WO2017166254A1 - 发送信号的方法、终端设备和网络设备 - Google Patents

发送信号的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2017166254A1
WO2017166254A1 PCT/CN2016/078224 CN2016078224W WO2017166254A1 WO 2017166254 A1 WO2017166254 A1 WO 2017166254A1 CN 2016078224 W CN2016078224 W CN 2016078224W WO 2017166254 A1 WO2017166254 A1 WO 2017166254A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
signal
sequence
symbols
sequences
Prior art date
Application number
PCT/CN2016/078224
Other languages
English (en)
French (fr)
Inventor
吴作敏
马莎
官磊
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16896034.2A priority Critical patent/EP3432529A4/en
Priority to PCT/CN2016/078224 priority patent/WO2017166254A1/zh
Priority to CN201680084046.3A priority patent/CN108886505B/zh
Publication of WO2017166254A1 publication Critical patent/WO2017166254A1/zh
Priority to US16/146,099 priority patent/US10616019B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of transmitting a signal, a terminal device, and a network device.
  • spectrum resources are mainly divided into licensed spectrum resources and unlicensed spectrum resources.
  • LTE Long Term Evolution
  • the spectrum resources used by operators are mainly licensed spectrum resources.
  • the increase in the number of mobile communication network users and the increase in user requirements for communication rate and quality of service have made it difficult for existing licensed spectrum resources to meet the needs of operators' existing services.
  • Considering the high price and resource shortage of the new licensed spectrum operators are turning their attention to the unlicensed spectrum resources. It is expected that the use of unlicensed spectrum resources will be used to achieve network capacity diversion and improve service quality.
  • LBT Listening Before Talk
  • a device when a device sends a signal on a license-free spectrum resource, it should follow the method of competing resources of Listening Before Talk (LBT); the maximum transmit power or maximum transmit power spectrum used by the device when transmitting signals on the unlicensed spectrum resource.
  • LBT Listening Before Talk
  • Density is limited by regulations; signals need to occupy 80% of the channel bandwidth when transmitting signals on unlicensed spectrum resources, and so on.
  • a user equipment In an existing LTE system, a user equipment (UE) needs to send a random access preamble sequence on a physical random access (CHACH) resource in a random access procedure, where the PRACH frequency is occupied. 6 consecutive Resource Blocks (RBs) on the domain. If the existing PRACH structure is used on the unlicensed spectrum resources, the 80% of the signal occupied channel bandwidth cannot be met due to regulatory restrictions, and the transmission power of the random access preamble sequence is limited by the maximum transmit power spectral density.
  • CHCH physical random access
  • the present application provides a method for transmitting a reference signal, which can improve the demodulation performance of a random access preamble sequence occupying discrete frequency domain resources.
  • the present application provides a method for transmitting a signal, where the method includes: generating, by a network device, a second signal, where the second signal is used to receive a first signal sent by a terminal device, where the second signal includes at least the M a first sequence, each of the first sequences of the M first sequences having a length Z, and each first sequence is obtained according to at least one second sequence of length L, the second sequence being orthogonal a sequence in the sequence group, the orthogonal sequence group including at least two second sequences of length L, and any two second sequences of the orthogonal sequence group being orthogonal to each other; the network device according to the second The first signal sent by the signal receiving terminal device, wherein the first signal occupies M symbols in the time domain, the first signal occupies N frequency domain units in the frequency domain, and each frequency domain unit includes K consecutive Subcarriers, the first signal occupies L consecutive subcarriers in each frequency domain unit, and the M sequences are in one-to-one correspondence with the M symbols, where
  • each of the first ones of the M first sequences is derived from a third sequence of length Z and any one of the at least one second sequence.
  • the bandwidth of each of the N frequency domain units is 180,000 Hz
  • each of the frequency domain units includes K consecutive subcarriers, including at least one of the following:
  • Each frequency domain unit includes 144 consecutive subcarriers, wherein each subcarrier has a bandwidth of 1250 Hz; each frequency domain unit includes 72 consecutive subcarriers, wherein each subcarrier has a bandwidth of 2500 Hz;
  • each frequency domain The unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz; each frequency domain unit includes 24 consecutive subcarriers, wherein each subcarrier The bandwidth is 7500 Hz;
  • each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies M symbols in the time domain, including at least one of: the first signal occupies 1 symbol in the time domain; the first signal is Two consecutive symbols occupying the time domain; the first signal occupies four consecutive symbols in the time domain; the first signal occupies consecutive 12 symbols in the time domain; the first signal occupies consecutive time domain 14 symbols.
  • each of the N frequency domain units includes 12 consecutive subcarriers, each of which has a bandwidth of 15000 Hz, and the first signal occupies the frequency domain.
  • Each of the frequency domain units has 10 consecutive subcarriers located at a central position, and each subcarrier of each frequency domain unit located on either side of the central location does not carry a signal.
  • each of the N frequency domain units includes 144 consecutive subcarriers, each of which has a bandwidth of 1250 Hz, and the first signal occupies 1 in the time domain. a symbol, the first signal occupies 120 consecutive subcarriers of each frequency domain unit at a central position in the frequency domain, and each of the frequency domain units has 12 consecutive sub-segments on each side of the central position The carrier does not carry a signal.
  • the S symbols in the M symbols are carried with uplink control information, where the uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information.
  • uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information.
  • the uplink control information is HARQ information
  • the method further includes: the N frequency domain units include a first frequency domain unit and a second frequency domain unit, where the first frequency domain unit The first HARQ information and the second HARQ information are respectively carried on the second frequency domain unit, where the first HARQ information and the second HARQ information respectively correspond to different carriers or subframes.
  • the frequency domain spacing between any two adjacent frequency domain units of the N frequency domain units is equal, N>2.
  • the present application provides a terminal device for transmitting a signal, for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the terminal device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a network device for transmitting a reference signal for performing the second aspect or A method in any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the application provides a terminal device for transmitting a signal, the terminal device comprising: a processor, a transceiver, and a memory.
  • the terminal device further includes a bus system, wherein the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, and the processor is configured to execute instructions stored in the memory to control the transceiver to send and receive signals, and when The processor, when executing the instructions stored in the memory, causes the processor to perform the method of the first aspect or any possible implementation of the first aspect.
  • the application provides a network device for transmitting signals, the network device comprising: a processor, a transceiver, and a memory.
  • the terminal device further includes a bus system, wherein the transceiver, the memory, and the processor are connected by a bus system, the memory is configured to store instructions, and the processor is configured to execute instructions stored in the memory to control the transceiver to send and receive signals, and when The processor, when executing the instructions stored in the memory, causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • the application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a method for transmitting a signal, a terminal device, and a network device, which can improve demodulation performance of a random access preamble sequence occupying discrete frequency domain resources.
  • FIG. 1 is an application scenario of a method for transmitting a reference signal according to an embodiment of the present invention.
  • Figure 2a shows one way in which the first signal occupies frequency domain resources.
  • Figure 2b shows another way of frequency domain resources occupied by the first signal.
  • Figure 3a shows one way in which the first signal occupies time domain resources.
  • Figure 3b shows another way in which the first signal occupies time domain resources.
  • Figure 4a illustrates a method of transmitting a signal in accordance with an embodiment of the present invention.
  • Figure 4b illustrates a method of transmitting a signal in accordance with another embodiment of the present invention.
  • Figure 4c illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • Figure 4d illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • Figure 4e illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • Figure 4f illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • FIG. 5 shows a schematic flow diagram of a method 100 of transmitting a signal in accordance with an embodiment of the present invention as described in terms of device interaction.
  • FIG. 6 shows a schematic block diagram of a terminal device that transmits a signal according to an embodiment of the present invention.
  • FIG. 7 shows a schematic block diagram of a network device that transmits signals according to another embodiment of the present invention.
