WO2015042887A1 - 用户设备直连通信的信号传输方法和用户设备 - Google Patents

用户设备直连通信的信号传输方法和用户设备 Download PDF

Info

Publication number
WO2015042887A1
WO2015042887A1 PCT/CN2013/084499 CN2013084499W WO2015042887A1 WO 2015042887 A1 WO2015042887 A1 WO 2015042887A1 CN 2013084499 W CN2013084499 W CN 2013084499W WO 2015042887 A1 WO2015042887 A1 WO 2015042887A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
time
signal
duration
cyclic prefix
Prior art date
Application number
PCT/CN2013/084499
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to US15/025,047 priority Critical patent/US9635489B2/en
Priority to CN201380068538.XA priority patent/CN104904282B/zh
Priority to EP13894660.3A priority patent/EP3007497A4/en
Priority to KR1020167001868A priority patent/KR101784979B1/ko
Priority to JP2016530305A priority patent/JP6188000B2/ja
Priority to PCT/CN2013/084499 priority patent/WO2015042887A1/zh
Publication of WO2015042887A1 publication Critical patent/WO2015042887A1/zh
Priority to US15/452,528 priority patent/US10070473B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal transmission method and user equipment for user equipment direct communication.
  • D2D ProSe Device to Device Proximity Service
  • 3GPP 3rd Generation Partnership
  • LTE Long Term Evolution
  • Embodiments of the present invention provide a signal transmission method and a user equipment for direct communication of a user equipment, so as to improve the accuracy of time for receiving a signal by the user equipment, and ensure the integrity of data reception.
  • an embodiment of the present invention provides a signal transmission method for direct communication of a user equipment, including:
  • the first user equipment determines, according to the downlink timing reference time, a receiving time of receiving the direct communication D2D signal sent by the second user equipment, where the downlink timing reference time is a time when the user equipment receives the base station data;
  • the first user equipment receives the D2D signal sent by the second user equipment before the receiving time.
  • the advance time is a multiple of a corresponding duration of a cyclic prefix in the D2D signal.
  • the advance time duration is 1 times of a corresponding duration of a cyclic prefix in the D2D signal, or is the D2D signal.
  • the cyclic prefix in the corresponding one is 1/2 times the duration.
  • the advance time is a multiple of a synchronization timing offset of the first user equipment.
  • the advance time is 1 time, 2 times, 6 times, 7 times or 8 times the synchronization timing deviation of the first user equipment.
  • the advance duration is a multiple of a multiple of a cyclic prefix corresponding to the D2D signal and a multiple of a synchronization timing deviation from the first user equipment Sum.
  • the advance duration is a sum of a multiple of a duration of the cyclic prefix and a multiple of the synchronization timing offset; or, a sum of 1/2 times the duration of the cyclic prefix in the D2D signal and 2 times the deviation of the synchronization timing; or 2 times the duration of the cyclic prefix in the D2D signal and 2 times the deviation of the synchronization timing Sum.
  • the first user equipment and the second user equipment are both The first user equipment and the second user equipment are in an idle state; or the first user equipment is in an active state, and the second user equipment is in an idle state; or The first user equipment is in an idle state, and the second user equipment is in an active state.
  • the first user equipment and the second user equipment are in an active state, and the duration of the cyclic prefix in the D2D signal is greater than Or equal to the maximum backhaul time within the system to which the first user equipment and the second user equipment belong.
  • the first user equipment and the second user equipment are in an idle state, and the duration of the cyclic prefix in the D2D signal is greater than Or equal to the maximum backhaul time within the system to which the first user equipment and the second user equipment belong.
  • the first user equipment is in an active state, the second user equipment is in an idle state, or the first user equipment is in an idle state.
  • the second user equipment is in an active state, and the duration of the cyclic prefix in the D2D signal is greater than or equal to the system in which the first user equipment and the second user equipment belong. 2 times the maximum return time.
  • the first user equipment determines to receive the second user according to the downlink timing reference time.
  • the receiving time of the direct communication D2D signal sent by the device specifically includes: if the first user equipment is in an active state, the first user equipment subtracts the downlink timing reference time from a pre-configured timing advance of the network side device The quantity is used as the receiving time; or, if the first user equipment is in an idle state, the first user equipment uses the downlink timing reference time as the receiving time.
  • the embodiment of the present invention provides a user equipment, where the user equipment is a first user equipment, and includes:
  • a processor configured to determine, according to a downlink timing reference time, a receiving time of receiving a direct communication D2D signal sent by the second user equipment, where the downlink timing reference time is a time when the user equipment receives the base station data;
  • a receiver configured to receive the D2D signal sent by the second user equipment before the receiving time.
  • the advance time is a multiple of a corresponding duration of a cyclic prefix in the D2D signal.
  • the advance duration is 1 times of a duration of a cyclic prefix in the D2D signal, or a duration of a cyclic prefix in the D2D signal. 1/2 times.
  • the advance time is a multiple of a synchronization timing offset of the first user equipment.
  • the advance time is 1 time, 2 times, 6 times, 7 times or 8 times of the synchronization timing deviation of the first user equipment.
  • the advance duration is a multiple of a multiple of a cyclic prefix corresponding to the D2D signal and a multiple of a synchronization timing deviation from the first user equipment Or a sum of 1 time of the cyclic prefix corresponding to the cyclic prefix in the D2D signal and 2 times the deviation of the synchronization timing.
  • the advance duration is a sum of a multiple of a duration of the cyclic prefix and a multiple of the synchronization timing offset; or And is a sum of 1/2 times the duration of the cyclic prefix in the D2D signal and 2 times the deviation of the synchronization timing.
  • the first user equipment and the second user equipment are both The first user equipment and the second user equipment are in an idle state; or the first user equipment is in an active state, and the second user equipment is in an idle state; or The first user equipment is in an idle state, and the second user equipment is in an active state.
  • the first user equipment and the second user equipment are in an active state, and the duration of the cyclic prefix in the D2D signal is greater than Or equal to the maximum backhaul time within the system to which the first user equipment and the second user equipment belong.
  • the first user equipment and the second user equipment are in an idle state, and the duration of the cyclic prefix in the D2D signal is greater than Or equal to the maximum backhaul time within the system to which the first user equipment and the second user equipment belong.
  • the first user equipment is in an active state, the second user equipment is in an idle state, or the first user equipment is in an idle state.
  • the second user equipment is in an active state, and the duration of the cyclic prefix in the D2D signal is greater than or equal to twice the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the processor is specifically configured to: if the first user equipment is activated And the downlink timing reference time is subtracted from the timing advance amount pre-configured by the network side device as the receiving time; or, if the first user equipment is in an idle state, the downlink timing reference time is taken as The receiving time.
  • the method for transmitting a direct connection communication of a user equipment and the user equipment provided by the embodiment of the present invention, the user equipment first determines, according to the downlink timing reference time, the reception time of receiving the direct communication D2D signal sent by the other user equipment, and then the first user equipment is Receiving the D2D signal sent by the second user equipment before the receiving time, the accuracy of the time for receiving the signal by the user equipment is improved, and the integrity of the data receiving is ensured.
  • FIG. 1 is a flow chart of an embodiment of a signal transmission method provided by the present invention.
  • FIG. 2 is a schematic diagram of D2D communication in which an first user equipment and a second user equipment are in an activated state according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing the timing relationship of D2D communication in the implementation scenario shown in FIG. 2;
  • FIG. 4 is a schematic diagram of timing advance and maximum backhaul time of the implementation scenario shown in FIG. 2;
  • FIG. 5 is a schematic diagram of D2D communication in which both the first user equipment and the second user equipment are in an idle state according to an embodiment of the present invention;
  • FIG. 6 is a schematic diagram showing the timing relationship of D2D communication in the implementation scenario shown in FIG. 5;
  • FIG. 7 is a schematic diagram of timing advance and maximum backhaul time of the implementation scenario shown in FIG. 5;
  • FIG. 8 is a schematic diagram of D2D communication in which an active state of a second user equipment is in an idle state;
  • FIG. 9 is a schematic diagram showing the timing relationship of D2D communication in the implementation scenario shown in FIG. 8;
  • FIG. 10 is a schematic diagram of timing advance and maximum backhaul time of the implementation scenario shown in FIG. 8;
