WO2023138485A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023138485A1
WO2023138485A1 PCT/CN2023/072012 CN2023072012W WO2023138485A1 WO 2023138485 A1 WO2023138485 A1 WO 2023138485A1 CN 2023072012 W CN2023072012 W CN 2023072012W WO 2023138485 A1 WO2023138485 A1 WO 2023138485A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
prach opportunity
domain symbol
prach
preamble
Prior art date
Application number
PCT/CN2023/072012
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海推络通信科技合伙企业(有限合伙)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海推络通信科技合伙企业(有限合伙) filed Critical 上海推络通信科技合伙企业(有限合伙)
Publication of WO2023138485A1 publication Critical patent/WO2023138485A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • Random access is an important aspect of uplink (Uplink, UL) transmission; enhancing PRACH (Physical random access channel, physical random access channel) is an important topic in enhancing uplink coverage. How to determine the relevant configuration for random access after adopting the coverage enhancement technology for PRACH is a key problem that must be solved.
  • the present application discloses a solution. It should be noted that the above description uses the uplink in the cellular network as an example; this application is also applicable to other scenarios, such as IoT (Internet of Things, Internet of Things), Internet of Vehicles, NTN (non-terrestrial networks, non-terrestrial network), etc., and achieve similar technical effects.
  • IoT Internet of Things
  • NTN non-terrestrial networks, non-terrestrial network
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost, or improve performance.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to respond to the transmission of the first preamble;
  • the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain;
  • the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI,
  • the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot;
  • the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the advantages of the above method include: it is beneficial to realize enhancement of uplink coverage performance.
  • the advantages of the above method include: the flexibility of base station configuration is improved, which is beneficial to the improvement of overall system performance.
  • the advantages of the above method include: avoiding ambiguity of understanding of RAR-related configurations by both communicating parties.
  • the advantages of the above method include: it is beneficial to make full use of RNTI resources.
  • the benefits of the above method include: improving uplink transmission performance or resource utilization.
  • the above-mentioned method is characterized in that,
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the time domain resource occupied by the first PRACH opportunity is later than the time domain resource occupied by the first reference PRACH opportunity.
  • the above-mentioned method is characterized in that,
  • Both the first PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the above-mentioned method is characterized in that,
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the above-mentioned method is characterized in that,
  • the second reference PRACH opportunity has no overlap with the first reference PRACH opportunity in the time domain, the second reference PRACH opportunity is used to determine a first time window, the first time window is the RAR time window for the first preamble, and the first signaling is at the first time detected in the window.
  • the advantages of the above method include: supporting to start the RAR time window after multiple repeated transmissions of the PRACH, while improving the transmission performance of the PRACH, it also ensures the consistency of understanding of the RAR time window by both communication parties.
  • the advantages of the above method include: the flexibility of configuration is improved.
  • the advantages of the above method include: it is beneficial to select an appropriate compromise between the transmission reliability of the PRACH and the delay of the random access.
  • the advantages of the above method include: it is beneficial to reduce the delay of random access.
  • the advantages of the above method include: avoiding unnecessary missed detection of RAR.
  • the above method is characterized in that it includes:
  • the first PRACH opportunity pool includes multiple PRACH opportunities
  • the first PRACH opportunity group includes multiple PRACH opportunities, all PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool;
  • the first PRACH opportunity belongs to the first PRACH opportunity group, each PRACH opportunity in the first PRACH opportunity group is used to send a repetition of the first preamble, and the first information is used to determine the first PRACH opportunity group from the first PRACH opportunity pool.
  • the above-mentioned method is characterized in that,
  • the first PRACH opportunity pool is divided into a plurality of PRACH opportunity groups; the first information is used to determine at least one effective PRACH opportunity group from the plurality of PRACH opportunity groups, and each effective PRACH opportunity group in the plurality of PRACH opportunity groups is reserved for the transmission of the preamble; the first PRACH opportunity group is an effective PRACH opportunity group in the plurality of PRACH opportunity groups.
  • the advantages of the above method include: enhancing the transmission performance of the PRACH.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the first signaling is used to respond to the transmission of the first preamble;
  • the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain;
  • the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI,
  • the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot;
  • the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the above-mentioned method is characterized in that,
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the time domain resource occupied by the first PRACH opportunity is later than the time domain resource occupied by the first reference PRACH opportunity.
  • the above-mentioned method is characterized in that,
  • Both the first PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the above-mentioned method is characterized in that,
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the above-mentioned method is characterized in that,
  • the second reference PRACH opportunity does not overlap with the first reference PRACH opportunity in the time domain, the second reference PRACH opportunity is used to determine a first time window, the first time window is a RAR time window for the first preamble, and the first signaling is sent in the first time window.
  • the above method is characterized in that it includes:
  • the first PRACH opportunity pool includes multiple PRACH opportunities
  • the first PRACH opportunity group includes multiple PRACH opportunities, all PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool;
  • the first PRACH opportunity belongs to the first PRACH opportunity group, each PRACH opportunity in the first PRACH opportunity group is used to send a repetition of the first preamble, and the first information is used to determine the first PRACH opportunity group from the first PRACH opportunity pool.
  • the above-mentioned method is characterized in that,
  • the first PRACH opportunity pool is divided into a plurality of PRACH opportunity groups; the first information is used from the plurality of PRACH opportunity groups At least one effective PRACH opportunity group is determined in the group, and each effective PRACH opportunity group in the plurality of PRACH opportunity groups is reserved for the transmission of the preamble; the first PRACH opportunity group is an effective PRACH opportunity group in the plurality of PRACH opportunity groups.
  • the present application discloses a first node used for wireless communication, which is characterized in that it includes:
  • the first transmitter sends the first preamble in the first PRACH opportunity
  • the first receiver receives first signaling, where the first signaling uses the first RNTI;
  • the first signaling is used to respond to the transmission of the first preamble;
  • the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain;
  • the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI,
  • the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot;
  • the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the present application discloses a second node used for wireless communication, which is characterized in that it includes:
  • the second receiver receives the first preamble in the first PRACH opportunity
  • the second transmitter sends first signaling, where the first signaling uses the first RNTI;
  • the first signaling is used to respond to the transmission of the first preamble;
  • the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain;
  • the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI,
  • the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot;
  • the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the method in this application has the following advantages:
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the first PRACH opportunity and the first PRACH opportunity group according to an embodiment of the present application
  • FIG. 7 shows a schematic illustration of a first RNTI according to an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the relationship between the second reference PRACH opportunity, the first reference PRACH opportunity, the first time window and the first preamble according to an embodiment of the present application
  • FIG. 9 shows an explanatory diagram in which the second reference PRACH opportunity is used to determine the first time window according to an embodiment of the present application
  • FIG. 10 shows a schematic diagram of the relationship between the first node, the first information, the first PRACH opportunity, the first PRACH opportunity group and the first PRACH opportunity pool according to an embodiment of the present application;
  • FIG. 11 shows a schematic diagram of the relationship between the first information, the first PRACH opportunity group, multiple PRACH opportunity groups, and the first PRACH opportunity pool according to an embodiment of the present application;
  • Fig. 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application sends a first preamble in step 101 in a first PRACH opportunity; and receives first signaling in step 102 .
  • the first signaling uses the first RNTI; the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI, the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot; the time domain position of the reference time domain symbol and the first PRACH opportunity or The first preamble is related to at least one of the two.
  • the first PRACH opportunity is a PRACH opportunity (PRACH occasion).
  • a PRACH opportunity in this application includes time-frequency resources used for sending a preamble (preamble).
  • one PRACH opportunity in this application is reserved for sending the preamble.
  • one PRACH opportunity in this application is reserved for the transmission of the preamble or one repeated transmission of the preamble.
  • one PRACH opportunity in this application is reserved for PRACH transmission.
  • one PRACH opportunity in this application is reserved for the transmission of the PRACH or a repeated transmission of the PRACH.
  • one PRACH opportunity in this application occupies a positive integer number of time domain symbols in the time domain.
  • a PRACH opportunity in this application occupies a positive integer number of sub-carriers (sub-carriers) in the frequency domain.
  • the first preamble is a preamble.
  • the first preamble is a preamble sequence (preamble sequence).
  • a Zhadoff-Chu sequence is used to generate the first preamble.
  • the first preamble is a preamble used for random access.
  • the first preamble is a preamble used to carry Msg1.
  • the first preamble adopts a short preamble format.
  • the first preamble adopts one of preamble format 0, preamble format 1, preamble format 2, and preamble format 3.
  • the first preamble adopts one of preamble format A1, preamble format A2, and preamble format A3.
  • the first preamble adopts one of preamble format B1, preamble format B2, preamble format B3, and preamble format B4.
  • the first preamble adopts one of the preamble format C0 and the preamble format C2.
  • the sequence length of the first preamble is 839.
  • the sequence length of the first preamble is 139.
  • the sequence length of the first preamble is 571.
  • the sequence length of the first preamble is 1151.
  • the SCS Subcarrier Spacing, subcarrier spacing
  • the SCS Subcarrier Spacing, subcarrier spacing corresponding to the first preamble is 1.25 kHz.
  • the SCS corresponding to the first preamble is 5kHz
  • the SCS corresponding to the first preamble is 15 kHz.
  • the SCS corresponding to the first preamble is 30 kHz.
  • the SCS corresponding to the first preamble is 60 kHz.
  • the SCS corresponding to the first preamble is 120 kHz.
  • the first PRACH opportunity is configured by higher layer (higher layer) signaling.
  • the first PRACH opportunity is configured by RRC signaling.
  • the first PRACH opportunity is configured in the information element RACH-ConfigCommon.
  • the first PRACH opportunity is configured in the information element RACH-ConfigDedicated.
  • the first PRACH opportunity is configured in the information element RACH-ConfigGeneric.
  • the first PRACH opportunity is configured in an information element whose name includes RACH.
  • the first PRACH opportunity is configured by a SIB (System Information Block) message.
  • SIB System Information Block
  • the first PRACH opportunity is configured by SIB1.
  • the first PRACH opportunity is predefined.
  • the first signaling is a DCI.
  • the first signaling is DCI format 1_0.
  • the first signaling is used to schedule the PDSCH.
  • CRC Cyclic redundancy check
  • the first signaling includes a RARUL grant for the physical layer.
  • the first signaling includes MAC RAR.
  • the first signaling belongs to MAC PDU.
  • the first signaling includes at least one bit.
  • the first signaling is represented by at least one bit.
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the first signaling is a DCI signaling.
  • the first signaling is DCI format 1_0.
  • the first signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling includes one or more fields (fields) in a DCI format.
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the first signaling is higher layer (higher layer) signaling.