  • FIG. 8 is a block diagram showing a schematic structure of an apparatus for transmitting signals according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a schematic configuration of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • the technical solution of the embodiment of the present invention can be applied to various communication systems of a wireless cellular network, for example, a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS) system, LTE system, Universal Mobile Telecommunications System (UMTS), future 5G
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • the technical solution of the embodiment of the present invention is mainly applied to a Long Term Evolution (LTE) system and an evolved system thereof, in particular, a licensed assisted access LTE (LAA-LTE, Licensed-Assisted Access Using LTE) System or Carrier Aggregation (CA) SA-LTE system.
  • LTE Long Term Evolution
  • LAA-LTE licensed assisted access LTE
  • LAA-LTE Licensed-Assisted Access Using LTE
  • CA Carrier Aggregation
  • SA-LTE Carrier Aggregation
  • the terminal device (User Equipment, UE) may be referred to as a terminal, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc., and the terminal device It may communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example,
  • RAN Radio Access Network
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc.
  • the terminal device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device and terminal devices in a future 5G network that exchange voice and/or data with the wireless access network.
  • the embodiments of the present invention describe various embodiments in conjunction with the network device.
  • the network device may be an LTE system and an evolved system thereof, and in particular, an evolved base station (Evolutional Node B, or LTE or LTE system in the LA-LTE system or the SA-LTE system) e-NodeB), a macro base station, a micro base station (also referred to as a "small base station"), a pico base station, an access point (AP), or a transmission point (TP).
  • Evolutional Node B or LTE or LTE system in the LA-LTE system or the SA-LTE system
  • e-NodeB evolved base station
  • a macro base station also referred to as a "small base station”
  • AP access point
  • TP transmission point
  • a symbol mentioned in the technical solution of the embodiment of the present invention includes at least a Cyclic Prefix (CP) part and an information section part.
  • the information segment part includes all the information of one symbol.
  • the CP is a repetition of a portion of the information segment signal.
  • the symbol mentioned in the technical solution of the embodiment of the present invention may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or may be a Single Carrier-Frequency Division Multiple Access (SC-).
  • the FDMA) symbol may also be a symbol occupied by a random access preamble sequence.
  • the symbols mentioned in the technical solutions of the embodiments of the present invention may also be symbols of other types of communications, which are not limited by the present invention.
  • a physical channel carries data information from higher layers.
  • the physical channel may be a physical downlink shared channel (PDSCH), a physical downlink control channel (Physical Downlink Control CHannel, PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid retransmission indication.
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control CHannel
  • PCFICH physical control format indicator channel
  • a physical hybrid retransmission indication Physical Hybrid ARQ Indicator CHannel, PHICH
  • EPDCCH Enhanced-Physical Downlink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • Physical Uplink Control CHannel Physical Uplink Control CHannel
  • PUCCH Physical Random Access CHannel
  • PRACH Physical Random Access CHannel
  • Reference Signal is used for the physical layer and does not carry data information from higher layers.
  • a cell-specific reference signal (CRS) for downlink a UE-specific reference signal (UE-RS) for downlink, or a group-specific reference signal for downlink ( Group-specific Reference Signal (GRS), used for uplink Demodulation Reference Signal (DMRS), Sounding Reference Signal (SRS), etc.
  • RS is mainly used for channel estimation, physical channel demodulation, radio resource management (RRM) measurement, channel state information measurement, and the like.
  • the smallest unit of resources is the subcarrier.
  • the bandwidth of one Resource Block (RB) in the frequency domain is 180,000 Hz.
  • the subcarrier spacing is 15000 Hz, 1 RB includes 12 subcarriers; when the subcarrier spacing is 1250 Hz, 1 RB includes 144 subcarriers; when the subcarrier spacing is 7500 Hz, 1 RB includes 24 subcarriers.
  • a radio frame has a time length of 10 ms and contains 10 subframes, and the length of one subframe is 1 ms.
  • NCP Cyclic Prefix
  • ECP Extended Cyclic Prefix
  • one NCP subframe includes 14 symbols
  • one ECP subframe includes 12 symbols, wherein the length of the information segment of each symbol is 2048 ⁇ Ts
  • NCP subframes the CP lengths of symbols 0 and 7 are 160 ⁇ Ts, and the CP lengths of other symbols are 144 ⁇ Ts.
  • ECP subframes the CP length of each symbol is 512 ⁇ Ts.
  • the five formats shown in Table 1 may be included. Among them, the occupation time in transmission also includes the protection duration.
  • the signal transmitted by the device When transmitting signals on unlicensed spectrum resources, in some countries or regions, due to regulatory restrictions, the signal transmitted by the device is required to occupy 80% of the channel bandwidth, and the transmit power of the signal is limited by the maximum transmit power spectral density on the frequency band.
  • the network device can schedule multiple terminal devices in the frequency domain to meet the above requirements; for uplink transmission, if you want to support multi-user frequency division multiplexing, each terminal device needs to meet the above requirements.
  • the PUSCH or PUCCH transmission of the terminal device can satisfy the requirement by scheduling RBs at different positions on the frequency band.
  • the existing PRACH occupies six consecutive RBs in the frequency domain. To meet this requirement, the PRACH is also required to be discretely mapped to the entire system band.
  • the uplink PUSCH or PUCCH or PRACH are discretely mapped to the entire system band. For example, if the system bandwidth is 20 MHz and the entire frequency band includes 100 RBs, the 100 RBs can be divided into 10 clusters, each cluster including 10 consecutive RBs, wherein the RBs with the same relative positions in each cluster can form a new one.
  • the group each group consisting of 10 RBs discrete in the frequency domain.
  • the group is used as a unit to ensure that each uplink physical channel can meet the bandwidth occupation requirement.
  • one way is to map an existing random access preamble sequence to a discrete RB.
  • the bandwidth occupied by the random access preamble sequence in the frequency domain is likely to exceed the coherence bandwidth of the channel, so that different random access preamble sequences are destroyed after undergoing channel fading orthogonality.
  • Another way is to use the uplink SRS transmission instead of the random access preamble sequence transmission.
  • one purpose of transmitting the random access preamble sequence is to measure the round-trip delay of signal transmission between the terminal equipment and the base station. Assuming that the coverage of the cell on the unlicensed spectrum is at most 1.5 kilometers, the length of the CP needs at least 10 us.
  • the symbol CP in the subframe format has a maximum length of 160 ⁇ Ts, that is, about 5.2 us, which cannot meet the requirement.
  • FIG. 1 shows an application scenario in which the solution proposed by the present invention can be applied.
  • the scenario includes a cell base station 101, and a cell base station 202 adjacent to the cell base station 101 is in the coverage of the cell base station 101.
  • the terminal device 103 that communicates with the cell base station 101.
  • the cell base station 101 and the terminal device 103 are specifically communication devices that support communication using unlicensed spectrum resources and have fixed frame boundaries or subframe boundaries or symbol boundaries.
  • the cell base station 102 supports the same frequency band as the cell site 101.
  • the cell base station 102 may be the same type of communication device as the cell base station 101, or may be a communication device of a different type than the cell base station 101.
  • the cell base station 101 may be a base station of the LTE system, and the corresponding terminal device 103 may be a terminal device of the LTE system; the cell base station 102 may also be a base station of the LTE system, or may be a wireless router, a wireless repeater, or a terminal of the Wi-Fi system.
  • Equipment specifically not limited here.
  • the first signal occupies N frequency domain units, and each of the N frequency domain units includes K consecutive subcarriers, and the first signal occupies L consecutive bits in each frequency domain unit.
  • Subcarriers where N is a positive integer greater than or equal to 2, K is a positive integer greater than or equal to 12, and L is a positive integer less than or equal to K.
  • N frequency domain units occupy the same symbol in the time domain.
  • At least two of the N frequency domain units are discontinuous. Further optionally, the frequency domain spacing between any two adjacent frequency domain units of the N frequency domain units is equal.
  • one frequency domain unit can be considered as one RB, that is, the bandwidth of the frequency domain unit is 180,000 Hz.
