WO2019000364A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019000364A1
WO2019000364A1 PCT/CN2017/090997 CN2017090997W WO2019000364A1 WO 2019000364 A1 WO2019000364 A1 WO 2019000364A1 CN 2017090997 W CN2017090997 W CN 2017090997W WO 2019000364 A1 WO2019000364 A1 WO 2019000364A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
enhanced
indication information
signal transmission
terminal
Prior art date
Application number
PCT/CN2017/090997
Other languages
English (en)
French (fr)
Inventor
王宏
权威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019572519A priority Critical patent/JP2020526130A/ja
Priority to CN201780004787.0A priority patent/CN109429565B/zh
Priority to BR112019027849-4A priority patent/BR112019027849A2/pt
Priority to EP17915678.1A priority patent/EP3637849A4/en
Priority to CA3065401A priority patent/CA3065401A1/en
Priority to PCT/CN2017/090997 priority patent/WO2019000364A1/zh
Publication of WO2019000364A1 publication Critical patent/WO2019000364A1/zh
Priority to US16/703,576 priority patent/US11330502B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • LTE Long Term Evolution
  • MTC Machine Type Communications
  • the signal coverage strength of the terminal may not meet the signal reception requirement.
  • the current main method is the base station.
  • Repeat the Repetition signal (such as data or control channel).
  • Frequency Division Duplexing FDD
  • PSS Primary Synchronization Signal
  • the Primary Synchronization Signal is 0 in each system frame. And the last symbol (Symbol) of the first slot (Slot) of the No.
  • Subframe 5 sub-frame (Subframe) is sent, and the Secondary Synchronization Signal (SSS) is sent on the symbol of the symbol occupied by the PSS. , that is, PSS and SSS are sent every 5ms.
  • PSS and SSS are sent every 5ms.
  • the terminal when the terminal is in an environment with poor signal coverage, it needs to receive multiple times in succession to receive the part of the signal (such as a synchronization signal) or a message, so that the time for the terminal to acquire the signal sent by the base station is very high. long.
  • the present application provides a communication method and apparatus for solving the technical problem that a terminal acquires a signal transmitted by a base station for a long time in the prior art.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the enhanced signal transmission means that the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, where N is greater than 72;
  • the terminal receives the enhanced downlink signal sent by the second network device according to the first indication information.
  • the terminal can determine whether the neighboring network device of the first network device supports enhanced signal transmission by receiving the first indication information sent by the first network device. If supported, the terminal can receive the enhanced downlink signal, thereby effectively reducing the terminal. Receiving the delay of the downlink signal sent by the network device, avoiding the technical problem that the terminal still receives the downlink signal in the existing manner and causes a large delay when the terminal cannot accurately know whether the second network device supports the enhanced signal transmission. .
  • the terminal before the terminal receives the first indication information sent by the first network device, the terminal further includes:
  • the terminal reports capability information to the first network device, where the capability information is used to indicate that the terminal supports the enhanced signal transmission.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the first network device receives the second indication information sent by the second network device, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission;
  • the second network device is the first network The adjacent network device of the device;
  • the enhanced signal transmission means the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, where N is greater than 72;
  • the first network device sends first indication information to the terminal, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • the first network device is configured to receive, according to the second indication information, the second network device, whether the second network device supports the enhanced signal transmission, because the first network device and the second network device can be learned through information interaction. Whether the adjacent network device supports the enhanced signal transmission, therefore, the solution in the present application has strong adaptability, and the solution in the present application can be adopted without greatly improving the existing networking system.
  • the first network device sends the first indication information to the terminal, including:
  • the first network device sends a system broadcast message to the terminal, where the system broadcast message includes the first indication information; or
  • the first network device sends a radio resource control connection reconfiguration message to the terminal, where the radio resource control connection reconfiguration message includes the first indication information.
  • the first network device receives the second indication information sent by the second network device, including:
  • the first network device receives a configuration update message sent by the second network device, where the configuration update message includes the second indication information.
  • the first network device receives the second indication information sent by the second network device, including:
  • the first network device receives a handover response message sent by the second network device, where the handover response message includes the second indication information.
  • the method before the first network device receives the handover response message sent by the second network device, the method further includes:
  • the first network device receives the capability information reported by the terminal, where the capability information is used to indicate that the terminal supports the enhanced signal transmission;
  • the first network device sends a handover request message to the second network device, where the handover request message includes the capability information.
  • an embodiment of the present application provides a communication method, where the method includes:
  • the second network device generates second indication information, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission; and the enhanced signal transmission refers to: the signal is repeatedly transmitted within a set time length And/or, the signal is transmitted on N subcarriers of the system bandwidth, N is greater than 72;
  • the second network device sends second indication information to the first network device, where the first network device is a neighboring network device of the second network device.
  • the second network device sends a second indication message to the first network device, so that the first network device can learn Whether the second network device supports enhanced signal transmission, since the first network device and the second network device can learn whether the adjacent network device supports enhanced signal transmission through information interaction, the solution in the present application has strong The adaptability can be adopted in the present application without greatly improving the existing networking system.
  • the second network device sends the second indication information to the first network device, including:
  • the second network device sends a configuration update message to the first network device, where the configuration update message includes the second indication information.
  • the second network device sends the second indication information to the first network device, including:
  • the second network device sends a handover response message to the first network device, where the handover response message includes the second indication information.
  • the method before the sending, by the second network device, the handover response message to the first network device, the method further includes:
  • the second network device after determining that the terminal supports the enhanced signal transmission, according to the capability information of the terminal, enables the enhanced signal transmission to send an enhanced downlink signal.
  • the second network device may determine whether the terminal supports enhanced signal transmission according to the capability information of the terminal included in the handover request message, and if supported, enable enhanced signal transmission.
  • Send an enhanced downlink signal That is to say, the second network device supporting the enhanced signal transmission enables the enhanced signal transmission to transmit the enhanced downlink signal after determining that the terminal supporting the enhanced signal transmission is to be switched over, which can effectively prevent the second network device from always transmitting the enhanced downlink signal.
  • the problem of excessive occupation of radio resources is caused, and the terminal supporting the enhanced signal transmission can ensure that the enhanced downlink signal is received, thereby shortening the delay of the terminal receiving the downlink signal.
  • the method may further include:
  • the second indication information includes a repetition of the enhanced downlink signal sent by the second network device within a set time length.
  • the number of times, the set length of time refers to the length of one slot or the length of one subframe or the length of one system frame.
  • the second indication information includes time information that the second network device sends the enhanced downlink signal
  • the time information includes a symbol number, or the time information includes a subframe number and a symbol number.
  • the second indication information includes frequency information that the second network device sends the enhanced downlink signal
  • the frequency information includes at least one of the following: a resource unit location, a narrowband index, and a frequency.
  • the enhanced downlink signal is any one or any combination of an enhanced primary synchronization signal PSS, an enhanced secondary synchronization signal SSS, and an enhanced physical broadcast channel PBCH.
  • the application provides a communication entity, which may include: a sending module, a receiving module, and a processing module.
  • the communication entity may be used to implement the process steps performed by the terminal or the first network device or the second network device in the method embodiments shown in the first aspect, the second aspect, and the third aspect, which are respectively introduced below.
  • the communication entity is configured to implement the process steps performed by the terminal in the method embodiment shown in the first aspect.
  • the communication entity may be a chip inside the terminal or the terminal, specifically:
  • the receiving module is configured to receive first indication information that is sent by the first network device, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission, and the second network device is the first Phase of network equipment
  • the neighboring network device the enhanced signal transmission means: the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, where N is greater than 72;
  • the processing module is configured to determine, according to the first indication information, whether the second network device supports enhanced signal transmission;
  • the receiving module is further configured to: if the processing module determines that the second network device supports the enhanced signal transmission, receive the enhanced downlink signal sent by the second network device according to the first indication information.
  • the sending module is configured to report capability information to the first network device before the receiving module receives the first indication information sent by the first network device, where the capability information is used.
  • the terminal is instructed to support the enhanced signal transmission.
  • the communication entity is configured to implement the process steps performed by the first network device in the method embodiment shown in the second aspect.
  • the communication entity may be a chip of the first network device or the first network device, specifically Say:
  • the receiving module is configured to receive second indication information that is sent by the second network device, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission, and the second network device is The adjacent network device of the first network device;
  • the enhanced signal transmission means the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, where N is greater than 72;
  • the processing module is configured to determine, according to the second indication information, whether the second network device supports enhanced signal transmission;
  • the sending module is configured to send first indication information, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • the sending module is specifically configured to:
