WO2019179463A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019179463A1
WO2019179463A1 PCT/CN2019/078878 CN2019078878W WO2019179463A1 WO 2019179463 A1 WO2019179463 A1 WO 2019179463A1 CN 2019078878 W CN2019078878 W CN 2019078878W WO 2019179463 A1 WO2019179463 A1 WO 2019179463A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
interface resource
sequence
wireless signal
resource
Prior art date
Application number
PCT/CN2019/078878
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019179463A1 publication Critical patent/WO2019179463A1/zh
Priority to US17/009,799 priority Critical patent/US11382070B2/en
Priority to US17/744,766 priority patent/US11722997B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a user equipment (UE, User Equipment) transmission scheme and apparatus in wireless communication.
  • UE User Equipment
  • the application scenarios of future wireless communication systems are increasingly diversified, and different application scenarios impose different performance requirements on the system.
  • the new air interface technology was decided at the #72 (3rd Generation Partnership Project) RAN (Radio Access Network) #72 plenary meeting.
  • New Radio) or 5G conducted research, and passed the NR (Work Item) of the NR at the 3GPP RAN #75 plenary meeting, and began to standardize the NR.
  • two-step random access to the NR system is proposed in the SI (Study Item) of Phase 1 of the NR (Two-Step Random Access). ) or Simplified Random Access and Grant-Free transmission characteristics studies, but due to limited standardization work time of the NR R15 version, two-step random access or simplified random access is deferred to the R16 version. Restarting related technical research and standardization work, the grant-free transfer is only partially implemented in the NR R15 version, and is likely to be further enhanced in the R16 version.
  • 5G NR systems need to achieve fast access and meet the access needs of a large number of users.
  • the inventor found through research that the two-step access mechanism can shorten the access time of user equipment and reduce signaling interaction.
  • how to meet the access requirements of massive users and improve the system capacity and air interface resource utilization efficiency are problems that need to be solved.
  • how the mechanism works in a multi-beam scenario is also a problem to be considered.
  • the present application discloses a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the user equipment of the present application can be applied to the base station, and vice versa. The features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict. Further, although the original intention of the present application is directed to random access, the present application can also be applied to other uplink transmissions or user equipment transmissions.
  • the present application discloses a method for use in a user equipment for wireless communication, including:
  • the channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; the first identity is used to determine at least the second sequence and the first wireless signal At least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or at least one of the second air interface resource and the third air interface resource Corresponding to the first sequence, or at least one of the second air interface resource and the third air interface resource is related to the first identity.
  • the problem to be solved by the present application is: when the number of user equipments with access requirements increases sharply, the two-step access mechanism can speed up the access speed of user equipments and reduce signaling overhead, in order to avoid the connection of a large number of users. Into the conflict, the problem of a large number of orthogonal resources is needed.
  • the above method increases the access orthogonal resources by using different uses of the second sequence and the first wireless signal to distinguish different user equipments, thereby reducing access conflicts of a large number of users, and at the same time The number of first sequences, thereby reducing the complexity of the receiver blindly detecting the first sequence.
  • the first sequence is used for uplink timing adjustment.
  • the first sequence is used for channel estimation.
  • the first sequence is used for channel measurement.
  • the first sequence is used for the first wireless signal demodulation.
  • the second sequence is used for uplink timing adjustment.
  • the second sequence is used for channel estimation.
  • the second sequence is used for channel measurement.
  • the second sequence is used for the first wireless signal demodulation.
  • the first sequence and the second sequence are used together for uplink timing adjustment.
  • the first sequence is used for uplink timing adjustment and the second sequence is used for the first wireless signal demodulation.
  • the first sequence and the second sequence are used together for uplink timing adjustment, and the second sequence is used for the first wireless signal demodulation.
  • the above method is characterized in that an association is established between at least one of the second sequence and the first wireless signal and the first identity.
  • the above method has the advantage that the access resources of the user equipment are expanded in the case of limiting the complexity of the receiver.
  • the above method is characterized in that the channel parameter experienced by the first wireless signal is associated with a channel parameter experienced by the second characteristic wireless signal.
  • the above method is advantageous in that the second sequence is used to expand the access to the orthogonal resources while being used as a demodulation reference signal for the first wireless signal.
  • the method is characterized in that at least one of the second air interface resource and the third air interface resource is associated with the first air interface resource or the first sequence.
  • the foregoing method has the following advantages: the first air interface resource or the first sequence is used to indicate the second air interface resource and the third air interface resource, which avoids additional signaling overhead.
  • the above method is characterized by comprising:
  • the first configuration information is used to determine at least one of a first sequence pool and a second sequence pool, the first sequence belongs to the first sequence pool, and the second sequence belongs to the second Or the first configuration information is used to determine at least one of the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool;
  • the first air interface resource pool includes a positive integer number
  • the first air interface resource is one of the positive integer first air interface resources
  • the second air interface resource pool includes a positive integer number of second type air interface resources
  • the second air interface resource includes a positive integer number of second type air interface resources
  • the third air interface resource pool includes a positive integer number of third type air interface resources
  • the third air interface resource is the positive integer third type air interface resource. One of them.
  • the above method is characterized by comprising:
  • the second configuration information is used to determine at least one of the first sequence, the second sequence, and the first wireless signal; or the second configuration information is used to determine the At least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the above method is characterized by comprising:
  • the first control signaling is detected in the first time window; the first control signaling includes third scheduling information, and the third scheduling information is used to schedule the second wireless signal.
  • the third scheduling information includes at least one of the fourth air interface resource, MCS, RV, HARQ information, and NDI.
  • the above method is characterized by comprising:
  • the fourth type of air interface resource of the Q1 fourth type of air interface resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are used to generate the Q1 fourth type characteristic wireless signals, wherein one of the Q1 feature sequences includes at least one of the first sequence and the second sequence; the one feature sequence and the one fourth type of air interface resource
  • the time domain resources are related to the locations in the Q1 fourth type of air interface resources; the Q1 is a positive integer.
  • the problem to be solved by the present application is the problem of multi-beam transmission in a two-step access mechanism.
  • the foregoing method provides two methods for transmitting, where the second air interface resource and the first air interface resource are alternately mapped, and the first air interface resource and the second air interface resource form a fourth air interface resource.
  • the first and second air interface resources are respectively transmitted by using a group of beam scanning (Beam Sweeping) on the Q1 fourth air interface resources, and the other method is that the second air interface resource and the first air interface resource are respectively Continuously mapping, the Q1 first sequences are transmitted by a group of beam scanning, and the Q1 second sequences are transmitted by another group of beam scanning.
  • Beam Sweeping Beam Sweeping
  • the above method is characterized in that an association is established between the one feature sequence and the one fourth type of air interface resource.
  • the foregoing method has the advantage that the base station device identifies different user equipments or different beams of the same user equipment on different air interface resources.
  • the present application discloses a method in a base station device used for wireless communication, which includes:
  • the channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; the first identity is used to determine at least the second sequence and the first wireless signal At least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or at least one of the second air interface resource and the third air interface resource Corresponding to the first sequence, or at least one of the second air interface resource and the third air interface resource is related to the first identity.
  • the above method is characterized by comprising:
  • the first configuration information is used to determine at least one of a first sequence pool and a second sequence pool, the first sequence belongs to the first sequence pool, and the second sequence belongs to the second Or the first configuration information is used to determine at least one of the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool;
  • the first air interface resource pool includes a positive integer number
  • the first air interface resource is one of the positive integer first air interface resources
  • the second air interface resource pool includes a positive integer number of second type air interface resources
  • the second air interface resource includes a positive integer number of second type air interface resources
  • the third air interface resource pool includes a positive integer number of third type air interface resources
  • the third air interface resource is the positive integer third type air interface resource. One of them.
  • the above method is characterized by comprising:
  • the second configuration information is used to determine at least one of the first sequence, the second sequence, and the first wireless signal; or the second configuration information is used to determine the At least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the above method is characterized by comprising:
  • the first control signaling is detected in the first time window; the first control signaling includes third scheduling information, and the third scheduling information is used to schedule the second wireless signal.
  • the third scheduling information includes at least one of the fourth air interface resource, MCS, RV, HARQ information, and NDI.
  • the above method is characterized by comprising:
  • the fourth type of air interface resource of the Q1 fourth type of air interface resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are used to generate the Q1 fourth type characteristic wireless signals, wherein one of the Q1 feature sequences includes at least one of the first sequence and the second sequence; the one feature sequence and the one fourth type of air interface resource
  • the time domain resources are related to the locations in the Q1 fourth type of air interface resources; the Q1 is a positive integer.
  • the present application discloses a user equipment used for wireless communication, which includes:
  • a first transmitter transmitting a first feature wireless signal on the first air interface resource, the first sequence is used to generate the first feature wireless signal, and the second feature wireless signal is sent on the second air interface resource, the second sequence is Generating the second feature wireless signal; transmitting the first wireless signal on the third air interface resource;
  • the channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; the first identity is used to determine at least the second sequence and the first wireless signal At least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or at least one of the second air interface resource and the third air interface resource Corresponding to the first sequence, or at least one of the second air interface resource and the third air interface resource is related to the first identity.
  • the foregoing user equipment is characterized by:
  • a first receiver receiving first configuration information
  • the first configuration information is used to determine at least one of a first sequence pool and a second sequence pool, the first sequence belongs to the first sequence pool, and the second sequence belongs to the second Or the first configuration information is used to determine at least one of the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool;
  • the first air interface resource pool includes a positive integer number
  • the first air interface resource is one of the positive integer first air interface resources
  • the second air interface resource pool includes a positive integer number of second type air interface resources
  • the second air interface resource includes a positive integer number of second type air interface resources
  • the third air interface resource pool includes a positive integer number of third type air interface resources
  • the third air interface resource is the positive integer third type air interface resource. One of them.
  • the foregoing user equipment is characterized by:
  • the first receiver receives second configuration information
  • the second configuration information is used to determine at least one of the first sequence, the second sequence, and the first wireless signal; or the second configuration information is used to determine the At least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the foregoing user equipment is characterized by:
  • a second receiver monitoring the first control signaling in the first time window; receiving the second wireless signal on the fourth air interface resource;
  • the first control signaling is detected in the first time window; the first control signaling includes third scheduling information, and the third scheduling information is used to schedule the second wireless signal.
  • the third scheduling information includes at least one of the fourth air interface resource, MCS, RV, HARQ information, and NDI.
  • the foregoing user equipment is characterized by:
  • the fourth type of air interface resource of the Q1 fourth type of air interface resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are used to generate the Q1 fourth type characteristic wireless signals, wherein one of the Q1 feature sequences includes at least one of the first sequence and the second sequence; the one feature sequence and the one fourth type of air interface resource
  • the time domain resources are related to the locations in the Q1 fourth type of air interface resources; the Q1 is a positive integer.
  • the present application discloses a base station device used for wireless communication, which includes:
  • a third receiver receiving a first feature wireless signal on the first air interface resource, the first sequence is used to generate the first feature wireless signal, and the second feature wireless signal is received on the second air interface resource, the second sequence is And configured to generate the second feature wireless signal; receive the first wireless signal on the third air interface resource;
  • the channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; the first identity is used to determine at least the second sequence and the first wireless signal At least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or at least one of the second air interface resource and the third air interface resource Corresponding to the first sequence, or at least one of the second air interface resource and the third air interface resource is related to the first identity.
  • the foregoing base station device is characterized by:
  • a second transmitter transmitting first configuration information
  • the first configuration information is used to determine at least one of a first sequence pool and a second sequence pool, the first sequence belongs to the first sequence pool, and the second sequence belongs to the second Or the first configuration information is used to determine at least one of the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool;
  • the first air interface resource pool includes a positive integer number
  • the first air interface resource is one of the positive integer first air interface resources
  • the second air interface resource pool includes a positive integer number of second type air interface resources
  • the second air interface resource includes a positive integer number of second type air interface resources
  • the third air interface resource pool includes a positive integer number of third type air interface resources
  • the third air interface resource is the positive integer third type air interface resource. One of them.
  • the foregoing base station device is characterized by:
  • the second configuration information is used to determine at least one of the first sequence, the second sequence, and the first wireless signal; or the second configuration information is used to determine the At least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the foregoing base station device is characterized by:
  • a third transmitter transmitting first control signaling in a first time window; transmitting a second wireless signal on a fourth air interface resource;
  • the first control signaling is detected in the first time window; the first control signaling includes third scheduling information, and the third scheduling information is used to schedule the second wireless signal.
  • the third scheduling information includes at least one of the fourth air interface resource, MCS, RV, HARQ information, and NDI.
  • the foregoing base station device is characterized by:
  • the third receiver separately transmits Q1 fourth type characteristic wireless signals on Q1 fourth type air interface resources;
  • the fourth type of air interface resource of the Q1 fourth type of air interface resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are used to generate the Q1 fourth type characteristic wireless signals, wherein one of the Q1 feature sequences includes at least one of the first sequence and the second sequence; the one feature sequence and the one fourth type of air interface resource
  • the time domain resources are related to the locations in the Q1 fourth type of air interface resources; the Q1 is a positive integer.
  • the application has the following advantages:
  • the present application provides a user side to send two sequences, that is, the first sequence and the second sequence are used for uplink timing adjustment, and the first sequence is used to distinguish beams or time-frequency resources.
  • the second sequence distinguishes multiple users on the same beam or time-frequency resource, reduces user equipment access conflicts, and improves the capacity of user equipment access;
  • the second sequence of the application uses the second sequence to share the burden of the required orthogonal resources of the first sequence as the preamble sequence, and reduces the receiver to the first a sequence of blind detection complexity, because the second sequence is related to the first sequence or the resources it occupies, the reception complexity of the second sequence is low, thereby reducing the receiver complexity as a whole. ;
  • the second sequence in the present application is simultaneously used as a demodulation reference signal of the first wireless signal, improving resource utilization efficiency.
  • the first sequence or the first air interface resource in the application is used to indicate at least one of the second air interface resource and the third air interface resource, to avoid additional signaling overhead.
  • FIG. 1 shows a flow chart of a first feature wireless signal, a first feature wireless signal and a first wireless signal, in accordance with an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 is a schematic diagram of time-frequency resources occupied by an air interface resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing Q2 air interface resources according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing an air interface resource pool according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing a configuration relationship between first configuration information and second configuration information according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing a relationship between a first air interface resource, a second air interface resource, and a third air interface resource according to an embodiment of the present application;
  • FIG. 11 is a schematic diagram showing a relationship between a first control signaling and a second wireless signal according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing transmission of Q1 fourth type characteristic wireless signals on Q1 fourth type air interface resources according to an embodiment of the present application.
  • FIG. 13 is a block diagram showing the structure of a processing device for use in a user equipment according to an embodiment of the present application
  • FIG. 14 shows a structural block diagram of a processing device for use in a base station device in accordance with one embodiment of the present application.
  • Embodiment 1 illustrates a flow chart for transmitting a first feature wireless signal, a second feature wireless signal, and a first wireless signal, as shown in FIG.
  • the user equipment in the application sends the first feature radio signal on the first air interface resource, the first sequence is used to generate the first feature radio signal, and the second feature is sent on the second air interface resource.
  • a wireless signal a second sequence is used to generate the second characteristic wireless signal; transmitting a first wireless signal on the third air interface resource; wherein the channel parameter experienced by the first wireless signal is wireless with the second feature Corresponding to a channel parameter experienced by the signal; the first identity is used to determine at least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource Corresponding to the first air interface resource, or at least one of the second air interface resource and the third air interface resource is related to the first sequence, or the second air interface resource and the first At least one of the three air interface resources is related to the first identity.
  • the first identity is used to identify the user equipment.
  • the first identity is used to identify a sequence of wireless signals.
  • the first identity is used to generate a scrambling sequence that scrambles the wireless signal.
  • the first identity is configured by a higher layer signaling.
  • the first identity is semi-statically configured.
  • the first identity is configured by one physical layer signaling.
  • the first identity is dynamically configured.
  • the first identity is an RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the first identity is a C-RNTI (Cell RNTI, Cell Radio Network Temporary Identity).
  • C-RNTI Cell RNTI, Cell Radio Network Temporary Identity
  • the first identity is a TC-RNTI (Temporal C-RNTI, Temporary Cell Radio Network Temporary Identity).
  • TC-RNTI Temporary C-RNTI, Temporary Cell Radio Network Temporary Identity
  • the first identity is an RA-RNTI (Radio Access RNTI, a random access radio network temporary identifier).
  • RA-RNTI Radio Access RNTI, a random access radio network temporary identifier
  • the first identity is an SI-RNTI (System Information RNTI).
  • SI-RNTI System Information RNTI
  • the first identity is a P-RNTI (Paging RNTI).
  • the first identity is an integer not less than 0 and not more than 2 30 .
  • the first identity is a 16-bit binary non-negative integer.
  • the first sequence is a pseudo-random sequence.
  • the first sequence is a Gold sequence.
  • the first sequence is an M sequence.
  • the first sequence is a Zadeoff-Chu sequence.
  • the first feature radio signal is sequentially subjected to sequence generation, modulation, and resource element mapping by the first sequence, and after wideband symbol generation (Generation) Output.
  • the first characteristic wireless signal is an output after at least one of sequence generation, modulation and resource particle mapping, and wideband symbol generation by the first sequence.
  • the first feature wireless signal carries a preamble (Preamble).
  • the first feature wireless signal is transmitted in a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the first feature radio signal is transmitted on a PRACH (Physical Random Access Channel).
  • PRACH Physical Random Access Channel
  • the first feature radio signal is transmitted on an NPRACH (Narrowband Physical Random Access Channel).
  • NPRACH Nearband Physical Random Access Channel
  • the first feature radio signal is transmitted on a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first feature radio signal is transmitted on a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the first feature radio signal is transmitted on an NPUSCH (Narrowband Physical Uplink Shared Channel).
  • NPUSCH Narrowband Physical Uplink Shared Channel
  • the first feature radio signal is transmitted on a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the first feature radio signal is transmitted on a SPUCCH (Short PUCCH).
  • SPUCCH Short PUCCH
  • the second sequence is a pseudo-random sequence.
  • the second sequence is a Gold sequence.
  • the second sequence is an M sequence.
  • the second sequence is a Zadeoff-Chu sequence.
  • the second characteristic wireless signal is an output after sequence generation, modulation and resource particle mapping, and wideband symbol generation by the second sequence.
  • the second characteristic wireless signal is an output after at least one of sequence generation, modulation and resource particle mapping, and wideband symbol generation by the second sequence.
  • the second feature wireless signal carries a preamble (Preamble).
  • the second feature wireless signal is transmitted in a RACH (Random Access Channel).
  • RACH Random Access Channel
  • the second feature wireless signal is transmitted on the PRACH.
  • the second characteristic wireless signal is transmitted on the NPRACH.
  • the second feature wireless signal is transmitted on the UL-SCH.
  • the second feature wireless signal is transmitted on the PUSCH.
  • the second feature wireless signal is transmitted on the NPUSCH.
  • the second feature wireless signal is transmitted on the PUCCH.
  • the second feature wireless signal is transmitted on the SPUCCH.
  • the first feature wireless signal and the second feature wireless signal are both transmitted on the PRACH.
  • the first feature wireless signal and the second feature wireless signal are both transmitted on the NPRACH.
  • both the first feature wireless signal and the second feature wireless signal are transmitted on a PUSCH.
  • the first feature wireless signal and the second feature wireless signal are transmitted on a PRACH and a PUSCH, respectively.
  • the first feature wireless signal and the second feature wireless signal are transmitted on the NPRACH and the PUSCH, respectively.
  • the first feature wireless signal and the second feature wireless signal are transmitted on a PRACH and an NPUSCH, respectively.
  • the first feature wireless signal and the second feature wireless signal are transmitted on NPRACH and NPUSCH, respectively.
  • the first feature wireless signal and the second feature wireless signal are transmitted on a PRACH and a PUCCH, respectively.
  • the first feature wireless signal and the second feature wireless signal are transmitted on NPRACH and PUCCH, respectively.
  • the first wireless signal comprises a first block of information bits.
  • the first block of information bits comprises a positive integer number of sequentially arranged bits.
  • the first information bit block includes a TB (Transport Block).
  • the first information bit block includes a CB (Code Block).
  • the first wireless signal is sequentially segmented by the first information bit block, channel coding, rate matching, rate concatenation, and scrambling ( Scrambling), Modulation, Layer Mapping, Precoding, Code Division Multiplexing, Resource Element Mapping, Baseband Signal Generation, The output after the upconversion is generated, the first information bit block including all or part of the bits in a transport block.
  • the first wireless signal is segmented by the first information bit block, channel coded, rate matched, concatenated, scrambled, modulated, layer mapper, precoded, code division multiplexed, resource An output after at least one of particle mapping, baseband signal generation, upconversion generation, the first information bit block including all or a portion of bits in a transport block.
  • a first scrambling sequence is used for scrambling in the first wireless signal.
  • the first information bit block includes an RRC Connection Request (Radio Resource Control Connection Request) message, an RRC Reconfiguration Complete message, and an RRC Connection Reestablishment request. Request) One or more of the message and Uplink Information Transfer.
  • RRC Connection Request Radio Resource Control Connection Request
  • RRC Reconfiguration Complete message an RRC Reconfiguration Complete message
  • RRC Connection Reestablishment request One or more of the message and Uplink Information Transfer.
  • the first block of information bits includes the first identity.
  • the first information bit block includes the RRC connection request message, and the RRC connection request message includes the first identity.
  • the first identity is used to generate the first wireless signal.
  • the first identity is used to generate the first scrambling sequence.
  • the first wireless signal includes all or part of a higher layer signaling.
  • the first wireless signal includes all or part of a MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first wireless signal includes one or more fields in a MAC CE (Control Element).
  • the first wireless signal includes all or part of one RRC (Radio Resource Control) layer signaling.
  • RRC Radio Resource Control
  • the first wireless signal includes one or more fields in an RRC IE (Information Element).
  • the first wireless signal is transmitted on the UL-SCH.
  • the first wireless signal is transmitted on a PUSCH.
  • the first wireless signal is transmitted on the NPUSCH.
  • the first wireless signal is transmitted on a PUCCH.
  • the first wireless signal is transmitted on the SPUCCH.
  • the small-scale nature of the channel experienced by the second characteristic wireless signal can be used to infer a small-scale characteristic of the channel experienced by the first wireless signal.
  • the small-scale characteristic includes a CIR (Channel Impulse Response), a PMI (Precoding Matrix Indicator), a CQI (Channel Quality Indicator), and an RI (Rank Indicator).
  • CIR Channel Impulse Response
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • the sending of the second feature wireless signal and the first wireless signal is QCL (Quasi-Co-Located).
  • one antenna port and another antenna port QCL means that all or part of the large-scale properties of the wireless signal that can be transmitted from the one antenna port can be inferred from the other. All or part of the large-scale characteristics of the wireless signal transmitted on the antenna port.
  • one antenna port and another antenna port QCL mean that the one antenna port and the other antenna port have at least one identical QCL parameter.
  • one antenna port and another antenna port QCL means that at least one QCL parameter of the other antenna port can be inferred from at least one QCL parameter of the one antenna port.
  • the QCL parameters include delay spread, Doppler spread, Dopper shift, path loss, average gain, average One or more of average delay, spatial Rx parameters, Spatial Tx parameters, angle of arrival, angle of departure, and spatial correlationkind.
  • the second feature wireless signal and the first wireless signal are used to transmit from the same P antenna ports, the P being a positive integer.
  • the second feature wireless signal and the first wireless signal are used to transmit from the same C multiple access signatures, the C being a positive integer.
  • the first target sequence pool includes V first class target sequences, the first target sequence is one of the V first class target sequences, and the V is a positive integer.
  • the V is equal to one.
  • the first target sequence pool is predefined, ie no signaling configuration is required.
  • the first target sequence is predefined, ie no signaling configuration is required.
  • the first target sequence is that the user equipment autonomously selects any one of the first type of target sequences from the V first class target sequences.
  • the first target sequence is the first sequence in the present application.
  • the first target sequence is the second sequence in the present application.
  • the first target sequence includes the first sequence and the second sequence in the present application.
  • the first identity is used to calculate an index or sequence number of the first target sequence in the first target sequence pool.
  • the first identity is used to indicate an index of the first target sequence in the first target sequence pool.
  • the first identity is used to indicate the V from the number N of candidate target sequences ⁇ V 1 , . . . , V N ⁇ , the V being the number of the N candidate target sequences ⁇ V 1 , a number of candidate target sequences in V N ⁇ , the N being a positive integer greater than 0, and the number of the N candidate target sequences from the V 1 to the V N is a positive integer.
  • the parameters of the first target sequence pool include one or more of a first target sequence length, a first target root sequence index, and a first target sequence pool cyclic shift value.
  • the first identity is used to indicate the first target sequence length from parameters of the first target sequence pool from a positive integer number of candidate sequence lengths, the first target sequence length being the A candidate sequence length of a positive integer number of candidate sequences.
  • the first identity is used to calculate the first target root sequence index in a parameter of the first target sequence pool.
  • the first identity is used to calculate the first target sequence pool cyclic shift value in a parameter of the first target sequence pool.
  • the second identity is used to identify at least one of a cell, a network device, an access node, a terminal group, and a virtual cell, where the terminal group includes multiple terminals, and the user equipment is the terminal.
  • a terminal in the group, the second identity being an integer not less than 0.
  • the second identity is an integer not less than 0 and not more than 4000.
  • the second identity is used to determine the first target sequence pool.
  • the second identity is used to indicate the first target sequence length in a parameter of the first target sequence pool from a positive integer number of candidate sequence lengths, the first target sequence length being the A candidate sequence length of a positive integer number of candidate sequences.
  • the second identity is used to calculate the first target root sequence index in a parameter of the first target sequence pool.
  • the second identity is used to calculate the first target sequence pool cyclic shift value in a parameter of the first target sequence pool.
  • the parameters of the first sequence pool include one or more of a first sequence length, a first sequence index, and a first sequence pool cyclic shift value.
  • the first target sequence length is the first sequence length in the parameters of the first sequence pool in the present application.
  • the first target root sequence index is the first root sequence index in a parameter of the first sequence pool in the present application.
  • the first target sequence pool cyclic shift value is the first sequence pool cyclic shift value of a parameter of the first sequence pool in the present application.
  • the parameters of the second sequence pool include one or more of a second sequence length, a second sequence index, and a second sequence pool cyclic shift value.
  • the first target sequence length is the second sequence length in the parameters of the second sequence pool in the present application.
  • the first target root sequence index is the second root sequence index in a parameter of the second sequence pool in the present application.
  • the first target sequence pool cyclic shift value is the second sequence pool cyclic shift value in a parameter of the second sequence pool in the present application.
  • the second target sequence pool includes U second type sequence groups, and any one of the U second type sequence groups includes W second type target sequences; the second target sequence group Is one of the U second type sequence groups, and the second target sequence is one of the W second type target sequences included in a given one of the second type sequence groups, the U and The W is a positive integer.
  • the U is equal to 30.
  • the W is equal to one.
  • the W is equal to two.
  • the second target sequence pool is predefined, ie no signaling configuration is required.
  • the second target sequence group is predefined, ie no signaling configuration is required.
  • the second target sequence is predefined, ie no signaling configuration is required.
  • the second target sequence group is that the user equipment autonomously selects any one of the second type sequence groups from the U second type sequence groups.
  • the second target sequence is that the user equipment autonomously selects any one of the second type of target sequences from the W second type target sequences included in the second target group.
  • the second target sequence is the first sequence in the present application.
  • the second target sequence is the second sequence in the present application.
  • the second target sequence includes the first sequence and the second sequence in the present application.
  • the first identity is used to calculate an index or group number of the second target sequence group in the second target sequence pool.
  • the first identity is used to indicate an index of the second target sequence group in the second target sequence pool.
  • the first identity is used to calculate an index or sequence number of the second target sequence in the second target sequence group.
  • the first identity is used to indicate an index of the second target sequence in the second target sequence group.
  • the first identity is used to indicate the U from the number of M candidate target sequence groups ⁇ U 1 , . . . , U N ⁇ , the U being the number of the M candidate target sequence groups ⁇ a number of candidate target sequence groups in U 1 , . . . , U M ⁇ , the M is a positive integer greater than 0, and the number of the M candidate target sequence groups is a positive integer from the U 1 to the U M .
  • the first identity is used to indicate the W from the number of R candidate target sequences ⁇ W 1 , . . . , W R ⁇ , where W is the R a number of candidate target sequences in the number of candidate target sequences ⁇ W 1 , . . . , W R ⁇ , the R being a positive integer greater than 0, and the number of the R candidate target subsequences from the W 1 to the W R is a positive integer.
  • the parameter of the second target sequence pool includes one or more of a second target sequence length, a second target root sequence index, and a second target sequence pool cyclic shift value.
  • the first identity is used to indicate the second target sequence length in a parameter of the second target sequence pool from a plurality of candidate sequence lengths, the second target sequence length being a plurality of candidates The length of one candidate sequence in the length of the sequence.
  • the first identity is used to calculate the second target root sequence index in a parameter of the second target sequence pool.
  • the first identity is used to calculate the second target sequence pool cyclic shift value in a parameter of the second target sequence pool.
  • the second target sequence length is the first sequence length in the parameters of the first sequence pool in the present application.
  • the second target root sequence index is the first root sequence index in a parameter of the first sequence pool in the present application.
  • the second target sequence pool cyclic shift value is the first sequence pool cyclic shift value of a parameter of the first sequence pool in the present application.
  • the second target sequence length is the second sequence length in the parameters of the second sequence pool in the present application.
  • the second target root sequence index is the second root sequence index in a parameter of the second sequence pool in the present application.
  • the second target sequence pool cyclic shift value is the second sequence pool cyclic shift value in a parameter of the second sequence pool in the present application.
  • the first identity is used to generate the first sequence.
  • the parameters of the first sequence include one or more of a first sequence initial value, a first sequence start element index, a first sequence segment, and a first sequence cyclic shift.
  • the first sequence start element index is a position of a first element of the first sequence among all candidate elements included in a long sequence.
  • the first sequence segment is a sequence segment from a first element of the first sequence to a sequence of a last element of the first sequence in a long sequence .
  • the first identity is used to calculate the first sequence initial value in the parameters of the first sequence.
  • the first identity is used to calculate the first sequence start element index in the parameters of the first sequence.
  • the first identity is used to indicate the first sequence segment of the parameters of the first sequence from a long sequence of positive integer candidate sequence segments, the first sequence segment Is a candidate sequence segment of the positive integer candidate sequence segment.
  • the first identity is used to calculate the first sequence of cyclic shifts of parameters of the first sequence.
  • the first identity is used to indicate a first sequence cyclic shift in a parameter of the first sequence from a positive integer number of candidate cyclic shifts
  • the first sequence cyclic shift is One candidate cyclic shift in a positive integer number of candidate cyclic shifts.
  • the first identity is used to generate a scrambling sequence of the first sequence.
  • the first identity is used to generate the second sequence.
  • the parameters of the second sequence include one or more of a second sequence initial value, a second sequence start element index, a second sequence segment segment, and a second sequence cyclic shift.
  • the second sequence start element index is a position of a first element of the second sequence among all candidate elements included in a long sequence.
  • the second sequence segment is a sequence segment from a first element of the second sequence to a sequence of a last element of the second sequence in a long sequence .
  • the first identity is used to calculate the second sequence initial value of the parameters of the second sequence.
  • the first identity is used to calculate the second sequence start element index in the parameters of the second sequence.
  • the first identity is used to indicate the second sequence segment of the parameters of the second sequence from a long sequence of positive integer candidate sequence segments, the second sequence segment Is a candidate sequence segment of the positive integer candidate sequence segment.
  • the first identity is used to calculate the second sequence cyclic shift in the parameters of the second sequence.
  • the first identity is used to indicate a second sequence cyclic shift in a parameter of the second sequence from a positive integer number of candidate cyclic shifts
  • the second sequence cyclic shift is One candidate cyclic shift in a positive integer number of candidate cyclic shifts.
  • the first identity is used to generate a scrambling sequence of the second sequence.
  • the first identity is used to simultaneously generate the first sequence and the second sequence.
  • the first block of information bits includes the first identity.
  • the first information bit block includes information bits before encoding, encoded bits, and bits after the CRC (Cyclic Redundancy Check) code and the scrambled bits. One or more.
  • CRC Cyclic Redundancy Check
  • the air interface mapping mode includes one or more of a prior time back frequency and a first frequency back time.
  • the parameters of the first wireless signal include a first bit block size, a first retransmission version, a first layer mapping manner, a first codeword rotation matrix, and a first coding modulation mode (MCS, Modulation Coding Scheme). And one or more of a first precoding and a first air interface resource mapping manner, where the first bit block size is a number of bits of the first information bit block.
  • MCS Modulation Coding Scheme
  • the first identity is used to indicate the first bit block size included in a parameter of the first wireless signal from a positive integer number of candidate bit block sizes, the first bit block size Is one of the positive integer candidate bit block sizes.
  • the first identity is used to indicate the first retransmission version included in a parameter of the first wireless signal from a positive integer number of candidate retransmission versions, the first retransmission version Is one of the candidate integer retransmission versions of the positive integer candidate retransmission version.
  • the first identity is used to indicate the first layer mapping manner included in a parameter of the first wireless signal from a positive integer candidate layer mapping manner, the first layer mapping manner Is one of the positive integer candidate layer mapping modes.
  • the first identity is used to indicate the first codeword rotation matrix included in a parameter of the first wireless signal from a positive integer number of candidate codeword rotation matrices, the first code The word rotation matrix is a candidate codeword rotation matrix of the positive integer number of candidate codeword rotation matrices.
  • the first identity is used in the first code modulation mode in a parameter indicating the first wireless signal in a positive integer number of candidate code modulation modes, where the first code modulation mode is the positive One of the integer candidate coding modulation schemes.
  • the first identity is used to indicate the first precoding in a parameter of the first wireless signal from a positive integer number of candidate precoding matrices, the first precoding is a plurality of candidate pre A candidate precoding matrix in the coding matrix.
  • the first identity is used to indicate the first air interface resource mapping manner of the parameter of the first wireless signal from a plurality of candidate air interface resource mapping manners, where the first air interface resource mapping manner is One candidate air interface resource mapping mode among multiple candidate air interface resource mapping modes.
  • the first identity is used to generate the first scrambling sequence.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG.
  • the 5G NR or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200 in some other suitable terminology.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmission and reception node), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle, car, wearable device, or any Other similar functional devices.
  • multimedia devices video device, digital audio player (eg MP3 player), camera, game console, drone, aircraft, narrowband IoT device, machine type communication device, land vehicle
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through an S1/NG interface.
  • the EPC/5G-CN 210 includes an MME (Mobility Management Entity)/AMF (Authentication Management Field)/UPF (User Plane Function) 211, and other MME/AMF/UPF214.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • UPF User Plane Function
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to the user equipment in this application.
  • the UE 201 corresponds to the terminal in this application.
  • the gNB 203 corresponds to the base station device in this application.
  • the UE 201 supports Grant-Free uplink transmission.
  • the gNB 203 supports grant-free uplink transmission.
  • the UE 201 supports Non-Orthogonal Multiple Access (NOMA)-based wireless communication.
  • NOMA Non-Orthogonal Multiple Access
  • the gNB 203 supports NOMA-based wireless communication.
  • the UE 201 supports non-contention based uplink transmission.
  • the gNB 203 supports non-contention based uplink transmission.
  • the UE 201 supports contention based uplink transmission.
  • the gNB 203 supports contention based uplink transmission.
  • the UE 201 supports simplified random access.
  • the gNB 203 supports simplified random access.
  • the UE 201 supports beamforming based uplink transmission.
  • the gNB 203 supports beamforming based uplink transmission.
  • the UE 201 supports uplink transmission based on Mass Array Antenna (Massive MIMO).
  • Mass MIMO Mass Array Antenna
  • the gNB 203 supports uplink transmission based on a large-scale array antenna.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions, and layers above layer 1 belong to higher layers.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the user equipment and the base station equipment through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the base station device on the network side.
  • the user equipment may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for user equipment between base station devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ (Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between user equipments.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the user equipment and the base station equipment is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the base station device and the user equipment.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of FIG. 3 is applicable to the base station device in this application.
  • the first feature wireless signal in the present application is generated by the PHY 301.
  • the second feature wireless signal in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the first information bit block in the present application is generated by the PHY 301.
  • the first information bit block in the present application is generated in the MAC sublayer 302.
  • the first information bit block in the present application is generated in the RRC sublayer 306.
  • the first information bit block in the present application is delivered to the PHY 301 by the L2 layer.
  • the first information bit block in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the first configuration information in this application is generated in the RRC sublayer 306.
  • the first configuration information in this application is generated in the MAC sublayer 302.
  • the first configuration information in the present application is generated by the PHY 301.
  • the first configuration information in the present application is delivered to the PHY 301 by the L2 layer.
  • the first configuration information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the second configuration information in this application is generated in the RRC sublayer 306.
  • the second configuration information in this application is generated in the MAC sublayer 302.
  • the second configuration information in the present application is generated by the PHY 301.
  • the second configuration information in the present application is delivered to the PHY 301 by the L2 layer.
  • the second configuration information in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the first control signaling in the present application is generated by the PHY 301.
  • the first control signaling in this application is generated by the MAC sublayer 302.
  • the first control signaling in the present application is delivered by the MAC sublayer 302 to the PHY 301.
  • the second wireless signal in the application is the second wireless signal in the application
  • the second information bit block in the present application is generated by the PHY 301.
  • the second information bit block in the present application is generated in the MAC sublayer 301.
  • the second information bit block in the present application is generated in the RRC sublayer 306.
  • the second information bit block in the present application is passed to the PHY 301 by the L2 layer.
  • the second information bit block in the present application is transmitted by the MAC sublayer 302 to the PHY 301.
  • the Q1 fourth type feature radio signals in the present application are generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • the user equipment (450) includes a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467, and the transmitter/receiver 456 includes an antenna 460.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the processing related to the user equipment (450) includes:
  • a data source 467 providing upper layer data packets to the controller/processor 490, the data source 467 representing all protocol layers above the L2 layer;
  • a transmit processor 455 that implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, scrambling, code division multiplexing, interleaving, modulation, multi-antenna transmission, etc., and generating a baseband signal;
  • the layer signal (including the first feature wireless signal, the second feature wireless signal and the first wireless signal described in the application) is generated by the transmitting processor 455;
  • the L2 layer protocol of the control plane, the upper layer data packet may include data or control information, such as UL-SCH (Uplink Shared Channel);
  • controller/processor 490 also responsible for HARQ operations, retransmission of lost packets, and signaling to the base station device 410;
  • the target wireless signal includes the present application The first sequence (the target air interface resource corresponding to the first air interface resource in the application), the second sequence (the target air interface resource corresponding to the second air interface resource in the application) And at least one of the first information bit block (the third air interface resource in the application corresponding to the target air interface resource);
  • Receive processor 452 implementing various signal reception processing functions for the L1 layer (ie, the physical layer) including decoding, descrambling, deinterleaving, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the processing related to the base station device (410) includes:
  • Receiver 416 receiving a radio frequency signal through its corresponding antenna 420, converting the received radio frequency signal into a baseband signal, and providing the baseband signal to the receiving processor 412;
  • Receive processor 412 implementing various signal reception processing functions for the L1 layer (ie, the physical layer) including multi-antenna reception, demodulation, descrambling, despreading, deinterleaving, channel decoding, and physics Layer signaling extraction, etc.; then providing data and/or control signals to controller/processor 440;
  • controller/processor 440 implementing L2 layer functions, and associated with a memory 430 storing program code and data, the memory 430 being a computer readable medium;
  • a controller/processor 440 providing demultiplexing, packet reassembly, decryption, header decompression, control signal processing between the transport and logical channels to recover upper layer data packets from the user equipment 410; from the controller/processing
  • the upper layer data packet of the device 440 can be provided to the core network;
  • a controller/processor 440 determining a target air interface resource that the target wireless signal may occupy, and transmitting the result to the receiving processor 412; determining whether the target wireless signal occupies the target air interface resource by blind detection; the target wireless The signal includes the first sequence in the application (the target air interface resource correspondingly includes the first air interface resource in the application), and the second sequence (the target air interface resource correspondingly includes the present application At least one of the second air interface resource and the first information bit block (the target air interface resource includes the third air interface resource in the application).
  • the processing related to the base station device (410) includes:
  • the upper layer packet arrives, and the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement An L2 layer protocol for the user plane and the control plane;
  • the upper layer data packet may include data and/or control information, such as a DL-SCH (Downlink Shared Channel);
  • controller/processor 440 associated with a memory 430 storing program code and data, which may be a computer readable medium;
  • controller/processor 440 comprising a scheduling unit for transmitting a demand, the scheduling unit for scheduling a target air interface resource corresponding to the transmission requirement;
  • controller/processor 440 determining to send downlink signaling/data to be transmitted, and transmitting the result to the transmitting processor 415;
  • the physical layer control signaling includes PBCH (Physical Broadcast Channel), NPBCH (Narrowband PBCH, Narrowband Physical Broadcast Channel), PSBCH (Physical Sidelink Broadcast Channel) Sub-link broadcast channel), PDCCH (Physical Downlink Control Channel), NPDCCH (Narrowband PDCCH, narrowband physical downlink control channel), EPDCCH (Enhanced PDCCH), SPDCCH (Short PDCCH, short) Physical downlink control channel), PSCCH (Physical Sidelink Control Channel), PSDCH (Physical Sidelink Discovery Channel), PHICH (Physical Hybrid automatic repeat request Indicator Channel) Pass indicator channel), PCFICH (Physical Control At least one of a Format Indicator
  • each transmitter 416 samples the respective input symbol streams to obtain a respective sampled signal stream.
  • Each transmitter 416 performs further processing (eg, digital to analog conversion, amplification, filtering, upconversion, etc.) on the respective sample streams to obtain a downlink signal.
  • processing related to the user equipment (450) may include:
  • Receiver 456 for converting the radio frequency signal received through the antenna 460 into a baseband signal, and providing it to the receiving processor 452;
  • Receiving processor 452 implementing various signal receiving processing functions for the L1 layer (ie, physical layer) including multi-antenna reception, demodulation, deinterleaving, descrambling, decoding, and physical layer control signaling extraction, etc.;
  • controller/processor 490 that receives the bit stream output by the receive processor 452, provides header decompression, decryption, packet segmentation and reordering, and multiplexing demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane;
  • the controller/processor 490 is associated with a memory 480 that stores program code and data, which may be a computer readable medium.
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station device in this application.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device transmits at least a first feature radio signal on the first air interface resource, the first sequence is used to generate the first feature radio signal, and the second feature radio signal is sent on the second air interface resource.
  • a second sequence is used to generate the second feature wireless signal; transmitting a first wireless signal on the third air interface resource; wherein the channel parameter experienced by the first wireless signal and the second characteristic wireless signal are The channel parameter experienced; the first identity is used to determine at least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource
  • the first air interface resource is related to, or at least one of the second air interface resource and the third air interface resource is the first For the column, or at least one of said second and said third air interface resources, air interface resources related with the first identity.
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: on the first air interface resource Transmitting a first feature wireless signal, the first sequence is used to generate the first feature wireless signal; transmitting a second feature wireless signal on the second air interface resource, the second sequence is used to generate the second feature wireless signal; Transmitting a first wireless signal on a third air interface resource; wherein a channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; a first identity is used to determine the At least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or the second air interface resource And at least one of the third air interface resource is related to the first sequence, or at least one of the second air interface resource and the third air interface resource Said first identity-related.
  • the gNB 410 device comprises: at least one processor and at least one memory, the at least one memory comprising computer program code; the at least one memory and the computer program code being configured to be in process with the at least one Used together.
  • the gNB410 device receives at least a first feature radio signal on the first air interface resource, the first sequence is used to generate the first feature radio signal, and the second feature radio signal is received on the second air interface resource, the second sequence Used to generate the second feature wireless signal; receive a first wireless signal on a third air interface resource; wherein a channel parameter experienced by the first wireless signal and a channel parameter experienced by the second characteristic wireless signal
  • a first identity is used to determine at least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource is the first The air interface resource is related to, or at least one of the second air interface resource and the third air interface resource is related to the first sequence, or at least one of the second air interface resource and the third air interface resource One is related to the first identity
  • the gNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: on the first air interface resource Receiving a first feature wireless signal, a first sequence is used to generate the first feature wireless signal; a second feature wireless signal is received on a second air interface resource, and a second sequence is used to generate the second feature wireless signal; Receiving, on a third air interface resource, a first wireless signal; wherein a channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal; a first identity is used to determine the At least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or the second air interface resource And at least one of the third air interface resource is related to the first sequence, or at least one of the second air interface resource and the third air interface resource Said first identity-related.
  • At least two of the antenna 460, the transmitter 456, the transmit processor 455, and the controller/processor 490 are used in the first air interface in the present application.
  • the first feature wireless signal in the present application is transmitted on a resource.
  • At least two of the antenna 460, the transmitter 456, the transmit processor 455, and the controller/processor 490 are used in the second air interface in the present application.
  • the second feature wireless signal in the present application is transmitted on the resource.
  • At least two of the antenna 460, the transmitter 456, the transmit processor 455, and the controller/processor 490 are used in the third air interface in the present application.
  • the first wireless signal in the present application is transmitted on a resource.
  • At least two of the antenna 460, the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the first configuration in the present application. information.
  • At least two of the antenna 460, the receiver 456, the receive processor 452, and the controller/processor 490 are used to receive the second configuration in the present application. information.
  • At least two of the antenna 460, the receiver 456, the receive processor 452, and the controller/processor 490 are used for the first time in the present application.
  • the first control signaling in the present application is monitored within the window.
  • At least two of the antenna 460, the receiver 456, the receiving processor 452, and the controller/processor 490 are used to determine whether the first in the present application The first control signaling in the present application is successfully received within a time window.
  • At least two of the antenna 460, the receiver 456, the receiving processor 452, and the controller/processor 490 are used in the fourth air interface in the present application.
  • the second wireless signal in the present application is received on the resource.
  • At least two of the antenna 460, the transmitter 456, the transmit processor 455, and the controller/processor 490 are used in the Q1 of the present application.
  • the Q1 fourth type characteristic wireless signals in the present application are respectively sent on the four types of air interface resources.
  • controller/processor 490 is used to determine the first identity in the present application.
  • controller/processor 490 is used to determine the first sequence in the present application.
  • controller/processor 490 is used to determine the second sequence in the present application.
  • controller/processor 490 is used to determine the first block of information bits in the present application.
  • controller/processor 490 is used to determine the second air interface resource in the present application.
  • controller/processor 490 is used to determine the third air interface resource in the present application.
  • At least two of the antenna 420, the receiver 416, the receiving processor 412, and the controller/processor 440 are used in the first air interface in the present application.
  • the first characteristic wireless signal in the present application is received on a resource.
  • At least two of the antenna 420, the receiver 416, the receiving processor 412, and the controller/processor 440 are used in the second air interface in the present application.
  • the second feature wireless signal in the present application is received on the resource.
  • At least two of the antenna 420, the receiver 416, the receiving processor 412, and the controller/processor 440 are used in the third air interface in the present application.
  • the first wireless signal in the present application is received on a resource.
  • At least two of the antenna 420, the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the first configuration in the present application. information.
  • At least two of the antenna 420, the transmitter 416, the transmit processor 415, and the controller/processor 440 are used to transmit the second configuration in the present application. information.
  • At least two of the antenna 420, the transmitter 416, the transmit processor 415, and the controller/processor 440 are used for the first time in the present application.
  • the first control signaling in the present application is sent in the window.
  • At least two of the antenna 420, the transmitter 416, the transmit processor 415, and the controller/processor 440 are used in the fourth air interface in the present application.
  • the second wireless signal in the present application is transmitted on the resource.
  • At least two of the antenna 420, the receiver 416, the receive processor 412, and the controller/processor 440 are used in the Q1 first in the present application.
  • the Q1 fourth type characteristic wireless signals in the present application are respectively received on the four types of air interface resources.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • base station N1 is a maintenance base station of a serving cell of user equipment U2.
  • the steps in the dashed box identified as F0, the steps in the dashed box identified as F1, and the steps in the dashed box identified as F2 are optional, respectively.
  • the base station N1 in a step S10 transmits information of a first configuration; second configuration information transmitted in step S11; step S12, the received first radio signal wherein the first air interface resource, receiving a second resource on the second air interface
  • the feature wireless signal receives the first wireless signal on the third air interface resource; transmits the first control signaling in the first time window in step S13; and transmits the second wireless signal on the fourth air interface resource in step S14.
  • a first receiving configuration information For user equipment U2, at step S20, a first receiving configuration information; receiving the second configuration information in step S21; in step S22 wherein a first radio signal transmitted on a first air interface resource, the transmitting the second air interface resources a second characteristic wireless signal, transmitting the first wireless signal on the third air interface resource; receiving the first control signaling in the first time window in step S23; receiving the second wireless signal on the fourth air interface resource in step S24 .
  • a channel parameter experienced by the first wireless signal is related to a channel parameter experienced by the second characteristic wireless signal;
  • a first identity is used to determine the second sequence and the first wireless
  • At least one of the second air interface resource and the third air interface resource is related to the first air interface resource, or the second air interface resource and the third air interface resource
  • At least one of the first sequence is related to the first sequence, or at least one of the second air interface resource and the third air interface resource is related to the first identity
  • the first configuration information is used to determine At least one of the first sequence pool and the second sequence pool, the first sequence belongs to the first sequence pool, and the second sequence belongs to the second sequence pool; or, the first configuration information is At least one of the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool
  • the first air interface resource pool includes a positive integer number of first type air interface resources
  • the first air interface resource is The positive integer first class One of the port resources
  • the second air interface resource pool includes a positive integer number of second type air interface resources,
  • At least one of the second sequence and the first wireless signal; or the second configuration information is used to determine the first air interface resource, the second air interface resource, and the third air interface At least one of the resources; the first control signaling is detected in the first time window; the first control signaling includes third scheduling information, and the third scheduling information is used in a scheduling office
  • the second wireless signal, the third scheduling information includes at least one of the fourth air interface resource, MCS, RV, HARQ information, and NDI; and a fourth type of air interface of the Q1 fourth type air interface resources
  • the resource includes the first air interface resource and the second air At least one of the resources; the Q1 feature sequences are respectively used to generate the Q1 fourth-type feature wireless signals, and one of the Q1 feature sequences includes the first sequence and the second sequence At least one of the features is related to a location of the time domain resource of the fourth type of air interface resource in the Q1 fourth type of air interface resource; the Q1 is a positive integer.
  • steps in block F1 and block F2 of Figure 5 are either present or absent.
  • Embodiment 6 exemplifies a time-frequency resource occupied by an air interface resource according to an embodiment of the present application, as shown in FIG. 6.
  • a small dotted square represents RE (Resource Element)
  • a thick square represents a target time-frequency resource block.
  • the target time-frequency resource block occupies K subcarriers (Subcarrier) in the frequency domain, and occupies L multi-carrier symbols (Symbol) in the time domain
  • the time-frequency resources occupied by one air interface resource include The target time-frequency resource block, the K and the L are positive integers.
  • the multicarrier symbol is an FDMA (Frequency Division Multiple Access) symbol, an OFDM (Orthogonal Frequency Division Multiplexing) symbol, and an SC-FDMA (Single-Carrier Frequency Division). Multiple Access, single carrier frequency division multiple access), DFTS-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) symbol, FBMC (Filter Bank Multi-Carrier) At least one of a multicarrier) symbol, an IFDMA (Interleaved Frequency Division Multiple Access) symbol.
  • FDMA Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division
  • Multiple Access single carrier frequency division multiple access
  • DFTS-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • FBMC Breast Bank Multi-Carrier
  • IFDMA Interleaved Frequency Division Multiple Access
  • the target time-frequency resource block is composed of a positive integer number of REs.
  • one RE occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • a symbol length of the one multi-carrier symbol occupied by the one RE is inversely proportional to a sub-carrier spacing (Subcarrier Spacing) of the one sub-carrier occupied by the one RE, and the symbol length is It is the length of time that the multi-carrier symbol occupies in the time domain, and the sub-carrier spacing is the frequency width occupied by the one sub-carrier in the frequency domain.
  • Subcarrier Spacing sub-carrier Spacing
  • the subcarrier Spacing of the one subcarrier is at least one of 1.25 kHz (Kilohertz, kilohertz), 2.5 kHz, 5 kHz, 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • At least two REs included in the target time-frequency resource block have the same sub-carrier spacing in the frequency domain.
  • the at least two REs included in the target time-frequency resource block have the same time length of corresponding multi-carrier symbols in the time domain.
  • the target time-frequency resource block occupies K sub-carriers in the frequency domain, and occupies L multi-carrier symbols in the time domain, where the number of REs included in the time-frequency resource block is not greater than the K-multiplication.
  • the product of the L is the product of the L.
  • the time-frequency resource occupied by the target time-frequency resource block does not include an RE that is allocated to an RS (Reference Signal).
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the PRACH.
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the NPRACH.
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the PUCCH.
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the SPUCCH.
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the PUSCH.
  • the time-frequency resource occupied by the target time-frequency resource block does not include the RE allocated to the NPUSCH.
  • the target time-frequency resource block includes a positive integer number of RBs (Resource Blocks).
  • the target time-frequency resource block belongs to one RB.
  • the frequency domain resource of the target time-frequency resource block is one RB.
  • the target time-frequency resource block includes a positive integer number of PRBs (Physical Resource Blocks).
  • the target time-frequency resource block belongs to one PRB.
  • the frequency domain resource of the target time-frequency resource block is a PRB.
  • the target time-frequency resource block includes a positive integer number of PRB pairs (Physical Resource Block Pairs).
  • the target time-frequency resource block belongs to one PRB pair.
  • the frequency domain resource of the target time-frequency resource block is a PRB pair.
  • the target time-frequency resource block includes a positive integer number of VRBs (Virtual Resource Blocks).
  • the target time-frequency resource block belongs to one VRB.
  • the frequency domain resource of the target time-frequency resource block is a VRB.
  • the target time-frequency resource block includes a positive integer number of radio frames.
  • the target time-frequency resource block belongs to one radio frame.
  • the time domain resource of the target time-frequency resource block is a radio frame.
  • the target time-frequency resource block includes a positive integer number of sub-frames.
  • the target time-frequency resource block belongs to one subframe.
  • the time domain resource of the target time-frequency resource block is one subframe.
  • the target time-frequency resource block includes a positive integer number of slots (Slots).
  • the target time-frequency resource block belongs to one time slot.
  • the time domain resource of the target time-frequency resource block is a time slot.
  • the target time-frequency resource block includes a positive integer number of multi-carrier symbols (Symbol).
  • the target time-frequency resource block belongs to one multi-carrier symbol.
  • the time domain resource of the target time-frequency resource block is a multi-carrier symbol.
  • the target time-frequency resource block belongs to a PRACH.
  • the target time-frequency resource block belongs to NPRACH.
  • the target time-frequency resource block belongs to a PUSCH.
  • the target time-frequency resource block belongs to an NPUSCH.
  • the target time-frequency resource block belongs to a PUCCH.
  • the target time-frequency resource block belongs to SPUCCH.
  • the target time-frequency resource block includes an RE that is allocated to the RS.
  • the K is no greater than 12.
  • the L is no greater than 14.
  • the K is equal to 12 and the L is equal to 14.
  • the K is equal to 12 and the L is equal to 12.
  • the K is equal to 839 and the L is equal to one.
  • the K is equal to 139 and the L is equal to one.
  • Embodiment 7 illustrates a schematic diagram of Q2 air interface resources according to an embodiment of the present application, as shown in FIG.
  • the thick line grid represents one of the target time-frequency resource blocks, and the time-frequency resources occupied by the air interface resources #0, #1, ..., #(Q2-1) belong to the same target time-frequency.
  • the resource block; the air interface resources #0, #1, ..., #(Q2-1) respectively correspond to Q2 different code domain resources, that is, the target multiple access signature, and the Q2 is a positive integer.
  • the target multiple access signature is a signature sequence
  • each modulation symbol of a wireless signal is multiplied by the signature sequence, and then mapped to a positive integer included in the target time-frequency resource block.
  • the feature signature sequence is at least one of a Walsh sequence, a pseudo random sequence, a Zadeoff-Chu sequence, a Gold sequence, and an M sequence.
  • the modulation symbol is at least one of a BPSK symbol, a QPSK symbol, a 16QAM symbol, a 64QAM symbol, and a 256QAM symbol.
  • the Q2 different code domain resources constitute the target multiple access signature pool in the present application.
  • the air interface resources #0, #1, ..., #(Q2-1) all occupy the same target time-frequency resource block.
  • the air interface resources #0, #1, ..., #(Q2-1) all occupy the REs allocated to the RS in the same target time-frequency resource block.
  • the Q2 air interface resources share at least one multi-carrier symbol in the time domain.
  • the Q2 air interface resources completely overlap in the time domain.
  • the Q2 air interface resources completely overlap in the time domain, and the Q2 air interface resources completely overlap in the frequency domain.
  • At least two air interface resources in the air interface resource #0, #1, ..., #(Q2-1) occupy different REs in the same target time-frequency resource block.
  • the above embodiment is applicable to a scheme similar to SCMA (Sparse Code Multiple Access).
  • the above embodiment is applicable to a scheme similar to NOMA (Non-orthogonal Multiple Access).
  • the code domain resources included in the air interface resources #0, #1, ..., #(Q2-1) constitute the target multiple access signature pool in the present application.
  • the target air interface resource in the present application is one of the air interface resources #0, #1, . . . , #(Q2-1).
  • the Q3 target air interface resources are a subset of the air interface resources #0, #1, . . . , #(Q2-1), the Q3 is a positive integer, and the Q3 is smaller than Q2.
  • the Q3 is equal to the Q2, and the air interface resources #0, #1, ..., #(Q2-1) are the Q3 air interface resources in the present application.
  • the Q2 modulation symbols are respectively mapped to the REs occupied by the air interface resources #0, #1, . . . , #(Q2-1) by multiplying the Q2 different signature sequences, that is,
  • the Q2 modulation symbols implement code division multiplexing.
  • the target air interface resource includes the target time-frequency domain resource block.
  • the target air interface resource includes the target time-frequency domain resource block and the target multiple access signature.
  • the target air interface resource includes the target time-frequency domain resource block and a target antenna port.
  • the target air interface resource includes the target time-frequency domain resource block, the target multiple access signature, and a target antenna port.
  • the target air interface resource is the first air interface resource in the present application.
  • the target air interface resource is the second air interface resource in the present application.
  • the target air interface resource is the third air interface resource in the present application.
  • the target air interface resource includes the first air interface resource and the second air interface resource in the present application.
  • the target air interface resource includes the second air interface resource and the third air interface resource in the present application.
  • the first air interface resource includes a first time-frequency resource block and a first multiple access signature.
  • the second air interface resource includes a second time-frequency resource block and a second multiple access signature.
  • the third air interface resource includes a third time-frequency resource block and a third multiple access signature.
  • the target time-frequency resource block is the first time-frequency resource block in this application.
  • the target time-frequency resource block is the second time-frequency resource block in this application.
  • the target time-frequency resource block is the third time-frequency resource block in this application.
  • the target time-frequency resource block includes the first time-frequency resource block and the second time-frequency resource block in the present application.
  • the target time-frequency resource block includes the second time-frequency resource block and the third time-frequency resource block in the present application.
  • the target multiple access signature is the first multiple access signature in the present application.
  • the target multiple access signature is the second multiple access signature in the present application.
  • the target multiple access signature is the third multiple access signature in the present application.
  • the target multiple access signature includes the first multiple access signature and the second multiple access signature in the present application.
  • the target multiple access signature includes the second multiple access signature and the third multiple access signature in the present application.
  • Embodiment 8 illustrates a schematic diagram of an air interface resource pool according to one embodiment of the present application, as shown in FIG.
  • a twill-filled box represents an air interface resource
  • an air interface resource pool includes air interface resources #0, #1, ..., #(Q-1); the air interface resources #0, #1, Any two air interface resources in ..., #(Q-1) include different time-frequency resource blocks or different multiple-access signatures.
  • the target air interface resource pool includes the Q first type target air interface resources, and the target air interface resource is one of the Q first type target air interface resources.
  • the target air interface resource pool is the first air interface resource pool in this application.
  • the target air interface resource pool is the second air interface resource pool in this application.
  • the target air interface resource pool is the third air interface resource pool in this application.
  • the parameter of the target air interface resource pool includes at least one of a target air interface resource number, a target air interface resource size, and a target air interface resource location.
  • the number of the target air interface resources is the number of the target air interface resources included in the target air interface resource pool.
  • the number of target air interface resources is the number of the target multiple access signatures included in the target air interface resource pool.
  • the number of the target air interface resources is the total number of the target air interface resources and the target multiple access signature included in the target air interface resource pool.
  • the number of target air interface resources is the Q.
  • the target air interface resource size is the number of REs occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of subcarriers occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of RBs occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of PRBs occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of PRB pairs occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of VRBs occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of multi-carrier symbols occupied by at least one of the first-type target air interface resources of the Q first-class target air interface resources.
  • the target air interface resource size is the number of slots occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of subframes occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of radio frames occupied by at least one of the first target air interface resources of the first type of target air interface resources.
  • the target air interface resource size is the number of sampling points occupied by at least one of the Q first-class target air interface resources in the time domain.
  • the target air interface resource size is the target time-frequency resource block occupied by at least one of the Q first-class target air interface resources occupied by the first-type target air interface resource. number.
  • the target air interface resource size is the number of the target multiple access signatures used by at least one of the Q first type of target air interface resources. .
  • the target air interface resource size is the multiple access signature included in at least one of the Q first-class target air interface resources, and the multiple-address signature included in the first-type target air interface resource.
  • the target air interface resource location is a time-frequency resource location of an RE occupied by at least one of the first-type target air interface resources of the Q first-class target air interface resources.
  • the target air interface resource location is a subcarrier occupied by at least one of the Q first type of target air interface resources, and the subcarrier occupied by the first type of target air interface resource is at the target time and frequency.
  • the target air interface resource location is a multi-carrier symbol occupied by at least one of the Q first-class target air interface resources, and the multi-carrier symbol occupied by the first-type target air interface resource is in the target The index on the time domain in the frequency resource block.
  • the target air interface resource location is an RB occupied by at least one of the Q first-class target air interface resources, and the RB occupied by the first-class target air interface resource is in the time-frequency resource block. Index in .
  • the target air interface resource location is a PRB occupied by at least one of the Q first-class target air interface resources, and the PRB occupied by the first-class target air interface resource. Index in .
  • the target air interface resource location is a PRB pair occupied by at least one of the first type of target air interface resources of the Q first type of target air interface resources in the time-frequency resource.
  • the index in the block is a PRB pair occupied by at least one of the first type of target air interface resources of the Q first type of target air interface resources in the time-frequency resource.
  • the target air interface resource location is the time-frequency resource block occupied by at least one of the Q first-class target air interface resources.
  • the target air interface resource location is the target multiple access signature occupied by at least one of the Q first type of target air interface resources.
  • the index in the target multiple access signature pool is the target multiple access signature occupied by at least one of the Q first type of target air interface resources.
  • the parameter of the first air interface resource pool includes at least one of a first air interface resource number, a first air interface resource size, and a first air interface resource location.
  • the parameter of the second air interface resource pool includes at least one of a second air interface resource number, a second air interface resource size, and a second air interface resource location.
  • the parameter of the third air interface resource pool includes at least one of a third air interface resource number, a third air interface resource size, and a third air interface resource location.
  • the number of the target air interface resources is the number of the first air interface resources in the application.
  • the number of the target air interface resources is the number of the second air interface resources in the application.
  • the number of the target air interface resources is the number of the third air interface resources in the application.
  • the target air interface resource size is the first air interface resource size in the present application.
  • the target air interface resource size is the second air interface resource size in this application.
  • the target air interface resource size is the third air interface resource size in this application.
  • the target air interface resource location is the first air interface resource location in the application.
  • the target air interface resource location is the second air interface resource location in the application.
  • the target air interface resource location is the third air interface resource location in the application.
  • Embodiment 9 exemplifies a configuration relationship between first configuration information and second configuration information according to an embodiment of the present application, as shown in FIG.
  • a thick line box represents the target air interface resource pool
  • a twill pad fill represents the target air port resource
  • a thick line box represents the first target sequence pool
  • the twill fill fill represents the first target sequence.
  • the user equipment in the application receives the first configuration information, and receives the second configuration information; the first configuration information is used to determine the first target sequence in the application. a pool, the second configuration information is used to determine the first target sequence in the application; or the first configuration information is used to determine the target air interface resource pool, and the second configuration information is used The target air interface resource is determined.
  • the first configuration information is dynamically configured.
  • the first configuration information is semi-statically configured.
  • the first configuration information is used to configure parameters of the first sequence pool, including the first sequence length, the first sequence number, the first root sequence index, and the One or more of the first sequence pool cyclic shift values.
  • the first configuration information is used to configure parameters of the second sequence pool, including the second sequence length, the second sequence group number, and the second sequence number, One or more of a second root sequence index and the second sequence pool cyclic shift value.
  • the second identity and the first configuration information are used to collectively indicate the first sequence length in parameters of the first sequence pool.
  • the second identity and the first configuration information are used to collectively indicate the second sequence length in parameters of the second sequence pool.
  • the first configuration information is used to configure parameters of the target air interface resource pool.
  • the target air interface resource is used for scrambling of the first configuration signaling.
  • the first configuration information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first configuration information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the first configuration information includes one or more fields in the RMSI (Remaining Minimum System Information).
  • the first configuration information includes one or more fields in an OSI (Other System Information).
  • OSI Ole System Information
  • the first configuration information includes all or part of a higher layer signaling.
  • the first configuration information includes all or part of one RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first configuration information includes one or more fields in an RRC IE (Information Element).
  • the first configuration information includes all or part of one MAC layer signaling.
  • the first configuration information includes one or more fields in a MAC CE (Control Element).
  • the first configuration information includes all or part of one PHY layer signaling.
  • the first configuration information includes one or more fields in a DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first configuration information is transmitted on a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the first configuration information is transmitted on an NPBCH (Narrowband PBCH, Narrowband Physical Broadcast Channel).
  • NPBCH Narrowband PBCH, Narrowband Physical Broadcast Channel
  • the first configuration information is transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the first configuration information is transmitted on a PMCH (Physical Multicast Channel).
  • PMCH Physical Multicast Channel
  • the first configuration information is transmitted on a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the first configuration information is transmitted on a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first configuration information is transmitted on a NPDSCH (Narrowband Physical Downlink Shared Channel).
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • the first configuration information is transmitted on a PSBCH (Physical Sidelink Broadcast Channel).
  • PSBCH Physical Sidelink Broadcast Channel
  • the first configuration information is transmitted on a PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • the first configuration information is transmitted on a PSSCH (Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel
  • the first configuration signaling includes first scheduling information, where the first scheduling information is used to schedule the first configuration information, where the first scheduling information includes an occupied time-frequency resource, MCS (Modulation) At least one of a Coding Scheme, a RV (Redundancy Version), a HARQ (Hybrid Automatic Repeat ReQuest) message, and an NDI (New Data Indicator).
  • MCS Modulation
  • RV Redundancy Version
  • HARQ Hybrid Automatic Repeat ReQuest
  • NDI New Data Indicator
  • the HARQ information includes at least one of an ACK (Acknowledge) signal and a NACK (Negative Acknowledgement) signal.
  • the first configuration signaling includes all or part of MAC layer signaling.
  • the first configuration signaling includes one or more fields in the MAC CE.
  • the first configuration signaling includes all or part of PHY layer signaling.
  • the first configuration signaling includes one or more fields in the DCI.
  • the first configuration signaling is transmitted on a PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the first configuration signaling is transmitted on an NPDCCH (Narrowband Physical Downlink Control Channel).
  • NPDCCH Narrowband Physical Downlink Control Channel
  • the first configuration signaling is transmitted on an EPDCCH (Enhanced Physical Downlink Control Channel).
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the first configuration signaling is transmitted on an SPDCCH (Short Physical Downlink Control Channel).
  • SPDCCH Short Physical Downlink Control Channel
  • the first configuration signaling is transmitted on an MPDCCH (MTC Physical Downlink Control Channel).
  • MPDCCH MTC Physical Downlink Control Channel
  • the first configuration signaling is transmitted on a PSCCH (Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel
  • the second identity is used for scrambling of the first configuration signaling.
  • the first configuration signaling is common to a cell.
  • the second configuration information is semi-statically configured.
  • the second configuration information is used to indicate parameters of the first sequence from the first sequence pool.
  • the second configuration information is used to indicate an index of the first sequence in the first sequence pool.
  • the second configuration information is used to indicate parameters of the second sequence from the second sequence pool.
  • the second configuration information is used to indicate an index of the second sequence in the second sequence pool.
  • the second configuration information is used to indicate a parameter of the first information bit block of the first wireless signal.
  • the second configuration information is used to indicate a first scrambling sequence of the first wireless signal.
  • the second configuration information is used to indicate the target time-frequency resource block of the target air interface resource.
  • the second configuration information is used to indicate the target multiple access signature of the target air interface resource.
  • the second configuration information is used to indicate that the target air interface resource is an index in the target air interface resource pool.
  • the second configuration information includes all or part of information in higher layer signaling.
  • the second configuration information includes all or part of information in the RRC layer signaling.
  • the second wireless signal includes all or part of information in an RRC IE (Information Element).
  • the second configuration information includes all or part of information in the MAC layer signaling.
  • the first control signaling includes all or part of information in the MAC CE.
  • the first control signaling includes one or more fields in the DCI.
  • the second configuration information includes all or part of information in PHY layer signaling.
  • the second configuration information is transmitted on the PMCH.
  • the second configuration information is transmitted on the PDSCH.
  • the second configuration information is transmitted on the NPDSCH.
  • the second configuration information is transmitted on the PSDCH.
  • the second configuration information is transmitted on the PSSCH.
  • the second configuration signaling includes second scheduling information, where the second scheduling information is used to schedule the second configuration information, where the second scheduling information includes occupied time-frequency resources, MCS, and RV. At least one of HARQ information and NDI, the HARQ information including at least one of an ACK signal and a NACK signal.
  • the second configuration signaling includes all or part of information in PHY layer signaling.
  • the second configuration signaling includes all or part of information in the MAC layer signaling.
  • the first control signaling includes all or part of information in the MAC CE.
  • the first control signaling includes one or more fields in the DCI.
  • the second configuration signaling is transmitted on the PDCCH.
  • the second configuration signaling is transmitted on the EPDCCH.
  • the second configuration signaling is transmitted on the SPDCCH.
  • the second configuration signaling is transmitted on the MPDCCH.
  • the second configuration signaling is transmitted on the PSCCH.
  • the second configuration signaling is specific to the user equipment.
  • the first identity is used for scrambling of the second configuration signaling.
  • the parameters of the target air interface resource block are used for scrambling of the second configuration signaling.
  • the parameters of the target time-frequency resource block are used for scrambling of the second configuration signaling.
  • the parameter of the target air interface resource pool is used for scrambling of the second configuration signaling.
  • the parameters of the first sequence pool are used for scrambling of the second configuration signaling.
  • the parameters of the second sequence pool are used for scrambling of the second configuration signaling.
  • the second configuration information is related to at least one of the first identity and the second identity.
  • At least one of the first identity and the second identity is used to generate the second configuration information.
  • the second configuration information includes the first identity.
  • the second configuration information includes the second identity.
  • At least one of the first identity and the second identity is used to generate a scrambling sequence of the second configuration signaling.
  • the first identity and the second configuration information are used to jointly determine at least one of the first target sequence, the second target sequence, and the first wireless signal.
  • the first identity and the second identity are used to jointly determine at least one of the first target sequence, the second target sequence, and the first wireless signal.
  • the second configuration information is an integer not less than 0 and not greater than 1023.
  • one of the second identity and the second configuration information is used to determine one of the first target sequence, the second target sequence, and the first wireless signal.
  • the second configuration information is an integer not less than 0 and not greater than 65535.
  • the second configuration signaling is the same as the first configuration signaling, that is, the first configuration signaling is used to simultaneously carry the first configuration information and the second configuration information.
  • Embodiment 10 illustrates a schematic diagram of a relationship between a first air interface resource, a second air interface resource, and a third air interface resource according to an embodiment of the present application, as shown in FIG. In FIG. 10, in case A, any one of the subcarrier symbols occupied by the third time-frequency resource block of the third air interface resource is later than the second time-frequency of the second air interface resource.
  • At least one of the second air interface resource in the present application and the third air interface resource in the present application is related to the first air interface resource in the present application; or, in the present application At least one of the second air interface resource and the third air interface resource in the present application is related to the first sequence in the present application; or the second air interface resource in the present application and the present application At least one of the third air interface resources in the medium is related to the first identity in the application.
  • a subcarrier spacing of the one subcarrier occupied by at least one RE of a positive integer number of REs included in the first air interface resource and a positive integer number of REs included in the second air interface resource is equal.
  • the subcarrier spacing of the one subcarrier occupied by the at least one RE of the positive integer number of REs included in the first air interface resource is smaller than the positive integer RE included in the second air interface resource.
  • the subcarrier spacing of the one subcarrier occupied by at least one RE is smaller than the positive integer RE included in the second air interface resource.
  • a subcarrier spacing of the one subcarrier occupied by at least one RE of a positive integer number of REs included in the second air interface resource and a positive integer number of REs included in the third air interface resource is equal.
  • the number of REs included in the first air interface resource is different from the number of REs included in the second air interface resource.
  • the number of REs included in the first air interface resource is different from the number of REs included in the third air interface resource.
  • the parameters of the target time-frequency resource block include one or more of a target time-frequency resource block index, a target time-frequency resource block size, and a target time-frequency resource block number.
  • the parameter of the first time-frequency resource block includes one or more of a first time-frequency resource block index, a first time-frequency resource block size, and a first time-frequency resource block number.
  • the parameter of the second time-frequency resource block includes one or more of a second time-frequency resource block index, a second time-frequency resource block size, and a second time-frequency resource block number.
  • the first time-frequency resource block is used to determine the second time-frequency resource block.
  • the first time-frequency resource block is used to determine the second time-frequency resource block size, that is, the number of occupied sub-carriers and symbols.
  • the first time-frequency resource block is used to determine the number of the second time-frequency resource blocks.
  • the frequency domain resource in the frequency domain of the second time-frequency resource block and the first time-frequency resource block is a first frequency domain deviation, and the first frequency domain deviation is a rational number.
  • At least one of the first frequency domain deviation and the first time domain deviation is a positive rational number.
  • At least one of the first frequency domain deviation and the first time domain deviation is a negative rational number.
  • At least one of the first frequency domain deviation and the first time domain deviation is zero.
  • the unit of the first frequency domain deviation is the number of subcarriers.
  • the unit of the first frequency domain deviation is the number of RBs.
  • the unit of the first frequency domain deviation is the number of PRBs.
  • the unit of the first frequency domain deviation is Hertz (Hz).
  • the unit of the first frequency domain deviation is kilohertz (kHz).
  • the unit of the first frequency domain deviation is megahertz (MHz).
  • the first frequency domain offset is predefined, ie no signaling configuration is required.
  • the time domain resource in the time domain of the second time-frequency resource block and the first time-frequency resource block is a first time domain deviation, and the first time domain deviation is a rational number.
  • the unit of the first time domain deviation is the number of sampling points.
  • the unit of the first time domain deviation is a number of multi-carrier symbols.
  • the unit of the first time domain deviation is a number of slots.
  • the unit of the first time domain deviation is a number of subframes.
  • the unit of the first time domain deviation is a number of radio frames.
  • the unit of the first time domain deviation is microseconds (us).
  • the unit of the first time domain deviation is milliseconds (ms).
  • the unit of the first time domain deviation is seconds (s).
  • the first time domain offset is predefined, ie no signaling configuration is required.
  • the first offset signaling includes at least one of the first frequency domain offset and the first time domain offset.
  • the first offset configuration signaling includes all or part of PHY (Physical) layer signaling.
  • the first offset configuration signaling includes one or more fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first offset configuration signaling includes all or part of MAC (Medium Access Control) layer signaling.
  • MAC Medium Access Control
  • the first deviation configuration signaling includes one or more fields in a MAC CE (Control Element).
  • the first offset configuration signaling includes all or part of RRC (Radio Resource Control) layer signaling.
  • RRC Radio Resource Control
  • the first offset configuration signaling includes one or more fields in an RRC IE (Information Element).
  • the first offset configuration signaling includes all or part of higher layer signaling.
  • the first time-frequency resource block is used to determine the third time-frequency resource block.
  • the first time-frequency resource block is used to determine the third time-frequency resource block size, that is, the number of occupied sub-carriers and symbols.
  • the first time-frequency resource block is used to determine the number of the third time-frequency resource blocks.
  • the third time-frequency resource block is offset from the first time-frequency resource block by a second frequency domain in the frequency domain, and the second time domain offset is separated in the time domain, where the second frequency domain is The deviation and the second time domain deviation are rational numbers.
  • At least one of the second frequency domain deviation and the second time domain deviation is a positive rational number.
  • At least one of the second frequency domain deviation and the second time domain deviation is a negative rational number.
  • At least one of the second frequency domain deviation and the second time domain deviation is zero.
  • the unit of the second frequency domain deviation is the number of subcarriers.
  • the unit of the second frequency domain deviation is the number of PRBs.
  • the unit of the second frequency domain deviation is Hertz (Hz).
  • the unit of the second frequency domain deviation is kilohertz (kHz).
  • the unit of the second frequency domain deviation is megahertz (MHz).
  • the second frequency domain offset is predefined, ie no signaling configuration is required.
  • the unit of the second time domain deviation is the number of sampling points.
  • the unit of the second time domain deviation is a number of multi-carrier symbols.
  • the unit of the second time domain deviation is a number of slots.
  • the unit of the second time domain deviation is a number of subframes.
  • the unit of the second time domain deviation is a number of radio frames.
  • the unit of the second time domain deviation is microseconds (us).
  • the unit of the second time domain deviation is milliseconds (ms).
  • the unit of the second time domain deviation is seconds (s).
  • the second time domain offset is predefined, ie no signaling configuration is required.
  • At least one of the second frequency domain offset and the second time domain offset is configured by the first offset signaling.
  • the first time-frequency resource block of the first air interface resource is used to determine the third multiple access signature of the third air interface resource.
  • the third multiple access signature pool includes a positive integer number of third type multiple access signatures, and the third multiple access signature is one of the plurality of third type multiple access signatures.
  • the first air interface resource is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence initial value of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence initial value of the parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence start element index of the parameters of the first sequence is used to indicate the third multiple access signature.
  • the first sequence start element index of the parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence start element index of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence segment of parameters of the first sequence is used to indicate the third multiple access signature.
  • the first sequence segment of parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence segment of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence cyclic shift of the parameters of the first sequence is used to indicate the third multiple access signature.
  • the first sequence cyclic shift of the parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence cyclic shift of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the second air interface resource is related to the first sequence.
  • the second air interface resource pool includes a positive integer number of second type air interface resources, and the second air interface resource is one of the positive integer second type air interface resources.
  • the first sequence is used to indicate the second air interface resource from the second air interface resource pool.
  • the first sequence is used to indicate an index of the second air interface resource in the second air interface resource pool.
  • the second time-frequency resource block includes a second time-frequency resource block size
  • the second time-frequency resource size refers to the number of REs included in the second time-frequency resource block.
  • the first sequence is used to indicate the second time-frequency resource size of the second time-frequency resource block from a positive integer number of candidate time-frequency resource sizes, the second time-frequency resource size One of the positive integer number of candidate time-frequency resource sizes, where the candidate time-frequency resource size refers to the number of REs included in the candidate time-frequency resource.
  • the first sequence is used to indicate the number of the second time-frequency resource blocks.
  • the first sequence is used to indicate at least one of the first frequency domain offset and the first time domain offset.
  • the second air interface resource is related to the first sequence initial value of the parameters of the first sequence.
  • the second air interface resource is related to the first sequence start element index of the parameter of the first sequence.
  • the second air interface resource is related to the first sequence segment of parameters of the first sequence.
  • the second air interface resource is related to the first sequence cyclic shift of parameters of the first sequence.
  • the third air interface resource is related to the first sequence.
  • the third air interface resource pool includes a positive integer number of third type air interface resources, and the third air interface resource is one of the positive integer third type air interface resources.
  • the first sequence is used to indicate the third air interface resource from the positive integer third type air interface resources.
  • the first sequence is used to indicate an index of the third air interface resource in the positive integer third type air interface resource.
  • the third time-frequency resource block includes a third time-frequency resource block size
  • the third time-frequency resource block size refers to the number of REs included in the third time-frequency resource block.
  • the first sequence is used to indicate the third time-frequency resource size of the third time-frequency resource block from a positive integer number of candidate time-frequency resource sizes, and the third time-frequency resource size A candidate time-frequency resource size of the positive integer number of candidate time-frequency resource sizes, where the candidate time-frequency resource size refers to the number of REs included in the candidate time-frequency resource.
  • the first sequence is used to determine the number of the third time-frequency resource blocks.
  • the first sequence is used to indicate at least one of the second frequency domain offset and the second time domain offset.
  • the third time-frequency resource pool includes a positive integer number of third-type time-frequency resource blocks, and the third time-frequency resource block is one of the positive integer third-type time-frequency resource blocks.
  • the first sequence is used to indicate the third time-frequency resource block from a positive integer number of third-class time-frequency resource blocks.
  • the first sequence is used to calculate an index of the third time-frequency resource block in the positive integer third type time-frequency resource block.
  • the third air interface resource is related to the first sequence initial value of the parameters of the first sequence.
  • the third air interface resource is related to the first sequence start element index of the parameter of the first sequence.
  • the third air interface resource is related to the first sequence segment of parameters of the first sequence.
  • the third air interface resource is related to the first sequence cyclic shift of parameters of the first sequence.
  • the first sequence is used to indicate the third multiple access signature.
  • the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence initial value of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence initial value of the parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence start element index of the parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence start element index of the parameters of the first sequence is used to calculate an index of the third multiple access signature in the positive integer number of third type multiple access signatures.
  • the first sequence start element index of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence segment of parameters of the first sequence is used to indicate the third multiple access signature.
  • the first sequence segment of parameters of the first sequence is used to indicate the third multiple access signature from the positive integer number of third type multiple access signatures.
  • the first sequence segment index of the parameters of the first sequence is used to calculate an index of the third multiple access signature in the positive integer third class multiple access signature.
  • the first sequence segment of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first sequence cyclic shift of the parameters of the first sequence is used to indicate the third multiple access signature.
  • the first sequence cyclic shift of the parameters of the first sequence is used to indicate the third multiple access signature from a positive integer number of candidate multiple access signatures
  • the third multiple access signature is One candidate multiple access signature of the positive integer number of candidate multiple access signatures.
  • the first sequence cyclic shift of the parameters of the first sequence is used to calculate a spreading sequence of the third multiple access signature.
  • the first identity is used to determine the third air interface resource.
  • the third air interface resource is configured by configuration signaling scrambled by the first identity.
  • the first identity is used to determine the second time-frequency resource block of the second air interface resource.
  • the first identity is used to determine a ⁇ size, a number, a first frequency offset, and a first time domain deviation of the second time-frequency resource block of the second air interface resource. At least one of ⁇ .
  • the first identity is used to determine the third time-frequency resource block of the third air interface resource.
  • the first identity is used to determine a ⁇ size, a number, a first frequency offset, and a first time domain deviation of the third time-frequency resource block of the third air interface resource. At least one of the second frequency domain deviation, the second time domain deviation ⁇ .
  • the first identity is used to determine the third multiple access signature of the third air interface resource.
  • the sub-carrier spacing of the RE included in the first time-frequency resource block is equal to the sub-carrier spacing of the RE included in the second time-frequency resource.
  • the subcarrier spacing of the RE included in the first time-frequency resource block is not equal to the subcarrier spacing of the RE included in the second time-frequency resource.
  • the subcarrier spacing of the RE included in the first time-frequency resource block is not equal to the subcarrier spacing of the RE included in the third time-frequency resource block.
  • the second time-frequency resource block includes a sub-carrier spacing of the RE that is equal to a sub-carrier spacing of the RE included in the third time-frequency resource.
  • the first air interface resource is used to determine a sequence length of at least one of the first sequence and the second sequence.
  • the first air interface resource is used to determine a sequence type of at least one of the first sequence and the second sequence.
  • the first air interface resource is used to determine a sequence length of at least one of the first sequence and the second sequence.
  • the first identity is used to determine a sequence type of at least one of the first sequence and the second sequence.
  • the first sequence is used to determine the sequence length of the second sequence.
  • the first sequence is used to determine a sequence type of the second sequence.
  • the first air interface resource, at least one of the first sequence and the first identity is used to determine a first transmit power of the second feature wireless signal, the first transmit Power is a rational number.
  • the first air interface resource, at least one of the first sequence and the first identity is used to determine a second transmit power of the first wireless signal, the second transmit power It is reasonable.
  • the first transmit power comprises an absolute value of a transmit power of the second characteristic wireless signal.
  • the first transmit power includes a difference between a transmit power of the second feature wireless signal and the first feature wireless signal.
  • the second transmit power comprises an absolute value of a transmit power of the first wireless signal.
  • the second transmit power comprises a difference between a transmit power of the first wireless signal and the first characteristic wireless signal.
  • the unit of the first transmit power is dBm.
  • the unit of the first transmit power is dB.
  • the unit of the first transmit power is watts (W).
  • the unit of the first transmit power is milliwatts (mW).
  • the unit of the second transmit power is dBm.
  • the unit of the second transmit power is dB.
  • the unit of the second transmit power is watts (W).
  • the unit of the second transmit power is milliwatts (mW).
  • the first transmit power is equal to the second transmit power.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first control signaling and the second wireless signal according to one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the dashed box represents the first time window
  • the square filled box represents the first control signaling
  • the twill-filled box represents the second wireless signal.
  • the user equipment in the application monitors the first control signaling of the present application in the first time window, where the first control signaling is used to determine the The fourth air interface resource, if the first control signaling is detected in the first time window, the user equipment receives the second wireless signal of the application on the fourth air interface resource; At least one of the first air interface resource, the second air interface resource, the third air interface resource, the first sequence, the second sequence, and the first wireless signal are used to determine The first time window.
  • the monitoring refers to receiving based on blind detection, that is, the user equipment receives a signal in the first time window and performs a decoding operation, and if it is determined that the decoding is correct according to the CRC bit, it is determined that The first control signaling is successfully received in the first time window; otherwise, the first control signaling is not successfully received in the first time window.
  • the monitoring refers to the reception based on the coherent detection, that is, the user equipment performs coherent reception on the wireless signal by using the RS sequence corresponding to the DMRS of the first control signaling in the first time window. And measuring the energy of the signal obtained after the coherent reception. Determining that the first control signaling is successfully received within the first time window if the energy of the signal obtained after the coherent reception is greater than a first given threshold; otherwise determining that the first time window is The first control signaling is not successfully received within.
  • the monitoring refers to the reception based on energy detection, that is, the user equipment senses the energy of the wireless signal within the first time window and averages over time to obtain the received energy. Determining that the first control signaling is successfully received within the first time window if the received energy is greater than a second given threshold; otherwise determining that the first time is not successfully received within the first time window A control signaling.
  • the first control signaling is detected to indicate that the first control signaling is determined to be correctly decoded according to the CRC bit after being received based on the blind detection.
  • the first control signaling includes all or part of information in PHY layer signaling.
  • the first control signaling includes all or part of information in the MAC layer signaling.
  • the first control signaling includes all or part of information in the MAC CE.
  • the first control signaling includes one or more fields in the DCI.
  • the first control signaling is transmitted on a PDCCH.
  • the first control signaling is transmitted on the EPDCCH.
  • the first control signaling is transmitted on the SPDCCH.
  • the first control signaling is transmitted on the MPDCCH.
  • the first control signaling is transmitted on the PSCCH.
  • the first identity is used to scramble the first control signaling.
  • the target air interface resource is used to scramble the first control signaling.
  • the parameter of the target time-frequency resource block includes one or both of a target time domain resource and a target frequency domain resource.
  • the target time domain resource pool includes a positive integer number of target class time domain resources, and the target time domain resource is one of the positive integer number of target class time domain resources.
  • the target time domain resource index is used to indicate a location of the target time domain resource in the positive integer number of target class time domain resources, the target time domain resource index being a non-negative integer.
  • the target frequency domain resource pool includes a positive integer number of target frequency domain resources, and the target frequency domain resource is one of the positive integer target frequency domain resources.
  • the target frequency domain resource index is used to indicate the location of the target frequency domain resource in the positive integer number of target frequency domain resources, and the target frequency domain resource index is a non-negative integer.
  • the unit of the target time domain resource is milliseconds.
  • the unit of the target time domain resource is seconds.
  • the unit of the target time domain resource is a sampling point.
  • the unit of the target time domain resource is a multi-carrier symbol.
  • the unit of the target time domain resource is a slot.
  • the unit of the target time domain resource is a subframe.
  • the unit of the target time domain resource is a radio frame.
  • the unit of the target frequency domain resource is Hertz (Hz).
  • the unit of the target frequency domain resource is kilohertz (kHz).
  • the unit of the target frequency domain resource is megahertz (MHz).
  • the unit of the target frequency domain resource is a subcarrier.
  • the unit of the target frequency domain resource is an RB (Resource Block).
  • the unit of the target frequency domain resource is a PRB (Physical Resource Block).
  • the unit of the target frequency domain resource is a VRB (Virtual, Resource Block).
  • At least one of the target time domain resource index and the target frequency domain resource index is used to scramble the first control signaling.
  • a result of linear addition of the target time domain resource index and the target frequency domain resource index is used to scramble the first control signaling.
  • a result of linear addition of the target time domain resource index and the target frequency domain resource index is used for a CRC (Cyclic Redundancy Check) bit of the first control signaling. Scrambling.
  • the parameter of the first time-frequency resource block includes one or both of a first time domain resource and a first frequency domain resource.
  • the parameter of the second time-frequency resource block includes one or two of a second time domain resource and a second frequency domain resource.
  • the parameter of the third time-frequency resource block includes one or two of a third time domain resource and a third frequency domain resource.
  • the first time domain resource pool includes a positive integer number of first type time domain resources, and the first time domain resource is one of the positive integer number of target class time domain resources.
  • the first time domain index is used to indicate a location of the first time domain resource in the positive integer number of first type time domain resources, and the first time domain index is a non-negative integer.
  • the first frequency domain resource pool includes a positive integer number of first frequency domain resources, and the first frequency domain resource is one of the positive integer first frequency domain resources.
  • the first frequency domain index is used to indicate a location of the first frequency domain resource in the positive integer number of first frequency domain resources, and the first frequency domain index is a non-negative integer.
  • the second time domain resource pool includes a positive integer number of second type time domain resources, and the second time domain resource is one of the positive integer second type time domain resources.
  • the second time domain index is used to indicate the location of the second type of time domain resource in the positive integer number of second type time domain resources, and the second time domain index is a non-negative integer.
  • the second frequency domain resource pool includes a positive integer number of second type frequency domain resources, and the second frequency domain resource is one of the positive integer second type frequency domain resources.
  • the second frequency domain index is used to indicate the location of the second frequency domain resource in the positive integer number of second frequency domain resources, and the second frequency domain index is a non-negative integer.
  • the third time domain resource pool includes a positive integer number of third type time domain resources, and the third time domain resource is one of the positive integer third type time domain resources.
  • the third time domain index is used to indicate the location of the third type of time domain resource in the positive integer third time domain resource, and the third time domain index is a non-negative integer.
  • the third frequency domain resource pool includes a positive integer number of third frequency domain resources, and the third frequency domain resource is one of the positive integer third frequency domain resources.
  • the third frequency domain index is used to indicate the location of the third frequency domain resource in the positive integer third frequency domain resource, and the third frequency domain index is a non-negative integer.
  • the target time domain index is the first time domain index in the present application.
  • the target frequency domain index is the first frequency domain index in the present application.
  • the target time domain index is the second time domain index in the present application.
  • the target frequency domain index is the second frequency domain index in the present application.
  • the target time domain index is the third time domain index in the present application.
  • the target frequency domain index is the third frequency domain index in the present application.
  • the result of linear addition of the first time domain index and the third frequency domain index is used to scramble the first control signaling.
  • the result of linear addition of the third time domain index and the first frequency domain index is used to scramble the first control signaling.
  • the second wireless signal comprises a second block of information bits.
  • the second wireless signal is sequentially subjected to channel coding, rate matching, scrambling, modulation mapper, layer mapper, precoding, code division multiplexing, resource particle mapping by the second information bit block.
  • the first wireless signal is channel coded, rate matched, scrambled, modulated mapper, layer mapper, precoded, code division multiplexed, resource particle mapper by the second information bit block The output after at least one of the wideband symbol generators.
  • the second wireless signal includes all or part of the information in higher layer signaling.
  • the second wireless signal includes all or part of information in RRC layer signaling.
  • the second wireless signal includes all or part of information in an RRC IE (Information Element).
  • the second wireless signal includes all or part of information in the MAC layer signaling.
  • the first control signaling includes all or part of information in the MAC CE.
  • the second wireless signal includes all or part of information in a MAC CE (Control Element).
  • the second wireless signal includes all or part of information in a RAR (Random Access Response).
  • RAR Random Access Response
  • the second wireless signal includes all or part of information in Msg-2 (Message 2, Message 2 in a random access procedure).
  • the second wireless signal includes all or part of information in a TA (Timing Advance) update.
  • TA Timing Advance
  • the second wireless signal is used by the user equipment to determine a transmission timing adjustment amount.
  • the second information bit block includes an index of the first target sequence in the first target sequence pool, an index of the target air interface resource in the target air interface resource pool, and a fourth scheduling Information, for one or more of the HARQ information of the first wireless signal and the first identity, the fourth scheduling information includes uplink timing modulation information, uplink transmit power, MCS, RV, NDI, occupied Time-frequency resources.
  • the second information bit block includes an index of the second target sequence in the second target sequence group and an index of the second target sequence group in the second target sequence pool. At least one of them.
  • the fourth scheduling information is used to schedule subsequent uplink signaling.
  • the second scrambling sequence is used to scramble the second wireless signal.
  • the first identity is used to generate the second scrambling sequence.
  • an index of the first target sequence in the first target sequence pool is used to generate the second scrambling sequence.
  • At least one of an index of the second target sequence in the second target sequence group and an index of the second target sequence group in the second target sequence pool is used to generate The second scrambling sequence.
  • the second wireless signal is transmitted on a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the second wireless signal is transmitted on the PDSCH.
  • the second wireless signal is transmitted on the NPDSCH.
  • the second wireless signal is transmitted on the PSSCH.
  • the first identity is used to determine a codeword rotation manner of the second block of information bits.
  • the first identity is used to determine a coded modulation scheme of the second block of information bits.
  • the first identity is used to determine a demodulation reference signal of the second block of information bits.
  • the transmitting of the first sequence is used to trigger the transmission of the second wireless signal.
  • the transmitting of the second sequence is used to trigger the transmission of the second wireless signal.
  • the transmitting of the first wireless signal is used to trigger the transmission of the second wireless signal.
  • the target air interface resource includes the fourth air interface resource in the present application.
  • the fourth air interface resource includes a fourth time-frequency resource block and a fourth multiple access signature.
  • the target time-frequency resource block is the fourth time-frequency resource block in this application.
  • the third scheduling information is used to indicate a parameter of the fourth time-frequency resource block, including at least one of a fourth time domain index and a fourth frequency domain index.
  • the first identity is used to determine a parameter of the fourth time-frequency resource block, including at least one of a fourth time domain index and a fourth frequency domain index.
  • the fourth air interface resource pool includes multiple fourth type air interface resources, and the fourth air interface resource is one of the plurality of fourth type air interface resources.
  • the third scheduling information is used to indicate that, as an embodiment, the third scheduling information is used for indication.
  • the first identity is used to calculate an index of the fourth air interface resource in the fourth air interface resource pool.
  • the first identity and the third scheduling information are used together to determine a parameter of the fourth time-frequency resource block, including at least one of a fourth time domain index and a fourth frequency domain index. .
  • the first identity and the third scheduling information are used together to determine an index of the fourth air interface resource in the fourth air interface resource pool.
  • the parameter of the first time window includes one or more of a first start time, a first end time, and a first window length (Response Window Size).
  • the first start time of the first time window is a time when the user equipment starts monitoring the first control signaling.
  • the first start time is a latest multi-carrier symbol of the target time-frequency resource block plus T, and the T is an integer.
  • the first starting time is the latest one time slot of the target time-frequency resource block plus T, and the T is an integer.
  • the first start time is a latest subframe (Subframe) of the target time-frequency resource block plus T, and the T is an integer.
  • the first start time is a latest one radio frame (Frame) of the target time-frequency resource block plus T, and the T is an integer.
  • the unit of T is microseconds.
  • the unit of T is milliseconds.
  • the unit of T is a sampling point.
  • the unit of T is a symbol.
  • the unit of T is a time slot.
  • the unit of T is a subframe.
  • the unit of T is a radio frame.
  • the first end time of the first time window is a time when the user equipment stops monitoring the first control signaling.
  • the first window length of the first time window is a time duration from the first start time to the first end time.
  • the unit of the first window length is milliseconds.
  • the unit of the first window length is a sampling point.
  • the unit of the first window length is a symbol.
  • the unit of the first window length is a time slot.
  • the unit of the first window length is a subframe.
  • the unit of the first window length is a radio frame.
  • At least one of the first start time, the first end time, and the first window length is predefined, that is, no signaling configuration is required.
  • the parameter of the target time-frequency resource block is used to calculate at least one of the first start time and the first window length, where the target time-frequency resource block is as described in the present application. At least one of a first time-frequency resource block, a second time-frequency resource block, and a third time-frequency resource block.
  • all the multi-carrier symbols occupied by the target time-frequency resource block are earlier than the first start time.
  • the earliest one multi-carrier symbol of the target time-frequency resource block is earlier than the first start time, and the latest one-carrier symbol of the target time-frequency resource block is later than the first start time. Earlier than the first end time.
  • At least one of the first sequence initial value, the first sequence start element index, the first sequence segment and the first sequence cyclic shift is used to calculate the The first starting moment.
  • At least one of the first sequence initial value, the first sequence start element index, the first sequence segment and the first sequence cyclic shift is used to calculate the The first window is long.
  • At least one of the second sequence initial value, the second sequence start element index, the second sequence segment and the second sequence cyclic shift is used to calculate the The first starting moment.
  • At least one of the second sequence initial value, the second sequence start element index, the second sequence segment and the second sequence cyclic shift is used to calculate the The first window is long.
  • At least one of the parameter of the first information bit block and the first scrambling sequence is used to calculate the first start time.
  • At least one of a parameter of the first information bit block and the first scrambling sequence is used to calculate the first window length.
  • Embodiment 12 illustrates a schematic diagram of Q1 fourth type characteristic wireless signals transmitted on Q1 fourth type air interface resources according to an embodiment of the present application, as shown in FIG.
  • the fourth type of air interface resource in the present application includes the first air interface resource and the second air interface resource in the present application
  • the fourth type feature wireless signal of the present application includes the present application.
  • the first feature wireless signal and the second feature wireless signal in case A, the first feature wireless signal and the second feature wireless signal TDM on one of the fourth type of air interface resources (Time Division Multiplexing); in case C, on the fourth type of air interface resource, the first feature radio signal and the second feature radio signal FDM (Frequency Division Multiplexing)
  • the user equipment in the present application first transmits Q1 pieces of the first feature radio signal, and then sends Q1 pieces of the second feature radio signal, that is, the fourth part in the present application.
  • the first air interface resource included in the air interface resource is alternately mapped with the first air interface resource included in another type 4 air interface resource.
  • the indexes of the Q1 fourth-type air interface resources are 0, 1, ..., (Q1-1), and the time domain resources of the fourth type of air interface resources are in the Q1 fourth category.
  • the timing in the air interface resource is an index of the fourth type of air interface resource.
  • the one feature sequence comprises the first sequence.
  • the one feature sequence comprises the second sequence.
  • the one feature sequence includes the first sequence and the second sequence.
  • the large-scale fading experienced by the first feature wireless sub-signal cannot be used to infer large-scale characteristics experienced by the second feature wireless sub-signal, the first feature wireless sub-signal and the second feature wireless
  • the sub-signal is two of the fourth type of feature wireless signals of the Q1 fourth type of feature wireless signals.
  • the large scale characteristics include ⁇ delay spread, Doppler spread, Dopper shift, path loss, average gain (average) Gain), average delay, spatial Rx parameters, spatial Tx parameters, angle of arrival, angle of departure, spatial correlation One or more.
  • the spatial Rx parameters include ⁇ receiving beam, receiving analog beamforming matrix, receiving analog beamforming vector, receiving beamforming vector, receiving spatial filtering, spatial domain filtering ( One or more of spatial domain reception filter) ⁇ .
  • the spatial transmission parameters include: a transmit antenna port, a transmit antenna port group, a transmit beam, an analog beamforming matrix, an analog beamforming vector, a transmit beamforming vector, and a transmit spatial filter. (spatial filtering), one or more of spatial domain transmission filters.
  • the one feature sequence is used to indicate an index of the one fourth type of air interface resource.
  • the one feature sequence is used to indicate the timing of a slot in which the fourth type of air interface resource is located in a radio frame.
  • the one feature sequence is used to indicate the timing of the multi-carrier symbol in which the fourth type of air interface resource is located in one time slot.
  • the one feature sequence is used to indicate the timing of the multi-carrier symbol in which the fourth type of air interface resource is located in one subframe.
  • an initial value of the one feature sequence, a segment of the one feature sequence, a cyclic shift of the one feature sequence, and a scrambling of the one feature sequence are used to indicate An index of the fourth type of air interface resource.
  • an initial value of the one feature sequence, a segment of the one feature sequence, a cyclic shift of the one feature sequence, and a scrambling of the one feature sequence are used to indicate The timing of the slot in which the fourth type of air interface resource is located in a radio frame.
  • an initial value of the one feature sequence, a segment of the one feature sequence, a cyclic shift of the one feature sequence, and a scrambling of the one feature sequence are used to indicate The timing of the multi-carrier symbol in which the fourth type of air interface resource is located in one time slot.
  • an initial value of the one feature sequence, a segment of the one feature sequence, a cyclic shift of the one feature sequence, and a scrambling of the one feature sequence are used to indicate The timing of the multicarrier symbol in which the fourth type of air interface resource is located in one subframe.
  • the fourth type of air interface resource includes the first air interface resource and the second air interface resource.
  • the Q1 fourth-type air interface resources include Q1 first-type sub-resources and Q1 second-type sub-resources, where the first air interface resource is one of the Q1 first-type sub-resources.
  • the second air interface resource is one of the Q1 second type sub-resources.
  • the Q1 first type sub-resource indexes are A 0 , A 1 , . . . , A Q1-2 , A Q1-1 , respectively, wherein the A 0 , the A 1 , . . . A Q1-2 , the A Q1-1 are both non-negative integers, and the difference between each two adjacent first-type sub-resource indexes is 1, and Ai is in the Q1 first sub-category resource index.
  • a first type of sub-resource index, the Ai belongs to ⁇ A 0 , A 1 , . . . , A Q1-2 ⁇ , and i belongs to ⁇ 0, 1, . . . , (Q1-2) ⁇ .
  • the Q1 second-class sub-resource indexes are B 0 , B 1 , . . . , B Q1-2 , B Q1-1 , where the B 0 , the B 1 , . . . B Q1-2 , the B Q1-1 is a non-negative integer, and the difference between each two adjacent second sub-resource indexes is 1, and Bj is in the Q1 second-class sub-resource index.
  • a second type of sub-resource index, the Bj belongs to ⁇ B 0 , B 1 , . . . , B Q1-2 ⁇ , and j belongs to ⁇ 0, 1, . . . , (Q1-2) ⁇ .
  • the Ai first type sub-resource and the (Ai+1) first type sub-resource are adjacent, that is, the Ai first-type sub-resource and the first (Ai) There is no one of the second type of sub-resources between +1) first-class sub-resources.
  • any two of the first type of sub-resources corresponding to the two adjacent first-class sub-resource indexes are adjacent to each other, that is, there is no Any one of the second type of sub-resources.
  • any two adjacent second sub-resources corresponding to the two adjacent second sub-resource indexes are adjacent, that is, there is no between the two second sub-resources Any one of the first type of sub-resources.
  • the Ai first type sub-resource and the (Ai+1) first type sub-resource are not adjacent, that is, the Ai first-type sub-resource and the first ( Ai+1) at least one of the first type of sub-resources between the first type of sub-resources.
  • any one of the first type of sub-resources is adjacent to at least one of the second type of sub-resources.
  • a first feature sequence is used to generate the first feature wireless sub-signal
  • a second feature sequence is used to generate the second feature wireless sub-signal
  • the first feature sequence includes the first feature sequence At least one of a sequence and the second sequence, the second feature sequence comprising at least one of the first sequence and the second sequence.
  • the first sequence included in the first feature sequence and the first sequence included in the second feature sequence are different.
  • the second sequence included in the first feature sequence and the second sequence included in the second feature sequence are different.
  • the first sequence includes the first sequence and the second sequence includes the first sequence, the first sequence includes the second sequence and the The second sequence included in the second signature sequence is different.
  • the first sequence includes the first sequence and the second sequence includes the first sequence, the first sequence includes the second sequence and the The second sequence included in the second signature sequence is different.
  • the Q1 fourth-type air interface resources include Q1 third-type sub-resources, and the third air interface resource is one of the Q1 third-type sub-resources.
  • Q1 first type wireless sub-signals are respectively sent on the Q1 third-type sub-resources, and the first wireless signal is a first type of the Q1 first-class wireless sub-signals.
  • Wireless sub-signal Wireless sub-signal.
  • the Q1 third-class sub-resource indexes are C 0 , C 1 , . . . , C Q1-2 , C Q1-1 , respectively, where the C 0 , the C 1 , . C Q1-2 , the C Q1-1 is a non-negative integer, and the difference between each two adjacent third sub-resource indexes is 1, and Cj is in the Q1 third sub-category resource index.
  • the small-scale features experienced by the first feature sequence transmitted on the Bj second type of sub-resources are used to infer to be sent on the Cz third-class sub-resources.
  • the first feature sequence sent on the Bj second type of sub-resources can be used for the first type of wireless sub-sents sent on the Cz third-class sub-resources.
  • the demodulation reference signal of the signal can be used for the first type of wireless sub-sents sent on the Cz third-class sub-resources.
  • the j is equal to the z.
  • Embodiment 13 exemplifies a structural block diagram of a processing device for use in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 1300 is mainly composed of a first receiver 1301, a first transmitter 1302, and a second receiver 1303.
  • the first receiver 1301 includes a transmitter/receiver 456 (including an antenna 460), a receiving processor 452 and a controller/processor 490 in FIG. 4 of the present application; the first transmitter 1302 includes the same in FIG. 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460), transmit processor 455 and controller/processor 490;
  • second receiver 1303 includes transmitter/receiver 456 (including antenna 460) in Figure 4 of the present application, receiving Processor 452 and controller/processor 490.
  • the first transmitter 1302 transmits a first feature radio signal on the first air interface resource, the first sequence is used to generate the first feature radio signal, and the second feature radio is sent on the second air interface resource.
  • a second sequence is used to generate the second characteristic wireless signal; transmitting a first wireless signal on the third air interface resource; wherein the channel parameter experienced by the first wireless signal and the second characteristic wireless signal The channel parameter experienced; the first identity is used to determine at least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource Corresponding to the first air interface resource, or at least one of the second air interface resource and the third air interface resource is related to the first sequence, or the second air interface resource and the third At least one of the air interface resources is related to the first identity.
  • the first receiver 1301 receives the first configuration information; wherein the first configuration information is used to determine at least one of a first sequence pool and a second sequence pool, the first sequence belongs to The first sequence of pools, the second sequence belongs to the second sequence pool; or the first configuration information is used to determine the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool
  • At least one of the first air interface resource pools includes a positive integer number of air interface resources of the first type, and the first air interface resource is one of the positive integer first air interface resources; the second air interface resource pool
  • the second air interface resource pool includes one of the positive integers and the third type of air interface resources, and the third air interface resource pool includes a positive integer third type of air interface resource.
  • the third air interface resource is one of the positive integer third type air interface resources.
  • the first receiver 1301 receives second configuration information; wherein the second configuration information is used to determine the first sequence, the second sequence, and the first wireless signal At least one of the second configuration information is used to determine at least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the second receiver 1303 monitors the first control signaling within the first time window; receives the second wireless signal on the fourth air interface resource; wherein the first control signaling is at the first time Detected in the window; the first control signaling includes third scheduling information, the third scheduling information is used to schedule the second wireless signal, and the third scheduling information includes the fourth air interface resource, At least one of MCS, RV, HARQ information and NDI.
  • the first transmitter 1302 separately transmits Q1 fourth type characteristic radio signals on the Q1 fourth type air interface resources; wherein, the fourth type air interface of the Q1 fourth type air interface resources
  • the resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are respectively used to generate the Q1 fourth type feature wireless signal, and one of the Q1 feature sequences
  • the feature sequence includes at least one of the first sequence and the second sequence; the one feature sequence is related to a location of the time domain resource of the fourth type of air interface resource in the Q1 fourth type air interface resource
  • the Q1 is a positive integer.
  • Embodiment 14 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 1400 is mainly composed of a second transmitter 1401, a third receiver 1402, and a third transmitter 1403.
  • the second transmitter 1401 includes the transmitter/receiver 416 (including the antenna 420), the shot processor 415 and the controller/processor 440 in FIG. 4 of the present application;
  • the third receiver 1402 includes the drawing 4 of the present application.
  • Transmitter/receiver 416 (including antenna 420), receive processor 412 and controller/processor 440;
  • third transmitter 1403 includes transmitter/receiver 416 (including antenna 420) in FIG. 4 of the present application, Transmit processor 415 and controller/processor 440.
  • the third receiver 1402 receives the first feature radio signal on the first air interface resource, the first sequence is used to generate the first feature radio signal, and the second feature radio is received on the second air interface resource.
  • a second sequence is used to generate the second characteristic wireless signal; receiving a first wireless signal on a third air interface resource; wherein the channel parameter experienced by the first wireless signal and the second characteristic wireless signal The channel parameter experienced; the first identity is used to determine at least one of the second sequence and the first wireless signal; at least one of the second air interface resource and the third air interface resource Corresponding to the first air interface resource, or at least one of the second air interface resource and the third air interface resource is related to the first sequence, or the second air interface resource and the third At least one of the air interface resources is related to the first identity.
  • the second transmitter 1401 sends the first configuration information; wherein the first configuration information is used to determine at least one of the first sequence pool and the second sequence pool, the first sequence belongs to The first sequence of pools, the second sequence belongs to the second sequence pool; or the first configuration information is used to determine the first air interface resource pool, the second air interface resource pool, and the third air interface resource pool
  • At least one of the first air interface resource pools includes a positive integer number of air interface resources of the first type, and the first air interface resource is one of the positive integer first air interface resources; the second air interface resource pool
  • the second air interface resource pool includes one of the positive integers and the third type of air interface resources, and the third air interface resource pool includes a positive integer third type of air interface resource.
  • the third air interface resource is one of the positive integer third type air interface resources.
  • the second transmitter 1401 transmits second configuration information, where the second configuration information is used to determine at least one of the first sequence, the second sequence, and the first wireless signal. Or the second configuration information is used to determine at least one of the first air interface resource, the second air interface resource, and the third air interface resource.
  • the third transmitter 1403 transmits the first control signaling in the first time window; the second wireless signal is sent on the fourth air interface resource; wherein the first control signaling is in the first time Detected in the window; the first control signaling includes third scheduling information, the third scheduling information is used to schedule the second wireless signal, and the third scheduling information includes the fourth air interface resource, At least one of MCS, RV, HARQ information and NDI.
  • the third receiver 1402 separately transmits Q1 fourth type characteristic radio signals on the Q1 fourth type air interface resources; wherein, the fourth type air interface of the Q1 fourth type air interface resources
  • the resource includes at least one of the first air interface resource and the second air interface resource; the Q1 feature sequences are respectively used to generate the Q1 fourth type feature wireless signal, and one of the Q1 feature sequences
  • the feature sequence includes at least one of the first sequence and the second sequence; the one feature sequence is related to a location of the time domain resource of the fourth type of air interface resource in the Q1 fourth type air interface resource
  • the Q1 is a positive integer.
  • the user equipment or the UE or the terminal in the present application includes but is not limited to a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, an in-vehicle communication device, an aircraft, an airplane, a drone, and a remote control.
  • Wireless communication equipment such as airplanes.
  • the base station device or the base station or the network side device in the present application includes but is not limited to a macro cellular base station, a micro cellular base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, a relay satellite, a satellite base station, an air base station, and the like.
  • Wireless communication device includes but is not limited to a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, an in-vehicle communication device, an aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号。其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关。上述方法减少用户设备接入冲突,提高用户设备接入的容量。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中的用户设备(UE,User Equipment)传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在NR第一阶段(Phase 1)的SI(Study Item,研究项目)上还提出了对NR系统进行两步随机接入(Two-Step Random Access)或简化随机接入(Simplified Random Access)以及免授予(Grant-Free)传输的特性研究,但由于NR R15版本标准化工作时间有限,两步随机接入或简化随机接入被推迟到R16版本中重新启动相关技术研究和标准化工作,免授予传输在NR R15版本也只实现了部分简单功能,在R16版本中很可能会被进一步增强。
发明内容
由于新业务的引入,5G NR系统需要实现快速接入并且满足海量用户的接入需求。发明人通过研究发现,两步接入机制虽然可以缩短用户设备的接入时间并减少信令交互,但是如何满足海量用户的接入需求,提升系统容量和空口资源利用效率是需要解决的问题。另外,该机制如何工作在多波束场景下也是需要考虑的问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对随机接入,但本申请也能被用于其他上行传输或者用户设备传输。
本申请公开了一种被用于无线通信的用户设备中的方法,其特征在于,包括:
在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;
在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;
在第三空口资源上发送第一无线信号;
其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,本申请要解决的问题是:当有接入需求的用户设备数量急剧增多,两步接入机制可以加快用户设备的接入速度并减少信令开销,为了避免海量用户的接入冲突,需要大量正交资源的问题。上述方法通过使用所述第二序列和所述第一无线信号中的至少之一区别不同用户设备,增加了接入的正交资源,从而减少海量用户的接入冲突,同时由于限制了所述第一序列的数量,从而减少了接收机盲检测所述第一序列的复杂度。
作为一个实施例,所述第一序列被用于上行定时调整。
作为一个实施例,所述第一序列被用于信道估计。
作为一个实施例,所述第一序列被用于信道测量。
作为一个实施例,所述第一序列被用于所述第一无线信号解调。
作为一个实施例,所述第二序列被用于上行定时调整。
作为一个实施例,所述第二序列被用于信道估计。
作为一个实施例,所述第二序列被用于信道测量。
作为一个实施例,所述第二序列被用于所述第一无线信号解调。
作为一个实施例,所述第一序列和所述第二序列共同被用于上行定时调整。
作为一个实施例,所述第一序列被用于上行定时调整,且所述第二序列被用于所述第一无线信号解调。
作为一个实施例,所述第一序列和所述第二序列共同被用于上行定时调整,且所述第二序列被用于所述第一无线信号解调。
作为一个实施例,上述方法的特质在于,在所述第二序列和所述第一无线信号中的至少之一与所述第一身份之间建立关联。
作为一个实施例,上述方法的好处在于,在限制接收机复杂度的情况下,扩大了用户设备的接入资源。
作为一个实施例,上述方法的特质在于,在所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数建立关联。
作为一个实施例,上述方法的好处在于,所述第二序列被用于扩大接入正交资源的同时,被用作所述第一无线信号的解调参考信号。
作为一个实施例,上述方法的特质在于,在所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源或所述第一序列建立关联。
作为一个实施例,上述方法的好处在于,所述第一空口资源或者所述第一序列被用于指示所述第二空口资源和所述第三空口资源,避免了额外的信令开销。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一配置信息;
其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二配置信息;
其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
在第一时间窗内监测第一控制信令;
在第四空口资源上接收第二无线信号;
其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;
其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个 特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
作为一个实施例,本申请要解决的问题是:两步接入机制多波束传输的问题。上述方法提供了两种传输方法,一种方法是所述第二空口资源与所述第一空口资源交错映射,所述第一空口资源和所述第二空口资源组成一个第四空口资源,所述Q1个第一特征序列分别在所述Q1个第四空口资源上通过一组波束扫描(Beam Sweeping)的方式传输;另一种方法是所述第二空口资源和所述第一空口资源分别连续映射,所述Q1个所述第一序列通过一组波束扫描的方式传输,所述Q1个所述第二序列通过另一组波束扫描的方式传输。
作为一个实施例,上述方法的特质在于,在所述一个特征序列与所述一个第四类空口资源之间建立关联。
作为一个实施例,上述方法的好处在于,基站设备在不同的空口资源上识别不同用户设备或者同一用户设备的不同波束。
本申请公开了一种被用于无线通信的基站设备中的方法,其特征在于,包括:
在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;
在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;
在第三空口资源上接收第一无线信号;
其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一配置信息;
其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二配置信息;
其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
在第一时间窗内发送第一控制信令;
在第四空口资源上发送第二无线信号;
其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
根据本申请的一个方面,上述方法的特征在于,包括:
在Q1个第四类空口资源上分别接收Q1个第四类特征无线信号;
其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个 特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
本申请公开了一种被用于无线通信的用户设备,其特征在于,包括:
第一发射机:在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;
其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,上述用户设备的特征在于,包括:
第一接收机:接收第一配置信息;
其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
作为一个实施例,上述用户设备的特征在于,包括:
所述第一接收机接收第二配置信息;
其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
作为一个实施例,上述用户设备的特征在于,包括:
第二接收机:在第一时间窗内监测第一控制信令;在第四空口资源上接收第二无线信号;
其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
作为一个实施例,上述用户设备的特征在于,包括:
所述第一发射机在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;
其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
本申请公开了一种被用于无线通信的基站设备,其特征在于,包括:
第三接收机:在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上接收第一无线信号;
其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,上述基站设备的特征在于,包括:
第二发射机:发送第一配置信息;
其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
作为一个实施例,上述基站设备的特征在于,包括:
所述第二发射机发送第二配置信息;
其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
作为一个实施例,上述基站设备的特征在于,包括:
第三发射机:在第一时间窗内发送第一控制信令;在第四空口资源上发送第二无线信号;
其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
作为一个实施例,上述基站设备的特征在于,包括:
所述第三接收机在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;
其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
作为一个实施例,本申请具备如下优势:
-本申请提供了一种用户侧发送两个序列,即所述第一序列和所述第二序列,被同时用于上行定时调整,通过所述第一序列区分波束或者时频资源,通过所述第二序列区分同一波束或者时频资源上的多个用户,减少用户设备接入冲突,提高用户设备接入的容量;
-由于接收机对前导序列的盲检测复杂度较高,本申请用所述第二序列分担了部分所述第一序列作为前导序列的所需正交资源的负担,降低接收机对所述第一序列的盲检测复杂度,由于所述第二序列和所述第一序列或者其所占用的资源有关,对所述第二序列的接收复杂度较低,从而整体上降低了接收机复杂度;
-本申请中的所述第二序列同时被用作所述第一无线信号的解调参考信号,提升了资源的利用效率。
-本申请中的所述第一序列或者所述第一空口资源被用于指示所述第二空口资源和所述第三空口资源中的至少之一,避免额外的信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一特征无线信号,第一特征无线信号和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的一个空口资源所占用的时频资源示意图;
图7示出了根据本申请的一个实施例的Q2个空口资源的示意图;
图8示出了根据本申请的一个实施例的空口资源池的示意图;
图9示出了根据本申请的一个实施例的第一配置信息和第二配置信息之间的配置关系示意图;
图10示出了根据本申请的一个实施例的第一空口资源,第二空口资源和第三空口资源之间关系的示意图;
图11示出了根据本申请的一个实施例的第一控制信令和第二无线信号的关系的示意图;
图12示出了根据本申请的一个实施例的Q1个第四类特征无线信号分别在Q1个第四类空口资源上传输的示意图;
图13示出了根据本申请的一个实施例的用于用户设备中的处理装置的结构框图;
图14示出了根据本申请的一个实施例的用于基站设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了发送第一特征无线信号,第二特征无线信号和第一无线信号的流程图,如附图1所示。
在实施例1中,本申请中的用户设备在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,所述第一身份被用于标识所述用户设备。
作为一个实施例,所述第一身份被用于标识无线信号的序列。
作为一个实施例,所述第一身份被用于生成对无线信号加扰的加扰序列。
作为一个实施例,所述第一身份由一个更高层信令配置。
作为一个实施例,所述第一身份是半静态配置的。
作为一个实施例,所述第一身份由一个物理层信令配置。
作为一个实施例,所述第一身份是动态配置的。
作为一个实施例,所述第一身份是RNTI(Radio Network Temporary Identifier,无线网络临时标识)。
作为一个实施例,所述第一身份是C-RNTI(Cell RNTI,小区无线网络临时标识)。
作为一个实施例,所述第一身份是TC-RNTI(Temporal C-RNTI,临时小区无线网络临时标识)。
作为一个实施例,所述第一身份是RA-RNTI(Radio Access RNTI,随机接入无线网络临时标识)。
作为一个实施例,所述第一身份是SI-RNTI(System Information RNTI,系统信息无线网络临时标识)。
作为一个实施例,所述第一身份是P-RNTI(Paging RNTI,寻呼无线网络临时标识)。
作为一个实施例,所述第一身份是不小于0,且不大于2 30的整数。
作为一个实施例,所述第一身份是一个16位二进制的非负整数。
作为一个实施例,所述第一序列是伪随机序列。
作为一个实施例,所述第一序列是Gold序列。
作为一个实施例,所述第一序列是M序列。
作为一个实施例,所述第一序列是Zadeoff-Chu序列。
作为一个实施例,所述第一特征无线信号是由所述第一序列依次经过序列生成(Sequence Generation),调制(Modulation)和资源粒子映射(Resource Element Mapping),宽带符号生成(Generation)之后的输出。
作为一个实施例,所述第一特征无线信号是由所述第一序列经过序列生成,调制和资源粒子映射,宽带符号生成中的至少之一之后的输出。
作为一个实施例,所述第一特征无线信号携带前导序列(Preamble)。
作为一个实施例,所述第一特征无线信号在RACH(Random Access Channel)传输。
作为一个实施例,所述第一特征无线信号在PRACH(Physical Random Access Channel,物理随机接入信道)上传输。
作为一个实施例,所述第一特征无线信号在NPRACH(Narrowband Physical Random Access Channel,窄带物理随机接入信道)上传输。
作为一个实施例,所述第一特征无线信号在UL-SCH(Uplink Shared Channel,上行共享信道)传输。
作为一个实施例,所述第一特征无线信号在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一个实施例,所述第一特征无线信号在NPUSCH(Narrowband Physical Uplink Shared Channel,窄带物理上行共享信道)上传输。
作为一个实施例,所述第一特征无线信号在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上传输。
作为一个实施例,所述第一特征无线信号在SPUCCH(Short PUCCH,短物理上行控制信道)上传输。
作为一个实施例,所述第二序列是伪随机序列。
作为一个实施例,所述第二序列是Gold序列。
作为一个实施例,所述第二序列是M序列。
作为一个实施例,所述第二序列是Zadeoff-Chu序列。
作为一个实施例,所述第二特征无线信号是由所述第二序列依次经过序列生成,调制和资源粒子映射,宽带符号生成之后的输出。
作为一个实施例,所述第二特征无线信号是由所述第二序列经过序列生成,调制和资源粒子映射,宽带符号生成中的至少之一之后的输出。
作为一个实施例,所述第二特征无线信号携带前导序列(Preamble)。
作为一个实施例,所述第二特征无线信号在RACH(Random Access Channel)传输。
作为一个实施例,所述第二特征无线信号在PRACH上传输。
作为一个实施例,所述第二特征无线信号在NPRACH上传输。
作为一个实施例,所述第二特征无线信号在UL-SCH传输。
作为一个实施例,所述第二特征无线信号在PUSCH上传输。
作为一个实施例,所述第二特征无线信号在NPUSCH上传输。
作为一个实施例,所述第二特征无线信号在PUCCH上传输。
作为一个实施例,所述第二特征无线信号在SPUCCH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号都在PRACH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号都在NPRACH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号都在PUSCH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在PRACH和PUSCH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在NPRACH和PUSCH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在PRACH和NPUSCH上发送。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在NPRACH和NPUSCH上发送。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在PRACH和PUCCH上传输。
作为一个实施例,所述第一特征无线信号和所述第二特征无线信号分别在NPRACH和PUCCH上传输。
作为一个实施例,所述第一无线信号包括第一信息比特块。
作为一个实施例,所述第一信息比特块包括正整数个依次排列的比特。
作为一个实施例,所述第一信息比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一信息比特块包括一个CB(Code Block,码块)。
作为一个实施例,所述第一无线信号是由所述第一信息比特块依次经过分段(Segmentation),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射器(Layer Mapping),预编码(Precoding),码分复用(Code Division Multiplexing),资源粒子映射(Resource Element Mapping),基带信号生成(Baseband Signal Generation),上变频(Upconversion)生成之后的输出,所述第一信息比特块包括一个传输块(Transport Block)中的全部或部分比特。
作为一个实施例,所述第一无线信号是由所述第一信息比特块经过分段,信道编码,速率匹配,串联,加扰,调制,层映射器,预编码,码分复用,资源粒子映射,基带信号生成,上变频生成中的至少之一之后的输出,所述第一信息比特块包括一个传输块中的全部或部分比特。
作为一个实施例,第一加扰序列被用于所述第一无线信号中的加扰。
作为一个实施例,所述第一信息比特块包括RRC连接请求(Radio Resource Control Connection Request,无线资源控制连接请求)消息,RRC重配完成(RRC Reconfiguration Complete)消息,RRC连接重建请求(RRC Connection Reestablishment Request)消息和上行信息转换(Uplink Information Transfer)中的一种或多种。
作为一个实施例,所述第一信息比特块包括所述第一身份。
作为一个实施例,所述第一信息比特块包括所述RRC连接请求消息,所述RRC连接请求消息包括所述第一身份。
作为一个实施例,所述第一身份被用于生成所述第一无线信号。
作为一个实施例,所述第一身份被用于生成所述第一加扰序列。
作为一个实施例,所述第一无线信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一无线信号包括一个MAC(Medium Access Control,媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第一无线信号包括一个MAC CE(Control Element,控制元)中的一个或多个域(Field)。
作为一个实施例,所述第一无线信号包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第一无线信号包括一个RRC IE(Information Element,信息元) 中的一个或多个域(Field)。
作为一个实施例,所述第一无线信号在UL-SCH上传输。
作为一个实施例,所述第一无线信号在PUSCH上传输。
作为一个实施例,所述第一无线信号在NPUSCH上传输。
作为一个实施例,所述第一无线信号在PUCCH上传输。
作为一个实施例,所述第一无线信号在SPUCCH上传输。
作为一个实施例,所述第二特征无线信号所经历信道的小尺度(small-scale)特性(properties)能被用于推断出所述第一无线信号所经历信道的小尺度特性。
作为一个实施例,所述小尺度特性包括CIR(Channel Impulse Response,信道冲激响应),PMI(Precoding Matrix Indicator,预编码矩阵指示),CQI(Channel Quality Indicator,信道质量指示)和RI(Rank Indicator,秩指示)中的一种或者多种。
作为一个实施例,所述第二特征无线信号与所述第一无线信号的发送是QCL(Quasi-Co-Located,准共址)的。
作为一个实施例,QCL的具体定义参见3GPP TS38.214中的5.1.5章节。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:能够从所述一个天线端口上发送的无线信号的全部或者部分大尺度(large-scale)特性(properties)推断出所述另一个天线端口上发送的无线信号的全部或者部分大尺度特性。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:所述一个天线端口和所述另一个天线端口至少有一个相同的QCL参数(QCL parameter)。
作为一个实施例,一个天线端口和另一个天线端口QCL是指:能够从所述一个天线端口的至少一个QCL参数推断出所述另一个天线端口的至少一个QCL参数。
作为一个实施例,QCL参数包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Dopper shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters),空间发送参数(Spatial Tx parameters),到达角(angle of arrival),离开角(angle of departure)和空间相关性中的一种或者多种。
作为一个实施例,所述第二特征无线信号和所述第一无线信号被用来从相同的P个天线端口发送,所述P是正整数。
作为一个实施例,所述第二特征无线信号和所述第一无线信号被用来从相同的C个多址签名发送,所述C是正整数。
作为一个实施例,第一目标序列池包括V个第一类目标序列,第一目标序列是所述V个第一类目标序列中的之一,所述V是正整数。
作为一个实施例,所述V等于1。
作为一个实施例,所述第一目标序列池是预定义的,即不需要信令配置。
作为一个实施例,所述第一目标序列是预定义的,即不需要信令配置。
作为一个实施例,所述第一目标序列是所述用户设备从V个第一类目标序列中自主选择任意一个所述第一类目标序列。
作为一个实施例,所述第一目标序列是本申请中的所述第一序列。
作为一个实施例,所述第一目标序列是本申请中的所述第二序列。
作为一个实施例,所述第一目标序列包括本申请中的所述第一序列以及所述第二序列。
作为一个实施例,所述第一身份被用于计算所述第一目标序列在所述第一目标序列池中的索引或者序列号。
作为一个实施例,所述第一身份被用于指示所述第一目标序列在所述第一目标序列池中的索引。
作为一个实施例,所述第一身份被用于从N个候选目标序列数目{V 1,…,V N}中指示所述V,所述V是所述N个候选目标序列数目{V 1,…,V N}中的一个候选目标序列数目, 所述N是大于0的正整数,所述N个候选目标序列数目中从所述V 1到所述V N都是正整数。
作为一个实施例,所述第一目标序列池的参数包括第一目标序列长度,第一目标根序列索引和第一目标序列池循环移位值中一种或者多种。
作为一个实施例,所述第一身份被用于从正整数个候选序列长度中指示所述第一目标序列池的参数中所述第一目标序列长度,所述第一目标序列长度是所述正整数个候选序列长度中的一个候选序列长度。
作为一个实施例,所述第一身份被用于计算所述第一目标序列池的参数中所述第一目标根序列索引。
作为一个实施例,所述第一身份被用于计算所述第一目标序列池的参数中所述第一目标序列池循环移位值。
作为一个实施例,第二身份被用于标识小区,网络设备,接入节点,终端组,虚拟小区中的至少之一,所述终端组中包括多个终端,所述用户设备是所述终端组中的一个终端,所述第二身份是不小于0的整数。
作为一个实施例,所述第二身份是不小于0,且不大于4000的整数。
作为一个实施例,所述第二身份被用于确定所述第一目标序列池。
作为一个实施例,所述第二身份被用于从正整数个候选序列长度中指示所述第一目标序列池的参数中所述第一目标序列长度,所述第一目标序列长度是所述正整数个候选序列长度中的一个候选序列长度。
作为一个实施例,所述第二身份被用于计算所述第一目标序列池的参数中所述第一目标根序列索引。
作为一个实施例,所述第二身份被用于计算所述第一目标序列池的参数中所述第一目标序列池循环移位值。
作为一个实施例,所述第一序列池的参数包括第一序列长度,第一根序列索引和第一序列池循环移位值中的一种或者多种。
作为一个实施例,所述第一目标序列长度是本申请中所述第一序列池的参数中所述第一序列长度。
作为一个实施例,所述第一目标根序列索引是本申请中所述第一序列池的参数中所述第一根序列索引。
作为一个实施例,所述第一目标序列池循环移位值是本申请中所述第一序列池的参数的所述第一序列池循环移位值。
作为一个实施例,所述第二序列池的参数包括第二序列长度,第二根序列索引和第二序列池循环移位值中的一种或者多种。
作为一个实施例,所述第一目标序列长度是本申请中所述第二序列池的参数中所述第二序列长度。
作为一个实施例,所述第一目标根序列索引是本申请中所述第二序列池的参数中所述第二根序列索引。
作为一个实施例,所述第一目标序列池循环移位值是本申请中所述第二序列池的参数中所述第二序列池循环移位值。
作为一个实施例,第二目标序列池包括U个第二类序列组,所述U个第二类序列组中任意一个第二类序列组包括W个第二类目标序列;第二目标序列组是所述U个第二类序列组中的之一,第二目标序列是给定的一个所述第二类序列组所包括的W个第二类目标序列中的之一,所述U和所述W是正整数。
作为一个实施例,所述U等于30。
作为一个实施例,所述W等于1。
作为一个实施例,所述W等于2。
作为一个实施例,所述第二目标序列池是预定义的,即不需要信令配置。
作为一个实施例,所述第二目标序列组是预定义的,即不需要信令配置。
作为一个实施例,所述第二目标序列是预定义的,即不需要信令配置。
作为一个实施例,所述第二目标序列组是所述用户设备从U个第二类序列组中自主选择任意一个所述第二类序列组。
作为一个实施例,所述第二目标序列是所述用户设备从所述第二目标组所包括的W个第二类目标序列中自主选择任意一个所述第二类目标序列。
作为一个实施例,所述第二目标序列是本申请中的所述第一序列。
作为一个实施例,所述第二目标序列是本申请中的所述第二序列。
作为一个实施例,所述第二目标序列包括本申请中的所述第一序列以及所述第二序列。
作为一个实施例,所述第一身份被用于计算所述第二目标序列组在所述第二目标序列池中的索引或者组号。
作为一个实施例,所述第一身份被用于指示所述第二目标序列组在所述第二目标序列池中的索引。
作为一个实施例,所述第一身份被用于计算所述第二目标序列在所述第二目标序列组中的索引或者序列号。
作为一个实施例,所述第一身份被用于指示所述第二目标序列在所述第二目标序列组中的索引。
作为一个实施例,所述第一身份被用于从M个候选目标序列组数目{U 1,…,U N}中指示所述U,所述U是所述M个候选目标序列组数目{U 1,…,U M}中的一个候选目标序列组数目,所述M是大于0的正整数,所述M个候选目标序列组数目中从所述U 1到所述U M都是正整数。
作为一个实施例,对于所述第二目标组,所述第一身份被用于从R个候选目标序列数目{W 1,…,W R}中指示所述W,所述W是所述R个候选目标序列数目{W 1,…,W R}中的一个候选目标序列数目,所述R是大于0的正整数,所述R个候选目标子序列数目中从所述W 1到所述W R都是正整数。
作为一个实施例,所述第二目标序列池的参数包括第二目标序列长度,第二目标根序列索引,第二目标序列池循环移位值中的一种或者多种。
作为一个实施例,所述第一身份被用于从多个候选序列长度中指示所述第二目标序列池的参数中所述第二目标序列长度,所述第二目标序列长度是多个候选序列长度中的一个候选序列长度。
作为一个实施例,所述第一身份被用于计算所述第二目标序列池的参数中所述第二目标根序列索引。
作为一个实施例,所述第一身份被用于计算所述第二目标序列池的参数中所述第二目标序列池循环移位值。
作为一个实施例,所述第二目标序列长度是本申请中所述第一序列池的参数中所述第一序列长度。
作为一个实施例,所述第二目标根序列索引是本申请中所述第一序列池的参数中所述第一根序列索引。
作为一个实施例,所述第二目标序列池循环移位值是本申请中所述第一序列池的参数的所述第一序列池循环移位值。
作为一个实施例,所述第二目标序列长度是本申请中所述第二序列池的参数中所述第二序列长度。
作为一个实施例,所述第二目标根序列索引是本申请中所述第二序列池的参数中所述第二根序列索引。
作为一个实施例,所述第二目标序列池循环移位值是本申请中所述第二序列池的参数中所述第二序列池循环移位值。
作为一个实施例,所述第一身份被用于生成所述第一序列。
作为一个实施例,所述第一序列的参数包括第一序列初始值,第一序列起始元素索引,第一序列截段和第一序列循环移位中的一种或者多种。
作为上实施例的一个子实施例,所述第一序列起始元素索引是所述第一序列的第一个元素在一个长序列所包含的所有候选元素中的位置。
作为上实施例的一个子实施例,所述第一序列截段是从所述第一序列的第一个元素到所述第一序列的最后一个元素的一段序列在一个长序列中的序列段。
作为一个实施例,所述第一身份被用于计算所述第一序列的参数中所述第一序列初始值。
作为一个实施例,所述第一身份被用于计算所述第一序列的参数中的所述第一序列起始元素索引。
作为一个实施例,所述第一身份被用于从一个长序列的正整数个候选序列截段中指示所述第一序列的参数中所述第一序列截段,所述第一序列截段是所述正整数个候选序列截段的一个候选序列截段。
作为一个实施例,所述第一身份被用于计算所述第一序列的参数的所述第一序列循环移位。
作为一个实施例,所述第一身份被用于从正整数个候选循环移位中指示所述第一序列的参数中所述第一序列循环移位,所述第一序列循环移位是所述正整数个候选循环移位中的一个候选循环移位。
作为一个实施例,所述第一身份被用于生成所述第一序列的加扰序列。
作为一个实施例,所述第一身份被用于生成所述第二序列。
作为一个实施例,所述第二序列的参数包括第二序列初始值,第二序列起始元素索引,第二一序列截段和第二序列循环移位中的一种或者多种。
作为上实施例的一个子实施例,所述第二序列起始元素索引是所述第二序列的第一个元素在一个长序列所包含的所有候选元素中的位置。
作为上实施例的一个子实施例,所述第二序列截段是从所述第二序列的第一个元素到所述第二序列的最后一个元素的一段序列在一个长序列中的序列段。
作为一个实施例,所述第一身份被用于计算所述第二序列的参数中所述第二序列初始值。
作为一个实施例,所述第一身份被用于计算所述第二序列的参数中所述第二序列起始元素索引。
作为一个实施例,所述第一身份被用于从一个长序列的正整数个候选序列截段中指示所述第二序列的参数中所述第二序列截段,所述第二序列截段是所述正整数个候选序列截段的一个候选序列截段。
作为一个实施例,所述第一身份被用于计算所述第二序列的参数中所述第二序列循环移位。
作为一个实施例,所述第一身份被用于从正整数个候选循环移位中指示所述第二序列的参数中所述第二序列循环移位,所述第二序列循环移位是所述正整数个候选循环移位中的一个候选循环移位。
作为一个实施例,所述第一身份被用于生成所述第二序列的加扰序列。
作为一个实施例,所述第一身份被用于同时生成所述第一序列和所述第二序列。
作为一个实施例,所述第一信息比特块包括所述第一身份。
作为一个实施例,所述第一信息比特块包括编码前的信息比特,编码后的比特,加上CRC(Cyclic Redundancy Check,循环冗余校验)码后的比特和加扰后的比特中的一种或多种。
作为一个实施例,空口映射方式包括先时后频,先频后时中的一种或多种。
作为一个实施例,所述第一无线信号的参数包括第一比特块尺寸,第一重传版本,第一层映射方式,第一码字旋转矩阵,第一编码调制方式(MCS,Modulation Coding Scheme),第一预编码和第一空口资源映射方式中的一种或者多种,所述第一比特块尺寸是所述第一信息比特块的比特个数。
作为一个实施例,所述第一身份被用于从正整数个候选比特块尺寸中指示所述第一无线信号的参数中所包括的所述第一比特块尺寸,所述第一比特块尺寸是所述正整数个候选比特块尺寸中的一个候选比特块尺寸。
作为一个实施例,所述第一身份被用于从正整数个候选重传版本中指示所述第一无线信号的参数中所包括的所述第一重传版本,所述第一重传版本是所述正整数个候选重传版本中的一个候选重传版本。
作为一个实施例,所述第一身份被用于从正整数个候选层映射方式中指示所述第一无线信号的参数中所包括的所述第一层映射方式,所述第一层映射方式是所述正整数个候选层映射方式中的一个候选层映射方式。
作为一个实施例,所述第一身份被用于从正整数个候选码字旋转矩阵中指示所述第一无线信号的参数中所包括的所述第一码字旋转矩阵,所述第一码字旋转矩阵是所述正整数个候选码字旋转矩阵中的一个候选码字旋转矩阵。
作为一个实施例,所述第一身份被用于正整数个候选编码调制方式中指示所述第一无线信号的参数中所述第一编码调制方式,所述第一编码调制方式是所述正整数个候选编码调制方式中的一个候选编码调制方式。
作为一个实施例,所述第一身份被用于从正整数个候选预编码矩阵中指示所述第一无线信号的参数中所述第一预编码,所述第一预编码是多个候选预编码矩阵中的一个候选预编码矩阵。
作为一个实施例,所述第一身份被用于从多个候选空口资源映射方式中指示所述第一无线信号的参数的所述第一空口资源映射方式,所述第一空口资源映射方式是多个候选空口资源映射方式中的一个候选空口资源映射方式。
作为一个实施例,所述第一身份被用于生成所述第一加扰序列。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单 元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的所述用户设备。
作为一个实施例,所述UE201对应本申请中的所述终端。
作为一个实施例,所述gNB203对应本申请中的所述基站设备。
作为一个实施例,所述UE201支持免授予(Grant-Free)的上行传输。
作为一个实施例,所述gNB203支持免授予的上行传输。
作为一个实施例,所述UE201支持基于NOMA(Non-Orthogonal Multiple Access,非正交多址接入)的无线通信。
作为一个实施例,所述gNB203支持基于NOMA的无线通信。
作为一个实施例,所述UE201支持基于非竞争的上行传输。
作为一个实施例,所述gNB203支持基于非竞争的上行传输。
作为一个实施例,所述UE201支持基于竞争的上行传输。
作为一个实施例,所述gNB203支持基于竞争的上行传输。
作为一个实施例,所述UE201支持简化的随机接入。
作为一个实施例,所述gNB203支持简化的随机接入。
作为一个实施例,所述UE201支持基于波束赋形(Beamforming)的上行传输。
作为一个实施例,所述gNB203支持基于波束赋形的上行传输。
作为一个实施例,所述UE201支持基于大规模阵列天线(Massive MIMO)的上行传输。
作为一个实施例,所述gNB203支持基于大规模阵列天线的上行传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能,层1之上的层属于更高层。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在用户设备与基站设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的基站设备处。虽然未图示,但用户设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供基站设备之间的对用户设备的越区移动支持。RLC子层303提供上部层数据包的分 段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在用户设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于用户设备和基站设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306。RRC子层306负责获得无线资源(即,无线承载)且使用基站设备与用户设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述基站设备。
作为一个实施例,本申请中的所述第一特征无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二特征无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息比特块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息比特块是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第一信息比特块是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第一配置信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一配置信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一配置信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一配置信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第一配置信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第二配置信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二配置信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二配置信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二配置信息是由所述L2层传递给所述PHY301的。
作为一个实施例,本申请中的所述第二配置信息是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第一控制信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一控制信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一控制信令是由所述MAC子层302传递给所述PHY301的。
作为一个实施例,本申请中的所述第二无线信号
作为一个实施例,本申请中的所述第二信息比特块生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息比特块生成于所述MAC子层301。
作为一个实施例,本申请中的所述第二信息比特块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息比特块是由L2层传递给PHY301的。
作为一个实施例,本申请中的所述第二信息比特块是由所述MAC子层302传递给PHY301的
作为一个实施例,本申请中的所述Q1个第四类特征无线信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
用户设备(450)包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。
基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。
在UL(Uplink,上行)传输中,与用户设备(450)有关的处理包括:
-数据源467,提供上层数据包到控制器/处理器490,数据源467表示L2层之上的所有协议层;
-发射处理器455,实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、加扰、码分复用,交织、调制和多天线发送等,并生成基带信号;物理层信号(包括本申请中所述第一特征无线信号,所述第二特征无线信号和所述第一无线信号中的至少之一)生成于发射处理器455;
-发射器456,用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452;
-控制器/处理器490,通过基于基站设备410的无线资源分配来实施包头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议,上层数据包中可以包括数据或者控制信息,例如UL-SCH(Uplink Shared Channel,上行共享信道);
-控制器/处理器490,还负责HARQ操作、丢失包的重新发射,和到基站设备410的信令;
-控制器/处理器490,自行确定目标无线信号及由该信号生成的物理层信号所占用的目标空口资源,并将结果发送到发射处理器455;所述目标无线信号包括本申请中的所述第一序列(所述目标空口资源相应的包括本申请中的所述第一空口资源),所述第二序列(所述目标空口资源相应的包括本申请中的所述第二空口资源)和所述第一信息比特块(所述目标空口资源相应的包括本申请中的所述第三空口资源)中的至少之一;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解扰、解交织、解调、解预编码和物理层控制信令提取等。
在UL传输中,与基站设备(410)有关的处理包括:
-接收器416,通过其相应天线420接收射频信号,把接收到的射频信号转换成基带信号,并把基带信号提供到接收处理器412;
-接收处理器412,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解调、解扰、解扩频(Despreading)、解交织、信道译码和物理层信令提取等;随后将数据和/或控制信号提供到控制器/处理器440;
-控制器/处理器440,实施L2层功能,以及与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,提供输送与逻辑信道之间的多路分用、包重组装、解密、包头解压缩、控制信号处理以恢复来自用户设备410的上层数据包;来自控制器/处理器440的上层数据包可提供到核心网络;
-控制器/处理器440,确定目标无线信号可能占用的目标空口资源,并将结果发送到接收处理器412;通过盲检测确定所述目标无线信号是否占用所述目标空口资源;所述目标无线信号包括本申请中的所述第一序列(所述目标空口资源相应的包括本申请中的所述第一空口资源),所述第二序列(所述目标空口资源相应的包括本申请中的所述第二空口资源)和所述第一信息比特块(所述目标空口资源相应的包括本申请中的所述第三空口资源)中的至少之一。
在DL(Downlink,下行)传输中,与基站设备(410)有关的处理包括:
-控制器/处理器440,上层数据包到达,控制器/处理器440提供包头压缩、加密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;上层数据包中可以包括数据和/或控制信息,例如DL-SCH(Downlink Shared Channel,下行共享信道);
-控制器/处理器440,与存储程序代码和数据的存储器430相关联,存储器430可以为计算机可读媒体;
-控制器/处理器440,包括调度单元以传输需求,调度单元用于调度与传输需求对应的目标空口资源;
-控制器/处理器440,确定发送待发送的下行信令/数据,并将结果发送到发射处理器415;
-发射处理器415,接收控制器/处理器440的输出比特流,实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、加扰、交织、调制、预编码、功率控制/分配和物理层控制信令生成等,所述物理层控制信令包括PBCH(Physical Broadcast Channel,物理广播信道),NPBCH(Narrowband PBCH,窄带物理广播信道),PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道),PDCCH(Physical Downlink Control Channel,物理下行控制信道),NPDCCH(Narrowband PDCCH,窄带物理下行控制信道),EPDCCH(Enhanced PDCCH,增强物理下行控制信道),SPDCCH(Short PDCCH,短物理下行控制信道),PSCCH(Physical Sidelink Control Channel,物理副链路控制信道),PSDCH(Physical Sidelink Discovery Channel,物理副链路探索信道),PHICH(Physical Hybrid automatic repeat request Indicator Channel,物理混合自动重传指示信道),PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道)和RS(Reference Signal,参考信号)中的至少之一;
-发射器416,用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去;每个发射器416对各自的输入符号流进行采样处理得到各自的采样信号流。每个发射器416对各自的采样流进行进一步处理(比如数模转换,放大,过滤,上变频等)得到下行信号。
在DL传输中,与用户设备(450)有关的处理可以包括:
-接收器456,用于将通过天线460接收的射频信号转换成基带信号,提供给接收处理器452;
-接收处理器452,实施用于L1层(即,物理层)的各种信号接收处理功能包括多天线接收、解调、解交织、解扰、解码和物理层控制信令提取等;
-控制器/处理器490,接收接收处理器452输出的比特流,提供包头解压缩、解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议;
-控制器/处理器490与存储程序代码和数据的存储器480相关联,存储器480可以为计算机可读媒体。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站设备。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和 所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上接收第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上接收第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,所述天线460、所述发射器456,所述发射处理器455和所述控制器/处理器490中的至少前两者被用于在本申请中的所述第一空口资源上发送本申请中的所述第一特征无线信号。
作为一个实施例,所述天线460、所述发射器456,所述发射处理器455和所述控制器/处理器490中的至少前两者被用于在本申请中的所述第二空口资源上发送本申请中的所述第二特征无线信号。
作为一个实施例,所述天线460、所述发射器456,所述发射处理器455和所述控制器/处理器490中的至少前两者被用于在本申请中的所述第三空口资源上发送本申请中的所述第一无线信号。
作为一个实施例,所述天线460、所述接收器456、所述接收处理器452和所述控制器/处理器490中的至少前两者被用于接收本申请中的所述第一配置信息。
作为一个实施例,所述天线460、所述接收器456、所述接收处理器452和所述控制器/处理器490中的至少前两者被用于接收本申请中的所述第二配置信息。
作为一个实施例,所述天线460、所述接收器456、所述接收处理器452和所述控制器/处理器490中的至少前两者被用于在本申请中的所述第一时间窗内监测本申请中的所述第一 控制信令。
作为一个实施例,所述天线460、所述接收器456、所述接收处理器452和所述控制器/处理器490中的至少前两者被用于判断是否在本申请中的所述第一时间窗内成功接收到本申请中的所述第一控制信令。
作为一个实施例,所述天线460、所述接收器456、所述接收处理器452和所述控制器/处理器490中的至少前两者被用于在本申请中的所述第四空口资源上接收本申请中的所述第二无线信号。
作为一个实施例,所述天线460、所述发射器456,所述发射处理器455和所述控制器/处理器490中的至少前两者被用于在本申请中的所述Q1个第四类空口资源上分别发送本申请中的所述Q1个第四类特征无线信号。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第一身份。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第一序列。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第二序列。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第一信息比特块。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第二空口资源。
作为一个实施例,所述控制器/处理器490被用于确定本申请中的所述第三空口资源。
作为一个实施例,所述天线420、所述接收器416、所述接收处理器412和所述控制器/处理器440中的至少前两者被用于在本申请中的所述第一空口资源上接收本申请中的所述第一特征无线信号。
作为一个实施例,所述天线420、所述接收器416、所述接收处理器412和所述控制器/处理器440中的至少前两者被用于在本申请中的所述第二空口资源上接收本申请中的所述第二特征无线信号。
作为一个实施例,所述天线420、所述接收器416、所述接收处理器412和所述控制器/处理器440中的至少前两者被用于在本申请中的所述第三空口资源上接收本申请中的所述第一无线信号。
作为一个实施例,所述天线420、所述发射器416、所述发射处理器415和所述控制器/处理器440中的至少前两者被用于发送本申请中的所述第一配置信息。
作为一个实施例,所述天线420、所述发射器416、所述发射处理器415和所述控制器/处理器440中的至少前两者被用于发送本申请中的所述第二配置信息。
作为一个实施例,所述天线420、所述发射器416、所述发射处理器415和所述控制器/处理器440中的至少前两者被用于在本申请中的所述第一时间窗内发送本申请中的所述第一控制信令。
作为一个实施例,所述天线420、所述发射器416、所述发射处理器415和所述控制器/处理器440中的至少前两者被用于在本申请中的所述第四空口资源上发送本申请中的所述第二无线信号。
作为一个实施例,所述天线420、所述接收器416、所述接收处理器412和所述控制器/处理器440中的至少前两者被用于在本申请中的所述Q1个第四类空口资源上分别接收本申请中的所述Q1个第四类特征无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,基站N1是用户设备U2的服务小区的维持基站。附图5中,标识为F0的虚线框中的步骤,标识为F1的虚线框中的步骤以及标识为F2的虚线框中的步骤分别是可选的。
对于 基站N1,在步骤S10中发送第一配置信息;在步骤S11中发送第二配置信息;在步骤S12中在第一空口资源上接收第一特征无线信号,在第二空口资源上接收第二特征无线信号,在第三空口资源上接收第一无线信号;在步骤S13中在第一时间窗内发射第一控制信令;在步骤S14中在第四空口资源上发送第二无线信号。
对于 用户设备U2,在步骤S20中接收第一配置信息;在步骤S21中接收第二配置信息;在步骤S22中在第一空口资源上发送第一特征无线信号,在第二空口资源上个发送第二特征无线信号,在第三空口资源上发送第一无线信号;在步骤S23中在第一时间窗内接收第一控制信令;在步骤S24中在第四空口资源上接收第二无线信号。
在实施例5中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关;所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一;所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一;所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一;所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
作为一个实施例,如果所述U2实施基于竞争的上行传输,附图5中的方框F0中的步骤不存在。
作为一个实施例,附图5中的方框F0中的步骤不存在。
作为一个实施例,如果所述U2实施基于免授权的上行传输,附图5中的方框F2中的步骤不存在。
作为一个实施例,附图5中的方框F2中的步骤不存在。
作为一个实施例,如果所述U2实施基于免授权的上行传输,且不需要HARQ ACK/NACK反馈,附图5中的方框F1和方框F2中的步骤都不存在。
作为一个实施例,如果所述U2实施简化的随机接入,附图5中的方框F1和方框F2中的步骤都存在。
作为一个实施例,附图5中的方框F1和方框F2中的步骤都存在或者都不存在。
实施例6
实施例6示例了根据本申请的一个实施例的一个空口资源所占用的时频资源示意图,如附图6所示。在附图6中,虚线小方格代表RE(Resource Element,资源粒子),粗线方格代表目标时频资源块。在附图6中,所述目标时频资源块在频域上占用K个子载波(Subcarrier),在时域上占用L个多载波符号(Symbol),一个空口资源所占用的时频资源包括所述目标时频资源块,所述K和所述L是正整数。
作为一个实施例,所述多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号,OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分多址),DFTS-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing,离散傅里叶变换扩展正交频分复用)符号,FBMC(Filter Bank  Multi-Carrier,滤波器组多载波)符号,IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号中的至少之一。
作为一个实施例,所述目标时频资源块是由正整数个RE组成。
作为一个实施例,一个RE在时域上占用一个多载波符号,在频域上占用一个子载波。
作为一个实施例,所述一个RE所占用的所述一个多载波符号的符号长度与所述一个RE所占用的所述一个子载波的子载波间隔(Subcarrier Spacing)成反比例关系,所述符号长度是所述一个多载波符号在时域上所占用的时间长度,所述子载波间隔是所述一个子载波在频域上所占用的频率宽度。
作为一个实施例,所述一个RE所占用的所述一个子载波的子载波间隔越小,对应的所述一个RE所占用的所述一个多载波符号的符号长度越长。
作为一个实施例,所述一个子载波的子载波间隔(Subcarrier Spacing)是1.25kHz(Kilohertz,千赫兹),2.5kHz,5kHz,15kHz,30kHz,60kHz,120kHz和240kHz中的至少之一。
作为一个实施例,所述目标时频资源块所包括的至少两个RE在频域上对应的子载波间隔相同。
作为一个实施例,所述目标时频资源块所包括的至少两个RE在时域上对应的多载波符号的时间长度相同。
作为一个实施例,所述目标时频资源块在频域上占用K个子载波,在时域上占用L个多载波符号,所述时频资源块所包括的RE个数不大于所述K乘以所述L的积。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给RS(Reference Signal,参考信号)的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给PRACH的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给NPRACH的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给PUCCH的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给SPUCCH的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给PUSCH的RE。
作为一个实施例,所述目标时频资源块所占用的时频资源不包括被分配给NPUSCH的RE。
作为一个实施例,所述目标时频资源块包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述目标时频资源块属于一个RB。
作为一个实施例,所述目标时频资源块的频域资源是一个RB。
作为一个实施例,所述目标时频资源块包括正整数个PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标时频资源块属于一个PRB。
作为一个实施例,所述目标时频资源块的频域资源是一个PRB。
作为一个实施例,所述目标时频资源块包括正整数个PRB pair(Physical Resource Block pair,物理资源块对)。
作为一个实施例,所述目标时频资源块属于一个PRB pair。
作为一个实施例,所述目标时频资源块的频域资源是一个PRB pair。
作为一个实施例,所述目标时频资源块包括正整数个VRB(Virtual Resource Block,虚拟资源块)。
作为一个实施例,所述目标时频资源块属于一个VRB。
作为一个实施例,所述目标时频资源块的频域资源是一个VRB。
作为一个实施例,所述目标时频资源块包括正整数个无线帧(Radio Frame)。
作为一个实施例,所述目标时频资源块属于一个无线帧。
作为一个实施例,所述目标时频资源块的时域资源上是一个无线帧。
作为一个实施例,所述目标时频资源块包括正整数个子帧(Subframe)。
作为一个实施例,所述目标时频资源块属于一个子帧。
作为一个实施例,所述目标时频资源块的时域资源上是一个子帧。
作为一个实施例,所述目标时频资源块包括正整数个时隙(Slot)。
作为一个实施例,所述目标时频资源块属于一个时隙。
作为一个实施例,所述目标时频资源块的时域资源上是一个时隙。
作为一个实施例,所述目标时频资源块包括正整数个多载波符号(Symbol)。
作为一个实施例,所述目标时频资源块属于一个多载波符号。
作为一个实施例,所述目标时频资源块的时域资源上是一个多载波符号。
作为一个实施例,所述目标时频资源块属于PRACH。
作为一个实施例,所述目标时频资源块属于NPRACH。
作为一个实施例,所述目标时频资源块属于PUSCH。
作为一个实施例,所述目标时频资源块属于NPUSCH。
作为一个实施例,所述目标时频资源块属于PUCCH。
作为一个实施例,所述目标时频资源块属于SPUCCH。
作为一个实施例,所述目标时频资源块包括被分配给RS的RE。
作为一个实施例,所述K不大于12。
作为一个实施例,所述L不大于14。
作为一个实施例,所述K等于12,且所述L等于14。
作为一个实施例,所述K等于12,且所述L等于12。
作为一个实施例,所述K等于839,且所述L等于1。
作为一个实施例,所述K等于139,且所述L等于1。
实施例7
实施例7示例了根据本申请的一个实施例的Q2个空口资源的示意图,如附图7所示。
在实施例7中,粗线方格代表一个所述目标时频资源块,空口资源#0,#1,…,#(Q2-1)所占用的时频资源属于同一个所述目标时频资源块;所述空口资源#0,#1,…,#(Q2-1)分别对应Q2个不同的码域资源,即目标多址签名,所述Q2是正整数。
作为一个实施例,所述目标多址签名是一个特征签名序列,一个无线信号的每个调制符号乘以所述特征签名序列后,分别被映射到所述目标时频资源块所包括的正整数个RE上。
作为一个实施例,所述特征签名序列是Walsh序列,伪随机序列,Zadeoff-Chu序列,Gold序列,M序列中的至少之一。
作为一个实施例,所述调制符号是BPSK符号,QPSK符号,16QAM符号,64QAM符号,256QAM符号中的至少之一。
作为一个实施例,所述Q2个不同的码域资源组成本申请中的目标多址签名池。
作为一个实施例,所述空口资源#0,#1,…,#(Q2-1)都占用同一个所述目标时频资源块。
作为上述实施例的一个子实施例,所述空口资源#0,#1,…,#(Q2-1)都占用同一个所述目标时频资源块中除了分配给RS的RE。
作为一个实施例,所述Q2个空口资源在时域共享至少一个多载波符号。
作为一个实施例,所述Q2个空口资源在时域上完全重叠。
作为一个实施例,所述Q2个空口资源在时域上完全重叠,所述Q2个空口资源在频域上完全重叠。
作为一个实施例,所述空口资源#0,#1,…,#(Q2-1)中至少两个空口资源占用同一个所述目标时频资源块中的不同RE。
上述实施例适用于类似SCMA(Sparse code multiple access,稀疏码多址)的方案。
上述实施例适用于类似NOMA(Non-orthogonal Multiple Access,非正交多址)的方案。
作为一个实施例,所述空口资源#0,#1,…,#(Q2-1)包括的码域资源组成本申请中的所述目标多址签名池。
作为一个实施例,本申请中的所述目标空口资源是所述空口资源#0,#1,…,#(Q2-1)中的之一。
作为一个实施例,Q3个所述目标空口资源是所述空口资源#0,#1,…,#(Q2-1)的子集,所述Q3是正整数,所述Q3小于Q2。
作为一个实施例,所述Q3等于所述Q2,所述空口资源#0,#1,…,#(Q2-1)是本申请中的所述Q3个空口资源。
作为一个实施例,Q2个调制符号分别通过乘以所述Q2个不同的特征签名序列之后被映射到所述空口资源#0,#1,…,#(Q2-1)占用的RE上,即所述Q2个调制符号实现了码分复用。
作为一个实施例,所述目标空口资源包括所述目标时频域资源块。
作为一个实施例,所述目标空口资源包括所述目标时频域资源块和所述目标多址签名。
作为一个实施例,所述目标空口资源包括所述目标时频域资源块和目标天线端口。
作为一个实施例,所述目标空口资源包括所述目标时频域资源块,所述目标多址签名和目标天线端口。
作为一个实施例,所述目标空口资源是本申请中的所述第一空口资源。
作为一个实施例,所述目标空口资源是本申请中的所述第二空口资源。
作为一个实施例,所述目标空口资源是本申请中的所述第三空口资源。
作为一个实施例,所述目标空口资源包括本申请中的所述第一空口资源以及所述第二空口资源。
作为一个实施例,所述目标空口资源包括本申请中的所述第二空口资源以及所述第三空口资源。
作为一个实施例,所述第一空口资源包括第一时频资源块和第一多址签名。
作为一个实施例,所述第二空口资源包括第二时频资源块和第二多址签名。
作为一个实施例,所述第三空口资源包括第三时频资源块和第三多址签名。
作为一个实施例,所述目标时频资源块是本申请中的所述第一时频资源块。
作为一个实施例,所述目标时频资源块是本申请中的所述第二时频资源块。
作为一个实施例,所述目标时频资源块是本申请中的所述第三时频资源块。
作为一个实施例,所述目标时频资源块包括本申请中的所述第一时频资源块以及所述第二时频资源块。
作为一个实施例,所述目标时频资源块包括本申请中的所述第二时频资源块以及所述第三时频资源块。
作为一个实施例,所述目标多址签名是本申请中的所述第一多址签名。
作为一个实施例,所述目标多址签名是本申请中的所述第二多址签名。
作为一个实施例,所述目标多址签名是本申请中的所述第三多址签名。
作为一个实施例,所述目标多址签名包括本申请中的所述第一多址签名以及所述第 二多址签名。
作为一个实施例,所述目标多址签名包括本申请中的所述第二多址签名以及所述第三多址签名。
实施例8
实施例8示例了根据本申请的一个实施例的空口资源池的示意图,如附图8所示。
在附图8中,一个斜纹格填充的方框代表一个空口资源,一个空口资源池包括空口资源#0,#1,…,#(Q-1);所述空口资源#0,#1,…,#(Q-1)中的任意两个空口资源包括不同的时频资源块或者不同的多址签名。
作为一个实施例,目标空口资源池包括所述Q个第一类目标空口资源,所述目标空口资源是所述Q个第一类目标空口资源中的之一。
作为一个实施例,所述目标空口资源池是本申请中的所述第一空口资源池。
作为一个实施例,所述目标空口资源池是本申请中的所述第二空口资源池。
作为一个实施例,所述目标空口资源池是本申请中的所述第三空口资源池。
作为一个实施例,所述目标空口资源池的参数包括目标空口资源个数,目标空口资源尺寸和目标空口资源位置中的至少之一。
作为上述实施例的一个子实施例,所述目标空口资源个数是所述目标空口资源池所包括的所述目标空口资源的个数。
作为上述实施例的一个子实施例,所述目标空口资源个数是所述目标空口资源池所包括的所述目标多址签名的个数。
作为上述实施例的一个子实施例,所述目标空口资源个数是所述目标空口资源池所包括的所述目标空口资源和所述目标多址签名的总数目。
作为上述实施例的一个子实施例,所述目标空口资源个数是所述Q。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的RE个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的子载波个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的RB个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的PRB个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的PRB pair个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的VRB个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的多载波符号个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的时隙个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的子帧个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的无线帧个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源在时域上所占用的采样点个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的所述目标时频资源块个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所采用的所述目标多址签名个数。
作为上述实施例的一个子实施例,所述目标空口资源尺寸是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所包括的所述多址签名和所述目标时频资源块的总数目。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的RE的时频资源位置。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的子载波在所述目标时频资源块中的频域上的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的多载波符号在所述目标时频资源块中的时域上的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的RB在所述时频资源块中的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的PRB在所述时频资源块中的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的PRB pair在所述时频资源块中的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的所述时频资源块在系统带宽中的频域上的索引。
作为上述实施例的一个子实施例,所述目标空口资源位置是所述Q个第一类目标空口资源中的至少一个所述第一类目标空口资源所占用的所述目标多址签名在所述目标多址签名池中的索引。
作为一个实施例,所述第一空口资源池的参数包括第一空口资源个数,第一空口资源尺寸和第一空口资源位置中的至少之一。
作为一个实施例,所述第二空口资源池的参数包括第二空口资源个数,第二空口资源尺寸和第二空口资源位置中的至少之一。
作为一个实施例,所述第三空口资源池的参数包括第三空口资源个数,第三空口资源尺寸和第三空口资源位置中的至少之一。
作为一个实施例,所述目标空口资源个数是本申请中的所述第一空口资源个数。
作为一个实施例,所述目标空口资源个数是本申请中的所述第二空口资源个数。
作为一个实施例,所述目标空口资源个数是本申请中的所述第三空口资源个数。
作为一个实施例,所述目标空口资源尺寸是本申请中的所述第一空口资源尺寸。
作为一个实施例,所述目标空口资源尺寸是本申请中的所述第二空口资源尺寸。
作为一个实施例,所述目标空口资源尺寸是本申请中的所述第三空口资源尺寸。
作为一个实施例,所述目标空口资源位置是本申请中的所述第一空口资源位置。
作为一个实施例,所述目标空口资源位置是本申请中的所述第二空口资源位置。
作为一个实施例,所述目标空口资源位置是本申请中的所述第三空口资源位置。
实施例9
实施例9示例了根据本申请的一个实施例的第一配置信息和第二配置信息之间的配置关系示意图,如附图9所示。在附图9中,在情况A中,粗线方框代表所述目标空口资源池,斜纹格填充代表所述目标空口资源;在情况B中,粗线方框代表所述第一目标序列池,斜纹 格填充代表所述第一目标序列。
在实施例9中,本申请中的所述用户设备接收所述第一配置信息,接收所述第二配置信息;所述第一配置信息被用于确定本申请中的所述第一目标序列池,所述第二配置信息被用于确定本申请中的所述第一目标序列;或者,所述第一配置信息被用于确定所述目标空口资源池,所述第二配置信息被用于确定所述目标空口资源。
作为一个实施例,所述第一配置信息是动态配置的。
作为一个实施例,所述第一配置信息是半静态配置的。
作为一个实施例,所述第一配置信息被用于配置所述第一序列池的参数,包括所述第一序列长度,所述第一序列个数,所述第一根序列索引和所述第一序列池循环移位值中的一种或者多种。
作为一个实施例,所述第一配置信息被用于配置所述第二序列池的参数,包括所述第二序列长度,所述第二序列组个数,所述第二序列个数,所述第二根序列索引和所述第二序列池循环移位值中的一种或者多种。
作为一个实施例,所述第二身份和所述第一配置信息被用于共同指示所述第一序列池的参数中的所述第一序列长度。
作为一个实施例,所述第二身份和所述第一配置信息被用于共同指示所述第二序列池的参数中的所述第二序列长度。
作为一个实施例,所述第一配置信息被用于配置所述目标空口资源池的参数。
作为一个实施例,所述目标空口资源被用于所述第一配置信令的加扰。
作为一个实施例,所述第一配置信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括RMSI(Remaining Minimum System Information,剩余最小系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括OSI(Other System Information,其他系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括一个更高层信令中的全部或部分。
作为一个实施例,所述第一配置信息包括一个RRC(Radio Resource Control,无线资源控制)信令中的全部或部分。
作为一个实施例,所述第一配置信息包括一个RRC IE(Information Element,信息元)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第一配置信息包括一个MAC CE(Control Element,控制元)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息包括一个PHY层信令中的全部或部分。
作为一个实施例,所述第一配置信息包括一个DCI(Downlink Control Information,下行控制信息)中的一个或多个域(Field)。
作为一个实施例,所述第一配置信息在PBCH(Physical Broadcast Channel,物理广播信道)上传输。
作为一个实施例,所述第一配置信息在NPBCH(Narrowband PBCH,窄带物理广播信道)上传输。
作为一个实施例,所述第一配置信息在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上传输。
作为一个实施例,所述第一配置信息在PMCH(Physical Multicast Channel,物理多播信道)上传输。
作为一个实施例,所述第一配置信息在DL-SCH(Downlink Shared Channel,下行共享信道)上传输。
作为一个实施例,所述第一配置信息在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为一个实施例,所述第一配置信息在NPDSCH(Narrowband Physical Downlink Shared Channel,窄带物理下行共享信道)上传输。
作为一个实施例,所述第一配置信息在PSBCH(Physical Sidelink Broadcast Channel,物理副链路广播信道)上传输。
作为一个实施例,所述第一配置信息在PSDCH(Physical Sidelink Discovery Channel,物理副链路探索信道)上传输。
作为一个实施例,所述第一配置信息在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上传输。
作为一个实施例,第一配置信令包括第一调度信息,所述第一调度信息被用于调度所述第一配置信息,所述第一调度信息包括所占用的时频资源,MCS(Modulation and Coding Scheme,调制编码方式),RV(Redundancy Version,冗余版本),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息和NDI(New Data Indicator,新数据指示)中的至少之一,所述HARQ信息包括ACK(Acknowledge,确认)信号和NACK(Negative Acknowledgement,不确认)信号中的至少之一。
作为一个实施例,所述第一配置信令包括MAC层信令中的全部或部分。
作为一个实施例,所述第一配置信令包括MAC CE中的一个或多个域(Field)。
作为一个实施例,所述第一配置信令包括PHY层信令中的全部或部分。
作为一个实施例,所述第一配置信令包括DCI中的一个或多个域(Field)。
作为一个实施例,所述第一配置信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输。
作为一个实施例,所述第一配置信令在NPDCCH(Narrowband Physical Downlink Control Channel,窄带物理下行控制信道)上传输。
作为一个实施例,所述第一配置信令在EPDCCH(Enhanced Physical Downlink Control Channel,增强物理下行控制信道)上传输。
作为一个实施例,所述第一配置信令在SPDCCH(Short Physical Downlink Control Channel,短物理下行控制信道)上传输。
作为一个实施例,所述第一配置信令在MPDCCH(MTC Physical Downlink Control Channel,MTC物理下行控制信道)上传输。
作为一个实施例,所述第一配置信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上传输。
作为一个实施例,所述第二身份被用于所述第一配置信令的加扰。
作为一个实施例,所述第一配置信令是小区公共的。
作为一个实施例,所述第一配置信令实施终端组特定的。
作为一个实施例,所述第二配置信息是动态配置的。
作为一个实施例,所述第二配置信息是半静态配置的。
作为一个实施例,所述第二配置信息被用于从所述第一序列池中指示所述第一序列的参数。
作为一个实施例,所述第二配置信息被用于指示所述第一序列在所述第一序列池中的索引。
作为一个实施例,所述第二配置信息被用于从所述第二序列池中指示所述第二序列的参数。
作为一个实施例,所述第二配置信息被用于指示所述第二序列在所述第二序列池中 的索引。
作为一个实施例,所述第二配置信息被用于指示所述第一无线信号的所述第一信息比特块的参数。
作为一个实施例,所述第二配置信息被用于指示所述第一无线信号的第一加扰序列。
作为一个实施例,所述第二配置信息被用于指示所述目标空口资源的所述目标时频资源块。
作为一个实施例,所述第二配置信息被用于指示所述目标空口资源的所述目标多址签名。
作为一个实施例,所述第二配置信息被用于指示所述目标空口资源在是所述目标空口资源池中的索引。
作为一个实施例,所述第二配置信息包括更高层信令中的全部或部分信息。
作为一个实施例,所述第二配置信息包括RRC层信令中的全部或部分信息。
作为一个实施例,所述第二无线信号包括RRC IE(Information Element,信息元)中的全部或部分信息。
作为一个实施例,所述第二配置信息包括MAC层信令中的全部或部分信息。
作为一个实施例,所述第一控制信令包括MAC CE中的全部或部分信息。
作为一个实施例,所述第一控制信令包括DCI中的一个或多个域(Field)。
作为一个实施例,所述第二配置信息包括PHY层信令中的全部或部分信息。
作为一个实施例,所述第二配置信息在PMCH上传输。
作为一个实施例,所述第二配置信息在PDSCH上传输。
作为一个实施例,所述第二配置信息在NPDSCH上传输。
作为一个实施例,所述第二配置信息在PSDCH上传输。
作为一个实施例,所述第二配置信息在PSSCH上传输。
作为一个实施例,第二配置信令包括第二调度信息,所述第二调度信息被用于调度所述第二配置信息,所述第二调度信息包括所占用的时频资源,MCS,RV,HARQ信息和NDI中的至少之一,所述HARQ信息包括ACK信号和NACK信号中的至少之一。
作为一个实施例,所述第二配置信令包括PHY层信令中的全部或部分信息。
作为一个实施例,所述第二配置信令包括MAC层信令中的全部或部分信息。
作为一个实施例,所述第一控制信令包括MAC CE中的全部或部分信息。
作为一个实施例,所述第一控制信令包括DCI中的一个或多个域(Field)。
作为一个实施例,所述第二配置信令在PDCCH上传输。
作为一个实施例,所述第二配置信令在EPDCCH上传输。
作为一个实施例,所述第二配置信令在SPDCCH上传输。
作为一个实施例,所述第二配置信令在MPDCCH上传输。
作为一个实施例,所述第二配置信令在PSCCH上传输。
作为一个实施例,所述第二配置信令是所述用户设备特定的。
作为一个实施例,所述第一身份被用于所述第二配置信令的加扰。
作为一个实施例,所述目标空口资源块的参数被用于所述第二配置信令的加扰。
作为一个实施例,所述目标时频资源块的参数被用于所述第二配置信令的加扰。
作为一个实施例,所述目标空口资源池的参数被用于所述第二配置信令的加扰。
作为一个实施例,所述第一序列池的参数被用于所述第二配置信令的加扰。
作为一个实施例,所述第二序列池被的参数用于所述第二配置信令的加扰。
作为一个实施例,所述第二配置信息与所述第一身份和所述第二身份中的至少之一有关。
作为一个实施例,所述第一身份和所述第二身份中的至少之一被用于生成所述第二配置信息。
作为一个实施例,所述第二配置信息包括所述第一身份。
作为一个实施例,所述第二配置信息包括所述第二身份。
作为一个实施例,所述第一身份和所述第二身份中的至少之一被用于生成所述第二配置信令的加扰序列。
作为一个实施例,所述第一身份和所述第二配置信息被用于共同确定所述第一目标序列,所述第二目标序列和所述第一无线信号中的至少之一。
作为一个实施例,所述第一身份和所述第二身份被用于共同确定所述第一目标序列,所述第二目标序列和所述第一无线信号中的至少之一。
作为一个实施例,所述第二配置信息是不小于0,且不大于1023的整数。
作为一个实施例,所述第二身份和所述第二配置信息中的之一被用于确定所述第一目标序列,所述第二目标序列和所述第一无线信号中的之一。
作为一个实施例,所述第二配置信息是一个不小于0,且不大于65535的整数。
作为一个实施例,所述第二配置信令与所述第一配置信令相同,即所述第一配置信令被用于同时承载所述第一配置信息和所述第二配置信息。
实施例10
实施例10示例了根据本申请的一个实施例的第一空口资源,第二空口资源和第三空口资源之间关系的示意图,如附图10所示。在附图10中,在情况A中,所述第三空口资源的所述第三时频资源块所占用的任意一个子载波符号,晚于所述第二空口资源的所述第二时频资源块所占用的任意一个子载波符号;在情况B中,所述第三空口的所述第三时频资源块所占用的一部分子载波符号,早于所述第二空口资源的所述第二时频资源块所占用的任意一个子载波符号,所述第三空口的所述第三时频资源块所占用的另一部分子载波符号,晚于所述第二空口资源的所述第二时频资源块所占用的任意一个子载波符号。
在实施例10中,本申请中的所述第二空口资源和本申请中的所述第三空口资源中的至少之一与本申请中的所述第一空口资源有关;或者,本申请中的所述第二空口资源和本申请中的所述第三空口资源中的至少之一与本申请中的所述第一序列有关;或者,本申请中的所述第二空口资源和本申请中的所述第三空口资源中的至少之一与本申请中的所述第一身份有关。
作为一个实施例,所述第一空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔与所述第二空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔相等。
作为一个实施例,所述第一空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔小于所述第二空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔。
作为一个实施例,所述第二空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔与所述第三空口资源所包括的正整数个RE中的至少一个RE所占用的所述一个子载波的子载波间隔相等。
作为一个实施例,所述第一空口资源所包括的RE个数与所述第二空口资源所包括的RE个数不等。
作为一个实施例,所述第一空口资源所包括的RE个数与所述第三空口资源所包括的RE个数不等。
作为一个实施例,所述目标时频资源块的参数包括目标时频资源块索引,目标时频资源块尺寸,目标时频资源块个数中的一种或者多种。
作为上述实施例的一个子实施例,所述
作为一个实施例,所述第一时频资源块的参数包括第一时频资源块索引,第一时频资源块尺寸,第一时频资源块个数中的一种或者多种。
作为一个实施例,所述第二时频资源块的参数包括第二时频资源块索引,第二时频 资源块尺寸,第二时频资源块个数中的一种或者多种。
作为一个实施例,所述第一时频资源块被用于确定所述第二时频资源块。
作为一个实施例,所述第一时频资源块被用于确定所述第二时频资源块尺寸,即所占子载波和符号的个数。
作为一个实施例,所述第一时频资源块被用于确定所述第二时频资源块的个数。
作为一个实施例,所述第二时频资源块与所述第一时频资源块在频域上间隔的频域资源是第一频域偏差,所述第一频域偏差是有理数。
作为一个实施例,所述第一频域偏差和所述第一时域偏差中的至少之一是正有理数。
作为一个实施例,所述第一频域偏差和所述第一时域偏差中的至少之一是负有理数。
作为一个实施例,所述第一频域偏差和所述第一时域偏差中的至少之一是零。
作为一个实施例,所述第一频域偏差的单位是子载波个数。
作为一个实施例,所述第一频域偏差的单位是RB个数。
作为一个实施例,所述第一频域偏差的单位是PRB个数。
作为一个实施例,所述第一频域偏差的单位是赫兹(Hz)。
作为一个实施例,所述第一频域偏差的单位是千赫兹(kHz)。
作为一个实施例,所述第一频域偏差的单位是兆赫兹(MHz)。
作为一个实施例,所述第一频域偏差是预定义的,即不需要信令配置。
作为一个实施例,所述第二时频资源块与所述第一时频资源块在时域上间隔的时域资源是第一时域偏差,所述第一时域偏差是有理数。
作为一个实施例,所述第一时域偏差的单位是采样点个数。
作为一个实施例,所述第一时域偏差的单位是多载波符号个数。
作为一个实施例,所述第一时域偏差的单位是时隙(slot)个数。
作为一个实施例,所述第一时域偏差的单位是子帧(subframe)个数。
作为一个实施例,所述第一时域偏差的单位是无线帧(radio frame)个数。
作为一个实施例,所述第一时域偏差的单位是微秒(us)。
作为一个实施例,所述第一时域偏差的单位是毫秒(ms)。
作为一个实施例,所述第一时域偏差的单位是秒(s)。
作为一个实施例,所述第一时域偏差是预定义的,即不需要信令配置。
作为一个实施例,第一偏差信令包括所述第一频域偏差和所述第一时域偏差中的至少之一。
作为一个实施例,所述第一偏差配置信令包括PHY(Physical,物理)层信令的全部或部分。
作为一个实施例,所述第一偏差配置信令包括DCI(Downlink Control Information,下行控制信息)中的一个或多个域(Field)。
作为一个实施例,所述第一偏差配置信令包括MAC(Medium Access Control,多媒体接入控制)层信令的全部或部分。
作为一个实施例,所述第一偏差配置信令包括MAC CE(Control Element,控制元)中的一个或多个域(Field)。
作为一个实施例,所述第一偏差配置信令包括RRC(Radio Resource Control,无线资源控制)层信令的全部或部分。
作为一个实施例,所述第一偏差配置信令包括RRC IE(Information Element,信息元)中的一个或多个域(Field)。
作为一个实施例,所述第一偏差配置信令包括更高层信令的全部或部分。
作为一个实施例,所述第一时频资源块被用于确定所述第三时频资源块。
作为一个实施例,所述第一时频资源块被用于确定所述第三时频资源块尺寸,即所占子载波和符号的个数。
作为一个实施例,所述第一时频资源块被用于确定所述第三时频资源块的个数。
作为一个实施例,所述第三时频资源块与所述第一时频资源块在频域上间隔第二频域偏差,在时域上间隔第二时域偏差,所述第二频域偏差和所述第二时域偏差是有理数。
作为一个实施例,所述第二频域偏差和所述第二时域偏差中的至少之一是正有理数。
作为一个实施例,所述第二频域偏差和所述第二时域偏差中的至少之一是负有理数。
作为一个实施例,所述第二频域偏差和所述第二时域偏差中的至少之一是零。
作为一个实施例,所述第二频域偏差的单位是子载波个数。
作为一个实施例,所述第二频域偏差的单位是PRB个数。
作为一个实施例,所述第二频域偏差的单位是赫兹(Hz)。
作为一个实施例,所述第二频域偏差的单位是千赫兹(kHz)。
作为一个实施例,所述第二频域偏差的单位是兆赫兹(MHz)。
作为一个实施例,所述第二频域偏差是预定义的,即不需要信令配置。
作为一个实施例,所述第二时域偏差的单位是采样点个数。
作为一个实施例,所述第二时域偏差的单位是多载波符号个数。
作为一个实施例,所述第二时域偏差的单位是时隙(slot)个数。
作为一个实施例,所述第二时域偏差的单位是子帧(subframe)个数。
作为一个实施例,所述第二时域偏差的单位是无线帧(radio frame)个数。
作为一个实施例,所述第二时域偏差的单位是微秒(us)。
作为一个实施例,所述第二时域偏差的单位是毫秒(ms)。
作为一个实施例,所述第二时域偏差的单位是秒(s)。
作为一个实施例,所述第二时域偏差是预定义的,即不需要信令配置。
作为一个实施例,所述第二频域偏差和所述第二时域偏差中的至少之一是第一偏差信令配置的。
作为一个实施例,所述第一空口资源的所述第一时频资源块被用于确定所述第三空口资源的所述第三多址签名。
作为一个实施例,第三多址签名池包括正整数个第三类多址签名,所述第三多址签名是所述多个第三类多址签名中的之一。
作为一个实施例,所述第一空口资源被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列初始值被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列初始值被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于从从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于指示所述第 三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第二空口资源与所述第一序列有关。
作为一个实施例,第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一。
作为上述实施例的一个实施例,所述第一序列被用于从第二空口资源池中指示所述第二空口资源。
作为上述实施例的一个子实施例,所述第一序列被用于指示所述第二空口资源在所述第二空口资源池中的索引。
作为一个实施例,所述第二时频资源块包括第二时频资源块尺寸,所述第二时频资源尺寸是指所述第二时频资源块包括的RE数。
作为一个实施例,所述第一序列被用于从正整数个候选时频资源尺寸中指示所述第二时频资源块的所述第二时频资源尺寸,所述第二时频资源尺寸是所述正整数个候选时频资源尺寸的之一,所述候选时频资源尺寸是指所述候选时频资源包括的RE数。
作为一个实施例,所述第一序列被用于指示所述第二时频资源块的个数。
作为一个实施例,所述第一序列被用于指示所述第一频域偏差和所述第一时域偏差中的至少之一。
作为一个实施例,所述第二空口资源与所述第一序列的参数的所述第一序列初始值有关。
作为一个实施例,所述第二空口资源与所述第一序列的参数的所述第一序列起始元素索引有关。
作为一个实施例,所述第二空口资源与所述第一序列的参数的所述第一序列截段有关。
作为一个实施例,所述第二空口资源与所述第一序列的参数的所述第一序列循环移位有关。
作为一个实施例,所述第三空口资源与所述第一序列有关。
作为一个实施例,第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
作为上述实施例的一个实施例,所述第一序列被用于从所述正整数个第三类空口资源中指示所述第三空口资源。
作为上述实施例的一个子实施例,所述第一序列被用于指示所述第三空口资源在所述正整数个第三类空口资源中的索引。
作为一个实施例,所述第三时频资源块包括第三时频资源块尺寸,所述第三时频资源块尺寸是指所述第三时频资源块包括的RE数。
作为一个实施例,所述第一序列被用于从正整数个候选时频资源尺寸中指示所述第三时频资源块的所述第三时频资源尺寸,所述第三时频资源尺寸是所述正整数个候选时频资源尺寸的一个候选时频资源尺寸,所述候选时频资源尺寸是指所述候选时频资源包括的RE数。
作为一个实施例,所述第一序列被用于确定所述第三时频资源块的个数。
作为一个实施例,所述第一序列被用于指示所述第二频域偏差和所述第二时域偏差中的至少之一。
作为一个实施例,所述第三时频资源池包括正整数个第三类时频资源块,所述第三时频资源块是所述正整数个第三类时频资源块的之一。
作为一个实施例,所述第一序列被用于从正整数个第三类时频资源块中指示所述第三时频资源块。
作为一个实施例,所述第一序列被用于计算所述第三时频资源块在所述正整数个第三类时频资源块的索引。
作为一个实施例,所述第三空口资源与所述第一序列的参数的所述第一序列初始值有关。
作为一个实施例,所述第三空口资源与所述第一序列的参数的所述第一序列起始元素索引有关。
作为一个实施例,所述第三空口资源与所述第一序列的参数的所述第一序列截段有关。
作为一个实施例,所述第三空口资源与所述第一序列的参数的所述第一序列循环移位有关。
作为一个实施例,所述第一序列被用于指示所述第三多址签名。
作为一个实施例,所述第一序列被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列初始值被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列初始值被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于计算所述第三多址签名在所述正整数个第三类多址签名中的索引。
作为一个实施例,所述第一序列的参数的所述第一序列起始元素索引被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于从所述正整数个第三类多址签名中指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列截段索引被用于计算所述第三多址签名在所述正整数个第三类多址签名中的索引。
作为一个实施例,所述第一序列的参数的所述第一序列截段被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于指示所述第三多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于从正整数个候选多址签名中指示所述第三多址签名,所述第三多址签名是所述正整数个候选多址签名的一个候选多址签名。
作为一个实施例,所述第一序列的参数的所述第一序列循环移位被用于计算所述第三多址签名的扩频序列。
作为一个实施例,所述第一身份被用于确定所述第三空口资源。
作为一个实施例,所述第三空口资源由被所述第一身份加扰的配置信令配置。
作为一个实施例,所述第一身份被用于确定所述第二空口资源的所述第二时频资源块。
作为一个实施例,所述第一身份被用于确定所述第二空口资源的所述第二时频资源块的{尺寸,个数,所述第一频率偏差,所述第一时域偏差}中的至少之一。
作为一个实施例,所述第一身份被用于确定所述第三空口资源的所述第三时频资源块。
作为一个实施例,所述第一身份被用于确定所述第三空口资源的所述第三时频资源块的{尺寸,个数,所述第一频率偏差,所述第一时域偏差,所述第二频域偏差,所述第二时域偏差}中的至少之一。
作为一个实施例,所述第一身份被用于确定所述第三空口资源的所述第三多址签名。
作为一个实施例,所述第一时频资源块包括的RE的子载波间隔与所述第二时频资源包括的RE的子载波间隔相等。
作为一个实施例,所述第一时频资源块包括的RE的子载波间隔与所述第二时频资源包括的RE的子载波间隔不等。
作为一个实施例,所述第一时频资源块包括的RE的子载波间隔与所述第三时频资源块包括的RE的子载波间隔不等。
作为一个实施例,所述第二时频资源块包括的RE的子载波间隔与所述第三时频资源包括的RE的子载波间隔相等。
作为一个实施例,所述第一空口资源被用于确定所述第一序列和所述第二序列中至少之一的序列长度。
作为一个实施例,所述第一空口资源被用于确定所述第一序列和所述第二序列中至少之一的序列类型。
作为一个实施例,所述第一空口资源被用于确定所述第一序列和所述第二序列中至少之一的序列长度。
作为一个实施例,所述第一身份被用于确定所述第一序列和所述第二序列中至少之一的序列类型。
作为一个实施例,所述第一序列被用于确定所述第二序列的序列长度。
作为一个实施例,所述第一序列被用于确定所述第二序列的序列类型。
作为一个实施例,所述第一空口资源,所述第一序列和所述第一身份中的至少之一被用于确定所述第二特征无线信号的第一发射功率,所述第一发射功率是有理数。
作为一个实施例,所述第一空口资源,所述第一序列和所述第一身份中的至少之一被用于确定所述第一无线信号的第二发射功率,所述第二发射功率是有理数。
作为一个实施例,所述第一发射功率包括所述第二特征无线信号的发射功率绝对值。
作为一个实施例,所述第一发射功率包括所述第二特征无线信号与所述第一特征无线信号的发射功率的差值。
作为一个实施例,所述第二发射功率包括所述第一无线信号的发射功率绝对值。
作为一个实施例,所述第二发射功率包括所述第一无线信号与所述第一特征无线信号的发射功率的差值。
作为一个实施例,所述第一发射功率的单位是dBm。
作为一个实施例,所述第一发射功率的单位是dB。
作为一个实施例,所述第一发射功率的单位是瓦(W)。
作为一个实施例,所述第一发射功率的单位是毫瓦(mW)。
作为一个实施例,所述第二发射功率的单位是dBm。
作为一个实施例,所述第二发射功率的单位是dB。
作为一个实施例,所述第二发射功率的单位是瓦(W)。
作为一个实施例,所述第二发射功率的单位是毫瓦(mW)。
作为一个实施例,所述第一发射功率与所述第二发射功率相等。
实施例11
实施例11示例了根据本申请的一个实施例的第一控制信令和第二无线信号的关系的示意图,如附图11所示。在附图11中,横轴代表时间,虚线方框代表第一时间窗,方格填充 的方框代表第一控制信令,斜纹填充的方框代表第二无线信号。
在实施例11中,本申请中的所述用户设备在所述第一时间窗内监测本申请的所述第一控制信令,所述第一控制信令被用于确定本申请的所述第四空口资源,如果所述第一控制信令在所述第一时间窗内被检测到,所述用户设备在所述第四空口资源上接收本申请的所述第二无线信号;本申请中的所述第一空口资源,所述第二空口资源,所述第三空口资源,所述第一序列,所述第二序列和所述第一无线信号中的至少之一被用于确定所述第一时间窗。
作为一个实施例,所述监测是指基于盲检测的接收,即所述用户设备在所述第一时间窗内接收信号并执行译码操作,如果根据CRC比特确定译码正确,则判断在所述第一时间窗内成功接收到所述第一控制信令;否则判断在所述第一时间窗内没有成功接收到所述第一控制信令。
作为一个实施例,所述监测是指基于相干检测的接收,即所述用户设备在所述第一时间窗内用所述第一控制信令的DMRS对应的RS序列对无线信号进行相干接收,并测量所述相干接收后得到的信号的能量。如果所述所述相干接收后得到的信号的能量大于第一给定阈值,则判断在所述第一时间窗内成功接收到所述第一控制信令;否则判断在所述第一时间窗内没有成功接收到所述第一控制信令。
作为一个实施例,所述监测是指基于能量检测的接收,即所述用户设备在所述第一时间窗内感知(Sense)无线信号的能量,并在时间上平均,以获得接收能量。如果所述接收能量大于第二给定阈值,则判断在所述第一时间窗内成功接收到所述第一控制信令;否则判断在所述第一时间窗内没有成功接收到所述第一控制信令。
作为一个实施例,所述第一控制信令被检测到是指所述第一控制信令被基于盲检测接收后,根据CRC比特确定译码正确。
作为一个实施例,所述第一控制信令包括PHY层信令中的全部或部分信息。
作为一个实施例,所述第一控制信令包括MAC层信令中的全部或部分信息。
作为一个实施例,所述第一控制信令包括MAC CE中的全部或部分信息。
作为一个实施例,所述第一控制信令包括DCI中的一个或多个域(Field)。
作为一个实施例,所述第一控制信令在PDCCH上传输。
作为一个实施例,所述第一控制信令在EPDCCH上传输。
作为一个实施例,所述第一控制信令在SPDCCH上传输。
作为一个实施例,所述第一控制信令在MPDCCH上传输。
作为一个实施例,所述第一控制信令在PSCCH上传输。
作为一个实施例,所述第一身份被用于对所述第一控制信令加扰。
作为一个实施例,所述目标空口资源被用于对所述第一控制信令加扰。
作为一个实施例,所述目标时频资源块的参数包括目标时域资源和目标频域资源中的一种或者两种。
作为一个实施例,目标时域资源池包括正整数个目标类时域资源,所述目标时域资源是所述正整数个目标类时域资源中的之一。
作为一个实施例,目标时域资源索引被用于指示所述目标时域资源在所述正整数个目标类时域资源中的位置,所述目标时域资源索引为非负整数。
作为一个实施例,目标频域资源池包括正整数个目标类频域资源,所述目标频域资源是所述正整数个目标类频域资源中的之一。
作为一个实施例,目标频域资源索引被用于指示所述目标频域资源在所述正整数个目标类频域资源中的位置,所述目标频域资源索引为非负整数。
作为一个实施例,所述目标时域资源的单位是毫秒。
作为一个实施例,所述目标时域资源的单位是秒。
作为一个实施例,所述目标时域资源的单位是采样点。
作为一个实施例,所述目标时域资源的单位是多载波符号。
作为一个实施例,所述目标时域资源的单位是时隙(slot)。
作为一个实施例,所述目标时域资源的单位是子帧(subframe)。
作为一个实施例,所述目标时域资源的单位是无线帧(radio frame)。
作为一个实施例,所述目标频域资源的单位是赫兹(Hz)。
作为一个实施例,所述目标频域资源的单位是千赫兹(kHz)。
作为一个实施例,所述目标频域资源的单位是兆赫兹(MHz)。
作为一个实施例,所述目标频域资源的单位是子载波。
作为一个实施例,所述目标频域资源的单位是RB(Resource Block,资源块)。
作为一个实施例,所述目标频域资源的单位是PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标频域资源的单位是VRB(Virtual、Resource Block,虚拟资源块)。
作为一个实施例,所述目标时域资源索引和所述目标频域资源索引中的至少之一被用于对所述第一控制信令加扰。
作为一个实施例,所述目标时域资源索引和所述目标频域资源索引线性相加的结果被用于对所述第一控制信令加扰。
作为一个实施例,所述目标时域资源索引和所述目标频域资源索引的线性相加的结果被用于所述第一控制信令的CRC(Cyclic Redundancy Check,循环冗余校验)比特的加扰。
作为一个实施例,所述第一时频资源块的参数包括第一时域资源和第一频域资源中的一种或者两种。
作为一个实施例,所述第二时频资源块的参数包括第二时域资源和第二频域资源中的一种或者两种。
作为一个实施例,所述第三时频资源块的参数包括第三时域资源和第三频域资源中的一种或者两种。
作为一个实施例,第一时域资源池包括正整数个第一类时域资源,所述第一时域资源是所述正整数个目标类时域资源中的之一。
作为一个实施例,第一时域索引被用于指示所述第一时域资源在所述正整数个第一类时域资源中的位置,所述第一时域索引为非负整数。
作为一个实施例,第一频域资源池包括正整数个第一类频域资源,所述第一频域资源是所述正整数个第一类频域资源中的之一。
作为一个实施例,第一频域索引被用于指示所述第一频域资源在所述正整数个第一类频域资源中的位置,所述第一频域索引为非负整数。
作为一个实施例,第二时域资源池包括正整数个第二类时域资源,所述第二时域资源是所述正整数个第二类时域资源中的之一。
作为一个实施例,第二时域索引被用于指示所述第二类时域资源在所述正整数个第二类时域资源中的位置,所述第二时域索引为非负整数。
作为一个实施例,第二频域资源池包括正整数个第二类频域资源,所述第二频域资源是所述正整数个第二类频域资源中的之一。
作为一个实施例,第二频域索引被用于指示所述第二频域资源在所述正整数个第二类频域资源中的位置,所述第二频域索引为非负整数。
作为一个实施例,第三时域资源池包括正整数个第三类时域资源,所述第三时域资源是所述正整数个第三类时域资源中的之一。
作为一个实施例,第三时域索引被用于指示所述第三类时域资源在所述正整数个第三类时域资源中的位置,所述第三时域索引为非负整数。
作为一个实施例,第三频域资源池包括正整数个第三类频域资源,所述第三频域资 源是所述正整数个第三类频域资源中的之一。
作为一个实施例,第三频域索引被用于指示所述第三频域资源在所述正整数个第三类频域资源中的位置,所述第三频域索引为非负整数。
作为一个实施例,所述目标时域索引是本申请中的所述第一时域索引。
作为一个实施例,所述目标频域索引是本申请中的所述第一频域索引。
作为一个实施例,所述目标时域索引是本申请中的所述第二时域索引。
作为一个实施例,所述目标频域索引是本申请中的所述第二频域索引。
作为一个实施例,所述目标时域索引是本申请中的所述第三时域索引。
作为一个实施例,所述目标频域索引是本申请中的所述第三频域索引。
作为一个实施例,所述第一时域索引和所述第三频域索引线性相加的结果被用于对第一控制信令加扰。
作为一个实施例,所述第三时域索引和所述第一频域索引线性相加的结果被用于对第一控制信令加扰。
作为一个实施例,所述第二无线信号包括第二信息比特块。
作为一个实施例,所述第二无线信号是由所述第二信息比特块依次经过信道编码,速率匹配,加扰,调制映射器,层映射器,预编码,码分复用,资源粒子映射器,宽带符号发生器之后的输出。
作为一个实施例,所述第一无线信号是由所述第二信息比特块经过信道编码,速率匹配,加扰,调制映射器,层映射器,预编码,码分复用,资源粒子映射器,宽带符号发生器中的至少之一之后的输出。
作为一个实施例,所述第二无线信号包括更高层信令中的全部或部分信息。
作为一个实施例,所述第二无线信号包括RRC层信令中的全部或部分信息。
作为一个实施例,所述第二无线信号包括RRC IE(Information Element,信息元)中的全部或部分信息。
作为一个实施例,所述第二无线信号包括MAC层信令中的全部或部分信息。
作为一个实施例,所述第一控制信令包括MAC CE中的全部或部分信息
作为一个实施例,所述第二无线信号包括MAC CE(Control Element,控制元)中的全部或部分信息。
作为一个实施例,所述第二无线信号包括RAR(Random Access Response,随机接入响应)中的全部或部分信息。
作为一个实施例,所述第二无线信号包括Msg-2(Message 2,随机接入过程中的消息2)中的全部或部分信息。
作为一个实施例,所述第二无线信号包括TA(Timing Advance,定时调整)更新中的全部或部分信息。
作为一个实施例,所述第二无线信号被所述用户设备用于确定发送定时调整量。
作为一个实施例,所述第二信息比特块包括所述第一目标序列在所述第一目标序列池中的索引,所述目标空口资源在所述目标空口资源池中的索引,第四调度信息,针对所述第一无线信号的HARQ信息和所述第一身份中的一种或者多种,所述第四调度信息包括上行定时调制信息,上行发射功率,MCS,RV,NDI,所占用的时频资源。
作为一个实施例,所述第二信息比特块包括所述第二目标序列在所述第二目标序列组中的索引和所述第二目标序列组在所述第二目标序列池中的索引中的至少之一。
作为一个实施例,所述第四调度信息被用于调度后续的上行信号发送。
作为一个实施例,所述第二加扰序列被用于对所述第二无线信号的加扰。
作为一个实施例,所述第一身份被用于生成所述第二加扰序列。
作为一个实施例,所述第一目标序列在所述第一目标序列池中的索引被用于生成所述第二加扰序列。
作为一个实施例,所述第二目标序列在所述第二目标序列组中的索引和所述第二目标序列组在所述第二目标序列池中的索引中的至少之一被用于生成所述第二加扰序列。
作为一个实施例,所述第二无线信号在DL-SCH(Downlink Shared Channel,下行共享信道)上传输。
作为一个实施例,所述第二无线信号在PDSCH上传输。
作为一个实施例,所述第二无线信号在NPDSCH上传输。
作为一个实施例,所述第二无线信号在PSSCH上传输。
作为一个实施例,所述第一身份被用于确定所述第二信息比特块的码字旋转方式。
作为一个实施例,所述第一身份被用于确定所述第二信息比特块的编码调制方式。
作为一个实施例,所述第一身份被用于确定所述第二信息比特块的解调参考信号。
作为一个实施例,所述第一序列的发送被用于触发所述第二无线信号的发送。
作为一个实施例,所述第二序列的发送被用于触发所述第二无线信号的发送。
作为一个实施例,所述第一无线信号的发送被用于触发所述第二无线信号的发送。
作为一个实施例,所述目标空口资源包括本申请中的所述第四空口资源。
作为一个实施例,所述第四空口资源包括第四时频资源块和第四多址签名。
作为一个实施例,所述目标时频资源块是本申请中的所述第四时频资源块。
作为一个实施例,所述第三调度信息被用于指示所述第四时频资源块的参数,包括第四时域索引和第四频域索引中的至少之一。
作为一个实施例,所述第一身份被用于确定所述第四时频资源块的参数,包括第四时域索引和第四频域索引中的至少之一。
作为一个实施例,第四空口资源池包括多个第四类空口资源,所述第四空口资源是所述多个第四类空口资源中的之一。
作为一个实施例,所述第三调度信息被用于指示作为一个实施例,所述第三调度信息被用于指示。
作为一个实施例,所述第一身份被用于计算所述第四空口资源在所述第四空口资源池中的索引。
作为一个实施例,所述第一身份和所述第三调度信息共同被用于确定所述第四时频资源块的参数,包括第四时域索引和第四频域索引中的至少之一。
作为一个实施例,所述第一身份和所述第三调度信息共同被用于确定所述第四空口资源在所述第四空口资源池中的索引。
作为一个实施例,所述第一时间窗的参数包括第一起始时刻,第一结束时刻和第一窗长(Response Window Size)中的一种或者多种。
作为一个实施例,所述第一时间窗的所述第一起始时刻是所述用户设备开始监测所述第一控制信令的时间。
作为一个实施例,所述第一起始时刻是所述目标时频资源块的最晚一个多载波符号加T,所述T是整数。
作为一个实施例,所述第一起始时刻是所述目标时频资源块的最晚一个时隙加T,所述T是整数。
作为一个实施例,所述第一起始时刻是所述目标时频资源块的最晚一个子帧(Subframe)加T,所述T是整数。
作为一个实施例,所述第一起始时刻是所述目标时频资源块的最晚一个无线帧(Frame)加T,所述T是整数。
作为一个实施例,所述T的单位是微秒。
作为一个实施例,所述T的单位是毫秒。
作为一个实施例,所述T的单位是采样点。
作为一个实施例,所述T的单位是符号。
作为一个实施例,所述T的单位是时隙。
作为一个实施例,所述T的单位是子帧。
作为一个实施例,所述T的单位是无线帧。
作为一个实施例,所述第一时间窗的所述第一结束时刻是所述用户设备停止监测所述第一控制信令的时间。
作为一个实施例,所述第一时间窗的所述第一窗长是从所述第一起始时刻到所述第一结束时刻所持续的时间。
作为一个实施例,所述第一窗长的单位是毫秒。
作为一个实施例,所述第一窗长的单位是采样点。
作为一个实施例,所述第一窗长的单位是符号。
作为一个实施例,所述第一窗长的单位是时隙。
作为一个实施例,所述第一窗长的单位是子帧。
作为一个实施例,所述第一窗长的单位是无线帧。
作为一个实施例,所述第一起始时刻,所述第一结束时刻和所述第一窗长中的至少之一是预定义的,即不需要信令配置。
作为一个实施例,所述目标时频资源块的参数被用于计算所述第一起始时刻和所述第一窗长中的至少之一,所述目标时频资源块是本申请的所述第一时频资源块,所述第二时频资源块,所述第三时频资源块中的至少之一。
作为一个实施例,所述目标时频资源块的所占用的所有多载波符号早于所述第一起始时刻。
作为一个实施例,所述目标时频资源块的最早一个多载波符号早于所述第一起始时刻,所述目标时频资源块的最晚一个多载波符号晚于所述第一起始时刻,早于所述第一结束时刻。
作为一个实施例,所述第一序列初始值,所述第一序列起始元素索引,所述第一序列截段和所述第一序列循环移位中的至少之一被用于计算所述第一起始时刻。
作为一个实施例,所述第一序列初始值,所述第一序列起始元素索引,所述第一序列截段和所述第一序列循环移位中的至少之一被用于计算所述第一窗长。
作为一个实施例,所述第二序列初始值,所述第二序列起始元素索引,所述第二序列截段和所述第二序列循环移位中的至少之一被用于计算所述第一起始时刻。
作为一个实施例,所述第二序列初始值,所述第二序列起始元素索引,所述第二序列截段和所述第二序列循环移位中的至少之一被用于计算所述第一窗长。
作为一个实施例,所述第一信息比特块的参数和所述第一加扰序列中的至少之一被用于计算所述第一起始时刻。
作为一个实施例,所述第一信息比特块的参数和所述第一加扰序列中的至少之一被用于计算所述第一窗长。
实施例12
实施例12示例了根据本申请的一个实施例的Q1个第四类特征无线信号分别在Q1个第四类空口资源上传输的示意图,如附图12所示。
在实施例12中,本申请中的所述第四类空口资源包括本申请中的所述第一空口资源和所述第二空口资源,本申请的所述第四类特征无线信号包括本申请中的所述第一特征无线信号和所述第二特征无线信号;在情况A中,在一个所述第四类空口资源上,所述第一特征无线信号和所述第二特征无线信号TDM(Time Division Multiplexing,时分复用);在情况C中,在一个所述第四类空口资源上,所述第一特征无线信号和所述第二特征无线信号FDM(Frequency Division Multiplexing,频分复用);在情况B中,本申请中的所述用户设备先发送Q1个所述第一特征无线信号,再发送Q1个所述第二特征无线信号,即本申请中的一个所述第四类空口资源所包括的所述第一空口资源与另一个所述第四类空口资源所包括的所述 第一空口资源交替映射。
作为一个实施例,所述Q1个第四类空口资源的索引分别是0,1,…,(Q1-1);所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的时序是所述一个第四类空口资源的索引。
作为一个实施例,所述一个特征序列包括所述第一序列。
作为一个实施例,所述一个特征序列包括所述第二序列。
作为一个实施例,所述一个特征序列包括所述第一序列和所述第二序列。
作为一个实施例,第一特征无线子信号所经历的大尺度衰落不能被用于推断第二特征无线子信号所经历的大尺度特性,所述第一特征无线子信号和所述第二特征无线子信号是所述Q1个第四类特征无线信号中的两个所述第四类特征无线信号。
作为一个实施例,所述大尺度特性包括{延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒移位(Dopper shift),路径损耗(path loss),平均增益(average gain),平均延时(average delay),空间接收参数(Spatial Rx parameters),空间发送参数(Spatial Tx parameters),到达角(angle of arrival),离开角(angle of departure),空间相关性}中的一种或者多种。
作为一个实施例,空间接收参数(Spatial Rx parameters)包括{接收波束,接收模拟波束赋型矩阵,接收模拟波束赋型向量,接收波束赋型向量,接收空间滤波(spatial filter),空域接收滤波(spatial domain reception filter)}中的一种或者多种。
作为一个实施例,空间发送参数(Spatial Tx parameters)包括{发送天线端口,发送天线端口组,发送波束,发送模拟波束赋型矩阵,发送模拟波束赋型向量,发送波束赋型向量,发送空间滤波(spatial filtering),空域发送滤波(spatial domain transmission filter)}中的一种或者多种。
作为一个实施例,所述一个特征序列被用于指示所述一个第四类空口资源的索引。
作为一个实施例,所述一个特征序列被用于指示所述一个第四类空口资源所在的时隙(slot)在一个无线帧中的时序。
作为一个实施例,所述一个特征序列被用于指示所述一个第四类空口资源所在的多载波符号在一个时隙中的时序。
作为一个实施例,所述一个特征序列被用于指示所述一个第四类空口资源所在的多载波符号在一个子帧中的时序。
作为一个实施例,所述一个特征序列的初始值,所述一个特征序列的截段,所述一个特征序列的循环移位和所述一个特征序列的加扰中的至少之一被用于指示所述一个第四类空口资源的索引。
作为一个实施例,所述一个特征序列的初始值,所述一个特征序列的截段,所述一个特征序列的循环移位和所述一个特征序列的加扰中的至少之一被用于指示所述一个第四类空口资源所在的时隙(slot)在一个无线帧中的时序。
作为一个实施例,所述一个特征序列的初始值,所述一个特征序列的截段,所述一个特征序列的循环移位和所述一个特征序列的加扰中的至少之一被用于指示所述一个第四类空口资源所在的多载波符号在一个时隙中的时序。
作为一个实施例,所述一个特征序列的初始值,所述一个特征序列的截段,所述一个特征序列的循环移位和所述一个特征序列的加扰中的至少之一被用于指示所述一个第四类空口资源所在的多载波符号在一个子帧中的时序。
作为一个实施例,所述一个第四类空口资源包括所述第一空口资源和所述第二空口资源。
作为一个实施例,所述Q1个第四类空口资源包括Q1个第一类子资源和Q1个第二类子资源,所述第一空口资源是所述Q1个第一类子资源中的之一,所述第二空口资源是所述Q1个第二类子资源中的之一。
作为一个实施例,所述Q1个第一类子资源索引分别是A 0,A 1,…,A Q1-2,A Q1-1,其中所述A 0,所述A 1,…,所述A Q1-2,所述A Q1-1都为非负整数,每两个相邻的所述第一类子资源索引相差值为1,Ai是所述Q1个第一子类资源索引中的一个第一类子资源索引,所述Ai属于{A 0,A 1,…,A Q1-2},i属于{0,1,…,(Q1-2)}。
作为一个实施例,所述Q1个第二类子资源索引分别是B 0,B 1,…,B Q1-2,B Q1-1,其中所述B 0,所述B 1,…,所述B Q1-2,所述B Q1-1都为非负整数,每两个相邻的所述第二类子资源索引相差值为1,Bj是所述Q1个第二类子资源索引中的一个第二类子资源索引,所述Bj属于{B 0,B 1,…,B Q1-2},j属于{0,1,…,(Q1-2)}。
作为一个实施例,所述第Ai个第一类子资源和所述第(Ai+1)个第一类子资源相邻,即所述第Ai个第一类子资源和所述第(Ai+1)个第一类子资源之间没有任意一个所述第二类子资源。
作为一个实施例,任意两个相邻的所述第一类子资源索引分别对应的两个所述第一类子资源都相邻,即所述两个所述第一类子资源之间没有任意一个所述第二类子资源。
作为一个实施例,任意两个相邻的所述第二类子资源索引分别对应的两个所述第二类子资源都相邻,即所述两个所述第二类子资源之间没有任意一个所述第一类子资源。
作为一个实施例,所述第Ai个第一类子资源和所述第(Ai+1)个第一类子资源不相邻,即所述第Ai个第一类子资源和所述第(Ai+1)个第一类子资源之间至少有一个所述第二类子资源。
作为一个实施例,任意一个所述第一类子资源与至少一个所述第二类子资源相邻。
作为一个实施例,第一特征序列被用于生成所述第一特征无线子信号,第二特征序列被用于生成所述第二特征无线子信号,所述第一特征序列包括所述第一序列和所述第二序列中的至少之一,所述第二特征序列包括所述第一序列和所述第二序列中的至少之一。
作为一个实施例,所述第一特征序列包括的所述第一序列和所述第二特征序列包括的所述第一序列不同。
作为一个实施例,所述第一特征序列包括的所述第二序列和所述第二特征序列包括的所述第二序列不同。
作为一个实施例,所述第一特征序列包括的所述第一序列和所述第二特征序列包括的所述第一序列相同,所述第一特征序列包括的所述第二序列和所述第二特征序列包括的所述第二序列不同。
作为一个实施例,所述第一特征序列包括的所述第一序列和所述第二特征序列包括的所述第一序列不同,所述第一特征序列包括的所述第二序列和所述第二特征序列包括的所述第二序列不同。
作为一个实施例,所述Q1个第四类空口资源包括Q1个第三类子资源,所述第三空口资源是所述Q1个第三类子资源中的之一。
作为一个实施例,在所述Q1个第三类子资源上分别发送Q1个第一类无线子信号,所述第一无线信号是所述Q1个第一类无线子信号中的一个第一类无线子信号。
作为一个实施例,所述Q1个第三类子资源索引分别是C 0,C 1,…,C Q1-2,C Q1-1,其中所述C 0,所述C 1,…,所述C Q1-2,所述C Q1-1都为非负整数,每两个相邻的所述第三类子资源索引相差值为1,Cj是所述Q1个第三子类资源索引中的一个第三类子资源索引,所述Cz属于{C 0,C 1,…,C Q1-2},z属于{0,1,…,(Q1-2)}。
作为一个实施例,在所述第Bj个第二类子资源上发送的所述第一特征序列所经历的小尺度特性能被用于推断出在所述第Cz个第三类子资源上发送的所述第一类无线子信号所述经历的小尺度特性。
作为一个实施例,在所述第Bj个第二类子资源上发送的所述第一特征序列能被用于在所述第Cz个第三类子资源上发送的所述第一类无线子信号的解调参考信号。
作为一个实施例,所述j等于所述z。
实施例13
实施例13示例了一个用于用户设备中的处理装置的结构框图,如附图13所示。在附图13中,用户设备处理装置1300主要由第一接收机1301,第一发射机1302和第二接收机1303组成。第一接收机1301包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机1302包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490;第二接收机1303包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
在实施例13中,第一发射机1302在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,第一接收机1301接收第一配置信息;其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
作为一个实施例,所述第一接收机1301接收第二配置信息;其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
作为一个实施例,第二接收机1303在第一时间窗内监测第一控制信令;在第四空口资源上接收第二无线信号;其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
作为一个实施例,所述第一发射机1302在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
实施例14
实施例14示例了一个基站设备中的处理装置的结构框图,如附图14所示。在附图14中,基站设备处理装置1400主要由第二发射机1401,第三接收机1402和第三发射机1403组成。第二发射机1401包括本申请附图4中的发射器/接收器416(包括天线420),射处理器415和控制器/处理器440;;第三接收机1402包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440;第三发射机1403包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
在实施例14中,第三接收机1402在第一空口资源上接收第一特征无线信号,第一序列 被用于生成所述第一特征无线信号;在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上接收第一无线信号;其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
作为一个实施例,第二发射机1401发送第一配置信息;其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
作为一个实施例,第二发射机1401发送第二配置信息;其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
作为一个实施例,第三发射机1403在第一时间窗内发送第一控制信令;在第四空口资源上发送第二无线信号;其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
作为一个实施例,所述第三接收机1402在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种被用于无线通信的用户设备中的方法,其特征在于,包括:
    在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;
    在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;
    在第三空口资源上发送第一无线信号;
    其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    接收第一配置信息;
    其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
  3. 根据权利要求1或2所述的方法,其特征在于,包括:
    接收第二配置信息;
    其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    在第一时间窗内监测第一控制信令;
    在第四空口资源上接收第二无线信号;
    其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS(Modulation and Coding Scheme,调制编码方式),RV(Redundancy Version,冗余版本),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息和NDI(New Data Indicator,新数据指示)中的至少之一。
  5. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,包括:
    在Q1个第四类空口资源上分别发送Q1个第四类特征无线信号;
    其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
  6. 一种被用于无线通信的基站设备中的方法,其特征在于,包括:
    在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;
    在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;
    在第三空口资源上接收第一无线信号;
    其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第 三空口资源中的至少之一与所述第一身份有关。
  7. 根据权利要求6所述的方法,其特征在于,包括:
    发送第一配置信息;
    其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
  8. 根据权利要求6或7所述的方法,其特征在于,包括:
    发送第二配置信息;
    其中,所述第二配置信息被用于确定所述第一序列,所述第二序列和所述第一无线信号中的至少之一;或者,所述第二配置信息被用于确定所述第一空口资源,所述第二空口资源和所述第三空口资源中的至少之一。
  9. 根据权利要求6至8中任一权利要求所述的方法,其特征在于,包括:
    在第一时间窗内发送第一控制信令;
    在第四空口资源上发送第二无线信号;
    其中,所述第一控制信令在所述第一时间窗中被检测到;所述第一控制信令包括第三调度信息,所述第三调度信息被用于调度所述第二无线信号,所述第三调度信息包括所述第四空口资源,MCS,RV,HARQ信息和NDI中的至少之一。
  10. 根据权利要求6至8中任一权利要求所述的方法,其特征在于,包括:
    在Q1个第四类空口资源上分别接收Q1个第四类特征无线信号;
    其中,所述Q1个第四类空口资源中的一个第四类空口资源包括所述第一空口资源和所述第二空口资源中的至少之一;Q1个特征序列分别被用于生成所述Q1个第四类特征无线信号,所述Q1个特征序列中的一个特征序列包括所述第一序列和第二序列中的至少之一;所述一个特征序列与所述一个第四类空口资源的时域资源在所述Q1个第四类空口资源中的位置有关;所述Q1是正整数。
  11. 一种被用于无线通信的用户设备,其特征在于,包括:
    第一发射机:在第一空口资源上发送第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上发送第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上发送第一无线信号;
    其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
  12. 根据权利要求11所述的用户设备,其特征在于,包括:
    第一接收机:接收第一配置信息;
    其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
  13. 一种被用于无线通信的基站设备,其特征在于,包括:
    第三接收机:在第一空口资源上接收第一特征无线信号,第一序列被用于生成所述第一特征无线信号;在第二空口资源上接收第二特征无线信号,第二序列被用于生成所述第二特征无线信号;在第三空口资源上接收第一无线信号;
    其中,所述第一无线信号所经历的信道参数与所述第二特征无线信号所经历的信道参数有关;第一身份被用于确定所述第二序列和所述第一无线信号中的至少之一;所述第二空口资源和所述第三空口资源中的至少之一与所述第一空口资源有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一序列有关,或者,所述第二空口资源和所述第三空口资源中的至少之一与所述第一身份有关。
  14. 根据权利要求13所述的基站设备,其特征在于,包括:
    第二发射机:发送第一配置信息;
    其中,所述第一配置信息被用于确定第一序列池和第二序列池中的至少之一,所述第一序列属于所述第一序列池,所述第二序列属于所述第二序列池;或者,所述第一配置信息被用于确定第一空口资源池,第二空口资源池和第三空口资源池中的至少之一;所述第一空口资源池包括正整数个第一类空口资源,所述第一空口资源是所述正整数个第一类空口资源中的之一;所述第二空口资源池包括正整数个第二类空口资源,所述第二空口资源是所述正整数个第二类空口资源中的之一;所述第三空口资源池包括正整数个第三类空口资源,所述第三空口资源是所述正整数个第三类空口资源中的之一。
PCT/CN2019/078878 2018-03-21 2019-03-20 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019179463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/009,799 US11382070B2 (en) 2018-03-21 2020-09-02 Method and device in UE and base station used for wireless communication
US17/744,766 US11722997B2 (en) 2018-03-21 2022-05-16 Method and device in UE and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810236050.8 2018-03-21
CN201810236050.8A CN110300452B (zh) 2018-03-21 2018-03-21 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/009,799 Continuation US11382070B2 (en) 2018-03-21 2020-09-02 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2019179463A1 true WO2019179463A1 (zh) 2019-09-26

Family

ID=67988165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078878 WO2019179463A1 (zh) 2018-03-21 2019-03-20 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (2) US11382070B2 (zh)
CN (3) CN111769928B (zh)
WO (1) WO2019179463A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019227280A1 (zh) * 2018-05-28 2019-12-05 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111263461B (zh) * 2018-11-30 2022-04-22 华为技术有限公司 传输方法及装置
US11122478B2 (en) * 2019-03-28 2021-09-14 Qualcomm Incorporated User equipment camping in a virtual cell
CN115835398A (zh) * 2019-04-11 2023-03-21 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
EP4192053A1 (en) * 2019-08-16 2023-06-07 Hyundai Motor Company Method transmitting sidelink data in communication system
CN112910608B (zh) * 2019-11-19 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112838914B (zh) * 2019-11-22 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113207172B (zh) * 2020-01-31 2022-05-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113472485B (zh) * 2020-03-30 2022-12-02 大唐移动通信设备有限公司 一种harq反馈方法、终端及基站
US20210360632A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Transmitting payloads using m-sequences
CN114696973B (zh) * 2020-12-28 2024-04-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117939674A (zh) * 2021-05-24 2024-04-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078957A1 (en) * 2006-12-26 2008-07-03 Samsung Electronics Co., Ltd. Apparatus and method for packet classification in mobile communication system
CN105264999A (zh) * 2013-09-16 2016-01-20 华为技术有限公司 随机接入中预先确定资源的方法、用户设备和基站
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
CN107689844A (zh) * 2016-08-05 2018-02-13 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203029B (zh) * 2006-12-11 2010-11-10 大唐移动通信设备有限公司 一种随机接入的实现方法及基站
EP2366261A4 (en) * 2008-09-04 2013-02-13 Powerwave Cognition Inc ADVANCED WIRELESS AD-HOC COMMUNICATION TECHNIQUES
CN106034360B (zh) * 2015-03-17 2020-04-10 上海朗帛通信技术有限公司 一种多用户叠加的传输方法和装置
WO2017171322A2 (ko) * 2016-03-29 2017-10-05 엘지전자 주식회사 차세대 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
CN107306417B (zh) 2016-04-17 2019-09-06 上海朗帛通信技术有限公司 一种窄带移动通信的ue和基站中的方法和装置
CN107396452B (zh) * 2016-05-14 2020-05-26 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
KR20190118643A (ko) * 2017-03-24 2019-10-18 텔레폰악티에볼라겟엘엠에릭슨(펍) 무선 디바이스를 위한 전송기 및 수신기 구성을 결정하는 시스템 및 방법
US11089584B2 (en) * 2017-03-24 2021-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Quasi-colocation of system access and control signals
WO2018182283A1 (ko) * 2017-03-27 2018-10-04 엘지전자 주식회사 임의 접속 채널을 전송하는 방법과 사용자기기, 및 임의 접속 채널을 수신하는 방법 및 기지국
US10912121B2 (en) * 2017-06-15 2021-02-02 Samsung Electronics Co., Ltd. Method, apparatus, and system for RACH resource configuration and RACH resource selection mechanism
AU2018354982A1 (en) * 2017-10-27 2020-05-21 Lg Electronics Inc. Method for operating device in wireless communication system, and device using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078957A1 (en) * 2006-12-26 2008-07-03 Samsung Electronics Co., Ltd. Apparatus and method for packet classification in mobile communication system
CN105264999A (zh) * 2013-09-16 2016-01-20 华为技术有限公司 随机接入中预先确定资源的方法、用户设备和基站
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
CN107689844A (zh) * 2016-08-05 2018-02-13 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Also Published As

Publication number Publication date
US20210029673A1 (en) 2021-01-28
US11382070B2 (en) 2022-07-05
CN111769929A (zh) 2020-10-13
US11722997B2 (en) 2023-08-08
CN111769928A (zh) 2020-10-13
CN110300452B (zh) 2020-06-30
US20220322303A1 (en) 2022-10-06
CN111769928B (zh) 2023-05-23
CN110300452A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2019179463A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019157974A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018059185A1 (zh) 一种用于随机接入的用户设备、基站中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2018068642A1 (zh) 一种支持多载波通信的用户设备、基站中的方法和设备
US20210352740A1 (en) Method and device in node used for wireless communication
US20210329612A1 (en) Method and device used in node for wireless communication
CN110366191B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019119479A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US11576209B2 (en) Method and device in a node used for wireless communication
WO2020143481A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018072605A1 (zh) 一种用户设备、基站中的随机接入的方法和装置
CN116261118A (zh) 一种被用于无线通信的节点中的方法和装置
CN110891252A (zh) 一种被用于无线通信的节点中的方法和装置
US11051335B2 (en) Method and device for wireless communication in a first node and base station
WO2019218134A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113645006A (zh) 一种副链路无线通信的方法和装置
WO2021151368A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN114285533B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138485A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN111769922B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023011281A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN116133132A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19770672

Country of ref document: EP

Kind code of ref document: A1