  • the first signaling is RRC signaling.
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes an IE (Information Element, information element).
  • the first signaling includes one or more fields in one IE.
  • the first signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element).
  • the first signaling includes one or more fields in one MAC CE.
  • the first signaling belongs to one MAC CE.
  • sending the first preamble in the first PRACH opportunity includes: sending the first preamble in the time-frequency resource occupied by the first PRACH opportunity.
  • the expression "send the first preamble in the first PRACH opportunity" includes: using the first PRACH opportunity to send the first preamble.
  • the first RNTI is an RNTI (Radio Network Temporary Identifier) used for random access.
  • RNTI Radio Network Temporary Identifier
  • the first RNTI is an RA-RNTI.
  • the first RNTI is MsgB-RNTI.
  • the expression "the first signaling uses a first RNTI” includes: the first RNTI is used to perform scrambling on the first signaling.
  • the expression "the first signaling uses the first RNTI” includes: the CRC of the first signaling is scrambled (scrambled) by the first RNTI.
  • the first signaling is DCI format 1_0
  • the CRC of the first signaling is scrambled by the first RNTI
  • the first RNTI is an RA-RNTI.
  • the expression "the first signaling uses the first RNTI” includes: the PDSCH scheduled by a DCI format whose CRC is scrambled (scrambled) by the first RNTI is used to bear the first signaling.
  • the expression "the first signaling is used to respond to the transmission of the first preamble” includes: the first signaling includes the RAR for the first preamble.
  • the expression "the first signaling is used to respond to the transmission of the first preamble” includes: the first signaling includes a RAPID corresponding to the first preamble and a RAR uplink grant (random access response (RAR) UL grant) to the physical layer.
  • RAR random access response
  • the expression "the first signaling is used to respond to the transmission of the first preamble” includes: the first signaling is used to schedule a PDSCH carrying a RAR for at least the first preamble.
  • the expression "the first signaling is used to respond to the transmission of the first preamble” includes: the first signaling is used to schedule a PDSCH that carries at least the RAPID corresponding to the first preamble and the RAR uplink grant (UL grant) to the physical layer.
  • the first signaling is used to schedule a PDSCH carrying at least the RAPID and MAC RAR corresponding to the first preamble.
  • the expression "the first signaling is used to respond to the transmission of the first preamble” includes: the LSBs ofSFN field included in the first signaling is the same as the corresponding least significant bits (LSBs) of the SFN to which the transmission of the first preamble belongs in the time domain, and a transmission block in the PDSCH scheduled by the first signaling is received in the first time window, and the first transmission block obtained by parsing after the transmission block is delivered to higher layers
  • the RAPID random access preamble identity/identifier
  • the first time window is a RAR (random access response, Random access response, RAR) time window (RAR window) for the first preamble.
  • the RAR time window is a time window used for monitoring random access responses.
  • the first time domain symbol includes continuous time domain resources.
  • the time-domain symbols in this application include continuous time-domain resources.
  • the time-domain symbol in this application is a multi-carrier symbol.
  • the time-domain symbol in this application is an OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (Symbol).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • the time domain symbols in this application are SC-FDMA (Single Carrier-Frequency Division Multiple Access, single carrier frequency division multiple access) symbols.
  • the time domain symbols in this application are DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the time-domain symbols in this application are FBMC (Filter Bank Multi Carrier, filter bank multi-carrier) symbols.
  • the time-domain symbols in this application are for a 15kHz numerology.
  • the time-domain symbols in this application are for a 30 kHz numerology.
  • the time-domain symbols in this application are for a 60 kHz numerology.
  • the time-domain symbols in this application are for a 120 kHz numerology.
  • the index of the time domain symbol in this application is a non-negative integer.
  • the index of a time-domain symbol in this application refers to the index of the time-domain symbol in the slot to which it belongs.
  • the value range of the index of the time domain symbol in this application is 0 to 13.
  • the index of the time slot in this application is a non-negative integer.
  • the index of a time slot in this application refers to the index of the time slot in the system frame (system frame) to which it belongs.
  • the value range of the time slot index in this application is 0 to 79.
  • the first time slot is a time slot to which the first time domain symbol belongs, and the reference time slot is not the first time slot.
  • the reference time slot is before the first time slot.
  • the reference time slot is after the first time slot.
  • a time slot in this application includes multiple time-domain symbols.
  • the first RNTI is linearly related to the index of the reference time domain symbol.
  • the first RNTI is linearly related to the index of the reference time slot.
  • the index of the reference time domain symbol and the index of the reference time slot jointly indicate the first RNTI.
  • both the index of the reference time domain symbol and the index of the reference time slot are used to calculate the first RNTI.
  • the first RNTI is equal to a sum of multiple addends, one of the multiple addends is equal to the index of the reference time domain symbol, and the other of the multiple addends is equal to 14 multiplied by the index of the reference time slot.
  • the first RNTI 1+s+14 ⁇ t; wherein, the s represents the index of the reference time domain symbol, and the t represents the index of the reference time slot.
  • the first RNTI 1+s+7 ⁇ t; wherein, the s represents the index of the reference time domain symbol, and the t represents the index of the reference time slot.
  • the first RNTI max(s, t); wherein, the s represents the index of the reference time domain symbol, and the t represents the index of the reference time slot.
  • the reference time domain symbol is before the first time domain symbol.
  • the reference time domain symbol is after the first time domain symbol.
  • the reference time domain symbol is a time domain symbol used to send the first preamble.
  • the reference time domain symbol is the earliest time domain symbol used to send the first preamble.
  • the reference time domain symbol is after the latest time domain symbol occupied by the first PRACH opportunity in the time domain.
  • the expression "the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble" includes: the reference time domain symbol is before the first time domain symbol.
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the first PRACH opportunity and the first reference PRACH have no overlap in the time domain.
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the time domain resource occupied by the first PRACH opportunity is earlier than the time domain resource occupied by the first reference PRACH opportunity.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a diagram of a network architecture 200 of a 5G NR, LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System, Evolved Packet System) 200 by some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • the EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core Network) 210, HSS (Home Subscriber Server, Home Subscriber Server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • gNB 203 can be connected via the Xn interface (e.g. backhaul) to Other gNB204.
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210 .
  • MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP Internet Protocol, Internet Protocol
  • P-GW 213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes Internet protocol services corresponding to operators, and specifically may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • both the first node and the second node in this application correspond to the UE 201 , for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG. 3 shows the radio protocol architecture for a first communication node device (UE, RSU in gNB or V2X) and a second communication node device (gNB, UE or RSU in V2X), or the control plane 300 between two UEs, with three layers: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • the L2 layer 305 includes a MAC (Medium Access Control, Media Access Control) sublayer 302, an RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303, and a PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304, and these sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for Out-of-order reception caused by HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using RRC signaling between the second communication node device and the first communication node device to configure lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355.
  • the CP sublayer 354 also provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer) to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and an application layer terminating at the other end of the connection (e.g., a remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first information in this application is generated in the RRC sublayer 306 .
  • the first information in this application is generated in the MAC sublayer 302 .
  • the first information in this application is generated in the MAC sublayer 352 .
  • the first information in this application is generated by the PHY301.
  • the first information in this application is generated by the PHY351.
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • the first preamble in this application is generated by the PHY301.
  • the first preamble in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communications device 450 includes controller/processor 459 , memory 460 , data source 467 , transmit processor 468 , receive processor 456 , multiple antenna transmit processor 457 , multiple antenna receive processor 458 , transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communications device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 performs encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as mapping of signal constellations based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying the time domain multicarrier symbol stream. Then the multi-antenna transmit processor 471 performs analog pre-programming on the time-domain multi-carrier symbol stream code/beamforming operation. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • a reference signal e.g., pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered from any spatial stream destined for the second communication device 450 after multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 In transmission from the first communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocation, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then the transmit processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data. Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communications device 450 to the first communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the UE 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one A controller/processor is responsible for the HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for performing error detection using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) protocols to support HARQ operations.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 means at least: sending a first preamble in a first PRACH opportunity; receiving first signaling, the first signaling adopts a first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; both an index of a reference time domain symbol and an index of a reference time slot are used to determine the first RNTI, and the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol is a time domain symbol other than the first time domain symbol.
  • the domain symbol belongs to the reference time slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing computer-readable instruction programs, the computer-readable instruction programs generate actions when executed by at least one processor, the actions include: sending a first preamble in a first PRACH opportunity; receiving first signaling, the first signaling adopts a first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; The indexes of all are used to determine the first RNTI, the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the first communication device 410 means at least: receiving a first preamble in a first PRACH opportunity; sending a first signaling, the first signaling adopting a first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; both an index of a reference time domain symbol and an index of a reference time slot are used to determine the first RNTI, the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol is a time domain symbol other than the first time domain symbol.
  • the domain symbol belongs to the reference time slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, the actions include: receiving a first preamble in a first PRACH opportunity; sending first signaling, the first signaling adopts a first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; The indexes of all are used to determine the first RNTI, the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the first communication device 410 corresponds to the second node in this application.
  • At least one of ⁇ the antenna 452, the transmitter 454, the multi-antenna transmit processor 458, the transmit processor 468, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the first preamble in this application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ is used to receive the first preamble in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling in this application.
  • At least one of ⁇ the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first information in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ is used to send the first information in this application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the part in the dotted box F1 is optional.
  • the first node U1 receives first information in step S5101; sends a first preamble in a first PRACH opportunity in step S511; receives first signaling in step S512.
  • the second node U2 sends the first information in step S5201; receives the first preamble in the first PRACH opportunity in step S521; sends the first signaling in step S522.
  • the first signaling uses the first RNTI; the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI, the reference time domain symbol is a time domain symbol other than the first time domain symbol, and the reference time domain symbol belongs to the reference time slot; The earliest time-domain symbol of , the time-domain resource occupied by the first PRACH opportunity is earlier or later than the time-domain resource occupied by the first reference PRACH opportunity.
  • the second reference PRACH opportunity does not overlap with the first reference PRACH opportunity in the time domain, and the second reference PRACH opportunity is used to determine a first time window, the first time window is a RAR time window for the first preamble, and the first signaling is detected by the first node U1 in the first time window.
  • both the first PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the first PRACH opportunity pool includes multiple PRACH opportunities
  • the first PRACH opportunity group includes multiple PRACH opportunities, all PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool;
  • the first PRACH opportunity belongs to the first PRACH opportunity group, each PRACH opportunity in the first PRACH opportunity group is used to send a repetition of the first preamble, and the first information is used to determine the first PRACH from the first PRACH opportunity pool opportunity group.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the problem to be solved in this application includes: how to realize the coverage enhancement of PRACH in the 5G NR system.