  • FIG. 11 is a schematic structural diagram of an embodiment of a user equipment provided by the present invention.
  • FIG. 12 is a schematic structural diagram of still another embodiment of a user equipment according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Frequency Division Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC- FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the user equipment involved in the present application may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or a wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station (e.g., an access point) referred to in this application may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station in LTE
  • LTE NodeB or eNB or e-NodeB, evolutional Node B
  • FIG. 1 is a flow chart of an embodiment of a signal transmission method provided by the present invention, as shown in FIG. The law includes:
  • the first user equipment determines, according to the downlink timing reference time, a receiving time for receiving the direct communication D2D signal sent by the second user equipment, where the downlink timing reference time is a time when the user equipment receives the base station data.
  • the first user equipment receives the D2D signal sent by the second user equipment before receiving the time.
  • the signal transmission involved in the embodiment of the present invention is a signal transmission of the direct communication of the user equipment, and may specifically be used for direct communication between the user equipments that are in an active state, or between user equipments that are all in an idle state. Direct communication can also be directed to direct communication between an active state user device and an idle state user device.
  • first user equipment and the second user equipment involved in the foregoing steps may be in an active state; or, the first user equipment and the second user equipment may both be in an idle state; or, the first user equipment may be in an active state, The second user equipment is in an idle state; or, the first user equipment may be in an idle state, and the second user equipment is in an active state.
  • UE1 and UE2 are within the coverage of the same base station.
  • TO is the downlink timing reference time for transmitting downlink data by the base station, and is also the uplink timing reference time for the base station to receive uplink data. That is, the base station transmits downlink data to UE1 and UE2 at the time of TO.
  • the downlink timing reference of UE1 is T1
  • the downlink timing reference time T1 is the time when the user equipment receives the base station data.
  • BP UE1 receives the base station data at time T1.
  • the downlink timing reference of UE2 is T2, gp, UE2 is Time T2 receives base station data.
  • the base station configures a timing advance for UE1, which is used by UE1 to adjust the transmission time forward. Assuming that the timing advance of UE1 is tl, the base station configures tl to 2*(Tl-TO). o UE1 will transmit a signal at time Tl-tl. Since there is a propagation delay between UE1 and UE2, when UE1 and UE2 perform direct communication, the time when the D2D signal sent by UE1 arrives at UE2 is Tl-tl+t3.
  • the base station since UE2 is in an active state, the base station also configures timing advance for UE2. Timing advance, the timing advance is used by UE2 to adjust the transmission time forward. Assuming that the timing advance of UE2 is t2, the base station configures t2 to 2* (T2-T0). UE2 will send a signal at time T2-t2. Since there is a propagation delay t3 between UE1 and UE2, when UE1 and UE2 perform direct communication, the time when the D2D signal sent by UE2 reaches UE1 is T2-t2+t3.
  • UE1 will receive the D2D signal transmitted by UE2 at time Tl-tl (i.e., the downlink timing reference time minus the timing advance configured by the base station).
  • Tl-tl i.e., the downlink timing reference time minus the timing advance configured by the base station.
  • the time when the D2D signal sent by UE2 reaches UE1 is T2-t2+t3, and the receiving time of UE1 is T1-t1, then the time advance of the D2D signal of UE2 reaching UE1 is Tl-tl-(T2-t2+t3), after After derivation, it is equal to T2-Tl-t3.
  • UE2 will receive the D2D signal transmitted by UE1 at time T2-t2 (i.e., the downlink timing reference time minus the timing advance configured by the base station).
  • T2-t2 i.e., the downlink timing reference time minus the timing advance configured by the base station.
  • the time when the D2D signal sent by UE1 reaches UE2 is Tl-tl+t3, and the receiving time of UE2 is T2-t2, then the time advance of UE2's D2D signal reaching UE2 is T2-t2-(Tl-tl+t3), after After derivation, it is equal to Tl-T2-t3.
  • T2-Tl-t3 and Tl-T2-t3 are all values less than or equal to zero. That is to say, for the UE in the active state, the signal transmitted by the UE in the activated state is arrived after the reception time.
  • the duration of the cyclic prefix is greater than the time taken for the maximum round trip.
  • UE1 and UE2 are within the coverage of the same base station.
  • TO is the downlink timing reference time for the base station to transmit downlink data, and is also the uplink timing reference time for the base station to receive uplink data. That is, the base station transmits downlink data to UE1 and UE2 at the time of TO.
  • the downlink timing reference of UE1 is T1
  • the downlink timing reference time T1 is the time when the user equipment receives the base station data.
  • BP and UE1 receive the base station data at time T1.
  • the downlink timing reference of UE2 is T2, gp, and UE2 is Time T2 receives base station data.
  • the propagation delay of UE1 and UE2 is t3.
  • UE1 and UE2 are both idle state users.
  • UE1 Since UE1 is in an idle state, UE1 cannot obtain the timing advance configured by the base station, and thus cannot adjust the transmission time according to the timing advance amount, and can only transmit and receive information according to the downlink timing reference time.
  • UE1 will transmit a signal at time T1 (i.e., downlink timing reference signal). Since there is a propagation delay t3 between UE1 and UE2, the time that the signal transmitted by UE1 arrives at UE2 is T1-t3.
  • UE2 since UE2 is in an idle state, UE2 cannot obtain the timing advance amount configured by the base station, so that the transmission time cannot be adjusted forward according to the timing advance amount, and the information can only be transmitted and received according to the downlink timing time.
  • UE2 will transmit a signal at time T2 (i.e., downlink timing reference signal). Since there is a propagation delay t3 between UE1 and UE2, the time that the signal sent by UE2 reaches UE1 is T2-t3.
  • UE1 will receive the D2D signal transmitted by UE2 at time T1.
  • the time when the D2D signal sent by UE2 reaches UE1 is T2-t3, and the receiving time of UE1 is T1, then the time advance of UE2's D2D signal reaching UE1 is T1-(T2+t3).
  • UE2 will receive the D2D signal sent by UE1 at time T2.
  • the time when the D2D signal sent by UE1 arrives at UE2 is Tl-t3, and the receiving time of UE2 is T2, then the time advance of UE2's D2D signal arriving at UE2 is T2-(Tl+t3) o
  • T1-(T2+13) and T2-(T1+13) are both values less than or equal to zero. That is to say, for the UE in the idle state, the signal transmitted by the UE in the activated state is arrived after the reception time.
  • the duration of the cyclic prefix is greater than the time taken for the maximum round trip.
  • UE1 and UE2 are within the coverage of the same base station, UE1 is in an active state, and UE2 is in an idle state.
  • TO is the downlink timing reference time for the base station to transmit downlink data, and is also the uplink timing reference time for the base station to receive uplink data. That is, the base station transmits downlink data to UE1 and UE2 at the time of TO.
  • the downlink timing reference of UE1 is T1
  • the downlink timing reference time T1 is the time when the user equipment receives the data of the base station.
  • gP UE1 receives the data of the base station at time T1.
  • the downlink timing reference of UE2 is T2, gp, and UE2 is Time T2 receives base station data.
  • the base station configures a timing advance for the UE1, and the timing advance is used by the UE1 to adjust the transmission time forward. Assuming that the timing advance of UE1 is t1, the base station configures t1 to 2*(Tl-TO) o UE1 will transmit a signal at time Tl-tl. Due to There is a propagation delay t3 between UE1 and UE2. Therefore, when UE1 and UE2 perform direct communication, the time when the D2D signal sent by UE1 reaches UE2 is T1-t+t3.
  • UE2 Since UE2 is in an idle state, UE2 cannot obtain the timing advance configured by the base station, and thus cannot adjust the transmission time according to the timing advance configured by the base station, and can only transmit and receive information according to the downlink timing. UE2 will send a signal at time T2 (i.e., downlink timing reference signal). Since there is a propagation delay t3 between UE1 and UE2, the time at which the signal transmitted by UE2 arrives at UE1 is T2+t3.
  • UE1 will receive the D2D signal transmitted by UE2 at time Tl-tl.
  • the time when the D2D signal sent by UE2 arrives at UE1 is T2+t3, and the receiving time of UE1 is Tl-tl, then the time advance of UE2's D2D signal arriving at UE1 is Tl-tl-(T2+t3) o
  • UE2 will receive the D2D signal transmitted by UE1 at time T2.
  • the time when the D2D signal sent by UE1 reaches UE1 is Tl-tl+t3, and the receiving time of UE2 is T2, then the timing advance of UE2's D2D signal to UE2 is T2-(Tl-tl+t3).
  • (T1-T0) + (T2-T0)-t3 is a value greater than or equal to zero. That is to say, for the UE in the idle state, the signal transmitted by the UE receiving the active state arrives before the reception time. In other words, when the UE in the idle state receives the signal of the UE in the active state, the reception time lags behind. As a result, the UE in the idle state cannot receive the signal of the UE in the active state completely, and the received signal cannot be correctly decoded.