  • each frequency domain unit includes K consecutive subcarriers, which may be at least one of the following:
  • each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz;
  • each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz;
  • each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz;
  • each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz;
  • each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies K consecutive subcarriers in each frequency domain unit, that is, each of the frequency domain units carries a first signal.
  • the first signal occupies L consecutive subcarriers in each frequency domain unit, and L is a positive integer smaller than K, that is, at least one subcarrier in each frequency domain unit does not carry the first signal. Further optionally, the first signal occupies L consecutive subcarriers located at a central position in each frequency domain unit, and at least one of the remaining subcarriers on each side of each frequency domain unit located on both sides of the central location No signal is carried on the carrier. This mapping method can avoid interference between signals carried on two adjacent frequency domain units.
  • Figure 2a shows one way in which the first signal occupies frequency domain resources.
  • the first signal occupies N frequency domain units, and at least two of the N frequency domain units are discontinuous, and each of the N frequency domain units includes K consecutive children.
  • the carrier the first signal occupies L consecutive subcarriers of the central location in each frequency domain unit, wherein N1 subcarriers of each frequency domain unit on both sides of the central location are reserved for signal mapping, The other side reserves N2 subcarriers without signal mapping.
  • Figure 2b shows another way of frequency domain resources occupied by the first signal.
  • the first signal 1 and the first signal 2 occupy different frequency domain resources on the same time domain resource.
  • the first signal 1 occupies 5 RBs, and the frequency domain intervals between any two adjacent RBs of the 5 RBs are equal.
  • Each of the 5 RBs includes 144 consecutive subcarriers, and the bandwidth of each subcarrier is 1250 Hz.
  • the first signal 1 occupies 120 consecutive subcarriers in the center position in each RB, wherein each of the RBs is reserved for 12 subcarriers on each side of the central position without signal mapping (or, not For carrying signals).
  • the first signal 2 occupies 4 RBs, and the frequency domain intervals between any two adjacent RBs of the 4 RBs are equal.
  • Each of the 4 RBs includes 12 consecutive subcarriers, each of which has a bandwidth of 15000 Hz, and the first signal 2 occupies all 12 subcarriers in each RB.
  • the time domain resources occupied by the first signal are described in detail below.
  • the first signal occupies M symbols, where M is a positive integer greater than or equal to one.
  • M is a positive integer greater than or equal to one.
  • M is greater than 1
  • the M symbols are consecutive symbols.
  • the M symbols are M symbols in the NCP subframe format.
  • the M symbols are M symbols in the ECP subframe format.
  • the M symbols occupy 1 subframe in the time domain, ie 1 ms.
  • the M symbols occupy all of the time domain resources in 1 ms.
  • M symbols are 14 consecutive symbols in one NCP subframe, or 12 consecutive symbols in one ECP subframe.
  • the M symbols occupy part of the time domain resources in 1 ms, for example, the M symbols are 13 consecutive symbols in one NCP subframe, or 11 consecutive symbols in one ECP subframe. In this way, one symbol that is not occupied can be used for the terminal device to compete for LBT channel resources.
  • the length of the CP of at least the first symbol of the M symbols is greater than 160 ⁇ Ts, that is, the length of the CP of at least the first symbol of the M symbols is greater than the CP of any one of the NCP subframe formats. length.
  • Figure 3a shows one way in which the first signal occupies time domain resources.
  • the first signal occupies 1 symbol, which is a partial resource in 1 subframe.
  • the symbol may be in the format of the symbol occupied by the random access preamble sequence format 0 shown in Table 1 above, that is, the CP length of the symbol is 3168 ⁇ Ts, and the length of the information segment is 24576 ⁇ Ts.
  • the start time of the symbol is longer than the start time of the subframe, and the length of the end of the symbol is T2 from the end time of the subframe, and T1 or T2 is not equal to 0. number.
  • Figure 3b shows another way in which the first signal occupies time domain resources.
  • the first signal 1 and the first signal 2 occupy different frequency domain resources on the same time domain resource.
  • the first signal 1 occupies 1 symbol, and the symbol is a part of resources in 1 subframe.
  • the symbol may be in the format of the symbol occupied by the random access preamble sequence format 0 shown in Table 1 above, that is, the CP length of the symbol is 3168 ⁇ Ts, and the length of the information segment is 24576 ⁇ Ts.
  • the first signal 2 occupies M consecutive symbols in one NCP subframe, and M is a natural number less than or equal to 14.
  • the first signal transmits a first sequence of length Z over each of the M symbols.
  • the M first sequences are the same. That is, the first signal is obtained by repeating the first sequence M times.
  • At least two of the first sequences of the M first sequences are different.
  • each of the first sequences of the M first sequences is obtained according to a second sequence.
  • a second sequence is repeated N times to obtain a first sequence.
  • M first sequences may be obtained according to the same second sequence, or may be obtained according to multiple second sequences, which are not specifically limited in the embodiment of the present invention.
  • each of the first sequences of the M first sequences is obtained according to the N second sequences. For example, combining the N second sequences to obtain the one first sequence.
  • At least two second sequences included in the orthogonal sequence group can be obtained in the following manner.
  • the orthogonal sequence set is obtained from a Walsh orthogonal sequence of length L.
  • the Walsh orthogonal sequence is:
  • is an arbitrary integer less than L
  • is an arbitrary integer less than L
  • different cyclic shift values ⁇ can be obtained, and each ⁇ value corresponds to one Walsh orthogonal sequence, that is, each ⁇ value can correspond to a second sequence.
  • the orthogonal sequence set is obtained from a Zadoff-Chu (ZC) sequence of length L.
  • ZC Zadoff-Chu
  • each cyclic shift corresponds to a second sequence obtained by different cyclic shifts of the ZC sequences of the same base sequence.
  • the manner of generating the ZC sequence is described in the following.
  • the orthogonal sequence group is obtained from an orthogonal mask OCC sequence of length L 1 , where L 1 is an even number less than or equal to L.
  • L 1 is an even number less than L.
  • the OCC sequence #1 is repeated twice in a positive and a negative manner to obtain the sequence #5 as [1 1 1 1]
  • the OCC sequence #2 is repeated twice in a positive and negative manner to obtain the sequence #6.
  • sequence #5 and sequence #6 are the second sequences in the orthogonal sequence group.
  • L 1 is an even number equal to L.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and a second sequence.
  • an element in a sequence of length Z obtained by repeating a second sequence N times is multiplied by one-to-one correspondence with elements in the third sequence to obtain a first sequence.
  • a second sequence is repeated N times to obtain a sequence of length Z (for convenience of description, denoted as sequence #A), and then the elements in the sequence #A are in one-to-one correspondence with the elements in the third sequence. Multiply by and get a first sequence.
  • each of the M first sequences is obtained according to a third sequence of length Z and at least one second sequence.
  • the at least one second sequence is N second sequences, and the elements in the sequence of length Z obtained by combining the N second sequences are multiplied by one-to-one correspondence with the elements in the third sequence. , each of the first sequences is obtained.
  • the third sequence has a constant auto-correlation (CAZAC) of autocorrelation property and/or cross-correlation property in the time domain or the frequency domain.
  • CAZAC constant auto-correlation
  • the third sequence can be constructed using a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • the third sequence can be constructed by a centrally symmetric ZC sequence.
  • the ZC sequence or the centrally symmetric ZC sequence is described in detail below.
  • the base sequence expression of the ZC sequence can be:
  • S is a positive integer representing the length of the ZC sequence
  • r is an integer opposite to S
  • each r value corresponds to a base sequence
  • q is an integer and can be set to 0
  • a r, S (n) is given The nth element in the ZC sequence at the time of r and S.
  • the base sequence expression for a centrally symmetric ZC sequence can be:
  • S is an even number representing the length of the ZC sequence
  • r is an integer that is mutually prime with S+1, and each r value corresponds to a base sequence
  • a r,S (n) represents the ZC at a given r and S The nth element in the sequence.
