WO2015010338A1 - 用户设备之间的信号传输方法及装置 - Google Patents

用户设备之间的信号传输方法及装置 Download PDF

Info

Publication number
WO2015010338A1
WO2015010338A1 PCT/CN2013/080230 CN2013080230W WO2015010338A1 WO 2015010338 A1 WO2015010338 A1 WO 2015010338A1 CN 2013080230 W CN2013080230 W CN 2013080230W WO 2015010338 A1 WO2015010338 A1 WO 2015010338A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
ofdm symbols
time slots
reference signal
user equipment
Prior art date
Application number
PCT/CN2013/080230
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to CN201380000658.6A priority Critical patent/CN104770058A/zh
Priority to JP2015559408A priority patent/JP6300836B2/ja
Priority to KR1020157023091A priority patent/KR101784897B1/ko
Priority to PCT/CN2013/080230 priority patent/WO2015010338A1/zh
Priority to EP13890161.6A priority patent/EP2943042B1/en
Publication of WO2015010338A1 publication Critical patent/WO2015010338A1/zh
Priority to US14/881,699 priority patent/US10044479B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal transmission method and apparatus between user equipments.
  • LTE Long Term Evolution
  • D2D ProSe Device to Device Proximity Service
  • a user equipment needs to send a discovery signal to a nearby second user equipment, so that the second user equipment can identify the nearby first user equipment according to the discovery signal and receive the discovery signal, and then between the first user equipment and the second user equipment.
  • the process of direct communication includes a process of initiating a call, channel measurement, channel feedback, resource scheduling, data transmission, and call completion.
  • time division duplex of LTE can be used (Time Divi sion)
  • the data frame of the Duplexing, TDD) system or the data frame of the LTE Frequency Diffusion Duplexing (FDD) system transmits the D2D signal between the first user equipment and the second user equipment, wherein the D2D signal includes Discover signals and direct communication signals.
  • the first user equipment sends the D2D signal to the second user equipment by using the downlink timing of the LTE system
  • the second user equipment uses the uplink timing of the LTE system to receive the D2D signal.
  • the downlink timing and the uplink timing are inconsistent, the first user equipment is caused.
  • the invention provides a signal transmission method and device between user equipments, which are used for solving the interference problem between 0FDM symbols existing in the direct communication process between user equipments, thereby improving the performance of the D2D ProSe.
  • the first aspect provides a method for transmitting a signal between user equipments, including: sending, by a first user equipment, a first subframe to a second user equipment;
  • the number of orthogonal frequency division multiplexing OFDM symbols included in the first subframe is smaller than the number of OFDM symbols included in the second subframe, and the second subframe is a subframe received by the network device;
  • the first subframe includes 13, 12 or 7 OFDM symbols, and the OFDM symbols include valid data and a cyclic prefix.
  • the time length of the first subframe is 1 millisecond or 30720 time slots
  • the subcarriers of the 13 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 13 OFDM symbols are The length of the cyclic prefix is less than or equal to 2*2048 slots, and is greater than or equal to 1*2048 slots; or
  • the subcarriers of the 12 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 12 OFDM symbols are The length of the cyclic prefix is less than or equal to 3*2048 slots, and is greater than or equal to 2*2048 slots; or
  • the subcarriers of the 7 OFDM symbols are 7.5 kHz, and the length of the valid data of each OFDM symbol is 4096 slots, and the 7 OFDM stations The length of the cyclic prefix of the symbol is less than or equal to 2048 slots.
  • the length of the first OFDM symbol in the 13 OFDM symbols is 316 slots plus 2048 slots, and the second to thirteenth
  • the time length of the 0FDM symbol is 315 slots plus 2048 slots, respectively; wherein the time length of the cyclic prefix of the first OFDM symbol is 316 slots, and the cyclic prefix of the second to thirteenth OFDM symbols
  • the length of time is 315 time slots respectively;
  • the length of each OFDM symbol in the 12 OFDM symbols is 512 slots plus 2048 slots, where the cyclic prefix of each OFDM symbol
  • the length of time is 512 time slots
  • the first subframe includes 7 OFDM symbols
  • the first of the 7 OFDM symbols The time lengths of one OFDM symbol and the fourth OFDM symbol are 304 slots plus 2048 slots, respectively, and the lengths of the second, third, fifth, sixth, and seventh OFDM symbols are 288 slots plus 2048 times, respectively.
  • the time interval of the cyclic prefix of the first OFDM symbol and the fourth OFDM symbol is 304 time slots, respectively, and the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seven OFDM symbols are respectively 288. Time slots.
  • the method includes:
  • the first user equipment inserts a reference signal in the first subframe according to a reference signal insertion mode corresponding to the first subframe.
  • the reference signal insertion mode corresponding to the subframe includes a reference signal insertion mode to at least one of the forty-first reference signal insertion mode;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-second reference signal insertion mode to a forty-third reference signal insertion mode. ;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-fourth reference signal insertion mode and a forty-fifth reference signal insertion mode.
  • the sending, by the first user equipment, the first user equipment to the second user equipment includes:
  • a signal transmission apparatus between user equipments including:
  • a sending module configured to send a first subframe to another user equipment
  • the number of orthogonal frequency division multiplexing 0FDM symbols included in the first subframe is smaller than the number of 0FDM symbols included in the second subframe, and the second subframe is a subframe received by the network device;
  • the time length of the first subframe is 1 millisecond or 30720 time slots;
  • the subcarriers of the 13 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 13 OFDM symbols are The length of the cyclic prefix is less than or equal to 2*2048 slots, and is greater than or equal to 1*2048 slots; or
  • the subcarriers of the 12 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 12 OFDM symbols are The length of the cyclic prefix is less than or equal to 3*2048 slots, and is greater than or equal to 2*2048 slots; or
  • the subcarriers of the 7 OFDM symbols are 7.5 kHz, and the length of the valid data of each OFDM symbol is 4096 slots, and the 7 OFDM stations The length of the cyclic prefix of the symbol is less than or equal to 2048 slots.
  • the length of the first OFDM symbol in the 13 OFDM symbols is 316 slots plus 2048 slots, and the second to thirteenth
  • the time length of the 0FDM symbol is 315 slots plus 2048 slots, respectively; wherein the time length of the cyclic prefix of the first OFDM symbol is 316 slots, and the cyclic prefix of the second to thirteenth OFDM symbols
  • the length of time is 315 time slots respectively;
  • the length of each OFDM symbol in the 12 OFDM symbols is 512 slots plus 2048 slots, where the cyclic prefix of each OFDM symbol
  • the length of time is 512 time slots
  • the time lengths of the first OFDM symbol and the fourth OFDM symbol in the 7 OFDM symbols are 304 slots plus 2048 slots, respectively.
  • the lengths of the second, third, fifth, sixth, and seven OFDM symbols are 288 slots plus 2048 slots, respectively, wherein the time lengths of the cyclic prefix of the first OFDM symbol and the fourth OFDM symbol are 304 respectively.
  • the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seven OFDM symbols are 288 time slots, respectively.
  • the apparatus further includes:
  • a configuration module configured to insert a reference signal in the first subframe according to a reference signal insertion mode corresponding to the first subframe.
  • the reference signal insertion mode corresponding to the subframe includes a reference signal insertion mode to at least one of the forty-first reference signal insertion mode;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-second reference signal insertion mode to a forty-third reference signal insertion mode. ;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-fourth reference signal insertion mode and a forty-fifth reference signal insertion mode.
  • the sending module is specifically configured to: send, by using the first subframe after the configuration module is inserted into the reference signal, And the another user equipment, to enable the another user equipment to parse the first subframe according to the reference signal inserted in the first subframe.
  • a user equipment including a processor and an RF:
  • the processor is configured to use the first subframe to transmit D2D information when the user equipment performs direct communication with another user equipment, where the D2D information is between the user equipment and another user equipment. Transmitting information transmitted during direct communication, and transmitting the first subframe to the radio frequency device;
  • the radio frequency device is configured to send the first subframe to the another user equipment by using an antenna; the number of orthogonal frequency division multiplexing OFDM symbols included in the first subframe is smaller than that included in the second subframe The number of 0FDM symbols, the second subframe is a subframe received by the network device;
  • the time length of the first subframe is 1 millisecond or 30720 time slots; If the first subframe includes 13 OFDM symbols, the subcarriers of the 13 OFDM symbols are 15 kHz, and the effective length of each OFDM symbol is 2048 slots, and the 13 OFDM symbols are used.
  • the length of the cyclic prefix is less than or equal to 2*2048 slots, and is greater than or equal to 1*2048 slots; or
  • the subcarriers of the 12 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 12 OFDM symbols are The length of the cyclic prefix is less than or equal to 3*2048 slots, and is greater than or equal to 2*2048 slots; or
  • the subcarriers of the 7 OFDM symbols are 7.5 kHz, and the length of the valid data of each OFDM symbol is 4096 slots, and the 7 OFDM stations The length of the cyclic prefix of the symbol is less than or equal to 2048 slots.
  • the length of the first OFDM symbol in the 13 OFDM symbols is 316 slots plus 2048 slots, and the second to thirteenth
  • the time length of the 0FDM symbol is 315 slots plus 2048 slots, respectively; wherein the time length of the cyclic prefix of the first OFDM symbol is 316 slots, and the cyclic prefix of the second to thirteenth OFDM symbols
  • the length of time is 315 time slots respectively;
  • the length of each OFDM symbol in the 12 OFDM symbols is 512 slots plus 2048 slots, where the cyclic prefix of each OFDM symbol
  • the length of time is 512 time slots
  • the time lengths of the first OFDM symbol and the fourth OFDM symbol in the 7 OFDM symbols are 304 slots plus 2048 slots, respectively.
  • the lengths of the second, third, fifth, sixth, and seven OFDM symbols are 288 slots plus 2048 slots, respectively, wherein the time lengths of the cyclic prefix of the first OFDM symbol and the fourth OFDM symbol are 304 respectively.
  • the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seven OFDM symbols are 288 time slots, respectively.
  • the processor is further configured to insert according to a reference signal corresponding to the first subframe a mode in which a reference signal is inserted in the first subframe.
  • the reference signal insertion mode corresponding to the subframe includes a reference signal insertion mode to at least one of the forty-first reference signal insertion mode; or
