WO2010111838A1 - 随机接入前导信号的发送方法及装置 - Google Patents

随机接入前导信号的发送方法及装置 Download PDF

Info

Publication number
WO2010111838A1
WO2010111838A1 PCT/CN2009/071152 CN2009071152W WO2010111838A1 WO 2010111838 A1 WO2010111838 A1 WO 2010111838A1 CN 2009071152 W CN2009071152 W CN 2009071152W WO 2010111838 A1 WO2010111838 A1 WO 2010111838A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
preamble
transmitting
time slot
preamble signal
Prior art date
Application number
PCT/CN2009/071152
Other languages
English (en)
French (fr)
Inventor
李铕
印翀
高秀娟
王燚
陈庆勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN200980000114.3A priority Critical patent/CN101940053B/zh
Priority to PCT/CN2009/071152 priority patent/WO2010111838A1/zh
Publication of WO2010111838A1 publication Critical patent/WO2010111838A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and a device for transmitting a random access preamble. Background technique
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE is an improved project based on universal terrestrial radio access technology and universal terrestrial radio access network technology, with the goal of achieving lower data rates, lower latency, lower cost, and improved System capacity and coverage.
  • the terminal After receiving the request from the upper layer, the terminal sends a preamble (physical random access CHannel, hereinafter referred to as PRACH) according to the request; After receiving the preamble signal, perform random access feedback to complete an LTE physical layer random access procedure.
  • the existing preamble signals are transmitted in units of subframes.
  • a preamble signal by the length T CP cyclic prefix (CP), and a portion of a length sequence length T SE Q is a guard interval T GT (GT) composition.
  • the CP is used to prevent data of the previous time slot of the PRACH from interfering with the current PRACH data
  • the GT is used to prevent the current PRACH data from interfering with the data of the next time slot.
  • T CT includes loopback delay and multipath delay spread
  • T GT includes loopback delay.
  • the format of several preamble signals is configured in the prior art, and is applicable to different cell coverage radii under different transmission models.
  • LTE Long Term Evolution
  • the preamble signal configured in the prior art is used, and the maximum radius of the cell supported by the corresponding format is supported. Smaller. Summary of the invention
  • the embodiment of the invention provides a method and a device for transmitting a random access preamble.
  • the maximum radius of the cell supported by the random access is increased.
  • An embodiment of the present invention provides a method for transmitting a random access preamble signal, including: a trigger message for receiving a random access procedure of a physical layer; a signal.
  • An embodiment of the present invention provides a device for transmitting a random access preamble signal, including: a receiving module, configured to receive a trigger message of a physical layer random access procedure;
  • the first sending module is configured to send the preamble signal according to the trigger message, using the special time slot and the uplink subframe immediately following the special time slot.
  • the preamble signal is sent by using the special time slot and the uplink subframe immediately following the special time slot.
  • the number of uplink subframes is limited, the duration of the random access is increased, and the random access is increased.
  • FIG. 1 is a flowchart of a method for transmitting a random access preamble according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting a random access preamble according to Embodiment 2 of the present invention
  • FIG. 3 is a random connection according to Embodiment 2 of the present invention
  • FIG. 4 is a flowchart of a method for transmitting a random access preamble according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic structural diagram of a device for randomly transmitting a preamble signal according to an embodiment of the present invention. detailed description
  • the LTE standard is configured with five preamble formats, and the five preambles have different lengths.
  • T CP and T OT are also different, and are applicable to different cell coverage radii under different transmission models.
  • Table 1 shows a schematic table of the preamble format and related information.
  • the length of the preamble signal of format "0" is 1ms, the sequence length is 800us, and the range of cell radius that can be supported is 0 ⁇ 14.61km; the length of the preamble of format "1" is 2ms, and the sequence length is 800us, mainly for no coverage.
  • the size of the problem area, the radius of the cell that can be supported is about 77.4km; the length of the preamble of the format "2" is 2ms, and the sequence length is 1600us, mainly for the coverage of the problematic cell, and the radius of the cell that can be supported is about 30km;
  • the length of the "3" preamble signal is 3ms, and the sequence length is 1600us. It is mainly for very large cells.
  • the cell radius that can be supported is about 100km.
  • the format "0" ⁇ "3" is transmitted in normal subframes, and the format is "4" is a short RACH, the length of the preamble signal is about 0.167ms, and the radius of the cell that can be supported is also short. That is to say, according to the structure of the preamble signal, the maximum radius of the cell that the LTE physical random access can support is also different.
  • a preamble of the format "0" is transmitted by using a single uplink subframe; an UpPTS slot transmission with a length of two Orthogonal Frequency-Division Multiplexing (OFDM) symbols is used.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • the length of the preamble signal affects the maximum radius of the cell that the LTE physical random access can support.
  • the current LTE standard supports both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) technologies. Due to the different methods of using time-frequency resources, these two The difference in technical design.
  • TDD LTE is that the uplink and downlink use different time resources and the same frequency resources for communication. Therefore, TDD LTE is very flexible in spectrum utilization and supports asymmetric data services.
  • the number of slots also causes the frame structure of TDD LTE to be slightly more complicated than FDD.