  • ZC sequences have the following properties:
  • a cyclic sequence of a base sequence is orthogonal between;
  • the third sequence is a pseudo-random sequence.
  • the third sequence of length Z is obtained by the following formula:
  • c(x) represents a formula for generating a pseudo-random sequence.
  • the first signal transmits a first sequence of length Z on each of the M symbols and transmits data information over S symbols of the M symbols, where S ⁇ M, M > 1.
  • the data information is uplink control information, where the uplink control information includes at least one of Hybrid Automatic Repeat Request (HARQ) information, channel state information, and scheduling request information.
  • HARQ Hybrid Automatic Repeat Request
  • the data information is HARQ information.
  • the first frequency domain unit and the second frequency domain unit are respectively included in the N frequency domain units, where the first frequency domain unit and the second frequency domain unit respectively carry first HARQ information and second HARQ information, where The first HARQ information and the second HARQ information respectively correspond to different carriers or subframes.
  • the first HARQ information or the second HARQ information is original HARQ information bits before encoding.
  • the elements in the first sequence transmitted on each of the S symbols are multiplied by the data information to obtain information transmitted on each of the S symbols.
  • the first signal occupies N frequency domain units and occupies L subcarriers in each frequency domain unit. Therefore, optionally, the original uplink control information before encoding is carried on each symbol of the S symbols, and the original uplink control information before encoding in each frequency domain unit of the N frequency domain units The same, and the original uplink control information before encoding carried on the 12 subcarriers in each frequency domain unit is also the same.
  • the original uplink control information before encoding is carried on each of the S symbols, and the original uplink control information before encoding in at least two frequency domain units of the N frequency domain units is different, and each The original uplink control information before encoding is carried on all subcarriers included in the frequency domain unit.
  • the original uplink control information before encoding is carried on each of the S symbols, and the original uplink control information before encoding is carried on each RB of the N RBs, and 12 subcarriers in each RB.
  • the original uplink control information before encoding is carried on at least two subcarriers.
  • the original uplink control information before encoding is carried on at least two of the S symbols, and the original uplink control information before encoding on each RB of the N RBs is the same and 12 sub-ports in each RB
  • the original uplink control information before encoding on the carrier is also the same, S>2.
  • the original uplink control information before encoding is carried on at least two of the S symbols, and the original uplink control information before encoding is carried on at least two of the N RBs, and 12 of each RB is different.
  • the original uplink control information before encoding on the subcarriers is the same, S>2.
  • the size of the frequency domain unit is 1 RB, and 12 RBs are included in one RB.
  • the data information is uplink control information
  • the uplink control information is hybrid automatic repeat request information, where at least two of the N frequency domain units carry different bearers.
  • the automatic repeat request information is mixed, and the at least two hybrid automatic repeat request information corresponds to at least two different carriers or subframes.
  • any one of the manners in which the first signal occupies the frequency domain resource the manner in which the first signal occupies the time domain resource, and the content of the first signal transmitted on each symbol
  • Any one of the determination methods can be combined with each other. The details will be described in detail below with reference to specific examples.
  • Figure 4a illustrates a method of transmitting a signal in accordance with an embodiment of the present invention.
  • the first signal occupies 6 RBs, and the frequency domain intervals between any two adjacent RBs of the 6 RBs are equal, and each of the 6 RBs includes 144 consecutive The subcarrier, the bandwidth of each subcarrier is 1250 Hz, and the first signal occupies 120 consecutive subcarriers at the center position in each RB, wherein each RB has 12 sublayers on each side of the central position
  • the carrier does not perform signal mapping.
  • the first signal occupies 1 symbol (for convenience of description and understanding, it is denoted as symbol #a).
  • the symbol #a is the format of the symbol occupied by the random access preamble sequence format 0 shown in Table 1, that is, the CP length of the symbol #a is 3168 ⁇ Ts, and the length of the information segment is 24576 ⁇ Ts.
  • the start time of the symbol #a is aligned with the start time of the second symbol of the NCP subframe, that is, the time length between the start time of the symbol #a and the start time of the NCP subframe is 2208 ⁇ Ts.
  • the content that the first signal should transmit on symbol #a is the first sequence, which can be used for random access by the terminal device.
  • the first sequence has a length Z and can be obtained from a third sequence of length Z and a second sequence of length L.
  • the third sequence may be cyclically extended by a ZC sequence of length Z 1
  • the second sequence is any one of orthogonal sequence groups including at least two mutually orthogonal Walsh sequences of length L.
  • the process of generating the first sequence is as follows:
  • R 1 (n) R 2 (n) ⁇ R 3 (n), 0 ⁇ n ⁇ Z
  • R 2 (n) e j ⁇ n , 0 ⁇ n ⁇ Z, where
  • R 3 (n) a u (nmodZ 1 ), 0 ⁇ n ⁇ Z, where
  • each u value corresponds to a base sequence
  • u is an integer that is mutually prime with Z 1 .
  • R 1 (n) denotes a first sequence of length Z
  • R 2 (n) denotes a sequence of length Z obtained by repeating a second sequence of length L N times
  • R 3 (n) denotes a length of Z
  • the three sequences are obtained by cyclic extension of a ZC sequence of length Z 1 .
  • the u value may be calculated according to the cell identifier or obtained according to the signaling notified by the base station.
  • the difference between any two v values is greater than the cyclic shift interval, and the cyclic shift interval may be predefined or obtained according to signaling notified by the base station.
  • v is an integer greater than or equal to 0 and less than 120.
  • the v values available in the system include 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. That is, the first sequence has 12 values. If a base sequence and the number of first sequences obtained by the 12 cyclic shifts do not satisfy the cell requirement, there may be multiple base sequences. For example, when two base sequences are used, the available sequence is 24, and when three base sequences are used, the available sequence is 36, and so on, and the number of sequences satisfying the cell requirement can be obtained.
  • each user selects a first sequence, and multiple users can send respective first sequences on the same time-frequency resource.
  • the method for transmitting a signal shown in FIG. 4a since the first sequence transmitted by different users in one frequency domain unit is orthogonally segmented by the orthogonal sequence code, in the case where the first sequence is mapped to the discrete RB, It can be ensured that multiple first sequences are experiencing channel fallout orthogonality.
  • the CP length of the symbol corresponding to the first sequence is 3168 ⁇ Ts, which is much larger than 10 us, which is sufficient to support the coverage of the cell on the unlicensed spectrum.
  • Figure 4b illustrates a method of transmitting a signal in accordance with another embodiment of the present invention.
  • the first signal occupies 6 RBs, and the frequency domain intervals between any two adjacent RBs of the 6 RBs are equal, and each of the 6 RBs includes 24 consecutive RBs.
  • Subcarrier the bandwidth of each subcarrier is 7500 Hz, and the first signal occupies 20 consecutive subcarriers at the center position in each RB, wherein each RB has two sub-positions on each side of the central position
  • the carrier does not perform signal mapping.
  • the first signal occupies at least 1 symbol.
  • the figure is exemplified by a symbol, which may be the format of the symbol occupied by the random access preamble sequence 4 shown in Table 1 above, that is, the CP length of the symbol is 448 ⁇ Ts, and the length of the information segment is 4096. ⁇ Ts.
  • the length of time between the start time of the symbol and the start time of the NCP subframe is 2208 ⁇ Ts.
  • the start time of the symbol is aligned with the start time of a symbol of the NCP or ECP subframe.
  • the end time of the symbol is aligned with the end time of a symbol of the NCP or ECP subframe, as shown.
  • the content that the first signal should transmit on the symbol is a first sequence, and the first sequence can be used for random access by the terminal device.
  • each user selects a first sequence, and multiple users can send the first sequence on the same time-frequency resource.
  • the method for transmitting a signal shown in FIG. 4b since the first sequence transmitted by different users in one frequency domain unit is orthogonally segmented by the orthogonal sequence code, in the case where the first sequence is mapped to the discrete RB, It can be ensured that multiple first sequences are experiencing channel fallout orthogonality.
