WO2021151368A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2021151368A1
WO2021151368A1 PCT/CN2021/073016 CN2021073016W WO2021151368A1 WO 2021151368 A1 WO2021151368 A1 WO 2021151368A1 CN 2021073016 W CN2021073016 W CN 2021073016W WO 2021151368 A1 WO2021151368 A1 WO 2021151368A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
time
signal
block
type
Prior art date
Application number
PCT/CN2021/073016
Other languages
English (en)
French (fr)
Inventor
刘瑾
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2021151368A1 publication Critical patent/WO2021151368A1/zh
Priority to US17/876,564 priority Critical patent/US20230022606A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/25Maintenance of established connections

Definitions

  • This application relates to a transmission method and device in a wireless communication system, and in particular to a transmission scheme and device related to a large connection of small packet data in wireless communication.
  • Small packet sparse data services include two categories: smart phone applications and non-smart phone applications.
  • the related applications of smart phones include instant messaging services (for example, whatsapp, QQ, WeChat, etc.), cardiac pacing and life-sustaining services, and push notification services; non-smart phones related applications include wearable device services (for example, Periodic location information, etc.), sensors (periodical or event-triggered temperature and pressure reports), and smart meters.
  • UE user equipment
  • RRC CONNECTED State radio resource control connection state
  • RRC INACTIVE State radio resource control inactive state
  • NR INACTIVE State radio resource control inactive state
  • NR INACTIVE State radio resource control inactive state
  • it does not support the UE to perform data transmission in the RRC inactive state.
  • the UE in the RRC inactive state has a service requirement for data transmission, it needs to establish or restore the RRC connection state and then perform data transmission, which will inevitably bring a lot of signaling overhead and power consumption. Therefore, NR supports the UE to perform sparse data transmission in the RRC inactive state, and it is a practical idea to carry small packets of data in the random access process. Since the number of users of small packet data services is generally relatively large, if data transmission needs break out at the same time within a certain period of time, it will cause serious random access conflicts for users of mainstream broadband services.
  • this application discloses a small packet data transmission scheme, which can not only realize the data transmission of the UE in the RRC inactive state, but also ensure the normal random access of the UE of the mainstream broadband service.
  • the embodiments in the user equipment of the present application and the features in the embodiments can be applied to the base station, and vice versa.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the original intention of this application is for small packet data services
  • this application can also be used for mainstream eMBB services such as voice and large packet data.
  • the original intention of this application is for Uplink, this application can also be used for Sidelink.
  • the original intention of this application is for single-carrier communication
  • this application can also be used for multi-carrier communication.
  • the original intention of this application is for single-antenna communication
  • this application can also be used for multi-antenna communication.
  • the original intention of this application is for the terminal and base station scenario
  • this application is also applicable to the V2X scenario, the communication scenario between the terminal and the relay, and the communication scenario between the relay and the base station, and obtain similar terminal and base station scenarios.
  • adopting a unified solution for different scenarios also helps to reduce hardware complexity and cost.
  • This application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the second signal is used to indicate a first time-frequency resource block
  • the first time-frequency resource block is used to determine a target time-frequency resource set
  • the target time-frequency resource set includes multiple time-frequency resource blocks
  • the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first type of information block is used
  • the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set Block
  • the first type of information block includes control plane information.
  • the problem to be solved in this application is: how the NR system performs data transmission in the RRC inactive state.
  • the method of the present application is to establish an association between the first time-frequency resource block and the target time-frequency resource block.
  • the method of the present application is: associating whether the third signal carries the first type of information block and determining the relationship between the target time-frequency resource block.
  • the characteristic of the above method is that the target time-frequency resource block may be different from the first time-frequency resource block.
  • the advantage of the above method is that the third signal is sent through the target time-frequency resource block, which reduces the conflict of random access to mainstream services.
  • the above method is characterized in that the first type of information block includes a radio resource control establishment request, a radio resource control restoration request, a radio resource control restoration request 1, a radio resource control reestablishment request, and a radio resource control restoration request.
  • Configuration is complete, radio resource control handover confirmation, one of the radio resource control early data requests.
  • the above method is characterized in that the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; when the third signal carries all When the first type of information block is used, the target time-frequency resource block is one of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; When the third signal does not carry the first type of information block, the target time-frequency resource block is one of the second type of the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set Time-frequency resource block.
  • the above method is characterized in that a first bit block is used to generate the third signal, and the size of the first bit block is used to determine the Target time-frequency resource block.
  • the above method is characterized in that, when the size of the first bit block is greater than a first threshold, the target time-frequency resource block is the normal time-frequency resource block included in the target time-frequency resource set.
  • One first-type time-frequency resource block in an integer number of first-type time-frequency resource blocks; when the size of the first bit block is less than the first threshold, the target time-frequency resource block is the target
  • the time-frequency resource set includes one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks.
  • the above method is characterized in that it includes:
  • the first signaling is used to indicate the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set, and the first time-frequency resource block is the target time-frequency resource set One of the first-type time-frequency resource blocks included in the positive integer number of first-type time-frequency resource blocks; when the third signal does not carry the first-type information block, all of the first bit block
  • the size is used to determine the target time-frequency resource block from the positive integer number of second-type time-frequency resource blocks.
  • the above method is characterized in that it includes:
  • the third signal includes a first identity; the first identity and the target time-frequency resource block are used to determine the fourth signal.
  • the above method is characterized in that the first node is a user equipment.
  • the above method is characterized in that the first node is a base station.
  • the above method is characterized in that the first node is a relay node.
  • This application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the second signal indicates a first time-frequency resource block
  • the first time-frequency resource block is used to determine a target time-frequency resource set
  • the target time-frequency resource set includes a plurality of time-frequency resource blocks
  • the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set
  • whether the third signal carries the first type of information block is used to follow Determining the target time-frequency resource block in the target time-frequency resource set, and the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set
  • the first type of information block includes control plane information.
  • the above method is characterized in that the first type of information block includes a radio resource control establishment request, a radio resource control restoration request, a radio resource control restoration request 1, a radio resource control reestablishment request, and a radio resource control restoration request.
  • Configuration is complete, radio resource control handover confirmation, one of the radio resource control early data requests.
  • the above method is characterized in that the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; when the third signal carries all When the first type of information block is used, the target time-frequency resource block is one of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; When the third signal does not carry the first type of information block, the target time-frequency resource block is one of the second type of the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set Time-frequency resource block.
  • the above method is characterized in that a first bit block is used to generate the third signal, and the size of the first bit block is used to determine the Target time-frequency resource block.
  • the above method is characterized in that, when the size of the first bit block is greater than a first threshold, the target time-frequency resource block is the normal time-frequency resource block included in the target time-frequency resource set.
  • One first-type time-frequency resource block in an integer number of first-type time-frequency resource blocks; when the size of the first bit block is less than the first threshold, the target time-frequency resource block is the target
  • the time-frequency resource set includes one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks.
  • the above method is characterized in that it includes:
  • the first signaling indicates the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set, and the first time-frequency resource block is all the time-frequency resource blocks included in the target time-frequency resource set.
  • the above method is characterized in that it includes:
  • the third signal includes a first identity; the first identity and the target time-frequency resource block are used to generate the fourth signal.
  • the above method is characterized in that the second node is user equipment.
  • the above method is characterized in that the second node is a base station.
  • the above method is characterized in that the second node is a relay node.
  • This application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first transmitter sending a first signal, the first signal carrying a first characteristic sequence
  • a first receiver receiving a second signal, the second signal carrying a first identifier, and the first characteristic sequence is used to indicate the first identifier;
  • the first transmitter sends a third signal on a target time-frequency resource block
  • the second signal is used to indicate a first time-frequency resource block
  • the first time-frequency resource block is used to determine a target time-frequency resource set
  • the target time-frequency resource set includes multiple time-frequency resource blocks
  • the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first type of information block is used
  • the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set Block
  • the first type of information block includes control plane information.
  • This application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second receiver receiving a first signal, the first signal carrying a first characteristic sequence
  • a second transmitter sending a second signal, where the second signal carries a first identifier, and the first characteristic sequence indicates the first identifier;
  • the second signal indicates a first time-frequency resource block
  • the first time-frequency resource block is used to determine a target time-frequency resource set
  • the target time-frequency resource set includes a plurality of time-frequency resource blocks
  • the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set
  • whether the third signal carries the first type of information block is used to follow Determining the target time-frequency resource block in the target time-frequency resource set, and the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set
  • the first type of information block includes control plane information.
  • this application has the following advantages:
  • This application establishes an association between the first time-frequency resource block and the target time-frequency resource block.
  • This application associates whether the third signal carries the first type of information block and determining the relationship between the target time-frequency resource block.
  • the target time-frequency resource block in this application may be different from the first time-frequency resource block.
  • This application sends the third signal through the target time-frequency resource block to reduce the conflict of random access to mainstream services.
  • Fig. 1 shows a processing flowchart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Fig. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a wireless signal transmission flow chart according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between the first time-frequency resource block and the target time-frequency resource set according to the second signal according to an embodiment of the present application
  • Fig. 7 shows a schematic diagram of the relationship between the third signal and the first type of information block according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between the first time-frequency resource block, the target time-frequency resource set and the target time-frequency resource block according to an embodiment of the present application
  • Fig. 9 shows a flowchart of determining a target time-frequency resource block according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the relationship between the size of the first bit block and the target time-frequency resource block according to an embodiment of the present application
  • Fig. 11 shows a schematic diagram of a time-frequency resource unit according to an embodiment of the present application.
  • Fig. 12 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • Fig. 13 shows a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates the processing flowchart of the first node in an embodiment of the present application, as shown in FIG. 1.
  • each box represents a step.
  • the first node in this application first executes step 101 to send the first signal; then executes step 102 to receive the second signal; finally executes step 103 to send the third signal on the target time-frequency resource block;
  • the first signal carries a first characteristic sequence;
  • the second signal carries a first identifier, and the first characteristic sequence is used to indicate the first identifier;
  • the second signal is used to indicate a first time frequency Resource block,
  • the first time-frequency resource block is used to determine a target time-frequency resource set, the target time-frequency resource set includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is the target time-frequency resource block
  • One of the multiple time-frequency resource blocks included in the resource set; whether the third signal carries the first type of information block is used to determine the target time from the target time-frequency resource set Frequency resource block, the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set;
  • the first type of information block includes control plane
  • the first signal includes a baseband signal.
  • the first signal includes a radio frequency signal.
  • the first signal includes a wireless signal.
  • the first signal is transmitted on RACH (Random Access Channel).
  • the first signal is transmitted on PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the first signal NPRACH (Narrowband Physical Random Access Channel, narrowband physical random access signal) is transmitted.
  • the first signal is cell-specific.
  • the first signal is UE-specific.
  • the first signal includes a random access preamble (Random Access Preamble).
  • the first signal is Msg1 (Message 1, Message 1) of a random access procedure (Random Access Procedure).
  • the first signal is Type-1 Random Access Procedure (Random Access Procedure Type-1) Msg1.
  • the first signal is MsgA (Message A, Message A) of Type-2 Random Access Procedure (Random Access Procedure Type-2).
  • Type-1 Random Access refers to Chapter 8 of 3GPP TS38.213.
  • Type-2 Random Access refers to Chapter 8 of 3GPP TS38.213.
  • the first signal carries a first characteristic sequence.
  • the first characteristic sequence is used to generate the first signal.
  • the first characteristic sequence is a pseudo-random sequence.
  • the first characteristic sequence is a Gold sequence.
  • the first characteristic sequence is an M sequence.
  • the first characteristic sequence is a ZC (Zadeoff-Chu) sequence.
  • the first characteristic sequence is a preamble.
  • the first characteristic sequence is a long preamble (Long Preamble).
  • the first characteristic sequence is a short preamble (Short Preamble).
  • the method for generating the first characteristic sequence refers to section 6.3.3.1 of 3GPP TS38.211.
  • the sub-carrier spacing of the sub-carriers occupied by the first characteristic sequence in the frequency domain is one of 1.25 kHz, 5 kHz, 15 kHz, 30 kHz, 60 kHz, and 120 kHz.
  • the length of the first characteristic sequence is 839, and the subcarrier interval of the subcarrier occupied by the first characteristic sequence is one of 1.25 kHz or 5 kHz.
  • the length of the first characteristic sequence is 139
  • the subcarrier interval of the subcarrier occupied by the first characteristic sequence is one of 15kHz, 30kHz, 60kHz or 120kHz.
  • the first characteristic sequence includes a positive integer number of first type subsequences, and the positive integer number of first type subsequences are TDM (Time-Division Multiplexing).
  • the positive integer numbers of the first-type sub-sequences included in the first characteristic sequence are all the same.
  • At least two first-type sub-sequences of the positive integer number of first-type sub-sequences included in the first characteristic sequence are different.
  • the first characteristic sequence undergoes Discrete Fourier Transform (DFT), and then undergoes Orthogonal Frequency Division Multiplexing (OFDM) modulation processing.
  • DFT Discrete Fourier Transform
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first characteristic sequence is obtained after sequence generation (Sequence Generation), Discrete Fourier Transform, Modulation (Modulation) and Resource Element Mapping (Resource Element Mapping), and broadband symbol generation (Generation). Signal.
  • the second signal includes a baseband signal.
  • the second signal includes a radio frequency signal.
  • the second signal includes a wireless signal.
  • the second signal is transmitted on a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the second signal is transmitted on a PDSCH (Physical Downlink Shared Channel, physical downlink shared channel).
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • the second signal is transmitted on PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the second signal is transmitted on PDCCH and PDSCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDCCH and PDSCH, respectively.
  • the second signal is cell-specific.
  • the second signal is specific to the user equipment.
  • the second signal is broadcast (Broadcast) transmission.
  • the second signal is multicast (Groupcast) transmission.
  • the second signal is unicast (Unicast) transmission.
  • the second signal includes RAR (Random Access Response, Random Access Response).
  • the second signal includes a timing adjustment command (Timing Advance Command).
  • the second signal includes an uplink grant (Uplink Grant).
  • Uplink Grant Uplink Grant
  • the second signal includes TC-RNTI (Temporary Cell-RNTI, temporary cell radio network temporary identifier).
  • TC-RNTI Temporal Cell-RNTI, temporary cell radio network temporary identifier
  • the first signal includes a random access preamble (Random Access Preamble), and the second signal includes RAR.
  • RAR Random Access Preamble
  • the first signal is Msg1 of the random access procedure
  • the second signal is Msg2 (Message 2, message 2) of the random access procedure.
  • the first signal is Msg1 of Type-1 Random Access Procedure
  • the second signal is Msg2 of Type-1 Random Access Procedure.
  • the first signal is MsgA of Type-2 Random Access Procedure
  • the second signal is MsgB (Message B, Message B) of Type-2 Random Access Procedure.
  • the second signal includes all or part of a MAC (Multimedia Access Control, Multimedia Access Control) layer signaling.
  • MAC Multimedia Access Control, Multimedia Access Control
  • the second signal includes one or more fields in a MAC CE (Control Element).
  • the second signal includes one or more fields in a MAC PDU (Protocol Data Unit).
  • MAC PDU Protocol Data Unit
  • the second signal is a MAC PDU.
  • the second signal is a MAC subPDU (Sub Protocol Data Unit, sub-protocol data unit).
  • MAC subPDU Sub Protocol Data Unit, sub-protocol data unit
  • the second signal includes all or part of a higher layer (Higher Layer) signaling.
  • the second signal includes one or more domains in a PHY (Physical) layer.
  • PHY Physical
  • the second signal includes a DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the second signal carries the first identifier.
  • the second signal includes one MAC subPDU, and the one MAC subPDU carries the first identifier.
  • the second signal includes a MAC subPDU
  • the one MAC subPDU includes a MAC subheader (subheader)
  • the one MAC subheader carries the first identifier
  • the second signal includes a MAC subPDU
  • the one MAC subPDU includes a MAC subheader and a MAC RAR
  • the one MAC subheader carries the first identifier
  • the second signal includes a MAC subPDU
  • the one MAC subPDU includes a MAC subheader and a MAC RAR
  • the MAC RAR carries the first identifier
  • the second signal includes one MAC PDU
  • the one MAC PDU includes one MAC subheader and one MAC RAR
  • the one MAC subheader carries the first identifier
  • the second signal includes a MAC subheader and MAC RAR that carry the first identifier.
  • the second signal includes a MAC subheader and a MAC RAR carrying the first identifier.
  • the second signal is scrambled by the first identifier.
  • the first identifier is used to generate a scrambling sequence of the second signal.
  • the first identifier is used to generate the initial value of the scrambling sequence of the second signal.
  • the first identifier is used to identify the first characteristic sequence.
  • the first identifier is used to identify the first signal.
  • the first characteristic sequence is used to indicate the first identifier.
  • the first characteristic sequence has a one-to-one correspondence with the first identifier.
  • the first identifier is RAPID (Random Access Preamble Identity, Random Access Preamble Identity).
  • the first identifier is Extended RAPID (Extended RAPID).
  • the first identifier is TC-RNTI.
  • the first identifier is a positive integer.
  • the first identifier is a first type identifier among a positive integer number of first type identifiers.
  • the first identifier is a positive integer from 1 to 64.
  • the first identifier is a positive integer from 0 to 63.
  • the first identifier includes a positive integer number of bits.
  • the first identifier includes 8 bits.
  • the first characteristic sequence is a characteristic sequence of a positive integer number of characteristic sequences
  • the positive integer number of characteristic sequences corresponds to the positive integer number of first-type identifiers in a one-to-one correspondence
  • the first identifier is all
  • One of the positive integer number of first type identifiers is a first type identifier
  • the first characteristic sequence is used to indicate the first identifier from the positive integer number of first type identifiers.
  • the third signal includes a baseband signal.
  • the third signal includes a radio frequency signal.
  • the third signal includes a wireless signal.
  • the third signal is transmitted on UL-SCH (Uplink Shared Channel, uplink shared channel).
  • UL-SCH Uplink Shared Channel, uplink shared channel
  • the third signal is transmitted on PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the third signal is transmitted on PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the channel occupied by the first signal includes PRACH
  • the channel occupied by the second signal includes PDSCH
  • the channel occupied by the third signal includes PUSCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDSCH
  • the third signal is transmitted on PUSCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDCCH and PDSCH
  • the third signal is transmitted on PUSCH.
  • the third signal includes all or part of a higher layer signaling.
  • the third signal includes all or part of an RRC (Radio Resource Control, radio resource control) layer signaling.