  • the duration of the cyclic prefix is greater than the maximum back trip duration (round trip). Times.
  • the duration corresponding to the cyclic prefix (this time should be the amount of the dragged) is greater than the maximum. Double the round trip time.
  • the advancement time in advance of the receiving time it may be a multiple of the cyclic prefix corresponding to the D2D signal, or a multiple of the synchronization timing offset of the first user equipment, or may be a loop in the D2D signal.
  • the multiple of the prefix corresponding to the duration and the synchronization timing of the first user equipment The sum of the multiples of the deviation.
  • the multiples involved may be an integer multiple, or may be a fractional multiple, and no limitation is imposed herein.
  • the D2D signal is composed of a cyclic prefix and a data part.
  • the user equipment receiving the D2D signal needs to first remove the cyclic prefix and then receive the data part of the D2D signal.
  • the duration of the cyclic prefix in the D2D signal may be greater than or equal to the maximum backhaul time in the system to which the first user equipment and the second user equipment belong. . If both the first user equipment and the second user equipment are in an idle state, the duration of the cyclic prefix in the D2D signal may be greater than or equal to the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the duration of the cyclic prefix in the D2D signal may be greater than or equal to the first The maximum backhaul time in a system to which a user equipment and a second user equipment belong.
  • the D2D signals involved in the embodiments of the present invention may be transmitted by using various resources in different communication systems, for example, OFDM symbols may be used for transmission.
  • the corresponding duration of the cyclic prefix and the advance time may have different correspondences in different communication systems.
  • the advance time may be 1 times the duration of the cyclic prefix in the D2D signal, or may be 1/2 times the corresponding duration of the cyclic prefix in the D2D signal, or may be other times of the cyclic prefix in the D2D signal. multiple.
  • the synchronization timing offset of the user equipment can be determined by the user equipment according to its capabilities.
  • the advance time may be 1 times, 2 times, 6 times, 7 times or 8 times other times of the synchronization timing deviation.
  • the maximum synchronization timing deviation of the UE may be 0.5 us, that is, 16 Ts (where Ts is lms/30720, which is the minimum sampling interval of the LTE system), so The duration can be 0.5us (16Ts), lus (32Ts), 3us (96Ts), 3.5us (112Ts), or 4us (128Ts).
  • the maximum timing deviation can refer to the parameters of the respective system, and will not be described here.
  • the advance duration is 1 times the duration of the cyclic prefix.
  • FIG. 11 is a schematic structural diagram of an embodiment of a user equipment according to the present invention. As shown in FIG. 11, the user equipment is a first user equipment, and includes:
  • the processor 11 is configured to determine, according to the downlink timing reference time, a receiving time of receiving the direct communication D2D signal sent by the second user equipment, where the downlink timing reference time is a time when the user equipment receives the base station data;
  • the receiver 12 is configured to receive the D2D signal sent by the second user equipment before the receiving time.
  • the advance time is a multiple of a corresponding duration of a cyclic prefix in the D2D signal.
  • the advance time is 1 times of a duration of a cyclic prefix in the D2D signal, or 1/2 times a duration of a cyclic prefix in the D2D signal.
  • the advance time is a multiple of a synchronization timing deviation of the first user equipment.
  • the advance time is 1 time, 2 times, 6 times, 7 times or 8 times of the synchronization timing deviation of the first user equipment.
  • the advance time length is a sum of a multiple of a corresponding duration of a cyclic prefix in the D2D signal and a multiple of a synchronization timing deviation of the first user equipment.
  • the advance duration is a sum of a multiple of a duration of the cyclic prefix and a multiple of the synchronization timing offset; or, a 1/2 times a duration of a cyclic prefix in the D2D signal.
  • the first user equipment and the second user equipment are in an active state; or, the first user equipment and the second user equipment are in an idle state; or, the first user equipment is in an active state, and the second user equipment is in an idle state. Or; the first user equipment is in an idle state, and the second user equipment is in an idle state; Active state.
  • the first user equipment and the second user equipment are in an active state
  • the cyclic prefix in the D2D signal corresponds to a duration greater than or equal to a maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the first user equipment and the second user equipment are in an idle state, and the duration of the cyclic prefix in the D2D signal is greater than or equal to the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the first user equipment is in an active state
  • the second user equipment is in an idle state
  • the first user equipment is in an idle state
  • the second user equipment is in an active state
  • the duration of the cyclic prefix in the D2D signal is greater than or It is equal to twice the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the processor 11 is specifically configured to: if the first user equipment is in an active state, subtract the timing advance time pre-configured by the network side device as the receiving time; or, if the first user equipment is In the idle state, the downlink timing reference time is taken as the reception time.
  • the user equipment provided in this embodiment is the execution device of the signal transmission method for the direct communication of the user equipment provided by the embodiment of the present invention.
  • the specific process of executing the method refer to the related description in FIG. 1 to FIG. Let me repeat.
  • FIG. 12 is a schematic structural diagram of another embodiment of a user equipment according to the present invention. As shown in FIG. 12, the user equipment is a first user equipment, and includes:
  • the determining module 21 is configured to determine, according to the downlink timing reference time, a receiving time for receiving the direct communication D2D signal sent by the second user equipment, where the downlink timing reference time is a time when the user equipment receives the base station data;
  • the receiving module 22 is configured to receive the D2D signal sent by the second user equipment in advance of the receiving time.
  • the advance time is a multiple of a corresponding duration of a cyclic prefix in the D2D signal.
  • the advance time is 1 times of a duration of a cyclic prefix in the D2D signal, Or the cyclic prefix in the D2D signal corresponds to 1/2 times the duration.
  • the advance time is a multiple of a synchronization timing deviation of the first user equipment.
  • the advance time is 1 time, 2 times, 6 times, 7 times or 8 times of the synchronization timing deviation of the first user equipment.
  • the advance time length is a sum of a multiple of a corresponding duration of a cyclic prefix in the D2D signal and a multiple of a synchronization timing deviation of the first user equipment.
  • the advance duration is a sum of a multiple of a duration of the cyclic prefix and a multiple of the synchronization timing offset; or, a 1/2 times a duration of a cyclic prefix in the D2D signal.
  • the first user equipment and the second user equipment are in an active state; or, the first user equipment and the second user equipment are in an idle state; or, the first user equipment is in an active state, and the second user equipment is in an idle state. Or; the first user equipment is in an idle state, and the second user equipment is in an active state.
  • the first user equipment and the second user equipment are in an active state
  • the cyclic prefix in the D2D signal corresponds to a duration greater than or equal to a maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the first user equipment and the second user equipment are in an idle state, and the duration of the cyclic prefix in the D2D signal is greater than or equal to the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the first user equipment is in an active state
  • the second user equipment is in an idle state
  • the first user equipment is in an idle state
  • the second user equipment is in an active state
  • the duration of the cyclic prefix in the D2D signal is greater than or It is equal to twice the maximum backhaul time in the system to which the first user equipment and the second user equipment belong.
  • the determining module 21 is specifically configured to: if the first user equipment is in an active state, subtract the timing advance time pre-configured by the network side device as the receiving time; or, if the first user equipment is idle State, the downlink timing reference time is taken as the reception time.
  • the user equipment provided in this embodiment is the execution device of the signal transmission method for the direct communication of the user equipment provided by the embodiment of the present invention.
  • the user equipment first determines, according to the downlink timing reference time, the receiving time of receiving the direct communication D2D signal sent by the other user equipment, and then receiving, by the first user equipment, the second user equipment, before the receiving time.
  • the D2D signal improves the accuracy of the time when the user equipment receives the signal and ensures the integrity of the data reception.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection between the various components shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor p "ocesso"
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例涉及一种用户设备直连通信的信号传输方法和用户设备,用户设备首先根据下行定时参考时间确定接收其他用户设备发送的直连通信D2D信号的接收时间,再通过第一用户设备提前于接收时间接收第二用户设备发送的D2D信号,实现提高用户设备接收信号的时间的准确性,保证数据接收的完整性。