  • the special subframe is composed of three special time slots: a downlink pilot time slot (DwPTS), a guard interval (GP), and an uplink pilot time slot (UpPTS), wherein the DwPTS can be used for data and signaling transmission, and the GP is uplink and downlink.
  • the transition guard interval, UpPTS can be used for random access and sounding channels.
  • the embodiment of the present invention proposes to jointly transmit a preamble signal by using a special time slot in a special subframe and an uplink subframe immediately following the special time slot.
  • FIG. 1 is a flowchart of a method for transmitting a random access preamble according to an embodiment of the present invention. As shown in FIG. 1, the embodiment includes the following steps:
  • Step 101 Receive a trigger message of a physical layer random access procedure.
  • Step 102 Send, according to the trigger message, a preamble signal by using a special time slot and an uplink subframe immediately following the special time slot.
  • the preamble signal is transmitted by using a special time slot and an uplink subframe immediately following the special time slot.
  • the number of uplink subframes is limited, the duration of the random access is increased, and the random access station is increased.
  • FIG. 2 is a flowchart of a method for transmitting a random access preamble according to Embodiment 2 of the present invention.
  • the sending of the preamble signal is triggered by the request of the upper layer of the terminal.
  • the embodiment includes the following steps:
  • Step 201 The terminal receives a request message of a physical layer random access procedure sent by a high layer, where the request is The request message is a trigger message, which is used to trigger a random access process of the physical layer.
  • the request message includes random access channel resource information.
  • the random access channel resource information may include a preamble sequence number and a random access channel resource. Further, the random access channel resource information may further include: Information such as power, random access temporary identifier, and maximum number of retransmissions of the preamble.
  • the random access channel resource is used to notify the terminal of the current channel status, for example: the number of uplink subframes that the terminal can currently use to transmit the preamble signal.
  • Step 202 The terminal acquires a time-frequency resource used for sending the preamble signal according to the random access channel resource.
  • Step 203 The terminal selects a preamble signal sequence in the preamble signal sequence set according to the preamble signal sequence number. Specifically, the terminal selects a preamble sequence from a set of preamble sequences comprising 64 configured preamble sequences.
  • Step 204 The terminal sends a preamble signal including a preamble sequence sequence on the time-frequency band corresponding to the time-frequency resource in the random access channel, using the special time slot and the uplink subframe immediately following the special time slot.
  • FIG. 3 is a schematic diagram of a signal transmission format of a method for transmitting a random access preamble according to a prior art according to the embodiment of the present invention.
  • the special time slot in this embodiment is an UpPTS in a special subframe. That is to say, this embodiment uses a new preamble format which keeps the length T SE Q of the preamble sequence unchanged, and the UpPTS slot is used to increase T CP and T GT , and is currently used.
  • the number of uplink subframes for transmitting the preamble signal is s
  • the duration of the uplink subframe is lms
  • the length of the UpPTS slot is T UpPTS .
  • the duration of the random access can be extended to (s+T). Up p TS )ms.
  • the embodiment may be randomly connected.
  • the duration of the entry is extended to (l+T UpPTS )ms.
  • the duration of the random access can be extended to (2+T UpPTS ) ms or (3+T UpPTS ) ms, so that the configuration of the cell radius in the embodiment provides more Optional.
  • the maximum radius of the cell supported by physical random access is determined by the smaller value of Tcp- ⁇ and T OT , that is, the maximum radius of the cell supported by physical random access and Tcp- T
  • Tcp- ⁇ and T OT the maximum radius of the cell supported by physical random access
  • Tcp- T the maximum radius of the cell supported by physical random access
  • both T CP and T OT will increase, thus increasing the maximum radius of the cell supported by physical random access.
  • Step 205 After receiving the preamble signal sent by the terminal, the base station sends a random access response message to the terminal within the specified window length according to the detection result.
  • the random access response message feeds back the detected preamble sequence number and time advance amount to the terminal, and indicates the time-frequency resource of the next transmission information of the terminal and the temporary identifier used to identify the identity of the terminal.
  • Step 206 The terminal monitors the temporary identifier on the control channel, and determines whether a random access response message is received within the specified window length. If yes, step 207 is performed; otherwise, step 203 is performed.
  • Step 207 The terminal sends a radio resource control (Radio Resource Control, hereinafter referred to as RRC) connection request message.
  • RRC Radio Resource Control
  • the UpPTS time slot and the immediately following uplink subframe are used to transmit the preamble signal, and the UpPTS time slot can be combined with one or more uplink subframes to flexibly and effectively utilize limited uplink resources and increase random access.
  • the duration of the cell increases the maximum radius of the cell supported by the random access, and provides more options for configuring the cell radius during networking.
  • FIG. 4 is a flowchart of a method for transmitting a random access preamble according to Embodiment 3 of the present invention.
  • the randomly received preamble signal is allocated by the dedicated downlink signaling, and is used to trigger the physical layer random access procedure.
  • the embodiment specifically includes the following steps:
  • Step 301 The terminal receives the dedicated downlink signaling sent by the base station, where the dedicated downlink signaling is a trigger message, which is used to trigger a physical layer random access procedure.