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-second reference signal insertion mode to a forty-third reference signal insertion mode. ;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-fourth reference signal insertion mode and a forty-fifth reference signal insertion mode.
  • the radio frequency device is specifically configured to: insert the first subframe after the processor is inserted into the reference signal by using an antenna Sending to the another user equipment, so that the another user equipment parses the D2D information transmitted in the first subframe according to the reference signal inserted in the first subframe.
  • the radio frequency device is further configured to receive, by using an antenna, the first subframe after the insertion reference signal sent by the another user equipment;
  • the processor is further configured to parse the D2D information transmitted in the first subframe according to the reference signal inserted in the first subframe.
  • the processor is further configured to: when the user equipment communicates with the network device, use the second subframe to transmit information, and send the second subframe to the radio frequency device;
  • the radio frequency device is further configured to send the second subframe to the network device by using an antenna.
  • the invention reduces the number of OFDM symbols included in the first subframe sent by the first user equipment to the second user equipment, so that the number of OFDM symbols included in the first subframe is smaller than that sent by the first user equipment to the network device.
  • FIG. 1 is a schematic diagram of comparison of the number of OFDM symbols included in a first subframe and a second subframe to which the embodiment of the present invention is applied;
  • FIG. 1 is a schematic diagram of a format of a first subframe applied according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of still another format of a first subframe according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another format of a first subframe used according to an embodiment of the present invention. Schematic diagram of a signal transmission method between user equipments;
  • FIG. 45 are schematic diagrams showing a first reference signal insertion mode to a forty-first reference signal insertion mode corresponding to the first subframe shown in FIG. 1;
  • FIG. 46 to FIG. 47 are schematic diagrams showing the forty-second reference signal insertion mode to the forty-third reference signal insertion mode corresponding to the first subframe shown in FIG. 2;
  • FIG. 48 to FIG. 49 are schematic diagrams showing the forty-fourth reference signal insertion mode to the forty-fifth reference signal insertion mode corresponding to the first subframe shown in FIG. 3;
  • FIG. 50 is a schematic structural diagram of a signal transmission apparatus between user equipments according to another embodiment of the present invention.
  • FIG. 51 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. Based on the embodiments of the present invention, those of ordinary skill in the art obtain the following without creative efforts. All other embodiments obtained are within the scope of the invention.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • CDMA2000 CDMA2000
  • WCDMA Wideband Code Division Multiple Access
  • Long Term Evolution English: Long Term Evolution, abbreviation LTE
  • Worldwide Interoperability for Microwave Access English: (World Interoperability for Microwave Access, Wiegand WiMAX) system.
  • the first user equipment when direct communication is performed between the first user equipment and the second user equipment, the first user equipment may use the data frame of the TDD system of the LTE or the data frame of the FDD system to the second user equipment.
  • the D2D signal is sent; wherein the data frame of the TDD system or the FDD system is a data frame used for communication between the user equipment and the network device (for example, the base station).
  • one data frame includes 10 subframes, and each subframe includes 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the time length of the cyclic prefix (CP) of two symbols is 160Ts (5.21us)
  • the length of the cyclic prefix with 12 symbols is 144Ts (4.69us).
  • Ts represents a time slot and us represents a microsecond.
  • the time when the subframe sent by the first user equipment reaches the second user equipment and the second time are not considered.
  • the time difference between the uplink timings of the user equipment is 4.15 us.
  • the time length value of the cyclic prefix in the existing LTE system is 144 Ts (4.69 us), which may result in Interference between OFDM symbols in a subframe.
  • the first user equipment when the first user equipment and the second user equipment perform direct communication, the first user equipment sends the second user equipment to the second user equipment.
  • the number of 0FDM symbols included in a subframe is smaller than that received by the network device.
  • FIG. 1 is a schematic diagram of comparison of the number of OFDM symbols included in the first subframe and the second subframe to be applied in the embodiment of the present invention.
  • the second subframe may be, for example, the first user equipment.
  • a subframe included in a data frame of a TDD system or an FDD system used for communication between a network device (for example, a base station), and a second subframe includes 14 OFDM symbols; the first sub-portion of the direct connection communication applied in this embodiment For example, 13, 12 or 7 OFDM symbols are included in the frame.
  • the time length of the first subframe is 1 millisecond or 30720 time slots; the 0FDM symbol includes valid data and a cyclic prefix.
  • FIG. 1 is a schematic diagram of a format of a first subframe used in the embodiment of the present invention. As shown in FIG.
  • the length of the first 0FDM symbol in the 0FDM symbol is 316 slots plus 2048 slots, and the length of the second to thirteenth OFDM symbols is 315 slots plus 2048 slots, respectively;
  • the time length of the cyclic prefix of the first 0FDM symbol is 316 time slots (10. 29U S), which is larger than the time length of the cyclic prefix of the 0FDM symbol in the prior art by 144Ts (4.69us), the second to the thirteenth
  • the time lengths of the cyclic prefixes of the 0FDM symbols are respectively 315 time slots (10. 25us), which is larger than the time length of the cyclic prefix of the 0FDM symbols in the prior art by 144Ts ( 4.69us);
  • FIG. 2 is a schematic diagram of another format of the first subframe applied in the embodiment of the present invention, as shown in FIG.
  • the time length of each 0FDM symbol in the 0FDM symbols is 512 slots plus 2048 slots, wherein the length of the cyclic prefix of each OFDM symbol is 512 slots (16.67 U S), which is larger than the prior art.
  • the time length of the cyclic prefix of the 0FDM symbol is 144Ts ( 4.69us);
  • FIG. 3 is a schematic diagram of another format of the first subframe used in the embodiment of the present invention. As shown in FIG. 3, the first of the 7 OFDM symbols The time lengths of one OFDM symbol and the fourth OFDM symbol are 304 slots plus 2048 slots, respectively. The lengths of the second, third, fifth, sixth, and seven OFDM symbols are 288 slots plus 2048 slots, respectively.
  • time slot wherein the time lengths of the cyclic prefixes of the first OFDM symbol and the fourth OFDM symbol are 304 time slots, respectively, and the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seventh OFDM symbols are respectively 288 time slots (9. 38us), which is larger than the time length of the cyclic prefix of the 0FDM symbol in the prior art by 144Ts (4.69us).
  • the embodiment of the present invention reduces the number of OFDM symbols included in the first subframe that is sent by the first user equipment to the second user equipment, so that the number of OFDM symbols included in the first subframe is smaller than that sent by the first user equipment to the network.
  • the time difference between the time of the second user equipment and the uplink timing of the second user equipment is smaller than the time length of the cyclic prefix of each OFDM symbol in the first subframe, which avoids interference between symbols and improves the performance of the D2D ProSe.
  • FIG. 4 is a schematic flowchart of a signal transmission method between user equipments according to an embodiment of the present invention.
  • the signal transmission method between user equipments may include:
  • the first user equipment inserts a reference signal in the first subframe according to a reference signal insertion mode corresponding to the first subframe.
  • the reference signal when the first user equipment sends the first subframe to the second user equipment, the reference signal needs to be inserted in the first subframe, so that the second user equipment can use the first subframe when receiving the first subframe.
  • the reference signal inserted in the subframe is subjected to channel estimation, and after the channel is estimated, the first subframe can be demodulated and decoded to recover the original D2D signal.
  • the reference signal occupies too much system capacity, thereby reducing the transmission of valid data in the subframe, thereby reducing system capacity, when the reference is inserted in the first subframe.
  • the second user equipment cannot correctly demodulate and decode, and recover the original D2D signal;
  • the embodiment of the present invention provides a reference signal insertion mode corresponding to the first subframe according to any one of FIG. 1 to FIG. 3, and the reference signal insertion provided by the embodiment of the present invention is proved by practical application.
  • the mode can efficiently demodulate and decode the original D2D signal while reducing the reference symbol overhead as much as possible.
  • FIG. 5 to FIG. 45 are the first reference signal insertion mode corresponding to the first subframe shown in FIG.
  • a reference signal inserting a reference signal at the 4th OFDM symbol and the 10th OFDM symbol of the 3rd subcarrier, at the 6th subcarrier
  • the reference signal is inserted at the 1st OFDM symbol and the 7th OFDM symbol
  • the reference signal is inserted at the 4th OFDM symbol and the 10th OFDM symbol of the 9th subcarrier
  • the 1st OFDM symbol and the 12th subcarrier are A reference signal is inserted at the 7th OFDM symbol, and the shaded portion of the figure indicates the inserted reference signal.
  • FIG. 46 to FIG. 47 are the forty-second reference signal insertion modes corresponding to the first subframe shown in FIG. A schematic diagram of the forty-three reference signal insertion mode, wherein the insertion description of the reference signal is not described in detail.
  • FIG. 48 to FIG. 49 are the forty-fourth reference signal insertion mode corresponding to the first subframe shown in FIG. A schematic diagram of the forty-five reference signal insertion mode, wherein the insertion description of the reference signal is not described in detail.
  • the first user equipment sends the first subframe after the insertion of the reference signal to the second user equipment, so that the second user equipment parses the reference signal according to the reference signal inserted in the first subframe.
  • the first subframe The first subframe.
  • the second user equipment parses the first subframe according to the reference signal inserted in the first subframe.
  • the reference signal inserted in the first subframe may be used for channel estimation, and after the channel is estimated, A sub-frame is demodulated and decoded to recover the original D2D signal.
  • reference may be made to related content in the prior art, and details are not described herein.
  • the embodiment of the present invention reduces the first child sent by the first user equipment to the second user equipment.
  • the number of OFDM symbols included in the frame is such that the number of OFDM symbols included in the first subframe is smaller than the number of OFDM symbols (14) included in the second subframe sent by the first user equipment to the network device, thereby
  • the time length of the cyclic prefix of each OFDM symbol in the first subframe may be extended, so that the time difference between the time when the first subframe sent by the first user equipment reaches the second user equipment and the uplink timing of the second user equipment is less than
  • the length of the cyclic prefix of each OFDM symbol in a subframe avoids interference between symbols and improves the performance of D2D ProSe;
  • the first reference device inserts a corresponding reference signal in the first subframe according to the reference signal insertion mode corresponding to the first subframe, and sends the first subframe after the reference signal is inserted to the first subframe.
  • the second user equipment proves that the reference symbol overhead is reduced as much as possible, and the original D2D signal can be recovered and decoded efficiently.
  • Figure 50 is a schematic diagram showing the structure of a signal transmission device between user equipments according to another embodiment of the present invention.
  • the sending module 51 is configured to send the first subframe to another user equipment.
  • the number of orthogonal frequency division multiplexing 0FDM symbols included in the first subframe is smaller than the number of 0FDM symbols included in the second subframe, and the second subframe is a subframe received by the network device;
  • the time length of the first subframe is 1 millisecond or 30720 time slots;
  • the subcarriers of the 13 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 13 OFDM symbols are The length of the cyclic prefix is less than or equal to 2*2048 slots, and is greater than or equal to 1*2048 slots; or
  • the subcarriers of the 12 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 12 OFDM symbols are The length of the cyclic prefix is less than or equal to 3*2048 slots, and is greater than or equal to 2*2048 slots; or
  • the subcarriers of the 7 OFDM symbols are 7.5 kHz, and the length of the valid data of each OFDM symbol is 4096 slots, and the 7 OFDM stations The length of the cyclic prefix of the symbol is less than or equal to 2048 slots.
  • the first subframe includes 13 OFDM symbols
  • the 13 OFDM symbols The length of the first OFDM symbol in the number is 316 slots plus 2048 slots, and the length of the second to thirteenth OFDM symbols is 315 slots plus 2048 slots, respectively;
  • the length of the cyclic prefix of one OFDM symbol is 316 slots, and the length of the cyclic prefix of the second to thirteenth OFDM symbols is 315 slots, respectively;
  • the length of each OFDM symbol in the 12 OFDM symbols is 512 slots plus 2048 slots, where the cyclic prefix of each OFDM symbol
  • the length of time is 512 time slots
  • the time lengths of the first OFDM symbol and the fourth OFDM symbol in the 7 OFDM symbols are 304 slots plus 2048 slots, respectively.
  • the lengths of the second, third, fifth, sixth, and seven OFDM symbols are 288 slots plus 2048 slots, respectively, wherein the time lengths of the cyclic prefix of the first OFDM symbol and the fourth OFDM symbol are 304 respectively.
  • the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seven OFDM symbols are 288 time slots, respectively.
  • the device further includes:
  • the configuration module 52 is configured to insert a reference signal in the first subframe according to a reference signal insertion mode corresponding to the first subframe.
  • the reference signal insertion mode corresponding to the subframe includes at least one of a first reference signal insertion mode and a forty-first reference signal insertion mode;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-second reference signal insertion mode to a forty-third reference signal insertion mode. ;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-fourth reference signal insertion mode and a forty-fifth reference signal insertion mode.
  • the sending module 51 is specifically configured to: send the first subframe after the configuration module is inserted into the reference signal to another user equipment, so that another user equipment according to the reference signal inserted in the first subframe Parsing the first subframe.
  • the embodiment of the present invention reduces the number of OFDM symbols included in the first subframe by using the number of OFDM symbols included in the first subframe that is sent by the first user equipment to the second user equipment.
  • the time difference between the time when the first subframe that is sent reaches the second user equipment and the uplink timing of the second user equipment is smaller than the time length of the cyclic prefix of each OFDM symbol in the first subframe, thereby avoiding interference between symbols and improving D2D ProSe performance;
  • the first reference device inserts a corresponding reference signal in the first subframe according to the reference signal insertion mode corresponding to the first subframe, and sends the first subframe after the reference signal is inserted to the first subframe.
  • the second user equipment proves that the reference symbol overhead is reduced as much as possible, and the original D2D signal can be recovered and decoded efficiently.
  • FIG. 51 is a schematic structural diagram of a user equipment according to another embodiment of the present invention. As shown in FIG. 51, an RF device 61 and a processor 62 are included;
  • the processor 62 is configured to use the first subframe to transmit D2D information when the user equipment performs direct communication with another user equipment, where the D2D information is the user equipment and another user equipment. Transmitting information transmitted during direct communication, and transmitting the first subframe to the radio frequency device 61;
  • the radio frequency device 61 is configured to send a first subframe to another user equipment; specifically, the radio frequency device 61 sends the first subframe to another user equipment by using an antenna;
  • the number of orthogonal frequency division multiplexing OFDM symbols included in the first subframe is smaller than the number of OFDM symbols included in the second subframe, and the second subframe is a subframe received by the network device; 14 OFDM symbols included in the second subframe, where the first subframe includes 13, 12 or 7 OFDM symbols, and the OFDM symbols include valid data and a cyclic prefix.
  • the time length of the first subframe is 1 millisecond or 30720 time slots;
  • the subcarriers of the 13 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 13 OFDM symbols are The length of the cyclic prefix is less than or equal to 2*2048 slots, and is greater than or equal to 1*2048 slots; or
  • the first subframe includes 12 OFDM symbols, the subcarriers of the 12 OFDM symbols are 15 kHz, and the length of the valid data of each OFDM symbol is 2048 slots, and the 12 OFDM symbols are The length of the cyclic prefix is less than or equal to 3*2048 slots, and is greater than or equal to 2*2048 slots; or If the first subframe includes 7 OFDM symbols, the subcarriers of the 7 OFDM symbols are 7.5 KHz, and the effective data of each OFDM symbol has a time length of 4096 slots, and the 7 OFDMs The length of the cyclic prefix of the symbol is less than or equal to 2048 slots.
  • the length of the first OFDM symbol in the 13 OFDM symbols is 316 slots plus 2048 slots, and the second to the tenth.
  • the time lengths of the three OFDM symbols are 315 slots plus 2048 slots, respectively; wherein the time length of the cyclic prefix of the first OFDM symbol is 316 slots, and the loop of the second to thirteenth OFDM symbols
  • the length of the prefix is 315 slots, respectively;
  • the length of each OFDM symbol in the 12 OFDM symbols is 512 slots plus 2048 slots, where the cyclic prefix of each OFDM symbol
  • the length of time is 512 time slots
  • the time lengths of the first OFDM symbol and the fourth OFDM symbol in the 7 OFDM symbols are 304 slots plus 2048 slots, respectively.
  • the lengths of the second, third, fifth, sixth, and seven OFDM symbols are 288 slots plus 2048 slots, respectively, wherein the time lengths of the cyclic prefix of the first OFDM symbol and the fourth OFDM symbol are 304 respectively.
  • the time lengths of the cyclic prefixes of the second, third, fifth, sixth, and seven OFDM symbols are 288 time slots, respectively.
  • the processor 62 is further configured to insert a reference signal in the first subframe according to a reference signal insertion mode corresponding to the first subframe;
  • the reference signal insertion mode corresponding to the subframe includes at least one of a first reference signal insertion mode and a forty-first reference signal insertion mode;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-second reference signal insertion mode to a forty-third reference signal insertion mode. ;
  • the reference signal insertion mode corresponding to the first subframe includes at least one of a forty-fourth reference signal insertion mode and a forty-fifth reference signal insertion mode.
  • the radio frequency device 61 is specifically configured to: send the first subframe after the processor is inserted into the reference signal to another user equipment by using an antenna, so that another user equipment is configured according to the first sub
  • the reference signal inserted in the frame parses the D2D information transmitted in the first subframe.
  • the radio frequency device 61 is further configured to receive, by using an antenna, a first subframe after the insertion reference signal sent by the another user equipment;
  • the processor 62 is further configured to parse the D2D information transmitted in the first subframe according to the reference signal inserted in the first subframe.
  • the user equipment in this embodiment further includes a memory 63 and a communication bus 64, wherein the memory 63 stores instructions for implementing a signal transmission method between the user equipment, and the processor 62 can retrieve the memory 63.
  • the instructions implement a signal transmission method between the user equipments described above, and the RF unit 61, the processor 62, and the memory 63 are connected by a communication bus 64.
  • processor 62 is further configured to: when the user equipment communicates with the network device, use the second subframe to transmit information, and send the second subframe to the radio frequency device. 61 ;
  • the radio frequency device 61 is further configured to send the second subframe to the network device by using an antenna.
  • the embodiment of the present invention reduces the number of OFDM symbols included in the first subframe that is sent by the first user equipment to the second user equipment, so that the number of OFDM symbols included in the first subframe is smaller than that sent by the first user equipment to the network.
  • the time difference between the time of the second user equipment and the uplink timing of the second user equipment is less than the time length of the cyclic prefix of each OFDM symbol in the first subframe, which avoids interference between symbols and improves the performance of the D2D ProSe;
  • the first reference device inserts a corresponding reference signal in the first subframe according to the reference signal insertion mode corresponding to the first subframe, and sends the first subframe after the reference signal is inserted to the first subframe.
  • the second user equipment proves that the reference symbol overhead is reduced as much as possible, and the original D2D signal can be recovered and decoded efficiently.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include a number of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a mobile hard disk, a read-only memory (English: Read-Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like. The medium of the code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用户设备之间的信号传输方法及装置,通过第一用户设备向第二用户设备发送的第一子帧中包括的OFDM符号个数小于第一用户设备发送给网络设备的第二子帧中包括的OFDM符号个数,其中,第二子帧中包括的14个OFDM符号,所述第一子帧中包括 13、12或7个OFDM 符号,所述OFDM符号中包括有效数据和循环前缀,可以避免了OFDM符号间的干扰,提高了D2D ProSe的性能。