  • the receiving module is specifically configured to:
  • the receiving module is specifically configured to:
  • the receiving module is further configured to: before receiving the handover response message sent by the second network device, receive capability information reported by the terminal, where the capability information is used to indicate that the terminal supports the Enhanced signal transmission;
  • the sending module is further configured to: send a handover request message to the second network device, where the handover request message includes the capability information.
  • the communication entity is configured to implement the process steps performed by the second network device in the method embodiment shown in the third aspect.
  • the communication entity may be a chip of the second network device or the second network device, specifically Say:
  • the processing module is configured to generate second indication information, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission, and the enhanced signal transmission refers to: the signal is in a set time length Repeated transmission, and/or, the signal is transmitted on N subcarriers of the system bandwidth, N is greater than 72;
  • the sending module is configured to send second indication information to the first network device, where the first network device is the Two adjacent network devices of the network device.
  • the sending module is specifically configured to:
  • the sending module is specifically configured to:
  • the receiving module is configured to: before the sending module sends a handover response message to the first network device, receive a handover request message sent by the first network device, where the handover request message is Including the capability information of the terminal;
  • the processing module is further configured to: after determining that the terminal supports the enhanced signal transmission according to the capability information of the terminal, enable the enhanced signal transmission to send an enhanced downlink signal by using the sending module.
  • the second indication information includes a repetition of the enhanced downlink signal sent by the second network device within a set time length.
  • the number of times, the set length of time refers to the length of one slot or the length of one subframe or the length of one system frame.
  • the second indication information includes time information that the second network device sends the enhanced downlink signal
  • the time information includes a symbol number, or the time information includes a subframe number and a symbol number.
  • the second indication information includes frequency information that the second network device sends the enhanced downlink signal
  • the frequency information includes at least one of the following: a resource unit location, a narrowband index, and a frequency.
  • the enhanced downlink signal is any one or any combination of an enhanced primary synchronization signal PSS, an enhanced secondary synchronization signal SSS, and an enhanced physical broadcast channel PBCH.
  • the present application provides a communication entity having the functionality of the communication entity shown in the fourth aspect above.
  • the communication entity may include: a communication module, a processor;
  • the communication module is configured to perform communication interaction with other devices, and the communication module may be an RF circuit, a WiFi module, a communication interface, a Bluetooth module, or the like.
  • the processor is configured to implement the functions of the processing module in the fourth aspect.
  • the communication entity may further include: the memory, for storing a program or the like.
  • the program can include program code, the program code including instructions.
  • the memory may contain RAM and may also include non-volatile memory, such as at least one disk storage.
  • the processor executes the application stored in the memory to implement the above functions.
  • the communication module, the processor and the memory can be connected to each other through the bus;
  • the bus can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (extended industry standard architecture). EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the present application also provides a computer readable storage medium storing instructions that, when executed on a computer, cause the computer to implement a communication method provided by any of the above designs.
  • the application also provides a computer program product comprising instructions that, when run on a computer, cause calculations The machine performs the communication method provided by any of the above designs.
  • the present application also provides a computer program that, when run on a computer, causes the computer to perform the communication method provided by any of the above designs.
  • FIG. 1 is a schematic diagram of a system architecture applicable to the present application
  • FIG. 2 is a schematic diagram of time-frequency resources in which PSS and SSS are located in an existing LTE FDD;
  • Figure 3a is a schematic diagram of a first possible enhancement
  • Figure 3b is a schematic diagram of a second possible enhancement mode
  • Figure 3c is a schematic diagram of a third possible enhancement mode
  • Figure 3d is a schematic diagram of a fourth possible enhancement mode
  • FIG. 5 is a schematic flowchart of another communication method provided by the present application.
  • Figure 6a is a schematic diagram of symbol positions occupied by enhanced PSS and enhanced SSS;
  • Figure 6b is a schematic diagram of uniform distribution of extended bandwidth
  • Figure 6c is a schematic diagram of uneven distribution of extended bandwidth
  • Figure 6d is a narrowband diagram of different bandwidths
  • FIG. 7 is a schematic structural diagram of a communication entity provided by the present application.
  • FIG. 8 is a schematic structural diagram of another communication entity provided by the present application.
  • FIG. 1 is a schematic diagram of a system architecture applicable to the present application.
  • the system architecture includes a network device 101, a neighboring network device 103 of the network device 101, and one or more terminals accessing the network device 101, such as the first terminal 1021 shown in FIG. The second terminal 1022 and the third terminal 1023.
  • the network device 101 and the neighboring network device 103 can communicate with each other.
  • the network device 101 can send a configuration request message to the neighboring network device 103, and the neighboring network device 103 can respond according to the configuration request message; for example, the network device 101 determines After a certain terminal (for example, the first terminal) accessing the network device 101 is to be handed over to the neighboring network device 103, a handover request message may be sent to the neighboring network device 103, and the neighboring network device 103 may respond according to the handover request message. .
  • a certain terminal for example, the first terminal
  • the network device and the neighboring network device may all be base station devices (BSs).
  • a base station device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functionality.
  • a device providing a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device providing the base station function in the 3G network includes a Node B (NodeB) and A Radio Network Controller (RNC)
  • a device that provides a base station function in a 4G network includes an evolved NodeB (eNB)
  • a device that provides a base station function in a 5G NR network includes a new wireless Node B, and is centralized.
  • a device that provides a base station function is an access point (AP).
  • the terminal may be a device that provides voice and/or data connectivity to the user, including wired terminals and wireless terminals.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone, a computer, a tablet, a Personal Digital Assistant (PDA), a Mobile Internet Device (MID), a wearable device, and an e-book reader (e). -book reader)etc.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • e e-book reader
  • the wireless terminal can also be a machine type communication (MTC) terminal, an Internet of Thing (IoT) terminal, a portable, pocket-sized, handheld, computer-integrated, or in-vehicle mobile device.
  • MTC machine type communication
  • IoT Internet of Thing
  • the wireless terminal can be a part of a mobile station, an access point, or a user equipment (UE).
  • UE user equipment
  • Communication systems applicable to the above system architecture include, but are not limited to, Code Division Mutial Access (CDMA) IS-95, Code Division Multiple Access (CDMA) 2000, and Time Division Synchronous Code Division Multiple Access ( Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Duplexing-Long Term Evolution (TDD LTE), Frequency Division Frequency Division Duplexing-Long Term Evolution (FDD LTE), Long Term Evolution-Advanced (LTE-advanced), Long Term Evolution-machine to machine communication (Long Term Evolution-machine to machine communication, LTE M2M), as well as various wireless communication systems that are evolving in the future (for example, 5G NR systems).
  • CDMA Code Division Mutial Access
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • the terminal needs to access the LTE cell, and must first perform cell search through the synchronization channel.
  • the cell search includes a series of synchronization phases to obtain time synchronization and frequency synchronization. Therefore, in the synchronization phase, the terminal needs to perform a large number of blind searches.
  • the terminal needs to receive and combine multiple times to improve the success rate of the synchronization signal reception, thereby causing excessive synchronization time.
  • the network device enhances the downlink transmission, that is, the enhanced downlink signal is sent by the network device, and the enhanced downlink signal is sent by using an enhanced signal transmission manner, for example, a network device.
  • the downlink signal is sent on a larger bandwidth, or the network device repeatedly sends the downlink signal multiple times within a set time, thereby effectively reducing the delay of the terminal receiving the downlink signal. It should be noted that this method needs to be implemented when both the network device and the terminal support enhanced signal transmission.
  • the enhanced downlink signal sent by the network device may be one or more, and the synchronization signal is taken as an example.
  • the enhanced downlink synchronization signal sent by the network device may be a Primary Synchronization Signal (PSS) and an enhanced signal.
  • the Secondary Synchronization Signal (PSS) can reduce the delay of the synchronization of the terminal.
  • the enhanced downlink synchronization signal sent by the network device can also be an Enhanced Physical Broadcast Channel (PBCH). The time delay for obtaining the system message by the terminal is reduced.
  • the enhanced downlink synchronization signal sent by the network device may also include the enhanced PSS, the enhanced SSS, and the enhanced PBCH, which are not specifically limited in this application.
  • the following takes the enhanced downlink signal as the enhanced PSS and the enhanced SSS as an example to introduce the specific enhancement mode.
  • PSS is the last symbol (Symbol) of the first slot (Slot) of the 0th and 5th subframes of each System Frame (System Frame).
  • SSS is sent on the previous symbol of the symbol occupied by the PSS.
  • the transmission period of PSS and SSS is 5ms.
  • both PSS and SSS occupy 72 subcarriers in the center of the channel, wherein 62 subcarriers in the bandwidth center are used, and 5 subcarriers are left on each side for use as a guard band.
  • the terminal will try to receive PSS and SSS near the center frequency of the LTE bandwidth it supports.
  • the PSS uses a ZC (Zadoff-Chu) sequence of length 63 (there are DC subcarriers in the middle, so the length of the transmission is actually 62), plus 5 subcarriers reserved for the guard band in the boundary, forming a PSS occupying 72 subcarriers in the center of bandwidth.
  • the PSS has three values, corresponding to three different ZC sequences, and each sequence corresponds to a physical cell identifier (PCI) group number.
  • PCI physical cell identifier
  • the sequence corresponding to the PSS of a certain cell is determined by the PCI of the cell.
  • different intra-group numbers correspond to different root index values (Root index u), which in turn determines different ZC sequences.
  • Table 1 Corresponding to the table of the number and root sequence index values in the group
  • the terminal When the terminal receives the PSS, it uses the above three root sequence index values to try to decode the PSS until one of the root sequence index values successfully resolves the PSS. In this way, the terminal obtains the intra-group number of the cell, and since the location of the PSS in the time domain is fixed, the terminal can obtain the 5ms timing (Timing) of the cell.
  • SSS is a sequence of 62 lengths obtained by cross-cascading two M sequences with a sequence length of 31. Similar to PSS, plus 5 subcarriers reserved for the guard band, which are additionally reserved at the boundary, form 72 centers occupying the bandwidth. Carrier SSS. In a system frame, the SSS cross-cascading mode of the first half frame is opposite to the cross-cascading mode of the second half frame. The number in the PCI group corresponds to 168 SSS sequences, and is not specifically enumerated here.
  • the terminal After the terminal detects the PSS, it knows the location where the SSS may appear. After the terminal detects and successfully decodes the SSS, it determines one of the 168 values of the SSS sequence, and then determines the PCI number.
  • the primary synchronization process is first performed.
  • the terminal uses different three sets of local ZC sequences to perform cyclic correlation with the received PSS sequence, and the intra-group number of the PSS sequence is determined by the correlation peak.
  • Complete time domain synchronization the terminal uses 168 sets of different local M sequences to be cyclically correlated with the received SSS sequences, and the intra-group numbers of the SSS sequences are determined from the correlation peaks.
  • the terminal synchronizes using the detected PSS sequence and the SSS sequence.
  • the first possible enhancement provided in the present application is to repeatedly transmit PSS and SSS in a short time.
  • FIG 3a is a schematic illustration of the first possible enhancement.
  • the enhanced PSS includes PSS (referred to as a legacy PSS) and an added PSS in the prior art.
  • PSS referred to as a legacy PSS
  • the newly added PSS can be transmitted on other symbols that do not affect the reference signals in the prior art and/or symbols that do not affect the control channels in the prior art, illustratively, for example, adding three PSSs after the conventional PSS The symbols are sent continuously.
  • enhanced SSS includes SSS (known as traditional SSS) and new SSS in the prior art.
  • the new SSS can be sent on other symbols that do not affect the reference signals in the prior art and/or symbols that do not affect the control channels in the prior art.
  • the newly added SSS is consecutive on the three symbols before the traditional SSS. send. See Figure 3a for details.
  • some conventional terminals that do not support enhanced signal transmission still use the methods in the prior art to detect PSS and SSS, in order to prevent the newly introduced PSS and the newly added SSS from affecting the traditional terminal detecting PSS and SSS
  • the value of the newly added PSS root sequence index is different from the value of the traditional PSS root sequence index, that is, the ZC sequence of the newly added PSS is different from the three ZC sequences in the prior art. Since the sequence of the PSS is orthogonal, the legacy terminal cannot detect the new PSS.
  • the M sequence of the newly added SSS can be different from the 168 M sequences in the prior art.
  • the legacy terminal cannot detect the newly added PSS and the newly added SSS, so that the PSS and the SSS can be normally detected according to the existing manner, and the terminal supporting the enhanced signal transmission can detect the traditional PSS and the newly added PSS in one subframe. , as well as traditional SSS and new SSS, which improves the receiving success rate of receiving PSS and SSS, and reduces the delay of receiving PSS and SSS.
  • the M sequence of the newly added SSS can be the same as the 168 M sequences in the prior art. Since the terminal has detected the PSS when detecting the SSS, the legacy terminal detects the SSS in the previous symbol of the detected PSS, and supports the enhanced signal. The transmitting terminal detects the SSS in the first few symbols of the detected PSS, so the sequence used by the SSS can be the same.
  • the traditional PSS sequence is [101010]
  • the new PSS sequence is [010101].
  • the corresponding elements of the two sequences are multiplied and then added, and the result is 0.
  • the traditional terminal uses [101010] to detect the PSS.
  • the detection process is: on each symbol, the traditional terminal uses its known sequence to multiply and add the elements to the sequence carried on the symbol, and the result is greater than a preset threshold. , it is considered that PSS is detected, otherwise, it is considered that there is no PSS.
  • the terminal supporting enhanced signal transmission is detected using the PSS sequence in the prior art and the newly added PSS sequence, thereby being able to detect the legacy PSS and the new PSS.
  • the terminal supporting enhanced signal transmission can use the detection window to detect the enhanced PSS.
  • the terminal supporting the enhanced signal transmission knows the transmission mode of the enhanced PSS, for example, the transmission mode of the enhanced PSS is transmitted on four consecutive symbols as shown in FIG. 3a, and the conventional PSS is on the first symbol. Send, the new PSS is sent on the last three symbols.
  • the terminal supporting enhanced signal transmission can detect four consecutive symbols when detecting the enhanced PSS, that is, the terminal is on the first symbol of every four symbols.
  • Use [101010] detection use [010101] detection on the next three symbols, and add the detection results on each symbol.
  • the detection result is maximum or greater than a threshold
  • the first of the four detected symbols The symbol is the original PSS, which is the traditional PSS, and the last three symbols are the new PSS.
  • the sequence on each symbol is assumed to be a single digit.
  • the sequence of numbers on consecutive symbols to be detected is 000011110000, where 1 indicates the symbol with PSS and 0 indicates the symbol without PSS. It can be seen that PSS is continuous.
  • Four symbols are sent. It is assumed that one symbol in the detection sequence is also a single digit, and the detection sequence is 1111, which is a detection window.
  • the sequence to be detected is detected from the left, every four digits, and then the detection window is shifted to the right by one.
  • the first detection 0 ⁇ 1 + 0 ⁇ 1 + 0 ⁇ 1 + 0 ⁇ 1 0 (the number on the left side of the multiplier is taken from the sequence to be detected, the number on the right is the number of the detection sequence) (first Take the leftmost 0000)
  • the sixth test 1 ⁇ 1 + 1 ⁇ 1 + 1 ⁇ 1 + 0 ⁇ 1 3 (the first time to take 1110)
  • the seventh test 1 ⁇ 1 + 1 ⁇ 1 + 0 ⁇ 1 + 0 ⁇ 1 2 (the seventh time to take 1100)
  • the eighth test 1 ⁇ 1 + 0 ⁇ 1 + 0 ⁇ 1 + 0 ⁇ 1 1 (the eighth time to take 1000)
  • the ninth time detection 0 ⁇ 1+0 ⁇ 1+0 ⁇ 1+0 ⁇ 1 0 (the ninth time takes 0000)
  • the fifth detection result is the largest, and therefore, the first of the four detected symbols of the fifth detection The symbol is the original PSS.
  • the above description is only an example.
  • the traditional PSS and the newly added PSS may be discontinuously distributed in the subframe, and the detection window needs to correspond to the distribution of the traditional PSS and the newly added PSS.
  • the second possible enhancement provided by the present application is to extend the transmission bandwidth of the PSS and the SSS.
  • the extended PSS and SSS can use the sequence of the traditional PSS and SSS, or use the new sequence. Since legacy terminals are always detected on the middle 6 PRB, UEs supporting enhanced signal transmission are detected on a larger bandwidth.
  • Figures 3b and 3c are schematic illustrations of a second possible enhancement.
  • the traditional PSS and the traditional SSS are sent on the central 6 physical resource blocks (PRBs) (72 subcarriers).
  • PRBs physical resource blocks
  • the enhanced PSS and the enhanced SSS can be occupied by the bandwidth of the traditional PSS.
  • the enhanced PSS and enhanced SSS can be sent on the center 12 PRBs.
  • the legacy terminal can still use the original bandwidth to detect the traditional PSS and the traditional SSS
  • the terminal supporting the enhanced signal transmission can use the wider bandwidth to detect the enhanced PSS and the enhanced SSS, thereby effectively improving the receiving success of the receiving PSS and the SSS. Rate, reducing the latency of receiving PSS and SSS.
  • the enhanced PSS and the enhanced SSS may be symmetrically extended according to the bandwidth occupied by the traditional PSS (as shown in FIG. 3b, the extended bandwidth L1 is equal to the bandwidth L2), or may be asymmetrically extended. (As shown in FIG. 3c, the extended bandwidth L1 is not equal to the bandwidth L2), which is not limited.
  • a third possible enhancement provided by the present application is to repeatedly transmit PSS and SSS in a short time, and to extend the transmission bandwidth of the PSS and SSS, that is, the combination of the first and second possible enhancement modes described above.
  • Figure 3d is a schematic diagram of a third possible enhancement.
  • Figure 3d is a schematic diagram of a third possible enhancement.
  • details refer to the first and second possible enhancement modes mentioned above, and details are not described herein again.
  • the above content is specifically introduced to enhance the downlink signal.
  • some network devices support enhanced signal transmission, and may send enhanced downlink signals, or may also transmit downlink signals in existing manners. However, some network devices do not support enhanced signal transmission, and still need to use existing methods to transmit. Downstream signal.
  • some terminals support enhanced signal transmission, and the detection method in the present application may be used to detect the enhanced downlink signal, or the downlink signal may be detected in the existing manner, and some terminals do not support enhanced signal transmission, and still need to adopt The existing method detects the downlink signal. Based on this, how the network device supporting the enhanced signal transmission determines whether to transmit the enhanced downlink signal, and how the terminal supporting the enhanced signal transmission determines whether to use the detection method in the present application to detect the enhanced downlink signal is still a further problem to be solved.
  • FIG. 4 is a schematic flowchart of a communication method provided by the present application. As shown in FIG. 4, the method includes:
  • Step 401 The first network device sends a configuration request message to the second network device, where the second network device is a neighboring network device of the first network device; the step is an optional step.
  • Step 402 The second network device receives the configuration request message, and sends the second indication information to the first network device, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission; if there is no step 1, the second The network device does not need to receive the configuration request message, that is, the second network device directly sends the second indication information to the first network device.
  • Step 403 The first network device receives the second indication information sent by the second network device.
  • Step 404 The first network device sends first indication information to the terminal, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • Step 405 The terminal receives the first indication information sent by the first network device.
  • Step 406 If the second network device supports the enhanced signal transmission, the terminal is according to the first Instructing information, receiving an enhanced downlink signal sent by the second network device.
  • the first network device and the second network device are mutually adjacent network devices.
  • the first network device may send the first indication information by using a system broadcast message or a radio resource control connection reconfiguration message (Radio Resource Control Connection Reconfiguration), specifically, the first network device sends a system broadcast message.
  • a radio resource control connection reconfiguration message Radio Resource Control Connection Reconfiguration
  • the first network device sends a system broadcast message.
  • SI System Information
  • the first indication information is included in the system broadcast message; or the first network device sends a radio resource control connection reconfiguration message, where the radio resource control connection reconfiguration message includes the first indication information.
  • the first network device sends the first indication information by using a system broadcast message or a radio resource control connection reconfiguration message, and does not need to add another message to send the first indication information, which can effectively save signaling overhead.
  • the terminal is a terminal that accesses the first network device, or the terminal is a terminal that resides on the first network device, where the first network device may be a network device that supports enhanced signal transmission, or may be Network devices that do not support enhanced signal transmission.
  • the detection mode adopted by the terminal may be inconsistent with the downlink signal transmission mode supported by the network device, for example, the network.
  • the device uses the enhanced downlink signal transmission mode to transmit the downlink signal, and the terminal uses the traditional detection mode.
  • the terminal needs to perform a long time detection to detect the PSS and the SSS, and the enhanced downlink signal is not utilized at this time;
  • the network device uses the traditional downlink signal transmission mode, and the terminal uses the enhanced downlink signal detection method, the terminal cannot detect the PSS and the SSS, and the terminal uses the traditional detection method to detect, thus increasing the terminal detecting the PSS. Delay.
  • the terminal may receive the first indication information through the system broadcast message or the radio resource control connection reconfiguration message, and learn whether the second network device supports enhanced signal transmission, and then use the corresponding detection method to detect the PSS, thereby avoiding Unnecessary detection.
  • step 406 if the terminal supports the enhanced signal transmission, and the terminal learns that the second network device supports the enhanced signal transmission according to the first indication information, when the terminal needs to detect the synchronization signal sent by the other network device, the terminal may be according to the first Instructing information, receiving an enhanced downlink signal sent by the second network device, for example, receiving an enhanced PSS and an enhanced SSS sent by the second network device, and completing synchronization with the second network device.
  • the network device supports enhanced signal transmission
  • the downlink signal sent by the network device is always an enhanced downlink signal. Therefore, the second network device always sends the enhanced downlink signal.
  • the terminal learns that the second network device does not support the enhanced signal transmission according to the first indication information, and the terminal may receive the downlink signal sent by the second network device in an existing manner.
  • the terminal may directly receive the downlink signal sent by the second network device in an existing manner.
  • the first network device can notify the terminal whether the neighboring network device supports the enhanced signal transmission, so that the terminal can receive the downlink signal sent by the second network device, for example, the synchronization signal, by using a corresponding manner.
  • the above method can also be used for the PBCH, that is, the first indication information indicates whether the second network device supports the enhanced PBCH.
  • FIG. 5 is a schematic flowchart of another communication method provided by the present application. As shown in FIG. 5, the method includes:
  • Step 501 The terminal reports capability information to the first network device, where the capability information is used to indicate whether the terminal supports enhanced signal transmission.
  • the step is an optional step, and the terminal may indicate the capability to the first network device by using other methods. Information; no matter what way, the terminal needs to indicate the capability information to the first network device.
  • Step 502 The first network device sends a handover request message to the second network device, where the handover request message includes the end The capability information of the terminal, where the second network device is a neighboring network device of the first network device;
  • Step 503 The second network device receives the handover request message. If the second network device supports the enhanced signal transmission, and the terminal device supports the enhanced signal transmission according to the capability information, the second network device may enable the enhanced signal transmission to send the enhanced downlink signal. If the second network device supports enhanced signal transmission, and determines, according to the capability information, that the terminal does not support enhanced signal transmission, the second network device may continue to transmit the downlink signal in an existing manner; if the second network device does not support enhanced signal transmission , the downlink signal is sent in the existing mode.
  • the network device if the network device supports enhanced signal transmission, the network device is triggered under certain conditions (for example, a terminal supporting enhanced signal transmission is to be switched over), enabled.
  • the enhanced signal transmission transmits an enhanced downlink signal; otherwise, the downlink signal is still transmitted in the existing manner. Therefore, the foregoing second network device sends the downlink signal in an existing manner before receiving the handover request message, and after determining that the terminal supporting the enhanced signal transmission is to be switched over, the enhanced signal transmission is enabled to transmit the enhanced downlink signal.
  • Step 504 The second network device sends second indication information to the first network device, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • Step 505 The first network device receives the second indication information sent by the second network device.
  • Step 506 The first network device sends first indication information to the terminal, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • Step 507 The terminal receives the first indication information sent by the first network device.
  • Step 508 If the second network device supports the enhanced signal transmission, the terminal receives the enhanced downlink signal sent by the second network device according to the first indication information.
  • the target network device when the terminal switches from one network device to another network device (target network device), the target network device can determine whether to enable enhanced signal transmission and send an enhanced downlink signal according to the capability information of the terminal. Effectively avoiding the problem that the network device supporting the enhanced signal transmission always transmits the excessively occupied wireless resources caused by the enhanced downlink signal, and on the other hand, can ensure that the terminal supporting the enhanced signal transmission receives the enhanced downlink signal, thereby shortening the terminal synchronization. Time, or effectively shorten the time when the terminal acquires system information of the second network device.
  • the network device and the terminal supporting enhanced signal transmission may pre-agreed enhanced signal transmission, for example, pre-agreed enhancement.
  • the signal transmission adopts any one of the methods of FIG. 3a to FIG. 3d.
  • the first indication information includes an identifier supporting enhanced signal transmission, and the identifier may be bit “1”.
  • the terminal may receive the enhanced downlink signal sent by the second network device according to the pre-agreed enhanced signal transmission; if the second network device does not support the enhanced signal transmission, the first indication information includes The identifier of the enhanced signal transmission is supported.
  • the identifier may be a bit “0”.
  • the terminal may receive the downlink signal sent by the second network device in an existing manner.
  • the second indication information that the second network device sends to the first network device may include an identifier that supports enhanced signal transmission; if the second network device does not support the enhanced signal For transmission, the second indication information may include an identifier that does not support enhanced signal transmission.
  • the second network device may notify the first network device by using the second indication information that the configuration information of the enhanced downlink signal is sent, and then the first network.
  • the device notifies the terminal, by using the first indication information, that the second network device sends configuration information of the enhanced downlink signal.
  • the second indication The information and/or the first indication information may only include the configuration information that the second network device sends the enhanced downlink signal, which implicitly indicates that the second network device supports the enhanced downlink transmission without indicating the displayed indication information.
  • the second network device supports enhanced downlink transmission.
  • the content included in the first indication information is not specifically limited, and the purpose of notifying the second network device of the terminal to transmit the configuration information of the enhanced downlink signal may be implemented.
  • the content included in the first indication information may be any one or any combination of the following:
  • the number of repetitions of the enhanced downlink signal transmitted by the second network device within a set time length where the set time length refers to the length of one slot or the length of one subframe or the length of a system frame or A length of time configured or a preset length of time.
  • the set time length refers to the length of one slot or the length of one subframe or the length of a system frame or A length of time configured or a preset length of time.
  • Two symbols whose number of repetitions in one subframe is 2; if the new PSS in the enhanced PSS is transmitted on two symbols within one subframe, the enhanced PSS occupies three symbols in one subframe, The number of repetitions in one subframe is 3; if the new PSS in the enhanced PSS is transmitted on three symbols within one subframe (see Fig. 3a), the enhanced PSS occupies four symbols in one subframe, The number of repetitions in one subframe is four.
  • the repetition number of the enhanced downlink signal sent by the second network device in the set time length may also be represented by an enhancement level.
  • the enhancement level 0 indicates that the number of repeated transmissions is 2, and the enhancement level 1 indicates that the number of repeated transmissions is 4, and so on. It may also be that the enhancement level 0 indicates that the number of repeated transmissions is 1, 2, and the enhancement level 1 indicates that the number of repeated transmissions is 3 or 4.
  • the specific number of repeated transmissions under a certain enhancement level may be further specified.
  • the number of the values of the number of times of the repeated transmissions in one of the enhancement levels may be one or multiple, and is not limited herein.
  • the second network device sends time information of the enhanced downlink signal; the time information includes a symbol number, or the time information includes a subframe number and a symbol number; that is, the second network device sends an enhanced downlink signal.
  • the specific symbol number for example, the second network device sends a new PSS in addition to the traditional PSS, and the newly added PSS is sent in the next time slot of the time slot of the traditional PSS in the 0th symbol and the 1st symbol.
  • the time information is the symbol number (that is, the 0th symbol and the 1st symbol).
  • the above time information may be derived by other means.
  • the newly added PSS is sent on two symbols after the traditional PSS, and the symbol number can also be derived at this time; these are all within the protection of the present invention, as long as the exact determination can be made. You can get the time information.
  • the time information may also be an offset value (Offset), where the offset value is an offset between the enhanced downlink signal sending position and the traditional downlink signal sending position, for example, the traditional downlink signal is sent on the 6th symbol, and the enhanced The downlink signal is transmitted on the No. 1 symbol of the next slot, and the offset value is 2.
  • Offset offset value
  • the time information that the second network device sends the enhanced downlink signal is used to indicate whether the second network device sends the enhanced downlink signal on consecutive symbols or on the interval symbols.
  • the first indication information may include only the symbol number, so that the terminal may know the occupied PSS by the symbol number. Symbols are consecutive symbols or symbols that are spaced. For example, in the case 1, the first indication information includes the symbol number of the symbol 6, the symbol 0, the symbol 1 and the symbol 2. The terminal can know that the symbol occupied by the enhanced PSS is four consecutive symbols, as shown in FIG. 3a.
  • the first indication information includes the symbol number of the symbol 6, the symbol 1 and the symbol 2.
  • the terminal can learn that the symbol occupied by the enhanced PSS is three symbols that are discontinuous, and the first symbol of the PSS is transmitted.
  • the interval between the second symbols is 1 symbol, and there is no gap between the second symbol and the third symbol of the transmitting PSS.
  • the first indication information may include a subframe number and a symbol number, so that the terminal may learn to enhance the PSS according to the subframe number and the symbol number. Occupied symbol is connected
  • the continuation symbol is either a symbol of the interval.
  • Figure 6a taking PSS as an example (SSS and PBCH are similar), the traditional PSS is sent on the 6th symbol of the first time slot of the 0th subframe and the 5th subframe, and the newly added PSS is in the 1st.
  • the frame and the sixth slot of the first slot of the sixth subframe are transmitted on the sixth symbol.
  • the subframe information of the time information is 1 and 6, and the symbol number is 6.
  • Another rule in which the symbol number is used is that in one subframe, the symbol is numbered from 0 to 13, and the concept of the slot is not needed.
  • the time information that the second network device sends the enhanced downlink signal may also be represented by a sending mode, where the sending mode may be understood as a specific transmission of an enhanced downlink signal pattern, ie, at what time The enhanced downlink signal is transmitted at the location.
  • a sending mode may be understood as a specific transmission of an enhanced downlink signal pattern, ie, at what time The enhanced downlink signal is transmitted at the location.
  • an enhanced PSS is transmitted on subframes 1 and 6, and specifically, which symbol can be represented by a bitmap, that is, 00000010000000, that is, each bit map
  • One bit indicates the state of a symbol, that is, whether the symbol transmits an enhanced PSS, "1" indicates that the enhanced PSS is transmitted, "0" indicates that the enhanced PSS is not transmitted, and the meanings of "0" and "1" are interchangeable.
  • the second network device sends the frequency information of the enhanced downlink signal; the frequency information includes at least one of the following: a resource unit location, a narrowband index, and a frequency.
  • the frequency information may be used to indicate the bandwidth for actually transmitting the enhanced downlink signal. If the extended bandwidth is evenly distributed on both sides of the center frequency point, no other information needs to be carried, as shown in FIG. 6b. It can be 12 RBs or 12 PRBs. If it is unevenly distributed, it can also carry an indication information indicating the extended bandwidth of one side of the center frequency point, as shown in Figure 6c. At this time, the frequency information includes 15 RB and 6 RBs, that is, the total bandwidth is 15 RBs, one side is extended by 6 RBs, and the other side is extended by 3 RBs.
  • the frequency information is used to indicate the extended bandwidth on both sides of the center frequency. If the frequency is evenly distributed, only one frequency information is needed. As shown in FIG. 6b, the frequency information is 3 RBs. Otherwise, the extended bandwidth on both sides needs to be indicated. As shown in FIG. 6c, the frequency information is 6 RBs and 3 RBs.
  • the frequency information may be a narrowband index that the second network device sends the enhanced downlink signal, that is, the narrowband signal that the second network device sends the enhanced downlink signal.
  • the second network device needs to indicate frequency information for transmitting the enhanced downlink signal, such as carrier or frequency.
  • the first indication information may be included in the Narrow Band Internet of Things (NB-IoT), and the first indication information may include the second network device to send an enhanced downlink, if the method is applied to the NB-IoT. At least one of a resource unit location, a frequency, and a narrowband index of the signal, thereby facilitating the terminal to receive the enhanced downlink signal at the corresponding resource unit location, frequency, or narrowband.
  • NB-IoT Narrow Band Internet of Things
  • the terminal may learn that the second network device supports the enhancement according to the content included in the first indication information. And transmitting the enhanced downlink signal sent by the second network device according to the content included in the first indication information.
  • the second indication information that is sent by the second network device to the first network device may also include any one or any combination of the foregoing three items. For details, refer to the above description about the first indication information.
  • the content included in the first indication information may be exactly the same as the content included in the second indication information, for example, sent by the second network device received by the first network device.
  • the second indication information includes the number of repetitions of the enhanced downlink signal sent by the second network device within a set time length, and correspondingly,
  • the first indication information sent by the network device to the terminal also includes the number of repetitions of the enhanced downlink signal sent by the second network device within a set time length.
  • the content of the first indication information may be different from the content of the second indication information.
  • the second indication information sent by the second network device received by the first network device includes the enhanced downlink sent by the second network device.
  • the number of repetitions of the signal in the set time length, and the first indication information sent by the first network device to the terminal includes time information that the second network device sends the enhanced downlink signal. This application does not specifically limit this.
  • the present application provides a communication entity.
  • the communication entity 700 may include: a sending module 701, a receiving module 702, and a processing module 703.
  • the communication entity may be used to implement the process steps performed by the terminal or the first network device or the second network device in the method embodiment shown in FIG. 4 and FIG. 5, which are respectively introduced below.
  • the communication entity 700 is configured to implement the process steps performed by the terminal in the method embodiment shown in FIG. 4 and FIG. 5.
  • the communication entity 700 may be a chip inside the terminal or the terminal, specifically:
  • the receiving module 702 is configured to receive first indication information that is sent by the first network device, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission, and the second network device is the a neighboring network device of a network device; the enhanced signal transmission means: the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, N is greater than 72;
  • the processing module 703 is configured to determine, according to the first indication information, whether the second network device supports enhanced signal transmission;
  • the receiving module 702 is further configured to: if the processing module 703 determines that the second network device supports the enhanced signal transmission, receive the enhanced downlink signal sent by the second network device according to the first indication information.
  • the sending module 701 is configured to report capability information to the first network device, where the receiving module 702 receives the first indication information sent by the first network device, where the capability information is And used to indicate that the terminal supports the enhanced signal transmission.
  • the communication entity 700 is configured to implement the process steps performed by the first network device in the method embodiment shown in FIG. 4 and FIG. 5.
  • the communication entity 700 may be internal to the first network device or the first network device. Chip, specifically:
  • the receiving module 702 is configured to receive second indication information that is sent by the second network device, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission, and the second network device is The adjacent network device of the first network device; the enhanced signal transmission means: the signal is repeatedly transmitted within a set time length, and/or the signal is transmitted on N subcarriers of the system bandwidth, where N is greater than 72;
  • the processing module 703 is configured to determine, according to the second indication information, whether the second network device supports enhanced signal transmission;
  • the sending module 701 is configured to send first indication information, where the first indication information is used to indicate whether the second network device supports enhanced signal transmission.
  • the sending module 701 is specifically configured to:
  • the receiving module 702 is specifically configured to:
  • the receiving module 702 is specifically configured to:
  • the sending and receiving module is further configured to: before receiving the handover response message sent by the second network device, receive capability information reported by the terminal, where the capability information is used to indicate that the terminal supports The enhanced signal transmission;
  • the sending module 701 is further configured to: send a handover request message to the second network device, where the handover request message includes the capability information.
  • the communication entity 700 is configured to implement the process steps performed by the second network device in the method embodiment shown in FIG. 4 and FIG. 5.
  • the communication entity 700 may be internal to the second network device or the second network device. Chip, specifically:
  • the processing module 703 is configured to generate second indication information, where the second indication information is used to indicate whether the second network device supports enhanced signal transmission, and the enhanced signal transmission refers to: the signal is at a set time. Repeated transmission within length, and/or, the signal is transmitted on N subcarriers of the system bandwidth, N is greater than 72;
  • the sending module 701 is configured to send second indication information to the first network device, where the first network device is a neighboring network device of the second network device.
  • the sending module 701 is specifically configured to:
  • the sending module 701 is specifically configured to:
  • the receiving module 702 is configured to: before the sending module 701 sends a handover response message to the first network device, receive a handover request message sent by the first network device, where the handover request is The message includes capability information of the terminal;
  • the processing module 703 is further configured to: after determining that the terminal supports the enhanced signal transmission according to the capability information of the terminal, enable the enhanced signal transmission to send an enhanced downlink signal by using the sending module 701.
  • the second indication information includes a repetition of the enhanced downlink signal sent by the second network device within a set time length.
  • the number of times, the set length of time refers to the length of one slot or the length of one subframe or the length of one system frame.
  • the second indication information includes time information that the second network device sends the enhanced downlink signal
  • the time information includes a symbol number, or the time information includes a subframe number and a symbol number.
  • the second indication information includes frequency information that the second network device sends the enhanced downlink signal
  • the frequency information includes at least one of the following: a resource unit location, a narrowband index, and a frequency.
  • the enhanced downlink signal is an enhanced primary synchronization signal PSS and an enhanced secondary synchronization signal SSS. And any one or any combination of enhanced physical broadcast channels PBCH.
  • the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • the present application provides a communication entity having the functionality of the communication entity 7 as shown in FIG.
  • the communication entity 800 can include: a communication module 801, a processor 802;
  • the communication module 801 is configured to perform communication interaction with other devices, and the communication module 801 can be an RF circuit, a WiFi module, a communication interface, a Bluetooth module, or the like.
  • the processor 802 is configured to implement the function of the processing module 703 in FIG.
  • the communication entity 800 may further include: the memory 804, configured to store a program or the like.
  • the program can include program code, the program code including instructions.
  • Memory 804 may include RAM and may also include non-volatile memory, such as at least one disk storage.
  • the processor 802 executes the application stored in the memory 804 to implement the above functions.
  • the communication module 801, the processor 802, and the memory 804 can be connected to each other through the bus 803;
  • the bus 803 can be a peripheral component interconnect (PCI) bus or an extended industry standard structure ( Extended industry standard architecture, EISA) bus.
  • PCI peripheral component interconnect
  • EISA Extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium. Quality (such as solid state disk (SSD)).
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种通信方法及装置,其中方法包括:终端接收第一网络设备发送的第一指示信息,并根据第一指示信息确定第二网络设备是否支持增强的信号传输,若第二网络设备支持增强的信号传输,则终端可根据所述增强的信号传输,接收所述第二网络设备发送的增强下行信号;其中,第二网络设备为第一网络设备的相邻网络设备。也就是说,终端通过接收第一网络设备发送的第一指示信息,能够确定出第一网络设备的相邻网络设备是否支持增强的信号传输,若支持,则终端可接收增强下行信号,从而有效降低终端接收网络设备发送的下行信号的时延,避免了在终端在无法准确得知第二网络设备是否支持增强的信号传输的情况下,依旧采用现有方式接收下行信号而导致时延较大的技术问题。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)系统中需要支持机器类型通信(Machine Type Communications,MTC)功能。与传统LTE通信不同的是,LTE MTC并不追求数据传输速率、多频段、多天线等,而是追求终端电池有更长的待机时间、终端的硬件成本更低,即要求终端能够实现低功耗(Low power consumption)、低成本(Low cost)。
考虑到在MTC类型的终端的应用场景(例如:水表、电表等)中,终端的信号覆盖强度可能无法满足信号接收要求,为使得基站和终端支持扩展覆盖(Coverage enhancement),目前主要方法是基站重复多次发送(Repetition)信号(如数据或控制信道)。现有技术中,没有对同步信号进行覆盖增强,以频分双工(Frequency Division Duplexing,FDD)为例,主同步信号(Primary Synchronization Signal,PSS)在每个系统帧(System Frame)的第0号和第5号子帧(Subframe)的第一个时隙(Slot)的最后一个符号(Symbol)上发送,辅同步信号(Secondary Synchronization Signal,SSS)在PSS所占符号的前一个符号上发送,即PSS和SSS的每隔5ms发送一次。如此,终端可通过多次接收合并实现提高同步信号接收成功率的目的。
然而,采用这种方式,当终端处于信号覆盖较差的环境时,需要连续多次接收才能够接收到这部分信号(如同步信号)或消息,从而使得终端获取基站发送的信号的时间会很长。
发明内容
本申请提供一种通信方法及装置,用于解决现有技术中终端获取基站发送的信号的时间较长的技术问题。
第一方面,本申请实施例提供一种通信方法,该方法包括:
终端接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
若所述第二网络设备支持所述增强的信号传输,则所述终端根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
如此,终端通过接收第一网络设备发送的第一指示信息,能够确定出第一网络设备的相邻网络设备是否支持增强的信号传输,若支持,则终端可接收增强下行信号,从而有效降低终端接收网络设备发送的下行信号的时延,避免了终端在无法准确得知第二网络设备是否支持增强的信号传输的情况下,依旧采用现有方式接收下行信号而导致时延较大的技术问题。
在一种可能的设计中,所述终端接收第一网络设备发送的第一指示信息之前,还包括:
所述终端向所述第一网络设备上报能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输。
第二方面,本申请实施例提供一种通信方法,该方法包括:
第一网络设备接收第二网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输。
如此,第一网络设备通过接收第二网络设备根据第二指示信息,从而得知第二网络设备是否支持增强的信号传输,由于第一网络设备和第二网络设备之间可以通过信息交互来得知相邻网络设备是否支持增强的信号传输,因此,本申请中的方案具有较强的适应性,在不对现有组网系统进行较大改进的情况下,即可采用本申请中的方案。
在一种可能的设计中,所述第一网络设备向终端发送所述第一指示信息,包括:
所述第一网络设备向所述终端发送系统广播消息,所述系统广播消息中包括所述第一指示信息;或者,
所述第一网络设备向所述终端发送无线资源控制连接重配置消息,所述无线资源控制连接重配置消息中包括所述第一指示信息。
在一种可能的设计中,所述第一网络设备接收所述第二网络设备发送的第二指示信息,包括:
所述第一网络设备接收所述第二网络设备发送的配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,所述第一网络设备接收所述第二网络设备发送的第二指示信息,包括:
所述第一网络设备接收所述第二网络设备发送的切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述第一网络设备接收所述第二网络设备发送的切换应答消息之前,还包括:
所述第一网络设备接收终端上报的能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输;
所述第一网络设备向所述第二网络设备发送切换请求消息,所述切换请求消息中包括所述能力信息。
第三方面,本申请实施例提供一种通信方法,该方法包括:
第二网络设备生成第二指示信息;所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述第二网络设备向第一网络设备发送第二指示信息,所述第一网络设备为所述第二网络设备的相邻网络设备。
如此,第二网络设备向第一网络设备发送第二指示消息,使得第一网络设备能够得知 第二网络设备是否支持增强的信号传输,由于第一网络设备和第二网络设备之间可以通过信息交互来得知相邻网络设备是否支持增强的信号传输,因此,本申请中的方案具有较强的适应性,在不对现有组网系统进行较大改进的情况下,即可采用本申请中的方案。
在一种可能的设计中,第二网络设备向第一网络设备发送第二指示信息,包括:
所述第二网络设备向所述第一网络设备发送配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,第二网络设备向第一网络设备发送第二指示信息,包括:
所述第二网络设备向所述第一网络设备发送切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述第二网络设备向所述第一网络设备发送切换应答消息之前,还包括:
第二网络设备接收第一网络设备发送的切换请求消息,所述切换请求消息中包括终端的能力信息;
所述第二网络设备根据所述终端的能力信息,确定所述终端支持所述增强的信号传输后,启用所述增强的信号传输发送增强下行信号。
如此,第二网络设备接收到第一网络设备发送的切换请求消息后,可根据切换请求消息中包括的终端的能力信息来确定终端是否支持增强的信号传输,若支持,则启用增强的信号传输发送增强下行信号。也就是说,支持增强的信号传输的第二网络设备在确定支持增强的信号传输的终端将要切换过来后,启用增强的信号传输发送增强下行信号,能够有效避免第二网络设备始终发送增强下行信号而导致的过多占用无线资源的问题,且能够保证支持增强的信号传输的终端接收到增强下行信号,从而缩短终端接收下行信号的时延。
针对于上述第一方面、第二方面和第三方面,还可以包括:
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
在一种可能的设计中,所述增强下行信号为增强主同步信号PSS、增强辅同步信号SSS和增强物理广播信道PBCH中的任一种或任意组合。
第四方面,本申请提供一种通信实体,该通信实体可以包括:发送模块、接收模块和处理模块。该通信实体可以用于实现上述第一方面、第二方面和第三方面所示方法实施例中由终端或者第一网络设备或者第二网络设备所执行的流程步骤,下面分别进行介绍。
(1)通信实体用于实现第一方面所示方法实施例中由终端所执行的流程步骤,此时,通信实体可以为终端或终端内部的芯片,具体来说:
所述接收模块,用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相 邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述处理模块,用于根据所述第一指示信息确定第二网络设备是否支持增强的信号传输;
所述接收模块,还用于若所述处理模块确定第二网络设备支持所述增强的信号传输,则根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
在一种可能的设计中,所述发送模块,用于在所述接收模块接收第一网络设备发送的第一指示信息之前,向所述第一网络设备上报能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输。
(2)通信实体用于实现第二方面所示方法实施例中由第一网络设备所执行的流程步骤,此时,通信实体可以为第一网络设备或第一网络设备内部的芯片,具体来说:
所述接收模块,用于接收第二网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述处理模块,用于根据所述第二指示信息确定第二网络设备是否支持增强的信号传输;
所述发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输。
在一种可能的设计中,所述发送模块具体用于:
发送系统广播消息,所述系统广播消息中包括所述第一指示信息;或者,
发送无线资源控制连接重配置消息,所述无线资源控制连接重配置消息中包括所述第一指示信息。
在一种可能的设计中,所述接收模块具体用于:
接收所述第二网络设备发送的配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,所述接收模块具体用于:
接收所述第二网络设备发送的切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述接收模块还用于:在接收所述第二网络设备发送的切换应答消息之前,接收终端上报的能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输;
所述发送模块还用于:向所述第二网络设备发送切换请求消息,所述切换请求消息中包括所述能力信息。
(3)通信实体用于实现第三方面所示方法实施例中由第二网络设备所执行的流程步骤,此时,通信实体可以为第二网络设备或第二网络设备内部的芯片,具体来说:
所述处理模块,用于生成第二指示信息;所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述发送模块,用于向第一网络设备发送第二指示信息,所述第一网络设备为所述第 二网络设备的相邻网络设备。
在一种可能的设计中,所述发送模块具体用于:
向所述第一网络设备发送配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,所述发送模块具体用于:
向所述第一网络设备发送切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述接收模块用于:在所述发送模块向所述第一网络设备发送切换应答消息之前,接收第一网络设备发送的切换请求消息,所述切换请求消息中包括终端的能力信息;
所述处理模块还用于:根据所述终端的能力信息,确定所述终端支持所述增强的信号传输后,启用所述增强的信号传输通过所述发送模块发送增强下行信号。
本申请中,针对于上述(1)(2)(3),还可以包括如下内容:
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
在一种可能的设计中,所述增强下行信号为增强主同步信号PSS、增强辅同步信号SSS和增强物理广播信道PBCH中的任一种或任意组合。
第五方面,本申请提供一种通信实体,该通信实体具有上述第四方面所示的通信实体的功能。该通信实体可以包括:通信模块、处理器;
所述通信模块,用于与其他设备进行通信交互,所述通信模块可以为RF电路、WiFi模块、通信接口、蓝牙模块等。
所述处理器,用于实现第四方面中处理模块的功能。
可选的,通信实体还可以包括:所述存储器,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括指令。存储器可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器执行存储器所存放的应用程序,实现上述功能。
一种可能的方式中,通信模块、处理器和存储器可以通过所述总线相互连接;总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。
本申请还提供了一种计算机可读存储介质,所述存储介质存储有指令,当所述指令在计算机上运行时,使得计算机实现执行上述任意一种设计提供的通信方法。
本申请还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算 机执行上述任意一种设计提供的通信方法。
本申请还提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述任意一种设计提供的通信方法。
附图说明
图1为本申请适用的一种系统架构示意图;
图2为现有LTE FDD中PSS和SSS所在的时频资源示意图;
图3a为第一种可能的增强方式示意图;
图3b为第二种可能的增强方式示意图;
图3c为第三种可能的增强方式示意图;
图3d为第四种可能的增强方式示意图;
图4为本申请提供的一种通信方法对应的流程示意图;
图5为本申请提供的另一种通信方法对应的流程示意图;
图6a为增强PSS和增强SSS所占用的符号位置示意图;
图6b为扩展带宽均匀分布示意图;
图6c为扩展带宽不均匀分布示意图;
图6d为不同带宽的窄带示意图;
图7为本申请提供的一种通信实体的结构示意图;
图8为本申请提供的另一种通信实体的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请中的通信方法可适用于多种系统架构。图1为本申请适用的一种系统架构示意图。如图1所示,该系统架构中包括网络设备101、网络设备101的相邻网络设备103,以及接入网络设备101的一个或多个终端,比如图1所示的第一终端1021、第二终端1022、第三终端1023。网络设备101和相邻网络设备103可以互相通信,例如,网络设备101可以向相邻网络设备103发送配置请求消息,相邻网络设备103可根据配置请求消息进行响应;又例如,网络设备101确定接入网络设备101的某个终端(例如,第一终端)要切换至相邻网络设备103后,可向相邻网络设备103发送切换请求消息,相邻网络设备103可根据切换请求消息进行响应。
本发明实施例中,网络设备和相邻网络设备可以均为基站设备(Base Station,BS)。基站设备也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(Base Transceiver Station,BTS)和基站控制器(Base Stat ion Controller,BSC),3G网络中提供基站功能的设备包括节点B(NodeB)和无线网络控制器(Radio Network Controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在5G NR网络中提供基站功能的设备包括新无线节点B,集中单元(Centralized Unit,CU),分布式单元(Distributed Unit,DU)和新无线控制器,在WLAN中,提供基站功能的设备为接入点(Access Point,AP)。
终端可以为向用户提供语音和/或数据连通性的设备(Device),包括有线终端和无线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、计算机、平板电脑、个人数码助理(Personal Digital Assistant,缩写:PDA)、移动互联网设备(Mobile Internet Device,缩写:MID)、可穿戴设备和电子书阅读器(e-book reader)等。又如,无线终端也可以是机器类型通信(MTC)终端、物联网(Internet of Thing,IoT)终端、便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(Mobile Station)、接入点(Access Point)、或用户设备(User Equipment,简称UE)的一部分。
上述系统架构适用的通信系统包括但不限于:码分多址(Code Division Mu ltiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced),长期演进-机器间通信(Long Term Evolution-machine to machine communication,LTE M2M),以及未来演进的各种无线通信系统(例如,5G NR系统)。
现有技术中,以同步为例,终端要接入LTE小区,必先通过同步信道进行小区搜索,在物理层,小区搜索包括一系列同步阶段,以获得时间同步和频率同步。因此,在同步阶段,终端需要进行大量的盲搜索,尤其是对于窄带M2M通信等资源受限的场景,终端需要多次接收合并来实现提高同步信号接收成功率,从而导致过长的同步时间。
为解决这一问题,本申请提供的一种可能的思路为,网络设备增强下行传输,即由网络设备发送增强下行信号,该增强下行信号是通过增强的信号传输方式发送的,例如,网络设备在更大的带宽上发送下行信号,或者,网络设备在设定时间内重复多次发送下行信号,从而可以有效降低终端接收下行信号的时延。需要说明的是,这种方式需要在网络设备和终端均支持增强的信号传输的情况下来实现。
本申请中,网络设备发送的增强下行信号可以为一种或多种,以同步信号为例,例如,网络设备发送的增强下行同步信号可以为增强主同步信号(Primary Synchronization Signal,PSS)和增强辅同步信号(Secondary Synchronization Signal,PSS),如此,能够降低终端进行同步的时延;或者,网络设备发送的增强下行同步信号也可以为增强物理广播信道(Physical Broadcast Channel,PBCH),如此,能够降低终端获取系统消息的时延;又或者,网络设备发送的增强下行同步信号也可以包括增强PSS、增强SSS和增强PBCH,本申请对此不做具体限定。
下面以增强下行信号为增强PSS和增强SSS为例,对具体增强方式进行介绍。
为更清楚地说明本申请中的增强方式,首先对现有技术中的PSS和SSS进行介绍。
图2为现有LTE FDD中PSS和SSS所在的时频资源示意图。如图2所示,在LTE FDD中,PSS在每个系统帧(System Frame)的第0号和第5号子帧(subframe)的第一个时隙(Slot)的最后一个符号(Symbol)上发送,SSS在PSS所占符号的前一个符号上发送。PSS和SSS的发送周期为5ms。
在频域上,PSS和SSS均占用信道中心的72个子载波,其中,使用了带宽中心的62个子载波,两边各留了5个子载波用作保护频段。终端会在其支持的LTE带宽的中心频点附近去尝试接收PSS和SSS。
其中,PSS使用长度为63的ZC(Zadoff-Chu)序列(中间有DC子载波,所以实际上传输的长度为62),加上边界额外预留的用作保护频段的5个子载波,形成了占据带宽中心72个子载波的PSS。PSS有3个取值,对应三种不同的ZC序列,每种序列对应一个物理小区标识(Physical Cell Identifier,PCI)组内编号。某个小区的PSS对应的序列由该小区的PCI决定。如表1所示,不同的组内编号对应不同的根序列索引值(Root index u),进而决定了不同ZC序列。
表1:组内编号和根序列索引值对应示意表
组内编号 根序列索引值
0 25
1 29
2 34
终端接收PSS时,会分别使用上述三种根序列索引值来尝试解码PSS,直到其中某个根序列索引值成功解出PSS为止。这样,终端得到了该小区的组内编号,又由于PSS在时域上的位置是固定的,因此,终端可以得到该小区的5ms定时(Timing)。
SSS是由两个序列长度为31的M序列交叉级联得到的长度为62的序列,与PSS类似,加上边界额外预留的用作保护频段的5个子载波,形成了占据带宽中心72个子载波的SSS。一个系统帧中,前半帧的SSS交叉级联方式与后半帧的交叉级联方式相反。其中,PCI组内编号与168个SSS序列对应,此处不再具体列举。
LTE系统中,终端检测到PSS之后,就知道了SSS可能出现的位置。终端检测并成功解码出SSS,就确定了SSS序列的168种取值之一,进而也就确定了PCI编号。
根据上述内容可知,LTE同步过程中,先进行主同步过程,主同步过程中,终端用不同的三组本地ZC序列与接收的PSS序列做循环相关,由相关峰值确定PSS序列的组内编号,完成时域同步。随后进行辅同步,辅同步过程中,终端用168组不同的本地M序列与接收的SSS序列做循环相关,由相关峰值确定SSS序列的组内编号。于是,终端利用检测到的PSS序列和SSS序列进行同步。
基于现有技术中的PSS和SSS,本申请中提供的第一种可能的增强方式为在短时间内重复传输PSS和SSS。
图3a为第一种可能的增强方式示意图。具体来说,增强PSS包括现有技术中的PSS(称为传统PSS)和新增PSS。新增PSS可以在其它不影响现有技术中的参考信号的符号上和/或不影响现有技术中的控制信道的符号上发送,示意性地,例如,新增PSS在传统PSS之后的三个符号上连续发送。类似地,增强SSS包括现有技术中的SSS(称为传统SSS)和新增SSS。新增SSS可以在其它不影响现有技术中的参考信号的符号上和/或不影响现有技术中的控制信道的符号上发送,例如,新增SSS在传统SSS之前的三个符号上连续发送。具体参见图3a。
进一步地,考虑到一些不支持增强的信号传输的传统终端仍采用现有技术中的方式来检测PSS和SSS,为避免上述引入的新增PSS和新增SSS影响传统终端检测PSS和SSS, 本申请中,新增PSS根序列索引的取值不同于传统PSS根序列索引的取值,也就是说,新增PSS的ZC序列不同于现有技术中的三种ZC序列。由于PSS的序列是正交的,因此,传统终端不能检测到新增PSS。类似地,新增SSS的M序列可以不同于现有技术中的168种M序列。如此,传统终端无法检测出新增PSS和新增SSS,从而能够按照现有方式正常检测PSS和SSS,而支持增强的信号传输的终端则可以在一个子帧内检测到传统PSS和新增PSS,以及传统SSS和新增SSS,从而提高接收PSS和SSS的接收成功率,降低接收PSS和SSS的时延。新增SSS的M序列可以与现有技术中的168种M序列相同,由于终端在检测SSS时,已经检测到PSS,传统终端在检测到的PSS的前一个符号检测SSS,而支持增强的信号传输的终端在检测到的PSS的前若干个符号检测SSS,所以SSS所使用的序列可以是相同的。
举个例子,传统PSS序列是[101010],新增PSS序列是[010101],这两个序列对应元素相乘再相加,结果为0。传统终端使用[101010]来检测PSS,检测过程为:在每个符号上,传统终端使用其知道的序列来与符号上携带的序列进行元素相乘再相加运算,当结果大于一个预设门限,则认为检测到PSS,否则,认为没有PSS。而支持增强的信号传输的终端使用现有技术中的PSS序列以及新增PSS序列来检测,从而能够检测出传统PSS和新增PSS。
本申请中,为更加充分地利用短时间内重复的PSS,支持增强的信号传输的终端可使用检测窗来检测增强PSS。在支持增强的信号传输的终端知道增强PSS的发送模式的情况下,例如,增强PSS的发送模式为图3a中所示出的在连续四个符号上发送,且传统PSS在第一个符号上发送,新增PSS在后三个符号上发送,此时,支持增强的信号传输的终端在检测增强PSS时,可以连续四个符号进行检测,即终端在每四个符号的第一个符号上使用[101010]检测,在后面三个符号上使用[010101]检测,并且把每个符号上的检测结果相加,当检测结果最大时或大于一个门限时,四个被检测符号的第一个符号为原来的PSS,即传统PSS,后三个符号为新增PSS。
下面对使用检测窗进行检测的具体过程进行说明。举个例子,每个符号上的序列假设是一位数字,待检测的连续符号上的数字组成的序列为000011110000,其中1表示有PSS的符号,0表示没有PSS的符号,可知PSS是在连续四个符号发送的。假设检测序列中一个符号上也是一位数字,检测序列为1111,即检测窗。
检测过程,对待检测序列从左起,每四位检测一次,然后检测窗向右移一位。
第一次检测0×1+0×1+0×1+0×1=0(乘号左侧的数字是从待检测序列取出来的,右侧的数字是检测序列的数字)(第一次取最左侧的0000)
第二次检测0×1+0×1+0×1+1×1=1(第二次取0001)
第三次检测0×1+0×1+1×1+1×1=2(第三次取0011)
第四次检测0×1+1×1+1×1+1×1=3(第四次取0111)
第五次检测1×1+1×1+1×1+1×1=4(第五次取1111)
第六次检测1×1+1×1+1×1+0×1=3(第六次取1110)
第七次检测1×1+1×1+0×1+0×1=2(第七次取1100)
第八次检测1×1+0×1+0×1+0×1=1(第八次取1000)
第九次检测0×1+0×1+0×1+0×1=0(第九次取0000)
根据上述可知,第五次检测结果最大,因此,第五次检测的四个被检测符号的第一个 符号为原来的PSS。
上述说明只是举例,传统PSS和新增PSS可以是不连续分布在子帧中的,这时的检测窗需要与传统PSS和新增PSS的分布对应。
本申请提供的第二种可能的增强方式为扩展PSS和SSS的发送带宽。这时,扩展的PSS和SSS可以使用传统PSS和SSS的序列,也可以使用新的序列。因为传统终端总是在中间6PRB上检测,支持增强信号传输的UE在更大的带宽上检测。
图3b和图3c为第二种可能的增强方式示意图。具体来说,传统PSS和传统SSS是在中心6个物理资源块(Physical Resource Block,PRB)(72个子载波)上发送的,本申请中,增强PSS和增强SSS可在传统PSS所占用带宽的基础上进行扩展,例如,增强PSS和增强SSS可以在中心12个PRB上来发送。如此,传统终端仍可以使用原来的带宽来检测传统PSS和传统SSS,而支持增强的信号传输的终端可以使用更宽的带宽来检测增强PSS和增强SSS,从而有效提高接收PSS和SSS的接收成功率,降低接收PSS和SSS的时延。
需要说明的是,本申请中增强PSS和增强SSS在传统PSS所占用带宽的基础上进行扩展时,可以对称扩展(如图3b所示,扩展的带宽L1等于带宽L2),也可以不对称扩展(如图3c所示,扩展的带宽L1不等于带宽L2),具体不做限定。
本申请提供的第三种可能的增强方式为在短时间内重复传输PSS和SSS,且扩展PSS和SSS的发送带宽,即上述第一种和第二种可能的增强方式的组合。
图3d为第三种可能的增强方式示意图。具体介绍参见上述第一种和第二种可能的增强方式,此处不再赘述。
上述内容针对增强下行信号进行了具体介绍。实际应用中,有些网络设备支持增强的信号传输,则可以发送增强下行信号,或者也可以采用现有方式发送下行信号,而有些网络设备不支持增强的信号传输,则仍需采用现有方式发送下行信号。同样地,有些终端支持增强的信号传输,则可以采用本申请中的检测方式检测增强下行信号,或者也可以采用现有方式检测下行信号,而有些终端不支持增强的信号传输,则仍需采用现有方式检测下行信号。基于此,支持增强的信号传输的网络设备如何确定是否发送增强下行信号,以及支持增强的信号传输的终端如何确定是否采用本申请中的检测方法检测增强下行信号,仍是进一步需要解决的问题。
基于此,图4为本申请提供的一种通信方法对应的流程示意图,如图4所示,包括:
步骤401,第一网络设备向第二网络设备发送配置请求消息,第二网络设备为第一网络设备的相邻网络设备;该步骤为可选步骤。
步骤402,第二网络设备接收配置请求消息,并向第一网络设备发送第二指示信息,第二指示信息用于指示第二网络设备是否支持增强的信号传输;若没有步骤1,则第二网络设备不需要接收配置请求消息,即第二网络设备直接向第一网络设备发送第二指示信息;
步骤403,第一网络设备接收第二网络设备发送的第二指示信息;
步骤404,第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输;
步骤405,终端接收第一网络设备发送的第一指示信息;
步骤406,若所述第二网络设备支持所述增强的信号传输,则所述终端根据所述第一 指示信息,接收所述第二网络设备发送的增强下行信号。
本申请中,第一网络设备和第二网络设备互为相邻网络设备。
具体来说,步骤404中,第一网络设备可以通过系统广播消息或无线资源控制连接重配置消息(Radio Resource Control Connection Reconfiguration)发送第一指示信息,具体来说,第一网络设备发送系统广播消息(System Information,SI),系统广播消息中包括第一指示信息;或者,第一网络设备发送无线资源控制连接重配置消息,无线资源控制连接重配置消息中包括第一指示信息。
本申请中,第一网络设备通过系统广播消息或无线资源控制连接重配置消息发送第一指示信息,而无需再额外增加一条消息来发送第一指示信息,能够有效节省信令开销。
步骤405中,终端为接入第一网络设备的终端,或者,终端为驻留在第一网络设备上的终端,第一网络设备可以为支持增强的信号传输的网络设备,或者,也可以是不支持增强的信号传输的网络设备。终端开机后,由于无法得知其当前所在的小区(即第一网络设备)是否支持增强的信号传输,因此,终端开始采用的检测方式可能与网络设备支持的下行信号发送方式不一致,例如,网络设备使用增强的下行信号发送方式来发送下行信号,终端使用传统的检测方式,这时终端需要进行很长时间的检测,才能够检测到PSS和SSS,这时并没有利用增强的下行信号;又例如,网络设备使用传统的下行信号发送方式,而终端使用增强的下行信号检测方法,则终端不能检测到PSS和SSS,于是终端再使用传统检测方法进行检测,这样就增加了终端检测PSS的时延。为解决上述问题,终端可以通过系统广播消息或无线资源控制连接重配置消息接收第一指示信息,并得知第二网络设备是否支持增强的信号传输,进而使用相应的检测方法来检测PSS,避免不必要的检测。
步骤406中,若终端支持增强的信号传输,且终端根据第一指示信息得知第二网络设备支持增强的信号传输,则当终端需要检测其他网络设备发送的同步信号时,终端可根据第一指示信息,接收所述第二网络设备发送的增强下行信号,例如,接收第二网络设备发送的增强PSS和增强SSS,并与第二网络设备完成同步。此种场景下,若网络设备支持增强的信号传输,则该网络设备发送的下行信号始终为增强下行信号,因此,第二网络设备始终发送增强下行信号。
若终端支持增强的信号传输,终端根据第一指示信息得知第二网络设备不支持增强的信号传输,则终端可采用现有方式接收所述第二网络设备发送的下行信号。
若终端不支持增强的信号传输,则终端可直接采用现有方式接收所述第二网络设备发送的下行信号。
根据上述内容可知,第一网络设备通过通知终端其相邻网络设备是否支持增强的信号传输,从而使得终端能够使用相应的方式来接收第二网络设备发送的下行信号,例如,同步信号,有效缩短了终端与第二网络设备进行同步的时间,或有效缩短了终端获取第二网络设备的系统信息的时间。
以上方法,还可以用于PBCH,即第一指示信息指示第二网络设备是否支持增强的PBCH。
图5为本申请提供的另一种通信方法对应的流程示意图,如图5所示,包括:
步骤501,终端向第一网络设备上报能力信息,所述能力信息用于指示所述终端是否支持增强的信号传输;该步骤为可选步骤,终端可以通过其他方式向第一网络设备指示该能力信息;无论通过什么方式,终端需要指示给第一网络设备该能力信息。
步骤502,第一网络设备向第二网络设备发送切换请求消息,切换请求消息中包括终 端的能力信息,第二网络设备为第一网络设备的相邻网络设备;
步骤503,第二网络设备接收切换请求消息,若第二网络设备支持增强的信号传输,且根据能力信息确定终端支持增强的信号传输,则第二网络设备可启用增强的信号传输发送增强下行信号;若第二网络设备支持增强的信号传输,根据能力信息确定终端不支持增强的信号传输,则第二网络设备可继续采用现有方式发送下行信号;若第二网络设备不支持增强的信号传输,则采用现有方式发送下行信号。
此种场景下(区别上述图4所描述的场景),若网络设备支持增强的信号传输,则该网络设备在一定条件的触发下(例如,支持增强的信号传输的终端将要切换过来),启用增强的信号传输发送增强下行信号,否则,仍采用现有方式发送下行信号。因此,上述第二网络设备在接收到切换请求消息之前,采用现有方式发送下行信号,而在确定支持增强的信号传输的终端将要切换过来后,启用增强的信号传输发送增强下行信号。
步骤504,第二网络设备向第一网络设备发送第二指示信息,第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;
步骤505,第一网络设备接收第二网络设备发送的第二指示信息;
步骤506,第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输;
步骤507,终端接收第一网络设备发送的第一指示信息;
步骤508,若所述第二网络设备支持所述增强的信号传输,则所述终端根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
根据上述内容可知,当终端从一个网络设备切换至另一个网络设备(目标网络设备)时,目标网络设备可根据终端的能力信息来确定是否启用增强的信号传输发送增强下行信号,一方面,能够有效避免支持增强的信号传输的网络设备始终发送增强下行信号而导致的过多占用无线资源的问题,另一方面,能够保证支持增强的信号传输的终端接收到增强下行信号,从而缩短终端进行同步的时间,或有效缩短终端获取第二网络设备的系统信息的时间。
进一步地,针对于上述图4和图5所示出的方法,在一种可能的场景中,支持增强的信号传输的网络设备和终端可以预先约定好增强的信号传输,例如,预先约定好增强的信号传输采用图3a-图3d中的任一种方式,如此,若第二网络设备支持增强的信号传输,则第一指示信息包括支持增强的信号传输的标识,该标识可以为比特“1”,终端接收到该标识后,可根据预先约定好的增强的信号传输,接收第二网络设备发送的增强下行信号;若第二网络设备不支持增强的信号传输,则第一指示信息包括不支持增强的信号传输的标识,该标识可以为比特“0”,终端接收到该标识后,可采用现有方式接收第二网络设备发送的下行信号。
同样地,若第二网络设备支持增强的信号传输,则第二网络设备发送给第一网络设备的第二指示信息可以包括支持增强的信号传输的标识;若第二网络设备不支持增强的信号传输,则第二指示信息可以包括不支持增强的信号传输的标识。
在另一种可能的场景中,若第二网络设备支持增强的信号传输,则第二网络设备可通过第二指示信息通知第一网络设备其发送增强下行信号的配置信息,进而由第一网络设备通过第一指示信息通知终端第二网络设备发送增强下行信号的配置信息。此时,第二指示 信息和/或第一指示信息可以只包含第二网络设备发送增强下行信号的配置信息,这样也就隐含地指示了第二网络设备支持增强的下行传输,而不需要显示的指示信息来指示第二网络设备支持增强的下行传输。本申请中,对第一指示信息包括的内容不做具体限定,能够实现通知终端第二网络设备发送增强下行信号的配置信息的目的即可。
具体来说,第一指示信息包括的内容可以为以下任意一种或任意组合:
(1)所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度或配置的一个时间长度或预设的一个时间长度。以增强下行信号为增强PSS、设定时间长度为一个子帧的长度为例,若增强PSS中的新增PSS在一个子帧内的一个符号上发送,则增强PSS占用了一个子帧内的两个符号,其在一个子帧内的重复次数为2;若增强PSS中的新增PSS在一个子帧内的两个符号上发送,则增强PSS占用了一个子帧内三个符号,其在一个子帧内的重复次数为3;若增强PSS中的新增PSS在一个子帧内的三个符号上发送(见图3a),则增强PSS占用了一个子帧内四个符号,其在一个子帧内的重复次数为4。
本申请中,第二网络设备发送的增强下行信号在设定时间长度内的重复次数也可以通过增强级别来表示,例如,增强级别0表示重复发送次数为2,增强级别1表示重复发送次数为4,等等。还可以是,增强级别0表示重复发送次数为1、2,增强级别1表示重复发送次数为3、4,具体使用某一个增强级别下的哪一个重复发送次数,可以进一步指定。某一个增强级别中对应的重复发送次数的值的个数可以是一个,也可以是多个,此处不作限定。
(2)所述第二网络设备发送所述增强下行信号的时间信息;所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号;即第二网络设备发送增强下行信号的具体符号编号,例如,第二网络设备除了发送传统PSS外,还发送新增PSS,且新增PSS在传统PSS所在时隙的下一个时隙的0号符号和1号符号发送,此时所述时间信息即符号编号(也就是0号符号和1号符号)。上述时间信息可以是通过其他方式推导出来的,例如,新增PSS在传统PSS之后两个符号上发送,这时也能够推导出符号编号;这些都在本发明的保护之内,只要能确切确定出该时间信息即可。
所述时间信息,还可以是偏置值(Offset),所述偏置值为增强下行信号发送位置与传统下行信号发送位置的偏移量,例如,传统下行信号在6号符号上发送,增强下行信号在下一个时隙的1号符号上发送,则偏置值为2。
具体来说,第二网络设备发送所述增强下行信号的时间信息用于表明第二网络设备发送增强下行信号是在连续的符号上发送,还是在间隔的符号上发送。以增强下行信号为增强PSS为例,若增强PSS在一个子帧内的不同符号上发送,则第一指示信息中可以仅包括符号编号,如此,终端可根据符号编号得知增强PSS所占用的符号为连续的符号或者为间隔的符号。例如情况1,第一指示信息包括的符号编号为符号6、符号0、符号1和符号2,则终端可得知增强PSS所占用的符号为连续的四个符号,具体参见图3a所示;例如情况2,第一指示信息包括的符号编号为符号6、符号1和符号2,则终端可得知增强PSS所占用的符号为不连续的三个符号,且发送PSS的第一个符号和第二个符号之间的间隔为1个符号,发送PSS的第二个符号和第三个符号之间无间隔。
若增强PSS在两个或两个以上子帧内的不同符号上发送,则第一指示信息中可以包括子帧号和符号编号,如此,终端可根据子帧号和符号编号得知增强PSS所占用的符号为连 续的符号或者为间隔的符号。例如图6a,以PSS为例(SSS和PBCH是类似的),传统PSS在0号子帧和5号子帧的第一个时隙的6号符号上发送,新增的PSS在1号子帧和6号子帧的第一个时隙的6号符号上发送,此时,时间信息的子帧号为1和6,符号编号为6。其中符号编号的另一个规则为,在一个子帧内,对符号从0编号到13,这时不需要使用时隙的概念。
本申请中,第二网络设备发送所述增强下行信号的时间信息也可以通过发送模式(Pattern)来表示,其中,发送模式可以理解为具体发送增强下行信号的图案(Mapping),即在哪些时间位置上发送增强下行信号。如图6a所示,以PSS为例,在1号和6号子帧上发送了增强PSS,具体在哪个符号,可以由一个比特图(Bitmap)来表示,即00000010000000,即比特图中的每一bit表示一个符号的状态,即这个符号是否发送增强的PSS,“1”表示发送增强PSS,“0”表示不发送增强PSS,“0”、“1”的表示意义可以互换。
(3)所述第二网络设备发送所述增强下行信号的频率信息;所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
具体地,该频率信息可以用于指示实际发送增强下行信号的带宽,若扩展的带宽均匀的分布于中心频点的两侧,则不需要携带其他信息,如图6b所示,此时频率信息可以是12个RB,或12个PRB;若不均匀分布,则还可以携带一个指示信息,用于指示中心频点某一侧的扩展带宽,如图6c所示,此时频率信息包含15个RB和6个RB,即总带宽为15个RB,一侧扩展6个RB,则另一侧扩展3个RB。
或者,该频率信息用于指示中心频率两侧扩展的带宽,若均匀分布,则只需要一个频率信息,如图6b所示,频率信息为3个RB,否则,需要指示两侧的扩展带宽,如图6c所示,频率信息为6个RB和3个RB。
对于窄带索引,如图6d所示,不同的带宽,按着6个PRB,分成不同的窄带,例如20MHz带宽,共分成16个窄带,从左向右依次索引为0、1、……、14、15,此时频率信息可以是第二网络设备发送增强下行信号的窄带索引,即第二网络设备在哪个窄带上发送增强的下行信号。
对于频率,不同网络设备可能工作在不同的频率上,第二网络设备需要指示出发送所述增强下行信号的频率信息,例如载波(Carrier)或频率(Frequency)。
考虑到本申请所描述的上述方法可以应用于窄带物联网(Narrow Band Internet of Things,NB-IoT)中,若应用于NB-IoT中,则第一指示信息可以包括第二网络设备发送增强下行信号的资源单元位置、频率和窄带索引中的至少一项,从而便于终端在相应的资源单元位置、频率或窄带上接收增强下行信号。
需要说明的是,第一指示信息中包括上述内容时,其隐性指示了第二网络设备支持增强的信号传输,如此,终端可根据第一指示信息包括的内容得知第二网络设备支持增强的信号传输,并根据第一指示信息包括的内容接收第二网络设备发送的增强下行信号。
同样地,若第二网络设备支持增强的信号传输,则第二网络设备发送给第一网络设备的第二指示信息也可以包括上述三项内容中的任一项或任意组合。具体参见上述关于第一指示信息的介绍。
本申请在上述图4或图5所描述的整体流程中,第一指示信息包括的内容可以与第二指示信息包括的内容完全相同,例如,第一网络设备接收到的第二网络设备发送的第二指示信息包括第二网络设备发送的增强下行信号在设定时间长度内的重复次数,相应地,第 一网络设备发送给终端的第一指示信息中也包括第二网络设备发送的增强下行信号在设定时间长度内的重复次数。或者,第一指示信息包括的内容也可以与第二指示信息包括的内容不相同,例如,第一网络设备接收到的第二网络设备发送的第二指示信息包括第二网络设备发送的增强下行信号在设定时间长度内的重复次数,而第一网络设备发送给终端的第一指示信息中包括第二网络设备发送所述增强下行信号的时间信息。本申请对此不做具体限定。
基于以上实施例,本申请提供一种通信实体,参阅图7所示,通信实体700可以包括:发送模块701、接收模块702和处理模块703。该通信实体可以用于实现图4和图5所示方法实施例中由终端或者第一网络设备或者第二网络设备所执行的流程步骤,下面分别进行介绍。
(1)通信实体700用于实现图4和图5所示方法实施例中由终端所执行的流程步骤,此时,通信实体700可以为终端或终端内部的芯片,具体来说:
所述接收模块702,用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述处理模块703,用于根据所述第一指示信息确定第二网络设备是否支持增强的信号传输;
所述接收模块702,还用于若所述处理模块703确定第二网络设备支持所述增强的信号传输,则根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
在一种可能的设计中,所述发送模块701,用于在所述接收模块702接收第一网络设备发送的第一指示信息之前,向所述第一网络设备上报能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输。
(2)通信实体700用于实现图4和图5所示方法实施例中由第一网络设备所执行的流程步骤,此时,通信实体700可以为第一网络设备或第一网络设备内部的芯片,具体来说:
所述接收模块702,用于接收第二网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述处理模块703,用于根据所述第二指示信息确定第二网络设备是否支持增强的信号传输;
所述发送模块701,用于发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输。
在一种可能的设计中,所述发送模块701具体用于:
发送系统广播消息,所述系统广播消息中包括所述第一指示信息;或者,
发送无线资源控制连接重配置消息,所述无线资源控制连接重配置消息中包括所述第一指示信息。
在一种可能的设计中,所述接收模块702具体用于:
接收所述第二网络设备发送的配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,所述接收模块702具体用于:
接收所述第二网络设备发送的切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述发送接收模块还用于:在接收所述第二网络设备发送的切换应答消息之前,接收终端上报的能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输;
所述发送模块701还用于:向所述第二网络设备发送切换请求消息,所述切换请求消息中包括所述能力信息。
(3)通信实体700用于实现图4和图5所示方法实施例中由第二网络设备所执行的流程步骤,此时,通信实体700可以为第二网络设备或第二网络设备内部的芯片,具体来说:
所述处理模块703,用于生成第二指示信息;所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
所述发送模块701,用于向第一网络设备发送第二指示信息,所述第一网络设备为所述第二网络设备的相邻网络设备。
在一种可能的设计中,所述发送模块701具体用于:
向所述第一网络设备发送配置更新消息,所述配置更新消息中包括所述第二指示信息。
在一种可能的设计中,所述发送模块701具体用于:
向所述第一网络设备发送切换应答消息,所述切换应答消息中包括所述第二指示信息。
在一种可能的设计中,所述接收模块702用于:在所述发送模块701向所述第一网络设备发送切换应答消息之前,接收第一网络设备发送的切换请求消息,所述切换请求消息中包括终端的能力信息;
所述处理模块703还用于:根据所述终端的能力信息,确定所述终端支持所述增强的信号传输后,启用所述增强的信号传输通过所述发送模块701发送增强下行信号。
本申请中,针对于上述(1)(2)(3),还可以包括如下内容:
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
在一种可能的设计中,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
在一种可能的设计中,所述增强下行信号为增强主同步信号PSS、增强辅同步信号SSS 和增强物理广播信道PBCH中的任一种或任意组合。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请提供一种通信实体,该通信实体具有如图7所示的通信实体7的功能。参阅图8所示,通信实体800可以包括:通信模块801、处理器802;
所述通信模块801,用于与其他设备进行通信交互,所述通信模块801可以为RF电路、WiFi模块、通信接口、蓝牙模块等。
所述处理器802,用于实现如图7中处理模块703的功能。
可选的,通信实体800还可以包括:所述存储器804,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括指令。存储器804可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器802执行存储器804所存放的应用程序,实现上述功能。
一种可能的方式中,通信模块801、处理器802和存储器804可以通过所述总线803相互连接;总线803可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介 质(例如固态硬盘Solid State Disk(SSD))等。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (38)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    若所述第二网络设备支持所述增强的信号传输,则所述终端根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述终端接收第一网络设备发送的第一指示信息之前,还包括:
    所述终端向所述第一网络设备上报能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输。
  3. 根据权利要求1或2所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
  4. 根据权利要求1或2所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
    所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
  5. 根据权利要求1或2所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
    所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
  6. 一种通信方法,其特征在于,所述方法包括:
    第一网络设备接收第二网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    所述第一网络设备向终端发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网络设备发送所述第一指示信息,包括:
    所述第一网络设备发送系统广播消息,所述系统广播消息中包括所述第一指示信息;或者,
    所述第一网络设备发送无线资源控制连接重配置消息,所述无线资源控制连接重配置消息中包括所述第一指示信息。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一网络设备接收所述第二网络设备发送的第二指示信息,包括:
    所述第一网络设备接收所述第二网络设备发送的配置更新消息,所述配置更新消息中包括所述第二指示信息。
  9. 根据权利要求6或7所述的方法,其特征在于,所述第一网络设备接收所述第二网络设备发送的第二指示信息,包括:
    所述第一网络设备接收所述第二网络设备发送的切换应答消息,所述切换应答消息中包括所述第二指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述第一网络设备接收所述第二网络设备发送的切换应答消息之前,还包括:
    所述第一网络设备接收终端上报的能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输;
    所述第一网络设备向所述第二网络设备发送切换请求消息,所述切换请求消息中包括所述能力信息。
  11. 一种通信方法,其特征在于,所述方法包括:
    第二网络设备生成第二指示信息;所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    所述第二网络设备向第一网络设备发送第二指示信息,所述第一网络设备为所述第二网络设备的相邻网络设备。
  12. 根据权利要求11所述的方法,其特征在于,第二网络设备向第一网络设备发送第二指示信息,包括:
    所述第二网络设备向所述第一网络设备发送配置更新消息,所述配置更新消息中包括所述第二指示信息。
  13. 根据权利要求11所述的方法,其特征在于,第二网络设备向第一网络设备发送第二指示信息,包括:
    所述第二网络设备向所述第一网络设备发送切换应答消息,所述切换应答消息中包括所述第二指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第二网络设备向所述第一网络设备发送切换应答消息之前,还包括:
    第二网络设备接收第一网络设备发送的切换请求消息,所述切换请求消息中包括终端的能力信息;
    所述第二网络设备根据所述终端的能力信息,确定所述终端支持所述增强的信号传输后,启用所述增强的信号传输发送增强下行信号。
  15. 根据权利要求6至14中任一项所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
  16. 根据权利要求6至14中任一项所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
    所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
  17. 根据权利要求6至14中任一项所述的方法,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
    所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述增强下行信号为增强主同步信号PSS、增强辅同步信号SSS和增强物理广播信道PBCH中的任一种或任意组合。
  19. 一种通信实体,其特征在于,所述通信实体包括:接收模块和处理模块;
    所述接收模块,用于接收第一网络设备发送的第一指示信息,所述第一指示信息用于指示第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    所述处理模块,用于根据所述第一指示信息确定所述第二网络设备是否支持增强的信号传输;
    所述接收模块,还用于若所述处理模块确定第二网络设备支持所述增强的信号传输,则根据所述第一指示信息,接收所述第二网络设备发送的增强下行信号。
  20. 根据权利要求19所述的通信实体,其特征在于,所述通信实体还包括:发送模块;
    所述发送模块,用于在所述接收模块接收第一网络设备发送的第一指示信息之前,向所述第一网络设备上报能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输。
  21. 根据权利要求19或20所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
  22. 根据权利要求19或20所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
    所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
  23. 根据权利要求19或20所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第一指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
    所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
  24. 一种通信实体,其特征在于,所述通信实体包括:发送模块、接收模块和处理模块;
    所述接收模块,用于接收第二网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述第二网络设备为所述第一网络设备的相邻网络设备;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    所述处理模块,用于根据所述第二指示信息确定第二网络设备是否支持增强的信号传 输;
    所述发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述第二网络设备是否支持增强的信号传输。
  25. 根据权利要求24所述的通信实体,其特征在于,所述发送模块具体用于:
    发送系统广播消息,所述系统广播消息中包括所述第一指示信息;或者,
    发送无线资源控制连接重配置消息,所述无线资源控制连接重配置消息中包括所述第一指示信息。
  26. 根据权利要求24或25所述的通信实体,其特征在于,所述接收模块具体用于:
    接收所述第二网络设备发送的配置更新消息,所述配置更新消息中包括所述第二指示信息。
  27. 根据权利要求24或25所述的通信实体,其特征在于,所述接收模块具体用于:
    接收所述第二网络设备发送的切换应答消息,所述切换应答消息中包括所述第二指示信息。
  28. 根据权利要求27所述的通信实体,其特征在于,所述接收模块还用于:在接收所述第二网络设备发送的切换应答消息之前,接收终端上报的能力信息,所述能力信息用于指示所述终端支持所述增强的信号传输;
    所述发送模块还用于:向所述第二网络设备发送切换请求消息,所述切换请求消息中包括所述能力信息。
  29. 一种通信实体,其特征在于,所述通信实体包括:发送模块和处理模块;
    所述处理模块,用于生成第二指示信息;所述第二指示信息用于指示所述第二网络设备是否支持增强的信号传输;所述增强的信号传输是指:信号在设定时间长度内重复传输,和/或,信号在系统带宽的N个子载波上传输,N大于72;
    所述发送模块,用于向第一网络设备发送第二指示信息,所述第一网络设备为所述第二网络设备的相邻网络设备。
  30. 根据权利要求29所述的通信实体,其特征在于,所述发送模块具体用于:
    向所述第一网络设备发送配置更新消息,所述配置更新消息中包括所述第二指示信息。
  31. 根据权利要求29所述的通信实体,其特征在于,所述发送模块具体用于:
    向所述第一网络设备发送切换应答消息,所述切换应答消息中包括所述第二指示信息。
  32. 根据权利要求31所述的通信实体,其特征在于,所述通信实体还包括:接收模块;
    所述接收模块用于:在所述发送模块向所述第一网络设备发送切换应答消息之前,接收第一网络设备发送的切换请求消息,所述切换请求消息中包括终端的能力信息;
    所述处理模块还用于:根据所述终端的能力信息,确定所述终端支持所述增强的信号传输后,启用所述增强的信号传输通过所述发送模块发送增强下行信号。
  33. 根据权利要求24至32中任一项所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送的增强下行信号在设定时间长度内的重复次数,所述设定时间长度是指一个时隙的长度或一个子帧的长度或一个系统帧的长度。
  34. 根据权利要求24至32中任一项所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的时间信息;
    所述时间信息包括符号编号,或者,所述时间信息包括子帧号和符号编号。
  35. 根据权利要求24至32中任一项所述的通信实体,其特征在于,若所述第二网络设备支持所述增强的信号传输,则所述第二指示信息包括所述第二网络设备发送所述增强下行信号的频率信息;
    所述频率信息包括以下至少一项:资源单元位置、窄带索引、频率。
  36. 根据权利要求19至35中任一项所述的通信实体,其特征在于,所述增强下行信号为增强主同步信号PSS、增强辅同步信号SSS和增强物理广播信道PBCH中的任一种或任意组合。
  37. 一种计算机可读存储介质,其特征在于,所述存储介质存储有指令,当所述指令在计算机上运行时,使得计算机实现执行权利要求1-18任一项所述的方法。
  38. 一种通信实体,其特征在于,所述通信实体包括处理器和存储器,所述存储器存储有代码,所述处理器调用所述代码,以实现权利要求1-18任一项所述的方法。
PCT/CN2017/090997 2017-06-30 2017-06-30 一种通信方法及装置 WO2019000364A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019572519A JP2020526130A (ja) 2017-06-30 2017-06-30 通信方法及び装置
CN201780004787.0A CN109429565B (zh) 2017-06-30 2017-06-30 一种通信方法及装置
BR112019027849-4A BR112019027849A2 (pt) 2017-06-30 2017-06-30 método de comunicação, entidade de comunicações e meio de armazenamento legível por computador
EP17915678.1A EP3637849A4 (en) 2017-06-30 2017-06-30 COMMUNICATION METHOD AND DEVICE
CA3065401A CA3065401A1 (en) 2017-06-30 2017-06-30 Communication method and apparatus
PCT/CN2017/090997 WO2019000364A1 (zh) 2017-06-30 2017-06-30 一种通信方法及装置
US16/703,576 US11330502B2 (en) 2017-06-30 2019-12-04 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/090997 WO2019000364A1 (zh) 2017-06-30 2017-06-30 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/703,576 Continuation US11330502B2 (en) 2017-06-30 2019-12-04 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019000364A1 true WO2019000364A1 (zh) 2019-01-03

Family

ID=64740901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090997 WO2019000364A1 (zh) 2017-06-30 2017-06-30 一种通信方法及装置

Country Status (7)

Country Link
US (1) US11330502B2 (zh)
EP (1) EP3637849A4 (zh)
JP (1) JP2020526130A (zh)
CN (1) CN109429565B (zh)
BR (1) BR112019027849A2 (zh)
CA (1) CA3065401A1 (zh)
WO (1) WO2019000364A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3065401A1 (en) * 2017-06-30 2019-01-30 Huawei Technologies Co., Ltd. Communication method and apparatus
US11137755B2 (en) * 2018-01-10 2021-10-05 Qualcomm Incorporated Aerial vehicle identification based on session connectivity
US11838807B2 (en) * 2020-08-06 2023-12-05 Samsung Electronics Co., Ltd. Signaling and trigger mechanisms for handover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046339A1 (fr) * 2006-10-13 2008-04-24 Huawei Technologies Co., Ltd. Procédé, système et appareil pour déterminer le mode de portée
CN102932835A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种基站切换方法、基站、用户设备和通信系统
CN103581960A (zh) * 2012-07-27 2014-02-12 中兴通讯股份有限公司 能力指示信息处理方法及装置
CN106712913A (zh) * 2015-11-13 2017-05-24 上海朗帛通信技术有限公司 一种窄带通信的方法和装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2437406A4 (en) * 2009-05-26 2014-12-31 Lg Electronics Inc METHOD AND APPARATUS FOR ACQUIRING ANTENNA INFORMATION IN A WIRELESS COMMUNICATION SYSTEM
JP5321410B2 (ja) * 2009-10-27 2013-10-23 日本電気株式会社 移動通信システム、基地局装置、無線パラメータの調整方法、情報送信方法、及びプログラム
CN102595533A (zh) * 2011-01-07 2012-07-18 华为技术有限公司 对发生切换的终端进行调度的方法、切换的方法和基站
CN103533587B (zh) * 2012-07-06 2017-04-19 华为终端有限公司 终端在基站间切换的方法、设备和系统
EP2880905B1 (en) * 2012-08-03 2017-04-12 Telefonaktiebolaget LM Ericsson (publ) Availability of modes of communication
US10142962B2 (en) * 2012-10-05 2018-11-27 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (MTC) devices
GB2512127A (en) * 2013-03-21 2014-09-24 Sony Corp Communications device and method
WO2014183278A1 (zh) * 2013-05-15 2014-11-20 华为技术有限公司 信号传输方法、装置、通信系统、终端和基站
US9924376B2 (en) * 2013-06-21 2018-03-20 Lg Electronics Inc. Method for enhancing coverage of user equipment and an apparatus using the same
CN104348580A (zh) * 2013-08-06 2015-02-11 夏普株式会社 下行物理信道的发送和接收方法以及基站和用户设备
EP3033842B1 (en) * 2013-08-14 2017-08-23 LG Electronics Inc. Method and apparatus for proximity-based service
CN104519455B (zh) * 2013-09-27 2018-03-27 电信科学技术研究院 一种传输pbch的方法、系统和设备
JP6551236B2 (ja) * 2014-01-30 2019-07-31 日本電気株式会社 Machine−to−machine(M2M)端末、基地局、方法、及びプログラム
EP3595349A1 (en) * 2014-01-30 2020-01-15 NEC Corporation Base station, machine-to-machine (m2m) terminal, method, and computer readable medium
EP3180952A1 (en) * 2014-08-15 2017-06-21 Interdigital Patent Holdings, Inc. Coverage enhancement for time division duplex and enhanced interference mitigation and traffic adaptation in long term evolution systems
US10772021B2 (en) * 2014-12-05 2020-09-08 Qualcomm Incorporated Low latency and/or enhanced component carrier discovery for services and handover
KR102360211B1 (ko) * 2015-01-21 2022-02-08 삼성전자주식회사 메모리 시스템의 동작 방법
US10517032B2 (en) * 2015-03-25 2019-12-24 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
US10292143B2 (en) * 2015-04-09 2019-05-14 Intel IP Corporation Methods, apparatuses, and systems for enhancement of evolved physical downlink control channel for machine type communications
JP6590939B2 (ja) * 2015-04-10 2019-10-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信方法、無線通信装置および集積回路
US11051193B2 (en) * 2015-07-22 2021-06-29 Qualcomm Incorporated Configurable measurement gap and window for machine type communications
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
CN106572533B (zh) * 2015-10-10 2020-09-11 中兴通讯股份有限公司 寻呼处理方法及装置
CN106899923A (zh) * 2015-12-18 2017-06-27 阿尔卡特朗讯 一种用于实现mtc组消息传送的方法与设备
US20170273011A1 (en) * 2016-03-16 2017-09-21 Qualcomm Incorporated Assisted cell acquisition for low cost wireless devices
US20190349872A1 (en) * 2016-09-29 2019-11-14 Ntt Docomo, Inc. User terminal and radio communication method
US20190372719A1 (en) * 2017-03-07 2019-12-05 Intel IP Corporation Design of downlink control information for wideband coverage enhancement
US10411795B2 (en) * 2017-03-14 2019-09-10 Qualcomm Incorporated Coverage enhancement mode switching for wireless communications using shared radio frequency spectrum
US10542505B2 (en) * 2017-03-24 2020-01-21 Samsung Electronics Co., Ltd. Enhanced synchronization signals for coverage enhancements of low cost user equipment
CA3065401A1 (en) * 2017-06-30 2019-01-30 Huawei Technologies Co., Ltd. Communication method and apparatus
JP7024064B2 (ja) * 2018-04-16 2022-02-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける物理ダウンリンク共有チャネルを送受信するための方法、及びこれを支援する装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046339A1 (fr) * 2006-10-13 2008-04-24 Huawei Technologies Co., Ltd. Procédé, système et appareil pour déterminer le mode de portée
CN102932835A (zh) * 2011-08-11 2013-02-13 华为技术有限公司 一种基站切换方法、基站、用户设备和通信系统
CN103581960A (zh) * 2012-07-27 2014-02-12 中兴通讯股份有限公司 能力指示信息处理方法及装置
CN106712913A (zh) * 2015-11-13 2017-05-24 上海朗帛通信技术有限公司 一种窄带通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637849A4 *

Also Published As

Publication number Publication date
CA3065401A1 (en) 2019-01-30
JP2020526130A (ja) 2020-08-27
BR112019027849A2 (pt) 2020-07-14
EP3637849A4 (en) 2020-06-17
US20200112909A1 (en) 2020-04-09
CN109429565B (zh) 2021-06-15
EP3637849A1 (en) 2020-04-15
CN109429565A (zh) 2019-03-05
US11330502B2 (en) 2022-05-10

Similar Documents

Publication Publication Date Title
JP7241070B2 (ja) 通信方法及び通信装置
EP3096481B1 (en) Signal transmission method and apparatus
KR102321890B1 (ko) 시간-주파수 자원의 송신 방향을 구성하는 방법, 및 장치
US20130195069A1 (en) Signaling mechanism for supporting flexible physical broadcast channel and common reference signal configurations
TW201836410A (zh) 傳輸訊號的方法、終端設備和網路設備
JP2015501609A (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
WO2019223458A1 (zh) 配置物理下行控制信道时域检测位置的方法及设备
EP3681220B1 (en) Resource configuration method, determination method, and device and communication system thereof
TWI693840B (zh) 接收訊號強度指示測量之方法及其使用者設備
JP6532932B2 (ja) ユーザ端末、無線基地局及び無線通信方法
US10270576B2 (en) Information transmission method, user equipment, and base station
US11330502B2 (en) Communication method and apparatus
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
AU2017426186A1 (en) Methods and apparatuses for control resource mapping
CN113316236A (zh) 寻呼处理方法、装置、设备及存储介质
CN109041198B (zh) 一种通信方法及装置
JP7342970B2 (ja) Ssbに基づく測定方法及び装置
EP3860273A1 (en) Information processing method and apparatus
JP2017069991A (ja) 免許不要帯域における空きチャネル判定及び伝送を扱うための装置
KR20210095699A (ko) 데이터 송신 방법 및 디바이스
WO2019029523A1 (zh) 一种信号发送、信号接收方法以及相关设备
CN114390650A (zh) 信号传输方法、网络设备、终端和存储介质
WO2017156711A1 (zh) 信号发送的方法和基站
WO2017000269A1 (zh) 一种数据传输方法及装置
CN115150957A (zh) Bwp切换方法、装置、终端、存储介质及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3065401

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019572519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027849

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017915678

Country of ref document: EP

Effective date: 20200111

ENP Entry into the national phase

Ref document number: 112019027849

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191226