  • the dedicated downlink signaling is a trigger message, which is used to trigger a physical layer random access procedure.
  • the dedicated downlink signaling is specifically a handover command, and the handover command is generated by the target base station, and then forwarded to the terminal by the source base station; for the arrival of the downlink data, the dedicated downlink signaling is specifically the medium access control (Medium Access) Control, hereinafter referred to as: MAC) signaling.
  • the dedicated downlink signaling is used to allocate a random access preamble, where the random access channel resource information includes a 6-bit random access preamble signal, and other resource information about the channel may be used. Obtained from System Information.
  • Step 302 The terminal sends a preamble signal on the random access channel by using a special time slot and an uplink subframe immediately following the special time slot according to the random access channel resource information.
  • the signal transmission format of this embodiment can also refer to FIG. 3, wherein the special time slot is an UpPTS in a special subframe, that is, the present embodiment also uses a new preamble format, and the new preamble format maintains the preamble.
  • the length of the signal sequence T SE Q is unchanged, and the UpPTS time slot is used to increase T CP and T GT .
  • the number of uplink subframes used for transmitting the preamble signal is s
  • the duration of the uplink subframe is lms
  • the length of the UpPTS slot is T UpPTS .
  • the duration of the random access can be extended to ( s+T Up p TS )ms.
  • the embodiment may be randomly connected.
  • the duration of the entry is extended to (l+T UpPTS )ms.
  • the duration of the random access can be extended to (2+T UpPTS ) ms or (3+T UpPTS ) ms, so that the configuration of the cell radius in the embodiment provides more Optional.
  • the maximum radius of the cell supported by physical random access is determined by the smaller value of Tcp- ⁇ and T GT , that is, the maximum radius of the cell supported by physical random access and Tcp- T
  • Tcp- ⁇ and T GT that is, the maximum radius of the cell supported by physical random access
  • Tcp- T When sending the preamble signal, both T CP and T GT will increase, thus increasing the maximum radius of the cell supported by physical random access.
  • Step 303 After receiving the preamble signal sent by the terminal, the base station sends a random access response message to the terminal within a specified window length.
  • the random access response message includes at least the timing advance information and the initial uplink grant.
  • the random access response message includes at least the timing advance information.
  • Step 305 The terminal sends an RRC connection request message. At this point, the physical layer random access procedure ends.
  • the UpPTS time slot and the immediately following uplink subframe are used to transmit the preamble signal.
  • the UpPTS time slot can be combined with one or more uplink subframes to flexibly and effectively utilize limited uplink resources, increase the duration of random access, and increase the maximum radius of the cell supported by random access.
  • the configuration of the cell radius provides more options.
  • FIG. 5 is a schematic structural diagram of a device for transmitting a random access preamble according to an embodiment of the present invention.
  • the embodiment specifically includes: a receiving module 11 and a first sending module 12, where the receiving module 11 receives a physical layer random.
  • the triggering message of the access process; the first sending module 12 sends the preamble signal according to the triggering message, using the special time slot and the uplink subframe immediately following the special time slot.
  • the special time slot may be an UpPTS time slot in a special subframe, and the UpPTS time slot is used to increase the length of the cyclic prefix and the guard interval in the preamble.
  • the above trigger message may include random access channel resource information.
  • the embodiment may further include: an obtaining module 13 that acquires a time-frequency resource for transmitting a preamble according to the random access channel resource information carried in the trigger message.
  • the first sending module 12 is specifically configured to send a preamble signal by using a special time slot and an uplink subframe immediately after the special time slot in a time frequency band corresponding to the time-frequency resource.
  • the embodiment may further include a selection module 14, and the selection module 14 selects a preamble sequence according to the sequence number of the preamble included in the random access channel resource information.
  • the first sending module 12 is specifically configured to send, in a time band corresponding to the time-frequency resource, a preamble signal including a preamble sequence sequence by using a special time slot and an uplink subframe immediately following the special time slot.
  • the embodiment may further include a second sending module 15, when receiving the random access response message within the specified window length, the second sending module 15 sends an RRC connection request message; the selecting module 14 is further configured to be in the specified window.
  • the preamble sequence is selected when no random access response message is received within the long period.
  • the receiving module 11 may be specifically configured to receive a request message of a physical layer random access procedure sent by a higher layer; or receive dedicated downlink signaling sent by the base station.
  • the slot can be combined with one or more uplink subframes to flexibly and effectively utilize limited uplink resources, increase the duration of random access, and increase the maximum radius of the cell supported by random access, which is the cell radius when networking.
  • the configuration provides more options.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk. It is not limited thereto; although the embodiments of the present invention have been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or some of the technologies. The features are equivalent to the equivalents of the technical solutions of the embodiments of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