  • the CP length of the symbol corresponding to the first sequence is 448 ⁇ Ts, which is also greater than 10 us, and can support the coverage of the cell on the unlicensed spectrum.
  • the CP length corresponding to each symbol in the ECP subframe format is 512 ⁇ Ts, which is greater than 10 us, the coverage of the cell on the unlicensed spectrum can be supported. Therefore, when the first signal is a random access preamble sequence, the subframe in which the random access preamble sequence is located may be an ECP subframe.
  • Figure 4c illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • the first signal is a random access preamble sequence
  • the subframe p where the first signal is located is an ECP subframe
  • the first signal occupies consecutive M symbols in the subframe.
  • the subframe p+1 is a subframe that does not carry the first signal, and therefore, the subframe p+1 is an NCP subframe.
  • the base station sends, by using physical layer signaling, whether an uplink subframe is an NCP subframe format or an ECP subframe format.
  • the ECP subframe format is adopted.
  • one symbol is reserved in the subframe for the device to perform LBT channel contention.
  • the first sequence may be an SRS sequence or a DMRS sequence.
  • Figure 4d illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • the PRACH uses the ECP subframe format
  • the other uplink physical channels use the NCP subframe format.
  • the first signal occupies 10 consecutive subcarriers located at the center position in each RB, and the center of each frequency domain unit is located at the center position. No signal is carried on at least 1 subcarrier on each side of the two sides.
  • Figure 4e illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • the first signal transmits a first sequence of length Z on each of the M symbols, and data information is also transmitted on the S symbols of the M symbols, where M>S, M>1.
  • the PUCCH occupies one time slot, and the first signal occupies all the symbols included in the time slot, that is, the first signal occupies 7 symbols, and the sequence transmitted on each symbol is the same (corresponding to FIG. 4e) The first sequence).
  • HARQ information is also transmitted on 4 of the 7 symbols (corresponding to symbol 0, symbol 1, symbol 5, and symbol 6 in FIG. 4e).
  • Figure 4f illustrates a method of transmitting a signal in accordance with yet another embodiment of the present invention.
  • the first signal transmits a first sequence of length Z on each of the M symbols, and also transmits data information on the S symbols of the M symbols, where M>S, M>1.
  • the PUCCH occupies one time slot, and the first signal occupies all the symbols included in the time slot, that is, the first signal occupies 7 symbols.
  • HARQ information is also transmitted on 4 of the 7 symbols (corresponding to symbol 0, symbol 1, symbol 5, and symbol 6 in Fig. 4f).
  • the information transmitted on the 0th RB and the 8th RB is the same, that is, the first sequence and the second HARQ information.
  • the information transmitted on the 4th RB and the 12th RB is the same, that is, the first sequence and the first HARQ.
  • the first sequence and the first HARQ information may be transmitted on the 0th RB, the 4th RB, and the 8th RB, and the 12th RB transmits the first sequence and the second HARQ information.
  • the HARQ information of different carriers of the same subframe is first fed back, and when one subframe is fed back, another subframe is started to be fed back. Different carriers. In other words, the UE feeds back in subframes, and after all the carrier feedback of one subframe is completed, the next subframe is started to be fed back.
  • the UE needs to feed back the carriers of 2 subframes (referred to as subframe n and subframe n+1 for convenience of description).
  • the RBs used for feedback are the 0th RB, the 1st RB, the 2nd RB, and the 3rd RB, respectively.
  • the UE feeds back the 0th carrier of the subframe n on the 0th RB, and feeds the 1st carrier of the subframe n on the 1st RB.
  • the 0th carrier of the subframe n+1 is fed back on the 2nd RB, and the carrier of the 1st carrier of the subframe n+1 is fed back on the 3rd RB.
  • the above line transmission (ie, the transmitting device is a terminal device and the receiving device is a network device) is taken as an example to describe a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 5 shows a schematic flow diagram of a method 100 of transmitting a signal in accordance with an embodiment of the present invention as described in terms of device interaction.
  • the method 100 includes a network device and a terminal device. As shown in FIG. 5, the method 100 includes:
  • the terminal device generates a first signal.
  • the first signal includes M first sequences, each of the first sequences of the M first sequences has a length Z, and each of the first sequences is obtained according to at least one second sequence of length L.
  • the second sequence is a sequence in an orthogonal sequence group, and the orthogonal sequence group includes at least two second sequences of length L, and all second sequences in the orthogonal sequence group are orthogonal to each other.
  • Z N ⁇ L, M ⁇ 1, N ⁇ 2, Z, M, N and L are all natural numbers.
  • any two of the M first sequences are identical. That is, the M first sequences are repeated.
  • At least two of the first sequences of the M first sequences are different.
  • each of the first sequences of the M first sequences is derived from a second sequence.
  • a second sequence is repeated N times to obtain a first sequence.
  • each of the first ones of the M first sequences is derived from the N second sequences.
  • combining the N second sequences yields a first sequence.
  • the orthogonal sequence set is derived from a Walsh orthogonal sequence of length L.
  • the orthogonal sequence group has different cycles of the ZC sequence of the same base sequence of length L Shifted.
  • the orthogonal sequence group is derived from an orthogonal mask OCC sequence of length L 1 , where L 1 is an even number less than or equal to L.
  • each of the first sequences of the M first sequences is derived from a third sequence of length Z and a second sequence.
  • the elements in the sequence of the third sequence are multiplied by the elements in the sequence of length Z obtained after the N sequence is repeated N times, to obtain a first sequence.
  • each of the first sequences of the M first sequences is derived from a third sequence of length Z and at least one second sequence.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and N second sequences, specifically, an element obtained by combining elements in the third sequence with N second sequences.
  • the elements in the sequence of length Z are multiplied by points to obtain a first sequence.
  • the third sequence is a CAZAC sequence or a ZC sequence of length Z or a centrally symmetric ZC sequence.
  • the third sequence is obtained by a ZC sequence of length Z.
  • the third sequence is obtained by cyclic extension of a ZC sequence of length Z 1 , wherein Z 1 is the largest prime number less than Z.
  • the third sequence is a pseudo-random sequence.
  • the terminal device sends the first signal.
  • the first signal occupies M symbols in the time domain, and the first signal occupies N frequency domain units in the frequency domain, and each of the N frequency domain units includes K consecutive subcarriers, first The signal occupies L consecutive subcarriers in each frequency domain unit.
  • M sequences are in one-to-one correspondence with M symbols. Where K ⁇ 12, 1 ⁇ L ⁇ K, K is a natural number, and when M>1, the M symbols are consecutive symbols.
  • At least two of the N frequency domain units are discontinuous. Further optionally, the frequency domain spacing between any two adjacent frequency domain units of the N frequency domain units is equal.
  • one frequency domain unit can be considered as one RB, that is, the bandwidth of the frequency domain unit is 180,000 Hz.
  • each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz.
  • each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz.
  • each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz.
  • each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz.
  • each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies K consecutive subcarriers in each frequency domain unit, that is, each of the frequency domain units carries a first signal.
  • the first signal occupies L consecutive subcarriers in each frequency domain unit, and L is a positive integer smaller than K, that is, at least one subcarrier in each frequency domain unit does not carry the first signal.
  • the first signal occupies L consecutive subcarriers located at a central position in each frequency domain unit, and each of the frequency domain units is not carried on at least one subcarrier remaining on each side of the central location signal. With this mapping, interference between signals on two adjacent frequency domain units can be avoided.
  • the M symbols may be M symbols in the NCP subframe format.
  • the M symbols may be M symbols in the ECP subframe format.
  • M symbols occupy all resources in one subframe in the time domain.
  • the M symbols occupy part of the resources in one subframe in the time domain.
  • the length of the CP of at least the first symbol of the M symbols is greater than 160 ⁇ Ts.
  • the first signal is a random access preamble sequence.