Description

用户设备直连通信的信号传输方法和用户设备 技术领域 本发明实施例涉及通信技术领域, 特别涉及一种用户设备直连通信的信 号传输方法和用户设备。 背景技术 用户设备之间的临近服务(Device to Device Proximity Service,简称 D2D ProSe),已经成为第 3代合作组织计划(The 3rd Generation Partnership, 3GPP) 长期演进 (Long Term Evolution, LTE) 系统 Rel.12系统的研究课题。
通常地, 直连通信过程中的发现过程和直连通信过程, 用户设备均根据 基站配置的定时提前量来调整发送信号和接收信号的时间。 然而, 空闲状态 的用户设备无法获取基站配置的定时提前量, 因此, 会导致用户设备接收信 号的时间不准确, 从而可能导致数据接收不完整。 发明内容 本发明实施例提供一种用户设备直连通信的信号传输方法和用户设备, 以提高用户设备接收信号的时间的准确性, 保证数据接收的完整性。
一方面, 本发明实施例提供了一种用户设备直连通信的信号传输方法, 包括:
第一用户设备根据下行定时参考时间, 确定接收第二用户设备发送的直 连通信 D2D信号的接收时间,所述下行定时参考时间为用户设备接收基站数 据的时间;
所述第一用户设备在所述接收时间之前接收所述第二用户设备发送的所 述 D2D信号。
结合第一方面, 在第一方面的第一种可行的实施方式中, 所述提前时长 为所述 D2D信号中的循环前缀对应时长的倍数。
结合第一种可行的实施方式, 在第二种可行的实施方式中, 所述提前时 长为为所述 D2D信号中的循环前缀对应时长的 1倍, 或者为所述 D2D信号 中的循环前缀对应时长的 1/2倍。
结合第一方面, 在第三种可行的实施方式中, 所述提前时长为所述第一 用户设备的同步定时偏差的倍数。
结合第三种可行的实施方式, 所述提前时长为所述第一用户设备的同步 定时偏差的 1倍, 2倍, 6倍, 7倍或者 8倍。
结合第一方面, 在第一方面的第五种可行的实施方式中, 所述提前时长 为所述 D2D信号中的循环前缀对应时长的倍数与和所述第一用户设备的同步 定时偏差的倍数之和。
结合第五种可行的实施方式, 在第六种可行的实施方式中, 所述提前时 长为所述循环前缀对应时长的 1倍与所述同步定时偏差的 1倍数之和;或者, 为所述 D2D信号中的循环前缀对应时长的 1/2倍与所述同步定时偏差的 2倍 数之和; 或者, 为所述 D2D信号中的循环前缀对应时长的 1倍与所述同步定 时偏差的 2倍数之和。
结合第一方面, 第一种可行的实施方式至第六种可行的实施方式中的任 意一种, 在第七种可行的实施方式中, 所述第一用户设备和所述第二用户设 备均处于激活态; 或者, 所述第一用户设备和所述第二用户设备均处于空闲 态; 或者, 所述第一用户设备处于激活态, 所述第二用户设备处于空闲态; 或者, 所述第一用户设备处于空闲态, 所述第二用户设备处于激活态。
结合第七种可行的实施方式, 在第八种可行的实施方式中, 所述第一用 户设备和所述第二用户设备均处于激活态,则所述 D2D信号中的循环前缀对 应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最 大回程时间。
结合第七种可行的实施方式, 在第九种可行的实施方式中, 所述第一用 户设备和所述第二用户设备均处于空闲态,则所述 D2D信号中的循环前缀对 应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最 大回程时间。
结合第七种可行的实施方式, 在第十种可行的实施方式中, 所述第一用 户设备处于激活态, 所述第二用户设备处于空闲态, 或者, 所述第一用户设 备处于空闲态, 所述第二用户设备处于激活态, 则所述 D2D信号中的循环前 缀对应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内 的最大回程时间的 2倍。
结合第七种可行的实施方式至第十种可行的实施方式中的任意一种, 在 第十一中可行的实施方式中, 所述第一用户设备根据下行定时参考时间, 确 定接收第二用户设备发送的直连通信 D2D信号的接收时间, 具体包括: 若所 述第一用户设备处于激活态, 则所述第一用户设备将所述下行定时参考时间 减去网络侧设备预先配置的定时提前量作为所述接收时间; 或者, 若所述第 一用户设备处于空闲态, 则所述第一用户设备将所述下行定时参考时间作为 所述接收时间。
第二方面, 本发明实施例提供一种用户设备, 所述用户设备为第一用户 设备, 包括:
处理器, 用于根据下行定时参考时间, 确定接收第二用户设备发送的直 连通信 D2D信号的接收时间,所述下行定时参考时间为用户设备接收基站数 据的时间;
接收器, 用于在所述接收时间之前接收所述第二用户设备发送的所述 D2D信号。
结合第二方面, 在第二方面的第一种可行的实施方式中, 所述提前时长 为所述 D2D信号中的循环前缀对应时长的倍数。
结合第二种可行的实施方式, 在第二种可行的实施方式中, 所述提前时 长为所述 D2D信号中的循环前缀对应时长的 1倍, 或者为所述 D2D信号中 的循环前缀对应时长的 1/2倍。
结合第二方面, 在第三种可行的实施方式中, 所述提前时长为所述第一 用户设备的同步定时偏差的倍数。
结合第三种可行的实施方式, 在第四种可行的实施方式中, 所述提前时 长为所述第一用户设备的同步定时偏差的 1倍, 2倍, 6倍, 7倍或者 8倍。
结合第二方面, 在第二方面的第五种可行的实施方式中, 所述提前时长 为所述 D2D信号中的循环前缀对应时长的倍数与和所述第一用户设备的同步 定时偏差的倍数之和; 或者, 为所述 D2D信号中的循环前缀对应时长的 1倍 与所述同步定时偏差的 2倍数之和。
结合第五种可行的实施方式, 在第六种可行的实施方式中, 所述提前时 长为所述循环前缀对应时长的 1倍与所述同步定时偏差的 1倍数之和;或者, 为所述 D2D信号中的循环前缀对应时长的 1/2倍与所述同步定时偏差的 2倍 数之和。
结合第二方面, 第一种可行的实施方式至第六种可行的实施方式中的任 意一种, 在第七种可行的实施方式中, 所述第一用户设备和所述第二用户设 备均处于激活态; 或者, 所述第一用户设备和所述第二用户设备均处于空闲 态; 或者, 所述第一用户设备处于激活态, 所述第二用户设备处于空闲态; 或者, 所述第一用户设备处于空闲态, 所述第二用户设备处于激活态。
结合第七种可行的实施方式, 在第八种可行的实施方式中, 所述第一用 户设备和所述第二用户设备均处于激活态,则所述 D2D信号中的循环前缀对 应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最 大回程时间。
结合第七种可行的实施方式, 在第九种可行的实施方式中, 所述第一用 户设备和所述第二用户设备均处于空闲态,则所述 D2D信号中的循环前缀对 应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最 大回程时间。
结合第七种可行的实施方式, 在第十种可行的实施方式中, 所述第一用 户设备处于激活态, 所述第二用户设备处于空闲态, 或者, 所述第一用户设 备处于空闲态, 所述第二用户设备处于激活态, 则所述 D2D信号中的循环前 缀对应的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内 的最大回程时间的 2倍。
结合第七种可行的实施方式至第十种可行的实施方式中的任意一种, 在 第十一中可行的实施方式中, 所述处理器具体用于: 若所述第一用户设备处 于激活态, 则将所述下行定时参考时间减去网络侧设备预先配置的定时提前 量作为所述接收时间; 或者, 若所述第一用户设备处于空闲态, 则将所述下 行定时参考时间作为所述接收时间。
本发明实施例提供的用户设备直连通信的信号传输方法和用户设备, 用 户设备首先根据下行定时参考时间确定接收其他用户设备发送的直连通信 D2D信号的接收时间, 再通过第一用户设备在接收时间之前接收第二用户设 备发送的 D2D信号, 实现提高用户设备接收信号的时间的准确性, 保证数据 接收的完整性。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的信号传输方法一个实施例的流程图;
图 2为本发明实施例提供的第一用户设备和第二用户设备均处于激活状 态的 D2D通信示意图;
图 3为图 2所示实施场景的 D2D通信时序关系示意图;
图 4为图 2所示实施场景的定时提前量与最大回程时间的示意图; 图 5为本发明实施例提供的第一用户设备和第二用户设备均处于空闲状 态的 D2D通信示意图;
图 6为图 5所示实施场景的 D2D通信时序关系示意图;
图 7为图 5所示实施场景的定时提前量与最大回程时间的示意图; 图 8为本发明实施例提供的第一用户设备处于空闲状态第二用户设备处 于激活状态的 D2D通信示意图;
图 9为图 8所示实施场景的 D2D通信时序关系示意图;
图 10为图 8所示实施场景的定时提前量与最大回程时间的示意图; 图 11为本发明提供的用户设备一个实施例的结构示意图;
图 12为本发明提供的用户设备又一个实施例的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本文中描述的技术可用于各种通信系统, 例如当前 2G, 3G通信系统和 下一代通信系统, 例如全球移动通信系统 (GSM , Global System for Mobile communications), 码分多址 (CDMA, Code Division Multiple Access) 系 统, 时分多址 (TDMA, Time Division Multiple Access) 系统, 宽带码分多 址(WCDMA, Wideband Code Division Multiple Access Wireless), 频分多 址 (FDMA, Frequency Division Multiple Addressing ) 系统, 正交频分多址 (OFDMA, Orthogonal Frequency-Division Multiple Access)系统, 单载波 FDMA (SC-FDMA)系统,通用分组无线业务(GPRS, General Packet Radio Service) 系统, 长期演进 (LTE, Long Term Evolution ) 系统, 以及其他此 类通信系统。