随机接入前导信号的发送方法及装置
技术领域
本发明实施例涉及通信领域, 尤其涉及一种随机接入前导信号的发送方 法及装置。 背景技术
为了满足未来对更高数据速率的需求, 第三代合作伙伴计划 (3GPP)正在 进行新的无线接入空中接口技术的研究, 即长期演进 (Long Term Evolution, 以下简称: LTE)技术。 LTE是基于通用陆地无线接入技术和通用陆地无线接 入网技术进行改进的项目, 其目标除了为获得更高的数据速率, 还包括获得 更低的时延、 更低的成本、 以及改进的系统容量和覆盖范围。
在 LTE物理层随机接入过程中, 在接收到高层的请求后, 终端将根据该 请求, 在物理层随机接入信道 (Physical Random Access CHannel, 以下简称: PRACH)发送前导信号 (preamble); 基站接收到该前导信号后, 进行随机接入 反馈, 从而完成一次 LTE物理层随机接入过程。 现有的前导信号是以子帧为 单位进行发送的。 前导信号由一个长度为 TCP的循环前缀 (CP)、 一个长度为 TSEQ的序列部分和一个长度为 TGT的保护间隔 (GT)组成。 CP用于防止 PRACH 前一个时隙的数据干扰到当前 PRACH数据, GT用于防止当前 PRACH数据 干扰到下一个时隙的数据。 TCT包括环回时延和多径延时扩展, TGT包括环回 时延。
目前, 现有技术中配置了几种前导信号的格式, 分别适用于不同传输模 型下不同的小区覆盖半径。 但是, 在 LTE中, 存在上下行子帧数量不相等、 上行子帧数量偏少的情况, 在这种情况下, 釆用现有技术配置的前导信号, 其对应的格式能够支持的小区最大半径较小。 发明内容
本发明实施例提供了一种随机接入前导信号的发送方法及装置, 在上行 子帧数量有限的情况下, 增大随机接入支持的小区最大半径。
本发明实施例提供了一种随机接入前导信号的发送方法, 包括: 接收物理层随机接入过程的触发消息; 信号。
本发明实施例提供了一种随机接入前导信号的发送装置, 包括: 接收模块, 用于接收物理层随机接入过程的触发消息;
第一发送模块, 用于根据触发消息, 釆用特殊时隙以及紧随特殊时隙后 的上行子帧发送前导信号。
本发明实施例釆用特殊时隙以及紧随该特殊时隙后的上行子帧发送前导 信号, 在上行子帧数量有限的情况下, 增加了随机接入的持续时间, 增大了 随机接入所支持的小区最大半径。 附图说明
图 1为本发明实施例一随机接入前导信号的发送方法的流程图; 图 2为本发明实施例二随机接入前导信号的发送方法的流程图; 图 3为本发明实施例二随机接入前导信号的发送方法的信号发送格式与 现有技术对比的示意图;
图 4为本发明实施例三随机接入前导信号的发送方法的流程图; 图 5为本发明实施例随机接入前导信号的发送装置的结构示意图。 具体实施方式
目前, LTE标准配置了 5种前导信号格式, 这 5种前导信号长度各异,
TCP和 TOT也不尽相同, 分别适用于不同传输模型下不同的小区覆盖半径。 如 表 1所示, 为前导信号格式及相关信息的示意表。
表 1. 前导信号格式及相关信息的示意表
Figure imgf000004_0001
格式 "0" 的前导信号的长度为 1ms, 序列长度为 800us, 可以支持的小 区半径范围为 0 ~ 14.61km; 格式 "1" 的前导信号的长度为 2ms, 序列长度为 800us, 主要针对没有覆盖问题的大小区, 可以支持的小区半径约为 77.4km; 格式 "2" 的前导信号的长度为 2ms, 序列长度为 1600us, 主要针对覆盖有问 题的小区, 可以支持的小区半径约为 30km; 格式 "3" 的前导信号的长度为 3ms, 序列长度为 1600us, 主要针对非常大的小区, 可以支持的小区半径约 为 100km; 格式 "0" ~ "3" 在正常的子帧中传输, 而格式 "4" 是一种短 RACH, 前导信号的长度约为 0.167ms, 可以支持的小区半径也较短。 也就是 说, 根据前导信号结构的不同, LTE物理随机接入能够支持的小区最大半径 也不同。
现有技术釆用一个单独的上行子帧发送格式 "0" 的前导信号; 釆用长度 为两个正交频分多址 ( Orthogonal Frequency-Division Multiplexing ,以下简称: OFDM )符号的 UpPTS时隙发送格式 "4" 的前导信号; 而对于格式 " 1" ~ "3" , 前导信号的随机接入持续时间大于一个子帧, 现有技术釆用连续的 2 个或 3个子帧发送该前导信号。
由上述可知, 前导信号的长度(也即前导信号的持续时间 )影响了 LTE 物理随机接入能够支持的小区最大半径。 现行的 LTE标准同时支持频分双工 (Frequency Division Duplex, 以下简 称: FDD)和时分双工 (Time Division Duplex, 以下简称: TDD)技术, 由于对 时频资源利用方法的不同, 造成了这两种技术设计上的差异。 TDD LTE是上 下行链路利用不同的时间资源、 相同的频率资源来进行通信, 所以 TDD LTE 对频谱的利用非常灵活, 还支持不对称的数据业务; 但是根据上下行业务来 自行分配上下行时隙个数, 也造成了 TDD LTE的帧结构比 FDD稍微复杂, 这种复杂度具体体现在 TDD LTE帧结构中包含有特殊子帧。该特殊子帧由下 行导频时隙 (DwPTS)、 保护间隔 (GP)、 上行导频时隙 (UpPTS)三个特殊时隙组 成, 其中 DwPTS 可用于数据和信令的传输, GP是上下行转换保护间隔、 UpPTS可用于随机接入和探测信道。基于现行的 LTE标准, 本发明实施例提 出釆用特殊子帧中的一特殊时隙和紧随该特殊时隙的上行子帧联合发送前导 信号。
下面通过附图和实施例, 对本发明实施例的技术方案做进一步的详细描 述。
图 1为本发明实施例一随机接入前导信号的发送方法的流程图, 如图 1 所示, 本实施例包括如下步骤:
步骤 101、 接收物理层随机接入过程的触发消息;
步骤 102、 根据该触发消息, 釆用特殊时隙以及紧随该特殊时隙后的上 行子帧发送前导信号。
本实施例釆用特殊时隙以及紧随该特殊时隙后的上行子帧发送前导信 号, 在上行子帧数量有限的情况下, 增加了随机接入的持续时间, 增大了随 机接入所支持的小区最大半径。
图 2为本发明实施例二随机接入前导信号的发送方法的流程图。 本实施 例中, 发送前导信号是由终端高层请求而触发的, 如图 2所示, 本实施例具 体包括如下步骤:
步骤 201、 终端接收高层发送的物理层随机接入过程的请求消息, 该请 求消息即为触发消息, 用于触发物理层随机接入过程。
该请求消息中包括随机接入信道资源信息, 具体地, 随机接入信道资源 信息可以包括前导信号序号和随机接入信道资源; 进一步的, 该随机接入信 道资源信息还可以包括: 前导信号传输功率、 随机接入临时标识、 以及前导 信号最大重传次数等信息。
其中, 随机接入信道资源用于通知终端当前信道的状况, 例如: 通知终 端当前可以用于发送前导信号的上行子帧数。
步骤 202、 终端根据随机接入信道资源, 获取用于发送前导信号的时频 资源。
步骤 203、 终端根据前导信号序号, 在前导信号序列集合中选择前导信 号序列。 具体地, 终端从包含 64个已配置前导信号序列的前导信号序列集合 中选择一前导信号序列。
步骤 204、 终端在随机接入信道中时频资源对应的时频段上, 釆用特殊 时隙以及紧随该特殊时隙后的上行子帧,发送包含前导信号序列的前导信号。
图 3为本发明实施例二随机接入前导信号的发送方法的信号发送格式与 现有技术对比的示意图, 如图 3所示, 本实施例中特殊时隙为特殊子帧中的 UpPTS, 也就是说, 本实施例釆用一种新的前导信号格式, 这种新的前导信 号格式保持前导信号序列的长度 TSEQ不变, UpPTS时隙用于增加 TCP和 TGT, 设当前用于发送前导信号的上行子帧数为 s, —个上行子帧的持续时间为 lms, UpPTS时隙的长度为 TUpPTS , 则本实施例可以将随机接入的持续时间延 长至 (s+TUppTS)ms。
举例来说, 设当前用于发送前导信号的上行子帧数为 1 , 一个上行子帧 的持续时间为 lms, 即图 3中上行子帧的持续时间为 lms, 则本实施例可以 将随机接入的持续时间延长至(l+TUpPTS)ms。 与此类似, 本实施例还可以将随 机接入的持续时间延长至 (2+TUpPTS)ms或 (3+TUpPTS)ms, 使得本实施例为组网 时小区半径的配置提供了更多的可选方案。 设 ζ为支持的最大多径延时,物理随机接入支持的小区最大半径由 Tcp-ζ 和 TOT中的较小值决定,也就是说,物理随机接入支持的小区最大半径与 Tcp-ζ 送前导信号时, TCP和 TOT都会有所增加, 这样, 增大了物理随机接入支持的 小区最大半径。
步骤 205、 基站接收到终端发送的前导信号后, 根据检测结果, 在指定 的窗长内向终端发送随机接入响应消息。
该随机接入响应消息向终端反馈检测到的前导信号序号和时间提前量, 并指出终端下一步传输信息的时频资源和用于标识终端身份的临时标识。
步骤 206、 终端监听控制信道上的临时标识, 判断在指定的窗长内是否 接收到随机接入响应消息, 若是, 则执行步骤 207; 否则, 执行步骤 203。
步骤 207、 终端发送无线资源控制 (Radio Resource Control, 以下简称: RRC)连接请求消息; 至此, 物理层随机接入过程结束。
本实施例釆用 UpPTS 时隙以及紧随其后的上行子帧发送前导信号, UpPTS时隙可以与一个或多个上行子帧联合, 灵活有效地利用了有限的上行 资源, 增加了随机接入的持续时间, 增大了随机接入所支持的小区最大半径, 为组网时小区半径的配置提供了更多的可选方案。
图 4为本发明实施例三随机接入前导信号的发送方法的流程图。 本实施 例中, 在小区切换或下行数据到达的情况下, 通过专用下行信令分配随机接 入的前导信号, 用于触发物理层随机接入过程。 如图 4所示, 本实施例具体 包括如下步骤:
步骤 301、 终端接收基站发送的专用下行信令, 该专用下行信令即为触 发消息, 用于触发物理层随机接入过程。
对于小区切换的情况, 专用下行信令具体为切换命令, 由目标基站产生 切换命令, 再由源基站转发给终端; 对于下行数据到达的情况, 专用下行信 令具体为媒体接入控制 (Medium Access Control , 以下简称: MAC)信令。 该专用下行信令用于分配随机接入的前导信号, 其中包括随机接入信道 资源信息,该随机接入信道资源信息包括一个 6比特的随机接入前导信号码, 其他关于信道的资源信息可以从系统消息 (System Information)中获得。
步骤 302、 终端根据随机接入信道资源信息, 在随机接入信道上, 釆用 特殊时隙以及紧随特殊时隙后的上行子帧发送前导信号。
本实施例的信号发送格式也可以参照图 3 , 其中特殊时隙为特殊子帧中 的 UpPTS, 也就是说, 本实施例也釆用新的前导信号格式, 这种新的前导信 号格式保持前导信号序列的长度 TSEQ不变, UpPTS时隙用于增加 TCP和 TGT。 设当前用于发送前导信号的上行子帧数为 s , —个上行子帧的持续时间为 lms, UpPTS时隙的长度为 TUpPTS, 则本实施例可以将随机接入的持续时间延 长至 (s+TUppTS)ms。
举例来说, 设当前用于发送前导信号的上行子帧数为 1 , 一个上行子帧 的持续时间为 lms, 即图 3中上行子帧的持续时间为 lms, 则本实施例可以 将随机接入的持续时间延长至(l+TUpPTS)ms。 与此类似, 本实施例还可以将随 机接入的持续时间延长至 (2+TUpPTS)ms或 (3+TUpPTS)ms, 使得本实施例为组网 时小区半径的配置提供了更多的可选方案。
设 ζ为支持的最大多径延时,物理随机接入支持的小区最大半径由 Tcp-ζ 和 TGT中的较小值决定,也就是说,物理随机接入支持的小区最大半径与 Tcp-ζ 送前导信号时, TCP和 TGT都会有所增加, 这样, 增大了物理随机接入支持的 小区最大半径。
步骤 303、 基站接收到终端发送的前导信号后, 在指定的窗长内向终端 发送随机接入响应消息。
对于小区切换的情况, 该随机接入响应消息中至少包含时间提前量信息 和初始上行授权; 对于下行数据到达的情况, 该随机接入响应消息中至少包 含时间提前量信息。 步骤 304、 终端判断在指定的窗长内是否接收到随机接入响应消息, 若 是, 则执行步骤 305; 否则, 执行步骤 302。
步骤 305、 终端发送 RRC连接请求消息; 至此, 物理层随机接入过程结 束。
本实施例釆用 UpPTS 时隙以及紧随其后的上行子帧发送前导信号,
UpPTS时隙可以与一个或多个上行子帧联合, 灵活有效地利用了有限的上行 资源, 增加了随机接入的持续时间, 增大了随机接入所支持的小区最大半径, 为组网时小区半径的配置提供了更多的可选方案。
图 5为本发明实施例随机接入前导信号的发送装置的结构示意图, 如图 5所示, 本实施例具体包括: 接收模块 11和第一发送模块 12 , 其中, 接收模 块 11接收物理层随机接入过程的触发消息;第一发送模块 12根据触发消息, 釆用特殊时隙以及紧随该特殊时隙后的上行子帧发送前导信号。
上述特殊时隙可以为特殊子帧中的 UpPTS时隙, 该 UpPTS时隙用于增 加前导信号中循环前缀和保护间隔的长度。 上述触发消息中可以包括随机接 入信道资源信息。
进一步的, 本实施例还可以包括: 获取模块 13 , 该获取模块 13根据触 发消息中携带的随机接入信道资源信息 ,获取用于发送前导信号的时频资源。 第一发送模块 12具体用于在时频资源对应的时频段上,釆用特殊时隙以及紧 随该特殊时隙后的上行子帧发送前导信号。
本实施例还可以包括选择模块 14, 该选择模块 14根据随机接入信道资 源信息中包含的前导信号序号, 选择前导信号序列。 第一发送模块 12具体用 于在时频资源对应的时频段上, 釆用特殊时隙以及紧随该特殊时隙后的上行 子帧发送包括前导信号序列的前导信号。
本实施例还可以包括第二发送模块 15 , 当在指定的窗长内接收到随机接 入响应消息时, 第二发送模块 15发送 RRC连接请求消息; 选择模块 14还用 于当在指定的窗长内没有接收到随机接入响应消息时, 选择前导信号序列。 上述接收模块 11 可以具体用于接收高层发送的物理层随机接入过程的 请求消息; 或者, 接收基站发送的专用下行信令。 隙可以与一个或多个上行子帧联合, 灵活有效地利用了有限的上行资源, 增 加了随机接入的持续时间, 增大了随机接入所支持的小区最大半径, 为组网 时小区半径的配置提供了更多的可选方案。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤, 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 非对其限制; 尽管参照前述实施例对本发明实施例进行了详细的说明, 本领 域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案 进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明实施例各实施例技术方案的精神和范 围。