  • the problem to be solved in this application includes: how to determine the RA-RNTI used by the same RAR corresponding to multiple PRACH transmissions.
  • the problem to be solved in this application includes: how to determine the time window for monitoring the same RAR corresponding to multiple PRACH transmissions.
  • the problem to be solved in the present application includes: how to ensure that both parties in communication have a consistent understanding of the relevant configuration of the RAR.
  • the problem to be solved in this application includes: how to realize the relevant configuration of the RAR for multiple repeated transmissions of the PRACH.
  • the first node also sends the first PUSCH.
  • the second node also receives the first PUSCH.
  • the first PUSCH is Msg3 PUSCH (Physical uplink shared channel).
  • Msg3 is sent on the first PUSCH.
  • the RAR UL grant carried by the PDSCH scheduled by the first signaling includes the scheduling information of the first PUSCH.
  • the scheduling information includes at least one of ⁇ occupied time domain resources, occupied frequency domain resources, used antenna ports, adopted MCS (Modulation and coding scheme, modulation and coding scheme), TPC commands ⁇ .
  • MCS Modulation and coding scheme, modulation and coding scheme
  • the TC-RNTI is used for scrambling initialization (scrambling initialization) of the first PUSCH.
  • the first node further receives a first PDSCH, where the first PDSCH includes a UE contention resolution identity (UE contention resolution identity).
  • UE contention resolution identity UE contention resolution identity
  • the second node further sends a first PDSCH, where the first PDSCH includes a UE contention resolution identity (UE contention resolution identity).
  • UE contention resolution identity UE contention resolution identity
  • the DCI format 1_0 in which the CRC is scrambled by the TC-RNTI is used to schedule the first PDSCH.
  • the first PDSCH is a PDSCH (Physical downlink shared channel).
  • the time domain resources occupied by the first PDSCH are later than the time domain resources occupied by the first PUSCH.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first PRACH opportunity and the first PRACH opportunity group according to an embodiment of the present application, as shown in FIG. 6 .
  • the first PRACH opportunity belongs to a first PRACH opportunity group, and the first PRACH opportunity group includes multiple PRACH opportunities.
  • the first PRACH opportunity belongs to a first PRACH opportunity group
  • the reference time domain symbol belongs to a time domain resource occupied by a PRACH opportunity in the first PRACH opportunity group.
  • the first PRACH opportunity belongs to a first PRACH opportunity group
  • the reference time domain symbol is the earliest time domain symbol occupied by the earliest PRACH opportunity in the first PRACH opportunity group.
  • the first PRACH opportunity belongs to a first PRACH opportunity group
  • the reference time domain symbol is the earliest time domain symbol occupied by the latest PRACH opportunity in the first PRACH opportunity group.
  • the first PRACH opportunity group includes multiple PRACH opportunities, and the multiple PRACH opportunities are respectively reserved for multiple repeated transmissions of a preamble (Preamble).
  • Preamble a preamble
  • all PRACH opportunities in the first PRACH opportunity group are reserved for the same preamble.
  • all PRACH opportunities in the first PRACH opportunity group are associated with the same SS/PBCH block index (SS/PBCH block index).
  • an SS/PBCH block consists of a PBCH (physical broadcast channel), PSS (Primary Synchronization signal) and SSS (Secondary synchronization signal).
  • PBCH physical broadcast channel
  • PSS Primary Synchronization signal
  • SSS Secondary synchronization signal
  • an SS/PBCH block index is an index of an SS/PBCH block.
  • all PRACH opportunities in the first PRACH opportunity group have the same PRACH opportunity index (PRACH occasion index).
  • each PRACH opportunity in the first PRACH opportunity group is a repetition of the same PRACH opportunity.
  • multiple PRACH opportunities in the first PRACH opportunity group are respectively reserved for multiple repetitions of one PRACH.
  • the first PRACH opportunity group is configured by higher layer signaling.
  • the first PRACH opportunity group is configured by RRC signaling.
  • the first PRACH opportunity group is configured in the information element RACH-ConfigCommon.
  • the first PRACH opportunity group is configured in the information element RACH-ConfigDedicated.
  • the first PRACH opportunity group is configured in the information element RACH-ConfigGeneric.
  • the first PRACH opportunity group is configured in an information element whose name includes RACH.
  • the first PRACH opportunity group is configured by SIB signaling.
  • the first PRACH opportunity group is configured by SIB1.
  • the first PRACH opportunity group is predefined.
  • Embodiment 7 illustrates a schematic diagram illustrating a first RNTI according to an embodiment of the present application, as shown in FIG. 7 .
  • the first RNTI 1+s+14 ⁇ t+14 ⁇ 80 ⁇ f+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier.
  • the s represents the index of the reference time domain symbol
  • the t represents the index of the reference time slot
  • the f is the index of the first reference PRACH opportunity in the frequency domain
  • the ul_carrier represents the UL carrier used to send the first preamble (0 represents a NUL carrier, and 1 represents a SUL carrier).
  • the reference time domain symbol is a time domain symbol occupied by the first reference PRACH opportunity in the time domain.
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain.
  • the first PRACH opportunity and the first reference PRACH opportunity have no overlap in time domain.
  • the first PRACH opportunity and the first reference PRACH opportunity only partially overlap in the time domain.
  • the first PRACH opportunity overlaps with the first reference PRACH opportunity in the time domain, and the reference time domain symbol belongs to the time domain resource occupied by the first reference PRACH opportunity in the time domain but does not belong to the time domain resource occupied by the first PRACH opportunity.
  • the first PRACH opportunity is before the first reference PRACH opportunity.
  • the first PRACH opportunity is after the first reference PRACH opportunity.
  • the first PRACH opportunity and the first reference PRACH opportunity respectively belong to different time slots in the time domain.
  • the first PRACH opportunity and the first reference PRACH opportunity belong to the same time slot in the time domain.
  • the first RNTI 1+s+14 ⁇ t+14 ⁇ 80 ⁇ f; wherein, the s represents the index of the reference time domain symbol, the t represents the index of the reference time slot, and the f is the index of the first reference PRACH opportunity in the frequency domain.
  • the f is a non-negative integer.
  • said f is not less than 0 and less than 8.
  • the first PRACH opportunity and the first reference PRACH opportunity are two repetitions of the same PRACH opportunity respectively.
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively reserved for two repetitions of the same PRACH.
  • both the first PRACH opportunity and the first reference PRACH opportunity belong to the first PRACH opportunity group in this application.
  • Embodiment 8 illustrates a schematic diagram of the relationship among the second reference PRACH opportunity, the first reference PRACH opportunity, the first time window and the first preamble according to an embodiment of the present application, as shown in FIG. 8 .
  • the second reference PRACH opportunity does not overlap with the first reference PRACH opportunity in the time domain, and the second reference PRACH opportunity is used to determine a first time window, where the first time window is a RAR time window for the first preamble; the first signaling is detected in the first time window.
  • the time domain resource occupied by the second reference PRACH opportunity is later than the time domain resource occupied by the first reference PRACH opportunity.
  • the time domain resource occupied by the second reference PRACH opportunity is earlier than the time domain resource occupied by the first reference PRACH opportunity.
  • the second reference PRACH opportunity and the first reference PRACH opportunity respectively belong to different time slots in the time domain.
  • the second reference PRACH opportunity and the first reference PRACH opportunity belong to the same time slot in the time domain.
  • the second reference PRACH opportunity is the first PRACH opportunity.
  • the second reference PRACH opportunity is not the first PRACH opportunity.
  • the second reference PRACH opportunity and the first reference PRACH opportunity are respectively two repetitions of the same PRACH opportunity.
  • the second reference PRACH opportunity and the first reference PRACH opportunity are respectively reserved for two repetitions of the same PRACH.
  • both the second reference PRACH opportunity and the first reference PRACH opportunity belong to the first PRACH opportunity group.
  • the first reference PRACH opportunity is the earliest PRACH opportunity in the first PRACH opportunity group.
  • the first reference PRACH opportunity is the latest PRACH opportunity in the first PRACH opportunity group.
  • the first reference PRACH opportunity is the first PRACH opportunity in the first PRACH opportunity group that is sorted in the order of increasing first in the frequency domain and then increasing in the time domain.
  • the first reference PRACH opportunity is the last PRACH opportunity in the first PRACH opportunity group sorted in the order of increasing first in the frequency domain and then increasing in the time domain.
  • the first reference PRACH opportunity is the first PRACH opportunity in the first PRACH opportunity group sorted in the order of increasing first in the time domain and then increasing in the frequency domain.
  • the first reference PRACH opportunity is the last PRACH opportunity in the first PRACH opportunity group sorted in the order of increasing first in the time domain and then increasing in the frequency domain.
  • the second reference PRACH opportunity is which PRACH opportunity in the first PRACH opportunity group is configured by RRC signaling/message.
  • the second reference PRACH opportunity is used to indicate the first time window.
  • the second reference PRACH opportunity is used to determine the time domain start position of the first time window.
  • the time domain starting position of the first time window is not earlier than the latest time domain symbol occupied by the second reference PRACH opportunity in the time domain.
  • the first time window starts from: after the latest time domain symbol occupied by the second reference PRACH opportunity in the time domain and separated from the latest time domain symbol occupied by the second reference PRACH opportunity in the time domain by at least one time domain symbol, configured to receive the earliest time domain symbol of the earliest CORESET of the PDCCH (Physical downlink control channel) for the first type PDCCH CSS set (Type1-PDCCH CSS set).
  • PDCCH Physical downlink control channel
  • the first type of PDCCH CSS set is a common search space set (Common search space set, CSS set).
  • the first type of PDCCH CSS set is configured by ra-SearchSpace in PDCCH-ConfigCommon.
  • the first type of PDCCH CSS set is used to detect the DCI format of CRC scrambled by RA-RNTI or MsgB-RNTI or TC-RNTI on the primary cell.
  • the RAR time window is a time window used to monitor a random access response (RAR).
  • the length of the first time window is configurable.
  • the length of the first time window is configured by RRC signaling.
  • the parameter ra-ResponseWindow is used to configure the first time window.
  • the length of the first time window is configured by the parameter ra-ResponseWindow.
  • the length of the first time window is equal to the time length occupied by a positive integer number of time slots.
  • the length of the first time window is equal to the time length occupied by T time slots, and the T is configured by ra-ResponseWindow.
  • the expression "the first signaling is detected in the first time window” includes: the first signaling is received in the first time window.
  • both the second reference PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the second reference PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the association manner between the PRACH opportunity and the SS/PBCH block index is configured by RRC signaling/message.
  • the association of a PRACH opportunity with an SS/PBCH block index means that the PRACH opportunity is mapped to the SS/PBCH block index.
  • Embodiment 9 illustrates a schematic diagram of the second reference PRACH opportunity being used to determine the first time window according to an embodiment of the present application, as shown in FIG. 9 .
  • the gray filled squares indicate the time domain resources occupied by the second reference PRACH opportunity
  • the obliquely filled squares indicate the time domain resources occupied by the first type of PDCCH CSS set
  • the white squares indicate the first time window.
  • the first time window starts from: after the latest time domain symbol occupied by the second reference PRACH opportunity in the time domain and separated from the latest time domain symbol occupied by the second reference PRACH opportunity in the time domain by at least one time domain symbol, configured to receive the earliest time domain symbol of the earliest CORESET of the PDCCH (Physical downlink control channel) for the first type PDCCH CSS set (Type1-PDCCH CSS set).
  • PDCCH Physical downlink control channel
  • Embodiment 10 illustrates a schematic diagram of the relationship between the first node, the first information, the first PRACH opportunity, the first PRACH opportunity group and the first PRACH opportunity pool according to an embodiment of the present application, as shown in FIG. 10 .
  • the first node in the present application receives first information; the first PRACH opportunity pool includes multiple PRACH opportunities, the first PRACH opportunity group includes multiple PRACH opportunities, and all PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool; the first PRACH opportunity belongs to the first PRACH opportunity group, and each PRACH opportunity in the first PRACH opportunity group is used to send a repetition of the first preamble, and the first information is used from the first PRACH opportunity group
  • the first PRACH opportunity group is determined in the pool.
  • the first information includes at least one bit.
  • the first information is physical layer signaling.
  • the first information is a DCI format (DCI format).
  • the first information is one of DCI format 0_0, DCI format 0_1 or DCI format 0_2.
  • the first information is one of DCI format 1_0, DCI format 1_1 or DCI format 1_2.
  • the first information includes one or more fields in a DCI format.
  • the first information is higher layer (higher layer) signaling.
  • the first information is RRC signaling.
  • the first information includes one or more fields in one RRC signaling.
  • the first information includes an IE (Information Element, information element).
  • IE Information Element, information element
  • the first information includes one or more fields in one IE.
  • the first information is MAC CE (Medium Access Control layer Control Element, Medium Access Control layer Control Element).
  • the first information includes one or more fields in one MAC CE.
  • the first information belongs to one MAC CE.
  • the first information includes tdd-UL-DL-ConfigurationCommon.
  • the name of the first information includes tdd-UL-DL.
  • the first information is used to configure a type of a time-domain symbol.
  • the first information is used to configure at least uplink symbols (UL symbol(s)).
  • the first information is used to configure at least downlink symbols (downlink symbol(s)).
  • all the PRACH opportunities in the first PRACH opportunity pool belong to the same PRACH configuration period (PRACH configuration period).
  • all PRACH opportunities in the first PRACH opportunity pool belong to the same association period (association period).
  • the index of each transmitted SS/PBCH block is mapped to at least one PRACH opportunity.
  • the index of each transmitted SS/PBCH block is mapped to at least one valid PRACH opportunity.
  • the index of each transmitted SS/PBCH block is mapped to at least one PRACH opportunity group.
  • the index of each transmitted SS/PBCH block is mapped to at least one valid PRACH opportunity group.
  • the first information is used to indicate the first PRACH opportunity group from the first PRACH opportunity pool.
  • the expression "the first information is used to determine the first PRACH opportunity group from the first PRACH opportunity pool” includes: the first information is used to indicate at least one PRACH opportunity group from the first PRACH opportunity pool, and the first PRACH opportunity group is one of the indicated at least one PRACH opportunity group.
  • the expression "the first information is used to determine the first PRACH opportunity group from the first PRACH opportunity pool” includes:
  • the first PRACH opportunity pool is divided into a plurality of PRACH opportunity groups; the first information is used to determine at least one effective PRACH opportunity group from the plurality of PRACH opportunity groups, and each effective PRACH opportunity group in the plurality of PRACH opportunity groups is reserved for the transmission of the preamble; the first PRACH opportunity group is an effective PRACH opportunity group in the plurality of PRACH opportunity groups.
  • any PRACH opportunity group in this application consists of at least one PRACH opportunity.
  • Embodiment 11 illustrates a schematic diagram of the relationship between the first information, the first PRACH opportunity group, multiple PRACH opportunity groups, and the first PRACH opportunity pool according to an embodiment of the present application, as shown in FIG. 11 .
  • the first PRACH opportunity pool is divided into multiple PRACH opportunity groups; the first information is used to determine at least one valid PRACH opportunity group from the multiple PRACH opportunity groups, and each valid PRACH opportunity group in the multiple PRACH opportunity groups is reserved for sending preambles; the first PRACH opportunity group is an effective PRACH opportunity group in the multiple PRACH opportunity groups.
  • any two PRACH opportunity groups in the plurality of PRACH opportunity groups include the same number of PRACH opportunities.
  • any two valid PRACH opportunity groups in the plurality of PRACH opportunity groups include the same number of PRACH opportunities.
  • a PRACH opportunity group includes at least M effective PRACH opportunities, this PRACH opportunity group is an effective PRACH opportunity group, and the M is a positive integer; the first information is used to determine whether each PRACH opportunity in the first PRACH opportunity pool is an effective PRACH opportunity.
  • the M is equal to 1.
  • the M is greater than 1.
  • said M is equal to 2.
  • said M is equal to 3.
  • said M is equal to 4.
  • said M is equal to 5.
  • said M is equal to 6.
  • said M is equal to 7.
  • said M is equal to 8.
  • the M is not greater than 1024.
  • the M is configurable.
  • this PRACH opportunity group is an effective PRACH opportunity group; the first information is used to determine whether each PRACH opportunity in the first PRACH opportunity pool is an effective PRACH opportunity.
  • all valid PRACH opportunities in each valid PRACH opportunity group in the plurality of PRACH opportunity groups are reserved for sending the preamble.
  • the first PRACH opportunity is a valid PRACH opportunity.
  • the first reference PRACH opportunity is a valid PRACH opportunity.
  • the second reference PRACH opportunity is a valid PRACH opportunity.
  • the first reference PRACH opportunity is not a valid PRACH opportunity.
  • the second reference PRACH opportunity is not a valid PRACH opportunity.
  • one valid PRACH opportunity may be used to send the preamble.
  • this PRACH opportunity is not used to send the preamble.
  • one valid PRACH opportunity can be used for PRACH transmission.
  • this PRACH opportunity is not used for PRACH transmission.
  • the first information is used to indicate valid PRACH opportunities in the first PRACH opportunity pool.
  • the first node is provided with tdd-UL-DL-ConfigurationCommon.
  • this PRACH opportunity is a valid PRACH opportunity.
  • a PRACH opportunity is an effective PRACH opportunity; one condition in the first condition set is: all time domain symbols occupied by this PRACH opportunity in the time domain are uplink symbols.
  • this PRACH opportunity is not before the SS/PBCH block in the PRACH time slot to which it belongs, and this PRACH opportunity starts after the last downlink symbol and is separated from the last downlink symbol by a time domain symbol of at least N symbols, and this PRACH opportunity starts after the time domain symbol occupied by the last SS/PBCH block and is separated by at least N symbols from the time domain symbol occupied by the last SS/PBCH block domain symbols, and if channelAccessMode is configured as semistatic, this PRACH opportunity is not used to perform consecutive time domain symbols for transmission before the start of the next channel occupancy time without overlapping; wherein, the N is equal to 0 or 2.
  • Embodiment 12 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 12 .
  • a first node device processing apparatus 1200 includes a first receiver 1201 and a first transmitter 1202 .
  • the first node device 1200 is a base station.
  • the first node device 1200 is a user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a vehicle communication device.
  • the first node device 1200 is a user equipment supporting V2X communication.
  • the first node device 1200 is a relay node supporting V2X communication.
  • the first node device 1200 is a user equipment supporting dynamic waveform switching.
  • the first node device 1200 is a user equipment that supports operations on a shared frequency spectrum.
  • the first receiver 1201 includes at least one of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first receiver 1201 includes at least the first five of the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, controller/processor 459, memory 460 and data source 467 in FIG. 4 of this application.
  • the first receiver 1201 includes at least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of this application.
  • the first receiver 1201 includes at least the first three of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first receiver 1201 includes at least the first two of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of this application.
  • the first transmitter 1202 includes at least one of the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first transmitter 1202 includes at least the first five of the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first transmitter 1202 includes at least the first four of the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmitting processor 468, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first transmitter 1202 includes at least the first three of the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first transmitter 1202 includes at least the first two of the antenna 452, the transmitter 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, the memory 460 and the data source 467 in FIG. 4 of the present application.
  • the first transmitter 1202 sends the first preamble in the first PRACH opportunity; the first receiver 1201 receives the first signaling, and the first signaling adopts the first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI, and the reference time domain symbol is the first A time domain symbol other than the time domain symbol, the reference time domain symbol belongs to the reference slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the time domain resource occupied by the first PRACH opportunity is later than the time domain resource occupied by the first reference PRACH opportunity.
  • both the first PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the second reference PRACH opportunity does not overlap with the first reference PRACH opportunity in the time domain, and the second reference PRACH opportunity is used to determine a first time window, where the first time window is a RAR time window for the first preamble, and the first signaling is detected in the first time window.
  • the first receiver 1201 receives first information; wherein, the first PRACH opportunity pool includes multiple PRACH opportunities, the first PRACH opportunity group includes multiple PRACH opportunities, and all PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool; the first PRACH opportunity belongs to the first PRACH opportunity group, and the first PRACH opportunity group Each PRACH opportunity in is used to send one repetition of the first preamble, and the first information is used to determine the first PRACH opportunity group from the first PRACH opportunity pool.
  • the first PRACH opportunity pool is divided into multiple PRACH opportunity groups; the first information is used to determine at least one valid PRACH opportunity group from the multiple PRACH opportunity groups, and each valid PRACH opportunity group in the multiple PRACH opportunity groups is reserved for sending preambles; the first PRACH opportunity group is an effective PRACH opportunity group in the multiple PRACH opportunity groups.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 13 .
  • the second node device processing apparatus 1300 includes a second transmitter 1301 and a second receiver 1302 .
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a satellite device.
  • the second node device 1300 is a relay node.
  • the second node device 1300 is a vehicle communication device.
  • the second node device 1300 is a user equipment supporting V2X communication.
  • the second node device 1300 is a device supporting dynamic waveform switching.
  • the second node device 1300 is a device supporting operations on a shared frequency spectrum.