Description

用户设备之间的信号传输方法及装置
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种用户设备之间的信号 传输方法及装置。
背景技术
使用长期演进 (Long Term Evolut ion, LTE ) 系统的物理层进行用户 设备 (例如第一用户设备和第二用户设备) 之间的直连通信 (Device to Device Proximity Service , D2D ProSe ) 服务时, 第一用户设备需要向 附近的第二用户设备发送发现信号, 以使第二用户设备能够根据发现信号 识别附近的第一用户设备并接收发现信号, 之后在第一用户设备和第二用 户设备之间进行直连通信的流程, 例如包括发起呼叫, 信道测量, 信道反 馈, 资源调度, 数据传输, 呼叫完成等一系列过程。
在现有的 D2D ProSe中, 例如可以使用 LTE的时分双工(Time Divi sion
Duplexing, TDD)系统的数据帧或者 LTE的频分双工 (Frequency Divi sion Duplexing , FDD ) 系统的数据帧在第一用户设备和第二用户设备之间进行 D2D信号的传输, 其中, D2D信号包括发现信号和直连通信信号。
然而, 由于第一用户设备使用 LTE系统的下行定时向第二用户设备发 送 D2D信号, 第二用户设备使用 LTE系统的上行定时接收 D2D信号, 当下 行定时和上行定时不一致时, 使得第一用户设备发送的 D2D信号到达第二 用户设备的时间与第二用户设备的上行定时之间存在时间差, 而该存在的 时间差会造成数据帧中 0FDM符号间的干扰, 使得第二用户设备解析不出 D2D信号, 影响 D2D ProSe的性能。 发明内容
本发明提供一种用户设备之间的信号传输方法及装置, 用于解决用户 设备间直连通信过程中存在的 0FDM符号间的干扰问题, 从而提高 D2D ProSe的性能。 第一方面, 提供一种用户设备之间的信号传输方法, 包括: 第一用户设备向第二用户设备发送第一子帧;
所述第一子帧中包括的正交频分复用 OFDM符号个数小于第二子帧中 包括的 OFDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 OFDM符号, 所述第一子帧中包括 13、 12 或 7个 OFDM符号, 所述 OFDM符号中包括有效数据和循环前缀。
基于第一方面, 在第一种可能的实现方式中, 所述第一子帧的时间长 度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
基于第一方面或第一方面的第一种可能的实现方式, 在第二种可能的 实现方式中:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 OFDM符号和第四个 OFDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 OFDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 OFDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
基于第一方面或第一方面的第一或第二种可能的实现方式, 在第三种 可能的实现方式中, 所述第一用户设备向第二用户设备发送第一子帧之 前, 包括:
所述第一用户设备根据所述第一子帧对应的参考信号插入模式, 在所 述第一子帧中插入参考信号。
基于第一方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 若所述第一子帧中包括 13个 0FDM符号时, 所述子帧对应的参考信号 插入模式包括第一参考信号插入模式至第四十一参考信号插入模式中的 至少一项; 或者
若所述第一子帧中包括 12个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
基于第一方面的第三或第四种可能的实现方式, 在第五种可能的实现 方式中所述第一用户设备向第二用户设备发送第一子帧, 包括:
所述第一用户设备将所述插入参考信号后的第一子帧发送给所述第 二用户设备, 以使所述第二用户设备根据所述第一子帧中插入的参考信号 解析所述第一子帧。
第二方面, 提供一种用户设备之间的信号传输装置, 包括:
发送模块, 用于向另一用户设备发送第一子帧;
所述第一子帧中包括的正交频分复用 0FDM符号个数小于第二子帧中 包括的 0FDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 Ί个 OFDM符号, 所述 OFDM符号中包括有效数据和循环前缀。 基于第二方面, 在第一种可能的实现方式中, 所述第一子帧的时间长 度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 OFDM符号, 则所述 13个 OFDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
基于第二方面或第二方面的第一种可能的实现方式, 在第二种可能的 实现方式中:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。 基于第二方面或第二方面的第一或第二种可能的实现方式, 在第三种 可能的实现方式中, 所述的装置还包括:
配置模块, 用于根据所述第一子帧对应的参考信号插入模式, 在所述 第一子帧中插入参考信号。
基于第二方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 若所述第一子帧中包括 13个 OFDM符号时, 所述子帧对应的参考信号 插入模式包括第一参考信号插入模式至第四十一参考信号插入模式中的 至少一项; 或者
若所述第一子帧中包括 12个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
基于第二方面的第三或第四种可能的实现方式, 在第五种可能的实现 方式中, 所述发送模块具体用于: 将所述配置模块插入参考信号后的第一 子帧发送给所述另一用户设备, 以使所述另一用户设备根据所述第一子帧 中插入的参考信号解析所述第一子帧。
第三方面, 提供一种用户设备, 包括处理器和射频器:
所述处理器, 用于在所述用户设备与另一用户设备之间进行直连通信 时, 使用第一子帧传输 D2D信息, 所述 D2D信息为所述用户设备与另一用 户设备之间进行直连通信时传输的信息, 并将所述第一子帧发送给所述射 频器;
所述射频器, 用于通过天线向所述另一用户设备发送所述第一子帧; 所述第一子帧中包括的正交频分复用 OFDM符号个数小于第二子帧中 包括的 0FDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 7个 0FDM符号, 所述 0FDM符号中包括有效数据和循环前缀。
基于第三方面, 在第一种可能的实现方式中, 所述第一子帧的时间长 度为 1毫秒或 30720个时隙; 若所述第一子帧中包括 13个 OFDM符号, 则所述 13个 OFDM符号的子 载波为 15KHz, 每个 OFDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 OFDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
基于第三方面或第三方面的第一种可能的实现方式, 在第二种可能的 实现方式中:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
基于第三方面或第三方面的第一或第二种可能的实现方式, 在第三种 可能的实现方式中, 所述处理器, 还用于根据所述第一子帧对应的参考信 号插入模式, 在所述第一子帧中插入参考信号。 基于第三方面的第三种可能的实现方式, 在第四种可能的实现方式 中, 若所述第一子帧中包括 13个 OFDM符号时, 所述子帧对应的参考信号 插入模式包括第一参考信号插入模式至第四十一参考信号插入模式中的 至少一项; 或者
若所述第一子帧中包括 12个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
基于第三方面的第三或第四种可能的实现方式, 在第五种可能的实现 方式中, 所述射频器具体用于: 将所述处理器插入参考信号后的第一子帧 通过天线发送给所述另一用户设备, 以使所述另一用户设备根据所述第一 子帧中插入的参考信号解析所述第一子帧中传输的 D2D信息。
基于第三方面或第三方面的第一至第五种任一可能的实现方式, 在第 六种可能的实现方式中:
所述射频器, 还用于通过天线接收所述另一用户设备发送的插入参考 信号后的所述第一子帧;
所述处理器, 还用于根据所述第一子帧中插入的参考信号解析所述第 一子帧中传输的 D2D信息。
基于第三方面, 在第七种可能的实现方式中:
所述处理器, 还用于在所述用户设备与网络设备之间进行通信时, 使 用所述第二子帧传输信息, 并将所述第二子帧发送给所述射频器;
所述射频器, 还用于通过天线向所述网络设备发送所述第二子帧。 本发明通过减少第一用户设备向第二用户设备发送的第一子帧中包 括的 OFDM符号的个数, 使得第一子帧中包括的 0FDM符号个数小于第一用 户设备发送给网络设备的第二子帧中包括的 0FDM符号的个数 (14个) , 从而可以延长第一子帧中每个 0FDM符号的循环前缀的时间长度, 使得第 一用户设备发送的第一子帧到达第二用户设备的时间与第二用户设备的 上行定时之间存在时间差小于第一子帧中每个 0FDM符号的循环前缀的时 间长度, 避免了符号间的干扰, 提高 D2D ProSe的性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1-A是本发明实施例应用的第一子帧和第二子帧中包括的 OFDM符 号个数的比较示意图;
图 1为本发明实施例应用的第一子帧的一种格式示意图;
图 2为本发明实施例应用的第一子帧的又一种格式示意图; 图 3为本发明实施例应用的第一子帧的又一种格式示意图; 图 4为本发明一实施例提供的用户设备之间的信号传输方法的流程示 意图;
图 5-图 45为图 1所示第一子帧对应的第一参考信号插入模式至第四 十一参考信号插入模式的示意图;
图 46-图 47为图 2所示第一子帧对应的第四十二参考信号插入模式至 第四十三参考信号插入模式的示意图;
图 48-图 49为图 3所示第一子帧对应的第四十四参考信号插入模式至 第四十五参考信号插入模式的示意图;
图 50 为本发明另一实施例提供的用户设备之间的信号传输装置的结 构示意图;
图 51为本发明另一实施例提供的用户设备的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种无线通信系统, 例如: 全球移动 通信系统(英文: Global System for Mobile Communications, 简称 GSM)、 通用分组无线业务 (英文: General Packet Radio Service, 简称 GPRS) 系统、 码分多址 (英文: Code Division Multiple Access, 简称 CDMA) 系统、 CDMA2000 系统、 宽带码分多址 (英文: Wideband Code Division Multiple Access, 简称 WCDMA ) 系统、 长期演进 (英文: Long Term Evolution, 简称 LTE) 系统或全球微波接入互操作性 (英文: World Interoperability for Microwave Access, 简禾尔 WiMAX) 系统等。
在现有的 D2D ProSe中, 当第一用户设备和第二用户设备之间进行直 连通信时, 第一用户设备可以使用 LTE的 TDD系统的数据帧或者 FDD系统 的数据帧向第二用户设备发送 D2D信号; 其中, TDD系统或者 FDD系统的 数据帧是用户设备与网络设备 (例如基站) 之间通信使用的数据帧。
根据现有的 LTE的 TDD系统或 FDD系统的数据帧的帧格式, 1个数据 帧包含 10 个子帧, 每个子帧包含 14 个正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM) 符号, 在这 14个符号中, 有 两个符号的循环前缀 (cyclic prefix, CP) 的时间长度 (简称时长) 是 160Ts (5.21us),有 12个符号的循环前缀的时间长度是 144Ts (4.69us), 其中, Ts表示时隙, us表示微秒。
然而, 在实际应用中, D2D ProSe至少需要支持两个用户设备之间的 距离为 577米 (即 D2D range=577m) 、 站间距 (Inter site distance, ISD) 为 500 (即 ISD=500) 的应用场景;
在不考虑到多径延时, 当第一用户设备和第二用户设备之间的 D2D range=577m, ISD=500时, 第一用户设备发送的子帧到达第二用户设备的 时间与第二用户设备的上行定时之间的时间差为 4.15 us, 然而在实际应 用中, 若考虑到多径延时则超过了现有的 LTE系统中循环前缀的时间长度 值 144Ts (4.69us) ,从而会造成子帧中的 OFDM符号间的干扰。
为了避免 0FDM符号间的干扰, 在本发明的一个可选的实施方式中, 当第一用户设备和第二用户设备之间进行直连通信时, 第一用户设备向第 二用户设备发送的第一子帧中包括的 0FDM符号个数小于网络设备接收的 第二子帧中包括的 OFDM符号个数, 其中, 第二子帧为网络设备接收的子 帧;
图 1-A是本发明实施例应用的第一子帧和第二子帧中包括的 OFDM符 号个数的比较示意图, 如图 1-A所示, 第二子帧例如可以为第一用户设备 与网络设备 (例如基站) 之间通信使用的 TDD系统或者 FDD系统的数据帧 中包括的子帧, 第二子帧中包括 14个 OFDM符号; 本实施例应用的直连通 信时的第一子帧中例如包括 13、 12或 7个 OFDM符号。
其中, 第一子帧的时间长度为 1毫秒或 30720个时隙; 所述 0FDM符 号中包括有效数据和循环前缀。
当第一子帧中包括 13个 0FDM符号时, 所述 13个 0FDM符号的子载波 为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙; 所述 13 个 0FDM 符号的循环前缀的时间长度小于等于 2*2048 个时隙, 大于等于 1*2048个时隙; 图 1为本发明实施例应用的第一子帧的一种格式示意图, 如图 1所示, 所述 13个 0FDM符号中的第一个 0FDM符号的时间长度是 316 个时隙加 2048个时隙,第二个到第十三个 0FDM符号的时间长度分别是 315 个时隙加 2048个时隙; 其中, 第一个 0FDM符号的循环前缀的时间长度是 316个时隙(10. 29U S) , 大于现有技术中 0FDM符号的循环前缀的时间长度 144Ts ( 4. 69us ) , 第二个到第十三个 0FDM符号的循环前缀的时间长度分 别是 315个时隙(10. 25us), 大于现有技术中 0FDM符号的循环前缀的时间 长度 144Ts ( 4. 69us ) ;
当第一子帧中包括 12个 0FDM符号时, 所述 12个 0FDM符号的子载波 为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙; 所述 12 个 0FDM 符号的循环前缀的时间长度小于等于 3*2048 个时隙, 大于等于 2*2048 个时隙; 图 2 为本发明实施例应用的第一子帧的又一种格式示意 图, 如图 2所示, 所述 12个 0FDM符号中每个 0FDM符号的时间长度是 512 个时隙加 2048个时隙,其中,每个 0FDM符号的循环前缀的时间长度是 512 个时隙(16. 67U S) , 大于现有技术中 0FDM 符号的循环前缀的时间长度 144Ts ( 4. 69us ) ;
当第一子帧中包括 7个 0FDM符号时, 所述 7个 0FDM符号的子载波为 7. 5KHz , 每个 OFDM符号的有效数据的时间长度为 4096个时隙; 所述 7个 OFDM符号的循环前缀的时间长度小于等于 2048个时隙; 图 3为本发明实 施例应用的第一子帧的又一种格式示意图, 如图 3所示, 所述 7个 OFDM 符号中的第一个 OFDM符号和第四个 OFDM符号的时间长度分别是 304个时 隙加 2048个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的 循环前缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM 符号的循环前缀的时间长度分别是 288个时隙(9. 38us), 大于现有技术中 0FDM符号的循环前缀的时间长度 144Ts ( 4. 69us ) 。
本发明实施例通过减少第一用户设备向第二用户设备发送的第一子 帧中包括的 0FDM符号的个数, 使得第一子帧中包括的 0FDM符号个数小于 第一用户设备发送给网络设备的第二子帧中包括的 0FDM符号的个数 (14 个) , 从而可以延长第一子帧中每个 0FDM符号的循环前缀的时间长度, 使得第一用户设备发送的第一子帧到达第二用户设备的时间与第二用户 设备的上行定时之间存在时间差小于第一子帧中每个 0FDM符号的循环前 缀的时间长度, 避免了符号间的干扰, 提高 D2D ProSe的性能。
图 4为本发明一实施例提供的用户设备之间的信号传输方法的流程示 意图, 基于图 1-图 3中任一项所述的第一子帧, 如图 4所示, 本实施例的 用户设备之间的信号传输方法可以包括:
401、 第一用户设备根据所述第一子帧对应的参考信号插入模式, 在 所述第一子帧中插入参考信号。
具体实现时, 当第一用户设备向第二用户设备发送第一子帧时, 需要 在第一子帧中插入参考信号, 使得第二用户设备在接收到第一子帧时, 可 以使用第一子帧中插入的参考信号进行信道估计, 估计出信道后, 才能对 第一子帧进行解调、 译码, 恢复出原始的 D2D信号。
当第一子帧中插入的参考信号过多时, 参考信号占用的系统容量也会 过多, 从而减少了子帧中有效数据的传输, 因此会减少系统容量, 当第一 子帧中插入的参考信号过少时, 第二用户设备不能正确地解调、 译码, 恢 复出原始的 D2D信号;
本发明实施例提供了与图 1-图 3 中任一项所述的第一子帧对应的参 考信号插入模式, 经过实践应用证明, 本发明实施例提供的参考信号插入 模式在尽可能减小参考符号开销的同时, 可以高效的解调、 译码, 恢复出 原始的 D2D信号。
在本发明一个可选的实施方式中, 当第一子帧中包括 13个 OFDM符号 时,图 5-图 45为图 1所示第一子帧对应的第一参考信号插入模式至第四十 一参考信号插入模式的示意图, 如图 5-图 45所示, 本实施例使用的第一 子帧中包括 13个 OFDM符号和 12个子载波, 其中, 横向表示 13个 OFDM 符号, 纵向表示 12个子载波; 以图 5所示的第一参考信号插入模式为例 进行参考信号的插入说明, 在第 3个子载波的第 4个 OFDM符号和第 10个 OFDM符号处插入参考信号, 在第 6个子载波的第 1个 OFDM符号和第 7个 0FDM符号处插入参考信号, 第 9个子载波的第 4个 0FDM符号和第 10个 0FDM符号处插入参考信号, 在第 12个子载波的第 1个 0FDM符号和第 7 个 0FDM符号处插入参考信号, 图中阴影部分表示插入的参考信号。
其他第二参考信号插入模式至第四十一参考信号插入模式的插入说 明不再赘述。
在本发明一个可选的实施方式中, 当第一子帧中包括 12个 0FDM符号 时,图 46-图 47为图 2所示第一子帧对应的第四十二参考信号插入模式至 第四十三参考信号插入模式的示意图, 其中, 参考信号的插入说明不再详 述。
在本发明一个可选的实施方式中, 当第一子帧中包括 7个 0FDM符号 时,图 48-图 49为图 3所示第一子帧对应的第四十四参考信号插入模式至 第四十五参考信号插入模式的示意图, 其中, 参考信号的插入说明不再详 述。
402、 第一用户设备将所述插入参考信号后的第一子帧发送给所述第 二用户设备, 以使所述第二用户设备根据所述第一子帧中插入的参考信号 解析所述第一子帧。
其中, 第二用户设备根据所述第一子帧中插入的参考信号解析所述第 一子帧, 例如可以使用第一子帧中插入的参考信号进行信道估计, 估计出 信道后, 才能对第一子帧进行解调、 译码, 恢复出原始的 D2D信号, 具体 过程可以参考现有技术中的相关内容, 不再赘述。
本发明实施例通过减少第一用户设备向第二用户设备发送的第一子 帧中包括的 OFDM符号的个数, 使得第一子帧中包括的 OFDM符号个数小于 第一用户设备发送给网络设备的第二子帧中包括的 OFDM符号的个数 (14 个) , 从而可以延长第一子帧中每个 OFDM符号的循环前缀的时间长度, 使得第一用户设备发送的第一子帧到达第二用户设备的时间与第二用户 设备的上行定时之间存在时间差小于第一子帧中每个 OFDM符号的循环前 缀的时间长度, 避免了符号间的干扰, 提高 D2D ProSe的性能;
进一步地, 本发明实施例通过第一用设备根据所述第一子帧对应的参 考信号插入模式在第一子帧中插入相应的参考信号, 并将插入参考信号后 的第一子帧发送给所述第二用户设备, 经过实践应用证明, 尽可能减小参 考符号开销的同时, 可以高效的解调、 译码, 恢复出原始的 D2D信号。
图 50 为本发明另一实施例提供的用户设备之间的信号传输装置的结 构示意图; 位于用户设备侧, 如图 50所示, 包括:
发送模块 51, 用于向另一用户设备发送第一子帧;
所述第一子帧中包括的正交频分复用 0FDM符号个数小于第二子帧中 包括的 0FDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 7个 0FDM符号, 所述 0FDM符号中包括有效数据和循环前缀。
其中, 所述第一子帧的时间长度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
其中, 若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符 号中的第一个 OFDM符号的时间长度是 316个时隙加 2048个时隙, 第二个 到第十三个 OFDM符号的时间长度分别是 315个时隙加 2048个时隙;其中, 第一个 OFDM符号的循环前缀的时间长度是 316个时隙, 第二个到第十三 个 OFDM符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
举例来说, 所述的装置还包括:
配置模块 52, 用于根据所述第一子帧对应的参考信号插入模式, 在所 述第一子帧中插入参考信号。
其中, 若所述第一子帧中包括 13个 0FDM符号时, 所述子帧对应的参 考信号插入模式包括第一参考信号插入模式至第四十一参考信号插入模 式中的至少一项; 或者
若所述第一子帧中包括 12个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
举例来说, 发送模块 51 具体用于: 将所述配置模块插入参考信号后 的第一子帧发送给另一用户设备, 以使另一用户设备根据所述第一子帧中 插入的参考信号解析所述第一子帧。
本发明实施例通过减少第一用户设备向第二用户设备发送的第一子 帧中包括的 0FDM符号的个数, 使得第一子帧中包括的 0FDM符号个数小于 第一用户设备发送给网络设备的第二子帧中包括的 OFDM符号的个数 (14 个) , 从而可以延长第一子帧中每个 OFDM符号的循环前缀的时间长度, 使得第一用户设备发送的第一子帧到达第二用户设备的时间与第二用户 设备的上行定时之间存在时间差小于第一子帧中每个 OFDM符号的循环前 缀的时间长度, 避免了符号间的干扰, 提高 D2D ProSe的性能;
进一步地, 本发明实施例通过第一用设备根据所述第一子帧对应的参 考信号插入模式在第一子帧中插入相应的参考信号, 并将插入参考信号后 的第一子帧发送给所述第二用户设备, 经过实践应用证明, 尽可能减小参 考符号开销的同时, 可以高效的解调、 译码, 恢复出原始的 D2D信号。
图 51为本发明另一实施例提供的用户设备的结构示意图, 如图 51所 示, 包括射频器 61和处理器 62 ;
其中, 处理器 62, 用于在所述用户设备与另一用户设备之间进行直连 通信时, 使用第一子帧传输 D2D信息, 所述 D2D信息为所述用户设备与另 一用户设备之间进行直连通信时传输的信息, 并将所述第一子帧发送给射 频器 61 ;
射频器 61, 用于向另一用户设备发送第一子帧; 具体是射频器 61通 过天线向另一用户设备发送第一子帧;
其中, 所述第一子帧中包括的正交频分复用 OFDM符号个数小于第二 子帧中包括的 OFDM符号个数, 所述第二子帧为网络设备接收的子帧; 所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 7个 0FDM符号, 所述 0FDM符号中包括有效数据和循环前缀。
其中, 所述第一子帧的时间长度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者 若所述第一子帧中包括 7个 OFDM符号, 则所述 7个 OFDM符号的子载 波为 7. 5KHz , 每个 OFDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 OFDM符号的循环前缀的时间长度小于等于 2048个时隙。
其中, 若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符 号中的第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个 到第十三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙;其中, 第一个 0FDM符号的循环前缀的时间长度是 316个时隙, 第二个到第十三 个 0FDM符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
举例来说, 处理器 62, 还用于根据所述第一子帧对应的参考信号插入 模式, 在所述第一子帧中插入参考信号;
其中, 若所述第一子帧中包括 13个 0FDM符号时, 所述子帧对应的参 考信号插入模式包括第一参考信号插入模式至第四十一参考信号插入模 式中的至少一项; 或者
若所述第一子帧中包括 12个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
举例来说, 射频器 61 具体用于: 将所述处理器插入参考信号后的第 一子帧通过天线发送给另一用户设备, 以使另一用户设备根据所述第一子 帧中插入的参考信号解析所述第一子帧中传输的 D2D信息。
需要说明的是, 射频器 61, 还用于通过天线接收所述另一用户设备发 送的所述插入参考信号后的第一子帧;
处理器 62,还用于根据所述第一子帧中插入的参考信号解析所述第一 子帧中传输的 D2D信息。
需要说明的是,本实施例的用户设备还包括存储器 63和通信总线 64, 其中, 存储器 63中保存有实现上述用户设备之间的信号传输方法的指令, 处理器 62可以调取存储器 63中的指令实现上述用户设备之间的信号传输 方法, 射频器 61、 处理器 62、 存储器 63之间通过通信总线 64进行连接。
需要说明的是, 处理器 62, 还用于在所述用户设备与网络设备之间进 行通信时, 使用所述第二子帧传输信息, 并将所述第二子帧发送给所述射 频器 61 ;
射频器 61, 还用于通过天线向所述网络设备发送所述第二子帧。
本发明实施例通过减少第一用户设备向第二用户设备发送的第一子 帧中包括的 OFDM符号的个数, 使得第一子帧中包括的 OFDM符号个数小于 第一用户设备发送给网络设备的第二子帧中包括的 OFDM符号的个数 (14 个) , 从而可以延长第一子帧中每个 OFDM符号的循环前缀的时间长度, 使得第一用户设备发送的第一子帧到达第二用户设备的时间与第二用户 设备的上行定时之间存在时间差小于第一子帧中每个 OFDM符号的循环前 缀的时间长度, 避免了符号间的干扰, 提高 D2D ProSe的性能;
进一步地, 本发明实施例通过第一用设备根据所述第一子帧对应的参 考信号插入模式在第一子帧中插入相应的参考信号, 并将插入参考信号后 的第一子帧发送给所述第二用户设备, 经过实践应用证明, 尽可能减小参 考符号开销的同时, 可以高效的解调、 译码, 恢复出原始的 D2D信号。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: 移动 硬盘、 只读存储器 (英文: Read-Only Memory, 简称 ROM) 、 随机存取存储 器 (英文: Random Access Memory, 简称 RAM) 、 磁碟或者光盘等各种可以 存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims

权利 要 求书
1、 一种用户设备之间的信号传输方法, 其特征在于, 包括:
第一用户设备向第二用户设备发送第一子帧;
所述第一子帧中包括的正交频分复用 OFDM符号个数小于第二子帧中 包括的 OFDM符号个数, 所述第二子帧为网络设备接收的子帧;
其中,所述第二子帧中包括 14个 OFDM符号,所述第一子帧中包括 13、 12或 7个 OFDM符号, 所述 OFDM符号中包括有效数据和循环前缀。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述第一子帧的时间 长度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
3、 根据权利要求 1或 2所述的方法, 其特征在于:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙; 或者 若所述第一子帧中包括 7个 OFDM符号, 则所述 7个 OFDM符号中的第 一个 OFDM符号和第四个 OFDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述第一用 户设备向第二用户设备发送第一子帧之前, 包括:
所述第一用户设备根据所述第一子帧对应的参考信号插入模式, 在所 述第一子帧中插入参考信号。
5、 根据权利要求 4所述的方法, 其特征在于, 若所述第一子帧中包 括 13个 0FDM符号时, 所述子帧对应的参考信号插入模式包括第一参考信 号插入模式至第四十一参考信号插入模式中的至少一项; 或者
若所述第一子帧中包括 12个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
6、 根据权利要求 4或 5所述的方法, 其特征在于, 所述第一用户设 备向第二用户设备发送第一子帧, 包括:
所述第一用户设备将所述插入参考信号后的第一子帧发送给所述第 二用户设备, 以使所述第二用户设备根据所述第一子帧中插入的参考信号 解析所述第一子帧。
7、 一种用户设备之间的信号传输装置, 位于用户设备侧, 其特征在 于, 包括:
发送模块, 用于向另一用户设备发送第一子帧;
所述第一子帧中包括的正交频分复用 0FDM符号个数小于第二子帧中 包括的 0FDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 Ί个 OFDM符号, 所述 OFDM符号中包括有效数据和循环前缀。
8、 根据权利要求 7所述的装置, 其特征在于, 所述第一子帧的时间 长度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 OFDM符号, 则所述 13个 OFDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 0FDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
9、 根据权利要求 7或 8所述的装置, 其特征在于:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙; 或者
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
10、 根据权利要求 7-9任一项所述的装置, 其特征在于, 还包括: 配置模块, 用于根据所述第一子帧对应的参考信号插入模式, 在所述 第一子帧中插入参考信号。
1 1、 根据权利要求 10所述的装置, 其特征在于, 若所述第一子帧中 包括 13个 OFDM符号时, 所述子帧对应的参考信号插入模式包括第一参考 信号插入模式至第四十一参考信号插入模式中的至少一项; 或者
若所述第一子帧中包括 12个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
12、 根据权利要求 10或 1 1所述的装置, 其特征在于, 所述发送模块 具体用于: 将所述配置模块插入参考信号后的第一子帧发送给所述另一用 户设备, 以使所述另一用户设备根据所述第一子帧中插入的参考信号解析 所述第一子帧。
13、 一种用户设备, 包括射频器和处理器, 其特征在于:
所述处理器, 用于在所述用户设备与另一用户设备之间进行直连通信 时, 使用第一子帧传输 D2D信息, 所述 D2D信息为所述用户设备与另一用 户设备之间进行直连通信时传输的信息, 并将所述第一子帧发送给所述射 频器;
所述射频器, 用于通过天线向所述另一用户设备发送所述第一子帧; 所述第一子帧中包括的正交频分复用 OFDM符号个数小于第二子帧中 包括的 0FDM符号个数, 所述第二子帧为网络设备接收的子帧;
所述第二子帧中包括的 14个 0FDM符号, 所述第一子帧中包括 13、 12 或 7个 0FDM符号, 所述 0FDM符号中包括有效数据和循环前缀。
14、 根据权利要求 13 所述的用户设备, 其特征在于, 所述第一子帧 的时间长度为 1毫秒或 30720个时隙;
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号的子 载波为 15KHz, 每个 0FDM符号的有效数据的时间长度为 2048个时隙, 所 述 13个 0FDM符号的循环前缀的时间长度小于等于 2*2048个时隙, 大于 等于 1*2048个时隙; 或者
若所述第一子帧中包括 12个 OFDM符号, 则所述 12个 OFDM符号的子 载波为 15KHz, 每个 OFDM符号的有效数据的时间长度为 2048个时隙, 所 述 12个 OFDM符号的循环前缀的时间长度小于等于 3*2048个时隙, 大于 等于 2*2048个时隙; 或者
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号的子载 波为 7. 5KHz , 每个 0FDM符号的有效数据的时间长度为 4096个时隙, 所述 7个 0FDM符号的循环前缀的时间长度小于等于 2048个时隙。
15、 根据权利要求 13或 14所述的用户设备, 其特征在于:
若所述第一子帧中包括 13个 0FDM符号, 则所述 13个 0FDM符号中的 第一个 0FDM符号的时间长度是 316个时隙加 2048个时隙, 第二个到第十 三个 0FDM符号的时间长度分别是 315个时隙加 2048个时隙; 其中, 第一 个 0FDM符号的循环前缀的时间长度是 316个时隙,第二个到第十三个 0FDM 符号的循环前缀的时间长度分别是 315个时隙;
若所述第一子帧中包括 12个 0FDM符号, 则所述 12个 0FDM符号中每 个 0FDM符号的时间长度是 512个时隙加 2048个时隙, 其中, 每个 0FDM 符号的循环前缀的时间长度是 512个时隙;
若所述第一子帧中包括 7个 0FDM符号, 则所述 7个 0FDM符号中的第 一个 0FDM符号和第四个 0FDM符号的时间长度分别是 304个时隙加 2048 个时隙, 第二、 三、 五、 六、 七个 0FDM符号的时间长度分别是 288个时 隙加 2048个时隙, 其中, 第一个 0FDM符号和第四个 0FDM符号的循环前 缀的时间长度分别是 304个时隙, 第二、 三、 五、 六、 七个 0FDM符号的 循环前缀的时间长度分别是 288个时隙。
16、 根据权利要求 13- 15任一项所述的用户设备, 其特征在于, 所述 处理器, 还用于根据所述第一子帧对应的参考信号插入模式, 在所述第一 子帧中插入参考信号。
17、 根据权利要求 16所述的用户设备, 其特征在于, 若所述第一子 帧中包括 13个 0FDM符号时, 所述子帧对应的参考信号插入模式包括第一 参考信号插入模式至第四十一参考信号插入模式中的至少一项; 或者
若所述第一子帧中包括 12个 0FDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十二参考信号插入模式至第四十三参考信号插入 模式中的至少一项; 或者
若所述第一子帧中包括 7个 OFDM符号时, 所述第一子帧对应的参考 信号插入模式包括第四十四参考信号插入模式至第四十五参考信号插入 模式中的至少一项。
18、 根据权利要求 16或 17所述的用户设备, 其特征在于, 所述射频 器具体用于: 将所述处理器插入参考信号后的第一子帧通过天线发送给所 述另一用户设备, 以使所述另一用户设备根据所述第一子帧中插入的参考 信号解析所述第一子帧中传输的 D2D信息。
19、 根据权利要求 13- 18任一项所述的用户设备, 其特征在于, 所述 射频器, 还用于通过天线接收所述另一用户设备发送的所述插入参考信号 后的第一子帧;
所述处理器, 还用于根据所述第一子帧中插入的参考信号解析所述第 一子帧中传输的 D2D信息。
20、 根据权利要求 13所述的用户设备, 其特征在于:
所述处理器, 还用于在所述用户设备与网络设备之间进行通信时, 使 用所述第二子帧传输信息, 并将所述第二子帧发送给所述射频器;
所述射频器, 还用于通过天线向所述网络设备发送所述第二子帧。
PCT/CN2013/080230 2013-07-26 2013-07-26 用户设备之间的信号传输方法及装置 WO2015010338A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380000658.6A CN104770058A (zh) 2013-07-26 2013-07-26 用户设备之间的信号传输方法及装置
JP2015559408A JP6300836B2 (ja) 2013-07-26 2013-07-26 ユーザ機器間で信号を送信するための方法および装置
KR1020157023091A KR101784897B1 (ko) 2013-07-26 2013-07-26 사용자 장비 간의 신호 송신 방법 및 장치
PCT/CN2013/080230 WO2015010338A1 (zh) 2013-07-26 2013-07-26 用户设备之间的信号传输方法及装置
EP13890161.6A EP2943042B1 (en) 2013-07-26 2013-07-26 Method and device for transmitting signals between user equipment
US14/881,699 US10044479B2 (en) 2013-07-26 2015-10-13 Method and apparatus for transmitting signal between user equipments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080230 WO2015010338A1 (zh) 2013-07-26 2013-07-26 用户设备之间的信号传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/881,699 Continuation US10044479B2 (en) 2013-07-26 2015-10-13 Method and apparatus for transmitting signal between user equipments