本申请中涉及的用户设备, 可以是无线终端也可以是有线终端, 无线终 端可以是指向用户提供语音和 /或数据连通性的设备, 具有无线连接功能的手 持式设备、 或连接到无线调制解调器的其他处理设备。 无线终端可以经无线 接入网 (例如, RAN, Radio Access Network) 与一个或多个核心网进行通 信, 无线终端可以是移动终端, 如移动电话(或称为"蜂窝"电话)和具有移动 终端的计算机, 例如, 可以是便携式、 袖珍式、 手持式、 计算机内置的或者 车载的移动装置, 它们与无线接入网交换语言和 /或数据。 例如, 个人通信业 务 (PCS, Personal Communication Service) 电话、 无绳电话、 会话发起 协议(SIP)话机、 无线本地环路(WLL, Wireless Local Loop)站、 个人数 字助理 (PDA, Personal Digital Assistant) 等设备。 无线终端也可以称为系 统、订户单元( Subscriber Unit),订户站( Subscriber Station ),移动站( Mobile Station )、移动台( Mobile )、远程站( Remote Station )、接入点(Access Point )、 远程终端( Remote Terminal ),接入终端(Access Terminal ),用户终端(User Terminal ), 用户代理(User Agent)、 用户设备(User Device)、 或用户装备 ( User Equipment)。
本申请中涉及的基站 (例如, 接入点) 可以是指接入网中在空中接口上 通过一个或多个扇区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路由器, 其 中接入网的其余部分可包括网际协议 (IP) 网络。 基站还可协调对空中接口 的属性管理。 例如, 基站可以是 GSM 或 CDMA 中的基站 (BTS, Base Transceiver Station ),也可以是 WCDMA中的基站(NodeB),还可以是 LTE 中的演进型基站 (NodeB或 eNB或 e-NodeB, evolutional Node B), 本申 请并不限定。
图 1为本发明提供的信号传输方法一个实施例的流程图, 如图 1, 该方 法包括:
S101、 第一用户设备根据下行定时参考时间, 确定接收第二用户设备发 送的直连通信 D2D信号的接收时间,下行定时参考时间为用户设备接收基站 数据的时间。
S102、 第一用户设备在接收时间之前接收第二用户设备发送的 D2D信 号。
其中,本发明实施例中涉及的信号传输为用户设备直连通信的信号传输, 具体可以针对均为激活状态的用户设备之间的直连通信, 也可以针对均为空 闲状态的用户设备之间的直连通信, 还可以针对一个激活状态的用户设备和 一个空闲状态的用户设备之间的直连通信。
即,上述步骤中涉及的第一用户设备和第二用户设备可以均处于激活态; 或者, 第一用户设备和第二用户设备可以均处于空闲态; 或者, 第一用户设 备可以处于激活态, 第二用户设备处于空闲态; 或者, 第一用户设备可以处 于空闲态, 第二用户设备处于激活态。
以下以第一用户设备和第二用户设备均处于激活状态为例进行说明, 参 见图 2和图 3, UE1和 UE2在相同的基站的覆盖范围之内。 假设 TO为基站 发送下行数据的下行定时参考时间, 也是基站接收上行数据的上行定时参考 时间。 也就是说, 基站在 TO时刻向 UE1和 UE2发送下行数据。 假设 UE1 的下行定时参考为 T1 , 该下行定时参考时间 T1为用户设备接收基站数据的 时间, BP , UE1在时间 T1接收到基站数据, 类似的, UE2的下行定时参考 为 T2, gp, UE2在时间 T2接收到基站数据。
由于基站和 UE1 , 以及基站和 UE2之间均存在距离, 从而会产生传播时 延。 可以得到 UE1 和基站的传播时延是 T1-T0, UE2 和基站的传播时延是 T2-T0, 假设 UE1和 UE2的传播时延是 t3。
由于 UE1处于激活状态, 因此, 基站会为 UE1配置定时提前量 (timing advance ) , 该定时提前量用于 UE1向前调整发送时间。假设 UE1的定时提前 量是 tl, 基站将 tl配置成 2* (Tl-TO ) o UE1将在 Tl-tl时刻发送信号。 由于 UE1和 UE2之间存在传播时延 13, 因此, UE1和 UE2进行直连通信时, UE1 发送的 D2D信号到达 UE2的时间是 Tl-tl+t3。
同样, 由于 UE2处于激活状态, 因此, 基站也会为 UE2配置定时提前量 (timing advance), 该定时提前量用于 UE2向前调整发送时间。 假设 UE2的 定时提前量是 t2, 基站将 t2配置成 2* (T2-T0)。 UE2将在 T2-t2时刻发送信 号。 由于 UE1和 UE2之间存在传播时延 t3, 因此, UE1和 UE2进行直连通 信时, UE2发送的 D2D信号到达 UE1的时间是 T2-t2+t3。
UEl将在 Tl-tl时刻(即下行定时参考时间减去基站配置的定时提前量) 接收 UE2发送的 D2D信号。 UE2发送的 D2D信号到达 UE1的时间是 T2-t2+t3, UE1的接收时间是 Tl-tl, 那么 UE2的 D2D信号到达 UE1的时间提前量是 Tl-tl- (T2-t2+t3 ), 经过推导后得出等于 T2-Tl-t3。
类似的, UE2将在 T2-t2时刻 (即下行定时参考时间减去基站配置的定 时提前量)接收 UE1发送的 D2D信号。 UE1发送的 D2D信号到达 UE2的时 间是 Tl-tl+t3, UE2的接收时间是 T2-t2, 那么 UE1的 D2D信号到达 UE2的 时间提前量是 T2-t2- (Tl-tl+t3 ), 经过推导后得出等于 Tl-T2-t3。
可以理解的是, T2-Tl-t3和 Tl-T2-t3均为小于或者等于 0的值。 也就是 说,对于处于激活状态的 UE而言,其接收的处于激活态的 UE发送的信号是 在接收时间之后到达。
参见图 4, 在 UE1和 UE2均处于激活状态的场景下, 循环前缀对应的时 长大于最大回程时间 (round trip) 所用的时间。
以下再以第一用户设备和第二用户设备均处于空闲状态为例进行说明, 参见图 5和图 6, UE1和 UE2在相同的基站的覆盖范围之内。 同样假设 TO 为基站发送下行数据的下行定时参考时间, 也是基站接收上行数据的上行定 时参考时间。 也就是说, 基站在 TO时刻向 UE1和 UE2发送下行数据。 假设 UE1的下行定时参考为 T1 , 该下行定时参考时间 T1为用户设备接收基站数 据的时间, BP , UEl在时间 T1接收到基站数据, 类似的, UE2的下行定时 参考为 T2, gp, UE2在时间 T2接收到基站数据。
假设 UE1和基站的传播时延是 T1-T0, UE2和基站的传播时延是 T2-T0,
UE1和 UE2的传播时延是 t3。 UEl和 UE2都是空闲状态用户。
由于 UE1处于空闲状态, 因此, UE1得不到基站配置的定时提前量, 从 而不能根据定时提前量来向前调整发送时间, 而只能根据下行定时参考时间 发送和接收信息。 UE1将在 T1时刻(即下行定时参考信号)发送信号。 由于 UE1和 UE2之间存在传播时延 t3,UEl发送的信号到达 UE2的时间是 Tl-t3。 同样, 由于 UE2处于空闲状态, 因此, UE2得不到基站配置的定时提前 量, 从而不能根据定时提前量来向前调整发送时间, 而只能根据下行定时时 间发送和接收信息。 UE2将在 T2时刻(即下行定时参考信号)发送信号。 由 于 UE1和 UE2之间存在传播时延 t3, UE2发送的信号到达 UE1 的时间是 T2-t3。
UEl将在 T1时刻接收 UE2发送的 D2D信号。 UE2发送的 D2D信号到 达 UE1的时间是 T2-t3, UEl的接收时间是 T1 , 那么 UE2的 D2D信号到达 UE1的时间提前量是 T1- (T2+t3 )。
类似的, UE2将在 T2时刻接收 UE1发送的 D2D信号。 UE1发送的 D2D 信号到达 UE2的时间是 Tl-t3, UE2的接收时间是 T2, 那么 UE1的 D2D信 号到达 UE2的时间提前量是 T2- (Tl+t3 ) o
可以理解的是, T1- (T2+13 )和 T2- (T1+13 )均为小于或者等于 0的值。 也就是说,对于处于空闲状态的 UE而言,其接收的处于激活态的 UE发送的 信号是在接收时间之后到达。
参见图 7, 在 UE1和 UE2均处于空闲状态的场景下, 循环前缀对应的时 长大于最大回程时间 (round trip) 所用的时间。
以下再以第二用户设备处于激活状态, 第一用户设备处于空闲状态为例 进行说明, 参见图 8和图 9:
UE1和 UE2在相同的基站的覆盖范围之内, UE1处于激活状态, UE2处 于空闲状态。假设 TO为基站发送下行数据的下行定时参考时间, 也是基站接 收上行数据的上行定时参考时间。 也就是说, 基站在 TO时刻向 UE1和 UE2 发送下行数据。 假设 UE1的下行定时参考为 T1 , 该下行定时参考时间 T1为 用户设备接收基站数据的时间, gP, UEl在时间 T1接收到基站数据,类似的, UE2的下行定时参考为 T2, gp, UE2在时间 T2接收到基站数据。
由于基站和 UE1 , 以及基站和 UE2之间均存在距离, 从而会产生传播时 延。 可以得到 UE1 和基站的传播时延是 T1-T0, UE2 和基站的传播时延是 T2-T0, 假设 UE1和 UE2的传播时延是 t3。
由于 UEl处于激活状态, 因此, 基站会为 UE1配置定时提前量 (timing advance), 该定时提前量用于 UEl向前调整发送时间。假设 UE1的定时提前 量是 tl, 基站将 tl配置成 2* (Tl-TO) o UEl将在 Tl-tl时刻发送信号。 由于 UE1和 UE2之间存在传播时延 t3, 因此, UE1和 UE2进行直连通信时, UE1 发送的 D2D信号到达 UE2的时间是 Tl-tl+t3。
由于 UE2处于空闲状态, 因此, UE2得不到基站配置的定时提前量, 从 而不能根据基站配置的定时提前量来向前调整发送时间, 而只能根据下行定 时时间发送和接收信息。 UE2将在 T2时刻(即下行定时参考信号)发送信号。 由于 UE1和 UE2之间存在传播时延 t3, 因此, UE2发送的信号到达 UE1的 时间是 T2+t3。
UE1将在 Tl-tl时刻接收 UE2发送的 D2D信号。 UE2发送的 D2D信号 到达 UE1的时间是 T2+t3, UE1的接收时间是 Tl-tl, 那么 UE2的 D2D信号 到达 UE1的时间提前量是 Tl-tl- (T2+t3 ) o
UE2将在 T2时刻接收 UE1发送的 D2D信号。 UE1发送的 D2D信号到 达 UE1的时间是 Tl-tl+t3, UE2的接收时间是 T2, 那么 UE1的 D2D信号到 达 UE2的时间提前量是 T2- (Tl-tl+t3 )。
可以理解的是, (T1-T0) +(T2-T0)-t3为大于或者等于 0的值。也就是说, 对于处于空闲状态的 UE而言,其接收处于激活状态的 UE发送的信号在接收 时间之前到达。 换句话说, 处于空闲状态的 UE在接收处于激活状态的 UE 的信号时, 接收时间落后了。 从而导致处于空闲状态的 UE不能够完整的接 收激活状态的 UE的信号, 也就无法对接收的信号正确译码。
以上仅以第一用户设备处于空闲状态, 第二用户设备处于激活状态为例 进行说明, 而对于第一用户设备处于激活状态, 第二用户设备处于空闲状态 的分析过程与之类似, 在此不再赘述。
参见图 10, 在 UE1处于激活状态, UE2处于空闲状态, 处于激活状态的 UE接收处于空闲状态的 UE发送的 D2D信号的场景下, 循环前缀对应的时 长大于最大的回程时长(round trip)的两倍。类似的, 当 UE1处于空闲状态, UE2处于空闲状态,处于空闲状态的 UE接收处于激活状态的 UE发送的 D2D 信号的场景下, 循环前缀对应的时长 (此时应该是拖后量) 大于最大的回程 时长 (round trip) 的一倍。
可选的, 对于提前于接收时间的提前时长, 可以为 D2D信号中的循环前 缀对应时长的倍数, 或者, 为第一用户设备的同步定时偏差的倍数, 或者, 还可以为 D2D信号中的循环前缀对应时长的倍数与第一用户设备的同步定时 偏差的倍数之和。 其中, 所涉及的倍数可以是整数倍, 还可以是分数倍, 在 此均不做出限制。
其中, D2D信号由循环前缀和数据部分组成,接收 D2D信号的用户设备, 需要首先去掉循环前缀后再接收 D2D信号中的数据部分。
需要说明的是,如果第一用户设备和第二用户设备均处于激活态,则 D2D 信号中的循环前缀对应的时长可以大于或等于第一用户设备和第二用户设备 所属系统内的最大回程时间。 如果第一用户设备和第二用户设备均处于空闲 态,则 D2D信号中的循环前缀对应的时长可以大于或等于第一用户设备和第 二用户设备所属系统内的最大回程时间。 如果第一用户设备处于激活态, 第 二用户设备处于空闲态, 或者, 第一用户设备处于空闲态, 第二用户设备处 于激活态,则 D2D信号中的循环前缀对应的时长可以大于或等于第一用户设 备和第二用户设备所属系统内的最大回程时间的 2倍。
本发明实施例中涉及的 D2D信号,在不同的通信系统中可以采用各种资 源进行传输, 例如: 可以采用 OFDM符号来传输。
提前时长为 D2D信号中的循环前缀对应时长倍数的实施场景下,对应不 同的通信系统中, 循环前缀对应时长与提前时长可以具有不同的对应关系。 例如: 提前时长可以为 D2D信号中的循环前缀对应时长的 1倍, 或者还可以 是 D2D信号中的循环前缀对应时长的 1/2倍, 或者还可以是 D2D信号中的循 环前缀对应时长的其他倍数。
用户设备的同步定时偏差可以由用户设备来根据自身的能力确定。
在提前时长为用户设备的同步定时偏差倍数的实施场景下, 提前时长可 以是同步定时偏差的 1倍, 2倍, 6倍, 7倍或者 8倍其他倍数。 例如: 可以 选择 0.5us 或者 lus 作为提前时长。 举例来说, 在长期演进 (Long Term Evolution, LTE)系统中, UE的最大同步定时偏差可以是 0.5us, 也就是 16Ts (其中 Ts是 lms/30720, 是 LTE系统的最小采样间隔), 因此提前时长可以 是 0.5us ( 16Ts), lus (32Ts), 3us (96Ts), 3.5us ( 112Ts), 或者 4us ( 128Ts)。 对于其它类型的通信系统, 最大定时偏差可以参考各自系统的参数, 在此不 再赘述。
在提前时长为 D2D信号中的循环前缀对应时长的倍数与第一用户设备的 同步定时偏差倍数之和的实施场景下, 提前时长为循环前缀对应时长的 1倍 与同步定时偏差的 1倍数之和; 或者, 为 D2D信号中的循环前缀对应时长的 1/2倍与同步定时偏差的 2倍数之和; 或者, 还可以为 D2D信号中的循环前 缀对应时长的 1倍与同步定时偏差的 2倍数之和。
本发明实施例提供的用户设备直连通信的信号传输方法和用户设备, 用 户设备首先根据下行定时参考时间确定接收其他用户设备发送的直连通信 D2D信号的接收时间, 再通过第一用户设备在接收时间之前接收第二用户设 备发送的 D2D信号, 实现提高用户设备接收信号的时间的准确性, 保证数据 接收的完整性。 图 11为本发明提供的用户设备一个实施例的结构示意图,如图 11所示, 该用户设备为第一用户设备, 包括:
处理器 11, 用于根据下行定时参考时间, 确定接收第二用户设备发送的 直连通信 D2D信号的接收时间,下行定时参考时间为用户设备接收基站数据 的时间;
接收器 12, 用于在接收时间之前接收第二用户设备发送的 D2D信号。 可选的, 所述提前时长为所述 D2D信号中的循环前缀对应时长的倍数。 可选的,所述提前时长为所述 D2D信号中的循环前缀对应时长的 1倍, 或者为所述 D2D信号中的循环前缀对应时长的 1/2倍。
可选的, 所述提前时长为所述第一用户设备的同步定时偏差的倍数。 可选的, 所述提前时长为所述第一用户设备的同步定时偏差的 1 倍, 2 倍, 6倍, 7倍或者 8倍。
可选的,所述提前时长为所述 D2D信号中的循环前缀对应时长的倍数与 和所述第一用户设备的同步定时偏差的倍数之和。
可选的, 所述提前时长为所述循环前缀对应时长的 1倍与所述同步定时 偏差的 1倍数之和; 或者, 为所述 D2D信号中的循环前缀对应时长的 1/2倍 与所述同步定时偏差的 2倍数之和; 或者, 为所述 D2D信号中的循环前缀对 应时长的 1倍与所述同步定时偏差的 2倍数之和。
可选的, 第一用户设备和第二用户设备均处于激活态; 或者, 第一用户 设备和第二用户设备均处于空闲态; 或者, 第一用户设备处于激活态, 第二 用户设备处于空闲态; 或者, 第一用户设备处于空闲态, 第二用户设备处于 激活态。
可选的, 第一用户设备和第二用户设备均处于激活态, 则 D2D信号中的 循环前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的 最大回程时间。
可选的, 第一用户设备和第二用户设备均处于空闲态, 则 D2D信号中的 循环前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的 最大回程时间。
可选的, 第一用户设备处于激活态, 第二用户设备处于空闲态, 或者, 第一用户设备处于空闲态, 第二用户设备处于激活态, 则 D2D信号中的循环 前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的最大 回程时间的 2倍。
可选的, 处理器 11可以具体用于: 若第一用户设备处于激活态, 则将下 行定时参考时间减去网络侧设备预先配置的定时提前量作为接收时间;或者, 若第一用户设备处于空闲态, 则将下行定时参考时间作为接收时间。
本实施例提供的用户设备, 为本发明实施例提供的用户设备直连通信的 信号传输方法的执行设备, 其执行该方法的具体过程可参见图 1-图 8中的相 关描述, 在此不再赘述。
本发明实施例提供的用户设备, 用户设备首先根据下行定时参考时间确 定接收其他用户设备发送的直连通信 D2D信号的接收时间,再通过第一用户 设备在接收时间之前接收第二用户设备发送的 D2D信号,实现提高用户设备 接收信号的时间的准确性, 保证数据接收的完整性。 图 12为本发明提供的用户设备又一个实施例的结构示意图, 如图 12所 示, 该用户设备为第一用户设备, 包括:
确定模块 21, 用于根据下行定时参考时间, 确定接收第二用户设备发送 的直连通信 D2D信号的接收时间,下行定时参考时间为用户设备接收基站数 据的时间;
接收模块 22, 用于提前于接收时间接收第二用户设备发送的 D2D信号。 可选的, 所述提前时长为所述 D2D信号中的循环前缀对应时长的倍数。 可选的,所述提前时长为所述 D2D信号中的循环前缀对应时长的 1倍, 或者为所述 D2D信号中的循环前缀对应时长的 1/2倍。
可选的, 所述提前时长为所述第一用户设备的同步定时偏差的倍数。 可选的, 所述提前时长为所述第一用户设备的同步定时偏差的 1 倍, 2 倍, 6倍, 7倍或者 8倍。
可选的,所述提前时长为所述 D2D信号中的循环前缀对应时长的倍数与 和所述第一用户设备的同步定时偏差的倍数之和。
可选的, 所述提前时长为所述循环前缀对应时长的 1倍与所述同步定时 偏差的 1倍数之和; 或者, 为所述 D2D信号中的循环前缀对应时长的 1/2倍 与所述同步定时偏差的 2倍数之和; 或者, 为所述 D2D信号中的循环前缀对 应时长的 1倍与所述同步定时偏差的 2倍数之和。
可选的, 第一用户设备和第二用户设备均处于激活态; 或者, 第一用户 设备和第二用户设备均处于空闲态; 或者, 第一用户设备处于激活态, 第二 用户设备处于空闲态; 或者, 第一用户设备处于空闲态, 第二用户设备处于 激活态。
可选的, 第一用户设备和第二用户设备均处于激活态, 则 D2D信号中的 循环前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的 最大回程时间。
可选的, 第一用户设备和第二用户设备均处于空闲态, 则 D2D信号中的 循环前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的 最大回程时间。
可选的, 第一用户设备处于激活态, 第二用户设备处于空闲态, 或者, 第一用户设备处于空闲态, 第二用户设备处于激活态, 则 D2D信号中的循环 前缀对应的时长大于或等于第一用户设备和第二用户设备所属系统内的最大 回程时间的 2倍。
可选的, 确定模块 21具体用于: 若第一用户设备处于激活态, 则将下行 定时参考时间减去网络侧设备预先配置的定时提前量作为接收时间; 或者, 若第一用户设备处于空闲态, 则将下行定时参考时间作为接收时间。
本实施例提供的用户设备, 为本发明实施例提供的用户设备直连通信的 信号传输方法的执行设备, 其执行该方法的具体过程可参见图 1-图 8中的相 关描述, 在此不再赘述。 本发明实施例提供的用户设备, 用户设备首先根据下行定时参考时间确 定接收其他用户设备发送的直连通信 D2D信号的接收时间,再通过第一用户 设备在接收时间之前接收第二用户设备发送的 D2D信号,实现提高用户设备 接收信号的时间的准确性, 保证数据接收的完整性。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (p「ocesso「) 执行本申请各个实施例所 述方法的全部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读 存储器 (ROM , Read-Only Memory )、 随机存取存储器 (RAM , Random Access Memory), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本申请的技术方案, 而非对其限制; 尽管参照前述实施例对本申请进行了详细的说明, 本领域的普通技术人员应 当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案 的本质脱离本申请各实施例技术方案的精神和范围。

Claims

权利 要 求
1、 一种用户设备直连通信的信号传输方法, 其特征在于, 包括: 第一用户设备根据下行定时参考时间, 确定接收第二用户设备发送的直 连通信 D2D信号的接收时间,所述下行定时参考时间为用户设备接收基站数 据的时间;
所述第一用户设备在所述接收时间之前接收所述第二用户设备发送的所 述 D2D信号。
2、根据权利要求 1所述的方法, 其特征在于, 所述提前时长为所述 D2D 信号中的循环前缀对应时长的倍数。
3、 根据权利要求 2所述的方法, 其特征在于, 所述提前时长为为所述
D2D信号中的循环前缀对应时长的 1倍,或者为所述 D2D信号中的循环前缀 对应时长的 1/2倍。
4、 根据权利要求 1所述的方法, 其特征在于, 所述提前时长为所述第一 用户设备的同步定时偏差的倍数。
5、 根据权利要求 4所述的方法, 其特征在于, 所述提前时长为所述第一 用户设备的同步定时偏差的 1倍, 2倍, 6倍, 7倍或者 8倍。
6、根据权利要求 1所述的方法, 其特征在于, 所述提前时长为所述 D2D 信号中的循环前缀对应时长的倍数与和所述第一用户设备的同步定时偏差的 倍数之和。
7、 根据权利要求 6所述的方法, 其特征在于, 所述提前时长为所述循环 前缀对应时长的 1倍与所述同步定时偏差的 1倍数之和; 或者, 为所述 D2D 信号中的循环前缀对应时长的 1/2倍与所述同步定时偏差的 2倍数之和; 或 者, 为所述 D2D信号中的循环前缀对应时长的 1倍与所述同步定时偏差的 2 倍数之和。
8、 根据权利要求 1-7任一项所述的方法, 其特征在于, 所述第一用户设 备和所述第二用户设备均处于激活态; 或者, 所述第一用户设备和所述第二 用户设备均处于空闲态; 或者, 所述第一用户设备处于激活态, 所述第二用 户设备处于空闲态; 或者, 所述第一用户设备处于空闲态, 所述第二用户设 备处于激活态。
9、 根据权利要求 8所述的方法, 其特征在于, 所述第一用户设备和所述 第二用户设备均处于激活态,则所述 D2D信号中的循环前缀对应的时长大于 或等于所述第一用户设备和所述第二用户设备所属系统内的最大回程时间。
10、 根据权利要求 8所述的方法, 其特征在于, 所述第一用户设备和所 述第二用户设备均处于空闲态,则所述 D2D信号中的循环前缀对应的时长大 于或等于所述第一用户设备和所述第二用户设备所属系统内的最大回程时 间。
11、 根据权利要求 8所述的方法, 其特征在于, 所述第一用户设备处于 激活态, 所述第二用户设备处于空闲态, 或者, 所述第一用户设备处于空闲 态, 所述第二用户设备处于激活态, 则所述 D2D信号中的循环前缀对应的时 长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最大回程 时间的 2倍。
12、 根据权利要求 8-11任一项所述的方法, 其特征在于, 所述第一用户 设备根据下行定时参考时间,确定接收第二用户设备发送的直连通信 D2D信 号的接收时间, 具体包括:
若所述第一用户设备处于激活态, 则所述第一用户设备将所述下行定时 参考时间减去网络侧设备预先配置的定时提前量作为所述接收时间; 或者, 若所述第一用户设备处于空闲态, 则所述第一用户设备将所述下行定时 参考时间作为所述接收时间。
13、 一种用户设备, 其特征在于, 所述用户设备为第一用户设备, 包括: 处理器, 用于根据下行定时参考时间, 确定接收第二用户设备发送的直 连通信 D2D信号的接收时间,所述下行定时参考时间为用户设备接收基站数 据的时间;
接收器, 用于在所述接收时间之前接收所述第二用户设备发送的所述 D2D信号。
14、 根据权利要求 13所述的用户设备, 其特征在于, 所述提前时长为所 述 D2D信号中的循环前缀对应时长的倍数。
15、 根据权利要求 14所述的用户设备, 其特征在于, 所述提前时长为 所述 D2D信号中的循环前缀对应时长的 1倍, 或者为所述 D2D信号中的循 环前缀对应时长的 1/2倍。
16、 根据权利要求 13所述的用户设备, 其特征在于, 所述提前时长为所 述第一用户设备的同步定时偏差的倍数。
17、 根据权利要求 16所述的用户设备, 其特征在于, 所述提前时长为所 述第一用户设备的同步定时偏差的 1倍, 2倍, 6倍, 7倍或者 8倍。
18、 根据权利要求 13所述的用户设备, 其特征在于, 所述提前时长为所 述 D2D信号中的循环前缀对应时长的倍数与和所述第一用户设备的同步定时 偏差的倍数之和。
19、 根据权利要求 18所述的用户设备, 其特征在于, 所述提前时长为所 述循环前缀对应时长的 1倍与所述同步定时偏差的 1倍数之和; 或者, 为所 述 D2D信号中的循环前缀对应时长的 1/2倍与所述同步定时偏差的 2倍数之 和; 或者, 为所述 D2D信号中的循环前缀对应时长的 1倍与所述同步定时偏 差的 2倍数之和。
20、 根据权利要求 13-19任一项所述的用户设备, 其特征在于, 所述第 一用户设备和所述第二用户设备均处于激活态; 或者, 所述第一用户设备和 所述第二用户设备均处于空闲态; 或者, 所述第一用户设备处于激活态, 所 述第二用户设备处于空闲态; 或者, 所述第一用户设备处于空闲态, 所述第 二用户设备处于激活态。
21、 根据权利要求 20所述的用户设备, 其特征在于, 所述第一用户设备 和所述第二用户设备均处于激活态,则所述 D2D信号中的循环前缀对应的时 长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最大回程 时间。
22、 根据权利要求 20所述的用户设备, 其特征在于, 所述第一用户设备 和所述第二用户设备均处于空闲态,则所述 D2D信号中的循环前缀对应的时 长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最大回程 时间。
23、 根据权利要求 20所述的用户设备, 其特征在于, 所述第一用户设备 处于激活态, 所述第二用户设备处于空闲态, 或者, 所述第一用户设备处于 空闲态, 所述第二用户设备处于激活态, 则所述 D2D信号中的循环前缀对应 的时长大于或等于所述第一用户设备和所述第二用户设备所属系统内的最大 回程时间的 2倍。
24、 根据权利要求 8-11任一项所述的用户设备, 其特征在于, 所述处理 器具体用于: 若所述第一用户设备处于激活态, 则将所述下行定时参考时间 减去网络侧设备预先配置的定时提前量作为所述接收时间; 或者, 若所述第 一用户设备处于空闲态, 则将所述下行定时参考时间作为所述接收时间。
PCT/CN2013/084499 2013-09-27 2013-09-27 用户设备直连通信的信号传输方法和用户设备 WO2015042887A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/025,047 US9635489B2 (en) 2013-09-27 2013-09-27 Signal transmission method for device to device direct communication between user equipments and user equipment
CN201380068538.XA CN104904282B (zh) 2013-09-27 2013-09-27 用户设备直连通信的信号传输方法和用户设备
EP13894660.3A EP3007497A4 (en) 2013-09-27 2013-09-27 METHOD AND USER DEVICE FOR SENDING DIRECT CONNECTION COMMUNICATION SIGNALS FROM USER DEVICES
KR1020167001868A KR101784979B1 (ko) 2013-09-27 2013-09-27 사용자 장비의 직접 연결 통신 신호를 전송하는 방법 및 사용자 장비
JP2016530305A JP6188000B2 (ja) 2013-09-27 2013-09-27 ユーザ機器とユーザ機器との間のデバイス・ツー・デバイス直接通信のための信号伝送方法
PCT/CN2013/084499 WO2015042887A1 (zh) 2013-09-27 2013-09-27 用户设备直连通信的信号传输方法和用户设备
US15/452,528 US10070473B2 (en) 2013-09-27 2017-03-07 Signal transmission method for device to device direct communication between user equipments and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084499 WO2015042887A1 (zh) 2013-09-27 2013-09-27 用户设备直连通信的信号传输方法和用户设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/025,047 A-371-Of-International US9635489B2 (en) 2013-09-27 2013-09-27 Signal transmission method for device to device direct communication between user equipments and user equipment
US15/452,528 Continuation US10070473B2 (en) 2013-09-27 2017-03-07 Signal transmission method for device to device direct communication between user equipments and user equipment

Publications (1)

Publication Number Publication Date
WO2015042887A1 true WO2015042887A1 (zh) 2015-04-02

Family

ID=52741830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084499 WO2015042887A1 (zh) 2013-09-27 2013-09-27 用户设备直连通信的信号传输方法和用户设备

Country Status (6)

Country Link
US (2) US9635489B2 (zh)
EP (1) EP3007497A4 (zh)
JP (1) JP6188000B2 (zh)
KR (1) KR101784979B1 (zh)
CN (1) CN104904282B (zh)
WO (1) WO2015042887A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904282B (zh) 2013-09-27 2018-11-30 华为终端(东莞)有限公司 用户设备直连通信的信号传输方法和用户设备
US10251143B2 (en) * 2013-10-30 2019-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Methods and wireless devices for enabling D2D communications in a wireless network
EP3579623A1 (en) * 2014-03-21 2019-12-11 Huawei Technologies Co., Ltd. Method for detecting device-to-device signal, user equipment, and base station
CN108289325B (zh) * 2017-01-09 2022-03-01 中兴通讯股份有限公司 上行和下行传输对齐的方法及装置
WO2019093810A1 (ko) * 2017-11-10 2019-05-16 엘지전자 주식회사 지연된 사이드링크 신호의 처리를 위한 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123111A (zh) * 2010-01-11 2011-07-13 联芯科技有限公司 信道估计的方法和装置
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
CN103188742A (zh) * 2011-12-29 2013-07-03 华为技术有限公司 通信切换方法、用户设备与基站
WO2013100831A1 (en) * 2011-12-29 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a radio network node, and methods therein
US20130170414A1 (en) * 2012-01-04 2013-07-04 Futurewei Technologies, Inc. System and Method for Device-to-Device Communication Overlaid on a Cellular Network
CN103250435A (zh) * 2012-12-31 2013-08-14 华为技术有限公司 设备到设备通信方法、装置及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI434541B (zh) 2006-02-23 2014-04-11 Koninkl Philips Electronics Nv 分散式網路之同步
US8554200B2 (en) 2008-09-12 2013-10-08 Nokia Corporation Method and apparatus for providing interference measurements for device to-device communication
US8811374B2 (en) 2008-09-25 2014-08-19 Nokia Corporation Synchronization for device-to-device communication
WO2010108549A1 (en) * 2009-03-27 2010-09-30 Nokia Siemens Networks Oy Apparatus, method and article of manufacture
JP2011130088A (ja) 2009-12-16 2011-06-30 Sony Corp 端末装置、ハンドオーバのための方法、基地局及び無線通信システム
JP2010110022A (ja) 2010-02-17 2010-05-13 Ntt Docomo Inc 移動局及び無線基地局
WO2012019348A1 (en) * 2010-08-12 2012-02-16 Nokia Corporation Configuring an uplink and downlink splitting pattern for device-to-device communication under a cellular network
WO2013104084A1 (en) * 2012-01-12 2013-07-18 Renesas Mobile Corporation Synchronization and macro connectivity reconfiguration for d2d devices
WO2013181421A2 (en) 2012-05-31 2013-12-05 Interdigital Patent Holdings, Inc. Method and apparatus for device-to-device (d2d) mobility in wireless systems
CN103457690B (zh) 2012-05-31 2017-11-03 中兴通讯股份有限公司 探测参考信号的传输方法、装置及系统和用户设备
WO2014003430A1 (ko) 2012-06-26 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 d2d 통신을 위한 동기 방법 및 장치
CN104429150A (zh) 2012-08-03 2015-03-18 英特尔公司 用于实现设备到设备通信的方法和系统
WO2014092370A1 (ko) 2012-12-14 2014-06-19 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 스케줄링 방법 및 이를 위한 장치
US20150358964A1 (en) * 2013-02-07 2015-12-10 Nokia Solutions And Networks Oy Time-division duplexing
KR20160009534A (ko) * 2013-03-07 2016-01-26 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 통신에 관련된 신호 송수신방법 및 장치
US10136442B2 (en) 2013-04-19 2018-11-20 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US20140370904A1 (en) 2013-06-12 2014-12-18 Research In Motion Limited Device-to-device discovery
CN103347246B (zh) 2013-07-18 2016-08-17 西安电子科技大学 蜂窝网络中嵌入式d2d环境下邻近用户间的发现方法
JP6300836B2 (ja) * 2013-07-26 2018-03-28 ▲華▼▲為▼▲終▼端有限公司 ユーザ機器間で信号を送信するための方法および装置
US20160150492A1 (en) * 2013-09-18 2016-05-26 Huawei Device Co., Ltd. Method and apparatus for device-to-device communication
CN104904282B (zh) 2013-09-27 2018-11-30 华为终端(东莞)有限公司 用户设备直连通信的信号传输方法和用户设备
CN106105345B (zh) 2014-03-19 2019-08-06 Lg电子株式会社 在无线通信系统中由终端实施的d2d(装置到装置)信号发送方法及使用该方法的终端
WO2016003249A1 (en) * 2014-07-04 2016-01-07 Samsung Electronics Co., Ltd. Method and system for preventing overlap between reception and transmission by user equipment in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123111A (zh) * 2010-01-11 2011-07-13 联芯科技有限公司 信道估计的方法和装置
CN103108389A (zh) * 2011-11-15 2013-05-15 中兴通讯股份有限公司 设备到设备的通信方法和系统、用户设备
CN103188742A (zh) * 2011-12-29 2013-07-03 华为技术有限公司 通信切换方法、用户设备与基站
WO2013100831A1 (en) * 2011-12-29 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a radio network node, and methods therein
US20130170414A1 (en) * 2012-01-04 2013-07-04 Futurewei Technologies, Inc. System and Method for Device-to-Device Communication Overlaid on a Cellular Network
CN103250435A (zh) * 2012-12-31 2013-08-14 华为技术有限公司 设备到设备通信方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007497A4 *

Also Published As

Publication number Publication date
US20160219393A1 (en) 2016-07-28
KR101784979B1 (ko) 2017-10-20
KR20160022381A (ko) 2016-02-29
CN104904282B (zh) 2018-11-30
US20170181209A1 (en) 2017-06-22
EP3007497A4 (en) 2016-07-13
CN104904282A (zh) 2015-09-09
JP2016528818A (ja) 2016-09-15
US10070473B2 (en) 2018-09-04
EP3007497A1 (en) 2016-04-13
JP6188000B2 (ja) 2017-08-30
US9635489B2 (en) 2017-04-25

Similar Documents

Publication Publication Date Title
JP6702604B2 (ja) 情報通信方法、ユーザー機器、およびネットワークデバイス
US9155084B2 (en) Methods and devices for transmitting data
JP6068648B2 (ja) トランキングサービスを迅速に確立するための方法、関連する装置及びシステム
WO2018059307A1 (zh) 通信方法、基站和终端设备
US11109392B2 (en) Communication method, network device, and relay device
US10070473B2 (en) Signal transmission method for device to device direct communication between user equipments and user equipment
WO2018112932A1 (zh) 数据传输方法和装置
CN111277390B (zh) 下行反馈信息的传输方法、基站以及终端设备
WO2012163193A1 (zh) 一种数据传输方法和装置
CN111343717B (zh) 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
WO2014019552A1 (zh) 业务控制方法、终端和网络侧设备
JP2020523902A (ja) 通信方法、ネットワークデバイス、およびユーザ機器
EP4236495A1 (en) Time synchronization method, electronic device and storage medium
WO2015039308A1 (zh) 设备对设备通信的方法及装置
EP3806563B1 (en) Method and apparatus for configuring transmission bandwidth, and device
WO2016082118A1 (zh) 一种无线通信方法、设备及系统
JP6035622B2 (ja) ユーザデバイス間の直接通信のためのリソース割り当て方法及びデバイス
WO2015058407A1 (zh) 设备到设备d2d通信的方法及装置
TW202002688A (zh) 一種擁塞控制方法、設備及裝置
WO2014059666A1 (zh) 通信方法和设备
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
CN114745776B (zh) 基于无线网络的时钟同步方法、装置、设备及介质
CN106341774B (zh) 一种数据传输方法、网络设备及用户设备
WO2015154224A1 (zh) 一种上下行配比的配置方法、基站及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013894660

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167001868

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016530305

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15025047

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE