 is a flowchart of Embodiment 14 of the signal transmission method according to the present invention.
  • the present embodiment further provides a specific method for the terminal to send a signal on the transmission subframe for the PUSCH channel.
  • the execution body of this embodiment is a terminal.
  • the method for transmitting a signal on the transmission subframe in this embodiment may include:
  • Step 801 Send a DCI message or a HARQ-ACK hybrid automatic repeat request response message to the terminal in a subframe with a subframe number of ml, where the DCI message or the HARQ-ACK message indicates that the base station has successfully demodulated the base station.
  • Step 802 Stop receiving the signal of the current transmission in the ml+kl subframe, where k1 is a preset integer.
  • k1 may be set to, for example, 3, and the setting of k1 may be used to enable the terminal to analyze the DCI message or the HARQ-ACK message during k1 subframes after receiving the DCI message or the HARQ-ACK message to determine the Whether it indicates that the base station has successfully received the signal of the current PUSCH transmission.
  • the DCI message or the HARQ-ACK message is sent, but in this embodiment, the time for transmitting the DCI message or the HARQ-ACK message is advanced to pl+4 subframes, so that the base station confirms that the signal of the PUSCH transmission has been successfully received.
  • the terminal is notified in time to terminate the transmission, thereby saving transmission resources.
  • FIG. 9 is a flowchart of Embodiment 15 of the signal transmission method according to the present invention.
  • the present embodiment further provides a specific method for the base station to receive a signal on the transmission subframe for the PRACH channel.
  • the execution subject of this embodiment is a base station.
  • the method in this embodiment may include:
  • Step 901 Determine a subframe number w of the start subframe of the time window and a length of the time window, where the start subframe w subframe of the time window is before the p2+3 subframe, and p2 is the last tail of the PRACH transmission.
  • the subframe number of the frame is the subframe number of the frame.
  • Step 901 is different from the prior art in that the starting subframe of the time window in the prior art is set after p2+3, and the starting subframe of the time window is set in step 901 of this embodiment. Before 2+3.
  • the subframe number of the subframe of one PRACH transmission may be a non-contiguous integer, for example, ⁇ 7, 8, 9, 0, 1, 2, 3, 4 ⁇ , the value of tl or t2 needs to be used with this PRACH transmission.
  • the subframes are adapted such that the starting subframe w of the frame time window is located in the subframe used for the current PRACH transmission and the three subframes after the last subframe of the current PRACH transmission, so as to save transmission resources. .
  • Step 902 Send a random access response RAR to the terminal in a subframe with the subframe number m2 in the time window.
  • Step 903 Terminate the current transmission in the m2+k2 subframe, where k2 is a preset integer. Specifically, k2 may be set to, for example, 3, and the setting of k2 may be used to enable the terminal to analyze the RAR during k2 subframes after receiving the RAR to determine whether it is a response to the current PRACH transmission, and Whether it indicates that the base station has successfully received the signal of the current PRACH transmission.
  • the terminal by advancing the time window for receiving the RAR, the terminal terminates the PRACH transmission early after determining that the base station has successfully received the signal of the PRACH transmission, thereby saving transmission resources.
  • FIG. 10 is a flowchart of Embodiment 16 of a signal transmission method according to the present invention. This embodiment corresponds to Embodiment 8 of the method performed by the terminal, and further describes how the base station is based on the method embodiment performed by any of the foregoing base stations.
  • Step 1001 Send a system message to the terminal, where the system message includes a received target power of the channel, so that the terminal determines whether it needs to be used according to a maximum transmit power, a path loss, and a received target power of the channel.
  • a repetition factor or spreading sequence transmits a signal on the channel.
  • the base station and the terminal may agree in advance on one or more repetition factors that are available, or one or more extension sequences that are available.
  • the available repetition factor or the extended sequence identifier of the available extension sequence may be To be included in the system message; or, the information may be included in any one of the above-mentioned Embodiment 9, ninth, or eleventh notification messages.
  • the above-mentioned available repetition factor or the available extension sequence can also be agreed by other means, which is not limited by the present invention.
  • Step 1002 Determine a possible repetition factor or spreading sequence of the channel.
  • Step 1003 Determine, according to each possible repetition factor transmission subframe of the channel, a transmission subframe corresponding to a length of each possible extension sequence.
  • Step 1004 Receive a signal by using a transmission subframe of the channel.
  • the base station Since the base station has previously agreed that at least one repetition factor or at least one extension sequence is available, for example, it is sent to the terminal through the system message in step 1001, but the station cannot know whether the terminal uses the repetition factor or the extension sequence before receiving the signal. It is also impossible to know which repetition factor or spreading sequence is selected by the terminal. Therefore, it is necessary to receive at the same time on all the transmission subframes determined by the possible repetition factors or spreading sequences. In this way, the base station consumes a relatively large amount of transmission resources. Therefore, in a specific implementation, a limited number of available repetition factors or the number of available extension sequences can be determined according to actual conditions.
  • the base station sends a message including the received target power of the channel to the terminal, so that the terminal can determine whether it is necessary to expand the channel by using a repetition factor or a spreading sequence, and enable the terminal to select an appropriate repetition factor or extension sequence.
  • the terminal can utilize the transmission resources more rationally.
  • FIG. 11 is a schematic structural diagram of Embodiment 1 of a signal transmission apparatus according to the present invention, and a technical solution of the apparatus of this embodiment.
  • the signal transmission apparatus of this embodiment may include: a repetition factor or extension sequence determination module 11, a transmission subframe determination module 12, and a transmission module 13, where
  • a repetition factor or extended sequence determining module 11 for determining a repetition factor or a spreading sequence of the channel
  • a transmission subframe determining module 12 configured to determine a time domain resource according to the repetition factor or a length of the extended sequence, where the time domain resource is Transmission subframe;
  • the sending module 13 is configured to send a signal by using the transmission subframe of the channel.
  • FIG. 12 is a schematic structural diagram of Embodiment 2 of a signal transmission apparatus according to the present invention, and a technical solution of the apparatus in this embodiment. As shown in FIG. 12, the signal transmission device of this embodiment is based on the device shown in FIG.
  • Frequency resource determining module 14 the frequency resource determining module 14 is configured to determine a frequency resource of the channel
  • the sending module 13 is specifically configured to: send the signal by using the frequency resource of the channel and the transmission subframe.
  • the channel may be a physical random access channel PRACH or a physical uplink shared channel PUSCH.
  • the frequency resource determining module 14 may be specifically configured to:
  • Ffsrt determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH may be 1, 2, or 3, or may be n/12, where n is an integer less than 12.
  • the PRACH frequency resources is determined, the number of the PRACH resource blocks corresponding to the smallest granularity i.e. One resource block, so the number of resource blocks corresponding to the PRACH may be an integer, for example 1, 2 or 3; when the frequency resource determining module 14 is used to offset the physical resource block according to the PRACH " P 3 ⁇ 43. ffSf!t , the number of resource blocks corresponding to the PRACH and the subcarrier offset of the PRACH.
  • the minimum granularity of the number of resource blocks corresponding to the PRACH is one subcarrier, and the number of resource blocks corresponding to the PRACH may be n/12, for example, 1 /12, 1/2, 1/4, 5/12, etc.
  • the number of resource blocks corresponding to the PRACH is usually 6, and it can be seen that the signal transmission apparatus of this embodiment can make the frequency resource allocation of the terminal smaller when the signal is transmitted, and thus more flexible.
  • the frequency resource determining module 14 may specifically For:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a signal transmission apparatus according to the present invention, and a technical solution of the apparatus of this embodiment.
  • the signal transmission apparatus of this embodiment may further include: a notification message receiving module 15 on the basis of the foregoing apparatus,
  • the notification message receiving module 15 may be configured to receive a notification message sent by the base station, where the notification message includes a repetition factor of the channel, and the repetition factor or extension sequence determining module 11 may be specifically configured to acquire the Determining a repetition factor of the channel included in the notification message; or
  • the notification message receiving module 15 may be configured to receive a notification message sent by the base station, where the notification message includes an extended sequence identifier.
  • the repetition factor or extended sequence determining module 11 may be specifically configured to identify according to the extended sequence. , determine an extension sequence.
  • the notification message may further include a physical resource block offset of the PRACH.
  • the subcarrier offset of the ffsrt sum is ⁇ _ ⁇ , so that the terminal determines the frequency resource of the PRACH according to the subcarrier offset of the ffsrt sum.
  • the notification message may further include the
  • the resource block indication and the resource unit set indication of the PUSCH so that the terminal determines the frequency resource of the PUSCH according to the resource block indication and the resource unit set indication of the PUSCH.
  • the frequency resource of the channel included in the notification message may correspond to at least one repetition factor or at least one extended sequence identifier.
  • the notification message may be a system information block.
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH may be located in a physical random access channel configuration information PRACH-ConfigInfo field or physical of the SIB message.
  • the communication configuration information of the random access channel machine type is in the PRACH-ConfigInfoMTC field.
  • the notification message is a DCI message
  • the information about the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH may be located in an extended field of the DCI message, or a repetition factor or an extended sequence of the PRACH
  • the identity may be indicated by a joint encoding with the preamble index of the PRACH.
  • the notification message may be an SIB message and a DCI message
  • the notification message receiving module 15 may include: an SIB receiving unit 151 and a first DCI receiving unit 152, where
  • the SIB receiving unit 151 may be configured to receive an SIB message, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers.
  • the first DCI receiving unit 152 may be configured to receive a DCI message, where the DCI message includes information of one of the frequency resources of the set of PRACHs or one of the repetition factors of the set of PRACHs or one of the extended sequence of the set of extended sequence identifiers Logo.
  • the notification message may be an RRC message or a DCI message.
  • the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH may be located in a physical uplink shared channel configuration PUSCH-Config field or physical uplink sharing of the RRC message.
  • the channel is dedicated in the PUSCH-ConfigDedicated field.
  • the notification message is a DCI message
  • the information about the frequency resource of the PUSCH or the repetition factor or the spreading sequence of the PUSCH may be identified in an extension field of the DCI message; or the resource unit set indication or PUSCH
  • the repetition factor or extended sequence identification may be indicated by joint coding with resource block indication information of the PUSCH.
  • the notification message may be an RRC message and a DCI message
  • the notification message receiving module 15 may include: an RRC receiving unit 153 and a second DCI receiving unit 154, where the RRC receiving unit 153 may be configured to receive an RRC message.
  • the RRC message includes a group
  • the second DCI receiving unit 154 may be configured to receive a DCI message, where the DCI message includes information of one frequency resource of information of a frequency resource of the group of PUSCHs or one repetition factor of a repetition factor of the set of PUSCHs Or an extended sequence identifier of the set of extended sequence identifiers.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of Embodiment 4 of a signal transmission apparatus according to the present invention, and a technical solution of the apparatus of this embodiment.
  • the signal transmission apparatus of this embodiment is based on the foregoing apparatus.
  • the repetition factor or extended sequence determination module 11 may include: a target power acquisition unit 111, a determination unit 112, and a determination unit 113. among them,
  • the target power acquiring unit 111 may be configured to: receive a system message sent by the base station, where the system message includes a received target power of the channel;
  • the determining unit 112 may be configured to determine, according to the maximum transmit power, the path loss, and the received target power of the channel, whether the channel needs to be sent by using a repetition factor or a spreading sequence;
  • the determining unit 113 may be configured to: if yes, determine a repetition factor of the channel; or determine further, the determining unit may be specifically configured to:
  • a repetition factor of the channel is determined based on a maximum transmit power, a path loss, and a received target power of the channel, or a length of the extended sequence of the channel is determined and an extended sequence corresponding to the length of the extended sequence is determined.
  • the extended sequence may be a Walsh Walsh sequence; or, the extended sequence may be a generated sequence of a pseudo noise PN sequence.
  • the generating sequence in which the extended sequence is a PN sequence may include:
  • the spreading sequence may be a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a wireless network temporary identifier as an initialization parameter of a PN sequence; or
  • the spreading sequence may be a sequence generated by using the extended sequence identifier, a cell identifier of a cell in which the terminal is located, and/or a wireless network temporary identifier as an initialization parameter of a PN sequence.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of Embodiment 5 of a signal transmission apparatus according to the present invention, and a technical solution of the apparatus of this embodiment.
  • the signal transmission apparatus of this embodiment is based on the foregoing apparatus.
  • the transmission subframe determining module 12 may include: a transmission subframe number determining unit 121 and a transmission subframe determining unit 122, where, if the channel is a PUSCH,
  • the transmission subframe number determining unit 121 may be configured to determine the number N of time domain resources according to the repetition factor or the length of the extended sequence and the format of the PRACH;
  • the transmission subframe determining unit 122 may be configured to determine a transmission subframe according to the random access configuration index and the number N of the transmission subframes.
  • the transmission subframe determining unit 122 may be specifically configured to:
  • the sending module 13 includes: a time window determining unit 131, an RAR receiving unit 132, and a second terminating unit 133, where
  • the time window determining unit 131 may be configured to determine a subframe number w of the start subframe of the time window and a length of the time window, where the starting subframe w subframe of the time window is before the p2+3 subframe, and p2 is The subframe number of the last subframe of the primary PRACH transmission;
  • the RAR receiving unit 132 may be configured to receive a random access response RAR sent by the base station in the subframe with the subframe number m2 in the time window;
  • the second terminating unit 133 may be configured to terminate the current transmission in the m2+k2 subframe, where k2 is a preset integer.
  • the transmission subframe number determining unit 121 may be configured to determine, according to the repetition factor or the length of the extension sequence and the format of the PUSCH, the number N of transmission subframes;
  • the transmission subframe determining unit 122 may be configured to use the transmission subframe of the original PUSCH as the starting subframe m, and select consecutive N subframes starting from the starting subframe m as the transmission subframe.
  • the sending module 13 may include: a HARQ-ACK message receiving unit 134. And a first termination unit 135, wherein
  • the HARQ-ACK message receiving unit 134 may be configured to receive a DCI message or a hybrid automatic repeat request response HARQ-ACK message sent by the base station in a subframe with a subframe number of ml, where the ml subframe is in a pl+4 subframe.
  • pi is the subframe number of the last subframe of the PUSCH transmission;
  • the first termination unit 135 is configured to: if the DCI message or the HARQ-ACK message indicates that the base station has successfully received the signal of the current PUSCH transmission, The ml+kl subframe terminates the transmission, where kl is a preset integer.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • Embodiment 6 is a schematic structural diagram of Embodiment 6 of a signal transmission apparatus according to the present invention, and the apparatus of this embodiment
  • the 1600 may be integrated on the base station for performing the technical solution executed by the corresponding base station in the foregoing method embodiment.
  • the signal transmission apparatus of this embodiment may include: a repetition factor or extended sequence determining module 21, a transmission subframe determining module 22, and a receiving module 23, where
  • a repetition factor or extended sequence determining module 21 which may be used to determine a repetition factor or an extended sequence of the channel;
  • the transmission subframe determining module 22 may be configured to determine the domain resource according to the repetition factor or the length of the extended sequence, where the time domain resource is a transmission subframe;
  • the receiving module 23 can be configured to receive the signal by using the transmission subframe of the channel.
  • the technical effect of the apparatus in this embodiment is that the base station integrated with the signal transmission apparatus increases the transmission subframe of the channel according to the repetition factor or the extension sequence of the channel, and lengthens the reception time according to the repetition factor or the length of the extension sequence. Thereby increasing the received energy of the channel; thereby achieving extension of the coverage of the channel.
  • FIG. 17 is a schematic structural diagram of Embodiment 7 of a signal transmission apparatus according to the present invention.
  • the apparatus 1700 of this embodiment may be integrated on a base station, and configured to perform the technical solution executed by the corresponding base station in the foregoing method embodiment.
  • the signal transmission apparatus of this embodiment may further include: a frequency resource determining module 24, based on the apparatus shown in FIG.
  • the frequency resource determining module 24 can be used to determine a frequency resource of the channel
  • the receiving module 23 is specifically configured to: receive the signal by using the frequency resource of the channel and the transmission subframe.
  • the channel is a physical random access channel PRACH or a physical uplink shared channel PUSCH 0
  • the frequency resource determining module 24 may specifically be used to:
  • ffSfrt the number of resource blocks corresponding to PRACH and the subcarrier offset L mCT of PRACH .
  • Ffsrt determines the frequency resource of the PRACH.
  • the number of resource blocks corresponding to the PRACH is 1, 2, or 3, or n/12, where n is an integer less than 12.
  • the frequency resource determining module 24 is configured to offset the physical resource block according to the PRACH.
  • the number of resource blocks corresponding to the ffSfit and the PRACH, and the minimum granularity of the number of resource blocks corresponding to the PRACH is one resource block, and the number of resource blocks corresponding to the PRACH may be an integer, for example, 1, 2 or 3;
  • the frequency resource determining module 14 is configured to offset the physical resource block according to the PRACH.
  • ffSf!t the number of resource blocks corresponding to PRACH and the subcarrier offset_ of PRACH.
  • the minimum granularity of the number of resource blocks corresponding to the PRACH is one subcarrier, and the number of resource blocks corresponding to the PRACH may be n/12, for example, 1 /12, 1/2, 1/4, 5/12, etc.
  • the number of resource blocks corresponding to the PRACH is usually 6, and it can be seen that the signal transmission apparatus of this embodiment can make the frequency resource allocation at the time of signal transmission smaller, and thus more flexible.
  • the frequency resource determining module 24 may specifically be used to:
  • the frequency resource of the PUSCH is determined according to a resource block indication of the PUSCH and a resource unit set indication.
  • FIG. 18 is a schematic structural diagram of Embodiment 8 of the signal transmission apparatus according to the present invention.
  • the apparatus 1800 of this embodiment may be integrated on a base station, and configured to perform the technical solution executed by the corresponding base station in the foregoing method embodiment.
  • the signal transmission apparatus of this embodiment may further include: a notification message sending module 25, based on the apparatus shown in FIG.
  • the notification message sending module 25 may be configured to send a notification message to the terminal, where the notification The message includes a repetition factor or a spreading sequence identifier of the channel to instruct the terminal to determine a repetition factor or a spreading sequence of the channel according to the notification message.
  • the notification message may further include a physical resource block offset d t of the PRACH and a subcarrier offset L mer of the PRACH. And ffsrt , so that the terminal determines the frequency resource of the PRACH according to the notification message.
  • the notification message may further include the resource block indication and the resource unit set indication of the PUSCH included in sending a notification message to the terminal, so that the terminal is configured according to the notification.
  • the message determines the frequency resource of the PUSCH.
  • the frequency resource of the channel included in the notification message may correspond to at least one repetition factor or at least one extended sequence identifier.
  • the notification message is a system information block SIB message and/or a downlink control information DCI message.
  • the information of the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH may be located in a physical random access channel configuration information PRACH-ConfigInfo field or physical of the SIB message.
  • the communication configuration information of the random access channel machine type is in the PRACH-ConfigInfoMTC field.
  • the notification message is a DCI message
  • the information about the frequency resource of the PRACH or the repetition factor or the extended sequence identifier of the PRACH is located in an extended field of the DCI message; or the repetition factor or extended sequence identifier of the PRACH Indicated by co-coding with the preamble index of the PRACH.
  • the notification message may be an SIB message and a DCI message
  • the notification message sending module 25 may include: an SIB sending unit 251 and a first DCI sending unit 252, where
  • the SIB sending unit 251 may be configured to send, to the terminal, an SIB message, where the SIB message includes information about a set of PRACH frequency resources or a set of PRACH repetition factors or a set of extended sequence identifiers;
  • the first DCI sending unit 252 may be configured to send a DCI message to the terminal, where the DCI message includes information about one frequency resource of the information of the frequency resources of the set of PRACH or a repetition factor of the set of PRACHs A repetition factor or one of the set of extended sequence identifiers.
  • the notification message may be RRC. Message or DCI message.
  • the notification message is an RRC message
  • the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH is located in a physical uplink shared channel configuration PUSCH-Config field or a physical uplink shared channel of the RRC message.
  • the notification message is a DCI message
  • the information about the frequency resource of the PUSCH or the repetition factor or the extended sequence identifier of the PUSCH is located in an extension field of the DCI message; or the resource unit set indication or the repetition of the PUSCH
  • the factor or extended sequence identity is indicated by joint coding with resource block indication information for the PUSCH.
  • the notification message may be an RRC message and a DCI message
  • the notification message sending module 25 may include: an RRC sending unit 253 and a second DCI sending unit 254, where
  • the RRC sending unit 253 may be configured to send an RRC message to the terminal, where the RRC message includes information about a group of PUSCH frequency resources or a set of PUSCH repetition factors or a set of extended sequence identifiers;
  • the second DCI sending unit 254 may be configured to send a DCI message to the terminal, where the DCI message includes information about one frequency resource of the information of the frequency resources of the group of PUSCHs or a repetition factor of the set of PUSCHs. A repetition factor or one of the set of extended sequence identifiers.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 19 is a schematic structural diagram of Embodiment 9 of a signal transmission apparatus according to the present invention.
  • the apparatus 1900 of this embodiment may be integrated on a base station, and configured to perform the technical solution executed by the corresponding base station in the foregoing method embodiment.
  • the signal transmission apparatus of this embodiment may further include: a target power transmission module 26, based on the foregoing apparatus,
  • the target power sending module 26 may be configured to send a system message to the terminal, where the system message includes a received target power of the channel, so that the terminal according to a maximum transmit power, a path loss, and the receiving of the channel.
  • Target power determining whether a signal needs to be transmitted on the channel using a repetition factor or a spreading sequence.
  • system message may further include an available repetition factor; or further include an extended sequence identifier of the available extended sequence, and the extended sequence and the extended sequence identifier and extension The length of the sequence corresponds.
  • the number of repetition factors or extension sequences of the channel may be at least two, and the transmission subframe determining module 22 may be specifically configured to: determine a transmission subframe corresponding to the at least two repetition factors or Determining a length of each of the extended sequences to determine a transmission subframe;
  • the receiving module 23 may be specifically configured to: receive a signal on a transmission subframe corresponding to at least two repetition factors of the channel or a length determination transmission subframe of each of the extension sequences.
  • the extended sequence is a Walsh Walsh sequence; or the extended sequence is a generated sequence of a pseudo noise PN sequence.
  • the extended sequence may be a sequence generated by using a cell identifier of a cell in which the terminal is located and/or a temporary identifier of a wireless network as an initialization parameter of a PN sequence; or
  • the spreading sequence may be a sequence generated using the extended sequence identifier, the cell identity of the serving cell of the terminal, and/or the wireless network temporary identity as initialization parameters of the PN sequence.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • Embodiment 10 of a signal transmission apparatus according to the present invention, and the apparatus of this embodiment
  • the system 2000 can be integrated on the base station for performing the technical solution executed by the corresponding base station in the foregoing method embodiment.
  • the signal transmission apparatus of this embodiment is based on the foregoing apparatus.
  • the transmission subframe determining module 22 may include: a transmission subframe number determining unit 221 and a transmission subframe determining unit 222. Wherein, in order to support the PRACH channel,
  • the transmission subframe number determining unit 221 may be configured to determine, according to the repetition factor or the length of the extension sequence and the format of the PRACH, the number N of transmission subframes;
  • the transmission subframe determining unit 222 may be configured to determine a transmission subframe according to the random access configuration index and the number N of the transmission subframes.
  • the transmission subframe determining unit 222 may be specifically configured to:
  • the start subframe selects a continuous N subframe from the start subframe as a transmission subframe.
  • the receiving module 23 may include: a time window determining unit 231, RAR a transmitting unit 232 and a second terminating unit 233, wherein
  • the time window determining unit 231 may be configured to determine a subframe number w of the start subframe of the time window and a length of the time window, where the starting subframe w subframe of the time window is before the p2+3 subframe, and p2 is The subframe number of the last subframe of the primary PRACH transmission;
  • the RAR sending unit 232 may be configured to send a random access response RAR to the terminal in a subframe with the subframe number m2 in the time window;
  • the second terminating unit 233 may be configured to stop receiving the signal of the current transmission in the m2+k2 subframe, where k2 is a preset integer.
  • the transmission subframe number determining unit 221 may be configured to determine, according to the repetition factor or the length of the extension sequence and the format of the PUSCH, the number N of transmission subframes;
  • the transmission subframe determining unit 222 may be configured to use the transmission subframe of the original PUSCH as the starting subframe, and select the consecutive N subframes starting from the starting subframe as the transmission subframe.
  • the receiving module 23 may include: a HARQ-ACK message sending unit 234 and a first terminating unit 235, where
  • the HARQ-ACK message sending unit 234 is configured to send a DCI message or a hybrid automatic repeat request response HARQ-ACK message to the terminal in a subframe with a subframe number of ml, where the DCI message or the HARQ-ACK message indicates The base station has successfully received the signal of the current PUSCH transmission, where the ml subframe is before the pl+4 subframe, and pi is the subframe number of the last subframe of the primary PUSCH transmission;
  • the first termination unit 235 is configured to stop receiving the signal of the current transmission in the ml+kl subframe, where the m subframe is before the p+4 subframe, and k1 is a preset integer.
  • FIG. 21 is a schematic structural diagram of an embodiment of a communication system according to the present invention.
  • the communication system 2100 of this embodiment may include: at least one terminal and one base station, where the terminal may include any of the modes shown in FIG. 11 to FIG.
  • the device of the embodiment of the signal transmission device correspondingly, can execute the technical solution executed by the corresponding terminal in any method embodiment, and the implementation principle and technical effect thereof Similarly, the details are not described herein again; the base station may include the apparatus in any of the apparatus embodiments shown in FIG. 16 to FIG. 20, and correspondingly, the technical solution executed by the corresponding base station in any method embodiment may be executed, and the implementation principle and technical effects thereof are implemented. Similar, it will not be described here.
  • FIG. 22 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal 2200 of this embodiment may include: a receiver 2201, a transmitter 2202, a memory 2203, and a processor 2204, where
  • a memory 2203 configured to store an instruction
  • processor 2204 coupled to the memory 2203, the processor 2204 configured to execute instructions stored in the memory 2203, and the processor 2204 configured to perform any of the above described signal transmission method embodiments Corresponding to the technical solution executed by the terminal;
  • the receiver 2201 is configured to receive, according to an instruction of the processor 2204, a notification message, a system message, or the like sent by the base station;
  • the transmitter 2202 is configured to send a signal to the base station according to the instruction of the processor 2204.
  • FIG. 23 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the base station 2300 of this embodiment may include: a receiver 2301, a transmitter 2302, a memory 2303, and a processor 2304, where
  • a memory 2303 configured to store an instruction
  • processor 2304 coupled to the memory 2303, the processor 2304 is configured to execute instructions stored in the memory 2303, and the processor 2304 is configured to perform any of the above described signal transmission method embodiments Corresponding to the technical solution executed by the terminal;
  • the receiver 2301 is configured to receive a signal sent by the terminal according to an instruction of the processor 2304.
  • the transmitter 2302 is configured to send a notification message, a system message, and the like to the terminal according to the instruction of the processor 2304.
  • the device of this embodiment may be used to implement the technical solution of any method embodiment of the present invention, and has a corresponding function module, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信号传输方法、装置、通信系统、终端和基站,其中方法包括:确定信道的重复因子或扩展序列;根据所述重复因子或扩展序列的长度确定时域资源,所述时域资源为传输子帧;釆用所述信道的所述传输子帧发送信号。本发明提供的信号传输方法、装置、通信系统、终端和基站,能够解决现有技术的信号传输方法中信道覆盖较差的技术问题。

Description

信号传输方法、 装置、 通信系统、 终端和基站 技术领域
本发明涉及通信技术, 尤其涉及一种信号传输方法、 装置、 通信系统、 终端和基站。 背景技术
正交频分多址 ( Orthogonal Frequency Division Multiple Access, 以下简称 OFDMA )成为 3G系统和 /或 4G系统的系统关键多址, 是被长期演进( Long Term Evolution, 简称: LTE ) /长期演进的后续演进( LTE-Advanced, 简称: LTE-A ) 系统釆用的多址技术, 该多址技术中用于传输信号的资源为时频资 源, 包括时间和频率两个维度。 从时间维度来说, 一个无线帧长度为 10ms, 包含 10个子帧, 每个子帧的长度为 1ms, 每个子帧包含 2个时隙, 每个时隙 包含 7个(正常循环前缀( Cyclic Prefix, 以下简称 CP ) ) 时)或者 6个正 交频分多址( Orthogonal Frequency Division Multiple, 简称: OFDM )符号(扩 展 CP时) ; 从频率维度来说, 一个 OFDM符号下的一个子载波叫做一个资 源单元(Resource Element, 以下简称 RE ) , 12个子载波和一个时隙构成一 个资源块(Resource Block, 以下简称 RB ) , —个子帧的二个资源块称为一 个资源块对, 经常也简称为一个资源块。 资源块包括物理资源块和虚拟资源 块。 在通信过程中, 业务数据和系统信息均在这些时频资源上进行传输。
现有技术中,物理随机接入信道(Physical Random Access Channel,简称: PRACH )在一个或两个子帧上发射, 其最大发射时间为 2个子帧, 即 2ms; 物理上行共享信道 ( Physical Uplink Share Channel, 简称: PUSCH )通常在 一个子帧上发射, 或者, 当基站给终端配置了传输时间间隔 (Transmission Time Interval, 简称: TTI )绑定后, 指定绑定的次数, 终端在绑定的次数上 传输 PUSCH, PUSCH的最大 ΤΤΙ绑定次数为 4次, 即最大发射时间为 4个 子帧, 即 4ms。
可见 PRACH和 PUSCH的最大发射时间均较小,而发送端的最大发射功 率为固定的参数, 因此, PRACH和 PUSCH的能量较小, 从而导致 PRACH 和 PUSCH 能够传输的最大距离较短 , 覆盖较差。 尤其是当信号传输的环境 不理想时,例如传输路径上障碍物较多 · ,或者天气恶劣时,现有技术的 PRACH 和 PUSCH 的覆盖无法满足使用需求 , 会导致接收端, 例如基站, 无法正确 接收发送端发送的信号。 发明内容
本发明提供一种信号传输方法、 装置、 通信系统、 终端和基站, 以解决 现有技术的信号传输方法中信道覆盖较差的问题。
第一方面, 本发明实施例提供一种信号传输方法, 包括:
确定信道的重复因子或扩展序列;
根据所述重复因子或扩展序列的长度确定时域资源, 所述时域资源为传 输子帧;
釆用所述信道的所述传输子帧发送信号。
在第一方面的第一种可能的实现方式中, 在所述确定信道的重复因子 或扩展序列之前, 还包括:
确定信道的频率资源;
相应地, 釆用所述信道的所述传输子帧发送信号, 具体为: 釆用所述信 道的所述频率资源和所述传输子帧发送信号。
在第一方面的第二种可能的实现方式中, 所述信道为物理随机接入信 道 PRACH或物理上行共享信道 PUSCH。
根据第一方面的第二种可能的实现方式, 在第三种可能的实现方式 中, 所述信道为 PRACH, 则所述确定信道的频率资源包括:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。^、 PRACH对应的资源块数目和
PRACH的子载波偏移《s bramaDffsrt , 确定 PRACH的频率资源。
根据第一方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 所述 PRACH对应的资源块数目为 1、 2或 3 , 或者为 n/12, 其中, n为 小于 12的整数。
根据第一方面的第二种可能的实现方式, 在第五种可能的实现方式 中, 所述信道为 PUSCH, 则所述确定信道的频率资源包括:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
根据第一方面的第五种可能的实现方式, 在第六种可能的实现方式 中, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。
根据第一方面、 第一方面的第一种至第六种可能的实现方式中的任意 一种,在第七种可能的实现方式中,在所述确定信道的重复因子或扩展序列 之前, 还包括:
接收基站发送的通知消息, 所述通知消息中包含所述信道的重复因子; 则所述确定信道的重复因子, 具体为, 获取所述通知消息中包含的所述信道 的重复因子, 确定一个重复因子; 或者,
接收基站发送的通知消息, 所述通知消息中包含扩展序列标识; 则所述 确定信道的扩展序列, 具体为, 获取所述通知消息中包含的所述扩展序列标 识, 根据所述扩展序列标识, 确定一个扩展序列。
根据第一方面的第七种可能的实现方式, 在第八种可能的实现方式 中, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块 偏移 ^PRBoffset和的子载波偏移^^
根据第一方面的第七种可能的实现方式, 在第九种可能的实现方式 中, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH的资源块指示 和资源单元集合指示。
根据第一方面的第七种至第九种可能的实现方式中的任意一种, 在第 十种可能的实现方式中,所述通知消息中包含的所述信道的频率资源对应至 少一个重复因子或至少一个扩展序列标识。
根据第一方面的第七种至第十种可能的实现方式中的任意一种, 在第 十一种可能的实现方式中, 所述信道为 PRACH, 则所述通知消息为系统信 息块 SIB消息和 /或下行控制信息 DCI消息。
根据第一方面的第十一种可能的实现方式, 在第十二种可能的实现方 式中,所述通知消息为 SIB消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
根据第一方面的第十一种可能的实现方式, 在第十三种可能的实现方 式中,所述通知消息为 DCI消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 DCI 消息的扩展字段中, 或者所述 PRACH的重复因子或扩展序列标识通过与所述 PRACH的前导码索引联合编 码来指示。
根据第一方面的第七种可能的实现方式, 在第十四种可能的实现方式 中, 所述接收基站发送的通知消息, 包括:
接收 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源的信息或一 组 PRACH的重复因子或一组扩展序列标识;
接收 DCI消息, 所述 DCI消息包含所述一组 PRACH的频率资源中的一 个频率资源的信息或所述一组 PRACH的重复因子中的一个重复因子或者所 述一组扩展序列标识中的一个扩展序列标识。
根据第一方面的第七种至第十种可能的实现方式中的任意一种, 在第 十五种可能的实现方式中, 所述信道为 PUSCH, 则所述通知消息为 RRC消 息或 DCI消息。
根据第一方面的第十五种可能的实现方式, 在第十六种可能的实现方 式中,所述通知消息为 RRC消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 RRC 消息的物理上行共享信道配置 PUSCH-Config字段或者物理上行共享信道专用配置 PUSCH-ConfigDedicated 字段中。
根据第一方面的第十五种可能的实现方式, 在第十七种可能的实现方 式中,所述通知消息为 DCI消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或者所述资源 单元集合指示或 PUSCH的重复因子或扩展序列标识通过与所述 PUSCH的资 源块指示信息联合编码来指示。
根据第一方面的第七种可能的实现方式, 在第十八种可能的实现方式 中, 所述接收基站发送的通知消息包括:
接收 RRC消息, 所述 RRC消息包含一组 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标识; 接收 DCI消息, 所述 DCI消息包含所述一组 PUSCH的频率资源的信息 中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个重复因子 或者所述一组扩展序列标识中的一个扩展序列标识。
根据第一方面、 第一方面的第一种至第十八种可能的实现方式中的任 意一种,在第十九种可能的实现方式中,所述确定信道的重复因子或扩展序 列, 包括:
接收基站发送的系统消息, 所述系统消息中包含所述信道的接收目标功 率;
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定是否需 要使用重复因子或扩展序列发送所述信道;
若是, 则确定所述信道的重复因子; 或确定所述信道的扩展序列的长度 并确定所述扩展序列的长度对应的扩展序列。
根据第一方面的第十九种可能的实现方式, 在第二十种可能的实现方 式中, 所述确定所述信道的重复因子, 或确定所述信道的扩展序列的长度并 确定所述扩展序列的长度对应的扩展序列, 包括:
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或确定所述信道的扩展序列的长度并确定所述扩展序列的长 度对应的扩展序列。
根据第一方面、 第一方面的第一种至第二十种可能的实现方式中的任 意一种, 在第二十一种可能的实现方式中,
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
根据第一方面的第二十一种可能的实现方式, 在第二十二种可能的实 现方式中, 所述扩展序列为 PN序列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
所述扩展序列为釆用所述扩展序列标识、 所述终端所在小区的小区标识 和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
根据第一方面、 第一方面的第一种至第四种、 第七种至第八种、 第十 种至第十四种、 第十九种至第二十二种可能的实现方式中的任意一种, 在 第二十三种可能的实现方式中, 所述信道为 PRACH, 则所述根据所述重复 因子或扩展序列的长度确定时域资源, 所述时域资源为传输子帧, 包括: 根据所述重复因子或所述扩展序列的长度以及所述 PRACH的格式确定 传输子帧的个数 N;
根据随机接入配置索引和所述传输子帧的个数 N确定传输子帧。
根据第一方面的第二十三种可能的实现方式, 在第二十四种可能的实 现方式中, 所述根据随机接入配置索引和所述传输子帧的个数 N确定传输子 帧, 包括:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 根据第一方面、 第一方面的第一种至第二种、 第五种至第七种、 第九 种至第十种、 第十五种至第二十二种可能的实现方式中的任意一种, 在第 二十五种可能的实现方式中, 所述信道为 PUSCH, 则所述根据所述重复因 子或扩展序列的长度确定时域资源, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PUSCH 的格式确定 传输子帧的个数 N;
釆用原有 PUSCH的传输子帧作为起始子帧 m, 选择自起始子帧 m开始 连续的 N个子帧作为传输子帧。
根据第一方面、 第一方面的第一种至第二种、 第五种至第七种、 第九 种至第十种、 第十五种至第二十二种、 以及第二十五种可能的实现方式中 的任意一种, 在第二十六种可能的实现方式中, 所述信道为 PUSCH, 则釆 用所述信道的所述传输子帧发送信号, 包括:
在子帧号为 ml 的子帧上接收基站发送的 DCI消息或者混合自动重传 请求应答 HARQ-ACK消息, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号;
若所述 DCI 消息或者 HARQ-ACK 消息表明所述基站已成功接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传输, 其中, kl为预设的 整数。
根据第一方面、 第一方面的第一种至第四种、 第七种至第八种、 第十 种至第十四种、 第十九种至第二十四种可能的实现方式中的任意一种, 在 第二十七种可能的实现方式中, 所述信道为 PRACH, 则釆用所述信道的所 述传输子帧发送信号, 包括:
确定时间窗的起始子帧的子帧号 w和时间窗的长度, 其中, 时间窗的 起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末尾子帧的 子帧号;
在所述时间窗内子帧号为 m2 的子帧接收基站发送的随机接入响应 RAR;
在 m2+k2子帧终止本次传输, 其中, k2为预设的整数。
根据第一方面的第二十七种可能的实现方式中, 在第二十八种可能的 实现方式中, 所述确定时间窗的起始子帧的子帧号 w, 包括:
根据 w=p2-tl或者 w=n2+t2确定时间窗的起始子帧 w, 其中, tl和 t2 为预设的整数, n2为一次 PRACH传输的起始子帧的子帧号。
第二方面, 本发明实施例提供一种信号传输方法, 包括:
确定信道的重复因子或扩展序列;
根据所述重复因子或扩展序列的长度确定时域资源, 所述时域资源为传 输子帧;
釆用所述信道的所述传输子帧接收信号。
在第二方面的第一种可能的实现方式中, 在所述确定信道的重复因子或 扩展序列之前, 还包括:
确定信道的频率资源;
相应地, 釆用所述信道的所述传输子帧接收信号, 具体为: 釆用所述信 道的所述频率资源和所述传输子帧接收信号。
根据第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述信道为物理随机接入信道 PRACH或物理上行共享信道 PUSCH。
根据第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述信道为 PRACH, 则所述确定信道的频率资源包括:
根据 PRACH的物理资源块偏移《P¾3。ffSf!t和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。^、 PRACH对应的资源块数目和 PRACH的子载波偏移 L_。ffsrt , 确定 PRACH的频率资源。
根据第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述 PRACH对应的资源块数目为 1、 2、 或 3 , 或者为 n/12, 其中, n为小于 12的整数。
根据第二方面的第二种可能的实现方式, 在第五种可能的实现方式中, 所述信道为 PUSCH, 则所述确定信道的频率资源包括:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
根据第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。
根据第二方面、 第二方面的第一种至第六种可能的实现方式中的任意一 种, 在第七种可能的实现方式中, 在所述确定信道的重复因子或扩展序列之 后, 还包括:
向所述终端发送通知消息, 所述通知消息中包含信道的重复因子或扩展 序列标识, 以指示所述终端根据所述通知消息确定信道的重复因子或扩展序 列。
根据第二方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块偏移 " set和 PRACH的子载波偏移 ,以使所述终端根据所述通知消息确 定所述 PRACH的频率资源。
根据第二方面的第七种可能的实现方式, 在第九种可能的实现方式中, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH的资源块指示和资 源单元集合指示包含在向所述终端发送通知消息中, 以使所述终端根据所述 通知消息确定所述 PUSCH的频率资源。
根据第二方面的第七种至第九种可能的实现方式中的任意一种, 在第十 种可能的实现方式中, 所述通知消息中包含的所述信道的频率资源对应至少 一个重复因子或至少一个扩展序列标识。
根据第二方面的第七种至第十种可能的实现方式中的任意一种, 在第十 一种可能的实现方式中, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消息。
根据第二方面的第十一种可能的实现方式, 在第十二种可能的实现方式 中, 所述通知消息为 SIB消息, 则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
根据第二方面的第十一种可能的实现方式, 在第十三种可能的实现方式 中, 所述通知消息为 DCI消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 DCI 消息的扩展字段中; 或者所述 PRACH的重复因子或扩展序列标识通过与所述 PRACH的前导码索引联合编 码来指示。
根据第二方面的第七种可能的实现方式,在第十四种可能的实现方式中, 所述向所述终端发送通知消息, 包括:
向所述终端发送 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源 的信息或一组 PRACH的重复因子或一组扩展序列标识;
向所述终端发送 DCI消息, 所述 DCI消息包含所述一组 PRACH的频率 资源的信息中的一个频率资源的信息或所述一组 PRACH的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
根据第二方面的第七种至第十种可能的实现方式中的任意一种, 在第十 五种可能的实现方式中, 所述信道为 PUSCH, 则所述通知消息为 RRC消息 或 DCI消息。
根据第二方面的第十五种可能的实现方式, 在第十六种可能的实现方式 中,所述通知消息为 RRC消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 RRC 消息的物理上行共享信道配置 PUSCH-Config字段或者物理上行共享信道专用配置 PUSCH-ConfigDedicated 字段中。
根据第二方面的第十六种可能的实现方式, 在第十七种可能的实现方式 中, 所述通知消息为 DCI消息, 则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或者所述资源 单元集合指示或 PUSCH的重复因子或扩展序列标识通过与所述 PUSCH的资 源块指示信息联合编码来指示。
根据第二方面的第七种可能的实现方式,在第十八种可能的实现方式中, 所述向所述终端发送通知消息, 包括:
向所述终端发送 RRC消息, 所述 RRC消息包含一组 PUSCH的频率资 源的信息或一组 PUSCH的重复因子或一组扩展序列标识;
向所述终端发送 DCI消息, 所述 DCI消息包含所述一组 PUSCH的频率 资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
根据第二方面、 第二方面的第一种至第十八种可能的实现方式中的任意 一种, 在第十九种可能的实现方式中, 在所述确定信道的重复因子或扩展序 列之前, 还包括:
向所述终端发送系统消息, 所述系统消息中包含所述信道的接收目标功 率, 以使所述终端根据最大发射功率、路径损耗和所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列在所述信道发送信号。
根据第二方面的第十九种可能的实现方式, 在第二十种可能的实现方式 中, 所述系统消息中还包含可用的重复因子; 或者还包含可用的扩展序列的 扩展序列标识, 所述扩展序列以及所述扩展序列标识与扩展序列的长度相对 应。
根据第二方面、 第二方面的第一种至第二十种可能的实现方式中的任意 一种, 在第二十一种可能的实现方式中, 所述信道的重复因子或扩展序列的 数量至少为二个, 贝 ij ,
所述根据所述重复因子或扩展序列的长度确定时域资源包括: 确定所述 至少二个重复因子对应的传输子帧或确定各个所述扩展序列的长度确定传输 子帧;
所述在所述信道的所述传输子帧上接收信号包括: 在所述信道的至少二 种重复因子对应的传输子帧或各个所述扩展序列的长度确定传输子帧上接收 信号。
根据第二方面、 第二方面的第一种至第二十一种可能的实现方式中的任 意一种, 在第二十二种可能的实现方式中, 所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
根据第二方面的第二十二种可能的实现方式, 在第二十三种可能的实现 方式中, 所述扩展序列为 PN序列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
扩展序列为釆用所述扩展序列标识、 所述终端的服务小区的小区标识和 / 或无线网络临时标识作为 PN序列的初始化参数生成的序列。
根据第二方面、 第二方面的第一种至第四种、 第七种至第八种、 第十种 至第十四种、 第十九种至第二十三种可能的实现方式中的任意一种, 在第二 十四种可能的实现方式中, 所述信道为 PRACH, 则所述根据所述重复因子或 扩展序列的长度确定时域资源, 所述时域资源为传输子帧, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PRACH的格式确定 传输子帧的个数 N;
根据随机接入配置索引和所述传输子帧的个数 N确定传输子帧。
根据第二方面的第二十四种可能的实现方式, 在第二十五种可能的实现 方式中,所述根据随机接入配置索引和所述传输子帧的个数 N确定传输子帧 , 包括:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
根据第二方面、 第二方面的第一种至第三种、 第五种至第七种、 第九种 至第十种、 第十五种至第二十三种可能的实现方式中的任意一种, 在第二十 六种可能的实现方式中, 所述信道为 PUSCH, 则所述根据所述重复因子或扩 展序列的长度确定时域资源, 所述时域资源为传输子帧, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PUSCH 的格式确定 传输子帧的个数 N;
釆用原有 PUSCH 的传输子帧作为起始子帧, 选择自起始子帧开始连续 的 N子帧作为传输子帧。
根据第二方面、 第二方面的第一种至第三种、 第五种至第七种、 第九种 至第十种、 第十五种至第二十三种、 第二十六种可能的实现方式中的任意一 种, 在第二十七种可能的实现方式中, 所述信道为 PUSCH, 则在所述传输子 帧上接收信号, 包括:
在子帧号为 ml 的子帧上向所述终端发送 DCI消息或者混合自动重传 请求应答 HARQ-ACK消息 , 所述 DCI消息或者 HARQ-ACK消息表明所述 基站已成功接收本次 PUSCH传输的信号, 其中, ml子帧在 pl+4子帧之 前, pi为一次 PUSCH传输的末尾子帧的子帧号;
在 ml+kl子帧停止接收本次传输的信号, 其中, m子帧在 p+4子帧 之前, kl为预设的整数。
根据第二方面、 第二方面的第一种至第四种、 第七种至第八种、 第十种 至第十四种、 第十九种至第二十五种可能的实现方式中的任意一种, 在第二 十八种可能的实现方式中, 所述信道为 PRACH, 则在所述传输子帧上接收信 号, 包括:
确定时间窗的起始子帧的子帧号 w和时间窗的长度, 其中, 时间窗的 起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末尾子帧的 子帧号;
在所述时间窗内子帧号为 m2 的子帧向所述终端发送随机接入响应 RAR;
在 m2+k2子帧停止接收本次传输的信号, 其中, k2为预设的整数。 根据第二方面的第二十八种可能的实现方式, 在第二十九种可能的实现 方式中, 所述确定时间窗的起始子帧的子帧号 w, 包括:
根据 w=p-tl或者 w=n+t2确定时间窗的起始子帧 w , 其中, tl和 t2 为预设的整数, n2为一次 PRACH传输的起始子帧的子帧号。
第三方面, 本发明实施例提供一种信号传输装置, 包括:
重复因子或扩展序列确定模块, 用于确定信道的重复因子或扩展序列; 传输子帧确定模块, 用于根据所述重复因子或扩展序列的长度确定时域 资源, 所述时域资源为传输子帧;
发送模块, 用于釆用所述信道的所述传输子帧发送信号。 在第三方面的第一种可能的实现方式中, 还包括:
频率资源确定模块, 用于确定信道的频率资源;
相应地, 所述发送模块具体用于: 釆用所述信道的所述频率资源和所述 传输子帧发送信号。
在第三方面的第二种可能的实现方式中, 所述信道为物理随机接入信 道 PRACH或物理上行共享信道 PUSCH。
根据第三方面的第二种可能的实现方式, 在第三种可能的实现方式 中, 所述信道为 PRACH, 则所述频率资源确定模块具体用于:
根据 PRACH的物理资源块偏移《 。ffSf!t和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。ffSf!t、 PRACH对应的资源块数目和 PRACH的子载波偏移 L_。ffsrt , 确定 PRACH的频率资源。
根据第三方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 所述 PRACH对应的资源块数目为 1、 2或 3 , 或者为 n/12, 其中, n为 小于 12的整数。
根据第三方面的第二种可能的实现方式, 在第五种可能的实现方式 中, 所述信道为 PUSCH, 则所述频率资源确定模块具体用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
根据第三方面的第五种可能的实现方式, 在第六种可能的实现方式 中, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。
根据第三方面、 第三方面的第一种至第六种可能的实现方式中的任意 一种, 在第七种可能的实现方式中, 还包括:
通知消息接收模块, 用于接收基站发送的通知消息, 所述通知消息中包 含所述信道的重复因子; 则所述重复因子或扩展序列确定模块, 具体用于, 获取所述通知消息中包含的所述信道的重复因子, 确定一个重复因子; 或者, 所述通知消息接收模块, 用于接收基站发送的通知消息, 所述通知消息 中包含扩展序列标识; 则所述重复因子或扩展序列确定模块, 具体用于, 根 据所述扩展序列标识, 确定一个扩展序列。
根据第三方面的第七种可能的实现方式, 在第八种可能的实现方式 中, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块 偏移 ^PRBofTset和的子载波偏移《 ^^。
根据第三方面的第七种可能的实现方式, 在第九种可能的实现方式 中, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH的资源块指示 和资源单元集合指示。
根据第三方面的第七种至第九种可能的实现方式中的任意一种, 在第 十种可能的实现方式中,所述通知消息中包含的所述信道的频率资源对应至 少一个重复因子或至少一个扩展序列标识。
根据第三方面的第七种至第十种可能的实现方式中的任意一种, 在第 十一种可能的实现方式中, 所述信道为 PRACH, 则所述通知消息为系统信 息块 SIB消息和 /或下行控制信息 DCI消息。
根据第三方面的第十一种可能的实现方式, 在第十二种可能的实现方 式中,所述通知消息为 SIB消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
根据第三方面的第十一种可能的实现方式, 在第十三种可能的实现方 式中,所述通知消息为 DCI消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 DCI 消息的扩展字段中, 或者所述 PRACH的重复因子或扩展序列标识通过与所述 PRACH的前导码索引联合编 码来指示。
根据第三方面的第七种可能的实现方式, 在第十四种可能的实现方式 中, 所述通知消息接收模块, 包括:
SIB接收单元, 用于接收 SIB消息, 所述 SIB消息包含一组 PRACH的 频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识;
DCI接收单元 ,用于接收 DCI消息 ,所述 DCI消息包含所述一组 PRACH 的频率资源中的一个频率资源的信息或所述一组 PRACH的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
根据第三方面的第七种至第十种可能的实现方式中的任意一种, 在第 十五种可能的实现方式中, 所述信道为 PUSCH, 则所述通知消息为 RRC消 息或 DCI消息。
根据第三方面的第十五种可能的实现方式, 在第十六种可能的实现方 式中,所述通知消息为 RRC消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 RRC 消息的物理上行共享信道配置 PUSCH-Config字段或者物理上行共享信道专用配置 PUSCH-ConfigDedicated 字段中。
根据第三方面的第十五种可能的实现方式, 在第十七种可能的实现方 式中,所述通知消息为 DCI消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或者所述资源 单元集合指示或 PUSCH的重复因子或扩展序列标识通过与所述 PUSCH的资 源块指示信息联合编码来指示。
根据第三方面的第七种可能的实现方式, 在第十八种可能的实现方式 中, 所述通知消息接收模块包括:
RRC接收单元, 用于接收 RRC消息, 所述 RRC消息包含一组 PUSCH 的频率资源的信息或 PUSCH的重复因子或扩展序列标识;
DCI接收单元,用于接收 DCI消息,所述 DCI消息包含所述一组 PUSCH 的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子 中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
根据第三方面、 第三方面的第一种至第十八种可能的实现方式中的任 意一种,在第十九种可能的实现方式中,所述重复因子或扩展序列确定模块, 包括:
目标功率获取单元, 用于接收基站发送的系统消息, 所述系统消息中包 含所述信道的接收目标功率;
判断单元, 用于根据最大发射功率、 路径损耗和所述信道的接收目标功 率, 确定是否需要使用重复因子或扩展序列发送所述信道;
确定单元, 用于若是, 则确定所述信道的重复因子; 或确定所述信道的 根据第三方面的第十九种可能的实现方式, 在第二十种可能的实现方 式中, 所述确定单元具体用于:
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或确定所述信道的扩展序列的长度并确定所述扩展序列的长 度对应的扩展序列。
根据第三方面、 第三方面的第一种至第二十种可能的实现方式中的任 意一种, 在第二十一种可能的实现方式中, 所述扩展序列为沃尔什 Walsh 序列; 或者, 所述扩展序列为伪噪声 PN序列的生成序列。
根据第三方面的第二十一种可能的实现方式, 在第二十二种可能的实 现方式中, 所述扩展序列为 PN序列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
所述扩展序列为釆用所述扩展序列标识、 所述终端所在小区的小区标识 和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
根据第三方面、 第三方面的第一种至第四种、 第七种至第八种、 第十 种至第十四种、 第十九种至第二十二种可能的实现方式中的任意一种, 在 第二十三种可能的实现方式中, 所述传输子帧确定模块包括: 传输子帧个数 确定单元和传输子帧确定单元, 所述信道为 PRACH, 贝' J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 所述传输子帧确定单元, 用于根据随机接入配置索引和所述传输子帧的 个数 N确定传输子帧。
根据第三方面的第二十三种可能的实现方式, 在第二十四种可能的实 现方式中, 所述传输子帧确定单元具体用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 根据第三方面、 第三方面的第一种至第二种、 第五种至第七种、 第九 种至第十种、 第十五种至第二十二种可能的实现方式中的任意一种, 在第 二十五种可能的实现方式中, 所述信道为 PUSCH, 贝 |J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于釆用原有 PUSCH 的传输子帧作为起始子 帧 m, 选择自起始子帧 m开始连续的 N个子帧作为传输子帧。
根据第三方面、 第三方面的第一种至第二种、 第五种至第七种、 第九 种至第十种、 第十五种至第二十二种、 以及第二十五种可能的实现方式中 的任意一种, 在第二十六种可能的实现方式中, 所述信道为 PUSCH, 则所 述发送模块, 包括:
HARQ-ACK消息接收单元, 用于在子帧号为 ml 的子帧上接收基站发 送的 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 其中, ml子 帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号;
第一终止单元,用于若所述 DCI消息或者 HARQ-ACK消息表明所述基 站已成功接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传输, 其中, kl为预设的整数。
根据第三方面、 第三方面的第一种至第四种、 第七种至第八种、 第十 种至第十四种、 第十九种至第二十四种可能的实现方式中的任意一种, 在 第二十七种可能的实现方式中, 所述信道为 PRACH, 则所述发送模块, 包 括:
时间窗确定单元,用于确定时间窗的起始子帧的子帧号 w和时间窗的 长度,其中,时间窗的起始子帧 w子帧在 p2+3子帧之前,p2为一次 PRACH 传输的末尾子帧的子帧号;
RAR接收单元, 用于在所述时间窗内子帧号为 m2的子帧接收基站发 送的随机接入响应 RAR;
第二终止单元, 用于在 m2+k2子帧终止本次传输, 其中, k2为预设 的整数。
根据第三方面的第二十七种可能的实现方式中, 在第二十八种可能的 实现方式中, 所述时间窗确定单元, 包括:
时间窗起始子帧确定子单元, 具体用于根据 w=p2-tl或者 w=n2+t2确 定时间窗的起始子帧 w, 其中, tl和 t2为预设的整数, n2为一次 PRACH 传输的起始子帧的子帧号。
第四方面, 本发明实施例提供一种信号传输装置, 包括: 重复因子或扩展序列确定模块, 用于确定信道的重复因子或扩展序列; 传输子帧确定模块, 用于根据所述重复因子或扩展序列的长度确定时域 资源, 所述时域资源为传输子帧;
接收模块, 用于釆用所述信道的所述传输子帧接收信号。
在第四方面的第一种可能的实现方式中, 还包括:
频率资源确定模块, 用于确定信道的频率资源;
相应地, 所述接收模块具体用于: 釆用所述信道的所述频率资源和所述 传输子帧接收信号。
根据第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述信道为物理随机接入信道 PRACH或物理上行共享信道 PUSCH。
根据第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述信道为 PRACH, 则所述频率资源确定模块具体用于:
根据 PRACH的物理资源块偏移《 。ffSf!t和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。ffSf!t、 PRACH对应的资源块数目和
PRACH的子载波偏移 L_。ffsrt , 确定 PRACH的频率资源。
根据第四方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述 PRACH对应的资源块数目为 1、 2、 或 3 , 或者为 n/12, 其中, n为小于 12的整数。
根据第四方面的第二种可能的实现方式, 在第五种可能的实现方式中, 所述信道为 PUSCH, 则所述频率资源确定模块具体用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
根据第四方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。
根据第四方面、 第四方面的第一种至第六种可能的实现方式中的任意一 种, 在第七种可能的实现方式中, 还包括:
通知消息发送模块, 用于向所述终端发送通知消息, 所述通知消息中包 含信道的重复因子或扩展序列标识, 以指示所述终端根据所述通知消息确定 信道的重复因子或扩展序列。 根据第四方面的第七种可能的实现方式, 在第八种可能的实现方式中, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块偏移 " set和 PRACH的子载波偏移 , 以使所述终端根据所述通知消息确 定所述 PRACH的频率资源。
根据第四方面的第七种可能的实现方式, 在第九种可能的实现方式中, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH的资源块指示和资 源单元集合指示包含在向所述终端发送通知消息中, 以使所述终端根据所述 通知消息确定所述 PUSCH的频率资源。
根据第四方面的第七种至第九种可能的实现方式中的任意一种, 在第十 种可能的实现方式中, 所述通知消息中包含的所述信道的频率资源对应至少 一个重复因子或至少一个扩展序列标识。
根据第四方面的第七种至第十种可能的实现方式中的任意一种, 在第十 一种可能的实现方式中, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消息。
根据第四方面的第十一种可能的实现方式, 在第十二种可能的实现方式 中, 所述通知消息为 SIB消息, 则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
根据第四方面的第十一种可能的实现方式, 在第十三种可能的实现方式 中, 所述通知消息为 DCI消息,则所述 PRACH的频率资源的信息或 PRACH 的重复因子或扩展序列标识位于所述 DCI 消息的扩展字段中; 或者所述 PRACH的重复因子或扩展序列标识通过与所述 PRACH的前导码索引联合编 码来指示。
根据第四方面的第七种可能的实现方式,在第十四种可能的实现方式中, 所述通知消息发送模块, 包括:
SIB发送单元, 用于向所述终端发送 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识; DCI发送单元, 用于向所述终端发送 DCI消息, 所述 DCI消息包含所述 一组 PRACH的频率资源的信息中的一个频率资源的信息或所述一组 PRACH 的重复因子中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列 标识。
根据第四方面的第七种至第十种可能的实现方式中的任意一种, 在第十 五种可能的实现方式中, 所述信道为 PUSCH, 则所述通知消息为 RRC消息 或 DCI消息。
根据第四方面的第十五种可能的实现方式, 在第十六种可能的实现方式 中,所述通知消息为 RRC消息,则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 RRC 消息的物理上行共享信道配置 PUSCH-Config字段或者物理上行共享信道专用配置 PUSCH-ConfigDedicated 字段中。
根据第四方面的第十六种可能的实现方式, 在第十七种可能的实现方式 中, 所述通知消息为 DCI消息, 则所述 PUSCH的频率资源的信息或 PUSCH 的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或者所述资源 单元集合指示或 PUSCH的重复因子或扩展序列标识通过与所述 PUSCH的资 源块指示信息联合编码来指示。
根据第四方面的第七种可能的实现方式,在第十八种可能的实现方式中, 所述通知消息发送模块, 包括:
RRC发送单元, 用于向所述终端发送 RRC消息, 所述 RRC消息包含一 组 PUSCH的频率资源的信息或一组 PUSCH的重复因子或一组扩展序列标 识;
DCI发送单元, 用于向所述终端发送 DCI消息, 所述 DCI消息包含所述 一组 PUSCH的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列 标识。
根据第四方面、 第四方面的第一种至第十八种可能的实现方式中的任意 一种, 在第十九种可能的实现方式中, 还包括:
目标功率发送模块, 用于向所述终端发送系统消息, 所述系统消息中包 含所述信道的接收目标功率, 以使所述终端根据最大发射功率、 路径损耗和 所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列在所述信 道发送信号。 根据第四方面的第十九种可能的实现方式, 在第二十种可能的实现方式 中, 所述系统消息中还包含可用的重复因子; 或者还包含可用的扩展序列的 扩展序列标识, 所述扩展序列以及所述扩展序列标识与扩展序列的长度相对 应。
根据第四方面、 第四方面的第一种至第二十种可能的实现方式中的任意 一种, 在第二十一种可能的实现方式中, 所述信道的重复因子或扩展序列的 数量至少为二个, 贝 ij ,
所述传输子帧确定模块具体用于: 确定所述至少二个重复因子对应的传 输子帧或确定各个所述扩展序列的长度确定传输子帧;
所述接收模块具体用于: 在所述信道的至少二种重复因子对应的传输子 帧或各个所述扩展序列的长度确定传输子帧上接收信号。
根据第四方面、 第四方面的第一种至第二十一种可能的实现方式中的任 意一种, 在第二十二种可能的实现方式中,
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
根据第四方面的第二十二种可能的实现方式, 在第二十三种可能的实现 方式中, 所述扩展序列为 PN序列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
扩展序列为釆用所述扩展序列标识、 所述终端的服务小区的小区标识和 / 或无线网络临时标识作为 PN序列的初始化参数生成的序列。
根据第四方面、 第四方面的第一种至第四种、 第七种至第八种、 第十种 至第十四种、 第十九种至第二十三种可能的实现方式中的任意一种, 在第二 十四种可能的实现方式中, 所述传输子帧确定模块包括传输子帧个数确定单 元和传输子帧确定单元, 其中, 若所述信道为 PRACH, 则
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PRACH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于根据随机接入配置索引和所述传输子帧的 个数 N确定传输子帧。
根据第四方面的第二十四种可能的实现方式, 在第二十五种可能的实现 方式中, 所述传输子帧确定单元具体用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
根据第四方面、 第四方面的第一种至第三种、 第五种至第七种、 第九种 至第十种、 第十五种至第二十三种可能的实现方式中的任意一种, 在第二十 六种可能的实现方式中, 若所述信道为 PUSCH, 贝 |J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于釆用原有 PUSCH 的传输子帧作为起始子 帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
根据第四方面、 第四方面的第一种至第三种、 第五种至第七种、 第九种 至第十种、 第十五种至第二十三种、 第二十六种可能的实现方式中的任意一 种,在第二十七种可能的实现方式中,所述信道为 PUSCH,则所述接收模块, 包括:
HARQ-ACK消息发送单元, 用于在子帧号为 ml 的子帧上向所述终端 发送 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 所述 DCI消息 或者 HARQ-ACK消息表明所述基站已成功接收本次 PUSCH传输的信号, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子 帧号;
第一终止单元, 用于在 ml+kl子帧停止接收本次传输的信号, 其中, m子帧在 p+4子帧之前, kl为预设的整数。
根据第四方面、 第四方面的第一种至第四种、 第七种至第八种、 第十种 至第十四种、 第十九种至第二十五种可能的实现方式中的任意一种, 在第二 十八种可能的实现方式中, 所述信道为 PRACH, 则所述接收模块, 包括: 时间窗确定单元,用于确定时间窗的起始子帧的子帧号 w和时间窗的 长度,其中,时间窗的起始子帧 w子帧在 p2+3子帧之前,p2为一次 PRACH 传输的末尾子帧的子帧号; RAR发送单元, 用于在所述时间窗内子帧号为 m2的子帧向所述终端 发送随机接入响应 RAR;
第二终止单元, 用于在 m2+k2子帧停止接收本次传输的信号, 其中, k2为预设的整数。
根据第四方面的第二十八种可能的实现方式, 在第二十九种可能的实现 方式中, 所述时间窗确定单元, 包括:
时间窗起始子帧确定子单元, 具体用于根据 w=p-tl或者 w=n+t2确定 时间窗的起始子帧 w, 其中, tl 和 t2为预设的整数, n2为一次 PRACH 传输的起始子帧的子帧号。
第五方面, 本发明实施例提供一种通信系统, 包括: 至少一个终端和一 个基站, 其中, 所述终端包括本发明任意可集成在终端上的信号传输装置 实施例所述的信号传输装置; 所述基站包括本发明任意可集成在基站上的 信号传输装置实施例所述的信号传输装置。
第六方面, 本发明实施例提供一种终端, 包括: 接收机、 发送机、 存储 器和处理器, 其中,
存储器, 用于存储指令;
处理器, 与所述存储器耦合, 所述处理器被配置为执行存储在所述存 储器中的指令, 且所述处理器被配置为用于执行本发明任意方法实施例中 对应终端执行的信号传输方法。
第七方面, 本发明实施例提供一种基站, 包括: 接收机、 发送机、 存储 器和处理器, 其中,
存储器, 用于存储指令;
处理器, 与所述存储器耦合, 所述处理器被配置为执行存储在所述存 储器中的指令, 且所述处理器被配置为用于执行本发明任意方法实施例中 对应基站执行的信号传输方法。
本发明实施例提供的信号传输方法、 装置、 通信系统、 终端和基站, 终 端通过确定信道的重复因子或扩展序列, 并根据所述重复因子或扩展序列的 长度增加该信道的传输子帧, 延长了发射时间, 从而增加了该信道的发射能 量, 从而实现扩展该信道的覆盖; 基站通过确定信道的重复因子或扩展序列、 以及增加接收该信道的传输子帧, 延长了接收时间, 从而增加了该信道的接 收能量, 从而更便于解调该信道上的信号, 从而提高通信质量。 附图说明
图 1为本发明信号传输方法实施例一的信令流程图;
图 2为 Walsh序列的规律示意图;
图 3为本发明信号传输方法实施例四的流程图;
图 4为本发明信号传输方法实施例五的流程图;
图 5为本发明信号传输方法实施例六的流程图;
图 6为本发明信号传输方法实施例七的流程图;
图 Ί为本发明信号传输方法实施例八的流程图;
图 8为本发明信号传输方法实施例十四的流程图;
图 9为本发明信号传输方法实施例十五的流程图;
图 10为本发明信号传输方法实施例十六的流程图;
图 1 1为本发明信号传输装置实施例一的结构示意图;
图 12为本发明信号传输装置实施例二的结构示意图;
图 13为本发明信号传输装置实施例三的结构示意图;
图 14为本发明信号传输装置实施例四的结构示意图;
图 15为本发明信号传输装置实施例五的结构示意图;
图 16为本发明信号传输装置实施例六的结构示意图;
图 17为本发明信号传输装置实施例七的结构示意图;
图 18为本发明信号传输装置实施例八的结构示意图;
图 19为本发明信号传输装置实施例九的结构示意图;
图 20为本发明信号传输装置实施例十的结构示意图;
图 21为本发明通信系统实施例的结构示意图;
图 22为本发明终端实施例的结构示意图;
图 23为本发明基站实施例的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
覆盖是指在一定的发射机、 接收机和传输的信道条件下, 满足某一种 信道传输要求的传输距离。 其中, 影响信道的覆盖性能的因素较多, 包括 发射时间、 最大发射功率、 接收时间、 接收算法、 信道结构等, 在其他条 件不变的情况下, 发射时间越长, 该信道上累积的能量越多, 该信道能传 输的距离就越长, 因此覆盖越好。 本发明实施例中具体针对 PRACH 和 PUSCH 分别提供了增加发射时间的方法, 从而改善该两个信道的覆盖。 该方法也可以用于其他信道, 本发明实施例对此不做限制。
本发明实施例提供信号的发送端与接收端的交互方法, 发送端可以为 终端, 接收端可以为基站。 本发明实施例中所述的预设的整数, 包括预先 配置获得的整数或者预先约定的整数。
本发明实施例提供一种信号传输方法, 终端对应执行的部分可以包括: 确定信道的重复因子或扩展序列;
根据所述重复因子或扩展序列的长度确定时域资源, 所述时域资源为传 输子帧;
釆用所述信道的所述传输子帧发送信号。
本实施例的终端发送信号的方法的技术效果为, 终端通过信道的重复因 子或扩展序列, 并根据所述重复因子或扩展序列的长度增加该信道的传输子 帧, 延长了发射时间, 从而增加了该信道的发射能量; 通过上述的方法实现 扩展该信道的覆盖。
进一步地, 在具体实现时, 终端在所述确定信道的重复因子或扩展序列 之前, 还包括:
确定信道的频率资源;
相应地, 釆用所述信道的所述传输子帧发送信号, 具体为: 釆用所述信 道的所述频率资源和所述传输子帧发送信号。
本实施例的终端发送信号的方法的技术效果为, 终端通过确定信道的频 率资源, 在较窄的频率资源上发送信号, 可提高单个资源上的发生功率, 提 高单个资源上的接收信号噪声比; 并且确定信道的重复因子或扩展序列, 并 根据所述重复因子或扩展序列的长度增加该信道的传输子帧, 延长了发射时 间, 从而增加了该信道的发射能量; 通过上述的方法实现扩展该信道的覆盖。 上述实施例中,重复因子或扩展序列可以是由基站确定后再通知终端的, 也可以是由终端通过计算获得的。
本发明实施例提供的信号传输方法, 基站对应执行的部分可以包括: 确定信道的重复因子或扩展序列;
根据所述重复因子或扩展序列的长度确定时域资源, 所述时域资源为传 输子帧;
釆用所述信道的所述传输子帧接收信号。
本实施例的基站接收信号的方法的技术效果为, 基站通过确定信道的重 复因子或扩展序列、 以及增加接收该信道的传输子帧, 延长了接收时间, 从 而增加了该信道的接收能量, 从而更便于解调该信道上的信号; 通过上述方 法提高通信质量。
进一步地, 在具体实现时, 基站在所述确定信道的重复因子或扩展序列 之前, 还包括: 确定信道的频率资源;
相应地, 釆用所述信道的所述传输子帧接收信号, 具体为: 釆用所述信 道的所述频率资源和所述传输子帧接收信号。
本实施例的基站接收信号的方法的技术效果为, 基站通过确定信道的频 率资源, 在较窄的频率资源上接收信号, 可提高单个资源上的接收功率, 提 高单个资源上的接收信号噪声比;并且通过确定信道的重复因子或扩展序列、 以及增加接收该信道的传输子帧, 延长了接收时间, 从而增加了该信道的接 收能量, 从而更便于解调该信道上的信号; 通过上述方法提高通信质量。
图 1为本发明信号传输方法实施例一的信令流程图, 该方法可以由任 意一个发送端设备(终端)和任意一个接收端设备(基站) 实现, 该方法 可以通过硬件和 /或软件的方式实现,该方法中终端对应执行的部分可以集 成在终端中, 基站对应执行的部分可以集成在基站中。 如图 1所示, 本实 施例的信号传输方法可以包括:
步骤 101、 基站确定信道的频率资源。
具体地, 基站可以根据终端所在小区内存在的终端的数目, 或者可以 根据该终端与基站的距离、 或者可以根据终端信号到基站信号的传输路径 的状况等因素确定信道的频率资源。 具体地,若信道为 PRACH,可以根据 PRACH的物理资源块偏移《^。ffSf!t和 PRACH对应的资源块数目,确定 PRACH的频率资源。例如 ,可以根据 PRACH 的物理资源块偏移" p 。 f^t , 确定 PRACH的第一个物理资源块为" p 。 ff^ , 根据 PRACH对应的资源块数目, 确定 PRACH带宽。
在这种方式下, PRACH对应的资源块数目可以为整数, 例如可以为 1、
2、 或 3。 即, 在这种方式下确定的频率资源的最小粒度为一个资源块( 12个 子载波) 。
或者, 可以根据 PRACH的物理资源块偏移《 。^、 PRACH对应的子载 波数目和 PRACH的子载波偏移 确定 PRACH的频率资源。 例如, 可以根据 PRACH的物理资源块偏移 "p 。 ff^ ,确定 PRACH的第一个物理资源 块为 " 。 , PRACH的子载波偏移 " 。wffSfrt确定第一个物理资源块中第一个 子载波位置, 根据 PRACH对应的子载波数目确定 PRACH带宽。
在这种方式下, PRACH对应的资源块数目可以为整数, 也可以为 η/12 , 其中, n为小于 12的整数, 例如可以为 1、 2、 或 3 , 或者可以为 1/4、 1/6。 即, 在这种方式下确定的频率资源的最小粒度为一个子载波。
若信道为 PRACH,可以根据 PUSCH的资源块指示和资源单元集合指示, 确定所述 PUSCH的频率资源。其中 PUSCH的资源单元集合指示表示资源单 元集合, 如一个或者多个虚拟子载波, 也可以表示时频域上资源单元的一个 集合,如一个增强资源块组(Enhanced Resource Element Group,简称: EREG ) 或者增强控制信道单元(Enhanced Control Channel Element, 简称: ECCE ) 等。 其中虚拟子载波为物理子载波的一个逻辑编号, 可随时隙号或者子帧号 变化。
进一步具体地, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。 在具体实现时, 对于 PRACH, 资源块数目通常可以由终端预先设置, 所 述 PRACH的物理资源块偏移„ 。ffsrt和 PRACH的子载波偏移 可以包 含在基站向所述终端发送通知消息中, 以使所述终端根据所述通知消息确定 PRACH的频率资源; 对于 PUSCH, 所述 PUSCH的资源块指示和资源单元 集合指示可以包含在基站向所述终端发送通知消息中, 以使所述终端根据所 述通知消息确定 PUSCH的频率资源。
步骤 102、 基站确定信道的重复因子或扩展序列。 具体地, 基站可以根据终端所在小区、 或者终端与基站的距离、 或者 终端信号到基站信号的传输路径的状况等因素确定信道的重复因子或扩 展序列。
重复因子是指将信号在该信道上重复传输的次数, 即, 将该信道的传 输子帧个数增加的倍数。 例如, 前导格式为 2的 PRACH, 原本在 2个子 帧传输, 若重复因子为 4, 则该 PRACH扩展为在 8个子帧传输, 在增加 的子帧上传输的信号与原有的 2个子帧上传输的信号相同。 本发明实施例 所述的重复因子可以为 1 , 即代表不进行扩展的情况; 重复因子也可以为 其他整数值, 代表进行扩展的情况。
扩展序列用于将信号在该信道上以扩展序列中的数值作为信号振幅 的权重进行重复传输, 其重复的次数为扩展序列中数值的个数, 即扩展序 列的长度。 例如, 前导格式为 0的 PRACH, 原本在 1个子帧传输, 若扩 展序列为 {1 , -1 , 1 , -1 } , 则该 PRACH扩展为在 4个子帧传输, 且扩展 后第一个子帧和第三个子帧的相位与原信号相位相同, 第二个子帧和第四 个子帧的振幅与原信号振幅的幅值相同但相位相反。
步骤 103、 终端确定信道的频率资源。
进一步具体地,对于 PRACH信道,终端可以根据 PRACH的物理资源块 偏移《 B。^和 PRACH对应的资源块数目, 确定 PRACH的频率资源; 或者, 根据 PRACH 的物理资源块偏移《P^Bffss:t、 PRACH对应的资源块数目和 PRACH的子载波偏移 。^ , 确定 PRACH的频率资源。
对于 PUSCH信道,终端可以根据 PUSCH的资源块指示和资源单元集合 指示, 确定所述 PUSCH的频率资源。
进一步地, 上述用于确定信道的频率资源的参数, 终端可以通过接收基 站发送的通知消息来获得。
步骤 104、 终端确定信道的重复因子或扩展序列。
进一步具体地, 步骤 104中终端确定信道的重复因子或扩展序列的方式 可以为, 根据基站发送的通知消息中的配置来确定。
进一步地, 所述确定信道的重复因子可以包括:
接收基站发送的通知消息, 所述通知消息中包含所述信道的重复因子。 并且, 通知消息中包含的重复因子可以为一个数值, 也可以为多个数 值, 终端可以从中随机选择一个作为信道的重复因子。
或者, 所述确定信道的扩展序列可以包括:
接收基站发送的通知消息, 所述通知消息中包含扩展序列标识; 根据所 述扩展序列标识, 确定所述扩展序列。
具体实现时, 基站和终端可以事先约定一组扩展序列, 每个扩展序列可 以对应一个扩展序列标识。 例如, 可以由基站配置多个扩展序列以及每个扩 展序列的标识, 并将扩展序列与扩展序列标识的映射关系通过系统消息发送 给终端, 该映射关系例如可以在基站检测到终端开机时, 或者在终端进行位 置更新时发送给终端。 同时, 该映射关系中还可以包括扩展序列的长度, 例 如, 扩展序列可以设计为: 每个扩展序列的长度对应一个扩展序列, 则可以 直接将扩展序列的长度作为扩展序列标识; 扩展序列还可以设计为: 一个扩 展序列的长度对应多个扩展序列, 这时, 映射关系可以为三维的, 可以明确 扩展序列标识和扩展序列、 扩展序列的长度三者的对应关系, 使终端能够通 过扩展序列标识查询到对应的扩展序列以及扩展序列的长度。
进一步地, 在步骤 102中基站确定的所述重复因子或扩展序列可以与所 述信道的频率资源相对应, 相应地, 所述通知消息中可以包含所述信道的频 率资源和所述频率资源对应的重复因子或扩展序列标识。
步骤 105、 终端根据所述重复因子或扩展序列的长度确定时域资源, 所 述时域资源为传输子帧。
其中, 扩展序列的长度为扩展序列中的数值个数, 例如扩展序列为 { 1,1 ,
2} , 该扩展序列中包含 3个数值, 即该扩展序列的长度为 3。
具体地, 若该信道原有的传输子帧个数为 2, 重复因子为 4, 或者扩展序 列的长度为 4, 即该扩展序列中包含 4个数值, 则扩展后该信道的传输子帧 个数为 8个; 然后再按照预设规则在一个无线帧中选择 8个子帧作为传输子 帧, 其中预设规则也可以是基站与终端事先约定好的, 具体釆用何种预设规 则将在后续的针对具体信道的实施例中进行说明。
步骤 106、 终端釆用所述信道的所述传输子帧发送信号。
步骤 107、 基站根据所述重复因子或扩展序列的长度确定时域资源, 所 述时域资源为传输子帧。
步骤 108、 基站釆用所述信道的所述传输子帧接收信号。 上述的步骤 105〜108中, 步骤 105、 步骤 106和步骤 107、 步骤 108为终 端与基站并行执行的两组步骤, 其中, 步骤 105和步骤 107在绝对时间上可 以不严格地同步执行, 而步骤 106与步骤 108在绝对时间上需要同步执行。
本实施例, 通过终端根据重复因子或扩展序列的长度增加该信道的传输 子帧, 延长了发射时间, 从而增加了该信道的发射能量, 从而实现扩展该信 道的覆盖; 通过基站增加接收该信道的传输子帧, 延长了接收时间, 从而增 加了该信道的接收能量, 从而更便于解调该信道上的信号, 从而提高通信质 量。
上述实施例, 所述信道可以为物理随机接入信道 PRACH或物理上行共 享信道 PUSCH。
进一步地, 上述实施例中, 进一步地, 所述扩展序列可以为 Walsh序列。
Walsh序列为一种正交序列, 序列之间有良好的正交性。 图 2为 Walsh 序列的规律示意图, 图 2中, C表示 Walsh序列, C的下标表示扩展因子, 扩展因子中的第二位表示序列的长度, C 的下标中的第三位表示相同长度的 Walsh序列的序列序号,例如, Cch,^表示长度为 1的第一个 Walsh序列, 表示长度为 4的第二个 Walsh序列。 如图 2所示, Walsh序列的长度 N可以 为 1、 2、 4 2nn为整数, 长度为 N的 Walsh序列个数为 N个。
或者, 所述扩展序列可以为伪噪声 ( Pseudo-Noise , 简称: PN )序列的 生成序列。
PN序列为一种伪随机序列, 如下公式(1) 中的 c(w)
(1)
其中, 为整数, 第一组序列 、 第二组序列 满足如下条件: x1 (w + 31) = (x1 (w + 3) + x1 (w)) mod 2
x2(w + 31) = (x2(w + 3) + x2 {n + 2) + x2 (w + 1) + x2 (w))mod 2
扩展序列可以为将上述 PN序列中的第一组序列 和第二组序列 分别 进行初始化的方式生成的序列。 取 wc=i600, 将第一组序列 Χι初始化为:
Figure imgf000032_0001
, 釆用初始 化参数 cimt将第二组序列 初始化为^ =∑'=。 ()'2' ,再将 ^、 代入公式( 1 ), 得到:
r(m) = ^={\-2- c(2m)) + j^=(\-2-c(2m + \)), m = 0,l,...,NRepetItIon -1 (2) 根据公式(2)得到的序列 r( )即可以作为扩展序列。
其中, WR^tltln为重复因子, 为一整数值, 不重复时可以取值为 1, m为 中间参数, 初始化参数 可以釆用根据所述终端所在小区的小区标识 Λς11和 / 或无线网络临时标识 确定的数值, 例如, 可以釆用公式(3)或 (4)确 定 Cmit;
cimt= (3)
或者^=216. 11 + " 1 (4)
进一步地, 所述初始化参数 c""t还可以釆用扩展序列标识、 所述终端所在 小区的小区标识 N 和 /或无线网络临时标识 确定的数值, 例如可以釆用 公式(5)或 (6)确定^ t:
Cinit = 2y · ^sequence + 2 · ΝΙΌ ( 5 )
cimt =2y-nsequence + r-N^ + nRmi (6) 其中《,^为扩展序列标识, X, y, z为预设的整数值。
下面釆用几个具体的实施例, 对本发明信号传输方法的技术方案进行 详细说明。
在本发明信号传输方法实施例二中,在上述实施例的基础上, 以 PRACH 信道为例介绍终端确定重复因子或扩展序列的具体方法。 本实施例中, 重复 因子或扩展序列由基站确定, 终端通过接收基站发送的包含所述重复因子或 扩展序列标识的通知消息来确定。
进一步地,所述通知消息中还包含所述 PRACH的物理资源块偏移《 。^ 和的子载波偏移《 __^ , 用以使终端确定 PRACH对应的频率资源。
进一步地, 所述通知消息中包含的所述信道的频率资源对应至少一个重 复因子或至少一个扩展序列标识。
具体地, 所述通知消息可以为系统信息块( System Information Block , 简 称: SIB) 消息, 和 /或下行控制信息 ( Downlink Control Information, 简称: DCI) 消息。 由于 PRACH分为基于竟争的 PRACH和非竟争的 PRACH, 通 常, 对于非竟争的 PRACH, 需要釆用 DCI消息作为通知消息。
进一步优选地, 若所述通知消息为 SIB消息, 则所述 PRACH的频率资 源的信息或 PRACH的重复因子或扩展序列标识位于所述 SIB消息的物理随 机接入信道配置信息 PRACH-Configlnfo 字段中或者物理随机接入信道机器 类型的通信配置信息 PRACH-ConfiglnfoMTC 字段中。 由于重复因子可以与 频率资源对应, 上述的 PRACH-Configlnfo字段或 PRACH-ConfiglnfoMTC字 段可以同时包含频率资源信息和其对应的重复因子的信息; 扩展序列也可以 与频率资源对应, 上述的 PRACH-Configlnfo字段或 PRACH-ConfiglnfoMTC 字段可以同时包含频率资源信息和其对应的扩展序列标识。
进一步优选地, 若所述通知消息为 DCI消息, 则所述 PRACH的频率资 源的信息或 PRACH的重复因子或扩展序列标识位于所述 DCI消息的扩展字 段中; 或者, PRACH的重复因子或扩展序列标识可以通过与 DCI消息中的 所述 PRACH的前导码索引 (Preamble Index )联合编码或者与所述 PRACH 的掩码索引 ( PRACH Mask Index )联合编码来指示。
进一步优选地, 终端通过接收基站发送的包含所述重复因子或扩展序列 标识的通知消息可以包括:
步骤一、 接收 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源的 信息或一组 PRACH的重复因子或一组扩展序列标识;
步骤二、 接收 DCI消息, 所述 DCI消息包含所述一组 PRACH的频率资 源中的一个频率资源的信息或所述一组 PRACH的重复因子中的一个重复因 子或者所述一组扩展序列标识中的一个扩展序列标识。
上述各种方式的通知消息中, 所述信道的频率资源的信息或重复因子或 扩展序列标识也可以位于其他字段中, 或者可以通过其他方式进行指示, 也 可以使用其他类型的消息作为通知消息, 本发明实施例对此不作限定。
本实施例, 针对 PRACH信道, 终端通过接收基站发送的包含有重复因 子或扩展码标识的 SIB消息或 DCI消息, 获得所述 PRACH信道的重复因子 或扩展码。
在本发明信号传输方法实施例三中, 在上述实施例的基础上, 以 PUSCH 信道为例介绍终端确定重复因子或扩展序列的具体方法。 本实施例中, 重复 因子或扩展序列由基站确定, 终端通过接收基站发送的包含所述重复因子或 扩展序列标识的通知消息来确定。
进一步地, 所述通知消息中还包含所述 PUSCH 的资源块指示和资源单 元集合指示。
具体地, 所述通知消息可以为无线资源控制( Radio Resource Control , 简 称: RRC ) 消息, 或者 DCI消息。 进一步优选地, 若所述通知消息为 RRC消息, 则所述 PUSCH的频率资 源的信息或 PUSCH的重复因子或扩展序列标识可以位于所述 RRC消息的物 理上行共享信道配置 PUSCH-Config字段中,或者位于物理上行共享信道专用 配置 PUSCH-ConfigDedicated字段中。 由于重复因子可以与频率资源对应, 上 述的 PUSCH-Config字段或 PUSCH-ConfigDedicated字段可以同时包含频率资 源信息和其对应的重复因子的信息; 扩展序列也可以与频率资源对应, 上述 的 PUSCH-Config字段或 PUSCH-ConfigDedicated字段可以同时包含频率资源 信息和其对应的扩展序列标识。
进一步优选地, 若所述通知消息为 DCI消息, 则所述 PUSCH的频率资 源的信息或 PUSCH的重复因子或扩展序列标识可以位于所述 DCI消息的扩 展字段中; 或者, PUSCH的资源单元集合指示或 PUSCH的重复因子或扩展 序列标识可以通过与 DCI消息中的所述 PUSCH的资源块指示信息联合编码 来指示。
进一步优选地, 终端接收基站发送的通知消息可以包括:
步骤一、 接收 RRC消息, 所述 RRC消息包含一组 PUSCH的频率资源 的信息或 PUSCH的重复因子或扩展序列标识;
步骤二、 接收 DCI消息, 所述 DCI消息包含所述一组 PUSCH的频率资 源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个 重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
上述各种方式的通知消息中, 所述信道的重复因子或扩展序列标识也可 以位于其他字段中, 或者可以通过其他方式进行指示, 也可以使用其他类型 的消息作为通知消息, 本发明实施例对此不作限定。
本实施例, 针对 PUSCH信道, 终端通过接收基站发送的包含有重复因 子或扩展码标识的 RRC消息或 DCI消息,获得所述 PUSCH信道的重复因子 或扩展码。
图 3为本发明信号传输方法实施例四的流程图, 本实施例在上述实施例 的基础上, 进一步针对 PRACH信道提供了终端根据重复因子或扩展序列的 长度确定传输子帧的具体方法。 本实施例的执行主体为终端。 如图 2所示, 本实施例确定传输子帧的方法可以包括:
步骤 301、根据所述重复因子或所述扩展序列的长度以及所述 PRACH的 格式确定传输子帧的个数 N。
具体地, 格式为 0或 1的 PRACH, 其传输子帧的个数为 1个; 格式为 2 或 3的 PRACH, 其传输子帧的个数为 2个, 若重复因子为 4, 或扩展序列的 长度为 4, 则, 格式为 0或 1的 PRACH经扩展后传输子帧个数为 4个, 而格 式为 2或 3的 PRACH经扩展后传输子帧的个数为 8个。
步骤 302、 根据随机接入配置索引和所述传输子帧的个数 N确定传输子 帧。
其中随机接入配置索引的数值可以由终端随机生成, 或者可以由基站事 先配置好并通过 SIB消息或 DCI消息等方式下发给终端。
进一步地, 步骤 302具体可以包括:
步骤 302a、 根据所述随机接入配置索引确定所述 PRACH在一个无线帧 中的可用子帧号。 的子帧作为传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中 对应的子帧作为起始子帧, 选择自起始子帧开始连续的 N个子帧作为传输子 帧。
下面, 结合具体的随机接入配置表具体描述确定传输子帧的方法, 终端 和基站都可以存储该随机接入配置表。
表 1为前导格式 0-3的随机接入配置表,表 1中第一列为 PRACH配置索 引, 第二、 三、 四列分别为 PRACH配置索引对应的前导格式、 系统帧号和 子帧号。
步骤 302a具体可以为,根据随机接入配置索弓 1的数值可以确定前导格式, 即第四列中的前导格式" Preamble Format" ,和 PRACH的可能起始子帧, 即第 四列中的子帧号" Subframe number", 确定了 PRACH—次传输的子帧数。 例 如随机接入配置索引为 41 , 则其前导格式为 2, 扩展前的子帧个数为 2个; 若重复因子或扩展序列的长度为 8, 即根据步骤 301确定出的扩展后的 PRACH的子帧个数为 16。 UE随机选择或者根据基站指示选择可选的子帧进 行 PRACH的传输。 相应地, 对于步骤 302b, 可以循环使用所述可用子帧号 确定 N个对应的子帧作为传输子帧, 应用于上述例子中, 可以选择这样 8个 子帧: {1、 4、 7、 1、 4、 7、 1、 4}作为起始子帧, 由于前导格式为 2的 PRACH 需要两个子帧, 其实际使用的 16个子帧可以为: {1、 2; 4、 5; 7、 8; 1、 2; 4、 5; 7、 8; 1、 2; 4、 5} ; 或者, 也可以以所述可用子帧号中任意一个在一 个无线帧中对应的子帧作为起始子帧, 选择自起始子帧开始连续的 N子帧作 为传输子帧, 对应于上述例子, 可以选择这样 16个子帧: {1、 2、 3、 4、 5、 6、 7、 8、 9、 0、 1、 2、 3、 4、 5、 6}、 或者 {4、 5、 6、 7、 8、 9、 0、 1、 2、 3、 4、 5、 6、 7、 8、 9}、 或者 {7、 8、 9、 0、 1、 2、 3、 4、 5、 6、 7、 8、 9、 0、 1、 2}。
表 1 前导格式 0-3的随机接入配置表
Figure imgf000038_0001
本实施例, 通过根据所述重复因子或所述扩展序列的长度以及所述
PRACH的格式确定传输子帧的个数, 再结合随机接入配置表的部分或全部, 根据随机接入配置索引确定扩展后的传输子帧。
需要说明的是, 实施例四中提供的确定传输子帧的方法为一种优选的方 法, 也可以釆用其他方法来确定传输子帧, 本发明实施例对此不作限制。 图 4为本发明信号传输方法实施例五的流程图, 本实施例在上述实施例 的基础上, 进一步针对 PUSCH信道提供了终端根据重复因子或扩展序列的 长度确定传输子帧的具体方法。 本实施例的执行主体为终端。 如图 4所示, 本实施例确定传输子帧的方法可以包括:
步骤 401、根据所述重复因子或所述扩展序列的长度以及所述 PUSCH的 格式确定传输子帧的个数 N。
步骤 402、 釆用原有 PUSCH的传输子帧作为起始子帧, 选择自起始子帧 开始连续的 N子帧作为传输子帧。
由于 PUSCH 在扩展之前只有一个传输子帧, 因此可以直接釆用原有 PUSCH的传输子帧作为起始子帧。
具体地, 如果在步骤 401中确定的传输子帧个数为 4, PUSCH在扩展之 前的传输子帧为子帧 2, 则扩展后可以选择这样的 4个子帧: {2、 3、 4、 5}。
本实施例, 通过根据所述重复因子或所述扩展序列的长度以及所述 PUSCH的格式确定传输子帧的个数,并选择自原有子帧开始连续的 N子帧作 为传输子帧作为扩展后的传输子帧。
需要说明的是, 实施例四中提供的确定传输子帧的方法为一种优选的方 法, 也可以釆用其他方法来确定传输子帧, 本发明实施例对此不作限制。
图 5为本发明信号传输方法实施例六的流程图, 本实施例在上述实施例 的基础上, 进一步针对 PUSCH信道提供了终端在所述传输子帧上发送信号 的具体方法。 本实施例的执行主体为终端。 如图 4所示, 本实施例的在所述 传输子帧上发送信号的方法可以包括:
步骤 501、 在子帧号为 ml 的子帧上接收基站发送的 DCI消息或者混 合自动重传请求应答 HARQ-ACK消息, 其中, ml子帧在 pl+4子帧之前, p 1为一次 PUSCH传输的末尾子帧的子帧号。
步骤 502、 若所述 DCI消息或者 HARQ-ACK消息表明所述基站已成功 接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传输, 其中, kl 为预设的整数。
具体地, kl例如可以设为 3 , kl的设置可以用于使终端在接收到 DCI 消息或者 HARQ-ACK 消息之后的 kl 个子帧期间对所述 DCI 消息或者 HARQ-ACK 消息进行分析, 以判断其是否表明所述基站已成功接收本次 PUSCH传输的信号。
若所述 DCI消息或者 HARQ-ACK消息未表明所述基站已成功接收本次 PUSCH传输的信号, 例如终端所接收到的 DCI消息或者 HARQ-ACK消息 为针对其他信道的或非本次 PUSCH传输的响应消息, 则终端可以不对本次 PUSCH做任何处理, 仍按上述实施例中, 例如步骤 302, 所确定的传输子帧 发送信号。
现有技术中,通常在 pl+4子帧或 pl+4子帧之后的子帧接收基站发送 的 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 也就是说, 需要 等一次 PUSCH传输完成之后再过至少 4毫秒 (4个子帧 ) 才会接收基站 发送的 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 这就导致, 即使即基站, 在一次 PUSCH传输完成之前就已经成功地接收了终端发送 的信号, 但还是会继续接收重复的信号, 导致信号传输时间的延长以及传 输资源的浪费。 例如, 一次 PUSCH传输的子帧数目为 8 , 可能出现, 基 站在第 4个子帧就已成功接收终端发送的信号, 但在现有技术的方案中, 终端需要等到至少第 12个子帧, 才开始接收基站发送的响应消息, 即在 第 4个子帧之后的 8个子帧的传输实际上是不必要的。
而在本实施例中, 将接收 DCI 消息或者混合自动重传请求应答 HARQ-ACK消息的时刻提前到 pl+4子帧之前, 而如果所述 DCI消息或者 HARQ-ACK消息表明所述基站已成功接收本次 PUSCH传输的信号, 则终 端可以提前终止本次 PUSCH传输, 从而可以节省传输资源。
图 6为本发明信号传输方法实施例七的流程图, 本实施例在上述实施例 的基础上, 进一步针对 PRACH信道提供了终端在所述传输子帧上发送信号 的具体方法。 本实施例的执行主体为终端。 如图 5所示, 本实施例的在所述 传输子帧上发送信号的方法可以包括:
步骤 601、确定时间窗的起始子帧的子帧号 w和时间窗的长度,其中, 时间窗的起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末 尾子帧的子帧号。
进一步具体地, 可以根据 w=p2-tl或者 w=n2+t2确定时间窗的起始子 帧 w, 其中, tl和 t2可以为预设的整数, n2为一次 PRACH传输的起始子 帧的子帧号。 例如, 若一次 PRACH传输的子帧为 {0、 1、 2、 3、 4、 5、 6、 7、 8} , n2为 1 , p2为 8, 可以将 tl设置为 3 , 则时间窗的起始子帧的子 帧号为 5。 由于一次 PRACH传输的子帧的子帧号可能为非连续的整数, 例如为 {7、 8、 9、 0、 1、 2、 3、 4} , tl或 t2的数值需要与本次 PRACH传 输所用的子帧相适应, 使得时间窗的起始子帧 w位于本次 PRACH传输所 用的子帧、 以及本次 PRACH传输的末尾子帧之后的 3个子帧之内, 以达 到节省传输资源的目的。
步骤 602、 在所述时间窗内子帧号为 m2的子帧接收基站发送的随机 接入响应 RAR。
步骤 603、 在 m2+k2子帧终止本次传输, 其中, k2为预设的整数。 具体地, k2例如可以设为 3 , k2的设置可以用于使终端在接收到 RAR 之后的 k2 个子帧期间对所述 RAR进行分析, 以判断其是否为针对本次 PRACH传输的响应 ,以及其是否表明所述基站已成功接收本次 PRACH传输 的信号。
本实施例中, 步骤 601与现有技术的不同之处在于, 现有技术中的时 间窗的起始子帧设置在 p2+3之后, 而本实施例的步骤 601 中将时间窗的 起始子帧设置在 p2+3之前。 现有技术中, 需要等一次 PRACH传输完成 之后再过 3毫秒(3个子帧) 才会开启用于接收基站发送的响应消息的时 间窗, 这就导致, 即使接收端, 即基站, 在一次 PRACH传输完成之前就 已经成功地接收了发送端, 即终端设备, 发送的信号, 但还是会继续接收 重复的信号, 导致信号传输时间的延长以及传输资源的浪费。
而本实施例中, 通过将接收 RAR的时间窗提前, 是终端在判断出基站已 成功接收本次 PRACH传输的信号之后 ,提前终止本次 PRACH传输,从而可 以节省传输资源。
图 7为本发明信号传输方法实施例八的流程图, 本实施例在上述任意实 施例的基础上, 进一步介绍了终端在发送信号之前对重复因子或扩展序列进 行选择的方法。 本实施例的执行主体为终端, 本实施例中, 终端可以通过基 站发送的通知消息获得多种可能的重复因子或扩展序列, 终端在发送信号之 前可以通过一定算法进行计算或评估, 以确定是否需要使用重复因子或扩展 序列来发送信号。 如图 6所示, 本实施例的方法可以包括:
步骤 701、 接收基站发送的系统消息, 所述系统消息中包含所述信道的 接收目标功率。
步骤 702、 根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列发送所述信道。
若是, 则执行步骤 703; 若否, 则执行步骤 704。
步骤 703、 确定所述信道的重复因子, 或确定所述信道的扩展序列的长 度并确定所述扩展序列的长度对应的扩展序列。
具体地, 所述信道的重复因子可以是事先与基站约定好的一个或多个数 值, 所述信道的扩展序列也可以是是事先与基站约定好的一个或多个序列, 多个序列的长度可以不相同。 具体实现时, 所述一个或多个重复因子或一个 或多个扩展序列, 可以通过步骤 701 中的系统消息进行约定, 也可以通过上 述的实施例三或实施例四中的任意一种通知消息进行约定, 或者, 也可以通 过其他方式进行约定, 本发明对此不作限定。
相应地, 步骤 703可以为在约定好的一个或多个重复因子选择一个, 或 在一个或多个扩展序列中选择一个。
进一步具体地, 步骤 703 中确定所述信道的重复因子或确定所述信道的 扩展序列的长度, 可以包括:
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或者, 确定扩展序列的长度, 再根据该扩展序列的长度选择 一个扩展序列。 例如, 终端的最大发射功率为 23dB, 路径损耗为 100dB, 所 述信道的接收目标功率为 -60dB,这时,基站所接收的每个子帧上均存在 13dB 的功率差值, 根据无线通信的理论以及经验公式可以得出, 重复 20次传输可 以使接收端成功接收信号, 因此, 重复因子或扩展序列的长度可以设为 20。
步骤 704、 按常规方式发送所述信道。
上述的例子中, 如果终端的最大发射功率大于或等于 40dB, 则可以不使 用重复因子或扩展序列对信道进行扩展, 而按常规方式发送所述信道上的信 号。
本实施例, 终端通过在发送信号前先判断是否需要使用重复因子或扩展 序列对信道进行扩展, 并可以通过计算选择最适合的重复因子或扩展序列, 从而能够使终端更合理地利用传输资源。
上述实施例, 相对应地, 由于基站在接收之前无法得知终端是否釆用了 重复因子或扩展序列, 也无法得知终端选择了哪一个重复因子或扩展序列, 因此, 在接收时需要同时在所有可能的重复因子或扩展序列所确定的传输子 帧上进行接收。
下面介绍本发明提供的信号传输方法实施例一中的基站对应执行的方 法, 其方法包括:
确定信道的频率资源;
确定信道的重复因子或扩展序列;
根据所述重复因子或扩展序列的长度确定时域资源, 所述时域资源为传 输子帧;
釆用所述信道的所述频率资源和传输子帧接收信号。
在本发明信号传输方法实施例九中, 增加了基站在确定重复因子或扩展 序列之后, 如何通知终端的方法。 本实施例中, 基站通过向终端发送通知消 息的方式将所确定的重复因子或扩展序列的信息下发给终端。 具体地, 所述 通知消息中包含信道的重复因子或扩展序列标识, 以指示所述终端根据所述 通知消息确定信道的重复因子或扩展序列。
进一步具体地, 由于重复因子或扩展序列可以与信道的频率资源相对应, 因此, 所述通知消息中可以包含所述信道的频率资源和所述频率资源对应的 重复因子或扩展序列标识。
在本发明信号传输方法实施例十中, 进一步具体地, 以 PRACH信道为 例介绍通知消息的具体形式。 对于 PRACH信道, 所述通知消息可以为 SIB 消息, 或者 DCI 消息。 由于 PRACH分为基于竟争的 PRACH和非竟争的 PRACH, 通常, 对于非竟争的 PRACH, 需要釆用 DCI消息作为通知消息。
进一步优选地, 若所述通知消息为 SIB消息, 则所述 PRACH的频率资 源的信息或 PRACH 的重复因子或扩展序列标识可以位于所述 SIB 消息的 PRACH-Configlnfo字段中或者 PRACH-ConfiglnfoMTC字段中。 由于重复因 子可 以 与 频率 资源对应 , 上述的 PRACH-Configlnfo 字段或 PRACH-ConfiglnfoMTC 字段可以同时包含频率资源信息和其对应的重复因 子的信息; 扩展序列也可以与频率资源对应, 上述的 PRACH-Configlnfo字段 或 PRACH-ConfiglnfoMTC 字段可以同时包含频率资源信息和其对应的扩展 序列标识。 进一步优选地, 若所述通知消息为 DCI消息, 则所述 PRACH的频率资 源的信息或 PRACH的重复因子或扩展序列标识位于所述 DCI消息的扩展字 段中; 或者, PRACH的重复因子或扩展序列标识可以通过与 DCI消息中的 所述 PRACH的前导码索引 (Preamble Index )联合编码或者与所述 PRACH 的掩码索引 ( PRACH Mask Index )联合编码来指示。
进一步优选地, 所述基站向所述终端发送通知消息, 可以包括: 步骤一、 向所述终端发送 SIB消息, 所述 SIB消息包含一组 PRACH的 频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识;
步骤二、向所述终端发送 DCI消息,所述 DCI消息包含所述一组 PRACH 的频率资源的信息中的一个频率资源的信息或所述一组 PRACH的重复因子 中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
上述各种方式的通知消息中, 所述信道的重复因子或扩展序列标识也可 以位于其他字段中, 或者可以通过其他方式进行指示, 也可以使用其他类型 的消息作为通知消息, 本发明实施例对此不作限定。
本实施例, 针对 PRACH信道, 基站通过向终端发送的包含有重复因子 或扩展码标识的 SIB消息或 DCI消息, 将所述 PRACH信道的重复因子或扩 展码通知给终端
在本发明信号传输方法实施例十一中, 在上述实施例的基础上, 以 PUSCH信道为例介绍基站向终端通知重复因子或扩展序列的具体方法。
具体地, 对于 PUSCH信道, 所述通知消息可以为无线资源控制 (Radio
Resource Control, 简称: RRC ) 消息, 或者 DCI消息。
进一步优选地, 若所述通知消息为 RRC消息, 则所述 PUSCH的频率资 源的信息或 PUSCH的重复因子或扩展序列标识可以位于所述 RRC消息的物 理上行共享信道配置 PUSCH-Config字段中,或者位于物理上行共享信道专用 配置 PUSCH-ConfigDedicated字段中。 由于重复因子可以与频率资源对应, 上 述的 PUSCH-Config字段或 PUSCH-ConfigDedicated字段可以同时包含频率资 源信息和其对应的重复因子的信息; 扩展序列也可以与频率资源对应, 上述 的 PUSCH-Config字段或 PUSCH-ConfigDedicated字段可以同时包含频率资源 信息和其对应的扩展序列标识。
进一步优选地, 若所述通知消息为 DCI消息, 则所述 PUSCH的频率资 源的信息或 PUSCH的重复因子或扩展序列标识位于所述 DCI消息的扩展字 段中; 或者, PUSCH的资源单元集合指示或 PUSCH的重复因子或扩展序列 标识可以通过与 DCI消息中的所述 PUSCH的资源块指示信息联合编码来指 示。
进一步优选地, 所述向所述终端发送通知消息, 可以包括:
步骤一、 向所述终端发送 RRC消息, 所述 RRC消息包含一组 PUSCH 的频率资源的信息或一组 PUSCH的重复因子或一组扩展序列标识;
步骤二、向所述终端发送 DCI消息,所述 DCI消息包含所述一组 PUSCH 的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子 中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
上述各种方式的通知消息中, 所述信道的重复因子或扩展序列标识也可 以位于其他字段中, 或者可以通过其他方式进行指示, 也可以使用其他类型 的消息作为通知消息, 本发明实施例对此不作限定。
本实施例, 针对 PUSCH信道, 基站通过向终端发送的包含有重复因子 或扩展码标识的 RRC消息或 DCI消息,将所述 PUSCH信道的重复因子或扩 展码通知给终端。
在本发明信号传输方法实施例十二中, 针对 PRACH介绍基站根据重复 因子或扩展序列的长度确定传输子帧的方法。 本实施例的执行主体为基站, 本实施例中, 基站执行的根据重复因子或扩展序列的长度确定传输子帧的方 法可以与本发明信号传输方法实施例四中终端执行的根据重复因子或扩展序 列的长度确定传输子帧的方法相同, 请参见本发明信号传输方法实施例四以 及图 3所示的方法, 此处不再赘述。
需要说明的是, 本发明信号传输方法实施例四的步骤 302中, 随机接入 配置索引的数值可以由终端随机生成,或者可以由基站事先配置好并通过 SIB 消息或 DCI消息等方式下发给终端; 而在本实施例十一中, 该随机接入配置 索引的数值可以由基站根据一定算法配置, 或者随机生成。
在本发明信号传输方法实施例十三中, 针对 PUSCH介绍基站根据重复 因子或扩展序列的长度确定传输子帧的方法。 本实施例的执行主体为基站, 本实施例中, 基站执行的根据重复因子或扩展序列的长度确定传输子帧的方 法可以与本发明信号传输方法实施例五中终端执行的根据重复因子或扩展序 列的长度确定传输子帧的方法相同, 请参见本发明信号传输方法实施例五以 及图 4所示的方法, 此处不再赘述。
图 8为本发明信号传输方法实施例十四的流程图, 本实施例在上述实施 例的基础上, 进一步针对 PUSCH信道提供了终端在所述传输子帧上发送信 号的具体方法。 本实施例的执行主体为终端。 如图 8所示, 本实施例的在所 述传输子帧上发送信号的方法可以包括:
步骤 801、 在子帧号为 ml 的子帧上向所述终端发送 DCI 消息或者 HARQ-ACK混合自动重传请求应答消息 ,所述 DCI消息或者 HARQ-ACK消 息表明所述基站已成功解调本次 PUSCH传输的信号,其中, ml子帧在 pl+4 子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号。
步骤 802、 在 ml+kl子帧停止接收本次传输的信号, 其中, kl为预设 的整数。
具体地, kl例如可以设为 3 , kl的设置可以用于使终端在接收到 DCI 消息或者 HARQ-ACK 消息之后的 kl 个子帧期间对所述 DCI 消息或者 HARQ-ACK 消息进行分析, 以判断其是否表明所述基站已成功接收本次 PUSCH传输的信号。 送的 DCI消息或者 HARQ-ACK消息 , 而本实施例中 , 将发送 DCI消息或者 HARQ-ACK消息的时刻提前到 pl+4子帧之前, 使得基站在确认已成功接 收本次 PUSCH传输的信号之后, 及时通知终端, 使终端终止传输, 从而 可以节省传输资源。
图 9为本发明信号传输方法实施例十五的流程图, 本实施例在上述实施 例的基础上, 进一步针对 PRACH信道提供了基站在所述传输子帧上接收信 号的具体方法。 本实施例的执行主体为基站。 如图 9所示, 本实施例的方法 可以包括:
步骤 901、确定时间窗的起始子帧的子帧号 w和时间窗的长度,其中, 时间窗的起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末 尾子帧的子帧号。
步骤 901与现有技术的不同之处在于, 现有技术中的时间窗的起始子 帧设置在 p2+3之后, 而本实施例的步骤 901 中将时间窗的起始子帧设置 在 2+3之前。
进一步具体地, 可以根据 w=p2-tl或者 w=n2+t2确定时间窗的起始子 帧 w, 其中, tl和 t2可以为预设的整数, n2为一次 PRACH传输的起始子 帧的子帧号。 例如, 若一次 PRACH传输的子帧为 {0、 1、 2、 3、 4、 5、 6、 7、 8} , n2为 1 , p2为 8, 可以将 tl设置为 3 , 则时间窗的起始子帧的子 帧号为 5。 由于一次 PRACH传输的子帧的子帧号可能为非连续的整数, 例如为 {7、 8、 9、 0、 1、 2、 3、 4} , tl或 t2的数值需要与本次 PRACH传 输所用的子帧相适应, 使得帧时间窗的起始子帧 w位于本次 PRACH传输 所用的子帧、 以及本次 PRACH传输的末尾子帧之后的 3个子帧之内, 以 达到节省传输资源的目的。
步骤 902、 在所述时间窗内子帧号为 m2的子帧向所述终端发送随机 接入响应 RAR。
步骤 903、 在 m2+k2子帧终止本次传输, 其中, k2为预设的整数。 具体地, k2例如可以设为 3 , k2的设置可以用于使终端在接收到 RAR 之后的 k2 个子帧期间对所述 RAR进行分析, 以判断其是否为针对本次 PRACH传输的响应 ,以及其是否表明所述基站已成功接收本次 PRACH传输 的信号。
而本实施例中, 通过将接收 RAR的时间窗提前, 是终端在判断出基站已 成功接收本次 PRACH传输的信号之后 ,提前终止本次 PRACH传输,从而可 以节省传输资源。
图 10为本发明信号传输方法实施例十六的流程图,本实施例与终端所 执行的方法实施例八相对应,在上述任意基站所执行的方法实施例的基础上, 进一步介绍了基站如何接收终端在信道上发送的信号的方法。 如图 10所示, 本实施例的信号传输方法可以包括:
步骤 1001、 向所述终端发送系统消息, 所述系统消息中包含所述信道的 接收目标功率, 以使所述终端根据最大发射功率、 路径损耗和所述信道的接 收目标功率, 确定是否需要使用重复因子或扩展序列在所述信道发送信号。
具体实现时, 基站和终端可以事先约定可用的一个或多个重复因子, 或可用的一个或多个扩展序。
进一步地, 所述可用的重复因子或者可用的扩展序列的扩展序列标识可 以包含在所述系统消息中; 或者, 这些信息可以包含在上述的实施例九、 实 施例十、 或实施例十一中的任意一种通知消息中。 上述可用的重复因子或者 可用的扩展序列也可以通过其他方式进行约定, 本发明对此不作限定。
步骤 1002、 确定所述信道的可能的重复因子或扩展序列。
步骤 1003、 确定所述信道的各个可能的重复因子传输子帧或各个可能的 扩展序列的长度所对应的传输子帧。
步骤 1004、 釆用所述信道的传输子帧接收信号。
由于基站事先约定了可用的至少一个重复因子或至少一个扩展序列, 例 如通过步骤 1001中的系统消息发送给终端,但^ ^站在接收信号之前无法得 知终端是否釆用了重复因子或扩展序列, 也无法得知终端选择了哪一个重复 因子或扩展序列, 因此, 在接收时需要同时在所有可能的重复因子或扩展序 列所确定的传输子帧上进行接收。 这种方式下, 基站会消耗相对较多的传输 资源, 因此, 在具体实现时, 可以根据实际条件确定有限数量的可用重复因 子或可用扩展序列的数量。
本实施例, 基站通过向终端发送包含信道的接收目标功率的消息, 使得 终端能够判断是否需要使用重复因子或扩展序列对所述信道进行扩展, 以及 使得终端能够选择合适的重复因子或扩展序列, 从而使得终端能够更合理的 利用传输资源。
图 11 为本发明信号传输装置实施例一的结构示意图, 本实施例的装置 技术方案。 如图 11所示, 本实施例的信号传输装置, 可以包括: 重复因子或 扩展序列确定模块 11、 传输子帧确定模块 12和发送模块 13 , 其中,
重复因子或扩展序列确定模块 11 ,用于确定信道的重复因子或扩展序列; 传输子帧确定模块 12, 用于根据所述重复因子或扩展序列的长度确定时 域资源, 所述时域资源为传输子帧;
发送模块 13 , 用于釆用所述信道的所述传输子帧发送信号。
本实施例的装置的技术效果为, 集成了该信号传输装置的终端通过信道 的重复因子或扩展序列, 并根据所述重复因子或扩展序列的长度增加该信道 的传输子帧, 延长发射时间, 从而增加该信道的发射能量; 从而实现扩展该 信道的覆盖。 图 12 为本发明信号传输装置实施例二的结构示意图, 本实施例的装置 技术方案。 如图 12所示, 本实施例的信号传输装置在图 11所示装置的基础 上, 进一步地, 还可以包括:
频率资源确定模块 14, 该频率资源确定模块 14用于确定信道的频率资 源;
相应地, 所述发送模块 13具体用于: 釆用所述信道的所述频率资源和所 述传输子帧发送信号。
进一步地, 所述信道可以为物理随机接入信道 PRACH或物理上行共享 信道 PUSCH。
进一步地, 若所述信道为 PRACH, 则所述频率资源确定模块 14具体可 以用于:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《P¾3。ffSf!t、 PRACH对应的资源块数目和
PRACH的子载波偏移 LmCTffsrt , 确定 PRACH的频率资源。
进一步地, 所述 PRACH对应的资源块数目可以为 1、 2或 3 , 或者可以 为 n/12, 其中, n为小于 12的整数。
具体地, 当频率资源确定模块 14用于根据 PRACH 的物理资源块偏移 «P¾30ffset和 PRACH对应的资源块数目, 确定 PRACH 的频率资源时, 所述 PRACH对应的资源块数目的最小粒度即一个资源块, 因此 PRACH对应的资 源块数目可以为整数,例如 1、 2或 3;当频率资源确定模块 14用于根据 PRACH 的物理资源块偏移《P¾3。ffSf!t、 PRACH对应的资源块数目和 PRACH的子载波偏 移 ^。^ , 确定 PRACH的频率资源时, 所述 PRACH对应的资源块数目的 最小粒度为一个子载波, 由于一个资源块中包含 12个子载波, 因此 PRACH 对应的资源块数目可以为 n/12, 例如 1/12、 1/2、 1/4、 5/12等。
而现有技术中, PRACH对应的资源块数目通常为 6, 可以看出, 本实施 例的信号传输装置可以使终端发送信号时频率资源分配的粒度更小, 因而更 加灵活。
进一步地, 若所述信道为 PUSCH, 则所述频率资源确定模块 14具体可 以用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
进一步地, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。 图 13 为本发明信号传输装置实施例三的结构示意图, 本实施例的装置 技术方案。 如图 13所示, 本实施例的信号传输装置在上述装置的基础上, 进 一步地, 还可以包括: 通知消息接收模块 15 ,
该通知消息接收模块 15, 可以用于接收基站发送的通知消息, 所述通知 消息中包含所述信道的重复因子; 则所述重复因子或扩展序列确定模块 11 , 可以具体用于, 获取所述通知消息中包含的所述信道的重复因子, 确定一个 重复因子; 或者,
该通知消息接收模块 15, 可以用于接收基站发送的通知消息, 所述通知 消息中包含扩展序列标识; 则所述重复因子或扩展序列确定模块 11 , 可以具 体用于, 根据所述扩展序列标识, 确定一个扩展序列。
进一步地, 若所述信道为 PRACH, 则所述通知消息中还可以包含所述 PRACH的物理资源块偏移《 。ffsrt和的子载波偏移 ^_^ , 以使所述终端根 据所述物理资源块偏移„ 。ffsrt和的子载波偏移 ^_。^确定 PRACH 的频率 资源。
进一步地, 若所述信道为 PUSCH, 则所述通知消息中还可以包含所述
PUSCH的资源块指示和资源单元集合指示, 以使所述终端根据所述 PUSCH 的资源块指示和资源单元集合指示确定 PUSCH的频率资源。
进一步地, 所述通知消息中包含的所述信道的频率资源可以对应至少一 个重复因子或至少一个扩展序列标识。
进一步地, 若所述信道为 PRACH, 则所述通知消息可以为系统信息块
SIB消息和 /或下行控制信息 DCI消息。
具体地, 若所述通知消息为 SIB消息, 则所述 PRACH的频率资源的信 息或 PRACH的重复因子或扩展序列标识可以位于所述 SIB消息的物理随机 接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型 的通信配置信息 PRACH-ConfiglnfoMTC字段中。 或者, 若所述通知消息为 DCI消息, 则所述 PRACH的频率资源的信息 或 PRACH的重复因子或扩展序列标识可以位于所述 DCI消息的扩展字段中, 或者所述 PRACH的重复因子或扩展序列标识可以通过与所述 PRACH的前导 码索引联合编码来指示。
或者, 所述通知消息可以为 SIB消息和 DCI消息, 所述通知消息接收模 块 15 , 可以包括: SIB接收单元 151和第一 DCI接收单元 152 , 其中,
SIB接收单元 151 , 可以用于接收 SIB 消息, 所述 SIB 消息包含一组 PRACH的频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识; 第 ― DCI接收单元 152 , 可以用于接收 DCI消息, 所述 DCI消息包含所 述一组 PRACH的频率资源中的一个频率资源的信息或所述一组 PRACH的重 复因子中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列标 识。
进一步地, 或者, 若所述信道为 PUSCH, 则所述通知消息可以为 RRC 消息或 DCI消息。
具体地, 若所述通知消息为 RRC消息, 则所述 PUSCH的频率资源的信 息或 PUSCH的重复因子或扩展序列标识可以位于所述 RRC消息的物理上行 共享信道配置 PUSCH-Config 字段或者物理上行共享信道专用配置 PUSCH-ConfigDedicated字段中。
或者, 若所述通知消息为 DCI消息, 则所述 PUSCH的频率资源的信息 或 PUSCH的重复因子或扩展序列可以标识位于所述 DCI消息的扩展字段中; 或者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识可以通过 与所述 PUSCH的资源块指示信息联合编码来指示。
或者, 所述通知消息可以为 RRC消息和 DCI消息, 所述通知消息接收 模块 15 , 可以包括: RRC接收单元 153和第二 DCI接收单元 154 , 其中, RRC接收单元 153 , 可以用于接收 RRC消息, 所述 RRC消息包含一组
PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标识;
第二 DCI接收单元 154 , 可以用于接收 DCI消息, 所述 DCI消息包含所 述一组 PUSCH 的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个重复因子或者所述一组扩展序列标识中的一个 扩展序列标识。 本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
图 14 为本发明信号传输装置实施例四的结构示意图, 本实施例的装置 技术方案。 如图 14所示, 本实施例的信号传输装置在上述装置的基础上, 进 一步地, 所述重复因子或扩展序列确定模块 11可以包括: 目标功率获取单元 111、 判断单元 112和确定单元 113 , 其中,
目标功率获取单元 111 可以用于, 接收基站发送的系统消息, 所述系统 消息中包含所述信道的接收目标功率;
判断单元 112可以用于, 根据最大发射功率、 路径损耗和所述信道的接 收目标功率, 确定是否需要使用重复因子或扩展序列发送所述信道;
确定单元 113 可以用于, 若是, 则确定所述信道的重复因子; 或确定所 进一步地, 所述确定单元具体可以用于:
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或确定所述信道的扩展序列的长度并确定所述扩展序列的长 度对应的扩展序列。
进一步地, 所述扩展序列可以为沃尔什 Walsh序列; 或者, 所述扩展序 列可以为伪噪声 PN序列的生成序列。
进一步地, 所述扩展序列为 PN序列的生成序列可以包括:
所述扩展序列可以为釆用所述终端所在小区的小区标识和 /或无线网络 临时标识作为 PN序列的初始化参数生成的序列; 或者
所述扩展序列可以为釆用所述扩展序列标识、 所述终端所在小区的小区 标识和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
图 15 为本发明信号传输装置实施例五的结构示意图, 本实施例的装置 技术方案。 如图 15所示, 本实施例的信号传输装置在上述装置的基础上, 进 一步地, 所述传输子帧确定模块 12可以包括: 传输子帧个数确定单元 121和 传输子帧确定单元 122, 其中, 若所述信道为 PUSCH, 贝' J
传输子帧个数确定单元 121 , 可以用于根据所述重复因子或所述扩展序 列的长度以及所述 PRACH的格式确定时域资源的个数 N;
传输子帧确定单元 122, 可以用于根据随机接入配置索引和所述传输子 帧的个数 N确定传输子帧。
进一步地, 所述传输子帧确定单元 122具体可以用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 进一步地, 所述发送模块 13 , 包括: 时间窗确定单元 131、 RAR接收 单元 132和第二终止单元 133 , 其中,
时间窗确定单元 131 , 可以用于确定时间窗的起始子帧的子帧号 w和 时间窗的长度, 其中, 时间窗的起始子帧 w子帧在 p2+3子帧之前, p2为 一次 PRACH传输的末尾子帧的子帧号;
RAR接收单元 132, 可以用于在所述时间窗内子帧号为 m2的子帧接 收基站发送的随机接入响应 RAR;
第二终止单元 133 , 可以用于在 m2+k2子帧终止本次传输, 其中, k2 为预设的整数。
进一步地, 所述时间窗确定单元 131 , 可以包括: 时间窗起始子帧确 定子单元 1311 , 该时间窗起始子帧确定子单元 1311 , 具体可以用于根据 w=p2-tl或者 w=n2+t2确定时间窗的起始子帧 w, 其中, tl和 t2为预设的 整数, n2为一次 PRACH传输的起始子帧的子帧号。
进一步地, 为了支持 PUSCH信道, 贝' J ,
所述传输子帧个数确定单元 121 , 可以用于根据所述重复因子或所述扩 展序列的长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元 122, 可以用于釆用原有 PUSCH的传输子帧作为 起始子帧 m, 选择自起始子帧 m开始连续的 N个子帧作为传输子帧。
进一步地, 所述发送模块 13 , 可以包括: HARQ-ACK消息接收单元 134 和第一终止单元 135 , 其中,
HARQ-ACK消息接收单元 134,可以用于在子帧号为 ml的子帧上接收 基站发送的 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号; 第一终止单元 135 , 用于若所述 DCI消息或者 HARQ-ACK消息表明所 述基站已成功接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传 输, 其中, kl为预设的整数。
本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
图 16 为本发明信号传输装置实施例六的结构示意图, 本实施例的装置
1600可以集成在基站上, 用于执行上述的方法实施例中对应基站执行的技术 方案。 如图 16所示, 本实施例的信号传输装置, 可以包括: 重复因子或扩展 序列确定模块 21、 传输子帧确定模块 22和接收模块 23 , 其中,
重复因子或扩展序列确定模块 21 , 可以用于确定信道的重复因子或扩展 序列;
传输子帧确定模块 22, 可以用于根据所述重复因子或扩展序列的长度确 定时域资源, 所述时域资源为传输子帧;
接收模块 23 , 可以用于釆用所述信道的所述传输子帧接收信号。
本实施例的装置的技术效果为, 集成了该信号传输装置的基站通过信道 的重复因子或扩展序列, 并根据所述重复因子或扩展序列的长度增加该信道 的传输子帧, 延长接收时间, 从而增加该信道的接收能量; 从而实现扩展该 信道的覆盖。
图 17 为本发明信号传输装置实施例七的结构示意图, 本实施例的装置 1700可以集成在基站上, 用于执行上述的方法实施例中对应基站执行的技术 方案。 如图 17所示, 本实施例的信号传输装置在图 16所示装置的基础上, 进一步地, 还可以包括: 频率资源确定模块 24,
该频率资源确定模块 24, 可以用于确定信道的频率资源;
相应地, 所述接收模块 23具体可以用于: 釆用所述信道的所述频率资源 和所述传输子帧接收信号。
进一步地, 所述信道为物理随机接入信道 PRACH或物理上行共享信道 PUSCH0
进一步地, 若所述信道为 PRACH, 则所述频率资源确定模块 24具体可 以用于:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。ffSfrt、 PRACH对应的资源块数目和 PRACH的子载波偏移 LmCTffsrt , 确定 PRACH的频率资源。
进一步地, 所述 PRACH对应的资源块数目为 1、 2、 或 3 , 或者为 n/12, 其中, n为小于 12的整数。
具体地, 当频率资源确定模块 24用于根据 PRACH 的物理资源块偏移 。ffSfit和 PRACH对应的资源块数目, 确定 PRACH 的频率资源时, 所述 PRACH对应的资源块数目的最小粒度即一个资源块, 因此 PRACH对应的资 源块数目可以为整数,例如 1、 2或 3;当频率资源确定模块 14用于根据 PRACH 的物理资源块偏移《 。ffSf!t、 PRACH对应的资源块数目和 PRACH的子载波偏 移 _。^ , 确定 PRACH的频率资源时, 所述 PRACH对应的资源块数目的 最小粒度为一个子载波, 由于一个资源块中包含 12个子载波, 因此 PRACH 对应的资源块数目可以为 n/12, 例如 1/12、 1/2、 1/4、 5/12等。
而现有技术中, PRACH对应的资源块数目通常为 6, 可以看出, 本实施 例的信号传输装置可以使信号传输时频率资源分配的粒度更小, 因而更加灵 活。
进一步地, 若所述信道为 PUSCH, 则所述频率资源确定模块 24具体可 以用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
进一步地, 所述 PUSCH的资源单元集合指示用于确定虚拟子载波。 图 18 为本发明信号传输装置实施例八的结构示意图, 本实施例的装置 1800可以集成在基站上, 用于执行上述的方法实施例中对应基站执行的技术 方案。 如图 18所示, 本实施例的信号传输装置在图 17所示装置的基础上, 进一步地, 还可以包括: 通知消息发送模块 25,
该通知消息发送模块 25, 可以用于向所述终端发送通知消息, 所述通知 消息中包含信道的重复因子或扩展序列标识, 以指示所述终端根据所述通知 消息确定信道的重复因子或扩展序列。
进一步地, 若所述信道为 PRACH, 所述通知消息中还可以包含所述 PRACH的物理资源块偏移 dt和 PRACH的子载波偏移 Lmerffsrt , 以使所 述终端根据所述通知消息确定所述 PRACH的频率资源。
进一步地, 若所述信道为 PUSCH, 所述通知消息中还可以包含所述 PUSCH 的资源块指示和资源单元集合指示包含在向所述终端发送通知消息 中, 以使所述终端根据所述通知消息确定所述 PUSCH的频率资源。
进一步地, 所述通知消息中包含的所述信道的频率资源可以对应至少一 个重复因子或至少一个扩展序列标识。
进一步地,若所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消 息和 /或下行控制信息 DCI消息。
具体地, 若所述通知消息为 SIB消息, 则所述 PRACH的频率资源的信 息或 PRACH的重复因子或扩展序列标识可以位于所述 SIB消息的物理随机 接入信道配置信息 PRACH-Configlnfo 字段或者物理随机接入信道机器类型 的通信配置信息 PRACH-ConfiglnfoMTC字段中。
或者, 若所述通知消息为 DCI消息, 则所述 PRACH的频率资源的信息 或 PRACH的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或 者所述 PRACH的重复因子或扩展序列标识通过与所述 PRACH的前导码索引 联合编码来指示。
或者, 所述通知消息可以为 SIB消息和 DCI消息, 所述通知消息发送模 块 25, 可以包括: SIB发送单元 251和第一 DCI发送单元 252, 其中,
SIB发送单元 251 , 可以用于向所述终端发送 SIB消息,所述 SIB消息包 含一组 PRACH的频率资源的信息或一组 PRACH的重复因子或一组扩展序列 标识;
第 ― DCI发送单元 252 , 可以用于向所述终端发送 DCI消息, 所述 DCI 消息包含所述一组 PRACH的频率资源的信息中的一个频率资源的信息或所 述一组 PRACH的重复因子中的一个重复因子或者所述一组扩展序列标识中 的一个扩展序列标识。
进一步地, 或者, 若所述信道为 PUSCH, 则所述通知消息可以为 RRC 消息或 DCI消息。
具体地, 若所述通知消息为 RRC消息, 则所述 PUSCH的频率资源的信 息或 PUSCH的重复因子或扩展序列标识位于所述 RRC消息的物理上行共享 信道配置 PUSCH-Config 字段或者物理上行共享信道专用 配置 PUSCH-ConfigDedicated字段中。
或者, 若所述通知消息为 DCI消息, 则所述 PUSCH的频率资源的信息 或 PUSCH的重复因子或扩展序列标识位于所述 DCI消息的扩展字段中; 或 者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识通过与所述 PUSCH的资源块指示信息联合编码来指示。
或者, 所述通知消息可以为 RRC消息和 DCI消息, 所述通知消息发送 模块 25 , 可以包括: RRC发送单元 253和第二 DCI发送单元 254, 其中,
RRC发送单元 253 , 可以用于向所述终端发送 RRC消息, 所述 RRC消 息包含一组 PUSCH的频率资源的信息或一组 PUSCH的重复因子或一组扩展 序列标识;
第二 DCI发送单元 254, 可以用于向所述终端发送 DCI消息, 所述 DCI 消息包含所述一组 PUSCH 的频率资源的信息中的一个频率资源的信息或所 述一组 PUSCH 的重复因子中的一个重复因子或者所述一组扩展序列标识中 的一个扩展序列标识。
本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
图 19 为本发明信号传输装置实施例九的结构示意图, 本实施例的装置 1900可以集成在基站上, 用于执行上述的方法实施例中对应基站执行的技术 方案。 如图 19所示, 本实施例的信号传输装置在上述装置的基础上, 进一步 地, 还可以包括: 目标功率发送模块 26,
该目标功率发送模块 26, 可以用于向所述终端发送系统消息, 所述系统 消息中包含所述信道的接收目标功率, 以使所述终端根据最大发射功率、 路 径损耗和所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列 在所述信道发送信号。
进一步地, 所述系统消息中还可以包含可用的重复因子; 或者还包含可 用的扩展序列的扩展序列标识, 所述扩展序列以及所述扩展序列标识与扩展 序列的长度相对应。
进一步地, 所述信道的重复因子或扩展序列的数量可以为至少二个, 贝 ij , 所述传输子帧确定模块 22具体可以用于:确定所述至少二个重复因子对 应的传输子帧或确定各个所述扩展序列的长度确定传输子帧;
所述接收模块 23具体可以用于:在所述信道的至少二种重复因子对应的 传输子帧或各个所述扩展序列的长度确定传输子帧上接收信号。
进一步地, 所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为 伪噪声 PN序列的生成序列。
进一步具体地, 所述扩展序列可以为釆用所述终端所在小区的小区标识 和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列; 或者
扩展序列可以为釆用所述扩展序列标识、 所述终端的服务小区的小区标 识和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
图 20 为本发明信号传输装置实施例十的结构示意图, 本实施例的装置
2000可以集成在基站上, 用于执行上述的方法实施例中对应基站执行的技术 方案。 如图 20所示, 本实施例的信号传输装置在上述装置的基础上, 进一步 地, 所述传输子帧确定模块 22可以包括: 传输子帧个数确定单元 221和传输 子帧确定单元 222, 其中, 为了支持 PRACH信道, 则
所述传输子帧个数确定单元 221 , 可以用于根据所述重复因子或所述扩 展序列的长度以及所述 PRACH的格式确定传输子帧的个数 N;
所述传输子帧确定单元 222, 可以用于根据随机接入配置索引和所述传 输子帧的个数 N确定传输子帧。
进一步地, 所述传输子帧确定单元 222具体可以用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
进一步地, 所述接收模块 23 , 可以包括: 时间窗确定单元 231、 RAR 发送单元 232和第二终止单元 233 , 其中,
时间窗确定单元 231 , 可以用于确定时间窗的起始子帧的子帧号 w和 时间窗的长度, 其中, 时间窗的起始子帧 w子帧在 p2+3子帧之前, p2为 一次 PRACH传输的末尾子帧的子帧号;
RAR发送单元 232, 可以用于在所述时间窗内子帧号为 m2的子帧向 所述终端发送随机接入响应 RAR;
第二终止单元 233 ,可以用于在 m2+k2子帧停止接收本次传输的信号, 其中, k2为预设的整数。
进一步地, 所述时间窗确定单元 231 , 可以包括: 时间窗起始子帧确 定子单元 2311 , 该时间窗起始子帧确定子单元 2311 , 具体可以用于根据 w=p-tl或者 w=n+t2确定时间窗的起始子帧 w, 其中, tl和 t2为预设的整 数, n2为一次 PRACH传输的起始子帧的子帧号。
进一步地, 为了支持 PUSCH信道, 贝' J ,
所述传输子帧个数确定单元 221 , 可以用于根据所述重复因子或所述扩 展序列的长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元 222,可以用于釆用原有 PUSCH的传输子帧作为 起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
进一步地, 所述接收模块 23 , 可以包括: HARQ-ACK消息发送单元 234 和第一终止单元 235 , 其中,
HARQ-ACK消息发送单元 234 ,用于在子帧号为 ml的子帧上向所述终 端发送 DCI消息或者混合自动重传请求应答 HARQ-ACK消息,所述 DCI消 息或者 HARQ-ACK消息表明所述基站已成功接收本次 PUSCH传输的信号, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子 帧号;
第一终止单元 235 , 用于在 ml+kl子帧停止接收本次传输的信号, 其 中, m子帧在 p+4子帧之前, kl为预设的整数。
图 21为本发明通信系统实施例的结构示意图, 如图 21所示, 本实施 例的通信系统 2100可以包括: 至少一个终端和一个基站, 其中, 终端可 以包括图 11〜图 15所示任一信号传输装置实施例的装置, 其对应地, 可以 执行任意方法实施例中对应终端执行的技术方案, 其实现原理和技术效果 类似, 此处不再赘述;基站可以包括图 16〜图 20所示任一装置实施例的装 置, 其对应地, 可以执行任意方法实施例中对应基站执行的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。
图 22为本发明终端实施例的结构示意图, 如图 22所示, 本实施例的 终端 2200可以包括: 接收机 2201、 发送机 2202、 存储器 2203以及处理 器 2204 , 其中,
存储器 2203 , 用于存储指令;
处理器 2204 , 与所述存储器 2203耦合, 所述处理器 2204被配置为执 行存储在所述存储器 2203中的指令, 且所述处理器 2204被配置为用于执 行上述任意信号传输方法实施例中对应终端执行的技术方案;
接收机 2201 , 用于根据处理器 2204的指令, 接收基站发送的通知消 息、 系统消息等;
发送机 2202 , 用于根据处理器 2204的指令, 向基站发送信号。
图 23为本发明基站实施例的结构示意图, 如图 23所示, 本实施例的 基站 2300可以包括: 接收机 2301、 发送机 2302、 存储器 2303以及处理 器 2304 , 其中,
存储器 2303 , 用于存储指令;
处理器 2304 , 与所述存储器 2303耦合, 所述处理器 2304被配置为执 行存储在所述存储器 2303中的指令, 且所述处理器 2304被配置为用于执 行上述任意信号传输方法实施例中对应终端执行的技术方案;
接收机 2301 , 用于根据处理器 2304的指令, 接收终端发送的信号; 发送机 2302 , 用于根据处理器 2304的指令, 向终端发送通知消息、 系统消息等。
本实施例的装置, 可以用于执行本发明任意方法实施例的技术方案, 具备相应的功能模块, 其实现原理和技术效果类似, 此处不再赘述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种信号传输方法, 其特征在于, 包括:
确定信道的重复因子或扩展序列;
根据所述重复因子, 或扩展序列的长度确定时域资源, 所述时域资源为 传输子帧;
釆用所述传输子帧发送信号。
2、 根据权利要求 1所述的方法, 其特征在于,
在所述确定信道的重复因子或扩展序列之前, 还包括: 确定信道的频率 资源;
釆用所述信道的所述传输子帧发送信号, 具体为: 釆用所述信道的所述 频率资源和所述传输子帧发送信号。
3、 根据权利要求 1所述的方法, 其特征在于, 所述信道为物理随机接入 信道 PRACH或物理上行共享信道 PUSCH。
4、 根据权利要求 3所述的方法, 其特征在于, 所述信道为 PRACH, 则 所述确定信道的频率资源包括:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《P¾3。ffSf!t、 PRACH对应的资源块数目和 PRACH的子载波偏移《s bramaDffsrt , 确定 PRACH的频率资源。
5、 根据权利要求 4所述的方法, 其特征在于, 所述 PRACH对应的资源 块数目为 1、 2或 3 , 或者为 n/12, 其中, n为小于 12的整数。
6、 根据权利要求 3所述的方法, 其特征在于, 所述信道为 PUSCH, 则 所述确定信道的频率资源包括:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
7、 根据权利要求 6所述的方法, 其特征在于, 所述 PUSCH的资源单元 集合指示用于确定虚拟子载波。
8、 根据权利要求 1〜7任一所述的方法, 其特征在于, 在所述确定信道的 重复因子或扩展序列之前, 还包括:
接收基站发送的通知消息, 所述通知消息中包含所述信道的重复因子; 则所述确定信道的重复因子, 具体为, 获取所述通知消息中包含的所述信道 的重复因子, 确定一个重复因子; 或者,
接收基站发送的通知消息, 所述通知消息中包含扩展序列标识; 则所述 确定信道的扩展序列, 具体为, 获取所述通知消息中包含的所述扩展序列标 识, 根据所述扩展序列标识, 确定一个扩展序列。
9、 根据权利要求 8所述的方法, 其特征在于, 所述信道为 PRACH, 所 述通知消息中还包含所述 PRACH 的物理资源块偏移《P¾3。ffSf!t和的子载波偏移 。
S ubcarneroffset
10、 根据权利要求 8的方法, 其特征在于, 所述信道为 PUSCH, 所述通 知消息中还包含所述 PUSCH的资源块指示和资源单元集合指示。
11、 根据权利要求 8〜10任一所述的方法, 其特征在于, 所述通知消息中 包含的所述信道的频率资源对应的至少一个重复因子或至少一个扩展序列标 识。
12、 根据权利要求 8〜11 任一所述的方法, 其特征在于, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消 息。
13、 根据权利要求 12所述的方法, 其特征在于, 所述通知消息为 SIB消 息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标识 位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo字段或者 物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
14、 根据权利要求 12 所述的方法, 其特征在于, 所述通知消息为 DCI 消息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中, 或者所述 PRACH的重复因子或扩展序 列标识通过与所述 PRACH的前导码索弓 1联合编码来指示。
15、 根据权利要求 8所述的方法, 其特征在于, 所述接收基站发送的通 知消息, 包括:
接收 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源的信息或一 组 PRACH的重复因子或一组扩展序列标识;
接收 DCI消息, 所述 DCI消息包含所述一组 PRACH的频率资源中的一 个频率资源的信息或所述一组 PRACH的重复因子中的一个重复因子或者所 述一组扩展序列标识中的一个扩展序列标识。
16、 根据权利要求 8〜1 1 任一所述的方法, 其特征在于, 所述信道为 PUSCH, 则所述通知消息为 RRC消息或 DCI消息。
17、 根据权利要求 16所述的方法, 其特征在于, 所述通知消息为 RRC 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 RRC消息的物理上行共享信道配置 PUSCH-Config字段或者物理 上行共享信道专用配置 PUSCH-ConfigDedicated字段中。
18、 根据权利要求 16 所述的方法, 其特征在于, 所述通知消息为 DCI 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识通过与所述 PUSCH 的资源块指示信息联合编码 来指示。
19、 根据权利要求 8所述的方法, 其特征在于, 所述接收基站发送的通 知消息包括:
接收 RRC消息, 所述 RRC消息包含一组 PUSCH的频率资源的信息或
PUSCH的重复因子或扩展序列标识;
接收 DCI消息, 所述 DCI消息包含所述一组 PUSCH的频率资源的信息 中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个重复因子 或者所述一组扩展序列标识中的一个扩展序列标识。
20、 根据权利要求 1〜19任一所述的方法, 其特征在于, 所述确定信道的 重复因子或扩展序列, 包括:
接收基站发送的系统消息, 所述系统消息中包含所述信道的接收目标功 率;
根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定是否需 要使用重复因子或扩展序列发送所述信道;
若是, 则确定所述信道的重复因子; 或确定所述信道的扩展序列的长度 并确定所述扩展序列的长度对应的扩展序列。
21、 根据权利要求 20所述的方法, 其特征在于, 所述确定所述信道的重 的扩展序列, 包括: 根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或确定所述信道的扩展序列的长度并确定所述扩展序列的长 度对应的扩展序列。
22、 根据权利要求 1〜21任一所述的方法, 其特征在于:
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
23、 根据权利要求 22所述的方法, 其特征在于, 所述扩展序列为 PN序 列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
所述扩展序列为釆用所述扩展序列标识、 所述终端所在小区的小区标识 和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
24、 根据权利要求 1〜5、 8〜9、 11〜15、 20〜23任一所述的方法, 其特征在 于, 所述信道为 PRACH, 则所述根据所述重复因子或扩展序列的长度确定时 域资源, 所述时域资源为传输子帧, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PRACH的格式确定 传输子帧的个数 N;
根据随机接入配置索引和所述传输子帧的个数 N确定传输子帧。
25、 根据权利要求 24所述的方法, 其特征在于, 所述根据随机接入配置 索引和所述传输子帧的个数 N确定传输子帧, 包括:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N个子帧作为传输子帧。
26、 根据权利要求 1〜3、 6〜8、 10〜11、 16〜23任一所述的方法, 其特征在 于, 所述信道为 PUSCH, 则所述根据所述重复因子或扩展序列的长度确定时 域资源, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PUSCH 的格式确定 传输子帧的个数 N; 釆用原有 PUSCH的传输子帧作为起始子帧 m, 选择自起始子帧 m开始 连续的 N个子帧作为传输子帧。
27、 根据权利要求 1〜3、 6〜8、 10〜11、 16〜23、 26任一所述的方法, 其特 征在于, 所述信道为 PUSCH, 则釆用所述信道的所述传输子帧发送信号, 包 括:
在子帧号为 ml 的子帧上接收基站发送的 DCI消息或者混合自动重传 请求应答 HARQ-ACK消息, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号;
若所述 DCI 消息或者 HARQ-ACK 消息表明所述基站已成功接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传输, 其中, kl为预设的 整数。
28、 根据权利要求 1〜5、 8〜9、 11〜15、 20〜25任一所述的方法, 其特征在 于, 所述信道为 PRACH, 则釆用所述信道的所述传输子帧发送信号, 包括: 确定时间窗的起始子帧的子帧号 w和时间窗的长度, 其中, 时间窗的 起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末尾子帧的 子帧号;
在所述时间窗内子帧号为 m2 的子帧接收基站发送的随机接入响应 RAR;
在 m2+k2子帧终止本次传输, 其中, k2为预设的整数。
29、 根据权利要求 28的方法, 其特征在于, 所述确定时间窗的起始子 帧的子帧号 w, 包括:
根据 w=p2-tl或者 w=n2+t2确定时间窗的起始子帧 w, 其中, tl和 t2 为预设的整数, n2为一次 PRACH传输的起始子帧的子帧号。
30、 一种信号传输方法, 其特征在于, 包括:
确定信道的重复因子或扩展序列;
根据所述重复因子, 或扩展序列的长度确定时域资源, 所述时域资源为 传输子帧;
釆用所述信道的所述传输子帧接收信号。
31、根据权利要求 30所述的方法, 其特征在于, 在所述确定信道的重复 因子或扩展序列之前, 还包括: 确定信道的频率资源;
釆用所述信道的所述传输子帧接收信号, 具体为: 釆用所述信道的所述 频率资源和所述传输子帧接收信号。
32、 根据权利要求 31所述的方法, 其特征在于, 所述信道为物理随机接 入信道 PRACH或物理上行共享信道 PUSCH。
33、 根据权利要求 32所述的方法, 其特征在于, 所述信道为 PRACH, 则所述确定信道的频率资源包括:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。ffSfrt、 PRACH对应的资源块数目和
PRACH的子载波偏移《s bramaDffsrt , 确定 PRACH的频率资源。
34、 根据权利要求 33所述的方法, 其特征在于, 所述 PRACH对应的资 源块数目为 1、 2、 或 3 , 或者为 n/12, 其中, n为小于 12的整数。
35、 根据权利要求 32所述的方法, 其特征在于, 所述信道为 PUSCH, 则所述确定信道的频率资源包括:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
36、 根据权利要求 35所述的方法, 其特征在于, 所述 PUSCH的资源单 元集合指示用于确定虚拟子载波。
37、 根据权利要求 30〜36任一所述的方法, 其特征在于, 在所述确定信 道的重复因子或扩展序列之后, 还包括:
向所述终端发送通知消息, 所述通知消息中包含信道的重复因子或扩展 序列标识, 以指示所述终端根据所述通知消息确定信道的重复因子或扩展序 列。
38、 根据权利要求 37所述的方法, 其特征在于, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块偏移《 。ffSf!t和 PRACH的子 载波偏移 。^,以使所述终端根据所述通知消息确定所述 PRACH的频率 资源。
39、 根据权利要求 37所述的方法, 其特征在于, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH 的资源块指示和资源单元集合指示包含 在向所述终端发送通知消息中, 以使所述终端根据所述通知消息确定所述
PUSCH的频率资源。
40、 根据权利要求 37〜39任一所述的方法, 其特征在于, 所述通知消息 中包含的所述信道的频率资源对应至少一个重复因子或至少一个扩展序列标 识。
41、 根据权利要求 37〜40 任一所述的方法, 其特征在于, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消 息。
42、 根据权利要求 41所述的方法, 其特征在于, 所述通知消息为 SIB消 息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标识 位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo字段或者 物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
43、 根据权利要求 41 所述的方法, 其特征在于, 所述通知消息为 DCI 消息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述 PRACH的重复因子或扩展序 列标识通过与所述 PRACH的前导码索弓 1联合编码来指示。
44、 根据权利要求 37所述的方法, 其特征在于, 所述向所述终端发送通 知消息, 包括:
向所述终端发送 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源 的信息或一组 PRACH的重复因子或一组扩展序列标识;
向所述终端发送 DCI消息, 所述 DCI消息包含所述一组 PRACH的频率 资源的信息中的一个频率资源的信息或所述一组 PRACH的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
45、 根据权利要求 37〜40 任一所述的方法, 其特征在于, 所述信道为 PUSCH, 则所述通知消息为 RRC消息或 DCI消息。
46、 根据权利要求 45所述的方法, 其特征在于, 所述通知消息为 RRC 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 RRC消息的物理上行共享信道配置 PUSCH-Config字段或者物理 上行共享信道专用配置 PUSCH-ConfigDedicated字段中。
47、 根据权利要求 46 所述的方法, 其特征在于, 所述通知消息为 DCI 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识通过与所述 PUSCH 的资源块指示信息联合编码 来指示。
48、 根据权利要求 37所述的方法, 其特征在于, 所述向所述终端发送通 知消息, 包括:
向所述终端发送 RRC消息, 所述 RRC消息包含一组 PUSCH的频率资 源的信息或一组 PUSCH的重复因子或一组扩展序列标识;
向所述终端发送 DCI消息, 所述 DCI消息包含所述一组 PUSCH的频率 资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
49、 根据权利要求 30〜48任一所述的方法, 其特征在于: 在所述确定信 道的重复因子或扩展序列之前, 还包括:
向所述终端发送系统消息, 所述系统消息中包含所述信道的接收目标功 率, 以使所述终端根据最大发射功率、路径损耗和所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列在所述信道发送信号。
50、 根据权利要求 49所述的方法, 其特征在于, 所述系统消息中还包含 可用的重复因子; 或者还包含可用的扩展序列的扩展序列标识, 所述扩展序 列以及所述扩展序列标识与扩展序列的长度相对应。
51、 根据权利要求 30〜50任一所述的方法, 其特征在于, 所述信道的重 复因子或扩展序列的数量至少为二个, 贝 'J ,
所述根据所述重复因子或扩展序列的长度确定时域资源包括: 确定所述 至少二个重复因子对应的传输子帧或确定各个所述扩展序列的长度确定传输 子帧;
所述在所述信道的所述传输子帧上接收信号包括: 在所述信道的至少二 种重复因子对应的传输子帧或各个所述扩展序列的长度确定传输子帧上接收 信号。
52、 根据权利要求 30〜51任一所述的方法, 其特征在于:
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
53、 根据权利要求 52所述的方法, 其特征在于, 所述扩展序列为 PN序 列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
扩展序列为釆用所述扩展序列标识、 所述终端的服务小区的小区标识和 / 或无线网络临时标识作为 PN序列的初始化参数生成的序列。
54、 根据权利要求 30〜34、 37〜38、 40〜44、 49〜53任一所述的方法, 其特 征在于, 所述信道为 PRACH, 则所述根据所述重复因子或扩展序列的长度确 定时域资源, 所述时域资源为传输子帧, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PRACH的格式确定 传输子帧的个数 N;
根据随机接入配置索引和所述传输子帧的个数 N确定传输子帧。
55、 根据权利要求 54所述的方法, 其特征在于, 所述根据随机接入配置 索引和所述传输子帧的个数 N确定传输子帧, 包括:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
56、 根据权利要求 30〜33、 35〜37、 39〜40、 45〜53任一所述的方法, 其特 征在于, 所述信道为 PUSCH, 则所述根据所述重复因子或扩展序列的长度确 定时域资源, 所述时域资源为传输子帧, 包括:
根据所述重复因子或所述扩展序列的长度以及所述 PUSCH 的格式确定 传输子帧的个数 N;
釆用原有 PUSCH 的传输子帧作为起始子帧, 选择自起始子帧开始连续 的 N子帧作为传输子帧。
57、 根据权利要求 30〜33、 35〜37、 39〜40、 45〜53、 56任一所述的方法, 其特征在于, 所述信道为 PUSCH, 则在所述传输子帧上接收信号, 包括: 在子帧号为 ml 的子帧上向所述终端发送 DCI消息或者混合自动重传 请求应答 HARQ-ACK消息, 所述 DCI消息或者 HARQ-ACK消息表明所述 基站已成功接收本次 PUSCH传输的信号, 其中, ml子帧在 pl+4子帧之 前, pi为一次 PUSCH传输的末尾子帧的子帧号;
在 ml+kl子帧停止接收本次传输的信号, 其中, m子帧在 p+4子帧 之前, kl为预设的整数。
58、 根据权利要求 30〜34、 37〜38、 40〜44、 49〜55任一所述的方法, 其特 征在于, 所述信道为 PRACH, 则在所述传输子帧上接收信号, 包括:
确定时间窗的起始子帧的子帧号 w和时间窗的长度, 其中, 时间窗的 起始子帧 w子帧在 p2+3子帧之前, p2为一次 PRACH传输的末尾子帧的 子帧号;
在所述时间窗内子帧号为 m2 的子帧向所述终端发送随机接入响应
RAR;
在 m2+k2子帧停止接收本次传输的信号, 其中, k2为预设的整数。
59、 根据权利要求 58所述的方法, 其特征在于, 所述确定时间窗的起 始子帧的子帧号 w, 包括:
根据 w=p-tl 或者 w=n+t2确定时间窗的起始子帧 w, 其中, tl和 t2 为预设的整数, n2为一次 PRACH传输的起始子帧的子帧号。
60、 一种信号传输装置, 其特征在于, 包括:
重复因子或扩展序列确定模块, 用于确定信道的重复因子或扩展序列; 传输子帧确定模块, 用于根据所述重复因子或扩展序列的长度确定时域 资源, 所述时域资源为传输子帧;
发送模块, 用于釆用所述信道的所述传输子帧发送信号。
61、 根据权利要求 60所述的装置, 其特征在于, 还包括:
频率资源确定模块, 用于确定信道的频率资源;
所述发送模块具体用于: 釆用所述信道的所述频率资源和所述传输子帧 发送信号。
62、 根据权利要求 60所述的装置, 其特征在于, 所述信道为物理随机接 入信道 PRACH或物理上行共享信道 PUSCH。
63、 根据权利要求 62所述的装置, 其特征在于, 所述信道为 PRACH, 则所述频率资源确定模块具体用于:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《 。ffSfrt、 PRACH对应的资源块数目和 PRACH的子载波偏移 LmCTffsrt , 确定 PRACH的频率资源。
64、 根据权利要求 63所述的装置, 其特征在于, 所述 PRACH对应的资 源块数目为 1、 2或 3 , 或者为 n/12, 其中, n为小于 12的整数。
65、 根据权利要求 62所述的装置, 其特征在于, 所述信道为 PUSCH, 则所述频率资源确定模块具体用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
66、 根据权利要求 65所述的装置, 其特征在于, 所述 PUSCH的资源单 元集合指示用于确定虚拟子载波。
67、 根据权利要求 60〜66任一所述的装置, 其特征在于, 还包括: 通知消息接收模块, 用于接收基站发送的通知消息, 所述通知消息中包 含所述信道的重复因子; 则所述重复因子或扩展序列确定模块, 具体用于, 获取所述通知消息中包含的所述信道的重复因子, 确定一个重复因子; 或者, 所述通知消息接收模块, 用于接收基站发送的通知消息, 所述通知消息 中包含扩展序列标识; 则所述重复因子或扩展序列确定模块, 具体用于, 根 据所述扩展序列标识, 确定一个扩展序列。
68、 根据权利要求 67所述的装置, 其特征在于, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH 的物理资源块偏移《 。ffSf!t和的子载波偏
69、 根据权利要求 67的装置, 其特征在于, 所述信道为 PUSCH, 所述 通知消息中还包含所述 PUSCH的资源块指示和资源单元集合指示。
70、 根据权利要求 67〜69任一所述的装置, 其特征在于, 所述通知消息 中包含的所述信道的频率资源对应至少一个重复因子或至少一个扩展序列标 识。
71、 根据权利要求 67〜70 任一所述的装置, 其特征在于, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消 息。
72、 根据权利要求 71所述的装置, 其特征在于, 所述通知消息为 SIB消 息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标识 位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo字段或者 物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC字段中。
73、 根据权利要求 71 所述的装置, 其特征在于, 所述通知消息为 DCI 消息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中, 或者所述 PRACH的重复因子或扩展序 列标识通过与所述 PRACH的前导码索弓 1联合编码来指示。
74、根据权利要求 67所述的装置,其特征在于,所述通知消息接收模块, 包括:
SIB接收单元, 用于接收 SIB消息, 所述 SIB消息包含一组 PRACH的 频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识;
DCI接收单元 ,用于接收 DCI消息 ,所述 DCI消息包含所述一组 PRACH 的频率资源中的一个频率资源的信息或所述一组 PRACH的重复因子中的一 个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
75、 根据权利要求 67〜70 任一所述的装置, 其特征在于, 所述信道为
PUSCH, 则所述通知消息为 RRC消息或 DCI消息。
76、 根据权利要求 75所述的装置, 其特征在于, 所述通知消息为 RRC 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 RRC消息的物理上行共享信道配置 PUSCH-Config字段或者物理 上行共享信道专用配置 PUSCH-ConfigDedicated字段中。
77、 根据权利要求 75 所述的装置, 其特征在于, 所述通知消息为 DCI 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识通过与所述 PUSCH 的资源块指示信息联合编码 来指示。
78、 根据权利要求 67所述的装置, 其特征在于, 所述通知消息接收模块 包括:
RRC接收单元, 用于接收 RRC消息, 所述 RRC消息包含一组 PUSCH 的频率资源的信息或 PUSCH的重复因子或扩展序列标识;
DCI接收单元,用于接收 DCI消息,所述 DCI消息包含所述一组 PUSCH 的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子 中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列标识。
79、 根据权利要求 60〜78任一所述的装置, 其特征在于, 所述重复因子 或扩展序列确定模块, 包括:
目标功率获取单元, 用于接收基站发送的系统消息, 所述系统消息中包 含所述信道的接收目标功率;
判断单元, 用于根据最大发射功率、 路径损耗和所述信道的接收目标功 率, 确定是否需要使用重复因子或扩展序列发送所述信道;
确定单元, 用于若是, 则确定所述信道的重复因子; 或确定所述信道的
80、根据权利要求 79所述的装置,其特征在于,所述确定单元具体用于: 根据最大发射功率、 路径损耗和所述信道的接收目标功率, 确定所述信 道的重复因子, 或确定所述信道的扩展序列的长度并确定所述扩展序列的长 度对应的扩展序列。
81、 根据权利要求 60〜80任一所述的装置, 其特征在于:
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
82、 根据权利要求 81所述的装置, 其特征在于, 所述扩展序列为 PN序 列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
所述扩展序列为釆用所述扩展序列标识、 所述终端所在小区的小区标识 和 /或无线网络临时标识作为 PN序列的初始化参数生成的序列。
83、 根据权利要求 60〜64、 67〜68、 70〜74、 79〜82任一所述的装置, 其特 征在于, 所述传输子帧确定模块包括: 传输子帧个数确定单元和传输子帧确 定单元, 所述信道为 PRACH, 贝' J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 所述传输子帧确定单元, 用于根据随机接入配置索引和所述传输子帧的 个数 N确定传输子帧。
84、 根据权利要求 83所述的装置, 其特征在于, 所述传输子帧确定单元 具体用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号; 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧
85、 根据权利要求 60〜62、 65〜67、 69〜70、 75〜82任一所述的装置, 其特 征在于, 所述信道为 PUSCH, 贝' J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于釆用原有 PUSCH 的传输子帧作为起始子 帧 m, 选择自起始子帧 m开始连续的 N个子帧作为传输子帧。
86、 根据权利要求 60〜62、 65〜67、 69〜70、 75〜82、 83任一所述的装置, 其特征在于, 所述信道为 PUSCH, 则所述发送模块, 包括:
HARQ-ACK消息接收单元, 用于在子帧号为 ml 的子帧上接收基站发 送的 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 其中, ml子 帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子帧号;
第一终止单元,用于若所述 DCI消息或者 HARQ-ACK消息表明所述基 站已成功接收本次 PUSCH传输的信号, 则在 ml+kl子帧终止本次传输, 其中, kl为预设的整数。
87、 根据权利要求 60〜64、 67〜68、 70〜74、 79〜84任一所述的装置, 其特 征在于, 所述信道为 PRACH, 则所述发送模块, 包括:
时间窗确定单元,用于确定时间窗的起始子帧的子帧号 w和时间窗的 长度,其中,时间窗的起始子帧 w子帧在 p2+3子帧之前,p2为一次 PRACH 传输的末尾子帧的子帧号;
RAR接收单元, 用于在所述时间窗内子帧号为 m2的子帧接收基站发 送的随机接入响应 RAR;
第二终止单元, 用于在 m2+k2子帧终止本次传输, 其中, k2为预设 的整数。
88、 根据权利要求 87的装置, 其特征在于, 所述时间窗确定单元, 包 括:
时间窗起始子帧确定子单元, 具体用于根据 w=p2-tl或者 w=n2+t2确 定时间窗的起始子帧 w, 其中, tl和 t2为预设的整数, n2为一次 PRACH 传输的起始子帧的子帧号。
89、 一种信号传输装置, 其特征在于, 包括:
重复因子或扩展序列确定模块, 用于确定信道的重复因子或扩展序列; 传输子帧确定模块, 用于根据所述重复因子或扩展序列的长度确定时域 资源, 所述时域资源为传输子帧;
接收模块, 用于釆用所述信道的所述传输子帧接收信号。
90、 根据权利要求 89所述的装置, 其特征在于, 还包括:
频率资源确定模块, 用于确定信道的频率资源;
所述接收模块具体用于: 釆用所述信道的所述频率资源和所述传输子帧 接收信号。
91、 根据权利要求 90所述的装置, 其特征在于, 所述信道为物理随机接 入信道 PRACH或物理上行共享信道 PUSCH。
92、 根据权利要求 91所述的装置, 其特征在于, 所述信道为 PRACH, 则所述频率资源确定模块具体用于:
根据 PRACH的物理资源块偏移《 。^和 PRACH对应的资源块数目,确 定 PRACH的频率资源; 或者,
根据 PRACH 的物理资源块偏移《P¾3。ffSfrt、 PRACH对应的资源块数目和 PRACH的子载波偏移 LmCTffsrt , 确定 PRACH的频率资源。
93、 根据权利要求 92所述的装置, 其特征在于, 所述 PRACH对应的资 源块数目为 1、 2、 或 3 , 或者为 n/12, 其中, n为小于 12的整数。
94、 根据权利要求 91所述的装置, 其特征在于, 所述信道为 PUSCH, 则所述频率资源确定模块具体用于:
根据 PUSCH的资源块指示和资源单元集合指示,确定所述 PUSCH的频 率资源。
95、 根据权利要求 94所述的装置, 其特征在于, 所述 PUSCH的资源单 元集合指示用于确定虚拟子载波。
96、 根据权利要求 89〜95任一所述的装置, 其特征在于, 还包括: 通知消息发送模块, 用于向所述终端发送通知消息, 所述通知消息中包 含信道的重复因子或扩展序列标识, 以指示所述终端根据所述通知消息确定 信道的重复因子或扩展序列。
97、 根据权利要求 96所述的装置, 其特征在于, 所述信道为 PRACH, 所述通知消息中还包含所述 PRACH的物理资源块偏移《P¾3。ffSf!t和 PRACH的子 载波偏移 ^ 。^,以使所述终端根据所述通知消息确定所述 PRACH的频率 资源。
98、 根据权利要求 96所述的装置, 其特征在于, 所述信道为 PUSCH, 所述通知消息中还包含所述 PUSCH 的资源块指示和资源单元集合指示包含 在向所述终端发送通知消息中, 以使所述终端根据所述通知消息确定所述 PUSCH的频率资源。
99、 根据权利要求 96〜98任一所述的装置, 其特征在于, 所述通知消息 中包含的所述信道的频率资源对应至少一个重复因子或至少一个扩展序列标 识。
100、 根据权利要求 96〜99任一所述的装置, 其特征在于, 所述信道为 PRACH, 则所述通知消息为系统信息块 SIB消息和 /或下行控制信息 DCI消 息。
101、 根据权利要求 100所述的装置, 其特征在于, 所述通知消息为 SIB 消息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标 识位于所述 SIB消息的物理随机接入信道配置信息 PRACH-Configlnfo字段或 者物理随机接入信道机器类型的通信配置信息 PRACH-ConfiglnfoMTC 字段 中。
102、 根据权利要求 100所述的装置, 其特征在于, 所述通知消息为 DCI 消息,则所述 PRACH的频率资源的信息或 PRACH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述 PRACH的重复因子或扩展序 列标识通过与所述 PRACH的前导码索弓 1联合编码来指示。
103、 根据权利要求 96所述的装置, 其特征在于, 所述通知消息发送模 块, 包括:
SIB发送单元, 用于向所述终端发送 SIB消息, 所述 SIB消息包含一组 PRACH的频率资源的信息或一组 PRACH的重复因子或一组扩展序列标识;
DCI发送单元, 用于向所述终端发送 DCI消息, 所述 DCI消息包含所述 一组 PRACH的频率资源的信息中的一个频率资源的信息或所述一组 PRACH 的重复因子中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列 标识。
104、 根据权利要求 96〜99任一所述的装置, 其特征在于, 所述信道为 PUSCH, 则所述通知消息为 RRC消息或 DCI消息。
105、根据权利要求 104所述的装置, 其特征在于, 所述通知消息为 RRC 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 RRC消息的物理上行共享信道配置 PUSCH-Config字段或者物理 上行共享信道专用配置 PUSCH-ConfigDedicated字段中。
106、 根据权利要求 105所述的装置, 其特征在于, 所述通知消息为 DCI 消息,则所述 PUSCH的频率资源的信息或 PUSCH的重复因子或扩展序列标 识位于所述 DCI消息的扩展字段中; 或者所述资源单元集合指示或 PUSCH 的重复因子或扩展序列标识通过与所述 PUSCH 的资源块指示信息联合编码 来指示。
107、 根据权利要求 96所述的装置, 其特征在于, 所述通知消息发送模 块, 包括:
RRC发送单元, 用于向所述终端发送 RRC消息, 所述 RRC消息包含一 组 PUSCH的频率资源的信息或一组 PUSCH的重复因子或一组扩展序列标 识;
DCI发送单元, 用于向所述终端发送 DCI消息, 所述 DCI消息包含所述 一组 PUSCH的频率资源的信息中的一个频率资源的信息或所述一组 PUSCH 的重复因子中的一个重复因子或者所述一组扩展序列标识中的一个扩展序列 标识。
108、 根据权利要求 89〜107任一所述的装置, 其特征在于: 还包括: 目标功率发送模块, 用于向所述终端发送系统消息, 所述系统消息中包 含所述信道的接收目标功率, 以使所述终端根据最大发射功率、 路径损耗和 所述信道的接收目标功率, 确定是否需要使用重复因子或扩展序列在所述信 道发送信号。
109、 根据权利要求 108所述的装置, 其特征在于, 所述系统消息中还包 含可用的重复因子; 或者还包含可用的扩展序列的扩展序列标识, 所述扩展 序列以及所述扩展序列标识与扩展序列的长度相对应。
110、 根据权利要求 89〜109任一所述的装置, 其特征在于, 所述信道的 重复因子或扩展序列的数量至少为二个, 贝 ij ,
所述传输子帧确定模块具体用于: 确定所述至少二个重复因子对应的传 输子帧或确定各个所述扩展序列的长度确定传输子帧;
所述接收模块具体用于: 在所述信道的至少二种重复因子对应的传输子 帧或各个所述扩展序列的长度确定传输子帧上接收信号。
111、 根据权利要求 89〜110任一所述的装置, 其特征在于:
所述扩展序列为沃尔什 Walsh序列; 或者, 所述扩展序列为伪噪声 PN 序列的生成序列。
112、 根据权利要求 111所述的装置, 其特征在于, 所述扩展序列为 PN 序列的生成序列包括:
所述扩展序列为釆用所述终端所在小区的小区标识和 /或无线网络临时 标识作为 PN序列的初始化参数生成的序列; 或者
扩展序列为釆用所述扩展序列标识、 所述终端的服务小区的小区标识和 / 或无线网络临时标识作为 PN序列的初始化参数生成的序列。
113、 根据权利要求 89〜93、 96〜97、 99〜103、 108〜112任一所述的装置, 其特征在于, 所述传输子帧确定模块包括传输子帧个数确定单元和传输子帧 确定单元, 其中, 若所述信道为 PRACH, 则
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PRACH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于根据随机接入配置索引和所述传输子帧的 个数 N确定传输子帧。
114、 根据权利要求 113所述的装置, 其特征在于, 所述传输子帧确定单 元具体用于:
根据所述随机接入配置索引确定所述 PRACH在一个无线帧中的可用子 帧号;
在至少一 传输子帧; 或者, 以所述可用子帧号中任意一个在一个无线帧中对应的子帧 作为起始子帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
115、 根据权利要求 89〜92、 94〜96、 98〜99、 104〜112任一所述的装置, 其特征在于, 若所述信道为 PUSCH, 贝 |J ,
所述传输子帧个数确定单元, 用于根据所述重复因子或所述扩展序列的 长度以及所述 PUSCH的格式确定传输子帧的个数 N;
所述传输子帧确定单元, 用于釆用原有 PUSCH 的传输子帧作为起始子 帧, 选择自起始子帧开始连续的 N子帧作为传输子帧。
116、 根据权利要求 89〜92、 94〜96、 98〜99、 104〜112、 115任一所述的装 置, 其特征在于, 所述信道为 PUSCH, 则所述接收模块, 包括:
HARQ-ACK消息发送单元, 用于在子帧号为 ml 的子帧上向所述终端 发送 DCI消息或者混合自动重传请求应答 HARQ-ACK消息, 所述 DCI消息 或者 HARQ-ACK消息表明所述基站已成功接收本次 PUSCH传输的信号, 其中, ml子帧在 pl+4子帧之前, pi为一次 PUSCH传输的末尾子帧的子 帧号;
第一终止单元, 用于在 ml+kl子帧停止接收本次传输的信号, 其中, m子帧在 p+4子帧之前, kl为预设的整数。
117、 根据权利要求 89〜93、 96〜97、 99〜103、 108〜114任一所述的装置, 其特征在于, 所述信道为 PRACH, 则所述接收模块, 包括:
时间窗确定单元,用于确定时间窗的起始子帧的子帧号 w和时间窗的 长度,其中,时间窗的起始子帧 w子帧在 p2+3子帧之前,p2为一次 PRACH 传输的末尾子帧的子帧号;
RAR发送单元, 用于在所述时间窗内子帧号为 m2的子帧向所述终端 发送随机接入响应 RAR;
第二终止单元, 用于在 m2+k2子帧停止接收本次传输的信号, 其中, k2为预设的整数。
118、 根据权利要求 117 所述的装置, 其特征在于, 所述时间窗确定单 元, 包括:
时间窗起始子帧确定子单元, 具体用于根据 w=p-tl或者 w=n+t2确定 时间窗的起始子帧 w, 其中, tl 和 t2为预设的整数, n2为一次 PRACH 传输的起始子帧的子帧号。
119、 一种通信系统, 其特征在于, 包括: 至少一个终端和一个基站, 其中, 所述终端包括如权利要求 60〜88中任一项所述的信号传输装置; 所 述基站包括如权利要求 89〜1 18任一项所述的信号传输装置。
120、 一种终端, 其特征在于, 包括: 接收机、 发送机、 存储器和处理 器, 其中,
存储器, 用于存储指令;
处理器, 与所述存储器耦合, 所述处理器被配置为执行存储在所述存 储器中的指令, 且所述处理器被配置为用于执行如权利要求 1〜29任一所 述的信号传输方法。
121、 一种基站, 其特征在于, 包括: 接收机、 发送机、 存储器和处理 器, 其中,
存储器, 用于存储指令;
处理器, 与所述存储器耦合, 所述处理器被配置为执行存储在所述存 储器中的指令, 且所述处理器被配置为用于执行如权利要求 30〜59任一所 述的信号传输方法。
PCT/CN2013/075645 2013-05-15 2013-05-15 信号传输方法、装置、通信系统、终端和基站 WO2014183278A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13884731.4A EP2991419B1 (en) 2013-05-15 2013-05-15 Signal transmission method, device, communication system, terminal and base station
PCT/CN2013/075645 WO2014183278A1 (zh) 2013-05-15 2013-05-15 信号传输方法、装置、通信系统、终端和基站
JP2016513191A JP6216039B2 (ja) 2013-05-15 2013-05-15 信号伝送方法、装置、通信システム、端末、及び基地局
CN201380076048.4A CN105393618B (zh) 2013-05-15 2013-05-15 信号传输方法、装置、通信系统、终端和基站
US14/940,625 US10070464B2 (en) 2013-05-15 2015-11-13 Signal transmission method, apparatus, communications system, terminal, and base station
US16/047,442 US20180338327A1 (en) 2013-05-15 2018-07-27 Signal transmission method, apparatus, communications system, terminal, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075645 WO2014183278A1 (zh) 2013-05-15 2013-05-15 信号传输方法、装置、通信系统、终端和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/940,625 Continuation US10070464B2 (en) 2013-05-15 2015-11-13 Signal transmission method, apparatus, communications system, terminal, and base station

Publications (1)

Publication Number Publication Date
WO2014183278A1 true WO2014183278A1 (zh) 2014-11-20

Family

ID=51897598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075645 WO2014183278A1 (zh) 2013-05-15 2013-05-15 信号传输方法、装置、通信系统、终端和基站

Country Status (5)

Country Link
US (2) US10070464B2 (zh)
EP (1) EP2991419B1 (zh)
JP (1) JP6216039B2 (zh)
CN (1) CN105393618B (zh)
WO (1) WO2014183278A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017123622A (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP2018529254A (ja) * 2015-07-31 2018-10-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated 狭帯域通信のためのバンドルサイズ決定
CN111565409A (zh) * 2019-02-14 2020-08-21 大唐移动通信设备有限公司 一种噪声功率计算方法及装置
CN113424594A (zh) * 2019-02-15 2021-09-21 华为技术有限公司 一种信息发送方法及装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2769631T3 (es) 2013-07-26 2020-06-26 Lg Electronics Inc Procedimiento de transmisión de una señal para MTC y aparato correspondiente
US10257816B2 (en) * 2013-07-26 2019-04-09 Lg Electronics Inc. Transmission/reception method for MTC apparatus
WO2015195031A1 (en) * 2014-06-17 2015-12-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatuses for repeated radio block transmission
BR112017009269A2 (pt) * 2014-11-06 2017-12-19 Intel Ip Corp terminação antecipada de transmissões repetidas para mtc
EP3373643B1 (en) 2015-11-05 2020-05-13 Nec Corporation Base station, wireless terminal, and methods therefor
CN106961744A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 上行控制信息的发送方法及装置
US10531456B2 (en) 2016-03-09 2020-01-07 Qualcomm Incorporated Narrow-band broadcast/multi-cast design
CN107197529B (zh) * 2016-03-15 2021-01-12 华为技术有限公司 一种序列信号发送方法及终端
MX2019000787A (es) 2016-07-21 2019-06-03 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para transmision de se?al, dispositivo terminal y dispositivo de red.
WO2018082135A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种基站、终端、系统和在通信系统中传输信号的方法
EP3637849A4 (en) * 2017-06-30 2020-06-17 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
EP3666006A4 (en) * 2017-08-10 2020-12-02 Apple Inc. PREEMPTION ADVERTISEMENTS FOR NEW RADIO
CN110999155B (zh) * 2017-08-10 2021-07-09 中兴通讯股份有限公司 在无线通信中发送和接收控制信息的方法和装置
CN109391422B (zh) 2017-08-11 2020-11-17 华为技术有限公司 一种反馈码本确定的方法及终端设备、网络设备
CN110351852B (zh) * 2018-04-04 2021-12-10 华为技术有限公司 一种通信方法及装置
CN113708911B (zh) * 2018-05-10 2023-04-07 中兴通讯股份有限公司 信号的发送方法及装置、存储介质、电子装置
RU2769952C1 (ru) 2018-08-14 2022-04-11 Самсунг Электроникс Ко., Лтд. Способ и оборудование для определения типа доступа к каналу в системе беспроводной связи
US10798745B2 (en) * 2018-09-28 2020-10-06 Verizon Patent And Licensing Inc. Determining device locations based on random access channel signaling
EP3697013A1 (en) * 2019-02-14 2020-08-19 Panasonic Intellectual Property Corporation of America User equipment and system performing transmission and reception operations
CN111436141A (zh) * 2019-03-25 2020-07-21 维沃移动通信有限公司 信息传输、接收方法、终端及网络侧设备
WO2020204508A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
CN113839761A (zh) * 2019-04-25 2021-12-24 上海朗桦通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113785638A (zh) * 2019-04-30 2021-12-10 中兴通讯股份有限公司 具有扩展标识符的无线通信方案
CN112839380A (zh) * 2019-11-22 2021-05-25 北京三星通信技术研究有限公司 发送上行链路信号的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917766A (zh) * 2010-08-12 2010-12-15 中兴通讯股份有限公司 一种确定物理上行控制信道资源的方法及系统
CN102308653A (zh) * 2008-12-08 2012-01-04 诺基亚西门子通信公司 蜂窝电信系统中的上行链路控制信令
CN102668414A (zh) * 2009-11-23 2012-09-12 Lg电子株式会社 Ack/nack传输方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081531A1 (ja) * 2006-12-28 2008-07-10 Fujitsu Limited 無線通信システム及び基地局並びにランダムアクセスチャネル送信方法
WO2008115247A1 (en) 2007-03-20 2008-09-25 Lucent Technologies Inc. A configurable random access channel structure for range extension in a wireless commmunication system
CN101730115B (zh) * 2008-10-24 2013-01-30 华为技术有限公司 中继传输的方法及设备
US8879461B2 (en) * 2008-12-01 2014-11-04 Qualcomm Incorporated Blank subframe uplink design
JP5097142B2 (ja) 2009-02-04 2012-12-12 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
JP2011114368A (ja) * 2009-11-24 2011-06-09 Fujitsu Ltd 通信装置及び通信方法
EP2525608B1 (en) * 2010-01-12 2017-05-24 Fujitsu Limited Mobile communication system, wireless communication apparatus, mobile communication apparatus and wireless communication method
EP2378828B1 (en) * 2010-03-22 2013-05-08 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in a physical data channel
CN101902301B (zh) * 2010-08-12 2018-11-20 中兴通讯股份有限公司 上行控制信令发送、上行解调参考信号的承载方法及装置
MY159366A (en) * 2010-10-01 2016-12-30 Ericsson Telefon Ab L M Mobile terminal, base station and methods therein
US9973923B2 (en) * 2012-04-18 2018-05-15 Qualcomm Incorporated Small cell activation procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308653A (zh) * 2008-12-08 2012-01-04 诺基亚西门子通信公司 蜂窝电信系统中的上行链路控制信令
CN102668414A (zh) * 2009-11-23 2012-09-12 Lg电子株式会社 Ack/nack传输方法及其装置
CN101917766A (zh) * 2010-08-12 2010-12-15 中兴通讯股份有限公司 一种确定物理上行控制信道资源的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2991419A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529254A (ja) * 2015-07-31 2018-10-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated 狭帯域通信のためのバンドルサイズ決定
JP2017123622A (ja) * 2016-01-08 2017-07-13 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN111565409A (zh) * 2019-02-14 2020-08-21 大唐移动通信设备有限公司 一种噪声功率计算方法及装置
CN111565409B (zh) * 2019-02-14 2021-06-11 大唐移动通信设备有限公司 一种噪声功率计算方法及装置
CN113424594A (zh) * 2019-02-15 2021-09-21 华为技术有限公司 一种信息发送方法及装置

Also Published As

Publication number Publication date
EP2991419A4 (en) 2016-06-01
EP2991419A1 (en) 2016-03-02
US20160081122A1 (en) 2016-03-17
EP2991419B1 (en) 2020-05-06
JP6216039B2 (ja) 2017-10-18
CN105393618A (zh) 2016-03-09
US10070464B2 (en) 2018-09-04
US20180338327A1 (en) 2018-11-22
CN105393618B (zh) 2019-11-29
JP2016519538A (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2014183278A1 (zh) 信号传输方法、装置、通信系统、终端和基站
CN109804697B (zh) 用于基于增强竞争的随机接入程序的方法和装置
KR102386723B1 (ko) 웨이크-업 무선 기술
JP5856810B2 (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
CN108476472B (zh) 终端装置、通信方法以及集成电路
CN113661674A (zh) 在无线通信系统中处理侧行链路反馈信道的信号的方法和装置
AU2011259040B2 (en) Mobile station apparatus, base station apparatus, radio communication system, radio communication method, and integrated circuit
KR102234813B1 (ko) 신호 재송신 장치 및 방법 및 통신 시스템
RU2770685C1 (ru) Терминал и способ передачи
EP2141869A1 (en) Efficient bandwidth request for broadband wireless networks
JP7010977B2 (ja) 繰り返し送信のための方法および端末デバイス
WO2013077339A1 (ja) 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
KR20180102630A (ko) 랜덤 액세스 방법 및 장치
WO2014124608A1 (zh) 设备到设备通信的设备发现方法及用户设备、网络侧设备
EP3113561B1 (en) Terminal device, integrated circuit, and wireless communication method
CN110035528B (zh) 一种通信方法、装置以及系统
CN111567006A (zh) 终端装置、基站装置以及通信方法
CN114175841A (zh) 一种数据传输方法及装置
WO2014139071A1 (zh) 一种确定交织器的方法及设备
US20220264653A1 (en) Method and apparatus for transmitting an uplink signal in a wireless communication system
WO2015010338A1 (zh) 用户设备之间的信号传输方法及装置
CN105594274A (zh) 数据传输方法和装置
US11991684B2 (en) Data transmission method and apparatus
EP3337258B1 (en) Data transmission method, terminal device, and base station
WO2013113276A1 (zh) 一种无线网络信道分配方法、设备及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076048.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013884731

Country of ref document: EP