Publications (1)

Publication Number Publication Date
WO2015010338A1 true WO2015010338A1 (zh) 2015-01-29

Family

ID=52392643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080230 WO2015010338A1 (zh) 2013-07-26 2013-07-26 用户设备之间的信号传输方法及装置

Country Status (6)

Country Link
US (1) US10044479B2 (zh)
EP (1) EP2943042B1 (zh)
JP (1) JP6300836B2 (zh)
KR (1) KR101784897B1 (zh)
CN (1) CN104770058A (zh)
WO (1) WO2015010338A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015042887A1 (zh) 2013-09-27 2015-04-02 华为终端有限公司 用户设备直连通信的信号传输方法和用户设备
KR101933067B1 (ko) 2014-03-21 2019-03-15 후아웨이 디바이스 컴퍼니 리미티드 장치 대 장치 신호를 검출하는 방법, 사용자 기기, 및 기지국
ES2843548T3 (es) * 2015-11-06 2021-07-19 Huawei Tech Co Ltd Método de transmisión de datos de sistema LAA-LTE, terminal y estación base
US10375718B2 (en) 2016-08-11 2019-08-06 Qualcomm Incorporated Adaptive resource management for robust communication in new radio
KR102336281B1 (ko) 2017-07-31 2021-12-07 토요잉크Sc홀딩스주식회사 광학용 활성 에너지선 중합성 접착제 및 광학용 적층체
CN110445587B (zh) 2018-05-04 2022-01-14 华为技术有限公司 信息传输方法和信息传输装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547496A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 终端接入方法
CN102377722A (zh) * 2010-08-09 2012-03-14 财团法人工业技术研究院 用于不同无线电接入技术之间的共存的设备和方法
WO2012128505A2 (ko) * 2011-03-18 2012-09-27 엘지전자 주식회사 장치-대-장치 통신 방법 및 장치
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793550B1 (en) * 2005-12-02 2008-10-22 Alcatel Lucent Multi-carrier signals with selectable pilot pattern
US8488693B2 (en) * 2008-06-11 2013-07-16 Industrial Technology Research Institute Wireless communication systems and methods using reference signals
JP5723365B2 (ja) * 2009-08-14 2015-05-27 エルジー エレクトロニクス インコーポレイティド 多重アンテナを支援する無線通信システムにおいてダウンリンク参照信号を伝送する方法及び装置
US8730854B2 (en) * 2009-08-20 2014-05-20 Qualcomm Incorporated Timing adjustments in a communication system
US9485069B2 (en) * 2010-04-15 2016-11-01 Qualcomm Incorporated Transmission and reception of proximity detection signal for peer discovery
JP2012085084A (ja) * 2010-10-12 2012-04-26 Hitachi Kokusai Electric Inc Ofdm信号送信装置
WO2012071689A1 (en) * 2010-12-03 2012-06-07 Nokia Corporation Device to device cluster enhancement to support data transmission from/to multiple devices
US20140086368A1 (en) 2011-05-10 2014-03-27 Ntt Docomo, Inc. Receiver, receiving method and computer program
EP2720500B1 (en) * 2011-06-13 2016-05-11 Fujitsu Limited Mobile station device, base station device, communication system, and communication method
US8885560B2 (en) * 2011-06-27 2014-11-11 Telefonaktiebolaget L M Ericsson (Publ) Cellular communication system support for limited bandwidth communication devices
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
EP2925067B1 (en) * 2012-12-31 2018-02-28 Huawei Technologies Co., Ltd. Device-to-device communication method, apparatus and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547496A (zh) * 2008-03-25 2009-09-30 中兴通讯股份有限公司 终端接入方法
CN102377722A (zh) * 2010-08-09 2012-03-14 财团法人工业技术研究院 用于不同无线电接入技术之间的共存的设备和方法
WO2012128505A2 (ko) * 2011-03-18 2012-09-27 엘지전자 주식회사 장치-대-장치 통신 방법 및 장치
CN103209487A (zh) * 2012-01-17 2013-07-17 中兴通讯股份有限公司 一种无线通信方法和通信装置及通信系统

Also Published As

Publication number Publication date
KR20150110763A (ko) 2015-10-02
CN104770058A (zh) 2015-07-08
JP2016514402A (ja) 2016-05-19
EP2943042A4 (en) 2016-07-06
US20160036576A1 (en) 2016-02-04
EP2943042B1 (en) 2019-09-11
EP2943042A1 (en) 2015-11-11
KR101784897B1 (ko) 2017-10-12
JP6300836B2 (ja) 2018-03-28
US10044479B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
CN109804697B (zh) 用于基于增强竞争的随机接入程序的方法和装置
JP6495442B2 (ja) High−Efficiency(HE)ステーション並びにロング及びショートプリアンブルフォーマットによってHEパケットを設定する方法
EP3151459B1 (en) Resource indication processing method, processing apparatus, access point and site
WO2014183278A1 (zh) 信号传输方法、装置、通信系统、终端和基站
CN110419238B (zh) 终端装置、基站装置、通信方法以及集成电路
WO2017004774A1 (zh) 一种数据传输的方法、无线网络设备和通信系统
US10044479B2 (en) Method and apparatus for transmitting signal between user equipments
JP6522522B2 (ja) データ送信および受信方法およびデバイス
TWI753916B (zh) 訊息傳輸方法和裝置
EP3244674B1 (en) Asynchronous uplink method, terminal and base station
US20130242974A1 (en) Method and Apparatus for Synchronization Mechanisms in Wireless Communication Systems
JP2020522959A (ja) 端末デバイス、ネットワークデバイス、端末デバイスの方法、及びネットワークデバイスの方法
WO2010111838A1 (zh) 随机接入前导信号的发送方法及装置
WO2015109773A1 (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2011147167A1 (zh) 传输消息的方法、基站、终端及多通信制式系统
WO2015039308A1 (zh) 设备对设备通信的方法及装置
EP3468279A1 (en) Terminal device, base station device, communication method, and integrated circuit
EP3997906B1 (en) Methods, apparatus and machine-readable media relating to wireless transmission in a communication network
EP3905806B1 (en) Terminal apparatus, base station apparatus, and communication method
EP3547785A1 (en) Method for transmitting data, network device, and terminal device
US11974322B2 (en) Method and device for sending information, and method and device for receiving information
CN117546599A (zh) 用于下行链路通信和d2d通信的drx循环的对齐
WO2016049928A1 (zh) 用于无线局域网的数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013890161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023091

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015559408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE