WO2019029523A1 - 一种信号发送、信号接收方法以及相关设备 - Google Patents

一种信号发送、信号接收方法以及相关设备 Download PDF

Info

Publication number
WO2019029523A1
WO2019029523A1 PCT/CN2018/099165 CN2018099165W WO2019029523A1 WO 2019029523 A1 WO2019029523 A1 WO 2019029523A1 CN 2018099165 W CN2018099165 W CN 2018099165W WO 2019029523 A1 WO2019029523 A1 WO 2019029523A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
resource set
channel resource
demodulation reference
terminal device
Prior art date
Application number
PCT/CN2018/099165
Other languages
English (en)
French (fr)
Inventor
张永平
成艳
夏金环
冯淑兰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019029523A1 publication Critical patent/WO2019029523A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a signal transmission, a signal receiving method, and related devices.
  • the structure of the two-stage downlink control channel is discussed.
  • the first-level downlink control channel includes parameters for demodulating the second-level downlink control channel, such as a transmission mode, a receiving port, a resource location, and the like, and the first-level downlink control channel is fixed.
  • the terminal After the single-port mode is transmitted, after the terminal demodulates the first-level downlink control channel, the terminal can obtain the parameters necessary for the demodulation of the second-level downlink control channel, including the port used for transmitting the second-level downlink control channel, and the terminal can Demodulation of the second-level downlink control channel is performed on the corresponding port based on the corresponding parameters.
  • the network device sends the configuration information to the first terminal device, where the configuration information includes a configuration parameter of the control channel resource set and a monitoring period of the downlink control information, where the configuration parameter of the control channel resource set includes a parameter for indicating at least one of the following: : a frequency domain location of the control channel resource set, an initial symbol of orthogonal frequency division multiplexing of the control channel resource set, a duration of the control channel resource set, a size of a resource unit packet, and a downlink control Way of sending information;
  • the sending time unit of the monitoring period indication includes at least one time unit in the monitoring period, the time unit is the time for transmitting a unit information, and the time-frequency resource of the control channel resource set is controlled by the network device according to the control channel.
  • the frequency location of the resource set, the start symbol of the orthogonal frequency division multiplexing of the control channel resource set, and the duration of the resource set are determined.
  • the related processing is performed according to the sending time unit indicated by the monitoring period, which is beneficial for the network device and the terminal device to avoid excessive processing, and can save power.
  • the network device generates a first scrambling parameter and a second scrambling parameter, wherein the first scrambling parameter network device is configured for the first terminal device, and the first scrambling parameter is used to generate the first demodulation for the first terminal device a reference signal, the second scrambling parameter network device is configured to the second terminal device, and the second scrambling parameter is configured to generate second demodulation reference information for the second terminal device;
  • the method further includes: after the network device generates the first scrambling parameter and the second scrambling parameter, the network device sends the first scrambling parameter and the second scrambling parameter to the first terminal device, where the first terminal device uses the first plus The interference parameter performs channel estimation, the first terminal device uses the second scrambling parameter to perform interference estimation, the network device generates second demodulation reference information according to the second scrambling parameter, and the network device sends the first scrambling to the second terminal device.
  • the parameter, the second scrambling parameter, and the second demodulation reference information are examples of the first scrambling parameter and the second scrambling parameter.
  • the port mapping value is n', and n' satisfies:
  • the port mapping value n' satisfies:
  • n OS,low is the start symbol of the orthogonal frequency division multiplexing symbol of the control channel resource set
  • n RNTI is the user identifier of the first terminal device
  • N port is a candidate number of demodulation reference signal ports
  • the port mapping value n' satisfies:
  • an embodiment of the present application provides a signal receiving method, including:
  • the first terminal device receives the configuration information sent by the network device, where the configuration information includes a configuration parameter of the control channel resource set and a monitoring period of the downlink control information, where the configuration parameter of the control channel resource set includes at least one of the following Parameter: a frequency domain location of the control channel resource set, a start symbol of the control channel resource set orthogonal frequency division multiplexing symbol, a duration of the control channel resource set, a size of the resource unit group packet, and a downlink Control information transmission method;
  • the first terminal device receives the signal carrying the downlink control information and carries the first solution by using the demodulation reference signal port on the time-frequency resource of the control channel resource set according to the sending time unit indicated by the monitoring period. Adjust the signal of the reference information;
  • the present application has the following advantages:
  • the first terminal device performs channel estimation according to the first demodulation reference information and the signal carrying the first demodulation reference information, to obtain a channel estimation result;
  • the first terminal device performs interference estimation according to the second demodulation reference information and the signal carrying the first demodulation reference information, to obtain an interference estimation result;
  • n OS,low is the start symbol of the orthogonal frequency division multiplexing symbol of the control channel resource set
  • n RNTI is the user identifier of the first terminal device
  • N port is a candidate number of demodulation reference signal ports
  • the embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a network device to implement functions involved in the foregoing aspects, such as, for example, generating or processing data involved in the foregoing method. / or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, and is configured to support the first terminal device to implement the functions involved in the foregoing aspects, for example, receiving or processing the method involved in the foregoing method. Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the first terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 3 is a schematic structural diagram of a control resource collection structure in the present application.
  • FIG. 5 is a schematic diagram of continuous resource mapping of CCE to REG in the present application.
  • the NR-PDCCH uses at least one (eg, 1, 2, 4, 8) control channel elements (CCEs) for transmission, that is, the time-frequency resource mapping of the NR-PDCCH is based on a CCE structure, and a resource unit group (resource) Element group, REG) is the basic resource unit of CCE.
  • Each CCE consists of a certain number of REGs (for example, a CCE consists of 4 or 6 REGs).
  • An REG consists of one RB in the frequency domain (ie 12 consecutive subcarriers) and one OFDM symbol in the time domain, that is, consisting of 12 consecutive REs in the frequency domain.
  • Each REG includes an RE carrying a DMRS sequence for demodulating the NR PDCCH and an RE carrying a control channel DCI coded symbol, such as one possible REG structure shown in FIG.
  • the time-frequency resource mapping of the downlink control information is based on the CCE structure, and the time-frequency resource mapping of the downlink control information is a mapping of the control channel element CCE to the resource unit group REG resource, and the mapping of the CCE to the REG resource is divided into Distributed mapping and continuous mapping, wherein the distributed mapping means that the downlink control information corresponding to the same control channel element CCE is carried and transmitted by using multiple resource unit groups REG, and the continuous mapping refers to the same control channel element CCE.
  • the downlink control information is carried and transmitted by using one resource unit group REG. Therefore, the downlink control information of the control channel resource set is transmitted in a distributed transmission manner and a continuous transmission manner.
  • the downlink control information in this application may be sent on the bearer PDCCH, or may be sent on other control channels, and the present application does not impose any limitation.
  • the network device determines the demodulation reference signal port according to the configuration parameter of the control channel resource set and the user identifier of the first terminal device.
  • the n type is an index value of the downlink control information transmission mode, and each REG has an index in the control channel resource set, where the index value is an index of the REG that is first transmitted in the REG that carries the downlink control information.
  • the specific mapping relationship between at least one REG and the CCE in the control channel resource set, and the size of the REG bundle is the number of REGs included in each CCE when the REG mapping refers to the CCE.
  • n RNTI , N port has the same meaning as formula (1) above, and will not be described here;
  • the port mapping value n′ can satisfy other formulas determined according to the configuration parameters of the control channel resource set and the user identifier of the first terminal device, in addition to the above three formulas, and the present application does not impose any restrictions.
  • the determining of the port mapping value may be implemented by the network device and the first terminal device when the network device transmits the signal and the first terminal device receives the signal.
  • the network device after the network device determines the demodulation reference signal port number, the network device directly notifies the first terminal device of the demodulation reference signal port number by using downlink control signaling.
  • the network device sends the downlink control information and the first demodulation reference information to the first terminal device by using the demodulation reference signal port on the time-frequency resource of the control channel resource set according to the sending time unit indicated by the monitoring period.
  • the transmission time unit indicated by the monitoring period includes at least one time unit in the monitoring period, and the time unit is the time at which one unit of information is transmitted.
  • the time-frequency resource of the control channel resource set is determined by the network device according to the frequency location of the control channel resource set, the number of the start symbol of the orthogonal frequency division multiplexing OFDM of the control channel resource set, and the duration of the control channel resource set. The number of OFDM symbols in the duration is determined.
  • the time-frequency resources of the control channel resource set may also be determined according to the configuration parameters of the control resource set by other determining manners, and the present application does not impose any limitation.
  • the network device after the network device generates the first scrambling parameter and the second scrambling parameter, the network device sends the first scrambling parameter and the second scrambling parameter to the first terminal device, where the first terminal device uses the first plus The interference parameter performs channel estimation, and the first terminal device uses the second scrambling parameter to perform interference estimation.
  • the network device uses the first plus The interference parameter performs channel estimation, and the first terminal device uses the second scrambling parameter to perform interference estimation. For details, see step 704 below.
  • the network device generates a demodulation reference signal sequence according to the first scrambling parameter, that is, the first demodulation reference information, and the specific generation method is as follows:
  • the DMRS sequence may be a pseudo-random noise (PN) sequence, or may be other sequences, and the present application does not impose any limitation.
  • PN pseudo-random noise
  • the c(n) sequence generated above is used directly as a DMRS sequence.
  • the network device is based on the second scrambling parameter
  • the method for generating the demodulation reference signal is the second demodulation reference information, and the generating method is similar to the method for generating the second demodulation reference sequence according to the first scrambling parameter by the network device, and details are not described herein again.
  • the network device sends the first scrambling parameter, the second scrambling parameter, and the second demodulation reference information to the second terminal device.
  • the network device transmits the first scrambling parameter, the second scrambling parameter, and the second demodulation reference information to the second terminal device.
  • the second demodulation reference information may be a DMRS or other signals, and the present application does not impose any limitation.
  • the first terminal device detects the signal carrying the downlink control information according to the first scrambling parameter, the second scrambling parameter, and the signal carrying the first demodulation reference information, to obtain downlink control information of the first terminal device.
  • the first terminal device receives the signal carrying the downlink control information and the signal carrying the first demodulation reference information sent by the network device by using the demodulation reference signal port on the time-frequency resource of the control channel resource set according to the transmission time indicated by the monitoring period.
  • the determination of the demodulation reference signal port is similar to the determination method in the above step 702, and details are not described herein again.
  • the signal carrying the first demodulation reference information refers to: when the network device sends the first demodulation reference information to the first terminal device, precoding the first demodulation reference information by using a precoding matrix, where the precoding matrix is Obtaining according to channel state information between the network device and the first terminal device, and using the same precoding matrix as used when transmitting the downlink control information of the first terminal device, obtaining the encoded signal, and transmitting after reaching the wireless channel
  • the terminal device needs to be noted that the signal arriving at the terminal device includes the response of the wireless channel and the superimposed ambient thermal noise and the noise caused by the network device and the terminal device circuit.
  • the mixed signal received by the terminal device carries the first solution. Adjust the signal of the reference information.
  • the network device sends the second demodulation reference information to the second terminal device, which is similar to the foregoing process.
  • the related description refer to the related description in the method for acquiring the downlink control signal of the first terminal by the first terminal.
  • the signal carrying the downlink control information is similar to the description of the signal carrying the first demodulation reference information, and the related description may be referred to in the following method for acquiring the downlink control signal of the first terminal by the first terminal, This will not be repeated here.
  • the first terminal device is configured according to the first scrambling parameter
  • the first demodulation reference information sequence s 1 is generated.
  • the first terminal device performs channel estimation according to s 1 through time domain correlation operation.
  • the channel estimation result HP 1 is obtained , and the first terminal device needs to use the HP 1 obtained according to the channel estimation for detecting the downlink control information.
  • the first terminal device performs interference estimation according to the second demodulation reference information and the signal carrying the first demodulation reference information, to obtain an interference estimation result.
  • each control channel resource set corresponds to one demodulation reference signal port. Therefore, the estimation result obtained by the first terminal device performing one channel estimation can be used for downlink control in the same control channel resource set. The information is tested multiple times.
  • the network device After the network device generates the first scrambling parameter and the second scrambling parameter, the network device sends the first scrambling parameter and the second scrambling parameter to the second terminal device.
  • the network device sends the configuration information to the first terminal device, where the remaining related descriptions are related to the foregoing step 701, and details are not described herein again.
  • the second terminal device detects, according to the first scrambling parameter, the second scrambling parameter, and the signal carrying the second demodulation reference information, the signal that carries the downlink control information of the second terminal, and obtains the downlink of the second terminal device. Control information.
  • This step 807 is similar to the above step 704, and details are not described herein again.
  • the sending time unit indicated by the monitoring period includes at least one time unit in the monitoring period; the time-frequency resource of the control channel resource set is determined by the network device according to the frequency domain position of the control channel resource set, The start symbol of the orthogonal frequency division multiplexing symbol of the control channel resource set and the duration of the foregoing control channel resource set are determined.
  • the communication unit 902 is further configured to send the first scrambling parameter, the second scrambling parameter, and the second demodulation reference information to the second terminal device.
  • n REG,low is an index value of a resource unit group of a starting point of a frequency domain location in the control channel resource set
  • n RNTI is the user identifier of the first terminal device
  • N port is the number of candidate demodulation reference signal ports
  • another apparatus in the implementation of the present application includes:
  • the sending time unit indicated by the monitoring period includes at least one time unit in the monitoring period; the time-frequency resource of the control channel resource set is determined by the network device according to the frequency domain position of the control channel resource set, The start symbol of the orthogonal frequency division multiplexing symbol of the control channel resource set and the duration of the foregoing control channel resource set are determined.
  • the processing unit 901 is further configured to generate second demodulation reference information according to the second scrambling parameter, where the first demodulation reference information and the time-frequency resource occupied by the second demodulation reference information partially or completely overlap.
  • the processing unit 901 is further configured to determine, according to the configuration parameter of the control channel resource set and the user identifier of the first terminal device, a port mapping value, where the port mapping value and the demodulation reference signal port have One-to-one correspondence;
  • the processing unit 901 is further configured to determine the demodulation reference signal port according to the port mapping value.
  • the port mapping value is n', and n' satisfies:
  • n REG,low is an index value of a resource unit group of a starting point of a frequency domain location in the control channel resource set
  • n RNTI is the user identifier of the first terminal device
  • N port is the number of candidate demodulation reference signal ports
  • n OS,low is the number of the start symbol of the orthogonal frequency division multiplexing of the foregoing control channel resource set, The number of orthogonal frequency division multiplexing symbols of the duration of the foregoing control channel resource set, where n RNTI is the user identifier of the first terminal device, For the number of control channel elements in the control channel resource set used for transmitting the downlink control information, N port is the number of candidate demodulation reference signal ports.
  • the terminal when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the storage unit is configured to store a computer execution instruction
  • the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the terminal performs any one of the foregoing first aspects.
  • the wireless communication method of the item when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the storage unit is configured to store
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the integrated circuit of the program execution of the first aspect wireless communication method may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发送、信号接收方法以及相关设备,用于解决由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。本申请方法包括:网络设备向第一终端设备发送配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期;所述网络设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定解调参考信号端口;所述网络设备生成下行控制信息和第一解调参考信息;所述网络设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口向所述第一终端设备发送所述下行控制信息和所述第一解调参考信息。

Description

一种信号发送、信号接收方法以及相关设备
本申请要求于2017年08月11日提交中国专利局、申请号为201710690893.0、发明名称为“一种信号发送、信号接收方法以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种信号发送、信号接收方法以及相关设备。
背景技术
在第五代无线接入系统标准新空口(new radio,NR)中,频域上的基本单位为一个子载波,子载波间隔可以为15KHz、30KHz等。NR中下行时间资源调度的基本时间单位是一个时序slot,一个时序内可划分为控制区域和数据区域,物理下行共享信道(physical downlink shared channel,PDSCH)在slot的数据区域上传输,是slot承载主要数据传输的下行信道;物理下行控制信道(physical downlink control channel,PDCCH)在slot的控制区域上传输,是slot承载主要信令传输的下行信道,为了正确接收PDSCH,需要先解调PDCCH。解调参考信号(demodulation reference signal,DMRS)用于解调NR-PDCCH。
在NR的技术讨论中,讨论了两级下行控制信道的结构。在两级下行控制信道的结构中,在第一级下行控制信道中包含了解调第二级下行控制信道的相关参数,例如发送模式、接收端口、资源位置等,第一级下行控制信道采用固定的单端口方式发送,终端在解调第一级下行控制信道后,可以获得第二级下行控制信道解调所必要的参数,包括第二级下行控制信道发送所使用的端口,终端就可以在相应的端口上,基于相应参数进行第二级下行控制信道的解调。上述通过二级控制信道结构至少存在以下两个问题:第一,由于采用两级下行控制信道,若第一级下行控制信道解调失败,则终端将无法确定使用哪个端口来进行第二级下行控制信道解调;第二,由于包括端口在内有关第二级下行控制信道的解调参数需要通过下行信令通知。
发明内容
本申请提供了一种信号发送、信号接收法以及相关设备,用于解决由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。
第一方面,本申请实施例提供了一种信号发送方法,包括:
网络设备向第一终端设备发送配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合的正交频分复用的起始符号,所述控制信道资源集合的持续时长,资源单元组包的尺寸,和下行控制信息发送方式;
所述网络设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定解调参考信号端口;
所述网络设备生成下行控制信息和第一解调参考信息;
所述网络设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口向所述第一终端设备发送所述下行控制信息和所述第一解调参考信息。
从以上技术方案中可以看出,本申请具有以下优点:
网络设备和终端设备在确定端口时,是通过控制资源集合的配置参数和终端设备的标识计算获得,不需要额外的信令交互,这就解决了现有技术(两级控制信道结构)中由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。
因此,本申请提供了一种信号发送方法,用于发送第一解调参考信息和下行控制信息。
在一种可能的实现方式中,监控周期指示的发送时间单元包括监控周期中的至少一个时间单元,时间单元为发送一单元信息的时间,控制信道资源集合的时频资源由网络设备根据控制信道资源集合的频率位置、控制信道资源集合的正交频分复用的起始符号和资源集合的持续时长确定的。
在该种实现方式中,根据监控周期指示的发送时间单元进行相关的处理,有利于网络设备和终端设备避免过多的处理,可以节省电能。
在一种可能的实现方式中,网络设备生成第一解调参考信息,包括:
网络设备生成第一加扰参数和第二加扰参数,其中,第一加扰参数网络设备配置给第一终端设备配置的,第一加扰参数用于为第一终端设备生成第一解调参考信号,第二加扰参数网络设备配置给第二终端设备的,第二加扰参数用于为第二终端设备生成第二解调参考信息;
上述方法还包括:在网络设备生成第一加扰参数和第二加扰参数之后,网络设备向第一终端设备发送第一加扰参数和第二加扰参数,第一终端设备使用第一加扰参数进行信道估计,第一终端设备使用第二加扰参数进行干扰估计;网络设备根据第二加扰参数生成第二解调参考信息,并且,网络设备向第二终端设备发送第一加扰参数、第二加扰参数和第二解调参考信息。
在该种实现方式中,通过配置两个加扰参数即第一加扰参数和第二加扰参数,能够使得第一终端设备获得第二终端设备的干扰信号,并基于此实现干扰测量,并进行干扰抑制和消除。
在一种可能的实现方式中,网络设备根据控制信道资源集合的配置参数和第一终端设备的用户标识,确定解调参考信号端口,包括:
网络设备控制信道资源集合的配置参数和第一终端设备的用户标识,确定端口映射值,并且端口映射值与解调参考信号端口具有一一对应的关系;
进而,网络设备根据端口映射值确定解调参考信号端口。
在该种实现方式中,网络设备发送下行控制信息使用的解调参考信号端口与控制信道资源集合的配置参数和终端设备的用户标识一一对应。
在一种可能的实现方式中,包括:
所述端口映射值为n′,n′满足:
Figure PCTCN2018099165-appb-000001
其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,所述控制信道资源集合中包括至少一个资源单元组,每个资源单元组对应一个索引值,每个资源单元组由至少一个控制信道元素组成,
Figure PCTCN2018099165-appb-000002
为所述控制信道资源集合中的控制信道元素数目,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000003
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
或,所述端口映射值n′满足:
Figure PCTCN2018099165-appb-000004
其中,n OS,low为所述控制信道资源集合的正交频分复用符号的起始符号,
Figure PCTCN2018099165-appb-000005
为所述控制信道资源集合的持续时长,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000006
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
或,所述端口映射值n′满足:
Figure PCTCN2018099165-appb-000007
其中,n type为所述下行控制信息发送方式的索引值,
Figure PCTCN2018099165-appb-000008
为所述资源单元组包的尺寸,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000009
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
在该种实现方式中,由于控制信道资源集合的配置参数和第一终端设备的用户标识均是特定的,因此,在同一个控制信道资源集合中发送下行控制信道的解调参考信号端口是固定的,因此能够实现同一个控制信道资源集合内的信道估计用于多次下行控制信息的检测,从而能够降低终端设备的功耗,节省电能。
第二方面,本申请实施例提供了一种信号接收方法,包括:
第一终端设备接收网络设备发送的配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合正交频分复用符号的起始符号,所述控制信道资源集合的持续时长,资源单元组包的尺寸,和下行控制信息发送方式;
所述第一终端设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合 的时频资源上,通过所述解调参考信号端口接收携带下行控制信息的信号和携带第一解调参考信息的信号;
所述第一终端设备根据第一加扰参数、第二加扰参数和所述携带第一解调参考信息的信号,对所述携带下行控制信息的信号进行检测,得到所述第一终端的下行控制信息。
从以上技术方法可以看出,本申请具有以下优点:
网络设备和终端设备在确定端口时,是通过控制资源集合的配置参数和终端设备的标识计算获得,不需要额外的信令交互,这就解决了现有技术(两级控制信道结构)中由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。
在一种可能的实现方式中,监控周期指示的发送时间单元包括监控周期中的至少一个时间单元,时间单元为发送一单元信息的时间,控制信道资源集合的时频资源由网络设备根据控制信道资源集合的频率位置、控制信道资源集合的正交频分复用的起始符号和资源集合的持续时长确定的。
在该种可能的实现方式中,根据监控周期指示的发送时间单元进行相关的处理,有利于网络设备和终端设备避免过多的处理,可以节省电能。
在一种可能的实现方式中,上述信号接收方法还包括:
第一终端设备接收网络设备发送的第一加扰参数和第二加扰参数;
第一终端设备根据第一加扰参数生成第一解调参考信息,第一加扰参数用于为第一终端设备生成第一解调参考信息,第二加扰参数用于为第二终端设备生成第二解调参考信息;
第一终端设备根据第二加扰参数生成第二解调参考信息;第一解调参考信息和第二解调参考信息占用的时频资源部分或全部重叠。
在该种可能的实现方式中,通过配置两个加扰参数即第一加扰参数和第二加扰参数,能够使得第一终端设备获得第二终端设备的干扰信号,并基于此实现干扰测量,并进行干扰抑制和消除。
在一种可能的实现方式中,第一终端设备根据第一加扰参数、第二加扰参数和携带第一解调参考信息的信号,对携带下行控制信息的信号进行检测,得到第一终端的下行控制信息,包括:
第一终端设备根据第一解调参考信息和携带第一解调参考信息的信号进行信道估计,得到信道估计结果;
进一步地,第一终端设备根据第二解调参考信息和携带第一解调参考信息的信号进行干扰估计,得到干扰估计结果;
再进一步地,第一终端设备根据信道估计结果、干扰估计结果,对携带下行控制信息的信号进行检测,得到第一终端的下行控制信息。
在该种可能的设计中,通过第一解调参考信息和第二解调参考信息,能够使得第一终端设备获得第二终端设备的干扰信号,并基于此实现干扰测量,并进行干扰抑制和消除,从而更好地接收下行控制信息。
在一种可能的实现方式中,上述信号接收方法还包括:
网络设备控制信道资源集合的配置参数和第一终端设备的用户标识,确定端口映射值, 并且端口映射值与解调参考信号端口具有一一对应的关系;
进而,网络设备根据端口映射值确定解调参考信号端口。
在该种可能的设计中,网络设备发送下行控制信息使用的解调参考信号端口与控制信道资源集合的配置参数和终端设备的用户标识一一对应。
在一种可能的实现方式中,包括:
所述端口映射值为n′,n′满足:
Figure PCTCN2018099165-appb-000010
其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,所述控制信道资源集合中包括至少一个资源单元组,每个资源单元组对应一个索引值,每个资源单元组由至少一个控制信道元素组成,
Figure PCTCN2018099165-appb-000011
为所述控制信道资源集合中的控制信道元素数目,所述控制信道资源集合中控制信道元素的数目由所述资源单元组包映射得到,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000012
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
或,所述端口映射值n′满足:
Figure PCTCN2018099165-appb-000013
其中,n OS,low为所述控制信道资源集合的正交频分复用符号的起始符号,
Figure PCTCN2018099165-appb-000014
为所述控制信道资源集合的持续时长,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000015
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
或,所述端口映射值n′满足:
Figure PCTCN2018099165-appb-000016
其中,n type为所述下行控制信息发送方式的索引值,
Figure PCTCN2018099165-appb-000017
为所述资源单元组包的尺寸,n RNTI为所述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000018
为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
在该种可能的实现方式中,由于控制信道资源集合的配置参数和第一终端设备的用户标识均是特定的,因此,在同一个控制信道资源集合中发送下行控制信道的解调参考信号 端口是固定的,因此能够实现同一个控制信道资源集合内的信道估计用于多次下行控制信息的检测,从而能够降低终端设备的功耗,节省电能。
第三方面,本申请提供一种装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为终端时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端执行上述第一方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
第三方面,本申请提供一种装置,该装置可以是基站,也可以是基站内的芯片。该装置具有实现上述第二方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请提供一种装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述终端设备所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的信号发送方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的信号发送方法。
第七方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述终端设备所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的信号接收方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的信号接收方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持第一终端设备实现上述方面中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存第一终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请中的一个系统场景示意图;
图2为本申请中下行时频资源网格示意图;
图3为本申请中控制资源集合结构示意图;
图4为本申请中资源单元组的一种结构示意图;
图5为本申请中CCE到REG的连续式资源映射示意图;
图6为本申请中CCE到REG的分布式资源映射示意图;
图7为本申请中信号接收、信号发送方法的一个实施例示意图;
图8为本申请中信号接收、信号发送方法的另一个实施例示意图;
图9为本申请中装置的一个实施例示意图。
具体实施方式
本申请提供了一种信号发送、信号接收法以及相关设备,用于解决由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。
下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请用于无线通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通 用分组无线业务(General Packet Radio Service,GPRS)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),尤其用于LTE系统及其演进系统,新一代无线通信系统(new generation,NR)。
本申请结合终端设备描述了各个实施例,终端设备可称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)智能终端等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来5G网络中的终端设备,它们与无线接入网交换语音或数据。对终端设备的说明:本申请中,终端设备还可以包括中继Relay,和基站可以进行数据通信的都可以看为终端设备,本申请中将以一般意义上的UE来介绍。
另外,本申请结合网络设备描述了各个实施例。网络设备可以是长期演进(Long Term Evolution,LTE)系统或者授权辅助接入长期演进(Authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(Evolutional Node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,AP)或传输站点(Transmission Point,TP),或gNodeB(new generation Node B,新一代基站)等。
如图1所示为本申请的一个系统场景图,网络设备为基站gNB,终端设备用户终端UE,图中以两个UE,即UE1和UE2作为示例。gNB分别与UE1和UE2进行通信。
在NR物理层中,如图2所示,下行系统带宽用
Figure PCTCN2018099165-appb-000019
表示,其中,DL表示下行链路downlink的简称,下行系统带宽的单位为资源块(Resource Block,RB),每个RB由频域上12个连续子载波和时域上6或7个连续正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号组成,OFDM符号是一个时间概念,图2中以7个OFDM符号为例,资源网格上的每个元素称为一个资源单元(resource element,RE),RE为最小的物理资源,包含一个OFDM符号内的一个子载波。
NR中下行资源调度的基本时间单位是一个时隙slot,一个slot的时间长度是6、7、12或14个OFDM符号长度,一个slot内,调度的时频资源由1个RB或相邻的2个RB组成,一个slot内可划分为控制区域和数据区域,PDCCH在slot的控制区域时频资源上传输,PDSC在slot的数据区域时频资源上传输,其中,PDCCH中携带的下行控制信息(downlink control information,DCI)中包含下行资源分配信息,该下行资源分配信息用于指示传输PDSCH的RB在频域上的位置信息。
在一个slot的控制区域中,存在至少一个控制资源集合(control resource set,CORESET),CORESET是时域上包括1至3个OFDM符号、频域上包括连续的多个RB的时频资源集合,如图3所示为CORESET的一个结构示意图,图3中以两个CORESET为例,其中两个CORESET在时域和频域上的大小可以不一样,UE通过CORESET检测PDCCH,另外,PDSCH位于图3中的数据区域。
NR-PDCCH使用至少一个(如1,2,4,8个)控制信道元素(control channel elements, CCE)进行传输,即NR-PDCCH的时频资源映射是基于CCE的结构,资源单元组(resource element group,REG)是CCE的基本资源单位,每个CCE包括一定数量的REG组成(如一个CCE由4个或6个REG组成)。一个REG由频域上一个RB(即12个连续的子载波)和时域上一个OFDM符号组成,即由12个频域上连续的RE组成。每个REG包括承载用于解调NR PDCCH的DMRS序列的RE和承载控制信道DCI编码符号的RE,如图4所示一种可能的REG结构。
NR-PDCCH的时频资源映射是基于CCE的结构,因此,NR-PDCCH的时频资源映射即为CCE到REG资源的映射,其中,CCE到REG资源的映射有如下两种方式:连续式Localized和分布式Distributed。对于连续式的CCE到REG的映射方式,其组成CCE的REG在频域上的映射是连续的,而对于分布式的CCE到REG的映射方式,其组成CCE的REG在频域上的映射则是不连续的。
下面通过图示的方式说明不同CCE到REG映射方式以及不同资源单元组包尺寸REGBundling size时的资源映射情况,所谓的资源单元组包REG bundling是由频域上连续的至少两个REG、或时域上连续的至少两个REG组成的。假设NR-PDCCH资源由2个CCE组成,对其编号分别为0和1,即CCE0和CCE1,CCE0和CCE1分别对应的REG的索引分别为0-5,6-11;此时,当REG bundling由频域上连续的6个REG组成时,即REG Bundling size为6时,PDCCH资源映射情况如图5所示,其中,CCE到REG的映射方式为连续式资源映射;当REG bundling由频域上连续的2个REG组成时,即REG Bundling size为2时,PDCCH资源映射情况如图6所示,其中,CCE到REG的映射方式为分布式资源映射;此外,对于每个REG bundling中包括的所有REG在发射时均采用相同的预编码。
为了便于理解本申请实施例中的信号发送、信号接收方法,首先,将结合具体的实施例对本申请中的信号发送、信号接收方法进行说明。
如图7所示,本申请中的信号发送以及信号接收方法的一个实施例,包括:
701、网络设备向第一终端设备发送配置信息。
网络设备向第一终端设备发送配置信息,该配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,该控制信道资源集合的配置参数包括用于指示以下至少一项的参数:该控制信道资源集合的频域位置、控制信道资源集合的正交频分复用的起始符号、控制信道资源集合的持续时长、资源元素组包的尺寸、或下行控制信息发送方式。另外,网络设备通过高层信令为第一终端设备配置控制信道资源集合。例如,该高层信令可以是无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制控制单元(Media Access Control Control Element,MAC CE)。
控制信道资源集合包括N1个CCE占用的时频资源,N1个CCE中每个CCE占用的时频资源由N2个REG组成;控制信道资源集合包括N1*N2个REG,N1*N2个REG的索引为x,x+1,….x+N1*N2-1。
以图5和图6说明上述包含关系,图中所示控制资源集合的时频资源:时域上包括1个OFDM符号,频域位置如所示,共包含了6个CCE占用的时频资源,总共包含了36个REG,REG的索引从0开始,一直到35,每个CCE由6个REG组成,CCE到REG的资源映射方式 可以是连续式的,如图5所示,索引值从0到5的REG属于CCE 0,索引值6到11的REG属于CCE 1;CCE到REG的映射方式也可以是分布式的,如图6所示,每个资源单元组包的尺寸为2个REG,索引值为0、1、12、13、24、25的REG属于CCE 0,分别对应CCE 0中的第0、1、2、3、4、5个REG;索引值为2、3、14、15、26、27的REG属于CCE 1,分别对应于CCE1中的第0、1、2、3、4、5个REG。
下行控制信道在控制资源集合上的资源发送,控制信道资源集合在频域上占多个连续的或者不连续的REG,在时域上占一个时隙内的至少一个OFDM符号,当网络设备发送下行控制信息时,下行控制信息通过下行控制信道在控制信道资源集合上的资源上发送。本申请中的控制信道资源集合可以是CORESET,也可以是其他资源,对此申请不做任何限制。
下行控制信息的监控周期是指网络设备用于发送下行控制信息的时间单元所在的时间周期。在一个示例中,网络设备为第一终端设备配置下行控制信息的监控周期,监控周期用于指示第一终端设备在监控周期指示的发送时间单元上接收网络设备发送的下行控制信息,其中,监控周期指示的发送时间单元包括监控周期内的至少一个时间单元,并且该至少一个时间单元可以是连续的,也可以是间断的,对此本申请不做任何限制。
对于监控周期的设置,一种设置方法:监控周期指示在一段时长内的每个时隙slot、每个子帧subframe或每个OFDM符号,此时,第一终端在上述一段时长内,设备在控制信道资源集合的时频资源上,在控制信道资源的时频资源上,在监控周期指示的每个时隙slot、每个子帧subframe或每个OFDM符号上做下行控制信道解调。
另一种设置方法:监控周期指示在一段时长内的部分时隙slot、部分子帧subframe或部分OFDM符号,此时,第一终端设备在上述一段时长内,在控制信道资源集合的时频资源上,只在监控周期所指示的部分时隙slot、或者部分子帧subframe或部分OFDM符号上做下行控制信道解调,不在监控周期未指示的时隙slot、子帧subframe或OFDM符号上做下行控制信道解调。
控制信道资源集合的频率位置是指在系统带宽内控制信道资源集合占用的频率。在一个示例中,如图3所示,控制信道资源集合为CORESET,控制信道资源集合在一个slot中的控制区域存在两个CORESET(CORESET1和CORESET2),CORESET1频率方向上的宽度即为CORESET1在下行系统带宽内的占用的频率,换言之,CORESET1频率方向上的宽度即为CORESET1的频率位置,同样,CORESET2频率方向上的宽度即为CORESET2在下行系统带宽内的占用的频率,换言之,CORESET2频率方向上的宽度即为控制信道资源集合2的频率位置,其中,下行系统带宽为图3所示的频率方向上的全部频率范围。
控制信道资源集合的正交频复用的起始符号是指开始传输下行控制信息的时间单元所在的正交频分复用符号。在一个示例中,如图1所示,每个RB由频域上12个连续子载波和时域上7个连续的OFDM符号,从左往右依次为第一个OFDM符号和第七个OFDM符号。当下行控制信息在左起第三个OFDM符号上开始传输,那么左起第三个OFDM符号就是控制信道资源集合的起始符号。
控制信道资源集合的持续时长是指用于传输下行控制信道信息所使用的所有时间单元。在一个示例中,还是如图1所示,从时域上看,若控制信道资源集合在时域上占左起 第一个OFDM符号至左起第三个OFDM符号,则控制信道资源集合的持续时长为三个OFDM符号。
控制信道资源集合的配置参数还包括资源元素组包的尺寸、或下行控制信息发送方式。
其中,一个资源单元组包括多个资源单元。资源单元组包的尺寸是指控制信道资源集合中的频域上的控制信道元素组或其他控制资源单元的数目。例如,资源单元组包REGbundling由频域上连续的6个REG组成,此时,资源单元组包REG bundling的尺寸为6,再如,当资源单元组包REG bundling由频域上连续的2个REG组成时,即资源单元组包REG Bundling size为2。
下行控制信息发送方式是指将下行控制信息承载于控制信道资源集合中承载方式,可以是使用连续的时频资源去承载下行控制信息,也可以是使用分布式的时频资源去承载下行控制信息。在一个示例中,下行控制信息的时频资源映射是基于CCE的结构,下行控制信息的时频资源映射即为控制信道元素CCE到资源单元组REG资源的映射,CCE到REG资源的映射分为分布式映射和连续式映射,其中,分布式映射是指同一个控制信道元素CCE对应的下行控制信息使用多个资源单元组REG承载并发送,连续式映射是指同一个控制信道元素CCE对应的下行控制信息使用一个资源单元组REG承载并发送,因此,控制信道资源集合的下行控制信息的发送方式为分布式发送方式和连续式发送方式。
其下行控制信道的分布式发送方式和连续式发送方式的相关描述见上述步骤701中对图5和图6的相关描述,此处不再赘述。
控制信道资源集合的时频资源的确定如下所述:如图1所示每个RB由频域上12个连续子载波和时域上7个连续的OFDM符号,从左往右依次为第一个OFDM符号和第七个OFDM符号,若控制信道资源集合的频率位置上包括连续的3个RB即控制信道资源集合频域上由连续的3个RB组成,控制信道资源集合的正交频分复用OFDM的起始符号为图1中所示的7个连续的OFDM符号中的左边第一个OFDM符号,控制信道资源集合的持续时长为3个OFDM符号,那么,此时,控制信道资源集合的时频资源确定为由频域上连续的3个RB、时域上为图1中左起第一个OFDM符号至第三个OFDM符号组成的时频资源。
此外,本申请中的下行控制信息可以是承载PDCCH上发送,也可以承载在其他控制信道上发送,对此本申请不做任何限制。
702、网络设备根据控制信道资源集合的配置参数和第一终端设备的用户标识,确定解调参考信号端口。
网络设备根据控制信道资源集合的配置参数和第一终端设备的用户标识确定解调参考信号端口。
在一个示例中,网络设备控制信道资源集合的配置参数和第一终端设备的用户标识,确定端口映射值,并且端口映射值与解调参考信号端口具有一一对应的关系。
进一步地,端口映射值为n′,并且n′满足:
Figure PCTCN2018099165-appb-000020
其中,n REG,low为控制信道资源集合中频域位置的起始点的资源单元组REG的索引值, 控制信道资源集合中CCE中的6个REG从左至右的索引值分别为0-5,当控制信道资源集合中频域位置中左边第一个REG开始传输下行控制信息时,此时,n REG,low为0,
Figure PCTCN2018099165-appb-000021
为控制信道资源集合中CCE数目,每3个REG映射一个CCE,此时,n REG,low为2,其中,该用户标识可以是无线网络临时标签(radio-network temporary identifier,RNTI),也可以是其他用户标识,对此本申请不做任何限制,
Figure PCTCN2018099165-appb-000022
为控制信道资源集合中用于传输下行控制信息的CCE数目,N port为候选的解调参考信号端口数目;
或,端口映射值n′满足:
Figure PCTCN2018099165-appb-000023
其中,n OS,low为控制信道资源集合的正交频分复用OFDM的起始符号的索引,
Figure PCTCN2018099165-appb-000024
为控制信道资源集合的持续时长的OFDM符号,n RNTI
Figure PCTCN2018099165-appb-000025
N port与上述公式(1)的含义相同,此处不再赘述。
控制信道资源集合的配置参数还包括资源元素组包的尺寸、或下行控制信息发送方式中至少一个。其中,对于资源元素组包的尺寸、或下行控制信息发送方式的相关描述详见步骤701。
端口映射值n′还满足:
Figure PCTCN2018099165-appb-000026
其中,n type为所述下行控制信息发送方式的索引值,在控制信道资源集合中每个REG都有一个索引,该索引值为承载有下行控制信息的REG中最先开始发送的REG的索引,
Figure PCTCN2018099165-appb-000027
为所述资源单元组包REG bundle的尺寸,控制信道资源集合中的至少一个REG与CCE之间具体映射关系,REG bundle的尺寸为将REG映射指CCE中时,每个CCE中包括的REG数目,典型值为4或6个,n RNTI
Figure PCTCN2018099165-appb-000028
N port与上述公式(1)的含义相同,此处不再赘述;
上述候选的解调参考信号端口数目是指预先设置的可以用于发送下行控制信息的端口总数。例如:网络设备可以用于发送下行控制信息的端口分别是:107,108,109,110,候选的解调参考信号端口数目为4个,即N port为4,即使在发送下行控制信息时,网络设备可能使用的是:107,108,109,110端口中的其中一个端口进行发送,候选的解调参考信号端口数目也是指4个。
需要说明的是,端口映射值n′除满足上述三个公式外,还可以满足根据控制信道资源 集合的配置参数和第一终端设备的用户标识确定的其他公式,对此本申请不做任何限制。上述端口映射值的确定,在网络设备发射信号和第一终端设备接收信号时,网络设备和第一终端设备都可以各自实现。
在进一步地,基于获得端口映射值n′之后,网络设备可以根据端口映射关系对端口映射值进行查询得到解调参考信号端口的端口号。其中,以两端口为例,端口映射关系如表1所示:
表1
n′ Port
0 7
1 8
上述方法可以扩展到四端口、八端口甚至更多端口,另外,上述公式只是确定端口映射值的一种方法,对于其他通过控制信道资源集合的配置参数和第一终端设备的身份标签来获得上述端口映射值的方法,本申请不做任何限制。
由于每个网络设备服务的终端设备的个数往往超过端口数的,因此基于上述方法确定的DMRS的端口,必然会出现两种结果:一、多个不同的终端设备具有相同的端口号,二、多个不同的终端设备具有不同的端口号。
在一个示例中,在网络设备确定解调参考信号端口号之后,网络设备直接通过下行控制信令将解调参考信号端口号通知给第一终端设备。
703、网络设备按照监控周期指示的发送时间单元,在控制信道资源集合的时频资源上,通过解调参考信号端口向第一终端设备发送下行控制信息和第一解调参考信息。
在一个示例中,监控周期指示的发送时间单元包括监控周期中的至少一个时间单元,时间单元为发送一单元信息的时间。
在一个示例中,控制信道资源集合的时频资源由网络设备根据控制信道资源集合的频率位置、控制信道资源集合的正交频分复用OFDM的起始符号的编号和控制信道资源集合的持续时长中OFDM符号的数目确定的,此外,控制信道资源集合的时频资源也可以根据控制资源集合的配置参数采用其他确定方式进行确定,对此本申请不做任何限制。
控制信道资源集合的时频资源的确定详见上述步骤701中的相关描述,对此此处不再赘述。
在一个示例中,网络设备生成第一加扰参数和第二加扰参数,第一加扰参数用于为第一终端设备生成第一解调参考信号,第二加扰参数用于为第二终端设备生成第二解调参考信息。本申请中第二终端设备包括至少一个终端设备,同样,第二加扰参数可以包括至少一个加扰参数,其中,网络设备为第二终端设备中每个终端设备配置第二加扰参数中的一个加扰参数,本申请中对第二终端设备的数量和第二加扰参数的数量不做任何限制。
在一个示例中,在网络设备生成第一加扰参数和第二加扰参数之后,网络设备向第一终端设备发送第一加扰参数和第二加扰参数,第一终端设备使用第一加扰参数进行信道估 计,第一终端设备使用第二加扰参数进行干扰估计,具体描述见下述步骤704。
在一个示例中,网络设备生成下行控制信息和第一解调参考信息,其中,第一解调参考信息用于辅助第一终端设备接收下行控制信息。其中,第一解调参考信息可以是DMRS,也可以是其他信号,对此本申请不做任何限制。
在一个示例中,网络设备根据第一加扰参数生成解调参考信号序列,即为第一解调参考信息,具体生成方法如下:
首先,网络设备根据第一加扰参数生成解调参考信号序列初始值,其中,第一加扰参数为
Figure PCTCN2018099165-appb-000029
其中,SCID为加扰参数标识scrambling ID的缩写,解调参考信号序列初始值为c init,则c init
Figure PCTCN2018099165-appb-000030
满足:
Figure PCTCN2018099165-appb-000031
其中,n s是时隙slot的索引,
Figure PCTCN2018099165-appb-000032
为下取整;DMRS序列可以是伪随机噪声(pseudo noise,PN)序列,也可以是其他序列,对此本申请不做任何限制。下面对基于加扰参数生成PN序列的方法进行举例说明,根据解调参考信号初始值生成PN序列的生成方法具体如下:
PN序列用c(n)表示,其中,n=0,1,...,M PN-1,其中,M PN为PN序列的长度;c(n)=(x 1(n+N C)+x 2(n+N C))mod2,其中,N C=1600,x 1是一个m序列,x 1(n+31)=(x 1(n+3)+x 1(n))mod2,起始值为x 1(0)=1,x 1(n)=0,n=1,2,...,30,而x 2的初始值则是由c init确定:
Figure PCTCN2018099165-appb-000033
上述产生的c(n)序列直接作为DMRS序列使用。
在一个示例中,网络设备根据第二加扰参数
Figure PCTCN2018099165-appb-000034
生成解调参考信号序列,即为第二解调参考信息,其中,生成方法与上述网络设备根据第一加扰参数生成第二解调参考序列的方法类似,此处不再赘述。此外,网络设备向第二终端设备发送第一加扰参数、第二加扰参数和第二解调参考信息。
在一个示例中,网络设备向第二终端设备发送第一加扰参数、第二加扰参数和第二解调参考信息。其中,第二解调参考信息可以是DMRS,也可以是其他信号,对此本申请不做任何限制。
在一个示例中,第一解调参考信息和第二解调参考信息占用的时频资源全部或部分重叠,其中,控制信道资源集合的时频资源包括此处解调参考信息占用的时频资源。
704、第一终端设备根据第一加扰参数、第二加扰参数和携带第一解调参考信息的信号,对携带下行控制信息的信号进行检测,得到第一终端设备的下行控制信息。
第一终端设备接收网络设备发送的配置信息,该配置信息如上述步骤701的描述类似,此处不再赘述。
第一终端设备按照监控周期指示的发送时刻,在控制信道资源集合的时频资源上,通过解调参考信号端口接收网络设备发送的携带下行控制信息的信号和携带第一解调参考信 息的信号,其中,解调参考信号端口的确定与上述步骤702中的确定方法类似,对此此处不再赘述。
其中,携带第一解调参考信息的信号是指:网络设备向第一终端设备发送第一解调参考信息时,使用预编码矩阵对第一解调参考信息进行预编码,上述预编码矩阵是根据网络设备与第一终端设备之间的信道状态信息获得,并且与发送第一终端设备的下行控制信息时使用的预编码矩阵相同,得到经过编码后的信号,发送后经过无线信道的传播到达终端设备,需要注意的是,到达终端设备的信号包含了无线信道的响应和叠加的环境热噪声以及网络设备和终端设备电路所引起的噪声,这个终端设备接收到的混合信号就是携带第一解调参考息的信号。同理,网络设备向第二终端设备发送第二解调参考信息与上述过程类似。其中,详细描述可参见下文中对第一终端获取第一终端的下行控制信号的方法中的相关描述。
另外,携带下行控制信息的信号与上述携带第一解调参考信息的信号的描述类似,并且详细描述可参见下文中对第一终端获取第一终端的下行控制信号的方法中的相关描述,对此此处不再赘述。
在一个示例中,第一终端设备接收网络设备发送的第一加扰参数和第二加扰参数;进一步地,第一终端设备根据第一加扰参数生成第一解调参考信息,并且,第一终端根据第二加扰参数生成第二解调参考信息。
在一个示例中,第一终端设备根据第一解调参考信息和携带第一解调参考信息的信号进行信道估计,得到信道估计结果。
信道估计具体如下:例如,第一终端设备接收到的携带解调参考信号的信号为:r=HP 1s 1+HP 2s 2+n 0;其中,H表示网络设备与第一终端设备之间的信道矩阵,P 1表示基站发送第一终端设备的下行控制信息时使用的预编码矩阵,s 1是与第一终端设备的下行控制信息相关联的第一解调参考信息,P 2表示网络设备发送第二终端设备的下行控制信息时使用的预编码矩阵,s 2是与第二终端设备的下行控制信息相关联的第二解调参考信息,对于第一终端设备而言,在接收到的携带解调参考信号信号内,HP 2s 2是干扰信号,n 0表示噪声;
第一终端设备根据第一加扰参数
Figure PCTCN2018099165-appb-000035
产生第一解调参考信息序列s 1,其具体的生成方法详见上述步骤703中的相关描述,对此此处不再赘述,第一终端设备根据s 1通过时域相关运算,进行信道估计得到信道估计结果HP 1,进一步第一终端设备需要根据信道估计得到的HP 1用于下行控制信息的检测。
进一步地,第一终端设备根据第二解调参考信息和携带第一解调参考信息的信号进行干扰估计,得到干扰估计结果。
干扰估计具体如下:与上述信道估计类似,第一终端根据第二加扰参数
Figure PCTCN2018099165-appb-000036
产生第二解调参考信息序列s 2,其具体的生成方法详见上述步骤703中的相关描述,对此此处不再赘述,随后,第一终端设备根据s 2通过时域相关运算,进行干扰估计得到干扰估计结果 HP 2
再进一步地,第一终端设备根据信道估计结果、干扰估计结果,对携带下行控制信息的信号进行检测,得到第一终端的下行控制信息。
与上述携带解调参考信号类似,第一终端接收到的携带下行控制信息的信号为:y=HP 1x 1+HP 2x 2+n 0,H表示网络设备与第一终端设备之间的信道矩阵,P 1表示基站发送第一终端的下行控制信息时使用的预编码矩阵,x 1是第一终端的下行控制信息,P 2表示基站发送第二终端设备的下行控制信息时使用的预编码矩阵,x 2是第二终端设备的下行控制信息,对于第一终端设备而言,HP 2x 2是干扰信号;进而,第一终端设备对干扰估计得到的HP 2进行奇异值SVD分解,选取其中的零空间向量
Figure PCTCN2018099165-appb-000037
获得
Figure PCTCN2018099165-appb-000038
最后根据信道估计得到的HP 1以及
Figure PCTCN2018099165-appb-000039
得到最后的接收信号
Figure PCTCN2018099165-appb-000040
其中
Figure PCTCN2018099165-appb-000041
可以理解的是,对于第二终端设备而言,也可以使用与上述第一终端类似的方法得到第二终端的下行控制信息。
本实施例中,网络设备和终端设备在确定端口时,是通过控制资源集合的配置参数和终端设备的标识计算获得,不需要额外的信令交互,这就解决了现有技术(两级控制信道结构)中由于第一级下行控制信道可能的解调失败带来的鲁棒性问题,以及信令开销过大的问题。
对于每一个终端设备而言,每个控制信道资源集合对应一个解调参考信号端口,因此,第一终端设备进行一次信道估计得到的估计结果可以用于在同一个控制信道资源集合内的下行控制信息进行多次检测。
进一步地,第一终端根据第一加扰参数和第二加扰参数,能够使得第一终端设备根据第二加扰参数获得第二终端设备的干扰信号,同样,对于第二终端设备而言,能够使得第二终端设备获得第一终端设备的干扰信号,因此,终端设备可以测量出干扰信号,并进行干扰消除,从而降低非正交下行控制信息发送中终端设备之间的相互干扰。
如图8所示,本申请中的信号发送以及信号接收方法的另一个实施例,包括:
801、网络设备生成第一加扰参数和第二加扰参数。
在一个示例中,网络设备根据第一加扰参数生成第一解调参考信息,网络设备根据第二加扰参数生成第二解调信号。其具体网络设备根据第一加扰参数生成第一解调参考信息,以及网络设备根据第二加扰参数生成第二解调参考信息的方法详见上述实施例步骤703中的相关描述,对此此处不再赘述。
802、网络设备向第一终端设备发送第一加扰参数和第二加扰参数。
在网络设备生成第一加扰参数和第二加扰参数之后,网络设备向第一终端设备发送第一加扰参数和第二加扰参数。
803、网络设备向第二终端设备发送第一加扰参数和第二加扰参数。
在网络设备生成第一加扰参数和第二加扰参数之后,网络设备向第二终端设备发送第 一加扰参数和第二加扰参数。
其中,对上述步骤802与步骤803的执行顺序不做限定。
804、网络设备按照监控周期指示的发送时刻,在控制信道资源集合的时频资源上,通过解调参考信号端口向第一终端发送第一解调参考信息和第一终端的下行控制信息。
步骤804与上述步骤703类似,对此此处不再赘述。
在一个示例中,在步骤804之前还包括:网络设备向第一终端设备发送配置信息,其中,其余相关描述与上述步骤701,对此此处不再赘述。
进一步地,网络设备根据控制信道资源集合的配置参数、网络设备为第一终端设备配置的监控周期和第一终端设备的用户标识中的至少一个信息确定第一端口,其中,第一端口为网络设备与第一终端设备进数据传输的解调参考信号端口。其余相关描述与上述步骤702类似,对此此处不再赘述。
805、第一终端设备根据第一加扰参数、第二加扰参数和携带第一解调参考信息的信号,对携带第一终端的下行控制信息的信号进行检测,得到第一终端设备的下行控制信息。
此步骤805与上述步骤704类似,对此此处不再赘述。
806、网络设备按照监控周期指示的发送时刻,在控制信道资源集合的时频资源上,通过解调参考信号端口向第二终端发送第二解调参考信息和第二终端的下行控制信息。
步骤806与上述步骤703类似,对此此处不再赘述。
在一个示例中,在步骤806之前还包括:网络设备向第二终端设备发送配置信息,其中,其余相关描述与上述步骤701,对此此处不再赘述。
进一步地,网络设备根据控制信道资源集合的配置参数、网络设备为第二终端设备配置的监控周期和第二终端设备的用户标识中的至少一个信息确定第二端口,其中,第二端口为网络设备与第二终端设备进数据传输的解调参考信号端口。其余相关描述与上述步骤702类似,对此此处不再赘述。
其中,步骤804与步骤806的执行顺序不做限定。
807、第二终端设备根据第一加扰参数、第二加扰参数和携带第二解调参考信息的信号,对携带第二终端的下行控制信息的信号进行检测,得到第二终端设备的下行控制信息。
此步骤807与上述步骤704类似,对此此处不再赘述。
本实施例中,第一终端根据第一加扰参数和第二加扰参数,能够使得第一终端设备根据第二加扰参数获得第二终端设备的干扰信号,同样,对于第二终端设备而言,能够使得第二终端设备获得第一终端设备的干扰信号,因此,终端设备可以测量出干扰信号,并进行干扰消除,从而降低非正交下行控制信息发送中终端设备之间的相互干扰。
进一步地,对于每一个终端设备而言,每个控制信道资源集合对应一个解调参考信号端口,因此,第一终端设备进行一次信道估计得到的估计结果可以用于在同一个控制信道资源集合内的下行控制信息进行多次检测。
其次,对本申请中的网络设备的一个实施例进行说明,如图9所示,本申请中的装置 的一个实施例,包括:
处理单元901和通信单元902;其中,通信单元902用于向第一终端设备发送配置信息,上述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,上述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:上述控制信道资源集合的频域位置,上述控制信道资源集合的正交频分复用的起始符号,上述控制信道资源集合的持续时长;
处理单元901,用于根据上述控制信道资源集合的配置参数和上述第一终端设备的用户标识,确定解调参考信号端口;以及生成下行控制信息和第一解调参考信息;
通信单元902,还用于按照上述监控周期指示的发送时间单元,在上述控制信道资源集合的时频资源上,通过上述解调参考信号端口向上述第一终端设备发送上述下行控制信息和上述第一解调参考信息。
在一种示例中,上述监控周期指示的发送时间单元包括上述监控周期内的至少一个时间单元;上述控制信道资源集合的时频资源由上述网络设备根据上述控制信道资源集合的频域位置、上述控制信道资源集合的正交频分复用符号的起始符号和上述控制信道资源集合的持续时长确定的。
在一种示例中,上述处理单元901,还用于生成第一加扰参数和第二加扰参数,上述第一加扰参数用于为上述第一终端设备生成上述第一解调参考信息,上述第二加扰参数用于为第二终端设备生成第二解调参考信息,上述第一解调参考信息和上述第二解调参考信息占用的时频资源全部或部分重叠;
上述处理单元901,还用于根据上述第一加扰参数生成上述第一解调参考信息;
上述通信单元902,还用于向上述第一终端设备发送上述第一加扰参数和上述第二加扰参数;
上述处理单元901,还用于根据上述第二加扰参数生成第二解调参考信息;
上述通信单元902,还用于向第二终端设备发送上述第一加扰参数、上述第二加扰参数和上述第二解调参考信息。
在一种示例中,上述处理单元901,还用于根据上述控制信道资源集合的配置参数和上述第一终端设备的用户标识,确定端口映射值,上述端口映射值与上述解调参考信号端口具有一一对应的关系;
上述处理单元901,还用于根据上述端口映射值确定上述解调参考信号端口。
在一种示例中,上述端口映射值为n′,n′满足:
Figure PCTCN2018099165-appb-000042
其中,n REG,low为上述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
Figure PCTCN2018099165-appb-000043
为上述控制信道资源集合中的控制信道元素数目,n RNTI为上述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000044
为上述控制信道资源集合中用于传输上述下行控制信息的控制信道元素 数目,N port为候选的解调参考信号端口数目;
或,上述端口映射值n′满足:
Figure PCTCN2018099165-appb-000045
其中,n OS,low为上述控制信道资源集合的正交频分复用的起始符号的编号,
Figure PCTCN2018099165-appb-000046
为上述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为上述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000047
为上述控制信道资源集合中用于传输上述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
如图9所示,本申请实施中的又一个装置,包括:
处理单元901和通信单元902,
上述通信单元902,用于接收网络设备发送的配置信息,上述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,上述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:上述控制信道资源集合的频域位置,上述控制信道资源集合正交频分复用的起始符号,上述控制信道资源集合的持续时长;
上述通信单元902,还用于按照上述监控周期指示的发送时间单元,在上述控制信道资源集合的时频资源上,通过上述解调参考信号端口接收携带下行控制信息的信号和携带第一解调参考信息的信号;
上述处理单元901,用于根据第一加扰参数、第二加扰参数和上述携带第一解调参考信息的信号,对上述携带下行控制信息的信号进行检测,得到第一终端的下行控制信息。
在一种示例中,上述监控周期指示的发送时间单元包括上述监控周期内的至少一个时间单元;上述控制信道资源集合的时频资源由上述网络设备根据上述控制信道资源集合的频域位置、上述控制信道资源集合的正交频分复用符号的起始符号和上述控制信道资源集合的持续时长确定的。
在一种示例中,上述通信单元902,还用于接收上述网络设备发送的上述第一加扰参数和上述第二加扰参数;
上述处理单元901,还用于根据上述第一加扰参数生成第一解调参考信息;
上述处理单元901,还用于根据上述第二加扰参数生成第二解调参考信息;上述第一解调参考信息和上述第二解调参考信息占用的时频资源部分或全部重叠。
上述处理单元901,还用于根据上述第一解调参考信息和上述携带第一解调参考信息的信号进行信道估计,得到信道估计结果;
上述处理单元901,还用于根据上述第二解调参考信息和上述携带第一解调参考信息的信号进行干扰估计,得到干扰估计结果;
上述处理单元901,还用于根据上述信道估计结果、上述干扰估计结果,对上述携带下行控制信息的信号进行检测,得到上述第一终端的下行控制信息。
在一种示例中,上述处理单元901,还用于根据上述控制信道资源集合的配置参数和上述第一终端设备的用户标识,确定端口映射值,上述端口映射值与上述解调参考信号端口具有一一对应的关系;
上述处理单元901,还用于根据上述端口映射值确定上述解调参考信号端口。
在一种示例中,上述端口映射值为n′,n′满足:
Figure PCTCN2018099165-appb-000048
其中,n REG,low为上述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
Figure PCTCN2018099165-appb-000049
为上述控制信道资源集合中的控制信道元素数目,n RNTI为上述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000050
为上述控制信道资源集合中用于传输上述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
或,上述端口映射值n′满足:
Figure PCTCN2018099165-appb-000051
其中,n OS,low为上述控制信道资源集合的正交频分复用的起始符号的编号,
Figure PCTCN2018099165-appb-000052
为上述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为上述第一终端设备的用户标识,
Figure PCTCN2018099165-appb-000053
为上述控制信道资源集合中用于传输上述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
上述装置的有益效果与上述图7和图8的描述类似,对此此处不再赘述。
在一种可能的设计中,当该装置为终端时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端执行上述第一方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元, 如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (26)

  1. 一种信号发送方法,其特征在于,包括:
    网络设备向第一终端设备发送配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合的正交频分复用的起始符号,所述控制信道资源集合的持续时长;
    所述网络设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定解调参考信号端口;
    所述网络设备生成下行控制信息和第一解调参考信息;
    所述网络设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口向所述第一终端设备发送所述下行控制信息和所述第一解调参考信息。
  2. 根据权利要求1所述的信号发送方法,其特征在于,
    所述监控周期指示的发送时间单元包括所述监控周期内的至少一个时间单元;所述控制信道资源集合的时频资源由所述网络设备根据所述控制信道资源集合的频域位置、所述控制信道资源集合的正交频分复用符号的起始符号和所述控制信道资源集合的持续时长确定的。
  3. 根据权利要求1或2所述的信号发送方法,其特征在于,
    所述网络设备生成第一解调参考信息,包括:
    所述网络设备生成第一加扰参数和第二加扰参数,所述第一加扰参数用于为所述第一终端设备生成所述第一解调参考信息,所述第二加扰参数用于为第二终端设备生成第二解调参考信息,所述第一解调参考信息和所述第二解调参考信息占用的时频资源全部或部分重叠;
    所述网络设备根据所述第一加扰参数生成所述第一解调参考信息;
    所述方法还包括:
    所述网络设备向所述第一终端设备发送所述第一加扰参数和所述第二加扰参数;
    所述网络设备根据所述第二加扰参数生成第二解调参考信息;
    所述网络设备向第二终端设备发送所述第一加扰参数、所述第二加扰参数和所述第二解调参考信息。
  4. 根据权利要求1至3中任一项所述的信号发送方法,其特征在于,
    所述网络设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定所述解调参考信号端口,包括:
    所述网络设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定端口映射值,所述端口映射值与所述解调参考信号端口具有一一对应的关系;
    所述网络设备根据所述端口映射值确定所述解调参考信号端口。
  5. 根据权利要求4所述的信号发射方法,其特征在于,
    所述端口映射值为n′,n′满足:
    Figure PCTCN2018099165-appb-100001
    其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
    Figure PCTCN2018099165-appb-100002
    为所述控制信道资源集合中的控制信道元素数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100003
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
    或,所述端口映射值n′满足:
    Figure PCTCN2018099165-appb-100004
    其中,n OS,low为所述控制信道资源集合的正交频分复用的起始符号的编号,
    Figure PCTCN2018099165-appb-100005
    为所述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100006
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
  6. 一种信号接收方法,其特征在于,包括:
    第一终端设备接收网络设备发送的配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合正交频分复用的起始符号,所述控制信道资源集合的持续时长;
    所述第一终端设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口接收携带下行控制信息的信号和携带第一解调参考信息的信号;
    所述第一终端设备根据第一加扰参数、第二加扰参数和所述携带第一解调参考信息的信号,对所述携带下行控制信息的信号进行检测,得到所述第一终端的下行控制信息。
  7. 根据权利要求6所述的信号接收方法,其特征在于,
    所述监控周期指示的发送时间单元包括所述监控周期内的至少一个时间单元;所述控制信道资源集合的时频资源由所述网络设备根据所述控制信道资源集合的频域位置、所述控制信道资源集合的正交频分复用符号的起始符号和所述控制信道资源集合的持续时长确定的。
  8. 根据权利要求6或7所述的信号接收方法,其特征在于,
    所述方法还包括:
    所述第一终端设备接收所述网络设备发送的所述第一加扰参数和所述第二加扰参数;
    所述第一终端设备根据所述第一加扰参数生成第一解调参考信息;
    所述第一终端设备根据所述第二加扰参数生成第二解调参考信息;所述第一解调参考信息和所述第二解调参考信息占用的时频资源部分或全部重叠。
  9. 根据权利要求8所述的信号接收方法,其特征在于,
    所述第一终端设备根据所述第一加扰参数、所述第二加扰参数和所述携带第一解调参考信息的信号,对所述携带下行控制信息的信号进行检测,得到所述第一终端的下行控制信息,包括:
    所述第一终端设备根据所述第一解调参考信息和所述携带第一解调参考信息的信号进行信道估计,得到信道估计结果;
    所述第一终端设备根据所述第二解调参考信息和所述携带第一解调参考信息的信号进行干扰估计,得到干扰估计结果;
    所述第一终端设备根据所述信道估计结果、所述干扰估计结果,对所述携带下行控制信息的信号进行检测,得到所述第一终端的下行控制信息。
  10. 根据权利要求6至9中任一项所述的信号接收方法,其特征在于,
    在所述第一终端设备按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口接收携带下行控制信息的信号和携带第一解调参考信息的信号之前,还包括:
    所述第一终端设备根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定端口映射值,所述端口映射值与所述解调参考信号端口具有一一对应的关系;
    所述第一终端设备根据所述端口映射值确定所述解调参考信号端口。
  11. 根据权利要求10所述的信号接收方法,其特征在于,
    所述端口映射值为n′,n′满足:
    Figure PCTCN2018099165-appb-100007
    其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
    Figure PCTCN2018099165-appb-100008
    为所述控制信道资源集合中的控制信道元素数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100009
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
    或,所述端口映射值n′满足:
    Figure PCTCN2018099165-appb-100010
    其中,n OS,low为所述控制信道资源集合的正交频分复用的起始符号的编号,
    Figure PCTCN2018099165-appb-100011
    为所述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为所述第一终端设备 的用户标识,
    Figure PCTCN2018099165-appb-100012
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
  12. 一种装置,其特征在于,包括:
    处理单元和通信单元;
    所述通信单元用于向第一终端设备发送配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合的正交频分复用的起始符号,所述控制信道资源集合的持续时长;
    所述处理单元,用于根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定解调参考信号端口;以及生成下行控制信息和第一解调参考信息;
    所述通信单元,还用于按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口向所述第一终端设备发送所述下行控制信息和所述第一解调参考信息。
  13. 根据权利要求12所述的装置,其特征在于,
    所述监控周期指示的发送时间单元包括所述监控周期内的至少一个时间单元;所述控制信道资源集合的时频资源由所述网络设备根据所述控制信道资源集合的频域位置、所述控制信道资源集合的正交频分复用符号的起始符号和所述控制信道资源集合的持续时长确定的。
  14. 根据权利要求12或13所述的装置,其特征在于,
    所述处理单元,还用于生成第一加扰参数和第二加扰参数,所述第一加扰参数用于为所述第一终端设备生成所述第一解调参考信息,所述第二加扰参数用于为第二终端设备生成第二解调参考信息,所述第一解调参考信息和所述第二解调参考信息占用的时频资源全部或部分重叠;
    所述处理单元,还用于根据所述第一加扰参数生成所述第一解调参考信息;
    所述通信单元,还用于向所述第一终端设备发送所述第一加扰参数和所述第二加扰参数;
    所述处理单元,还用于根据所述第二加扰参数生成第二解调参考信息;
    所述通信单元,还用于向第二终端设备发送所述第一加扰参数、所述第二加扰参数和所述第二解调参考信息。
  15. 根据权利要求12至14中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定端口映射值,所述端口映射值与所述解调参考信号端口具有一一对应的关系;
    所述处理单元,还用于根据所述端口映射值确定所述解调参考信号端口。
  16. 根据权利要求15所述的装置,其特征在于,
    所述端口映射值为n′,n′满足:
    Figure PCTCN2018099165-appb-100013
    其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
    Figure PCTCN2018099165-appb-100014
    为所述控制信道资源集合中的控制信道元素数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100015
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
    或,所述端口映射值n′满足:
    Figure PCTCN2018099165-appb-100016
    其中,n OS,low为所述控制信道资源集合的正交频分复用的起始符号的编号,
    Figure PCTCN2018099165-appb-100017
    为所述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100018
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
  17. 一种装置,其特征在于,包括:处理单元和通信单元;
    所述通信单元,用于接收网络设备发送的配置信息,所述配置信息包括控制信道资源集合的配置参数和下行控制信息的监控周期,所述控制信道资源集合的配置参数包括用于指示以下至少一项的参数:所述控制信道资源集合的频域位置,所述控制信道资源集合正交频分复用的起始符号,所述控制信道资源集合的持续时长;
    所述通信单元,还用于按照所述监控周期指示的发送时间单元,在所述控制信道资源集合的时频资源上,通过所述解调参考信号端口接收携带下行控制信息的信号和携带第一解调参考信息的信号;
    所述处理单元,用于根据第一加扰参数、第二加扰参数和所述携带第一解调参考信息的信号,对所述携带下行控制信息的信号进行检测,得到第一终端的下行控制信息。
  18. 根据权利要求17所述的装置,其特征在于,
    所述监控周期指示的发送时间单元包括所述监控周期内的至少一个时间单元;所述控制信道资源集合的时频资源由所述网络设备根据所述控制信道资源集合的频域位置、所述控制信道资源集合的正交频分复用符号的起始符号和所述控制信道资源集合的持续时长确定的。
  19. 根据权利要求17或18所述的装置,其特征在于,
    所述通信单元,还用于接收所述网络设备发送的所述第一加扰参数和所述第二加扰参数;
    所述处理单元,还用于根据所述第一加扰参数生成第一解调参考信息;
    所述处理单元,还用于根据所述第二加扰参数生成第二解调参考信息;所述第一解调参考信息和所述第二解调参考信息占用的时频资源部分或全部重叠。
  20. 根据权利要求19所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一解调参考信息和所述携带第一解调参考信息的信号进行信道估计,得到信道估计结果;
    所述处理单元,还用于根据所述第二解调参考信息和所述携带第一解调参考信息的信号进行干扰估计,得到干扰估计结果;
    所述处理单元,还用于根据所述信道估计结果、所述干扰估计结果,对所述携带下行控制信息的信号进行检测,得到所述第一终端的下行控制信息。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述控制信道资源集合的配置参数和所述第一终端设备的用户标识,确定端口映射值,所述端口映射值与所述解调参考信号端口具有一一对应的关系;
    所述处理单元,还用于根据所述端口映射值确定所述解调参考信号端口。
  22. 根据权利要求21所述的装置,其特征在于,
    所述端口映射值为n′,n′满足:
    Figure PCTCN2018099165-appb-100019
    其中,n REG,low为所述控制信道资源集合中频域位置的起始点的资源单元组的索引值,
    Figure PCTCN2018099165-appb-100020
    为所述控制信道资源集合中的控制信道元素数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100021
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目;
    或,所述端口映射值n′满足:
    Figure PCTCN2018099165-appb-100022
    其中,n OS,low为所述控制信道资源集合的正交频分复用的起始符号的编号,
    Figure PCTCN2018099165-appb-100023
    为所述控制信道资源集合的持续时长的正交频分复用符号的数目,n RNTI为所述第一终端设备的用户标识,
    Figure PCTCN2018099165-appb-100024
    为所述控制信道资源集合中用于传输所述下行控制信息的控制信道元素数目,N port为候选的解调参考信号端口数目。
  23. 一种计算机程序产品,其特征在于,当所述计算机产品在计算机上运行时,使得 计算机可以执行上述权利要求1至5中任一项所述的信号发送方法。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储压力检测装置所用的计算机软件指令,当所述计算机可读存储介质在计算机上运行时,使得计算机可以执行上述权力要求1至5中任一项所述的信号发送方法。
  25. 一种计算机程序产品,其特征在于,当所述计算机产品在计算机上运行时,使得计算机可以执行上述权利要求6至11中任一项所述的信号接收方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储压力检测装置所用的计算机软件指令,当所述计算机可读存储介质在计算机上运行时,使得计算机可以执行上述权力要求6至11中任一项所述的信号接收方法。
PCT/CN2018/099165 2017-08-11 2018-08-07 一种信号发送、信号接收方法以及相关设备 WO2019029523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710690893.0 2017-08-11
CN201710690893.0A CN109392154A (zh) 2017-08-11 2017-08-11 一种信号发送、信号接收方法以及相关设备

Publications (1)

Publication Number Publication Date
WO2019029523A1 true WO2019029523A1 (zh) 2019-02-14

Family

ID=65273313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099165 WO2019029523A1 (zh) 2017-08-11 2018-08-07 一种信号发送、信号接收方法以及相关设备

Country Status (2)

Country Link
CN (1) CN109392154A (zh)
WO (1) WO2019029523A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4061023A1 (en) * 2019-12-18 2022-09-21 Huawei Technologies Co., Ltd. Method, device, and system for sending configuration information
CN113677025B (zh) * 2020-05-15 2024-05-14 华为技术有限公司 一种通信方法和通信装置
CN114726489B (zh) * 2021-01-05 2024-06-21 中国移动通信有限公司研究院 配置信息处理方法、装置及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073824A1 (en) * 2011-11-14 2013-05-23 Samsung Electronics Co., Ltd. Method of reference signaling resource allocation for control channel transmission in wireless communication system
CN103873080A (zh) * 2012-12-07 2014-06-18 英特尔移动通信有限责任公司 用于提供干扰降低的信号的接收机、接收机电路以及方法
CN104704787A (zh) * 2012-10-08 2015-06-10 高通股份有限公司 针对增强型物理下行链路控制信道的参考信号

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559194A (zh) * 2015-09-25 2017-04-05 夏普株式会社 用户设备、基站及相关方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073824A1 (en) * 2011-11-14 2013-05-23 Samsung Electronics Co., Ltd. Method of reference signaling resource allocation for control channel transmission in wireless communication system
CN104704787A (zh) * 2012-10-08 2015-06-10 高通股份有限公司 针对增强型物理下行链路控制信道的参考信号
CN103873080A (zh) * 2012-12-07 2014-06-18 英特尔移动通信有限责任公司 用于提供干扰降低的信号的接收机、接收机电路以及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "DMRS Structure for NR-PDCCH", 3GPP TSG RAN WGI MEETING #89 R1-1707986, 6 May 2017 (2017-05-06), XP051262163 *

Also Published As

Publication number Publication date
CN109392154A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6430981B2 (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
JP6215297B2 (ja) 高度制御通信路におけるリソースの集約
US10517081B2 (en) Initializing reference signal generation in wireless networks
JP2020520584A (ja) 情報送受信方法及び関連するデバイス
US11589357B2 (en) Detection window indication method and apparatus
JP7175976B2 (ja) ダウンリンク制御情報の伝送方法、ブラインド検出回数を取得するための方法及び装置
JP6197244B2 (ja) 同一チャネルセル干渉を処理するための方法、装置、及びシステム
JP2017511006A (ja) 無認可無線周波数スペクトル帯域においてアップリンクチャネルを構成するための技法
WO2017000233A1 (zh) 传输导频序列的方法和装置
WO2019170097A1 (zh) 一种确定控制信道位置方法设备和处理器可读存储介质
WO2017197973A1 (zh) 一种数据处理方法、装置及系统
CN106664689B (zh) 一种物理下行控制信道的传输方法及装置
US12021795B2 (en) Communication method and network device
CN108886811A (zh) 发送物理随机接入信道prach的方法、设备及系统
US20210014023A1 (en) Data transmission method, terminal device, and network device
WO2019029523A1 (zh) 一种信号发送、信号接收方法以及相关设备
WO2017166254A1 (zh) 发送信号的方法、终端设备和网络设备
KR20200102926A (ko) 통신 시스템에서 가변 대역폭을 사용하여 신호를 송수신하는 방법 및 장치
CN109644482A (zh) 传输数据的方法、终端设备和网络设备
CN109041198B (zh) 一种通信方法及装置
CN109429565B (zh) 一种通信方法及装置
WO2013107228A1 (zh) 探测参考信号虚拟信令组的发送和选取方法及装置
US20230239109A1 (en) Communication method and communication apparatus
WO2017054134A1 (zh) 一种确定频率资源的方法和装置
TWI710269B (zh) 信號的傳輸方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843782

Country of ref document: EP

Kind code of ref document: A1