Claims

权 利 要 求
1、 一种随机接入前导信号的发送方法, 其特征在于包括:
接收物理层随机接入过程的触发消息; 发送前导信号。
2、 根据权利要求 1所述的随机接入前导信号的发送方法, 其特征在于, 所述特殊时隙用于增加所述前导信号中循环前缀和保护间隔的长度。
3、 根据权利要求 1或 2所述的随机接入前导信号的发送方法, 其特征 在于: 所述特殊时隙为特殊子帧中的上行导频时隙。
4、 根据权利要求 1或 2所述的随机接入前导信号的发送方法, 其特征 在于, 在所述发送前导信号之前还包括: 根据所述触发消息中携带的随机接 入信道资源信息, 获取用于发送前导信号的时频资源; 括: 在所述时频资源对应的时频段上, 釆用特殊时隙以及紧随所述特殊时隙 后的上行子帧发送前导信号。
5、 根据权利要求 4所述的随机接入前导信号的发送方法, 其特征在于, 在所述发送前导信号之前还包括: 根据所述随机接入信道资源信息中包含的 前导信号序号, 选择前导信号序列;
所述发送前导信号包括: 发送包括所述前导信号序列的前导信号。
6、 根据权利要求 5所述的随机接入前导信号的发送方法, 其特征在于, 在所述发送前导信号之后还包括: 当在指定的窗长内接收到随机接入响应消 息时, 发送无线资源控制连接请求消息;
当在指定的窗长内没有接收到随机接入响应消息时, 执行选择所述前导 信号序列。
7、 根据权利要求 1或 2所述的随机接入前导信号的发送方法, 其特征 在于, 所述接收物理层随机接入过程的触发消息包括: 接收高层发送的物理 层随机接入过程的请求消息; 或者, 接收基站发送的专用下行信令。
8、 一种随机接入前导信号的发送装置, 其特征在于包括:
接收模块, 用于接收物理层随机接入过程的触发消息;
第一发送模块, 用于根据所述触发消息, 釆用特殊时隙以及紧随所述特 殊时隙后的上行子帧发送前导信号。
9、 根据权利要求 8所述的随机接入前导信号的发送装置, 其特征在于 还包括: 获取模块, 用于根据所述触发消息中携带的随机接入信道资源信息, 获取用于发送前导信号的时频资源;
所述第一发送模块具体用于在所述时频资源对应的时频段上, 釆用特殊 时隙以及紧随所述特殊时隙后的上行子帧发送前导信号。
10、 根据权利要求 9所述的随机接入前导信号的发送装置,其特征在于 还包括: 选择模块, 用于根据所述随机接入信道资源信息中包含的前导信号 序号, 选择前导信号序列;
所述第一发送模块具体用于在所述时频资源对应的时频段上, 釆用特殊 信号。
1 1、 根据权利要求 10所述的随机接入前导信号的发送装置, 其特征在 于还包括:
第二发送模块, 用于当在指定的窗长内接收到随机接入响应消息时, 发 送无线资源控制连接请求消息;
所述选择模块还用于当在指定的窗长内没有接收到随机接入响应消息 时, 选择前导信号序列。
12、 根据权利要求 8 所述的随机接入前导信号的发送装置, 其特征在 于,所述接收模块具体用于接收高层发送的物理层随机接入过程的请求消息; 或者, 接收基站发送的专用下行信令。
PCT/CN2009/071152 2009-04-03 2009-04-03 随机接入前导信号的发送方法及装置 WO2010111838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980000114.3A CN101940053B (zh) 2009-04-03 2009-04-03 随机接入前导信号的发送方法及装置
PCT/CN2009/071152 WO2010111838A1 (zh) 2009-04-03 2009-04-03 随机接入前导信号的发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/071152 WO2010111838A1 (zh) 2009-04-03 2009-04-03 随机接入前导信号的发送方法及装置

Publications (1)

Publication Number Publication Date
WO2010111838A1 true WO2010111838A1 (zh) 2010-10-07

Family

ID=42827470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071152 WO2010111838A1 (zh) 2009-04-03 2009-04-03 随机接入前导信号的发送方法及装置

Country Status (2)

Country Link
CN (1) CN101940053B (zh)
WO (1) WO2010111838A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137503B (zh) * 2011-03-24 2014-08-13 中兴通讯股份有限公司 一种基于分层结构的上行链路控制方法及系统
CN102938938A (zh) * 2011-08-15 2013-02-20 中兴通讯股份有限公司 随机接入方法及装置
CN103476046B (zh) * 2012-06-08 2018-03-23 中兴通讯股份有限公司 小区的测量方法及ue
CN103582151A (zh) * 2012-07-23 2014-02-12 中兴通讯股份有限公司 随机接入方法及接收机
CN103857057B (zh) * 2012-12-06 2018-10-12 上海诺基亚贝尔股份有限公司 基于lte-tdd模式发送随机接入前导序列的方法和设备
CN103906261B (zh) * 2012-12-28 2018-06-05 中兴通讯股份有限公司 随机接入前导处理方法及装置
US20160262185A1 (en) * 2015-03-03 2016-09-08 Intel IP Corporation Orthogonal frequency division multiple access based distributed channel access
EP3328149B1 (en) * 2015-08-28 2019-11-27 Huawei Technologies Co., Ltd. Method and device for uplink transmission in random access process
CN108512639B (zh) * 2017-02-28 2020-05-26 深圳市中兴微电子技术有限公司 一种前导序列的发送方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855767A (zh) * 2005-04-18 2006-11-01 大唐移动通信设备有限公司 在时分同步码分多址通信系统中建立大半径小区的方法
CN101159478A (zh) * 2007-10-29 2008-04-09 中兴通讯股份有限公司 物理随机信道发送方法
CN101217808A (zh) * 2008-01-17 2008-07-09 中兴通讯股份有限公司 无线通信系统中随机接入信号的发送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855767A (zh) * 2005-04-18 2006-11-01 大唐移动通信设备有限公司 在时分同步码分多址通信系统中建立大半径小区的方法
CN101159478A (zh) * 2007-10-29 2008-04-09 中兴通讯股份有限公司 物理随机信道发送方法
CN101217808A (zh) * 2008-01-17 2008-07-09 中兴通讯股份有限公司 无线通信系统中随机接入信号的发送方法

Also Published As

Publication number Publication date
CN101940053B (zh) 2013-06-26
CN101940053A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
KR102384807B1 (ko) 향상된 경쟁 기반 랜덤 액세스 절차를 위한 방법 및 장치
US11452139B2 (en) Random access procedure for latency reduction
CN110417521B (zh) 异步上行传输的方法、设备和存储介质
KR101974987B1 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 하향링크 타이밍 설정 및 랜덤 액세스 응답 전송 방법 및 장치
EP2953415B1 (en) Method of performing random access procedure in wireless communication system
US8228851B2 (en) Method for handling random access response reception and an E-UTRAN and user equipment thereof
WO2010111838A1 (zh) 随机接入前导信号的发送方法及装置
EP2294888B1 (en) Methods and apparatuses for performing random access in a telecommunications system
WO2019179463A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2010105472A1 (zh) 选择随机接入资源的方法及终端
WO2010110522A1 (en) Random access response processing
JP2014513504A (ja) ランダムアクセス応答のためのクロススケジューリング
WO2015062090A1 (zh) 一种随机接入方法及相关装置
CN111465113B (zh) 一种被用于无线通信的节点中的方法和节点
US20210329612A1 (en) Method and device used in node for wireless communication
CN111726870A (zh) 一种被用于无线通信的节点中的方法和装置
WO2012027887A1 (en) Performing random accesses on uplink component carriers
WO2019095115A1 (zh) 用于竞争随机接入的方法、网络设备和终端设备
CN109617656B (zh) 终端、基站及混合自动重传请求harq过程标识id配置方法
US11974322B2 (en) Method and device for sending information, and method and device for receiving information
CA2802978C (en) Method for re-synchronizing an uplink between an access device and a user agent

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000114.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842495

Country of ref document: EP

Kind code of ref document: A1