  • the method for transmitting a signal according to an embodiment of the present invention is described below in several possible manners when the first signal is a random access preamble sequence.
  • the method for transmitting a signal in the embodiment of the present invention is also applicable.
  • one frequency domain unit is one RB.
  • one frequency domain unit is used as one RB
  • the mapping manner (or distribution mode) of the random access preamble sequence in the frequency domain will be described.
  • the PRACH includes 1 symbol, which may be the format of the symbol occupied by the random access preamble sequence format 0 shown in Table 1 above. That is, the CP length of the symbol is 3168 ⁇ Ts, and the length of the information segment is 24576 ⁇ Ts, and the symbol occupies one subframe in the time domain. Accordingly, in the frequency domain, each of the N RBs includes 144 consecutive subcarriers, each of which has a bandwidth of 1250 Hz (see Figure 4a).
  • the random access preamble sequence is mapped to L consecutive subcarriers located at a central position in each RB, and one side of each RB located on both sides of the central location is reserved for N1 subcarriers without signal mapping ( In other words, it is not used to carry signals. On the other side, N2 subcarriers are reserved without signal mapping.
  • the random access preamble sequence is mapped to 120 consecutive subcarriers located at a central position in each RB, and 12 subcarriers reserved for each side of each RB on both sides of the central location are not subjected to signal mapping.
  • the start time of the symbol corresponding to the PRACH is aligned with the start time of one subframe.
  • the terminal device uses the resources on the unlicensed spectrum, it needs to first detect whether the channel is idle. Therefore, the first symbol in one subframe can be used for the terminal device to perform LBT detection.
  • the start time of the symbol corresponding to the PRACH is aligned with the start time of the second symbol in one subframe.
  • the random access preamble sequence is obtained according to a third sequence of length Z and a second sequence.
  • the elements in the third sequence of length Z are multiplied by the elements in the sequence obtained by repeating the second sequence N times, to obtain a random access preamble sequence.
  • the second sequence is obtained by different cyclically shifted Walsh orthogonal sequences, and the number of cyclic shifts is determined by the length of the second sequence and the interval of the cyclic shift.
  • the third sequence is a ZC sequence, and each base sequence can obtain a third sequence. Assuming that the number of second sequences is P, P random access preamble sequences can be obtained from the third sequence and the P second sequences obtained from one base sequence.
  • a new P random access preamble sequence may be obtained according to the third sequence and the P second sequence obtained by another base sequence until the generated random connection The number of incoming preamble sequences meets the requirements.
  • the network device sends signaling that carries the third sequence generation parameter or the cyclic shift interval information to the terminal device.
  • the terminal device selects a random access preamble sequence for transmission.
  • the terminal device determines a random access preamble sequence according to the indication information sent by the base station, and sends the random access preamble sequence.
  • the CP length of the symbol corresponding to the random access preamble sequence can support the coverage of the cell on the unlicensed spectrum, and the different random access preamble sequences can be coded by orthogonal sequence in one frequency domain unit.
  • the segments are orthogonal, thereby ensuring the demodulation performance of the random access preamble sequence occupying the discrete resources in the frequency domain.
  • the PRACH includes 1 symbol, which may be the format of the symbol occupied by the random access preamble sequence 4 shown in Table 1 above. That is, the CP length of the symbol is 448 ⁇ Ts, and the length of the information segment is 4096 ⁇ Ts.
  • the symbol occupies approximately 2 symbols in the NCP subframe format in the time domain. Accordingly, in the frequency domain, each of the N RBs includes 24 consecutive subcarriers, and the bandwidth of each subcarrier is 7500 Hz.
  • the random access preamble sequence is mapped to 24 subcarriers in each RB.
  • the random access preamble sequence is mapped to L consecutive subcarriers located at a central location in each RB, and N1 subcarriers are reserved for signal mapping on a side of each RB located on both sides of the central location. The other side reserves N2 subcarriers without signal mapping.
  • the random access preamble sequence is mapped to 20 consecutive subcarriers located at a central position in each RB, and 2 subcarriers reserved for each side of each RB on both sides of the central location are not subjected to signal mapping.
  • the start time of the symbol corresponding to the PRACH is aligned with the start time of one symbol of the NCP or ECP subframe.
  • the end time of the symbol corresponding to the PRACH is aligned with the end time of one symbol of the NCP or ECP subframe.
  • the terminal device uses the resources on the unlicensed spectrum, it needs to first detect whether the channel is idle. Therefore, the first symbol in one subframe can be used for the terminal device to perform LBT detection.
  • the start time of the symbol corresponding to the PRACH is aligned with the start time of the second symbol in one subframe.
  • the generation manner or the sending manner of the random access preamble sequence can be referred to the generation manner or the sending manner of the random access preamble sequence described in the foregoing, and details are not described herein again.
  • the CP length of the symbol corresponding to the random access preamble sequence can support the coverage of the cell on the unlicensed spectrum, and the different random access preamble sequences can be coded by orthogonal sequence in one frequency domain unit.
  • the segments are orthogonal, thereby ensuring the demodulation performance of the random access preamble sequence occupying the discrete resources in the frequency domain.
  • the PRACH includes M symbols, wherein the M symbols are one The symbols in the ECP subframes, M is greater than or equal to 1 and less than or equal to 14.
  • the CP length of each of the M symbols is 512 ⁇ Ts.
  • each of the N RBs includes 12 consecutive subcarriers, and the bandwidth of each subcarrier is 15000 Hz.
  • the generation manner or the sending manner of the random access preamble sequence can be referred to the generation manner or the sending manner of the random access preamble sequence described in the foregoing, and details are not described herein again.
  • the PRACH and the PUSCH or the PUCCH are frequency division multiplexed in the same subframe.
  • the frequency division multiplexing in the same subframe in the PRACH and the PUSCH or the PUCCH may include the following two modes.
  • PRACH and PUSCH or PUCCH are multiplexed in one subframe in an ECP subframe format.
  • the random access preamble sequence (or PRACH) is mapped into N RBs and occupies 12 subcarriers in each RB.
  • the random access preamble sequence does not fill all the symbols, and the symbols can be reserved for the LBT of the terminal device.
  • the terminal device determines a subframe format of one subframe according to the indication message sent by the predefined or network device.
  • the PRACH is in an ECP subframe format, and the PUSCH or PUCCH is multiplexed in one subframe in the NCP subframe format.
  • the random access preamble sequence is mapped to 10 consecutive subcarriers located at a central position in each RB, each RB being located on each side of the central position Signal mapping is not performed for each reserved subcarrier.
  • the symbol can also be reserved for the LBT of the terminal device, that is, the random access preamble sequence does not occupy all the symbols.
  • the CP length of the symbol corresponding to the random access preamble sequence can support the coverage of the cell on the unlicensed spectrum, and the different random access preamble sequences can be coded by orthogonal sequence in one frequency domain unit.
  • the segments are orthogonal, thereby ensuring the demodulation performance of the random access preamble sequence occupying the discrete resources in the frequency domain.
  • the first signal includes data information, that is, S symbols of the M symbols carry data information, and S ⁇ M, M>1.
  • the data information is uplink control information
  • the uplink control information includes at least one of HARQ information, channel state information, and scheduling request information.
  • uplink control information is modulated on the S first sequences in the M first sequences.
  • each first sequence in the M first sequences can be referred to the foregoing. A description of how the first sequence is generated.
  • the method for transmitting a signal in the embodiment of the present invention is also applicable to the DMRS of the SRS or the PUCCH or the DMRS of the PUSCH.
  • each of the N RBs in the frequency domain includes 12 consecutive subcarriers, each subcarrier has a bandwidth of 15000 Hz, and the first signal is mapped to 12 subcarriers in each RB.
  • the original uplink control information before encoding is carried on each of the S symbols, and the original uplink control information before encoding is carried on each of the N RBs and the 12 subcarriers in each RB are the same.
  • the original uplink control information before encoding on the bearer is also the same.
  • the original uplink control information before encoding is carried on each of the S symbols, and the original uplink control information before encoding is carried on at least two RBs of the N RBs, and 12 of each RB are different.
  • the original uplink control information before encoding on the carrier is the same.
  • the original uplink control information before encoding is carried on each of the S symbols, and the original uplink control information before encoding is carried on each RB of the N RBs, and 12 subcarriers in each RB.
  • the original uplink control information before encoding is carried on at least two subcarriers.
  • the original uplink control information before encoding is carried on at least two of the S symbols, and the original uplink control information before encoding on each RB of the N RBs is the same and 12 sub-ports in each RB
  • the original uplink control information before encoding on the carrier is also the same, S>2.
  • the original uplink control information before encoding is carried on at least two of the S symbols, and the original uplink control information before encoding is carried on at least two of the N RBs, and 12 of each RB is different.
  • the original uplink control information before encoding on the subcarriers is the same, S>2.
  • pre-encoding original HARQ information bits carried on each of the N RBs are the same.
  • the terminal device transmits the same pre-encoded HARQ information bits on the N RBs, and the transmit power of the HARQ information bits can be increased, thereby improving the demodulation performance of the HARQ information bits.
  • the terminal device sends a first signal to the network device.
  • the first signal occupies 7 symbols in the time domain and 4 RBs in the frequency domain.
  • HARQ information is also transmitted on 4 of the 7 symbols (corresponding to symbol 0, symbol 1, symbol 5, and symbol 6 in FIG. 4e).
  • the same HARQ information is transmitted on the 0th RB, the 4th RB, the 8th RB, and the 12th RB.
  • N The RB includes a first RB and a second RB, where the first RB and the second RB respectively carry the first HARQ information and the second HARQ information, where the first HARQ information and the second HARQ information respectively correspond to different carriers or subframes .
  • the terminal device sends a plurality of pre-encoded HARQ information bits on the N RBs, so that the HARQ information corresponding to different carriers or subframes is fed back in the same subframe, and the system has fewer uplink subframes. It can improve the efficiency of HARQ information feedback.
  • the HARQ information of the different carriers of the same subframe is first fed back.
  • the different carriers of another subframe are started to be fed back.
  • the UE feeds back in subframes, and after all the carrier feedback of one subframe is completed, the next subframe is started to be fed back.
  • the UE needs to feed back the carriers of 2 subframes (referred to as subframe n and subframe n+1 for convenience of description).
  • the RBs used for feedback are the 0th RB, the 1st RB, the 2nd RB, and the 3rd RB, respectively.
  • the UE feeds back the 0th carrier of the subframe n on the 0th RB, and feeds the 1st carrier of the subframe n on the 1st RB.
  • the 0th carrier of the subframe n+1 is fed back on the 2nd RB, and the carrier of the 1st carrier of the subframe n+1 is fed back on the 3rd RB.
  • the network device generates a second signal.
  • the manner in which the network device generates the second signal is similar to the manner in which the terminal device generates the first signal.
  • the method for generating the second signal refer to the foregoing description of the manner in which the first signal is generated, and details are not described herein again.
  • various possible ways in which the first signal occupies resources in the time domain and the frequency domain are also applicable to the second signal.
  • the manner in which the second signal occupies resources in the time domain and the frequency domain can be referred to in the foregoing description of various possible ways of occupying the first signal in the time domain and the frequency domain. Narration.
  • the second signal includes at least the M first sequences included in the sequence. Assume that the second signal includes R sequences. If the first sequence of M included in the first signal is regarded as The first sequence set, the R sequences included in the second signal are regarded as a second sequence set. Then, the second sequence set includes at least the first sequence set.
  • the first signal includes three sequences (ie, three first sequences), which are denoted as sequence #a, sequence #b, and sequence #c, respectively, for convenience of distinction and description.
  • the second signal includes at least sequence #a, sequence #b, and sequence #c.
  • the second signal includes 5 sequences (ie, 5 fourth sequences), which may be sequence #a, sequence #b, sequence #c, sequence #d, and sequence #e.
  • step 103 may be before step 102, or step 103 may be before step 101 or synchronized with step 101. That is, there is no mutual association and restriction between the first signal generated by the terminal device and the second signal generated by the network device.
  • the order of execution of the steps should be based on the inherent logic in the method of transmitting signals in embodiments of the present invention.
  • the network device receives the first signal sent by the terminal device according to the second signal.
  • the second signal occupies M symbols in the time domain, and the second signal occupies N frequency domain units in the frequency domain, and each of the N frequency domain units includes K consecutive subcarriers, and second The signal occupies L consecutive subcarriers in each frequency domain unit.
  • M sequences are in one-to-one correspondence with M symbols, K ⁇ 12, 1 ⁇ L ⁇ K, and K is a natural number.
  • M>1 the M symbols are consecutive symbols.
  • the second signal is a random access preamble sequence.
  • the network device correlates the received random access preamble sequence with a random access preamble sequence generated by the network device and determines a peak value. If the peak value exceeds the preset threshold, the network device determines that the random access preamble sequence is successfully received.
  • the terminal device generates a first signal
  • the first signal includes 4 sequences (ie, 4 first sequences), and the 4 sequences are identical (referred to as sequence #1 for convenience of description).
  • the network device generates a second signal comprising five sequences.
  • the five sequences should include the above-described sequence #1, and further, four sequences different from the above-described sequence #1.
  • the terminal device transmits a first signal to the network device, the first signal occupies 4 symbols in the time domain, and one sequence is transmitted on each symbol (ie, transmission sequence #1).
  • the network device first traverses the above four symbols and receives four sequences #1 transmitted on the four symbols.
  • the network device can combine the four sequences #1 to obtain a sequence #1 with better signal to noise ratio.
  • the network design The fifth sequence of the generated second signal is used to perform correlation detection on the sequence #1. If the correlation peak between the sequence #5 and the sequence #1 exceeds the preset threshold, the network device considers that the terminal device transmits Sequence #1, the reception is successful.
  • the method further includes: the network device sending a random sequence access response to the terminal device, to indicate that the terminal device is successfully accessed by random access.
  • the data to be received includes data information, that is, S symbols in the M symbols carry data information, and S ⁇ M, M>1.
  • the data information is uplink control information
  • the uplink control information includes at least one of HARQ information, channel state information, and scheduling request information.
  • the method for the network device to receive the first signal includes:
  • the network device performs channel estimation on the symbols that do not carry the uplink control information in the M symbols according to the generated sequence, and demodulates the uplink control information carried on the S symbols in the M symbols according to the channel estimation result.
  • the random access preamble sequence is mapped to the frequency domain discrete RB, and the bandwidth occupied by the random access preamble sequence in the frequency domain is likely to exceed the coherence bandwidth of the channel, thereby causing different random access preamble sequences.
  • the orthogonality is destroyed after undergoing channel fading. Therefore, the method for transmitting a random access preamble sequence provided by the embodiment of the present invention may enable different random access preamble sequences to be orthogonally segmented by orthogonal sequence codes in one frequency domain unit, thereby ensuring occupation of frequency domain discrete resources. Demodulation performance of the random access preamble sequence.
  • FIG. 6 shows a schematic block diagram of a terminal device 300 for transmitting signals according to an embodiment of the present invention.
  • the terminal device 300 includes a processing unit 310 and a sending unit 320, where
  • the processing unit 310 is configured to generate a first signal, where the first signal includes M first sequences, each first sequence of the M first sequences has a length of Z, and each of the first sequences is Obtained according to at least one second sequence of length L, the second sequence is a sequence in an orthogonal sequence group, the orthogonal sequence group includes at least two second sequences of length L, and the orthogonal sequence Any two second sequences in the group are orthogonal to each other;
  • the sending unit 320 is configured to send the first signal, where the first signal occupies M symbols in the time domain, where the first signal occupies N frequency domain units in the frequency domain, where the N frequency domain units
  • Each frequency domain unit includes K consecutive subcarriers, and the first signal is occupied in each frequency domain unit L consecutive subcarriers
  • M>1 the M symbols are consecutive symbols.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and any one of the at least one second sequence.