  • the second transmitter 1301 includes at least one of the antenna 420 , the transmitter 418 , the multi-antenna transmission processor 471 , the transmission processor 416 , the controller/processor 475 and the memory 476 in FIG. 4 of the present application.
  • the second transmitter 1301 includes at least the first five of the antenna 420 , the transmitter 418 , the multi-antenna transmission processor 471 , the transmission processor 416 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second transmitter 1301 includes at least the first four of the antenna 420 , the transmitter 418 , the multi-antenna transmission processor 471 , the transmission processor 416 , the controller/processor 475 and the memory 476 in FIG. 4 of the present application.
  • the second transmitter 1301 includes at least the first three of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second transmitter 1301 includes at least the first two of the antenna 420 , the transmitter 418 , the multi-antenna transmission processor 471 , the transmission processor 416 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 includes at least one of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 includes at least the first five of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 includes at least the first four of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 includes at least the first three of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 includes at least the first two of the antenna 420 , the receiver 418 , the multi-antenna receiving processor 472 , the receiving processor 470 , the controller/processor 475 and the memory 476 in FIG. 4 of this application.
  • the second receiver 1302 receives the first preamble in the first PRACH opportunity; the second transmitter 1301 sends the first signaling, and the first signaling adopts the first RNTI; wherein, the first signaling is used to respond to the transmission of the first preamble; the first time domain symbol is the earliest time domain symbol occupied by the first PRACH opportunity in the time domain; the index of the reference time domain symbol and the index of the reference time slot are used to determine the first RNTI, and the reference time domain symbol is the first A time domain symbol other than the time domain symbol, the reference time domain symbol belongs to the reference slot; the time domain position of the reference time domain symbol is related to at least one of the first PRACH opportunity or the first preamble.
  • the reference time domain symbol is the earliest time domain symbol occupied by the first reference PRACH opportunity in the time domain, and the time domain resource occupied by the first PRACH opportunity is later than the time domain resource occupied by the first reference PRACH opportunity.
  • both the first PRACH opportunity and the first reference PRACH opportunity are associated with the same SS/PBCH block index.
  • the first PRACH opportunity and the first reference PRACH opportunity are respectively associated with different SS/PBCH block indexes.
  • the second reference PRACH opportunity does not overlap with the first reference PRACH opportunity in the time domain
  • the second reference PRACH opportunity is used to determine a first time window
  • the first time window is a RAR time window for the first preamble
  • the first signaling is sent in the first time window.
  • the second transmitter 1301 transmits first information; wherein, the first PRACH opportunity pool includes multiple PRACH opportunities, the first PRACH opportunity group includes multiple PRACH opportunities, and all the PRACH opportunities in the first PRACH opportunity group belong to the first PRACH opportunity pool; the first PRACH opportunity belongs to the first PRACH opportunity group, and each PRACH opportunity in the first PRACH opportunity group is used to send a repetition of the first preamble, and the first information is used from the first PRACH opportunity group The first PRACH opportunity group is determined in the CH opportunity pool.
  • the first PRACH opportunity pool is divided into multiple PRACH opportunity groups; the first information is used to determine at least one valid PRACH opportunity group from the multiple PRACH opportunity groups, and each valid PRACH opportunity group in the multiple PRACH opportunity groups is reserved for sending preambles; the first PRACH opportunity group is an effective PRACH opportunity group in the multiple PRACH opportunity groups.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircrafts, airplanes, drones, remote control aircraft and other wireless communication devices.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft and other wireless communication devices.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft and other wireless communication devices.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial base station, test device, test equipment, test instrument and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一发射机,在第一PRACH机会中发送第一前导码;第一接收机,接收第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
随机接入(RandomAccess)是上行链路(Uplink,UL)传输的一个重要方面;对PRACH(Physical random access channel,物理随机接入信道)进行增强是增强上行链路覆盖中一个重要课题。如何确定在采用针对PRACH的覆盖增强技术后用于随机接入的相关配置是必须解决的关键问题。
发明内容
针对上述问题,本申请公开了一种解决方案。需要说明的是,上述描述采用蜂窝网中的上行链路作为例子;本申请也同样适用于其他场景,比如IoT(Internet of Things,物联网),车联网,NTN(non-terrestrial networks,非地面网络)等,并取得类似的技术效果。此外,不同场景(包括但不限于蜂窝网,IoT,车联网,NTN)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute ofElectrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
在第一PRACH机会中发送第一前导码;
接收第一信令,所述第一信令采用第一RNTI;
其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为一个实施例,上述方法的好处包括:有利于实现上行链路覆盖性能的增强。
作为一个实施例,上述方法的好处包括:提高了基站配置的灵活性,有利于系统总体性能的提升。
作为一个实施例,上述方法的好处包括:避免了通信双方对RAR相关配置的理解模糊。
作为一个实施例,上述方法的好处包括:有利于RNTI资源的充分利用。
作为一个实施例,上述方法的好处包括:提高了上行链路的传输性能或资源利用率。
根据本申请的一个方面,上述方法的特征在于,
所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
根据本申请的一个方面,上述方法的特征在于,
第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时 间窗中被检测到。
作为一个实施例,上述方法的好处包括:支持在PRACH的多次重复传输之后启动RAR时间窗,在提高PRACH的传输性能的同时也保证了通信双方对RAR时间窗理解的一致性。
作为一个实施例,上述方法的好处包括:提高了配置的灵活性。
作为一个实施例,上述方法的好处包括:有利于在PRACH的传输可靠性和随机接入的延时之间选择适当的折中。
作为一个实施例,上述方法的好处包括:有利于降低随机接入的延时。
作为一个实施例,上述方法的好处包括:避免了不必要的RAR的漏检。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信息;
其中,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
作为一个实施例,上述方法的好处包括:增强了PRACH的传输性能。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
在第一PRACH机会中接收第一前导码;
发送第一信令,所述第一信令采用第一RNTI;
其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
根据本申请的一个方面,上述方法的特征在于,
所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
根据本申请的一个方面,上述方法的特征在于,
第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时间窗中被发送。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信息;
其中,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
根据本申请的一个方面,上述方法的特征在于,
所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机 会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一发射机,在第一PRACH机会中发送第一前导码;
第一接收机,接收第一信令,所述第一信令采用第一RNTI;
其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二接收机,在第一PRACH机会中接收第一前导码;
第二发射机,发送第一信令,所述第一信令采用第一RNTI;
其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为一个实施例,本申请中的方法具备如下优势:
-增强了上行链路传输性能;
-提高了基站调度的灵活性;
-提高了频谱效率;
-避免了通信双方对RAR相关配置的理解模糊;
-有利于RNTI资源的充分利用。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一PRACH机会与第一PRACH机会组之间关系的示意图;
图7示出了根据本申请的一个实施例的第一RNTI的说明示意图;
图8示出了根据本申请的一个实施例的第二参考PRACH机会,第一参考PRACH机会,第一时间窗以及第一前导码之间关系的示意图;
图9示出了根据本申请的一个实施例的第二参考PRACH机会被用于确定第一时间窗的说明示意图;
图10示出了根据本申请的一个实施例的第一节点,第一信息,第一PRACH机会,第一PRACH机会组以及第一PRACH机会池之间关系的示意图;
图11示出了根据本申请的一个实施例的第一信息,第一PRACH机会组,多个PRACH机会组,以及第一PRACH机会池之间关系的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请 的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤101中在第一PRACH机会中发送第一前导码;在步骤102中接收第一信令。
在实施例1中,所述第一信令采用第一RNTI;所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为一个实施例,所述第一PRACH机会是一个PRACH机会(PRACH occasion)。
作为一个实施例,本申请中的一个PRACH机会包括被用于发送前导码(preamble)的时频资源。
作为一个实施例,本申请中的一个PRACH机会被预留给前导码的发送。
作为一个实施例,本申请中的一个PRACH机会被预留给前导码的发送或前导码的一次重复的发送。
作为一个实施例,本申请中的一个PRACH机会被预留给PRACH的发送。
作为一个实施例,本申请中的一个PRACH机会被预留给PRACH的发送或PRACH的一次重复的发送。
作为一个实施例,本申请中的一个PRACH机会在时域占用正整数个时域符号。
作为一个实施例,本申请中的一个PRACH机会在频域占用正整数个子载波(sub-carrier)。
作为一个实施例,所述第一前导码是一个前导码(preamble)。
作为一个实施例,所述第一前导码是一个前导码序列(preamble sequence)。
作为一个实施例,Zhadoff-Chu序列被用于生成所述第一前导码。
作为一个实施例,所述第一前导码是被用于随机接入的前导码。
作为一个实施例,所述第一前导码是被用于携带Msg1的前导码。
作为一个实施例,所述第一前导码采用短前导码格式。
作为一个实施例,所述第一前导码采用前导码格式0,前导码格式1,前导码格式2,前导码格式3中之一。
作为一个实施例,所述第一前导码采用前导码格式A1,前导码格式A2,前导码格式A3中之一。
作为一个实施例,所述第一前导码采用前导码格式B1,前导码格式B2,前导码格式B3,前导码格式B4中之一。
作为一个实施例,所述第一前导码采用前导码格式C0,前导码格式C2中之一。
作为一个实施例,所述第一前导码的序列长度为839。
作为一个实施例,所述第一前导码的序列长度为139。
作为一个实施例,所述第一前导码的序列长度为571。
作为一个实施例,所述第一前导码的序列长度为1151。
作为一个实施例,所述第一前导码所对应的SCS(Subcarrier Spacing,子载波间隔)是1.25kHz。
作为一个实施例,所述第一前导码所对应的SCS是5kHz
作为一个实施例,所述第一前导码所对应的SCS是15kHz。
作为一个实施例,所述第一前导码所对应的SCS是30kHz。
作为一个实施例,所述第一前导码所对应的SCS是60kHz。
作为一个实施例,所述第一前导码所对应的SCS是120kHz。
作为一个实施例,所述第一PRACH机会是更高层(higher layer)信令配置的。
作为一个实施例,所述第一PRACH机会是RRC信令配置的。
作为一个实施例,所述第一PRACH机会是在信息元素RACH-ConfigCommon中配置的。
作为一个实施例,所述第一PRACH机会是在信息元素RACH-ConfigDedicated中配置的。
作为一个实施例,所述第一PRACH机会是在信息元素RACH-ConfigGeneric中配置的。
作为一个实施例,所述第一PRACH机会是在名字中包括RACH的信息元素中配置的。
作为一个实施例,所述第一PRACH机会是SIB(System Information Block)消息配置的。
作为一个实施例,所述第一PRACH机会是SIB1配置的。
作为一个实施例,所述第一PRACH机会是预先定义好的。
作为一个实施例,所述第一信令是一个DCI。
作为一个实施例,所述第一信令是DCI格式1_0。
作为一个实施例,所述第一信令被用于调度PDSCH。
作为一个实施例,所述第一信令的CRC(Cyclic redundancy check)比特被所述第一RNTI加扰(scrambled)。
作为一个实施例,所述第一信令包括对物理层的RARUL grant。
作为一个实施例,所述第一信令包括MAC RAR。
作为一个实施例,所述第一信令属于MAC PDU。
作为一个实施例,所述第一信令包括至少一个比特。
作为一个实施例,所述第一信令由至少一个比特表示。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是一个DCI信令。
作为一个实施例,所述第一信令是DCI format 1_0。
作为一个实施例,所述第一信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括一个IE中的一个或多个域。
作为一个实施例,所述第一信令是MAC CE(MediumAccess Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信令包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第一信令属于一个MAC CE。
作为一个实施例,所述表述“在第一PRACH机会中发送第一前导码”包括:在所述第一PRACH机会所占用的时频资源中发送所述第一前导码。
作为一个实施例,所述表述“在第一PRACH机会中发送第一前导码”包括:使用所述第一PRACH 机会发送所述第一前导码。
作为一个实施例,所述第一RNTI是被用于随机接入的RNTI(Radio Network Temporary Identifier)。
作为一个实施例,所述第一RNTI是RA-RNTI。
作为一个实施例,所述第一RNTI是MsgB-RNTI。
作为一个实施例,所述表述“所述第一信令采用第一RNTI”包括:所述第一RNTI被用于对所述第一信令执行加扰。
作为一个实施例,所述表述“所述第一信令采用第一RNTI”包括:所述第一信令的CRC被所述第一RNTI加扰(scrambled)。
作为一个实施例,所述第一信令是DCI格式1_0,所述第一信令的CRC被所述第一RNTI加扰,所述第一RNTI是RA-RNTI。
作为一个实施例,所述表述“所述第一信令采用第一RNTI”包括:所具有的CRC被所述第一RNTI加扰(scrambled)的一个DCI格式所调度的PDSCH被用于承载所述第一信令。
作为一个实施例,所述表述“所述第一信令被用于响应所述第一前导码的传输”包括:所述第一信令包括针对所述第一前导码的RAR。
作为一个实施例,所述表述“所述第一信令被用于响应所述第一前导码的传输”包括:所述第一信令包括所述第一前导码对应的RAPID和对物理层的RAR上行链路授予(random access response(RAR)UL grant)。
作为一个实施例,所述表述“所述第一信令被用于响应所述第一前导码的传输”包括:所述第一信令被用于调度承载至少针对所述第一前导码的RAR的PDSCH。
作为一个实施例,所述表述“所述第一信令被用于响应所述第一前导码的传输”包括:所述第一信令被用于调度承载至少所述第一前导码对应的RAPID和对物理层的RAR上行链路授予(UL grant)的PDSCH。
作为一个实施例,所述第一信令被用于调度承载至少所述第一前导码对应的RAPID和MAC RAR的PDSCH。
作为一个实施例,所述表述“所述第一信令被用于响应所述第一前导码的传输”包括:所述第一信令所包括的LSBs ofSFN域与所述第一前导码的发送在时域所属的SFN的相应的最低有效比特(LSBs)相同,并且,所述第一信令所调度的PDSCH中的一个传输块在第一时间窗中被接收,并且,所述一个传输块被传递到更高层(higher layers)后被解析得到的所述第一前导码所对应的RAPID(random access preamble identity/identifier);所述第一时间窗是针对所述第一前导码的RAR(随机接入响应,Random access response,RAR)时间窗(RAR window)。
作为一个实施例,所述RAR时间窗是被用于监听随机接入响应的时间窗。
作为一个实施例,所述第一时域符号包括连续的时域资源。
作为一个实施例,本申请中的所述时域符号包括连续的时域资源。
作为一个实施例,本申请中的所述时域符号是一种多载波符号。
作为一个实施例,本申请中的所述时域符号是OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号(Symbol)。
作为一个实施例,本申请中的所述时域符号是SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,本申请中的所述时域符号是DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,本申请中的所述时域符号是FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号。
作为一个实施例,本申请中的所述时域符号是针对15kHz参数集(numerology)而言的。
作为一个实施例,本申请中的所述时域符号是针对30kHz参数集(numerology)而言的。
作为一个实施例,本申请中的所述时域符号是针对60kHz参数集(numerology)而言的。
作为一个实施例,本申请中的所述时域符号是针对120kHz参数集(numerology)而言的。
作为一个实施例,本申请中的时域符号的索引是一个非负整数。
作为一个实施例,本申请中的一个时域符号的索引是指这个时域符号在所属的时隙(slot)中的索引。
作为一个实施例,本申请中的时域符号的索引的取值范围是0到13。
作为一个实施例,本申请中的时隙的索引是一个非负整数。
作为一个实施例,本申请中的一个时隙的索引是指这个时隙在所属的系统帧(system frame)中的索引。
作为一个实施例,本申请中的时隙的索引的取值范围是0到79。
作为一个实施例,第一时隙是所述第一时域符号所属的时隙,所述参考时隙不是所述第一时隙。
作为一个实施例,所述参考时隙在所述第一时隙之前。
作为一个实施例,所述参考时隙在所述第一时隙之后。
作为一个实施例,本申请中的一个时隙包括多个时域符号。
作为一个实施例,所述第一RNTI与所述参考时域符号的所述索引线性相关。
作为一个实施例,所述第一RNTI与所述参考时隙的所述索引线性相关。
作为一个实施例,所述参考时域符号的所述索引和所述参考时隙的所述索引共同指示所述第一RNTI。
作为一个实施例,所述参考时域符号的所述索引和所述参考时隙的所述索引都被用于计算所述第一RNTI。
作为一个实施例,所述第一RNTI等于多个加数之和,所述多个加数中的一者等于所述参考时域符号的所述索引,所述多个加数中的另一者等于14乘以所述参考时隙的所述索引。
作为一个实施例,所述第一RNTI=1+s+14×t;其中,所述s表示所述参考时域符号的所述索引,所述t表示所述参考时隙的所述索引。
作为一个实施例,所述第一RNTI=1+s+7×t;其中,所述s表示所述参考时域符号的所述索引,所述t表示所述参考时隙的所述索引。
作为一个实施例,所述第一RNTI=max(s,t);其中,所述s表示所述参考时域符号的所述索引,所述t表示所述参考时隙的所述索引。
作为一个实施例,所述参考时域符号在所述第一时域符号之前。
作为一个实施例,所述参考时域符号在所述第一时域符号之后。
作为一个实施例,所述参考时域符号是被用于发送所述第一前导码的时域符号。
作为一个实施例,所述参考时域符号是被用于发送所述第一前导码的最早的时域符号。
作为一个实施例,所述参考时域符号在所述第一PRACH机会在时域上所占用的最晚的时域符号之后。
作为一个实施例,所述表述“所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关”包括:所述参考时域符号在所述第一时域符号之前。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会与所述第一参考PRACH在时域无交叠。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源早于所述第一参考PRACH机会所占用的时域资源。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到 其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于 HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信息生成于所述PHY351。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述第一前导码生成于所述PHY301。
作为一个实施例,本申请中的所述第一前导码生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编 码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一 个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:在第一PRACH机会中发送第一前导码;接收第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一PRACH机会中发送第一前导码;接收第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:在第一PRACH机会中接收第一前导码;发送第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:在第一PRACH机会中接收第一前导码;发送第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于发送本申请中的所述第一前导码。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一前导码。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。在附图5中,虚线方框F1中的部分是可选的。
第一节点U1,在步骤S5101中接收第一信息;在步骤S511中在第一PRACH机会中发送第一前导码;在步骤S512中接收第一信令。
第二节点U2,在步骤S5201中发送第一信息;在步骤S521中在第一PRACH机会中接收第一前导码;在步骤S522中发送第一信令。
在实施例5中,所述第一信令采用第一RNTI;所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源早于或晚于所述第一参考PRACH机会所占用的时域资源。
作为实施例5的一个子实施例,第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时间窗中被所述第一节点U1检测到。
作为实施例5的一个子实施例,所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
作为实施例5的一个子实施例,所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
作为实施例5的一个子实施例,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,在附图5中,虚线方框F1中的步骤存在。
作为一个实施例,在附图5中,虚线方框F1中的步骤不存在。
作为一个实施例,本申请要解决的问题包括:如何实现5GNR系统中PRACH的覆盖增强。
作为一个实施例,本申请要解决的问题包括:如何确定多次PRACH传输所对应的同一个RAR所采用的RA-RNTI。
作为一个实施例,本申请要解决的问题包括:如何确定监听多次PRACH传输所对应的同一个RAR的时间窗。
作为一个实施例,本申请要解决的问题包括:如何保证通信双方对RAR的相关配置的理解一致性。
作为一个实施例,本申请要解决的问题包括:如何实现针对PRACH的多次重复传输的RAR的相关配置。
作为一个实施例,所述第一节点还发送第一PUSCH。
作为一个实施例,所述第二节点还接收第一PUSCH。
作为一个实施例,所述第一PUSCH是Msg3 PUSCH(Physical uplink shared channel)。
作为一个实施例,Msg3在所述第一PUSCH上被发送。
作为一个实施例,所述第一信令所调度的PDSCH所承载的RAR UL grant包括所述第一PUSCH的调度信息。
作为一个实施例,所述调度信息包括{所占用的时域资源,所占用的频域资源,所使用的天线端口,所采用的MCS(Modulation and coding scheme,调制与编码策略),TPC命令}中的至少之一。
作为一个实施例,TC-RNTI被用于所述第一PUSCH的加扰初始化(scrambling initialization)。
作为一个实施例,所述第一节点还接收第一PDSCH,所述第一PDSCH包括UE竞争解决标识(UE contention resolution identity)。
作为一个实施例,所述第二节点还发送第一PDSCH,所述第一PDSCH包括UE竞争解决标识(UE contention resolution identity)。
作为一个实施例,由TC-RNTI加扰CRC的DCI格式1_0被用于调度所述第一PDSCH。
作为一个实施例,所述第一PDSCH是一个PDSCH(Physical downlink shared channel)。
作为一个实施例,所述第一PDSCH所占用的时域资源晚于所述第一PUSCH所占用的时域资源。
实施例6
实施例6示例了根据本申请的一个实施例的第一PRACH机会与第一PRACH机会组之间关系的示意图,如附图6所示。
在实施例6中,所述第一PRACH机会属于第一PRACH机会组,所述第一PRACH机会组包括多个PRACH机会。
作为一个实施例,所述第一PRACH机会属于第一PRACH机会组,所述参考时域符号属于所述第一PRACH机会组中的一个PRACH机会所占用的时域资源。
作为一个实施例,所述第一PRACH机会属于第一PRACH机会组,所述参考时域符号是所述第一PRACH机会组中最早的一个PRACH机会所占用的最早的时域符号。
作为一个实施例,所述第一PRACH机会属于第一PRACH机会组,所述参考时域符号是所述第一PRACH机会组中最晚的一个PRACH机会所占用的最早的时域符号。
作为一个实施例,所述第一PRACH机会组包括多个PRACH机会,所述多个PRACH机会分别被预留给前导码(Preamble)的多次重复发送。
作为一个实施例,所述第一PRACH机会组中的所有PRACH机会都被预留给相同的前导码。
作为一个实施例,所述第一PRACH机会组中的所有PRACH机会都关联到同一个SS/PBCH块索引(SS/PBCH block index)。
作为一个实施例,一个SS/PBCH块由一个PBCH(physical broadcast channel),PSS(Primary  synchronization signal)和SSS(Secondary synchronization signal)构成。
作为一个实施例,一个SS/PBCH块索引是一个SS/PBCH块的索引。
作为一个实施例,所述第一PRACH机会组中的所有PRACH机会都具有相同的PRACH机会索引(PRACH occasion index)。
作为一个实施例,所述第一PRACH机会组中的每个PRACH机会都是同一个PRACH机会的一次重复。
作为一个实施例,所述第一PRACH机会组中的多个PRACH机会分别被预留给一个PRACH的多次重复。
作为一个实施例,所述第一PRACH机会组是更高层信令配置的。
作为一个实施例,所述第一PRACH机会组是RRC信令配置的。
作为一个实施例,所述第一PRACH机会组是在信息元素RACH-ConfigCommon中配置的。
作为一个实施例,所述第一PRACH机会组是在信息元素RACH-ConfigDedicated中配置的。
作为一个实施例,所述第一PRACH机会组是在信息元素RACH-ConfigGeneric中配置的。
作为一个实施例,所述第一PRACH机会组是在名字中包括RACH的信息元素中配置的。
作为一个实施例,所述第一PRACH机会组是SIB信令配置的。
作为一个实施例,所述第一PRACH机会组是SIB1配置的。
作为一个实施例,所述第一PRACH机会组是预先定义好的。
实施例7
实施例7示例了根据本申请的一个实施例的第一RNTI的说明示意图,如附图7所示。
在实施例7中,所述第一RNTI=1+s+14×t+14×80×f+14×80×8×ul_carrier。
在实施例7中,所述s表示所述参考时域符号的所述索引,所述t表示所述参考时隙的所述索引,所述f是在频域上第一参考PRACH机会的索引,所述ul_carrier表示被用于发送所述第一前导码的UL载波(0表示NUL载波,1表示SUL载波)。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的时域符号。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会在时域无交叠。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会在时域仅部分交叠。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会在时域有交叠,且,所述参考时域符号在时域上属于所述第一参考PRACH机会所占用的时域资源但不属于所述第一PRACH机会所占用的时域资源。
作为一个实施例,从时域上看,所述第一PRACH机会在所述第一参考PRACH机会之前。
作为一个实施例,从时域上看,所述第一PRACH机会在所述第一参考PRACH机会之后。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会在时域分别属于不同的时隙。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会在时域属于同一个时隙。
作为一个实施例,所述第一RNTI=1+s+14×t+14×80×f;其中,所述s表示所述参考时域符号的所述索引,所述t表示所述参考时隙的所述索引,所述f是在频域上第一参考PRACH机会的索引。
作为一个实施例,所述f是非负整数。
作为一个实施例,所述f不小于0且小于8。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会分别是同一个PRACH机会的两次重复。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会分别预留给同一个PRACH的两次重复。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会都属于本申请中的所述第一PRACH机会组。
实施例8
实施例8示例了根据本申请的一个实施例的第二参考PRACH机会,第一参考PRACH机会,第一时间窗以及第一前导码之间关系的示意图,如附图8所示。
在实施例8中,第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗;所述第一信令在所述第一时间窗中被检测到。
作为一个实施例,所述第二参考PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
作为一个实施例,所述第二参考PRACH机会所占用的时域资源早于所述第一参考PRACH机会所占用的时域资源。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会在时域分别属于不同的时隙。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会在时域属于同一个时隙。
作为一个实施例,所述第二参考PRACH机会是所述第一PRACH机会。
作为一个实施例,所述第二参考PRACH机会不是所述第一PRACH机会。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会分别是同一个PRACH机会的两次重复。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会分别预留给同一个PRACH的两次重复。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会都属于所述第一PRACH机会组。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中最早的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中最晚的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中按照先频域递增后时域递增的顺序进行排序的第一个的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中按照先频域递增后时域递增的顺序进行排序的最后一个的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中按照先时域递增后频域递增的顺序进行排序的第一个的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是所述第一PRACH机会组中按照先时域递增后频域递增的顺序进行排序的最后一个的PRACH机会。
作为一个实施例,所述第二参考PRACH机会是所述第一PRACH机会组中的哪一个PRACH机会是可配置的。
作为一个实施例,所述第二参考PRACH机会是所述第一PRACH机会组中的哪一个PRACH机会是RRC信令/消息所配置的。
作为一个实施例,所述第二参考PRACH机会被用于指示所述第一时间窗。
作为一个实施例,所述第二参考PRACH机会被用于确定所述第一时间窗的时域起始位置。
作为一个实施例,所述第一时间窗的时域起始位置不早于所述第二参考PRACH机会在时域所占用的最晚的时域符号。
作为一个实施例,所述第一时间窗起始于:在所述第二参考PRACH机会在时域所占用的最晚的时域符号之后且与所述第二参考PRACH机会在时域所占用的所述最晚的时域符号间隔至少一个时域符号的,被配置用于针对第一类PDCCH CSS集合(Type1-PDCCH CSS set)接收PDCCH(Physical downlink control channel)的最早的CORESET的最早的时域符号。
作为一个实施例,所述第一类PDCCH CSS集合是共搜索空间集合(Common search space set,CSS set)。
作为一个实施例,所述第一类PDCCH CSS集合是PDCCH-ConfigCommon中的ra-SearchSpace所配置的。
作为一个实施例,所述第一类PDCCH CSS集合被用于检测在主小区(primary cell)上的由RA-RNTI或MsgB-RNTI或TC-RNTI加扰CRC的DCI格式。
作为一个实施例,所述RAR时间窗(window)是被用于监听随机接入响应(RAR)的时间窗。
作为一个实施例,所述第一时间窗的长度是可配置的。
作为一个实施例,所述第一时间窗的长度是RRC信令所配置的。
作为一个实施例,参数ra-ResponseWindow被用于配置所述第一时间窗。
作为一个实施例,所述第一时间窗的长度是参数ra-ResponseWindow所配置。
作为一个实施例,所述第一时间窗的长度等于正整数个时隙所占用的时间长度。
作为一个实施例,所述第一时间窗的长度等于T个时隙所占用的时间长度,所述T是ra-ResponseWindow所配置。
作为一个实施例,所述表述“所述第一信令在所述第一时间窗中被检测到”包括:所述第一信令是在所述第一时间窗中被接收到的。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
作为一个实施例,所述第二参考PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
作为一个实施例,PRACH机会与SS/PBCH块索引之间的关联方式是RRC信令/消息所配置的。
作为一个实施例,一个PRACH机会关联到一个SS/PBCH块索引是指:这个PRACH机会映射到这个SS/PBCH块索引。
实施例9
实施例9示例了根据本申请的一个实施例的第二参考PRACH机会被用于确定第一时间窗的说明示意图,如附图9所示。在附图9中,灰色填充方框表示第二参考PRACH机会所占用的时域资源,斜线填充方框表示第一类PDCCH CSS集合所占用的时域资源,白色方框表示第一时间窗。
在实施例9中,所述第一时间窗起始于:在所述第二参考PRACH机会在时域所占用的最晚的时域符号之后且与所述第二参考PRACH机会在时域所占用的所述最晚的时域符号间隔至少一个时域符号的,被配置用于针对第一类PDCCH CSS集合(Type1-PDCCH CSS set)接收PDCCH(Physical downlink control channel)的最早的CORESET的最早的时域符号。
实施例10
实施例10示例了根据本申请的一个实施例的第一节点,第一信息,第一PRACH机会,第一PRACH机会组以及第一PRACH机会池之间关系的示意图,如附图10所示。
在实施例10中,本申请中的所述第一节点接收第一信息;第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
作为一个实施例,所述第一信息包括至少一个比特。
作为一个实施例,所述第一信息是物理层信令。
作为一个实施例,所述第一信息是DCI格式(DCI format)。
作为一个实施例,所述第一信息是DCI format 0_0,DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第一信息是DCI format 1_0,DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第一信息包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第一信息是更高层(higher layer)信令。
作为一个实施例,所述第一信息是RRC信令。
作为一个实施例,所述第一信息包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信息包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信息包括一个IE中的一个或多个域。
作为一个实施例,所述第一信息是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)。
作为一个实施例,所述第一信息包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第一信息属于一个MAC CE。
作为一个实施例,所述第一信息包括tdd-UL-DL-ConfigurationCommon。
作为一个实施例,所述第一信息的名字中包括tdd-UL-DL。
作为一个实施例,所述第一信息被用于配置时域符号的类型。
作为一个实施例,所述第一信息被用于配置至少上行链路符号(UL symbol(s))。
作为一个实施例,所述第一信息被用于配置至少下行链路符号(downlink symbol(s))。
作为一个实施例,从时域上看,所述第一PRACH机会池中的所有PRACH机会都属于同一个PRACH配置周期(PRACH configuration period)。
作为一个实施例,从时域上看,所述第一PRACH机会池中的所有PRACH机会都属于同一个关联周期(association period)。
作为一个实施例,在一个关联周期内,每个被传输的SS/PBCH块的索引都被映射到至少一个PRACH机会。
作为一个实施例,在一个关联周期内,每个被传输的SS/PBCH块的索引都被映射到至少一个有效的PRACH机会。
作为一个实施例,在一个关联周期内,每个被传输的SS/PBCH块的索引都被映射到至少一个PRACH机会组。
作为一个实施例,在一个关联周期内,每个被传输的SS/PBCH块的索引都被映射到至少一个有效的PRACH机会组。
作为一个实施例,所述第一信息被用于从所述第一PRACH机会池中指示出所述第一PRACH机会组。
作为一个实施例,所述表述“所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组”包括:所述第一信息被用于从所述第一PRACH机会池中指示出至少一个PRACH机会组,所述第一PRACH机会组是被指示出的所述至少一个PRACH机会组中之一。
作为一个实施例,所述表述“所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组”包括:
所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
作为一个实施例,本申请中的任一PRACH机会组都由至少一个PRACH机会构成。
实施例11
实施例11示例了根据本申请的一个实施例的第一信息,第一PRACH机会组,多个PRACH机会组,以及第一PRACH机会池之间关系的示意图,如附图11所示。
在实施例11中,所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
作为一个实施例,所述多个PRACH机会组中的任意两个PRACH机会组包括相同数量的PRACH机会。
作为一个实施例,所述多个PRACH机会组中的任意两个有效的PRACH机会组包括相同数量的PRACH机会。
作为一个实施例,只有当一个PRACH机会组包括至少M个有效的PRACH机会时,这个PRACH机会组才是一个有效的PRACH机会组,所述M是正整数;所述第一信息被用于确定所述第一PRACH机会池中的每个PRACH机会是否是有效的PRACH机会。
作为一个实施例,所述M等于1。
作为一个实施例,所述M大于1。
作为一个实施例,所述M等于2。
作为一个实施例,所述M等于3。
作为一个实施例,所述M等于4。
作为一个实施例,所述M等于5。
作为一个实施例,所述M等于6。
作为一个实施例,所述M等于7。
作为一个实施例,所述M等于8。
作为一个实施例,所述M不大于1024。
作为一个实施例,所述M是可配置的。
作为一个实施例,只有当一个PRACH机会组中的所有PRACH机会都是有效的PRACH机会时,这个PRACH机会组才是一个有效的PRACH机会组;所述第一信息被用于确定所述第一PRACH机会池中的每个PRACH机会是否是有效的PRACH机会。
作为一个实施例,所述多个PRACH机会组中的每个有效的PRACH机会组中的所有有效的PRACH机会被预留给前导码的发送。
作为一个实施例,所述第一PRACH机会是有效的PRACH机会。
作为一个实施例,所述第一参考PRACH机会是有效的PRACH机会。
作为一个实施例,所述第二参考PRACH机会是有效的PRACH机会。
作为一个实施例,所述第一参考PRACH机会不是有效的PRACH机会。
作为一个实施例,所述第二参考PRACH机会不是有效的PRACH机会。
作为一个实施例,一个有效的PRACH机会可以被用于发送前导码。
作为一个实施例,如果一个PRACH机会不是有效的PRACH机会,则这个PRACH机会不被用于发送前导码。
作为一个实施例,一个有效的PRACH机会可以被用于PRACH的发送。
作为一个实施例,如果一个PRACH机会不是有效的PRACH机会,则这个PRACH机会不被用于PRACH的发送。
作为一个实施例,所述第一信息被用于指示所述第一PRACH机会池中的有效的PRACH机会。
作为一个实施例,所述第一节点被提供了tdd-UL-DL-ConfigurationCommon。
作为一个实施例,如果一个PRACH机会在时域所占用的所有时域符号都是上行链路符号,则这个PRACH机会是有效的PRACH机会。
作为一个实施例,当第一条件集合中的任一条件被满足时,一个PRACH机会是有效的PRACH机会;所述第一条件集合中的一个条件是:这个PRACH机会在时域所占用的所有时域符号都是上行链路符号。
作为一个实施例,所述第一条件集合中的一个条件是:这个PRACH机会不在所属的PRACH时隙中的SS/PBCH块之前,并且这个PRACH机会起始于最后一个下行链路符号之后且与所述最后一个下行链路符号相间隔至少N个符号的时域符号,并且这个PRACH机会起始于最后一个SS/PBCH块所占用的时域符号之后与所述最后一个SS/PBCH块所占用的所述时域符号相间隔至少N个符号的时域符号,并且如果channelAccessMode被配置为semistatic,这个PRACH机会在下一个信道占用时间开始之前不被用于执行发送的连续时域符号无重叠;其中,所述N等于0或2。
实施例12
实施例12示例了一个第一节点设备中的处理装置的结构框图,如附图12所示。在附图12中,第一节点设备处理装置1200包括第一接收机1201和第一发射机1202。
作为一个实施例,所述第一节点设备1200是基站。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是车载通信设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1200是支持V2X通信的中继节点。
作为一个实施例,所述第一节点设备1200是支持动态波形切换的用户设备。
作为一个实施例,所述第一节点设备1200是支持共享频谱上的操作的用户设备。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1201包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1202包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
在实施例12中,所述第一发射机1202,在第一PRACH机会中发送第一前导码;所述第一接收机1201,接收第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
作为一个实施例,第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时间窗中被检测到。
作为一个实施例,所述第一接收机1201,接收第一信息;其中,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组 中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
作为一个实施例,所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
实施例13
实施例13示例了一个第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300包括第二发射机1301和第二接收机1302。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是卫星设备。
作为一个实施例,所述第二节点设备1300是中继节点。
作为一个实施例,所述第二节点设备1300是车载通信设备。
作为一个实施例,所述第二节点设备1300是支持V2X通信的用户设备。
作为一个实施例,所述第二节点设备1300是支持动态波形切换的设备。
作为一个实施例,所述第二节点设备1300是支持共享频谱上的操作的设备。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1301包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1302包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
在实施例13中,所述第二接收机1302,在第一PRACH机会中接收第一前导码;所述第二发射机1301,发送第一信令,所述第一信令采用第一RNTI;其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
作为一个实施例,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
作为一个实施例,所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
作为一个实施例,第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时间窗中被发送。
作为一个实施例,所述第二发射机1301,发送第一信息;其中,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
作为一个实施例,所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一发射机,在第一PRACH机会中发送第一前导码;
    第一接收机,接收第一信令,所述第一信令采用第一RNTI;
    其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
  2. 根据权利要求1所述的第一节点,其特征在于,所述参考时域符号是第一参考PRACH机会在时域所占用的最早的时域符号,所述第一PRACH机会所占用的时域资源晚于所述第一参考PRACH机会所占用的时域资源。
  3. 根据权利要求2所述的第一节点,其特征在于,所述第一PRACH机会与所述第一参考PRACH机会都关联到相同的SS/PBCH块索引。
  4. 根据权利要求2所述的第一节点,其特征在于,所述第一PRACH机会与所述第一参考PRACH机会分别关联到不同的SS/PBCH块索引。
  5. 根据权利要求2至4中任一权利要求所述的第一节点,其特征在于,第二参考PRACH机会与所述第一参考PRACH机会在时域无交叠,所述第二参考PRACH机会被用于确定第一时间窗,所述第一时间窗是针对所述第一前导码的RAR时间窗,所述第一信令在所述第一时间窗中被检测到。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第一信息;
    其中,第一PRACH机会池包括多个PRACH机会,第一PRACH机会组包括多个PRACH机会,所述第一PRACH机会组中的所有PRACH机会都属于所述第一PRACH机会池;所述第一PRACH机会属于所述第一PRACH机会组,所述第一PRACH机会组中的每个PRACH机会都被用于发送所述第一前导码的一次重复,所述第一信息被用于从所述第一PRACH机会池中确定所述第一PRACH机会组。
  7. 根据权利要求6所述的第一节点,其特征在于,所述第一PRACH机会池被划分为多个PRACH机会组;所述第一信息被用于从所述多个PRACH机会组中确定出至少一个有效的PRACH机会组,所述多个PRACH机会组中的每个有效的PRACH机会组都被预留给前导码的发送;所述第一PRACH机会组是所述多个PRACH机会组中的一个有效的PRACH机会组。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二接收机,在第一PRACH机会中接收第一前导码;
    第二发射机,发送第一信令,所述第一信令采用第一RNTI;
    其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    在第一PRACH机会中发送第一前导码;
    接收第一信令,所述第一信令采用第一RNTI;
    其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    在第一PRACH机会中接收第一前导码;
    发送第一信令,所述第一信令采用第一RNTI;
    其中,所述第一信令被用于响应所述第一前导码的传输;第一时域符号是所述第一PRACH机会在时域所占用的最早的时域符号;参考时域符号的索引与参考时隙的索引都被用于确定所述第一RNTI,所述 参考时域符号是所述第一时域符号之外的一个时域符号,所述参考时域符号属于所述参考时隙;所述参考时域符号的时域位置和所述第一PRACH机会或者所述第一前导码两者中的至少之一有关。
PCT/CN2023/072012 2022-01-20 2023-01-13 一种被用于无线通信的节点中的方法和装置 WO2023138485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210063326.3A CN116827495A (zh) 2022-01-20 2022-01-20 一种被用于无线通信的节点中的方法和装置
CN202210063326.3 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023138485A1 true WO2023138485A1 (zh) 2023-07-27

Family

ID=87347806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072012 WO2023138485A1 (zh) 2022-01-20 2023-01-13 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116827495A (zh)
WO (1) WO2023138485A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495222A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种ra-rnti确定方法及装置
CN109587819A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 随机接入方法及装置、存储介质、用户设备、基站
US20200260495A1 (en) * 2017-08-09 2020-08-13 Lg Electronics Inc. Method for performing random access process and apparatus therefor
CN111869305A (zh) * 2018-01-12 2020-10-30 创新技术实验室株式会社 在无线通信系统中执行随机接入的装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200260495A1 (en) * 2017-08-09 2020-08-13 Lg Electronics Inc. Method for performing random access process and apparatus therefor
CN109495222A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种ra-rnti确定方法及装置
CN109587819A (zh) * 2017-09-29 2019-04-05 展讯通信(上海)有限公司 随机接入方法及装置、存储介质、用户设备、基站
CN111869305A (zh) * 2018-01-12 2020-10-30 创新技术实验室株式会社 在无线通信系统中执行随机接入的装置和方法

Also Published As

Publication number Publication date
CN116827495A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN111182632B (zh) 一种被用于无线通信的节点中的方法和装置
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
WO2018141231A1 (zh) 一种用于无线通信中的用户设备、基站中的方法和装置
WO2020078272A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11064478B2 (en) Method and device in nodes with reduced signaling overhead used for wireless communication
CN110892766B (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
WO2019006592A1 (zh) 一种被用于多天线通信的用户设备、基站中的方法和装置
CN114944902A (zh) 一种被用于无线通信的节点中的方法和装置
CN116261118A (zh) 一种被用于无线通信的节点中的方法和装置
CN113271673B (zh) 被用于无线通信的用户设备、基站中的方法和装置
CN110582095A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
US20230217217A1 (en) Method and device in nodes used for wireless communication
US11051335B2 (en) Method and device for wireless communication in a first node and base station
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023138485A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230156666A1 (en) Method and device in nodes used for wireless communication
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115396822B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023011281A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024001935A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113395769B (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742800

Country of ref document: EP

Kind code of ref document: A1