  • RRC Radio Resource Control, radio resource control
  • the third signal includes one or more fields in an RRC IE (Information Element).
  • the third signal includes all or part of one MAC layer signaling.
  • the third signal includes one or more domains in a MAC CE.
  • the third signal includes one or more domains in a PHY layer.
  • the third signal includes RRC connection related information.
  • the third signal includes small packet data (Small Data).
  • the third signal includes control plane (Control-Plane, C-Plane) information.
  • the third signal includes user-plane (User-Plane, U-Plane) information.
  • the third signal includes an RRC message (RRC Message).
  • the third signal includes a NAS (Non Access Stratum, non-access stratum) message.
  • NAS Non Access Stratum, non-access stratum
  • the third signal includes SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) data.
  • SDAP Service Data Adaptation Protocol, Service Data Adaptation Protocol
  • the third signal is Msg3 (Message 3, Message 3) of the random access procedure.
  • the third signal is Msg3 of Type-1 Random Access Procedure.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes RRC connection related information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes small packet data
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes control plane information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes user plane information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes an RRC message
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes SDAP data
  • the first signal includes a random access preamble
  • the second signal includes a RAR
  • the third signal includes a NAS message
  • the first signal is Msg1 of the random access procedure
  • the second signal is Msg2 of the random access procedure
  • the third signal is Msg3 of the random access procedure.
  • the first signal is Msg1 of Type-1 Random Access Procedure
  • the second signal is Msg2 of Type-1 Random Access Procedure
  • the third signal is Msg3 of Type-1 Random Access Procedure.
  • the RRC connection related information includes a radio resource control establishment request, a radio resource control recovery request, a radio resource control recovery request 1, a radio resource control reestablishment request, a radio resource control reconfiguration complete, and a radio resource control handover confirmation, Radio resource control advances at least one of the data requests.
  • the RRC connection related information includes RRC Connection Request (Radio Resource Control Connection Request).
  • the RRC connection related information includes RRC Connection Resume Request (Radio Resource Control Connection Resume Request).
  • the RRC connection related information includes RRC Connection Re-establishment (Radio Resource Control Connection Re-establishment).
  • the RRC connection related information includes RRC Handover Confirm (Radio Resource Control Handover Confirmation).
  • the RRC connection related information includes RRC Connection Reconfiguration Complete (Radio Resource Control Connection Reconfiguration Complete).
  • the RRC connection related information includes RRC Early Data Request (Radio Resource Control Early Data Request).
  • the RRC connection related information includes RRC Setup Request (Radio Resource Control Setup Request).
  • the RRC connection related information includes RRC Resume Request (Radio Resource Control Resume Request).
  • the RRC connection related information includes RRC Resume Request 1 (Radio Resource Control Resume Request 1).
  • the RRC connection related information includes RRC Reestablishment Request (Radio Resource Control Reestablishment Request).
  • the RRC connection related information includes RRC Reconfiguration Complete (Radio Resource Control Reconfiguration Complete).
  • the first bit block includes a positive integer number of bits
  • the third signal includes all or part of the first bit block
  • a first bit block is used to generate the third signal, and the first bit block includes a positive integer number of bits.
  • the first bit block includes a positive integer number of bits, and all or part of the positive integer number of bits included in the first bit block is used to generate the third signal.
  • the first bit block includes 1 CW (Codeword).
  • the first bit block includes one CB (Code Block).
  • the first bit block includes one CBG (Code Block Group).
  • the first bit block includes 1 TB (Transport Block).
  • all or part of the bits of the first bit block are sequentially passed through a transmission block-level CRC (Cyclic Redundancy Check, cyclic redundancy check) attachment (Code Block Segmentation), and a code block Level CRC attachment, Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping (Antenna) Port Mapping, mapping to physical resource blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Upconversion) to obtain the third signal.
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • code Block Level CRC attachment Channel Coding, Rate Matching, Code Block Concatenation, Scrambling, Modulation, Layer Mapping, Antenna Port Mapping (Ana) Port Mapping, mapping to physical resource blocks (Mapping to Physical Resource Blocks), baseband signal generation (Baseband Signal Generation), modulation and upconversion (Modulation and Up
  • the third signal is that the first bit block sequentially passes through a Modulation Mapper, Layer Mapper, Precoding, and Resource Element Mapper. , The output after multi-carrier symbol generation (Generation).
  • the channel coding is based on a polar code.
  • the channel coding is based on LDPC (Low-density Parity-Check, low-density parity-check) code.
  • LDPC Low-density Parity-Check, low-density parity-check
  • only the first bit block is used to generate the third signal.
  • a bit block other than the first bit block is also used to generate the third signal.
  • the first bit block includes user plane information.
  • the first bit block includes data generated by the SDAP sublayer.
  • the first bit block includes data generated by NAS.
  • the first bit block includes a NAS message.
  • the first bit block includes control plane information.
  • the first bit block includes information generated by the RRC layer.
  • the first bit block includes an RRC message.
  • the first bit block includes the RRC connection related information.
  • the first bit block includes the small packet data.
  • the first bit block includes control plane information and user plane information.
  • the first bit block includes control plane information, and the first bit block does not include user plane information.
  • the first bit block includes user plane information, and the first bit block does not include control plane information.
  • the first bit block includes the RRC connection related information, and the first bit block does not include the NAS message.
  • the first bit block includes the RRC connection related information, and the first bit block does not include SDAP data.
  • the first bit block includes the RRC connection related information, and the first bit block does not include the small packet data.
  • the first bit block includes a NAS message, and the first bit block does not include an RRC message.
  • the first bit block includes a NAS message, and the first bit block does not include the RRC connection related information.
  • the first bit block includes SDAP data, and the first bit block does not include RRC messages.
  • the first bit block includes SDAP data, and the first bit block does not include the RRC connection related information.
  • the first bit block includes the small packet data, and the first bit block does not include the RRC connection related information.
  • a first bit block set is used to generate the third signal, the first bit block set includes a positive integer number of first-type bit blocks, and the first bit block set includes a positive integer number of first bit blocks. Any first-type bit block in the bit-like block includes a positive integer number of bits.
  • the first bit block is one first-type bit block among the positive integer number of first-type bit blocks included in the first bit block set.
  • the third signal includes a first bit block set, the first bit block set includes a positive integer number of first-type bit blocks, and the first bit block set includes the positive integer number of first bit blocks. Any first-type bit block in the bit-like block includes a positive integer number of bits.
  • the first bit block is one first-type bit block among the positive integer number of first-type bit blocks included in the first bit block set.
  • the first set of bit blocks includes data transmitted on the UL-SCH.
  • the first set of bit blocks includes data transmitted on the SL-SCH.
  • one first-type bit block in the positive integer number of first-type bit blocks included in the first bit block set includes 1 CW.
  • one first-type bit block in the positive integer number of first-type bit blocks included in the first bit block set includes 1 CB.
  • one first-type bit block in the positive integer number of first-type bit blocks included in the first bit block set includes 1 CBG.
  • one first-type bit block in the positive integer number of first-type bit blocks included in the first bit block set includes 1 TB.
  • all or part of the bits of the first bit block set are sequentially attached through transport block-level CRC attachment, coding block segmentation, coding block-level CRC attachment, channel coding, rate matching, coding block concatenation, scrambling, and modulation , Layer mapping, antenna port mapping, mapping to physical resource blocks, baseband signal generation, modulation and up-conversion to obtain the first wireless signal.
  • the third signal is an output after the first bit block set passes through a modulation mapper, a layer mapper, a precoding, a resource particle mapper, and a multi-carrier symbol in sequence.
  • only the first bit block set is used to generate the third signal.
  • bit blocks that exist outside the first bit block set are also used to generate the third signal.
  • the first bit block set includes user plane information.
  • the first set of bit blocks includes data generated by the SDAP sublayer.
  • the first bit block set includes data generated by NAS.
  • the first set of bit blocks includes a NAS message.
  • the first bit block set includes control plane information.
  • the first bit block set includes information generated by the RRC layer.
  • the first bit block set includes an RRC message.
  • the first bit block set includes the RRC connection related information.
  • the first bit block set includes the small packet data.
  • the first bit block set includes control plane information and user plane information.
  • the first bit block set includes control plane information, and the first bit block set does not include user plane information.
  • the first bit block set includes user plane information, and the first bit block set does not include control plane information.
  • the first bit block set includes the RRC connection related information, and the first bit block set does not include NAS messages.
  • the first bit block set includes the RRC connection related information, and the first bit block set does not include SDAP data.
  • the first bit block set includes the RRC connection related information, and the first bit block set does not include the small packet data.
  • the first bit block set includes NAS messages, and the first bit block set does not include RRC messages.
  • the first bit block set includes a NAS message, and the first bit block set does not include the RRC connection related information.
  • the first bit block set includes SDAP data, and the first bit block set does not include RRC messages.
  • the first bit block set includes SDAP data, and the first bit block set does not include the RRC connection related information.
  • the first bit block set includes the small packet data, and the first bit block set does not include the RRC connection related information.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • Figure 2 illustrates a diagram of a network architecture 200 of 5G NR, LTE (Long-Term Evolution) and LTE-A (Long-Term Evolution Advanced) systems.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System, evolved packet system) 200 some other suitable terminology.
  • 5GS/EPS 200 may include one or more UEs (User Equipment) 201, a UE241 that performs sidelink communication with UE201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network, 5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management, unified data management) 220 and Internet service 230.
  • 5GS/ EPS can be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown in the figure, 5GS/EPS provides packet switching services, but those skilled in the art will easily understand that various concepts presented throughout this application can be extended to networks that provide circuit switching services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 can be connected to other gNB204 via an Xn interface (for example, backhaul).
  • the gNB203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmit and receive node), or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmit and receive node
  • examples of gNB203 include satellites, aircraft or ground base stations relayed by satellites.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , Video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine-type communication devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices Video devices
  • digital audio players for example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine-type communication devices
  • machine-type communication devices land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE201 can also refer to UE201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through the S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway)/UPF (User Plane Function, user plane function) 212, and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • MME/AMF/SMF211 is a control node that processes the signaling between UE201 and 5GC/EPC210. In general, MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through S-GW/UPF212, and S-GW/UPF212 itself is connected to P-GW/UPF213. The P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multi
  • the first node in this application includes the UE201.
  • the second node in this application includes the gNB203.
  • the user equipment in this application includes the UE201.
  • the base station in this application includes the gNB203.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the first signaling in this application includes the gNB203.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the gNB203.
  • the receiver of the second signal in this application includes the UE201.
  • the sender of the second signal in this application includes the gNB203.
  • the sender of the third signal in this application includes the UE201.
  • the recipient of the third signal in this application includes the gNB203.
  • the receiver of the fourth signal in this application includes the UE201.
  • the sender of the fourth signal in this application includes the gNB203.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of the radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first node device (UE or RSU in V2X, in-vehicle equipment or in-vehicle communication module). ) And the second node device (gNB, UE or RSU in V2X, in-vehicle device or in-vehicle communication module), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2, and layer 3.
  • Layer 1 is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301, and is responsible for the link between the first node device and the second node device and the two UEs through PHY301.
  • L2 layer 305 includes MAC (Medium Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303, and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sublayers terminate at the second node device.
  • MAC Medium Access Control
  • RLC Radio Link Control, radio link layer control protocol
  • PDCP Packet Data Convergence Protocol, packet data convergence protocol
  • the PDCP sublayer 304 provides data encryption and integrity protection, and the PDCP sublayer 304 also provides support for cross-zone movement of the first node device to the second node device.
  • the RLC sublayer 303 provides segmentation and reassembly of data packets, and realizes the retransmission of lost data packets through ARQ.
  • the RLC sublayer 303 also provides duplicate data packet detection and protocol error detection.
  • the MAC sublayer 302 provides mapping between logical and transport channels and multiplexing of logical channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell among the first node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) of the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second node device and the first node device. RRC signaling to configure the lower layer.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first node device and the second node device in the user plane 350 is for the physical layer 351 and the L2 layer 355.
  • the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are basically the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also provides The header of the upper layer data packet is compressed to reduce wireless transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes the SDAP (Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). To support business diversity.
  • DRB Data Radio Bearer
  • the first node device may have several upper layers above the L2 layer 355, including a network layer (for example, an IP layer) terminating at the P-GW on the network side and terminating at the other end of the connection (For example, remote UE, server, etc.) at the application layer.
  • a network layer for example, an IP layer
  • the P-GW terminates at the P-GW on the network side
  • the other end of the connection For example, remote UE, server, etc.
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signaling in this application is generated in the RRC sublayer 306.
  • the first signaling in this application is generated in the PHY301.
  • the first signal in this application is generated in the PHY301.
  • the second signal in this application is generated in the MAC sublayer 302.
  • the third signal in this application is generated in the RRC sublayer 306.
  • the third signal in this application is generated in the SDAP sublayer 356.
  • the third signal in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the fourth signal in this application is generated in the RRC sublayer 306.
  • the fourth signal in this application is generated in the SDAP sublayer 356.
  • the fourth signal in this application is transmitted to the PHY 301 via the MAC sublayer 302.
  • the fourth signal in this application is generated in the PHY301.
  • Embodiment 4 shows a schematic diagram of the first communication device and the second communication device according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475, a memory 476, a receiving processor 470, a transmitting processor 416, a multi-antenna receiving processor 472, a multi-antenna transmitting processor 471, a transmitter/receiver 418, and an antenna 420.
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmitting processor 468, a receiving processor 456, a multi-antenna transmitting processor 457, a multi-antenna receiving processor 458, and a transmitter/receiver 454 And antenna 452.
  • the upper layer data packet from the core network is provided to the controller/processor 475.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, and multiplexing between logic and transport channels. Multiplexing, and allocation of radio resources to the second communication device 450 based on various priority measures.
  • the controller/processor 475 is also responsible for retransmission of lost packets and signaling to the second communication device 450.
  • the transmission processor 416 and the multi-antenna transmission processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), and M quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmission processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes it with a reference signal (e.g., pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate The physical channel that carries the multi-carrier symbol stream in the time domain.
  • IFFT inverse fast Fourier transform
  • the multi-antenna transmission processor 471 performs transmission simulation precoding/beamforming operations on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmission processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated on the radio frequency carrier, and converts the radio frequency stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna reception processor 458 performs reception analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a Fast Fourier Transform (FFT) to convert the baseband multi-carrier symbol stream after receiving the analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the reference signal will be used for channel estimation.
  • the second communication device 450 is any spatial flow of the destination.
  • the symbols on each spatial stream are demodulated and recovered in the receiving processor 456, and soft decisions are generated.
  • the receiving processor 456 then decodes and deinterleaves the soft decision to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , Control signal processing to recover upper layer data packets from the core network.
  • the upper layer data packets are then provided to all protocol layers above the L2 layer.
  • Various control signals can also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the header based on the radio resource allocation Compression, encryption, packet segmentation and reordering, as well as multiplexing between logic and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets and signaling to the first communication device 410.
  • the transmission processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmission processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is subjected to an analog precoding/beamforming operation in the multi-antenna transmission processor 457 and then provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then supplies it to the antenna 452.
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna receiving processor 472 and the receiving processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • the memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In the transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, and header decompression. , Control signal processing to recover upper layer data packets from UE450.
  • the upper layer data packet from the controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450, and the second node in this application includes the first communication device 410.
  • the first node is user equipment
  • the second node is user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the second communication device 450 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for HARQ operations.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgement (ACK) and/or negative acknowledgement (NACK) )
  • the protocol performs error detection to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the second communication device 450 means at least: sending a first signal, the first signal carrying a first characteristic sequence; receiving a second signal, the second signal carrying a first identifier, and the first characteristic sequence is used for Indicate the first identifier; send a third signal on the target time-frequency resource block; the second signal is used to indicate the first time-frequency resource block, and the first time-frequency resource block is used to determine the target time-frequency Resource set, the target time-frequency resource set includes multiple time-frequency resource blocks, and the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set Resource block; whether the third signal carries the first type of information block and is used to determine the target time-frequency resource block from the target time-frequency resource set, and the target time-frequency resource block is the target time-frequency
  • the second communication device 450 includes: a memory storing a computer-readable program of instructions, the computer-readable program of instructions generates actions when executed by at least one processor, and the actions include: sending the first A signal, the first signal carries a first characteristic sequence; a second signal is received, the second signal carries a first identifier, and the first characteristic sequence is used to indicate the first identifier; in the target time-frequency resource A third signal is sent on a block; the second signal is used to indicate a first time-frequency resource block, the first time-frequency resource block is used to determine a target time-frequency resource set, and the target time-frequency resource set includes multiple Time-frequency resource blocks, the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first
  • the class information block is used to determine the target time-frequency resource block from the target time-frequency resource set, and the target time-frequency resource block is among the multiple time-frequency resource blocks included in the target time-frequency resource set One
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the Use at least one processor together.
  • the first communication device 410 means at least: sending a second signal, the second signal carrying a first identifier, and the first characteristic sequence indicating the first identifier; receiving a third signal on a target time-frequency resource block;
  • the second signal indicates a first time-frequency resource block, the first time-frequency resource block is used to determine a target time-frequency resource set, the target time-frequency resource set includes a plurality of time-frequency resource blocks, the first The time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first type of information block is used to obtain information from the target The target time-frequency resource block is determined in a time-frequency resource set, and the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: sending the first The second signal, the second signal carries the first identifier, the first characteristic sequence indicates the first identifier; the third signal is received on the target time-frequency resource block; the second signal indicates the first time-frequency resource block ,
  • the first time-frequency resource block is used to determine a target time-frequency resource set, the target time-frequency resource set includes a plurality of time-frequency resource blocks, and the first time-frequency resource block is the target time-frequency resource set One of the multiple time-frequency resource blocks included; whether the third signal carries the first type of information block is used to determine the target time-frequency resource from the target time-frequency resource set Block, the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; the first type of information block includes control plane information.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for sending the first signal in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for receiving the second signal in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used for sending the third signal on the target time-frequency resource block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the fourth signal in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used for sending the first signaling in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used for receiving the first signal in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used for sending the second signal in this application.
  • the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, the memory 476 ⁇ at least One is used for receiving the third signal on the target time-frequency resource block in this application.
  • the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475, the memory 476 ⁇ at least One is used for sending the fourth signal in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the first node U1 and the second node U2 communicate through an air interface, and the steps in block F0 in Fig. 5 are optional.
  • a first signaling For the first node U1, received in the step S11, a first signaling; transmitting a first signal in a step S12; second signal is received in step S13; transmitting a third signal at a frequency in a step S14, the target resource blocks; The fourth signal is received in step S15.
  • step S21 a first transmitting signaling; receiving a first signal in step S22; second signal is transmitted in step S23; the frequency received at the target in step S24 the resource block third signal; In step S25, the fourth signal is sent.
  • the first signal carries a first characteristic sequence; the first signal is transmitted on a random access channel; the second signal carries a first identifier, and the first characteristic sequence is The first node U1 is used to indicate the first identifier; the second signal is used by the second node U2 to indicate a first time-frequency resource block, and the first time-frequency resource block is used by the first node U1 is used to determine a target time-frequency resource set, the target time-frequency resource set includes multiple time-frequency resource blocks, and the first time-frequency resource block is the multiple time-frequency resource blocks included in the target time-frequency resource set A time-frequency resource block in the resource block; whether the third signal carries the first type of information block is used by the first node U1 to determine the target time-frequency resource block from the target time-frequency resource set, so The target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; the first type of information block includes control plane information; the third signal includes The first identity; the first
  • the first type of information block includes a radio resource control establishment request, a radio resource control restoration request, a radio resource control restoration request 1, a radio resource control reestablishment request, a radio resource control reconfiguration complete, and a radio resource control handover confirmation , Radio resource control at least one of the data requests in advance.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; when the third signal carries the first-type information block, The target time-frequency resource block is one of the first-type time-frequency resource blocks of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; when the third signal does not carry the In the case of the first-type information block, the target time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the first bit block is used by the first node U1 to generate the third signal; when the third signal does not carry the first type of information block, the size of the first bit block Used by the first node U1 to determine the target time-frequency resource block from the target time-frequency resource set.
  • the first bit block is used by the first node U1 to generate the third signal; when the third signal carries the first type of information block, the size of the first bit block is changed
  • the first node U1 is configured to determine the target time-frequency resource block from the target time-frequency resource set.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks;
  • the second signal indicates the first time-frequency resource block;
  • the first time-frequency resource block is used by the first node U1 to determine the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set;
  • the first signaling indicates the target time Frequency resource set includes the positive integer number of second-type time-frequency resource blocks;
  • the first bit block is used by the first node U1 to generate the third signal; when the third signal does not carry the first
  • the size of the first bit block is used by the first node U1 to determine the target time-frequency resource block from the positive integer number of second-type time-frequency resource blocks.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; the first bit block is used by the first node U1 to generate the A third signal; when the third signal carries the first type of information block, the target time-frequency resource block is the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set A first-type time-frequency resource block; when the third signal does not carry the first-type information block and the size of the first bit block is greater than a first threshold, the target time-frequency resource block is The target time-frequency resource set includes one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks; when the third signal does not carry the first-type information block, the When the size of the first bit block is less than the first threshold, the target time-frequency resource block is one of the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set. Frequency resource block.
  • the target time-frequency resource set includes the positive integer number of the first type
  • the step of block F0 in FIG. 5 does not exist.
  • the fourth signal includes a baseband signal.
  • the fourth signal includes a radio frequency signal.
  • the fourth signal includes a wireless signal.
  • the fourth signal is transmitted on the DL-SCH.
  • the fourth signal is transmitted on the PDSCH.
  • the fourth signal is transmitted on the PDCCH.
  • the fourth signal is transmitted on PDCCH and PDSCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDCCH and PDSCH
  • the third signal is transmitted on PUSCH
  • the fourth signal is transmitted on PDCCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDCCH and PDSCH
  • the third signal is transmitted on PUSCH
  • the fourth signal is transmitted on PDSCH.
  • the first signal is transmitted on PRACH
  • the second signal is transmitted on PDCCH and PDSCH
  • the third signal is transmitted on PUSCH
  • the fourth signal is transmitted on PDCCH and PDSCH.
  • the fourth signal is cell-specific.
  • the fourth signal is specific to the user equipment.
  • the fourth signal is transmitted by broadcast.
  • the fourth signal is multicast transmission.
  • the fourth signal is unicast transmission.
  • the fourth signal includes one or more domains in one MAC CE.
  • the fourth signal includes UE Contention Resolution Identity (User Conflict Resolution Identity).
  • the fourth signal includes UE Contention Resolution Identity MAC CE.
  • the fourth signal is Msg4 (Message 4, Message 4) of the random access procedure.
  • the fourth signal is Msg4 of Type-1 Random Access Procedure.
  • the fourth signal includes HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) information.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • the fourth signal is used to indicate whether the first bit block is received correctly.
  • the fourth signal is used to indicate whether the first bit block set is received correctly.
  • the fourth signal includes first information bits, and the first information bits are used to indicate whether the first bit block is received correctly.
  • the fourth signal includes a positive integer number of information bits, and the positive integer number of information bits included in the fourth signal are respectively used to indicate the positive integer number included in the first bit block set. Whether the first type of bit block is received correctly.
  • the second information bit is any information bit of the positive integer number of information bits included in the fourth signal, and the second bit block is included in the first bit block set.
  • One first-type bit block corresponding to the second information bit in the positive integer number of first-type bit blocks, and the second information bit is used to indicate whether the second bit block is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes RRC connection related information
  • the fourth signal includes a conflict resolution message
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes small packet data
  • the fourth signal includes HARQ information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes control plane information
  • the fourth signal includes a conflict resolution message
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes user plane information
  • the fourth signal includes HARQ information
  • the first signal includes a random access preamble
  • the second signal includes an RAR
  • the third signal includes an RRC message
  • the fourth signal includes a conflict resolution message
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes SDAP data
  • the fourth signal includes HARQ information
  • the first signal includes a random access preamble
  • the second signal includes an RAR
  • the third signal includes a NAS message
  • the fourth signal includes HARQ information.
  • the first signal is Msg1 of the random access procedure
  • the second signal is Msg2 of the random access procedure
  • the third signal is Msg3 of the random access procedure
  • the fourth signal is Msg4 of the random access procedure.
  • the first signal is Msg1 of Type-1 Random Access Procedure
  • the second signal is Msg2 of Type-1 Random Access Procedure
  • the third signal is Msg3 of Type-1 Random Access Procedure
  • the fourth signal is Msg4 of Type-1 Random Access Procedure.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes packet data
  • the fourth signal is used to indicate all information included in the third signal. State whether the first bit block is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes packet data
  • the fourth signal is used to indicate all information included in the third signal. Whether the first set of bit blocks is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes user plane information
  • the fourth signal includes HARQ information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes user plane information
  • the fourth signal is used to indicate that the third signal includes Whether the first bit block is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes user plane information
  • the fourth signal is used to indicate that the third signal includes Whether the first bit block set is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes SDAP data
  • the fourth signal includes HARQ information
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes SDAP data
  • the fourth signal is used to indicate all information included in the third signal. State whether the first bit block is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes SDAP data
  • the fourth signal is used to indicate all information included in the third signal. Whether the first set of bit blocks is received correctly.
  • the first signal includes a random access preamble
  • the second signal includes an RAR
  • the third signal includes a NAS message
  • the fourth signal includes HARQ information.
  • the first signal includes a random access preamble
  • the second signal includes a RAR
  • the third signal includes a NAS message.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes NAS message
  • the fourth signal includes HARQ information.
  • the first signal includes a random access preamble
  • the second signal includes RAR
  • the third signal includes a NAS message
  • the fourth signal is used to indicate all information included in the third signal. Whether the first set of bit blocks is received correctly.
  • the third signal includes the first identity.
  • the third signal carries the first identity.
  • the third signal directly carries the first identity.
  • the third signal indirectly carries the first identity.
  • the third signal includes a positive integer number of third type domains
  • the first identity is one of the positive integer number of third type domains included in the third signal
  • the RRC connection related information is a third type domain among the positive integer number of third type domains included in the third signal.
  • the third signal includes a positive integer number of third type domains
  • the first identity is one of the positive integer number of third type domains included in the third signal
  • the SDAP data is a third type domain among the positive integer number of third type domains included in the third signal.
  • the third signal includes a positive integer number of third type domains
  • the first identity is one of the positive integer number of third type domains included in the third signal
  • the NAS message is a third type domain among the positive integer number of third type domains included in the third signal.
  • the first identity is used to generate the scrambling sequence of the third signal.
  • the first identity is used to generate the initial value of the scrambling sequence of the third signal.
  • the first identity includes C-RNTI (Cell-Radio Network Temporary Identifier, Cell-Radio Network Temporary Identifier).
  • C-RNTI Cell-Radio Network Temporary Identifier, Cell-Radio Network Temporary Identifier
  • the first identity includes TC-RNTI.
  • the first identity includes S-TMSI (Serving-Temporary Mobile Subscriber Identity, Temporary Mobile Subscriber Identity).
  • the first identity includes a random number.
  • Embodiment 6 illustrates a schematic diagram of the relationship between the first time-frequency resource block and the target time-frequency resource set according to the second signal according to an embodiment of the present application, as shown in FIG. 6.
  • the dashed box represents the target time-frequency resource set in this application; the rectangle represents the first type of time-frequency resource block in the target time-frequency resource set in this application; the square in the dashed ellipse represents this
  • the second type of time-frequency resource block in the target time-frequency resource set in the application; the rectangle filled with diagonal stripes represents the first time-frequency resource block in this application.
  • the second signal is used to indicate the first time-frequency resource block; the first time-frequency resource block is used to determine a target time-frequency resource set; the target time-frequency resource set includes a positive integer Time-frequency resource blocks of the first type and a positive integer number of time-frequency resource blocks of the second type.
  • the first time-frequency resource block includes PUSCH.
  • the first time-frequency resource block belongs to one PUSCH occasion (opportunity).
  • the first time-frequency resource block includes a positive integer number of time-domain resource units.
  • the first time-frequency resource block includes a positive integer number of frequency domain resource units.
  • the first time-frequency resource block includes a positive integer number of time-frequency resource units.
  • the first time-frequency resource includes multiple RE(s) (Resource Element, resource particles).
  • the positive integer number of frequency domain resource units included in the first time-frequency resource are continuous in the frequency domain.
  • the first time-frequency resource includes a positive integer number of PRB(s) (Physical Resource Block(s)).
  • the first time-frequency resource includes a positive integer number of consecutive PRB(s).
  • the first time-frequency resource includes a positive integer number of subcarriers (Subcarrier(s)).
  • the first time-frequency resource includes a positive integer number of subframes (Subframe(s)).
  • the first time-frequency resource includes a positive integer number of time slots (Slot(s)).
  • the first time-frequency resource includes a positive integer multi-carrier symbol (Symbol(s)).
  • the first time-frequency resource belongs to one time slot, and the one time slot includes a positive integer number of multi-carrier symbols.
  • the one slot includes 14 multi-carrier symbols.
  • the first time-frequency resource includes a positive integer number of consecutive multi-carrier symbols.
  • the second signal directly indicates the first time-frequency resource block.
  • the second signal indirectly indicates the first time-frequency resource block.
  • the first time-frequency resource block is one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set.
  • the second signal includes a MAC RAR
  • the first time-frequency resource block is a domain in the MAC RAR.
  • the second signal includes a MAC RAR, and the MAC RAR indicates the first time-frequency resource block.
  • the second signal includes a MAC RAR
  • the MAC RAR includes a UL Grant (uplink grant) field
  • the UL Grant indicates the first time-frequency resource block.
  • the UL Grant field includes 27 bits.
  • the second signal indicates time domain resources and frequency domain resources of the first time-frequency resource block.
  • the second signal includes the start time and time span of the first time-frequency resource block.
  • the second signal includes the lowest subcarrier of the first time-frequency resource block and the number of subcarriers occupied by the first time-frequency resource block.
  • the second signal is used to indicate the first time-frequency resource block from a positive integer number of time-frequency resource blocks.
  • the second signal includes the index of the first time-frequency resource block in the positive integer number of time-frequency resource blocks.
  • the target time-frequency resource set includes multiple time-frequency resource blocks
  • the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set. Frequency resource block.
  • any one of the multiple time-frequency resource blocks included in the target time-frequency resource set includes PUSCH.
  • any time-frequency resource block of the multiple time-frequency resource blocks included in the target time-frequency resource set belongs to one PUSCH occasion (opportunity).
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks.
  • the positive integer number of first-type time-frequency resource blocks belong to the multiple time-frequency resource blocks included in the time-frequency resource set.
  • the positive integer number of second-type time-frequency resource blocks belong to the multiple time-frequency resource blocks included in the time-frequency resource set.
  • the target time-frequency resource set includes one first-type time-frequency resource block and one second-type time-frequency resource block.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource block is the target time-frequency resource set One first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource block is the target time-frequency resource set One of the second-type time-frequency resource blocks in the positive integer number of the second-type time-frequency resource blocks included.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks
  • the first time-frequency resource block is the target time-frequency resource set The earliest first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included.
  • the target time-frequency resource set includes a first-type time-frequency resource block and a positive integer number of second-type time-frequency resource blocks, and the first time-frequency resource block is included in the target time-frequency resource set The one first-type time-frequency resource block.
  • the target time-frequency resource set includes the first time-frequency resource block and the positive integer number of second-type time-frequency resource blocks.
  • the target time-frequency resource set includes the first time-frequency resource block and one second-type time-frequency resource block.
  • the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set are at equal time intervals.
  • the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set are equally spaced in the frequency domain.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set are at equal time intervals.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set are spaced equally in the frequency domain.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set are different from the first time-frequency resource block by a first time offset.
  • the first time offset includes a positive integer number of time-domain resource units.
  • the first time offset includes a positive integer number of time slots.
  • the first time offset includes a positive integer number of multi-carrier symbols.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set differ from the first time-frequency resource block by a positive integer number of time offsets.
  • any one of the positive integer time offsets includes a positive integer number of time domain resource units.
  • any time offset in the positive integer number of time offsets includes a positive integer number of time slots.
  • any time offset in the positive integer number of time offsets includes a positive integer number of multi-carrier symbols.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set are different from the first time-frequency resource block by a first frequency offset.
  • the first frequency offset includes a positive integer number of frequency domain resource units.
  • the first frequency offset includes a positive integer number of PRB(s).
  • the first frequency offset includes a positive integer number of sub-carriers.
  • the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set differ from the first time-frequency resource block by a positive integer number of frequency offsets.
  • any frequency offset in the positive integer number of frequency offsets includes a positive integer number of frequency domain resource units.
  • any frequency offset in the positive integer number of frequency offsets includes a positive integer number of PRB(s).
  • any frequency offset in the positive integer number of frequency offsets includes a positive integer number of subcarriers.
  • any first-type time-frequency resource block of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set includes X1 time-domain resource units, and the target time-frequency resource block
  • Any second-type time-frequency resource block of the positive integer second-type time-frequency resource blocks included in the resource set includes X2 time-domain resource units, and X1 is a positive integer not less than X2.
  • any first-type time-frequency resource block in the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set includes Y1 frequency domain resource units, and the target time-frequency resource block
  • Any second-type time-frequency resource block of the positive integer second-type time-frequency resource blocks included in the resource set includes Y2 frequency domain resource units, and Y1 is a positive integer not less than Y2.
  • any first-type time-frequency resource block in the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set includes Z1 time-frequency resource units, and the target time-frequency resource block
  • Any second-type time-frequency resource block in the positive integer second-type time-frequency resource blocks included in the resource set includes Z2 time-frequency resource units, and Z1 is a positive integer not less than Z2.
  • the Z1 is equal to the Z2.
  • the Z1 is greater than the Z2.
  • any one of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set includes Z3 REs
  • the target time-frequency resource set includes Any second-type time-frequency resource block in the positive integer second-type time-frequency resource blocks includes Z4 REs
  • Z3 is a positive integer not less than Z4.
  • the Z3 is equal to the Z4.
  • the Z3 is greater than the Z4.
  • Embodiment 7 illustrates a schematic diagram of the relationship between the third signal and the first type of information block according to an embodiment of the present application, as shown in FIG. 7.
  • step S701 it is determined whether the third signal carries the first type of information block; when the result of determining whether the third signal carries the first type of information block is "Yes”, step S702 is executed, and the target time-frequency resource The block is the first-type time-frequency resource block; when the result of judging whether the third signal carries the first-type information block is “No”, step S703 is executed, and the target time-frequency resource block is the first-type time-frequency resource block.
  • the third signal carries the first type of information block.
  • the third signal carries the first type of information block and the second type of information block.
  • the third signal carries the second type of information block.
  • the third signal carries the second type of information block, and the third signal does not carry the first type of information block.
  • the third signal includes a positive integer number of third type domains
  • the first type information block is one of the positive integer number of third type domains included in the third signal. area.
  • the third signal includes a positive integer number of third type domains
  • the second type information block is a third type of the positive integer number of third type domains included in the third signal area
  • the third signal includes a positive integer number of third type domains
  • the first type information block is one of the positive integer number of third type domains included in the third signal.
  • Domain the second type information block is a third type domain among the positive integer number of third type domains included in the third signal.
  • the third signal includes a positive integer number of third type domains
  • the second type information block is a third type of the positive integer number of third type domains included in the third signal Domain
  • the first type information block is not any third type domain among the positive integer number of third type domains included in the third signal.
  • the first type of information block is generated by the RRC layer.
  • the first type of information block includes control plane information.
  • the first type of information block is control plane information.
  • the first type of information block includes an RRC message.
  • the first type of information block includes RRC connection related information.
  • the first type of information block is sent through CCCH (Common Control Channel, Common Control Channel).
  • CCCH Common Control Channel
  • CCCH refers to section 6.2.2 of 3GPP TS38.300.
  • the first type of information block is sent through a DCCH (Dedicated Control Channel, dedicated control channel).
  • DCCH Dedicated Control Channel, dedicated control channel
  • DCCH refers to section 6.2.2 of 3GPP TS38.300.
  • the first type of information block is used to establish an RRC Connection (Radio Resource Control Connection).
  • RRC Connection Radio Resource Control Connection
  • the first type of information block is used to rebuild RRC Connection.
  • the first type of information block is used to restore RRC Connection.
  • the first type of information block includes RRC Connnection Request.
  • the first type of information block includes RRC Connection Resume Request.
  • the first type of information block includes RRCConnectionRe-establishment (Radio Resource Control Connection Reestablishment).
  • the first type of information block includes RRCHandoverConfirm (Radio Resource Control Handover Confirmation).
  • the first type of information block includes RRCConnectionReconfigurationComplete (Radio Resource Control Connection Reconfiguration Complete).
  • the first type of information block includes RRC Early Data Request (Radio Resource Control Early Data Request).
  • the first type of information block includes RRCSetupRequest (Radio Resource Control Setup Request).
  • the first type of information block includes RRCResumeRequest (Radio Resource Control Recovery Request).
  • the first type of information block includes RRCResumeRequest1 (Radio Resource Control Recovery Request 1).
  • the first type of information block includes RRCReestablishmentRequest (Radio Resource Control Reestablishment Request).
  • the first type of information block includes RRCReconfigurationComplete (Radio Resource Control Reconfiguration Complete).
  • the second type of information block includes packet data.
  • the second type of information block includes user plane information.
  • the second type of information block includes a NAS message.
  • the second type of information block includes SDAP data.
  • Embodiment 8 illustrates a schematic diagram of the relationship between the first time-frequency resource block, the target time-frequency resource set and the target time-frequency resource block according to an embodiment of the present application, as shown in FIG. 8.
  • the dashed box represents the target time-frequency resource set in the present application
  • the rectangle filled with diagonal lines represents the first time-frequency resource block in the present application
  • the oblique The square filled with squares represents the target time-frequency resource block in this application
  • the rectangle filled with diagonal squares represents the target time-frequency resource block in this application.
  • the target time-frequency resource set includes a positive integer number of time-frequency resource blocks of the first type and a positive integer number of time-frequency resource blocks of the second type; in case A of the embodiment 8, when the third signal When the first-type information block is not carried, the target time-frequency resource block is one of the second-type time-frequency resource blocks in the positive integer number of the second-type time-frequency resource blocks included in the target time-frequency resource set In case B of embodiment 8, when the third signal carries the first type of information block, the target time-frequency resource block is the first positive integer included in the target time-frequency resource set A first-type time-frequency resource block in the time-frequency resource block.
  • the target time-frequency resource block is one time-frequency resource block among the positive integer number of time-frequency resource blocks included in the target time-frequency resource set.
  • the target time-frequency resource block is the first time-frequency resource block.
  • the target time-frequency resource block is the same as the first time-frequency resource block.
  • the target time-frequency resource block is the first time-frequency resource block.
  • the target time-frequency resource block is the same as the first time-frequency resource block.
  • the target time-frequency resource block is different from the first time-frequency resource block.
  • the target time-frequency resource block is different from the first time-frequency resource block.
  • the target time-frequency resource block is one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set, or the target The time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the target time-frequency resource block is one of the one first-type time-frequency resource block or the one second-type time-frequency resource block included in the target time-frequency resource set.
  • the target time-frequency resource block is one of the first time-frequency resource block or the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the target time-frequency resource block is one of the first time-frequency resource block or the one second-type time-frequency resource block included in the target time-frequency resource set.
  • the target time-frequency resource block includes PUSCH.
  • the target time-frequency resource block belongs to one PUSCH occasion (opportunity).
  • the target time-frequency resource block includes a positive integer number of time-domain resource units.
  • the target time-frequency resource block includes a positive integer number of frequency domain resource units.
  • the target time-frequency resource block includes a positive integer number of time-frequency resource units.
  • the target time-frequency resource includes multiple RE(s).
  • the positive integer number of frequency domain resource units included in the target time-frequency resource are continuous in the frequency domain.
  • the target time-frequency resource includes a positive integer number of PRB(s).
  • the target time-frequency resource includes a positive integer number of consecutive PRB(s).
  • the target time-frequency resource includes a positive integer number of subcarriers.
  • the target time-frequency resource includes a positive integer number of subframes.
  • the target time-frequency resource includes a positive integer number of time slots.
  • the target time-frequency resource includes a positive integer multi-carrier symbol.
  • the target time-frequency resource belongs to one time slot, and the one time slot includes a positive integer number of multi-carrier symbols.
  • the one slot includes 14 multi-carrier symbols.
  • the target time-frequency resource includes a positive integer number of consecutive multi-carrier symbols.
  • Embodiment 9 illustrates a flowchart of determining a target time-frequency resource block according to an embodiment of the present application, as shown in FIG. 9.
  • step S901 it is determined whether the third signal carries the first type of information block; when the result of determining whether the third signal carries the first type of information block is "Yes”, step S903 is executed, and the target time-frequency resource The block is the first type of time-frequency resource block; when the result of judging whether the third signal carries the first type of information block is "No”, step S902 is executed to determine whether the size of the first bit block is greater than the first threshold; The result of whether the size of the bit block is greater than the first threshold is "Yes", and step S903 is executed, and the target time-frequency resource block is the first type of time-frequency resource block; the result of judging whether the size of the first bit block is greater than the first threshold is "No", go to step S904, the target time-frequency resource block is the second type of time-frequency resource block.
  • the result of judging whether the third signal carries the first type of information block is "yes".
  • the result of judging whether the third signal carries the first type of information block is "yes" .
  • the result of determining whether the third signal carries the first type of information block is "No".
  • the determining whether the third signal carries all the information blocks of the first type is "No".
  • the result of judging whether the size of the first bit block is greater than the first threshold is "yes".
  • the result of judging whether the size of the first bit block is greater than the first threshold is "yes".
  • the result of judging whether the size of the first bit block is larger than the first threshold is "No".
  • the result of judging whether the size of the first bit block is greater than the first threshold is "No".
  • the size of the first bit block is the number of the positive integer bits included in the first bit block.
  • the size of the first bit block is the size of the first type of information block.
  • the size of the first bit block is the size of the second type of information block.
  • the size of the first bit block is the sum of the size of the first type of information block and the size of the second type of information block.
  • the size of the first bit block is the size of the control plane information included in the first type of information block.
  • the size of the first bit block is the size of the RRC message included in the first type of information block.
  • the size of the first bit block is the size of the RRC connection related information included in the first type of information block.
  • the size of the first bit block is the size of the small packet data included in the second type of information block.
  • the size of the first bit block is the size of the user plane information included in the second type of information block.
  • the size of the first bit block is the size of the NAS message included in the second type of information block.
  • the size of the first bit block is the size of the SDAP data included in the second type of information block.
  • the size of the first bit block is the sum of the size of the control plane information included in the first type of information block and the size of the user plane information included in the second type of information block.
  • the size of the first bit block is the sum of the size of the RRC message included in the first type of information block and the size of the NAS message included in the second type of information block.
  • the size of the first bit block is the sum of the size of the RRC connection related information included in the first type of information block and the size of the SDAP data included in the second type of information block.
  • the first threshold is a positive integer.
  • the first threshold is a positive integer number of bits.
  • the target time-frequency resource block is the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set A first-type time-frequency resource block in.
  • the target time-frequency resource block is the target time-frequency resource block.
  • the target time-frequency resource block is the target time-frequency resource block.
  • the target time-frequency resource block is the target time-frequency resource block.
  • the target time-frequency resource block is the target time-frequency resource block.
  • the third signal when the third signal does not carry the first type of information block, the third signal carries the second type of information block, and the size of the first bit block is greater than the first threshold
  • the target time-frequency resource block is one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set.
  • the third signal when the third signal does not carry the first type of information block, the third signal carries the second type of information block, and the size of the first bit block is equal to the first threshold
  • the target time-frequency resource block is one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set.
  • the third signal when the third signal does not carry the first type of information block, the third signal carries the second type of information block, and the size of the first bit block is smaller than the first threshold
  • the target time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the third signal when the third signal does not carry the first type of information block, the third signal carries the second type of information block, and the size of the first bit block is equal to the first threshold
  • the target time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • Embodiment 10 illustrates a schematic diagram of the relationship between the size of the first bit block and the target time-frequency resource block according to an embodiment of the present application, as shown in FIG. 10.
  • the large dashed box represents the target time-frequency resource set in this application;
  • the rectangle represents the first type of time-frequency resource block in the target time-frequency resource set in this application, and the square in the dashed ellipse Represents the second type of time-frequency resource block in the target time-frequency resource set in this application;
  • the rectangle filled with diagonal lines represents the first time-frequency resource block in this application;
  • the square filled with diagonal grid represents the first time-frequency resource block in this application Of the target time-frequency resource block.
  • the first signaling is used to indicate the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set, and the first time-frequency resource block is the target The time-frequency resource set includes one first-type time-frequency resource block among the positive integer number of first-type time-frequency resource blocks; when the third signal does not carry the first-type information block, the first The size of the bit block is used to determine the target time-frequency resource block from the positive integer number of second-type time-frequency resource blocks.
  • the first signaling is a broadcast signal.
  • the first signaling is a SIB signal.
  • the first signaling is one or more IEs in the SIB.
  • the first signaling is one or more domains in the SIB.
  • the first signaling is higher layer signaling.
  • the first signaling is RRC signaling.
  • the first signaling is one or more domains in an RRC IE.
  • the first signaling is used to determine Q1 second-type time-frequency resource blocks in the target time-frequency resource set, and the Q1 second-type time-frequency resource blocks do not include the first A time-frequency resource block; when the target time-frequency resource block belongs to the Q1 time-frequency resource blocks, the service type of the first bit block is used to select from the Q1 second-type time-frequency resource blocks Determine the target time-frequency resource block; the Q1 is a positive integer.
  • the first signaling is used to determine Q1 second-type time-frequency resource blocks in the target time-frequency resource set, and the Q1 second-type time-frequency resource blocks do not include the first A time-frequency resource block; when the target time-frequency resource block belongs to the Q1 time-frequency resource blocks, the size of the first bit block is used to determine from the Q1 second-type time-frequency resource blocks The target time-frequency resource block; the Q1 is a positive integer.
  • any two second-type time-frequency resource blocks in the Q1 second-type time-frequency resource blocks included in the target time-frequency resource set have the same size.
  • At least two second-type time-frequency resource blocks of the Q1 time-frequency resource blocks included in the target time-frequency resource set have different sizes.
  • Embodiment 11 illustrates a schematic diagram of a time-frequency resource unit according to an embodiment of the present application, as shown in FIG. 11.
  • the small square with a dashed line represents RE (Resource Element)
  • the square with a thick line represents a time-frequency resource unit.
  • one time-frequency resource unit occupies K subcarriers in the frequency domain and L multi-carrier symbols (Symbols) in the time domain.
  • K and L are positive integers.
  • t 1 , t 2 ,..., t L represent the L symbols
  • f 1 , f 2 ,..., f K represent the K subcarriers.
  • one time-frequency resource unit occupies the K subcarriers in the frequency domain and occupies the L multi-carrier symbols in the time domain, and the K and the L are positive integers.
  • the K is equal to 12.
  • the K is equal to 72.
  • the K is equal to 127.
  • the K is equal to 240.
  • the L is equal to 1.
  • the L is equal to 2.
  • the L is not greater than 14.
  • any one of the L multi-carrier symbols is an OFDM symbol.
  • any one of the L multi-carrier symbols is an SC-FDMA symbol.
  • any one of the L multi-carrier symbols is a DFT-S-OFDM symbol.
  • any one of the L multi-carrier symbols is an FDMA (Frequency Division Multiple Access, Frequency Division Multiple Access) symbol.
  • FDMA Frequency Division Multiple Access, Frequency Division Multiple Access
  • any one of the L multi-carrier symbols is a FBMC (Filter Bank Multi-Carrier, filter bank multi-carrier) symbol.
  • FBMC Filter Bank Multi-Carrier, filter bank multi-carrier
  • any one of the L multi-carrier symbols is an IFDMA (Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access) symbol.
  • IFDMA Interleaved Frequency Division Multiple Access, Interleaved Frequency Division Multiple Access
  • the time domain resource unit includes a positive integer number of radio frames (Radio Frame).
  • the time domain resource unit includes a positive integer number of subframes (Subframe).
  • the time domain resource unit includes a positive integer number of slots (Slot).
  • the time domain resource unit is a time slot.
  • the time domain resource unit includes a positive integer number of multi-carrier symbols (Symbol).
  • the frequency domain resource unit includes a positive integer number of carriers.
  • the frequency domain resource unit includes a positive integer number of BWP (Bandwidth Part).
  • the frequency domain resource unit is a BWP.
  • the frequency domain resource unit includes a positive integer number of subchannels (Subchannel).
  • the frequency domain resource unit is a subchannel.
  • any subchannel in the positive integer number of subchannels includes a positive integer number of RBs (Resource Block, resource block).
  • the one subchannel includes a positive integer number of RBs.
  • any RB in the positive integer number of RBs includes a positive integer number of subcarriers in the frequency domain.
  • any RB in the positive integer number of RBs includes 12 subcarriers in the frequency domain.
  • the one subchannel includes a positive integer number of PRBs.
  • the number of PRBs included in the one subchannel is variable.
  • any PRB of the positive integer number of PRBs includes a positive integer number of subcarriers in the frequency domain.
  • any PRB of the positive integer number of PRBs includes 12 subcarriers in the frequency domain.
  • the frequency domain resource unit includes a positive integer number of RBs.
  • the frequency domain resource unit is one RB.
  • the frequency domain resource unit includes a positive integer number of PRBs.
  • the frequency domain resource unit is a PRB.
  • the frequency domain resource unit includes a positive integer number of subcarriers.
  • the frequency domain resource unit is a subcarrier.
  • the time-frequency resource unit includes the time-domain resource unit.
  • the time-frequency resource unit includes the frequency domain resource unit.
  • the time-frequency resource unit includes the time-domain resource unit and the frequency-domain resource unit.
  • the time-frequency resource unit includes R REs, and R is a positive integer.
  • the time-frequency resource unit is composed of R REs, and R is a positive integer.
  • any one RE of the R REs occupies one multi-carrier symbol in the time domain and one sub-carrier in the frequency domain.
  • the unit of the one sub-carrier spacing is Hz (Hertz).
  • the unit of the one sub-carrier spacing is kHz (Kilohertz, kilohertz).
  • the unit of the one sub-carrier spacing is MHz (Megahertz).
  • the unit of the symbol length of the one multi-carrier symbol is the sampling point.
  • the unit of the symbol length of the one multi-carrier symbol is microseconds (us).
  • the unit of the symbol length of the one multi-carrier symbol is milliseconds (ms).
  • the one subcarrier interval is at least one of 1.25kHz, 2.5kHz, 5kHz, 15kHz, 30kHz, 60kHz, 120kHz and 240kHz.
  • the time-frequency resource unit includes the K subcarriers and the L multi-carrier coincidences, and the product of the K and the L is not less than the R.
  • the time-frequency resource unit does not include REs allocated to GP (Guard Period, guard interval).
  • the time-frequency resource unit does not include REs allocated to RS (Reference Signal).
  • the time-frequency resource unit includes a positive integer number of RBs.
  • the time-frequency resource unit belongs to one RB.
  • the time-frequency resource unit is equal to one RB in the frequency domain.
  • the time-frequency resource unit includes 6 RBs in the frequency domain.
  • the time-frequency resource unit includes 20 RBs in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of PRBs.
  • the time-frequency resource unit belongs to one PRB.
  • the time-frequency resource unit is equal to one PRB in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of VRB (Virtual Resource Block, virtual resource block).
  • VRB Virtual Resource Block, virtual resource block
  • the time-frequency resource unit belongs to one VRB.
  • the time-frequency resource unit is equal to one VRB in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of PRB pairs (Physical Resource Block pair).
  • the time-frequency resource unit belongs to a PRB pair.
  • the time-frequency resource unit is equal to one PRB pair in the frequency domain.
  • the time-frequency resource unit includes a positive integer number of radio frames.
  • the time-frequency resource unit belongs to one radio frame.
  • the time-frequency resource unit is equal to one radio frame in the time domain.
  • the time-frequency resource unit includes a positive integer number of subframes.
  • the time-frequency resource unit belongs to one subframe.
  • the time-frequency resource unit is equal to one subframe in the time domain.
  • the time-frequency resource unit includes a positive integer number of time slots.
  • the time-frequency resource unit belongs to one time slot.
  • the time-frequency resource unit is equal to one time slot in the time domain.
  • the time-frequency resource unit includes a positive integer number of Symbols.
  • the time-frequency resource unit belongs to one Symbol.
  • the time-frequency resource unit is equal to one Symbol in the time domain.
  • the duration of the time domain resource unit in this application is equal to the duration of the time-frequency resource unit in this application in the time domain.
  • the number of multi-carrier symbols occupied by the time-frequency resource unit in the time domain in this application is equal to the number of multi-carrier symbols occupied by the time domain resource unit in the time domain.
  • the number of subcarriers occupied by the frequency domain resource unit in this application is equal to the number of subcarriers occupied by the time-frequency resource unit in this application in the frequency domain.
  • Embodiment 12 illustrates a structural block diagram of a processing device used in the first node device, as shown in FIG. 12.
  • the first node equipment processing apparatus 1200 is mainly composed of a first transmitter 1201 and a first receiver 1202.
  • the first transmitter 1201 includes the antenna 452, the transmitter/receiver 454, the multi-antenna transmitter processor 457, the transmission processor 468, the controller/processor 459, and the memory 460 shown in FIG. 4 of the present application. And at least one of the data sources 467.
  • the first receiver 1202 includes the antenna 452 shown in FIG. 4 of the present application, the transmitter/receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and At least one of the data sources 467.
  • the first transmitter 1201 sends a first signal, and the first signal carries a first characteristic sequence
  • the first receiver 1202 receives a second signal, the second signal carries a first identifier, and the first characteristic sequence is used to indicate the first identifier; the first transmitter 1201 is in the target time-frequency resource A third signal is sent on a block; the second signal is used to indicate a first time-frequency resource block, the first time-frequency resource block is used to determine a target time-frequency resource set, and the target time-frequency resource set includes multiple Time-frequency resource blocks, the first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first
  • the class information block is used to determine the target time-frequency resource block from the target time-frequency resource set, and the target time-frequency resource block is among the multiple time-frequency resource blocks included in the target time-frequency resource set One of the time-frequency resource blocks; the first type of information block includes control plane information.
  • the first type of information block includes a radio resource control establishment request, a radio resource control restoration request, a radio resource control restoration request 1, a radio resource control reestablishment request, a radio resource control reconfiguration complete, and a radio resource control handover confirmation , One of the early data requests for radio resource control.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; when the third signal carries the first-type information block, The target time-frequency resource block is one of the first-type time-frequency resource blocks of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; when the third signal does not carry the In the case of the first-type information block, the target time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the first bit block is used to generate the third signal, and the size of the first bit block is used to determine the target time-frequency resource block from the target time-frequency resource set.
  • the target time-frequency resource block when the size of the first bit block is greater than a first threshold, the target time-frequency resource block is the positive integer number of first-type time-frequency resources included in the target time-frequency resource set A first-type time-frequency resource block in a block; when the size of the first bit block is less than the first threshold, the target time-frequency resource block is the target time-frequency resource block included in the target time-frequency resource set One of the second-type time-frequency resource blocks in a positive integer number of the second-type time-frequency resource blocks.
  • the first receiver 1202 receives first signaling; the first signaling is used to indicate the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set,
  • the first time-frequency resource block is one of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; when the third signal does not carry all the first-type time-frequency resource blocks;
  • the size of the first bit block is used to determine the target time-frequency resource block from the positive integer number of second-type time-frequency resource blocks.
  • the first receiver 1202 receives a fourth signal; the third signal includes a first identity; the first identity and the target time-frequency resource block are used to determine the fourth signal.
  • the first node device 1200 is user equipment.
  • the first node device 1200 is a relay node.
  • the first node device 1200 is a base station.
  • Embodiment 13 illustrates a structural block diagram of a processing device used in the second node device, as shown in FIG. 13.
  • the second node device processing apparatus 1300 is mainly composed of a second receiver 1301 and a second transmitter 1302.
  • the second receiver 1301 includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476. At least one of.
  • the second transmitter 1302 includes the antenna 420 in Figure 4 of the present application, the transmitter/receiver 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476. At least one of.
  • the second receiver 1301 receives a first signal, and the first signal carries a first characteristic sequence
  • the second transmitter 1302 sends a second signal, the second signal carries a first identifier, and the first characteristic sequence indicates the first identifier; the second receiver 1301 receives on the target time-frequency resource block The third signal; the second signal indicates a first time-frequency resource block, the first time-frequency resource block is used to determine a target time-frequency resource set, the target time-frequency resource set includes multiple time-frequency resource blocks, The first time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set; whether the third signal carries the first type of information block is used for Determine the target time-frequency resource block from the target time-frequency resource set, where the target time-frequency resource block is one of the multiple time-frequency resource blocks included in the target time-frequency resource set ; The first type of information block includes control plane information.
  • the first type of information block includes a radio resource control establishment request, a radio resource control restoration request, a radio resource control restoration request 1, a radio resource control reestablishment request, a radio resource control reconfiguration complete, and a radio resource control handover confirmation , One of the early data requests for radio resource control.
  • the target time-frequency resource set includes a positive integer number of first-type time-frequency resource blocks and a positive integer number of second-type time-frequency resource blocks; when the third signal carries the first-type information block, The target time-frequency resource block is one of the first-type time-frequency resource blocks of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; when the third signal does not carry the In the case of the first-type information block, the target time-frequency resource block is one second-type time-frequency resource block among the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set.
  • the first bit block is used to generate the third signal, and the size of the first bit block is used to determine the target time-frequency resource block from the target time-frequency resource set.
  • the target time-frequency resource block when the size of the first bit block is greater than a first threshold, the target time-frequency resource block is the positive integer number of first-type time-frequency resources included in the target time-frequency resource set A first-type time-frequency resource block in a block; when the size of the first bit block is less than the first threshold, the target time-frequency resource block is the target time-frequency resource block included in the target time-frequency resource set One of the second-type time-frequency resource blocks in a positive integer number of the second-type time-frequency resource blocks.
  • the second transmitter 1302 sends first signaling; the first signaling indicates the positive integer number of second-type time-frequency resource blocks included in the target time-frequency resource set, and the first A time-frequency resource block is one of the positive integer number of first-type time-frequency resource blocks included in the target time-frequency resource set; when the third signal does not carry the first-type time-frequency resource block; In case of a type information block, the size of the first bit block is used to determine the target time-frequency resource block from the positive integer number of second-type time-frequency resource blocks.
  • the second transmitter 1302 sends a fourth signal; the third signal includes a first identity; the first identity and the target time-frequency resource block are used to generate the fourth signal.
  • the second node device 1300 is user equipment.
  • the second node device 1300 is a base station.
  • the second node device 1300 is a relay node.
  • the first node equipment in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc.
  • the second node device in this application includes but is not limited to mobile phones, tablets, notebooks, internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, aircraft, drones, remote-controlled aircraft, etc. Wireless communication equipment.
  • the user equipment or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, airplanes, drones, and remote controls Airplanes and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, air Wireless communication equipment such as base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点发送第一信号;接收第二信号;在目标时频资源块上发送第三信号;所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。本申请通过额外的时频资源发送消息3,减少对主流业务随机接入的冲突。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中小包数据大连接相关的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或Fifth Generation,5G)进行研究,在3GPP RAN#75次全会上通过了NR的WI(Work Item,工作项目),开始对NR进行标准化工作。
随着小包数据业务的兴起,在3GPP RAN#86次会议上,3GPP开始启动了在NR框架下的标准制定和研究工作。小包稀疏数据业务包括智能手机应用和非智能手机应用两大类。其中,智能手机的相关应用包括即时消息服务(例如,whatsapp,QQ,微信等),心脏起搏和生命维持业务,以及推送通知服务等;非智能手机的相关应用包括可穿戴设备的业务(例如周期性的定位信息等),传感器(周期性或事件触发的的温度,压力报告),以及智能仪表等。
发明内容
在传统的通信系统甚至NR Release-15和Release-16系统中,用户设备(UE,User Equipment)需要在无线资源控制连接状态(RRC CONNECTED State)下,才能进行数据传输。即使NR Release-16版本支持无线资源控制非激活态(RRC INACTIVE State),但不支持UE在RRC非激活态下进行数据传输。RRC非激活态下的UE如果有数据传输的业务需求,需要建立或恢复RRC连接态,再进行数据传输,这势必带来大量的信令开销和功率消耗。因此NR支持UE在RRC非激活态下进行稀疏的数据传输,在随机接入过程中携带小包数据是一条切实可行的思路。由于小包数据业务的用户量一般比较大,如果在一定时间内同时爆发数据传输需求,会对主流宽带业务的用户造成严重的随机接入冲突。
针对上述问题,本申请公开了一种小包数据的传输方案,不但可实现UE在RRC非激活态下进行数据传输,也保证了主流宽带业务的UE进行正常的随机接入。需要说明的是,在不冲突的情况下,本申请的用户设备中的实施例和实施例中的特征可以应用到基站中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。进一步的,虽然本申请的初衷是针对小包数据业务,但本申请也能被用于语音,大包数据等主流的eMBB业务。进一步的,虽然本申请的初衷是针对上行(Uplink),但本申请也能被用副链路(Sidelink)。进一步的,虽然本申请的初衷是针对单载波通信,但本申请也能被用于多载波通信。进一步的,虽然本申请的初衷是针对单天线通信,但本申请也能被用于多天线通信。进一步的,虽然本申请的初衷是针对终端与基站场景,但本申请也同样适用于V2X场景,终端与中继,以及中继与基站之间的通信场景,取得类似的终端与基站场景中的技术效果。此外,不同场景(包括但不限于V2X场景和终端与基站的通信场景)采用统一的解决方案还有助于降低硬件复杂度和成本。
需要说明的是,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列,TS37系列和TS38系列中的定义,但也能参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
发送第一信号,所述第一信号携带第一特征序列;
接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;
在目标时频资源块上发送第三信号;
其中,所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,本申请要解决的问题是:NR系统在RRC非激活态下如何进行数据传输的问题。
作为一个实施例,本申请的方法是:将所述第一时频资源块与所述目标时频资源块之间建立关联。
作为一个实施例,本申请的方法是:将所述第三信号是否携带第一类信息块与确定所述目标时频资源块之间的关系建立关联。
作为一个实施例,上述方法的特质在于,所述目标时频资源块可以与所述第一时频资源块不同。
作为一个实施例,上述方法的好处在于,通过所述目标时频资源块发送所述第三信号,减少对主流业务随机接入的冲突。
根据本申请的一个方面,上述方法的特征在于,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的之一。
根据本申请的一个方面,上述方法的特征在于,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
根据本申请的一个方面,上述方法的特征在于,第一比特块被用于生成所述第三信号,所述第一比特块的尺寸被用于从所述目标时频资源集合中确定所述目标时频资源块。
根据本申请的一个方面,上述方法的特征在于,当所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第一比特块的所述尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第一信令;
其中,所述第一信令被用于指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第四信号;
其中,所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于确定所述第四信号。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是基站。
根据本申请的一个方面,上述方法的特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
接收第一信号,所述第一信号携带第一特征序列;
发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;
在目标时频资源块上接收第三信号;
其中,所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
根据本申请的一个方面,上述方法的特征在于,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的之一。
根据本申请的一个方面,上述方法的特征在于,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
根据本申请的一个方面,上述方法的特征在于,第一比特块被用于生成所述第三信号,所述第一比特块的尺寸被用于从所述目标时频资源集合中确定所述目标时频资源块。
根据本申请的一个方面,上述方法的特征在于,当所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第一比特块的所述尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第一信令;
其中,所述第一信令指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第四信号;
其中,所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于生成所述第四信号。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是用户设备。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是基站。
根据本申请的一个方面,上述方法的特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一发射机,发送第一信号,所述第一信号携带第一特征序列;
第一接收机,接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;
所述第一发射机,在目标时频资源块上发送第三信号;
其中,所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二接收机,接收第一信号,所述第一信号携带第一特征序列;
第二发射机,发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;
在目标时频资源块上接收第三信号;
其中,所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,本申请具备如下优势:
-本申请将所述第一时频资源块与所述目标时频资源块之间建立关联。
-本申请将所述第三信号是否携带第一类信息块与确定所述目标时频资源块之间的关系建立关联。
-在本申请中所述目标时频资源块可以与所述第一时频资源块不同。
-本申请通过所述目标时频资源块发送所述第三信号,减少对主流业务随机接入的冲突。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的第二信号,第一时频资源块与目标时频资源集合之间关系的示意图;
图7示出了根据本申请的一个实施例的第三信号与第一类信息块之间关系的示意图;
图8示出了根据本申请的一个实施例的第一时频资源块,目标时频资源集合与目标时频资源块之间关系的示意图;
图9示出了根据本申请的一个实施例的确定目标时频资源块的流程图;
图10示出了根据本申请的一个实施例的第一比特块的尺寸与目标时频资源块之间关系的示意图;
图11示出了根据本申请的一个实施例的一个时频资源单元的示意图;
图12示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了本申请的一个实施例的第一节点的处理流程图,如附图1所示。在附图1中,每个方框代表一个步骤。
在实施例1中,本申请中的第一节点首先执行步骤101,发送第一信号;然后执行步骤102,接收第二信号;最后执行步骤103,在目标时频资源块上发送第三信号;所述第一信号携带第一特征序列;所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第一信号包括基带信号。
作为一个实施例,所述第一信号包括射频信号。
作为一个实施例,所述第一信号包括无线信号。
作为一个实施例,所述第一信号在RACH(Random Access Channel,随机接入信道)上传输。
作为一个实施例,所述第一信号在PRACH(Physical Random Access Channel,物理随机接入信道)上传输。
作为一个实施例,所述第一信号NPRACH(Narrowband Physical Random Access Channel,窄带物理随机接入信号)上传输。
作为一个实施例,所述第一信号是小区特定的(Cell-specific)。
作为一个实施例,所述第一信号是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信号包括随机接入前导(Random Access Preamble)。
作为一个实施例,所述第一信号是随机接入流程(Random Access Procedure)的Msg1(Message 1,消息1)。
作为一个实施例,所述第一信号是Type-1 Random Access Procedure(随机接入流程类型-1)的Msg1。
作为一个实施例,所述第一信号是Type-2 Random Access Procedure(随机接入流程类型-2)的MsgA(Message A,消息A)。
作为一个实施例,Type-1 Random Access的定义参考3GPP TS38.213的章节8。
作为一个实施例,Type-2 Random Access的定义参考3GPP TS38.213的章节8。
作为一个实施例,所述第一信号携带第一特征序列。
作为一个实施例,所述第一特征序列被用于生成所述第一信号。
作为一个实施例,所述第一特征序列是伪随机序列。
作为一个实施例,所述第一特征序列是Gold序列。
作为一个实施例,所述第一特征序列是M序列。
作为一个实施例,所述第一特征序列是ZC(Zadeoff-Chu)序列。
作为一个实施例,所述第一特征序列是前导序列(Preamble)。
作为一个实施例,所述第一特征序列是长前导序列(Long Preamble)。
作为一个实施例,所述第一特征序列是短前导序列(Short Preamble)。作为一个实施例,所述第一特征序列的生成方式参考3GPP TS38.211的章节6.3.3.1。
作为一个实施例,所述第一特征序列在频域上所占用的子载波的子载波间隔是1.25kHz, 5kHz,15kHz,30kHz,60kHz,120kHz中的之一。
作为一个实施例,所述第一特征序列的长度是839,所述第一特征序列所占用的子载波的子载波间隔是1.25kHz或5kHz中的之一。
作为一个实施例,所述第一特征序列的长度是139,所述第一特征序列所占用的子载波的子载波间隔是15kHz,30kHz,60kHz或120kHz中的之一。
作为一个实施例,所述第一特征序列包括正整数个第一类子序列,所述正整数个第一类子序列是TDM(Time-Division Multiplexing,时分复用)的。
作为上述实施例的一个子实施例,所述第一特征序列包括的所述正整数个第一类子序列都相同。
作为上述实施例的一个子实施例,所述第一特征序列包括的所述正整数个第一类子序列中的至少两个第一类子序列不同。
作为一个实施例,所述第一特征序列经过离散傅里叶变换后(Discrete Fourier Transform,DFT),再经过正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制处理。
作为一个实施例,所述第一特征序列依次经过序列生成(Sequence Generation),离散傅里叶变换,调制(Modulation)和资源粒子映射(Resource Element Mapping),宽带符号生成(Generation)之后得到第一信号。
作为一个实施例,所述第二信号包括基带信号。
作为一个实施例,所述第二信号包括射频信号。
作为一个实施例,所述第二信号包括无线信号。
作为一个实施例,所述第二信号在DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第二信号在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上传输。
作为一个实施例,所述第二信号在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上传输。
作为一个实施例,所述第二信号在PDCCH和PDSCH上传输。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号分别在PDCCH和PDSCH上传输。
作为一个实施例,所述第二信号是小区特定的。
作为一个实施例,所述第二信号是用户设备特定的。
作为一个实施例,所述第二信号是广播(Broadcast)传输的。
作为一个实施例,所述第二信号是组播(Groupcast)传输的。
作为一个实施例,所述第二信号是单播(Unicast)传输的。
作为一个实施例,所述第二信号包括RAR(Random Access Response,随机接入响应)。
作为一个实施例,所述第二信号包括定时调整命令(Timing Advance Command)。
作为一个实施例,所述第二信号包括上行授权(Uplink Grant)。
作为一个实施例,所述第二信号包括TC-RNTI(Temporary Cell-RNTI,临时的小区无线网络临时标识)。
作为一个实施例,所述第一信号包括随机接入前导(Random Access Preamble),所述第二信号包括RAR。
作为一个实施例,所述第一信号是随机接入流程的Msg1,所述第二信号是随机接入流程的Msg2(Message 2,消息2)。
作为一个实施例,所述第一信号是Type-1 Random Access Procedure的Msg1,所述第二信号是Type-1 Random Access Procedure的Msg2。
作为一个实施例,所述第一信号是Type-2 Random Access Procedure的MsgA,所述第 二信号是Type-2 Random Access Procedure的MsgB(Message B,消息B)。
作为一个实施例,所述第二信号包括一个MAC(Multimedia Access Control,多媒体接入控制)层信令中的全部或部分。
作为一个实施例,所述第二信号包括一个MAC CE(Control Element,控制元素)中的一个或多个域。
作为一个实施例,所述第二信号包括一个MAC PDU(Protocol Data Unit,协议数据单元)中的一个或多个域。
作为一个实施例,所述第二信号是一个MAC PDU。
作为一个实施例,所述第二信号是一个MAC subPDU(Sub Protocol Data Unit,子协议数据单元)。
作为一个实施例,所述第二信号包括一个更高层(Higher Layer)信令中的全部或部分。
作为一个实施例,所述第二信号包括一个PHY(Physical)层中的一个或多个域。
作为一个实施例,所述第二信号包括一个DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,所述第二信号携带所述第一标识。
作为一个实施例,所述第二信号包括一个MAC subPDU,所述一个MAC subPDU携带所述第一标识。
作为一个实施例,所述第二信号包括一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader(子头),所述一个MAC subheader携带所述第一标识。
作为一个实施例,所述第二信号包括一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader和MAC RAR,所述一个MAC subheader携带所述第一标识。
作为一个实施例,所述第二信号包括一个MAC subPDU,所述一个MAC subPDU包括一个MAC subheader和MAC RAR,所述MAC RAR携带所述第一标识。
作为一个实施例,所述第二信号包括一个MAC PDU,所述一个MAC PDU包括一个MAC subheader和一个MAC RAR,所述一个MAC subheader携带所述第一标识。
作为一个实施例,所述第二信号包括一个携带所述第一标识的MAC subheader和MAC RAR。
作为一个实施例,所述第二信号包括一个MAC subheader和携带所述第一标识的MAC RAR。
作为一个实施例,所述第二信号被所述第一标识加扰。
作为一个实施例,所述第一标识被用于生成所述第二信号的加扰序列。
作为一个实施例,所述第一标识被用于生成所述第二信号的加扰序列的初始值。
作为一个实施例,所述第一标识被用于标识所述第一特征序列。
作为一个实施例,所述第一标识被用于标识所述第一信号。
作为一个实施例,所述第一特征序列被用于指示所述第一标识。
作为一个实施例,所述第一特征序列与所述第一标识一一对应。
作为一个实施例,所述第一标识是RAPID(Random Access Preamble Identity,随机接入前导标识)。
作为一个实施例,所述第一标识是Extended RAPID(扩展RAPID)。
作为一个实施例,所述第一标识是TC-RNTI。
作为一个实施例,所述第一标识是一个正整数。
作为一个实施例,所述第一标识是正整数个第一类标识中的一个第一类标识。
作为一个实施例,所述第一标识是从1到64中的一个正整数。
作为一个实施例,所述第一标识是从0到63中的一个正整数。
作为一个实施例,所述第一标识包括正整数个比特。
作为一个实施例,所述第一标识包括8个比特。
作为一个实施例,
作为一个实施例,所述第一特征序列是正整数个特征序列中的一个特征序列,所述正整数个特征序列与所述正整数个第一类标识一一对应,所述第一标识是所述正整数个第一类标识中的一个第一类标识,所述第一特征序列被用于从所述正整数个第一类标识中指示所述第一标识。
作为一个实施例,所述第三信号包括基带信号。
作为一个实施例,所述第三信号包括射频信号。
作为一个实施例,所述第三信号包括无线信号。
作为一个实施例,所述第三信号在UL-SCH(Uplink Shared Channel,上行共享信道)传输。
作为一个实施例,所述第三信号在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上传输。
作为一个实施例,所述第三信号在PUCCH(Physical Uplink Control Channel,物理上行控制信道)上传输。
作为一个实施例,所述第一信号所占用的信道包括PRACH,所述第二信号所占用的信道包括PDSCH,所述第三信号所占用的信道包括PUSCH。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号在PDSCH上传输,所述第三信号在PUSCH上传输。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号在PDCCH和PDSCH上传输,所述第三信号在PUSCH上传输。
作为一个实施例,所述第三信号包括一个更高层信令中的全部或部分。
作为一个实施例,所述第三信号包括一个RRC(Radio Resource Control,无线资源控制)层信令中的全部或部分。
作为一个实施例,所述第三信号包括一个RRC IE(Information Element,信息元素)中的一个或多个域(Field)。
作为一个实施例,所述第三信号包括一个MAC层信令中的全部或部分。
作为一个实施例,所述第三信号包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第三信号包括一个PHY层中的一个或多个域。
作为一个实施例,所述第三信号包括RRC连接相关信息。
作为一个实施例,所述第三信号包括小包数据(Small Data)。
作为一个实施例,所述第三信号包括控制面(Control-Plane,C-Plane)信息。
作为一个实施例,所述第三信号包括用户面(User-Plane,U-Plane)信息。
作为一个实施例,所述第三信号包括RRC消息(RRC Message)。
作为一个实施例,所述第三信号包括NAS(Non Access Stratum,非接入层)消息。
作为一个实施例,所述第三信号包括SDAP(Service Data Adaptation Protocol,服务数据适应协议)数据。
作为一个实施例,所述第三信号是随机接入流程的Msg3(Message 3,消息3)。
作为一个实施例,所述第三信号是Type-1 Random Access Procedure的Msg3。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括RRC连接相关信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括小包数据。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括控制面信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括用户面信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三 信号包括RRC消息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括SDAP数据。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息。
作为一个实施例,所述第一信号是随机接入流程的Msg1,所述第二信号是随机接入流程的Msg2,所述第三信号是随机接入流程的Msg3。
作为一个实施例,所述第一信号是Type-1 Random Access Procedure的Msg1,所述第二信号是Type-1 Random Access Procedure的Msg2,所述第三信号是Type-1 Random Access Procedure的Msg3。
作为一个实施例,所述RRC连接相关信息包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的至少之一。
作为一个实施例,所述RRC连接相关信息包括RRC Connnection Request(无线资源控制连接请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Connection Resume Request(无线资源控制连接恢复请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Connection Re-establishment(无线资源控制连接重建)。
作为一个实施例,所述RRC连接相关信息包括RRC Handover Confirm(无线资源控制切换确认)。
作为一个实施例,所述RRC连接相关信息包括RRC Connection Reconfiguration Complete(无线资源控制连接重配完成)。
作为一个实施例,所述RRC连接相关信息包括RRC Early Data Request(无线资源控制提早数据请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Setup Request(无线资源控制建立请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Resume Request(无线资源控制恢复请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Resume Request1(无线资源控制恢复请求1)。
作为一个实施例,所述RRC连接相关信息包括RRC Reestablishment Request(无线资源控制重建请求)。
作为一个实施例,所述RRC连接相关信息包括RRC Reconfiguration Complete(无线资源控制重配完成)。
作为一个实施例,第一比特块包括正整数个比特,所述第三信号包括所述第一比特块的所有或部分比特。
作为一个实施例,第一比特块被用于生成所述第三信号,所述第一比特块包括正整数个比特。
作为一个实施例,所述第一比特块包括正整数个比特,所述第一比特块包括的所述正整数个比特中的所有或部分比特被用于生成所述第三信号。
作为一个实施例,所述第一比特块包括1个CW(Codeword,码字)。
作为一个实施例,所述第一比特块包括1个CB(Code Block,编码块)。
作为一个实施例,所述第一比特块包括1个CBG(Code Block Group,编码块组)。
作为一个实施例,所述第一比特块包括1个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块的所有或部分比特依次经过传输块级CRC(Cyclic  Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块级CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),编码块串联(Code Block Concatenation),加扰(scrambling),调制(Modulation),层映射(Layer Mapping),天线端口映射(Antenna Port Mapping),映射到物理资源块(Mapping to Physical Resource Blocks),基带信号发生(Baseband Signal Generation),调制和上变频(Modulation and Upconversion)之后得到所述第三信号。
作为一个实施例,所述第三信号是所述第一比特块依次经过调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),多载波符号发生(Generation)之后的输出。
作为一个实施例,所述信道编码基于极化(polar)码。
作为一个实施例,所述信道编码基于LDPC(Low-density Parity-Check,低密度奇偶校验)码。
作为一个实施例,只有所述第一比特块被用于生成所述第三信号。
作为一个实施例,存在所述第一比特块之外的比特块也被用于生成所述第三信号。
作为一个实施例,所述第一比特块包括用户面信息。
作为一个实施例,所述第一比特块包括SDAP子层生成的数据。
作为一个实施例,所述第一比特块包括NAS生成的数据。
作为一个实施例,所述第一比特块包括NAS消息。
作为一个实施例,所述第一比特块包括控制面信息。
作为一个实施例,所述第一比特块包括RRC层生成的信息。
作为一个实施例,所述第一比特块包括RRC消息。
作为一个实施例,所述第一比特块包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块包括所述小包数据。
作为一个实施例,所述第一比特块包括控制面信息和用户面信息。
作为一个实施例,所述第一比特块包括控制面信息,所述第一比特块不包括用户面信息。
作为一个实施例,所述第一比特块包括用户面信息,所述第一比特块不包括控制面信息。
作为一个实施例,所述第一比特块包括所述RRC连接相关信息,所述第一比特块不包括NAS消息。
作为一个实施例,所述第一比特块包括所述RRC连接相关信息,所述第一比特块不包括SDAP数据。
作为一个实施例,所述第一比特块包括所述RRC连接相关信息,所述第一比特块不包括所述小包数据。
作为一个实施例,所述第一比特块包括NAS消息,所述第一比特块不包括RRC消息。
作为一个实施例,所述第一比特块包括NAS消息,所述第一比特块不包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块包括SDAP数据,所述第一比特块不包括RRC消息。
作为一个实施例,所述第一比特块包括SDAP数据,所述第一比特块不包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块包括所述小包数据,所述第一比特块不包括所述RRC连接相关信息。
作为一个实施例,第一比特块集合被用于生成所述第三信号,所述第一比特块集合包括正整数个第一类比特块,所述第一比特块集合包括正整数个第一类比特块中的任一第一类比特快包括正整数个比特。
作为上述实施例的一个子实施例,所述第一比特块是所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块。
作为一个实施例,所述第三信号包括第一比特块集合,所述第一比特块集合包括正整数 个第一类比特块,所述第一比特块集合包括的所述正整数个第一类比特块中的任一第一类比特块包括正整数个比特。
作为上述实施例的一个子实施例,所述第一比特块是所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块。
作为一个实施例,所述第一比特块集合包括在UL-SCH上传输的数据。
作为一个实施例,所述第一比特块集合包括在SL-SCH上传输的数据。
作为一个实施例,所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块包括1个CW。
作为一个实施例,所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块包括1个CB。
作为一个实施例,所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块包括1个CBG。
作为一个实施例,所述第一比特块集合包括的所述正整数个第一类比特块中的一个第一类比特块包括1个TB。
作为一个实施例,所述第一比特块集合的所有或部分比特依次经过传输块级CRC附着,编码块分段,编码块级CRC附着,信道编码,速率匹配,编码块串联,加扰,调制,层映射,天线端口映射,映射到物理资源块,基带信号发生,调制和上变频之后得到所述第一无线信号。
作为一个实施例,所述第三信号是所述第一比特块集合依次经过调制映射器,层映射器,预编码,资源粒子映射器,多载波符号发生之后的输出。
作为一个实施例,只有所述第一比特块集合被用于生成所述第三信号。
作为一个实施例,存在所述第一比特块集合之外的比特块也被用于生成所述第三信号。
作为一个实施例,所述第一比特块集合包括用户面信息。
作为一个实施例,所述第一比特块集合包括SDAP子层生成的数据。
作为一个实施例,所述第一比特块集合包括NAS生成的数据。
作为一个实施例,所述第一比特块集合包括NAS消息。
作为一个实施例,所述第一比特块集合包括控制面信息。
作为一个实施例,所述第一比特块集合包括RRC层生成的信息。
作为一个实施例,所述第一比特块集合包括RRC消息。
作为一个实施例,所述第一比特块集合包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块集合包括所述小包数据。
作为一个实施例,所述第一比特块集合包括控制面信息和用户面信息。
作为一个实施例,所述第一比特块集合包括控制面信息,所述第一比特块集合不包括用户面信息。
作为一个实施例,所述第一比特块集合包括用户面信息,所述第一比特块集合不包括控制面信息。
作为一个实施例,所述第一比特块集合包括所述RRC连接相关信息,所述第一比特块集合不包括NAS消息。
作为一个实施例,所述第一比特块集合包括所述RRC连接相关信息,所述第一比特块集合不包括SDAP数据。
作为一个实施例,所述第一比特块集合包括所述RRC连接相关信息,所述第一比特块集合不包括所述小包数据。
作为一个实施例,所述第一比特块集合包括NAS消息,所述第一比特块集合不包括RRC消息。
作为一个实施例,所述第一比特块集合包括NAS消息,所述第一比特块集合不包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块集合包括SDAP数据,所述第一比特块集合不包括RRC消息。
作为一个实施例,所述第一比特块集合包括SDAP数据,所述第一比特块集合不包括所述RRC连接相关信息。
作为一个实施例,所述第一比特块集合包括所述小包数据,所述第一比特块集合不包括所述RRC连接相关信息。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G Core Network,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,5GS/EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。在NTN网络中,gNB203的实例包括卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上,MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,本申请中的第一节点包括所述UE201。
作为一个实施例,本申请中的第二节点包括所述gNB203。
作为一个实施例,本申请中的所述用户设备包括所述UE201。
作为一个实施例,本申请中的所述基站包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第二信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第二信号的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第三信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第三信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第四信号的接收者包括所述UE201。
作为一个实施例,本申请中的所述第四信号的发送者包括所述gNB203。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一节点设备(UE或V2X中的RSU,车载设备或车载通信模块)和第二节点设备(gNB,UE或V2X中的RSU,车载设备或车载通信模块),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,通过PHY301负责在第一节点设备与第二节点设备以及两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二节点设备处。PDCP子层304提供数据加密和完整性保护,PDCP子层304还提供第一节点设备对第二节点设备的越区移动支持。RLC子层303提供数据包的分段和重组,通过ARQ实现丢失数据包的重传,RLC子层303还提供重复数据包检测和协议错误检测。MAC子层302提供逻辑与传输信道之间的映射和逻辑信道的复用。MAC子层302还负责在第一节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二节点设备与第一节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一节点设备和第二节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的包头压缩以减少无线发送开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信号生成于所述MAC子层302。
作为一个实施例,本申请中的所述第三信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第三信号生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第三信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第四信号生成于所述RRC子层306。
作为一个实施例,本申请中的所述第四信号生成于所述SDAP子层356。
作为一个实施例,本申请中的所述第四信号经由所述MAC子层302传输到所述PHY301。
作为一个实施例,本申请中的所述第四信号生成于所述PHY301。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:发送第一信号,所述第一信号携带第一特征序列;接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;在目标时频资源块上发送第三信号;所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信号,所述第一信号携带第一特征序列;接收第二信号,所述第二信号携带第一标识,所述第 一特征序列被用于指示所述第一标识;在目标时频资源块上发送第三信号;所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;在目标时频资源块上接收第三信号;所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;在目标时频资源块上接收第三信号;所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的发送第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收第二信号。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的在目标时频资源块上发送第三信号。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于本申请中的接收第四信号。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的发送第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的接收第一信号。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的发送第二信号。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的在目标时频资源块上接收第三信号。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于本申请中的发送第四信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信,附图5中的方框F0中的步骤是可选的。
对于 第一节点U1,在步骤S11中接收第一信令;在步骤S12中发送第一信号;在步骤S13中接收第二信号;在步骤S14中在目标时频资源块上发送第三信号;在步骤S15中接收第四信号。
对于 第二节点U2,在步骤S21中发送第一信令;在步骤S22中接收第一信号;在步骤S23中发送第二信号;在步骤S24中在目标时频资源块上接收第三信号;在步骤S25中发送第四信号。
在实施例5中,所述第一信号携带第一特征序列;所述第一信号是在随机接入信道上传输的;所述第二信号携带第一标识,所述第一特征序列被所述第一节点U1用于指示所述第一标识;所述第二信号被所述第二节点U2用于指示第一时频资源块,所述第一时频资源块被所述第一节点U1用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被所述第一节点U1用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息;所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于确定所述第四信号。
作为一个实施例,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的至少之一。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,第一比特块被所述第一节点U1用于生成所述第三信号;当所述第三信号未携带所述第一类信息块时,所述第一比特块的尺寸被所述第一节点U1用于从所述目标时频资源集合中确定所述目标时频资源块。
作为一个实施例,第一比特块被所述第一节点U1用于生成所述第三信号;当所述第三信号携带所述第一类信息块时,所述第一比特块的尺寸被所述第一节点U1用于从所述目标时频资源集合中确定所述目标时频资源块。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;所述第二信号指示所述第一时频资源块;所述第一时频资源块被所述第一节点U1用于确定所述目标时频资源集合包括的所述正整数个第一类时频资源块;所述第一 信令指示所述目标时频资源集合包括的所述正整数个第二类时频资源块;第一比特块被所述第一节点U1用于生成所述第三信号;当所述第三信号未携带所述第一类信息块时,所述第一比特块的尺寸被所述第一节点U1用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;第一比特块被所述第一节点U1用于生成所述第三信号;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块,所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块,所述第一比特块的所述尺寸小于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,当所述第一时频资源块被用于所述第一节点U1用于确定所述目标时频资源集合包括的所述正整数个第二类时频资源块时,附图5中的方框F0的步骤不存在。
作为一个实施例,当所述第一时频资源块被用于所述第一节点U1用于确定所述目标时频资源集合,所述目标时频资源集合包括所述正整数个第一类时频资源块和所述正整数个第二类时频资源块时,附图5中的方框F0的步骤不存在。
作为一个实施例,所述第四信号包括基带信号。
作为一个实施例,所述第四信号包括射频信号。
作为一个实施例,所述第四信号包括无线信号。
作为一个实施例,所述第四信号在DL-SCH传输。
作为一个实施例,所述第四信号在PDSCH上传输。
作为一个实施例,所述第四信号在PDCCH上传输。
作为一个实施例,所述第四信号在PDCCH和PDSCH上传输。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号分别在PDCCH和PDSCH上传输,所述第三信号在PUSCH上传输,所述第四信号在PDCCH上传输。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号分别在PDCCH和PDSCH上传输,所述第三信号在PUSCH上传输,所述第四信号在PDSCH上传输。
作为一个实施例,所述第一信号在PRACH上传输,所述第二信号分别在PDCCH和PDSCH上传输,所述第三信号在PUSCH上传输,所述第四信号在PDCCH和PDSCH上传输。
作为一个实施例,所述第四信号是小区特定的。
作为一个实施例,所述第四信号是用户设备特定的。
作为一个实施例,所述第四信号是广播传输的。
作为一个实施例,所述第四信号是组播传输的。
作为一个实施例,所述第四信号是单播传输的。
作为一个实施例,所述第四信号包括一个MAC CE中的一个或多个域。
作为一个实施例,所述第四信号包括UE Contention Resolution Identity(用户冲突解决标识)。
作为一个实施例,所述第四信号包括UE Contention Resolution Identity MAC CE。
作为一个实施例,所述第四信号是随机接入流程的Msg4(Message 4,消息4)。
作为一个实施例,所述第四信号是Type-1 Random Access Procedure的Msg4。
作为一个实施例,所述第四信号包括HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息。
作为一个实施例,所述第四信号被用于指示所述第一比特块是否被正确接收。
作为一个实施例,所述第四信号被用于指示所述第一比特块集合是否被正确接收。
作为一个实施例,所述第四信号包括第一信息比特,所述第一信息比特被用于指示所述 第一比特块是否被正确接收。
作为上述实施例的一个子实施例,当所述第一信息比特是“1”时,代表所述第一比特块被正确接收。
作为上述实施例的一个子实施例,当所述第一信息比特是“0”时,代表所述第一比特块未被正确接收。
作为一个实施例,所述第四信号包括正整数个信息比特,所述第四信号包括的所述正整数个信息比特分别被用于指示所述第一比特块集合包括的所述正整数个第一类比特块是否被正确接收。
作为上述实施例的一个子实施例,第二信息比特是所述第四信号包括的所述正整数个信息比特中的任一信息比特,第二比特块是所述第一比特块集合包括的所述正整数个第一类比特块中的与所述第二信息比特对应的一个第一类比特块,所述第二信息比特被用于指示所述第二比特块是否被正确接收。
作为上述实施例的一个子实施例,当所述第二信息比特是“1”时,代表所述第二比特块被正确接收。
作为上述实施例的一个子实施例,当所述第二信息比特是“0”时,代表所述第二比特块未被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括RRC连接相关信息,所述第四信号包括冲突解决消息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括小包数据,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括控制面信息,所述第四信号包括冲突解决消息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括用户面信息,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括RRC消息,所述第四信号包括冲突解决消息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括SDAP数据,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号是随机接入流程的Msg1,所述第二信号是随机接入流程的Msg2,所述第三信号是随机接入流程的Msg3,所述第四信号是随机接入流程的Msg4。
作为一个实施例,所述第一信号是Type-1 Random Access Procedure的Msg1,所述第二信号是Type-1 Random Access Procedure的Msg2,所述第三信号是Type-1 Random Access Procedure的Msg3,所述第四信号是Type-1 Random Access Procedure的Msg4。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括小包数据,所述第四信号被用于指示所述第三信号包括的所述第一比特块是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括小包数据,所述第四信号被用于指示所述第三信号包括的所述第一比特块集合是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括用户面信息,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括用户面信息,所述第四信号被用于指示所述第三信号包括的所述第一比特块是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括用户面信息,所述第四信号被用于指示所述第三信号包括的所述第一比特块集合是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括SDAP数据,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括SDAP数据,所述第四信号被用于指示所述第三信号包括的所述第一比特块是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括SDAP数据,所述第四信号被用于指示所述第三信号包括的所述第一比特块集合是否被正确接收。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息,作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息,所述第四信号包括HARQ信息。
作为一个实施例,所述第一信号包括随机接入前导,所述第二信号包括RAR,所述第三信号包括NAS消息,所述第四信号被用于指示所述第三信号包括的所述第一比特块集合是否被正确接收。
作为一个实施例,所述第三信号包括所述第一身份。
作为一个实施例,所述第三信号携带所述第一身份。
作为一个实施例,所述第三信号直接携带所述第一身份。
作为一个实施例,所述第三信号间接携带所述第一身份。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第一身份是所述第三信号包括的所述正整数个第三类域中的一个第三类域,所述RRC连接相关信息是所述第三信号包括的所述正整数个第三类域中的一个第三类域。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第一身份是所述第三信号包括的所述正整数个第三类域中的一个第三类域,所述SDAP数据是所述第三信号包括的所述正整数个第三类域中的一个第三类域。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第一身份是所述第三信号包括的所述正整数个第三类域中的一个第三类域,所述NAS消息是所述第三信号包括的所述正整数个第三类域中的一个第三类域。
作为一个实施例,所述第一身份被用于生成所述第三信号的加扰序列。
作为一个实施例,所述第一身份被用于生成所述第三信号的加扰序列的初始值。
作为一个实施例,所述第一身份包括C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)。
作为一个实施例,所述第一身份包括TC-RNTI。
作为一个实施例,所述第一身份包括S-TMSI(Serving-Temporary Mobile Subscriber Identity,临时移动用户标识)。
作为一个实施例,所述第一身份包括一个随机数。
实施例6
实施例6示例了根据本申请的一个实施例的第二信号,第一时频资源块与目标时频资源集合之间关系的示意图,如附图6所示。在附图6中,虚线方框代表本申请中的目标时频资源集合;矩形代表本申请中的所述目标时频资源集合中的第一类时频资源块;虚线椭圆中的正方形代表本申请中的所述目标时频资源集合中的第二类时频资源块;斜纹填充的矩形代表 本申请中的所述第一时频资源块。
在实施例6中,所述第二信号被用于指示第一时频资源块;所述第一时频资源块被用于确定目标时频资源集合;所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块。
作为一个实施例,所述第一时频资源块包括PUSCH。
作为一个实施例,所述第一时频资源块属于一个PUSCH occasion(时机)。
作为一个实施例,所述第一时频资源块包括正整数个时域资源单元。
作为一个实施例,所述第一时频资源块包括正整数个频域资源单元。
作为一个实施例,所述第一时频资源块包括正整数个时频资源单元。
作为一个实施例,所述第一时频资源包括多个RE(s)(Resource Element,资源粒子)。
作为一个实施例,所述第一时频资源包括的所述正整数个频域资源单元在频域上是连续的。
作为一个实施例,所述第一时频资源包括正整数个PRB(s)(Physical Resource Block(s),物理资源块)。
作为一个实施例,所述第一时频资源包括正整数个连续的PRB(s)。
作为一个实施例,所述第一时频资源包括正整数个子载波(Subcarrier(s))。
作为一个实施例,所述第一时频资源包括正整数个子帧(Subframe(s))。
作为一个实施例,所述第一时频资源包括正整数个时隙(Slot(s))。
作为一个实施例,所述第一时频资源包括正整数多载波符号(Symbol(s))。
作为一个实施例,所述第一时频资源属于一个时隙,所述一个时隙包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述一个时隙包括14个多载波符号。
作为一个实施例,所述第一时频资源包括正整数个连续的多载波符号。
作为一个实施例,所述第二信号直接指示所述第一时频资源块。
作为一个实施例,所述第二信号间接指示所述第一时频资源块。
作为一个实施例,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,所述第二信号包括MAC RAR,所述第一时频资源块是所述MAC RAR中的一个域。
作为一个实施例,所述第二信号包括MAC RAR,所述MAC RAR指示所述第一时频资源块。
作为一个实施例,所述第二信号包括MAC RAR,所述MAC RAR包括UL Grant(上行授权)域,所述UL Grant指示所述第一时频资源块。
作为上述实施例的一个子实施例,所述UL Grant域包括27个比特。
作为一个实施例,所述第二信号指示所述第一时频资源块的时域资源和频域资源。
作为一个实施例,所述第二信号包括所述第一时频资源块的起始时刻和时间跨度。
作为一个实施例,所述第二信号包括所述第一时频资源块的最低的子载波和所述第一时频资源块所占用的子载波的个数。
作为一个实施例,所述第二信号被用于从正整数个时频资源块中指示所述第一时频资源块。
作为一个实施例,所述第二信号包括所述第一时频资源块在所述正整数个时频资源块中的索引。
作为一个实施例,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块。
作为一个实施例,所述目标时频资源集合包括的所述多个时频资源块中的任一时频资源块包括PUSCH。
作为一个实施例,所述目标时频资源集合包括的所述多个时频资源块中的任一时频资源 块属于一个PUSCH occasion(时机)。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块。
作为上述实施例的一个子实施例,所述正整数个第一类时频资源块属于所述时频资源集合包括的所述多个时频资源块。
作为上述实施例的一个子实施例,所述正整数个第二类时频资源块属于所述时频资源集合包括的所述多个时频资源块。
作为一个实施例,所述目标时频资源集合包括1个第一类时频资源块和1个第二类时频资源块。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的最早的一个第一类时频资源块。
作为一个实施例,所述目标时频资源集合包括一个第一类时频资源块和正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述一个第一类时频资源块。
作为一个实施例,所述目标时频资源集合包括所述第一时频资源块和所述正整数个第二类时频资源块。
作为一个实施例,所述目标时频资源集合包括所述第一时频资源块和1个第二类时频资源块。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块是等时间间隔的。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块是等频域间隔的。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块是等时间间隔的。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块是等频域间隔的。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块与所述第一时频资源块都相差第一时间偏移。
作为上述实施例的一个子实施例,所述第一时间偏移包括正整数个时域资源单元。
作为上述实施例的一个子实施例,所述第一时间偏移包括正整数个时隙。
作为上述实施例的一个子实施例,所述第一时间偏移包括正整数个多载波符号。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块分别与所述第一时频资源块相差正整数个时间偏移。
作为上述实施例的一个子实施例,所述正整数个时间偏移中的任一时间偏移包括正整数个时域资源单元。
作为上述实施例的一个子实施例,所述正整数个时间偏移中的任一时间偏移包括正整数个时隙。
作为上述实施例的一个子实施例,所述正整数个时间偏移中的任一时间偏移包括正整数个多载波符号。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块与所述第一时频资源块都相差第一频率偏移。
作为上述实施例的一个子实施例,所述第一频率偏移包括正整数个频域资源单元。
作为上述实施例的一个子实施例,所述第一频率偏移包括正整数个PRB(s)。
作为上述实施例的一个子实施例,所述第一频率偏移包括正整数个子载波。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第二类时频资源块分别与所述第一时频资源块相差正整数个频率偏移。
作为上述实施例的一个子实施例,所述正整数个频率偏移中的任一频率偏移包括正整数个频域资源单元。
作为上述实施例的一个子实施例,所述正整数个频率偏移中的任一频率偏移包括正整数个PRB(s)。
作为上述实施例的一个子实施例,所述正整数个频率偏移中的任一频率偏移包括正整数个子载波。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块中的任一第一类时频资源块包括X1个时域资源单元,所述目标时频资源集合包括的所述正整数个第二类时频资源块中的任一第二类时频资源块包括X2个时域资源单元,X1是不小于X2的正整数。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块中的任一第一类时频资源块包括Y1个频域资源单元,所述目标时频资源集合包括的所述正整数个第二类时频资源块中的任一第二类时频资源块包括Y2个频域资源单元,Y1是不小于Y2的正整数。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块中的任一第一类时频资源块包括Z1个时频资源单元,所述目标时频资源集合包括的所述正整数个第二类时频资源块中的任一第二类时频资源块包括Z2个时频资源单元,Z1是不小于Z2的正整数。
作为一个实施例,所述Z1等于所述Z2。
作为一个实施例,所述Z1大于所述Z2。
作为一个实施例,所述目标时频资源集合包括的所述正整数个第一类时频资源块中的任一第一类时频资源块包括Z3个REs,所述目标时频资源集合包括的所述正整数个第二类时频资源块中的任一第二类时频资源块包括Z4个REs,Z3是不小于Z4的正整数。
作为一个实施例,所述Z3等于所述Z4。
作为一个实施例,所述Z3大于所述Z4。
实施例7
实施例7示例了根据本申请的一个实施例的第三信号与第一类信息块之间关系的示意图,如附图7所示。在实施例7中,在步骤S701中,判断第三信号是否携带第一类信息块;当判断第三信号是否携带第一类信息块的结果为“是”,执行步骤S702,目标时频资源块是第一类时频资源块;当判断第三信号是否携带第一类信息块的结果为“否”,执行步骤S703,目标时频资源块是第一类时频资源块。
作为一个实施例,所述第三信号携带所述第一类信息块。
作为一个实施例,所述第三信号携带所述第一类信息块和所述第二类信息块。
作为一个实施例,所述第三信号携带所述第二类信息块。
作为一个实施例,所述第三信号携带所述第二类信息块,所述第三信号未携带所述第一类信息块。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第一类信息块是所述第三信号包括的所述正整数个第三类域中的一个第三类域。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第二类信息块是所述第三信号包括的所述正整数个第三类域中的一个第三类域
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第一类信息块是所述第三信号包括的所述正整数个第三类域中的一个第三类域,所述第二类信息块是所述第三信号包括的所述正整数个第三类域中的一个第三类域。
作为一个实施例,所述第三信号包括的正整数个第三类域,所述第二类信息块是所述第三信号包括的所述正整数个第三类域中的一个第三类域,所述第一类信息块不是所述第三信号包括的所述正整数个第三类域中的任一第三类域。
作为一个实施例,所述第一类信息块是被RRC层生成的。
作为一个实施例,所述第一类信息块包括控制面信息。
作为一个实施例,所述第一类信息块是控制面信息。
作为一个实施例,所述第一类信息块包括RRC消息。
作为一个实施例,所述第一类信息块包括RRC连接相关信息。
作为一个实施例,所述第一类信息块是通过CCCH(Common Control Channel,公共控制信道)发送的。
作为上述实施例的一个子实施例,CCCH的定义参考3GPP TS38.300章节6.2.2。
作为一个实施例,所述第一类信息块是通过DCCH(Dedicated Control Channel,专有控制信道)发送的。
作为上述实施例的一个子实施例,DCCH的定义参考3GPP TS38.300章节6.2.2。
作为一个实施例,所述第一类信息块被用于建立RRC Connection(无线资源控制连接)。
作为一个实施例,所述第一类信息块被用于重建RRC Connection。
作为一个实施例,所述第一类信息块被用于恢复RRC Connection。
作为一个实施例,所述第一类信息块包括RRC Connnection Request。
作为一个实施例,所述第一类信息块包括RRC Connection Resume Request。
作为一个实施例,所述第一类信息块包括RRCConnectionRe-establishment(无线资源控制连接重建)。
作为一个实施例,所述第一类信息块包括RRCHandoverConfirm(无线资源控制切换确认)。
作为一个实施例,所述第一类信息块包括RRCConnectionReconfigurationComplete(无线资源控制连接重配完成)。
作为一个实施例,所述第一类信息块包括RRC Early Data Request(无线资源控制提早数据请求)。
作为一个实施例,所述第一类信息块包括RRCSetupRequest(无线资源控制建立请求)。
作为一个实施例,所述第一类信息块包括RRCResumeRequest(无线资源控制恢复请求)。
作为一个实施例,所述第一类信息块包括RRCResumeRequest1(无线资源控制恢复请求1)。
作为一个实施例,所述第一类信息块包括RRCReestablishmentRequest(无线资源控制重建请求)。
作为一个实施例,所述第一类信息块包括RRCReconfigurationComplete(无线资源控制重配完成)。
作为一个实施例,所述第二类信息块包括小包数据。
作为一个实施例,所述第二类信息块包括用户面信息。
作为一个实施例,所述第二类信息块包括NAS消息。
作为一个实施例,所述第二类信息块包括SDAP数据。
实施例8
实施例8示例了根据本申请的一个实施例的第一时频资源块,目标时频资源集合与目标时频资源块之间关系的示意图,如附图8所示。在附图8中,虚线方框代表本申请中的所述 目标时频资源集合;斜纹填充的矩形代表本申请中的所述第一时频资源块;在附图8的情况A中,斜方格填充的正方形代表本申请中的所述目标时频资源块;在附图8的情况B中,斜方格填充的矩形代表本申请中的所述目标时频资源块。
在实施例8中,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;在实施例8的情况A中,当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块;在实施例8的情况B中,当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个时频资源块中的一个时频资源块。
作为一个实施例,所述目标时频资源块是所述第一时频资源块。
作为一个实施例,所述目标时频资源块与所述第一时频资源块相同。
作为一个实施例,当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述第一时频资源块。
作为一个实施例,当所述第三信号携带所述第一类信息块时,所述目标时频资源块与所述第一时频资源块相同。
作为一个实施例,所述目标时频资源块与所述第一时频资源块不同。
作为一个实施例,当所述第三信号未携带所述第一类信息块时,所述目标时频资源块与所述第一时频资源块不同。
作为一个实施例,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块,或者,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,所述目标时频资源块是所述目标时频资源集合包括的所述1个第一类时频资源块或所述1个第二类时频资源块中的之一。
作为一个实施例,所述目标时频资源块是所述目标时频资源集合包括的所述第一时频资源块或所述正整数个第二类时频资源块中的之一。
作为一个实施例,所述目标时频资源块是所述目标时频资源集合包括的所述第一时频资源块或所述1个第二类时频资源块中的之一。
作为一个实施例,所述目标时频资源块包括PUSCH。
作为一个实施例,所述目标时频资源块属于一个PUSCH occasion(时机)。
作为一个实施例,所述目标时频资源块包括正整数个时域资源单元。
作为一个实施例,所述目标时频资源块包括正整数个频域资源单元。
作为一个实施例,所述目标时频资源块包括正整数个时频资源单元。
作为一个实施例,所述目标时频资源包括多个RE(s)。
作为一个实施例,所述目标时频资源包括的所述正整数个频域资源单元在频域上是连续的。
作为一个实施例,所述目标时频资源包括正整数个PRB(s)。
作为一个实施例,所述目标时频资源包括正整数个连续的PRB(s)。
作为一个实施例,所述目标时频资源包括正整数个子载波。
作为一个实施例,所述目标时频资源包括正整数个子帧。
作为一个实施例,所述目标时频资源包括正整数个时隙。
作为一个实施例,所述目标时频资源包括正整数多载波符号。
作为一个实施例,所述目标时频资源属于一个时隙,所述一个时隙包括正整数个多载波符号。
作为上述实施例的一个子实施例,所述一个时隙包括14个多载波符号。
作为一个实施例,所述目标时频资源包括正整数个连续的多载波符号。
实施例9
实施例9示例了根据本申请的一个实施例的确定目标时频资源块的流程图,如附图9所示。在实施例9中,在步骤S901中,判断第三信号是否携带第一类信息块;当判断第三信号是否携带第一类信息块的结果为“是”,执行步骤S903,目标时频资源块是第一类时频资源块;当判断第三信号是否携带第一类信息块的结果为“否”,执行步骤S902,判断第一比特块的尺寸是否大于第一阈值;当判断第一比特块的尺寸是否大于第一阈值的结果为“是”,执行步骤S903,目标时频资源块是第一类时频资源块;当判断第一比特块的尺寸是否大于第一阈值的结果为“否”,执行步骤S904,目标时频资源块是第二类时频资源块。
作为一个实施例,当所述第三信号携带所述第一类信息块时,所述判断第三信号是否携带第一类信息块的所述结果为“是”。
作为一个实施例,当所述第三信号携带所述第一类信息块和所述第二类信息块时,所述判断第三信号是否携带第一类信息块的所述结果为“是”。
作为一个实施例,当所述第三信号未携带所述第一类信息块时,所述判断第三信号是否携带第一类信息块的所述结果为“否”。
作为一个实施例,当所述第三信号携带宿舍第二类信息块,所述第三信号未携带所述第一类信息块时,所述判断第三信号是否携带第一类信息块的所述结果为“否”。
作为一个实施例,当所述第一比特块的尺寸大于所述第一阈值时,所述判断第一比特块的尺寸是否大于第一阈值的结果为“是”。
作为一个实施例,当所述第一比特块的尺寸等于所述第一阈值时,所述判断第一比特块的尺寸是否大于第一阈值的结果为“是”。
作为一个实施例,当所述第一比特块的尺寸小于所述第一阈值时,所述判断第一比特块的尺寸是否大于第一阈值的结果为“否”。
作为一个实施例,当所述第一比特块的尺寸等于所述第一阈值时,所述判断第一比特块的尺寸是否大于第一阈值的结果为“否”。
作为一个实施例,所述第一比特块的尺寸是所述第一比特块包括的所述正整数个比特的数量。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块的大小。
作为一个实施例,所述第一比特块的尺寸是所述第二类信息块的大小。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块的大小与所述第二类信息块的大小的和。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述控制面信息的大小。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述RRC消息的大小。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述RRC连接相关信息的大小。
作为一个实施例,所述第一比特块的尺寸是所述第二类信息块包括的所述小包数据的大小。
作为一个实施例,所述第一比特块的尺寸是所述第二类信息块包括的所述用户面信息的大小。
作为一个实施例,所述第一比特块的尺寸是所述第二类信息块包括的所述NAS消息的大小。
作为一个实施例,所述第一比特块的尺寸是所述第二类信息块包括的所述SDAP数据的大小。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述控制面信息的大小与所述第二类信息块包括的所述用户面信息的大小的和。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述RRC消息的大小与所述第二类信息块包括的所述NAS消息的大小的和。
作为一个实施例,所述第一比特块的尺寸是所述第一类信息块包括的所述RRC连接相关信息的大小与所述第二类信息块包括的所述SDAP数据的大小的和。
作为一个实施例,所述第一阈值是一个正整数。
作为一个实施例,所述第一阈值是正整数个比特。
作为一个实施例,当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第一比特块的尺寸大于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第一比特块的尺寸等于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第一比特块的尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第一比特块的尺寸等于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第三信号携带所述第二类信息块,所述第一比特块的尺寸大于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第三信号携带所述第二类信息块,所述第一比特块的尺寸等于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第三信号携带所述第二类信息块,所述第一比特块的尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,当所述第三信号未携带所述第一类信息块,所述第三信号携带所述第二类信息块,所述第一比特块的尺寸等于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
实施例10
实施例10示例了根据本申请的一个实施例的第一比特块的尺寸与目标时频资源块之间关系的示意图,如附图10所示。在附图10中,虚线大方框代表本申请中的所述目标时频资源集合;矩形代表本申请中的所述目标时频资源集合中的第一类时频资源块,虚线椭圆中的正方形代表本申请中的所述目标时频资源集合中的第二类时频资源块;斜纹填充的矩形代表在本申请的所述第一时频资源块;斜方格填充的正方形代表本申请中的所述目标时频资源块。
在实施例10中,所述第一信令被用于指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
作为一个实施例,所述第一信令是一个广播信号。
作为一个实施例,所述第一信令是一个SIB信号。
作为一个实施例,所述第一信令是SIB中的一个或多个IE。
作为一个实施例,所述第一信令是SIB中的一个或多个域。
作为一个实施例,所述第一信令是更高层信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令是一个RRC IE中的一个或多个域。
作为一个实施例,所述第一信令被用于确定所述目标时频资源集合中的Q1个第二类时频资源块,所述Q1个第二类时频资源块不包括所述第一时频资源块;当所述目标时频资源块属于所述Q1个时频资源块时,所述第一比特块的业务类型被用于从所述Q1个第二类时频资源块中确定所述目标时频资源块;所述Q1是正整数。
作为一个实施例,所述第一信令被用于确定所述目标时频资源集合中的Q1个第二类时频资源块,所述Q1个第二类时频资源块不包括所述第一时频资源块;当所述目标时频资源块属于所述Q1个时频资源块时,所述第一比特块的尺寸被用于从所述Q1个第二类时频资源块中确定所述目标时频资源块;所述Q1是正整数。
作为一个实施例,所述目标时频资源集合包括的所述Q1个第二类时频资源块中的任意两个第二类时频资源块的大小相同。
作为一个实施例,所述目标时频资源集合包括的所述Q1个时频资源块中的至少两个第二类时频资源块的大小不同。
实施例11
实施例11示例了根据本申请的一个实施例的一个时频资源单元的示意图,如附图11所示。在附图11中,虚线小方格代表RE(Resource Element,资源粒子),粗线方格代表一个时频资源单元。在附图11中,一个时频资源单元在频域上占用K个子载波(Subcarrier),在时域上占用L个多载波符号(Symbol),K和L是正整数。在附图11中,t 1,t 2,…,t L代表所述L个Symbol,f 1,f 2,…,f K代表所述K个Subcarrier。
在实施例11中,一个时频资源单元在频域上占用所述K个子载波,在时域上占用所述L个多载波符号,所述K和所述L是正整数。
作为一个实施例,所述K等于12。
作为一个实施例,所述K等于72。
作为一个实施例,所述K等于127。
作为一个实施例,所述K等于240。
作为一个实施例,所述L等于1。
作为一个实施例,所述L等于2。
作为一个实施例,所述L不大于14。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是OFDM符号。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是SC-FDMA符号。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是DFT-S-OFDM符号。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是FDMA(Frequency Division Multiple Access,频分多址)符号。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是FBMC(Filter Bank Multi-Carrier,滤波器组多载波)符号。
作为一个实施例,所述L个多载波符号中的任意一个多载波符号是IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)符号。
作为一个实施例,所述时域资源单元包括正整数个无线帧(Radio Frame)。
作为一个实施例,所述时域资源单元包括正整数个子帧(Subframe)。
作为一个实施例,所述时域资源单元包括正整数个时隙(Slot)。
作为一个实施例,所述时域资源单元是一个时隙。
作为一个实施例,所述时域资源单元包括正整数个多载波符号(Symbol)。
作为一个实施例,所述频域资源单元包括正整数个载波(Carrier)。
作为一个实施例,所述频域资源单元包括正整数个BWP(Bandwidth Part,带宽部件)。
作为一个实施例,所述频域资源单元是一个BWP。
作为一个实施例,所述频域资源单元包括正整数个子信道(Subchannel)。
作为一个实施例,所述频域资源单元是一个子信道。
作为一个实施例,所述正整数个子信道中的任一子信道包括正整数个RB(Resource Block,资源块)。
作为一个实施例,所述一个子信道包括正整数个RB。
作为一个实施例,所述正整数个RB中的任一RB在频域上包括正整数个子载波。
作为一个实施例,所述正整数个RB中的任一RB在频域上包括12个子载波。
作为一个实施例,所述一个子信道包括正整数个PRB。
作为一个实施例,所述一个子信道包括的PRB数是可变的。
作为一个实施例,所述正整数个PRB中的任一PRB在频域上包括正整数个子载波。
作为一个实施例,所述正整数个PRB中的任一PRB在频域上包括12个子载波。
作为一个实施例,所述频域资源单元包括正整数个RB。
作为一个实施例,所述频域资源单元是一个RB。
作为一个实施例,所述频域资源单元包括正整数个PRB。
作为一个实施例,所述频域资源单元是一个PRB。
作为一个实施例,所述频域资源单元包括正整数个子载波(Subcarrier)。
作为一个实施例,所述频域资源单元是一个子载波。
作为一个实施例,所述时频资源单元包括所述时域资源单元。
作为一个实施例,所述时频资源单元包括所述频域资源单元。
作为一个实施例,所述时频资源单元包括所述时域资源单元和所述频域资源单元。
作为一个实施例,所述时频资源单元包括R个RE,R是正整数。
作为一个实施例,所述时频资源单元是由R个RE组成,R是正整数。
作为一个实施例,所述R个RE中的任意一个RE在时域上占用一个多载波符号,在频域上占用一个子载波。
作为一个实施例,所述一个子载波间隔的单位是Hz(Hertz,赫兹)。
作为一个实施例,所述一个子载波间隔的单位是kHz(Kilohertz,千赫兹)。
作为一个实施例,所述一个子载波间隔的单位是MHz(Megahertz,兆赫兹)。
作为一个实施例,所述一个多载波符号的符号长度的单位是采样点。
作为一个实施例,所述一个多载波符号的符号长度的单位是微秒(us)。
作为一个实施例,所述一个多载波符号的符号长度的单位是毫秒(ms)。
作为一个实施例,所述一个子载波间隔是1.25kHz,2.5kHz,5kHz,15kHz,30kHz,60kHz,120kHz和240kHz中的至少之一。
作为一个实施例,所述时频资源单元包括所述K个子载波和所述L个多载波符合,所述K与所述L的乘积不小于所述R。
作为一个实施例,所述时频资源单元不包括被分配给GP(Guard Period,保护间隔)的RE。
作为一个实施例,所述时频资源单元不包括被分配给RS(Reference Signal,参考信号)的RE。
作为一个实施例,所述时频资源单元包括正整数个RB。
作为一个实施例,所述时频资源单元属于一个RB。
作为一个实施例,所述时频资源单元在频域上等于一个RB。
作为一个实施例,所述时频资源单元在频域上包括6个RB。
作为一个实施例,所述时频资源单元在频域上包括20个RB。
作为一个实施例,所述时频资源单元包括正整数个PRB。
作为一个实施例,所述时频资源单元属于一个PRB。
作为一个实施例,所述时频资源单元在频域上等于一个PRB。
作为一个实施例,所述时频资源单元包括正整数个VRB(Virtual Resource Block,虚拟资源块)。
作为一个实施例,所述时频资源单元属于一个VRB。
作为一个实施例,所述时频资源单元在频域上等于一个VRB。
作为一个实施例,所述时频资源单元包括正整数个PRB pair(Physical Resource Block pair,物理资源块对)。
作为一个实施例,所述时频资源单元属于一个PRB pair。
作为一个实施例,所述时频资源单元在频域上等于一个PRB pair。
作为一个实施例,所述时频资源单元包括正整数个无线帧。
作为一个实施例,所述时频资源单元属于一个无线帧。
作为一个实施例,所述时频资源单元在时域上等于一无线帧。
作为一个实施例,所述时频资源单元包括正整数个子帧。
作为一个实施例,所述时频资源单元属于一个子帧。
作为一个实施例,所述时频资源单元在时域上等于一个子帧。
作为一个实施例,所述时频资源单元包括正整数个时隙。
作为一个实施例,所述时频资源单元属于一个时隙。
作为一个实施例,所述时频资源单元在时域上等于一个时隙。
作为一个实施例,所述时频资源单元包括正整数个Symbol。
作为一个实施例,所述时频资源单元属于一个Symbol。
作为一个实施例,所述时频资源单元在时域上等于一个Symbol。
作为一个实施例,本申请中的所述时域资源单元的持续时间与本申请中的所述时频资源单元在时域上的持续时间是相等的。
作为一个实施例,本申请中的所述时频资源单元在时域上占用的多载波符号的个数等于所述时域资源单元在时域上占用的多载波符号的个数。
作为一个实施例,本申请中的所述频域资源单元占用的子载波个数与本申请中的所述时频资源单元在频域上占用的子载波个数是相等的。
实施例12
实施例12示例了一个用于第一节点设备中的处理装置的结构框图,如附图12所示。在实施例12中,第一节点设备处理装置1200主要由第一发射机1201和第一接收机1202组成。
作为一个实施例,第一发射机1201包括本申请附图4中的天线452,发射器/接收器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,第一接收机1202包括本申请附图4中的天线452,发射器/接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
在实施例12中,所述第一发射机1201发送第一信号,所述第一信号携带第一特征序列;
所述第一接收机1202接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;所述第一发射机1201在目标时频资源块上发送第三信号;所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述 目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的之一。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,第一比特块被用于生成所述第三信号,所述第一比特块的尺寸被用于从所述目标时频资源集合中确定所述目标时频资源块。
作为一个实施例,当所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第一比特块的所述尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,所述第一接收机1202接收第一信令;所述第一信令被用于指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
作为一个实施例,所述第一接收机1202接收第四信号;所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于确定所述第四信号。
作为一个实施例,所述第一节点设备1200是用户设备。
作为一个实施例,所述第一节点设备1200是中继节点。
作为一个实施例,所述第一节点设备1200是基站。
实施例13
实施例13示例了一个用于第二节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二节点设备处理装置1300主要由第二接收机1301和第二发射机1302构成。
作为一个实施例,第二接收机1301包括本申请附图4中的天线420,发射器/接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,第二发射机1302包括本申请附图4中的天线420,发射器/接收器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
在实施例13中,所述第二接收机1301接收第一信号,所述第一信号携带第一特征序列;
所述第二发射机1302发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;所述第二接收机1301在目标时频资源块上接收第三信号;所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
作为一个实施例,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请 求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的之一。
作为一个实施例,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,第一比特块被用于生成所述第三信号,所述第一比特块的尺寸被用于从所述目标时频资源集合中确定所述目标时频资源块。
作为一个实施例,当所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第一比特块的所述尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
作为一个实施例,所述第二发射机1302发送第一信令;所述第一信令指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
作为一个实施例,所述第二发射机1302发送第四信号;所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于生成所述第四信号。
作为一个实施例,所述第二节点设备1300是用户设备。
作为一个实施例,所述第二节点设备1300是基站。
作为一个实施例,所述第二节点设备1300是中继节点。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一发射机,发送第一信号,所述第一信号携带第一特征序列;
    第一接收机,接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;
    所述第一发射机,在目标时频资源块上发送第三信号;
    其中,所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息;所述第一信号是在随机接入信道上传输的。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一类信息块包括无线资源控制建立请求,无线资源控制恢复请求,无线资源控制恢复请求1,无线资源控制重建请求,无线资源控制重配完成,无线资源控制切换确认,无线资源控制提早数据请求中的之一。
  3. 根据权利要求1或2中任一权利要求所述的第一节点设备,其特征在于,所述目标时频资源集合包括正整数个第一类时频资源块和正整数个第二类时频资源块;当所述第三信号携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,第一比特块被用于生成所述第三信号,所述第一比特块的尺寸被用于从所述目标时频资源集合中确定所述目标时频资源块。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,当所述第一比特块的所述尺寸大于第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第一比特块的所述尺寸小于所述第一阈值时,所述目标时频资源块是所述目标时频资源集合包括的所述正整数个第二类时频资源块中的一个第二类时频资源块。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,
    所述第一接收机,接收第一信令;
    其中,所述第一信令被用于指示所述目标时频资源集合包括的所述正整数个第二类时频资源块,所述第一时频资源块是所述目标时频资源集合包括的所述正整数个第一类时频资源块中的一个第一类时频资源块;当所述第三信号未携带所述第一类信息块时,所述第一比特块的所述尺寸被用于从所述正整数个第二类时频资源块中确定所述目标时频资源块。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,
    所述第一接收机,接收第四信号;
    其中,所述第三信号包括第一身份;所述第一身份和所述目标时频资源块被用于确定所述第四信号。
  8. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二接收机,接收第一信号,所述第一信号携带第一特征序列;
    第二发射机,发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;
    在目标时频资源块上接收第三信号;
    其中,所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类 信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
  9. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    发送第一信号,所述第一信号携带第一特征序列;
    接收第二信号,所述第二信号携带第一标识,所述第一特征序列被用于指示所述第一标识;
    在目标时频资源块上发送第三信号;
    其中,所述第二信号被用于指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息;所述第一信号是在随机接入信道上传输的。
  10. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    接收第一信号,所述第一信号携带第一特征序列;
    发送第二信号,所述第二信号携带第一标识,所述第一特征序列指示所述第一标识;
    在目标时频资源块上接收第三信号;
    其中,所述第二信号指示第一时频资源块,所述第一时频资源块被用于确定目标时频资源集合,所述目标时频资源集合包括多个时频资源块,所述第一时频资源块是所述目标时频资源集合所包括的所述多个时频资源块中的一个时频资源块;所述第三信号是否携带第一类信息块被用于从所述目标时频资源集合中确定所述目标时频资源块,所述目标时频资源块是所述目标时频资源集合包括的所述多个时频资源块中的一个时频资源块;所述第一类信息块包括控制面信息。
PCT/CN2021/073016 2020-01-31 2021-01-21 一种被用于无线通信的节点中的方法和装置 WO2021151368A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/876,564 US20230022606A1 (en) 2020-01-31 2022-07-29 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010077729.4A CN113207172B (zh) 2020-01-31 2020-01-31 一种被用于无线通信的节点中的方法和装置
CN202010077729.4 2020-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/876,564 Continuation US20230022606A1 (en) 2020-01-31 2022-07-29 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2021151368A1 true WO2021151368A1 (zh) 2021-08-05

Family

ID=77024798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073016 WO2021151368A1 (zh) 2020-01-31 2021-01-21 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20230022606A1 (zh)
CN (1) CN113207172B (zh)
WO (1) WO2021151368A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190141753A1 (en) * 2017-11-08 2019-05-09 Institute For Information Industry Base station, user equipment, and method for early data transmission
US20190159197A1 (en) * 2018-02-07 2019-05-23 Intel Corporation Minimization of padding and resource wastage in message 3 (msg3) for early data transmission (edt)
CN110324862A (zh) * 2018-03-31 2019-10-11 财团法人资讯工业策进会 基站、用户设备与提早数据传输方法
WO2019200519A1 (en) * 2018-04-16 2019-10-24 Nokia Shanghai Bell Co., Ltd. Configuration of transport block size
CN110679198A (zh) * 2017-05-04 2020-01-10 高通股份有限公司 用于增强型机器类型通信(eMTC)和物联网(IoT)通信的上行链路小数据传输

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769928B (zh) * 2018-03-21 2023-05-23 荣耀终端有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110679198A (zh) * 2017-05-04 2020-01-10 高通股份有限公司 用于增强型机器类型通信(eMTC)和物联网(IoT)通信的上行链路小数据传输
US20190141753A1 (en) * 2017-11-08 2019-05-09 Institute For Information Industry Base station, user equipment, and method for early data transmission
US20190159197A1 (en) * 2018-02-07 2019-05-23 Intel Corporation Minimization of padding and resource wastage in message 3 (msg3) for early data transmission (edt)
CN110324862A (zh) * 2018-03-31 2019-10-11 财团法人资讯工业策进会 基站、用户设备与提早数据传输方法
WO2019200519A1 (en) * 2018-04-16 2019-10-24 Nokia Shanghai Bell Co., Ltd. Configuration of transport block size

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, NOKIA, NOKIA SHANGHAI BELL: "Detailed procedure for RACH report in NB-IoT", 3GPP DRAFT; R2-1905630 DETAILED PROCEDURE FOR RACH REPORT IN NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729133 *

Also Published As

Publication number Publication date
CN113207172A (zh) 2021-08-03
US20230022606A1 (en) 2023-01-26
CN113207172B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2019179463A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020151457A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093594A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN112436925B (zh) 一种副链路无线通信的方法和装置
WO2020078272A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020140827A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020125402A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021103926A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020199976A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115623594A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022121922A1 (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2021103925A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021151368A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020156247A1 (zh) 一种用于无线通信的通信节点中的方法和装置
CN113365367B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023246673A1 (zh) 一种被用于无线通信的方法和装置
WO2021175218A1 (zh) 一种被用于无线通信的节点中的方法和装置
US11979909B2 (en) Method and device used for relay wireless communication
WO2023185520A1 (zh) 一种被用于无线通信的方法和装置
WO2022214048A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207708A1 (zh) 一种被用于无线通信的方法和装置
CN113965960B (zh) 一种副链路中继无线通信的方法和装置
WO2024120119A1 (zh) 一种副链路无线通信的方法和装置
WO2023202450A1 (zh) 一种被用于无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21747898

Country of ref document: EP

Kind code of ref document: A1