  • the bandwidth of each of the N frequency domain units is 180,000 Hz
  • each of the frequency domain units includes K consecutive subcarriers, including at least one of the following:
  • Each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz;
  • Each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz;
  • Each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz;
  • Each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz;
  • Each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies M symbols in the time domain, including at least one of the following:
  • the first signal occupies 1 symbol in the time domain
  • the first signal occupies two consecutive symbols in the time domain
  • the first signal occupies consecutive 4 symbols in the time domain
  • the first signal occupies a continuous 12 symbols in the time domain
  • the first signal occupies a continuous 14 symbols in the time domain.
  • each of the N frequency domain units includes 12 consecutive subcarriers, each subcarrier has a bandwidth of 15000 Hz, and the first signal occupies each frequency in the frequency domain.
  • the 10 consecutive subcarriers of the domain unit located at the center position, and each subcarrier of each frequency domain unit located on both sides of the central location does not carry a signal.
  • each of the N frequency domain units includes 144 consecutive subcarriers, each subcarrier has a bandwidth of 1250 Hz, and the first signal occupies 1 symbol in the time domain.
  • the first signal occupies 120 consecutive subcarriers located at a central position of each frequency domain unit in the frequency domain, and 12 consecutive subcarriers of each frequency domain unit on each side of the central location are not Carry the signal.
  • the S symbols in the M symbols carry uplink control information, where the uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information. , where S ⁇ M, M > 1.
  • the uplink control information is HARQ information
  • the method further includes:
  • the first frequency domain unit and the second frequency domain unit are included in the N frequency domain units, where the first frequency domain unit and the second frequency domain unit respectively carry first HARQ information and second HARQ information, the first HARQ The information and the second HARQ information respectively correspond to different carriers or subframes.
  • frequency domain intervals between any two adjacent frequency domain units in the N frequency domain units are equal.
  • the terminal device 300 that transmits a signal according to an embodiment of the present invention may correspond to a terminal device in a method of transmitting a signal according to an embodiment of the present invention. Also, each unit in the terminal device 300 and the above-described other operations and/or functions are respectively configured to implement the respective steps performed by the terminal device in FIG. For the sake of brevity, it will not be repeated here.
  • different random access preamble sequences may be orthogonally segmented by orthogonal sequence codes in one frequency domain unit, thereby ensuring random access preamble sequences occupying frequency domain discrete resources. Demodulation performance.
  • FIG. 7 shows a schematic block diagram of a network device 400 that transmits signals in accordance with an embodiment of the present invention.
  • the network device 400 includes a processing unit 410 and a receiving unit 420, where
  • the processing unit 410 is configured to generate a second signal, where the second signal is used to receive the first signal sent by the terminal device, where the second signal includes at least the M first sequences, each of the M first sequences
  • the first sequence has a length of Z, and each first sequence is obtained according to at least one second sequence of length L, the second sequence being a sequence in an orthogonal sequence group, the orthogonal sequence group being included At least two second sequences of length L, and any two second sequences of the orthogonal sequence set are orthogonal to each other;
  • the receiving unit 420 is configured to receive, according to the second signal receiving terminal generated by the processing unit 410
  • the first signal to be transmitted wherein the first signal occupies M symbols in the time domain, the first signal occupies N frequency domain units in a frequency domain, and each frequency domain unit includes K consecutive subcarriers
  • M>1 the M symbols are continuous symbols.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and any one of the at least one second sequence.
  • the bandwidth of each of the N frequency domain units is 180,000 Hz
  • each of the frequency domain units includes K consecutive subcarriers, including at least one of the following:
  • Each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz;
  • Each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz;
  • Each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz;
  • Each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz;
  • Each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies M symbols in the time domain, including at least one of the following:
  • the first signal occupies 1 symbol in the time domain
  • the first signal occupies two consecutive symbols in the time domain
  • the first signal occupies consecutive 4 symbols in the time domain
  • the first signal occupies a continuous 12 symbols in the time domain
  • the first signal occupies a continuous 14 symbols in the time domain.
  • each of the N frequency domain units includes 12 consecutive subcarriers, each of which has a bandwidth of 15000 Hz, and the first signal is occupied in the frequency domain.
  • Each of the frequency domain units has 10 consecutive subcarriers located at a central position, and each subcarrier of each frequency domain unit located on either side of the central location does not carry a signal.
  • each of the N frequency domain units includes 144 consecutive subcarriers, each subcarrier has a bandwidth of 1250 Hz, and the first signal occupies 1 symbol in the time domain.
  • the first signal occupies 120 consecutive subcarriers located at a central position of each frequency domain unit in the frequency domain, and 12 consecutive subcarriers of each frequency domain unit on each side of the central location are not Carry the signal.
  • the S symbols in the M symbols carry uplink control information, where the uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information. , where S ⁇ M, M > 1.
  • the uplink control information is HARQ information
  • the method further includes:
  • the first frequency domain unit and the second frequency domain unit are included in the N frequency domain units, where the first frequency domain unit and the second frequency domain unit respectively carry first HARQ information and second HARQ information, the first HARQ The information and the second HARQ information respectively correspond to different carriers or subframes.
  • frequency domain intervals between any two adjacent frequency domain units in the N frequency domain units are equal.
  • the network device 400 transmitting a signal according to an embodiment of the present invention may correspond to a network device in a method of transmitting a signal according to an embodiment of the present invention.
  • the various units in the access network device 400 and the other operations and/or functions described above are respectively implemented in order to implement the various steps performed by the network device in FIG. For the sake of brevity, it will not be repeated here.
  • different random access preamble sequences may be orthogonally segmented by orthogonal sequence codes in one frequency domain unit, thereby ensuring random access preamble sequences occupying frequency domain discrete resources. Demodulation performance.
  • the terminal device and the network device for transmitting signals according to an embodiment of the present invention are described in detail above with reference to FIGS. 6 and 7.
  • An apparatus for transmitting a signal according to an embodiment of the present invention will be described below with reference to FIGS. 8 and 9.
  • FIG. 8 shows a schematic structural block diagram of an apparatus 500 for transmitting signals according to an embodiment of the present invention.
  • the device 500 includes a processor 510, a transceiver 520, and a memory 530.
  • the device 500 further includes a bus system 540, wherein the processor 510, the transceiver 520, and the memory 530 can be connected by a bus system 540.
  • the memory 530 can be used to store instructions
  • the processor 510 is configured to execute instructions stored by the memory 530,
  • the first signal includes M first sequences, each of the first ones of the M first sequences has a length of Z, and each of the first sequences is based on at least one length Obtained by the second sequence of L, the second sequence is a sequence in an orthogonal sequence group, the orthogonal sequence group includes at least two second sequences of length L, and any two of the orthogonal sequence groups Second sequences are orthogonal to each other;
  • the transceiver 520 is configured to send the first signal generated by the processor 510, where the first signal occupies M symbols in the time domain, where the first signal occupies N frequency domain units in the frequency domain, and the N frequency domain units
  • M>1 the M symbols are continuous. symbol.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and any one of the at least one second sequence.
  • the bandwidth of each of the N frequency domain units is 180,000 Hz
  • each of the frequency domain units includes K consecutive subcarriers, including at least one of the following:
  • Each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz;
  • Each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz;
  • Each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz;
  • Each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz;
  • Each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies M symbols in the time domain, including at least one of the following:
  • the first signal occupies 1 symbol in the time domain
  • the first signal occupies two consecutive symbols in the time domain
  • the first signal occupies consecutive 4 symbols in the time domain
  • the first signal occupies a continuous 12 symbols in the time domain
  • the first signal occupies a continuous 14 symbols in the time domain.
  • each of the N frequency domain units includes 12 consecutive subcarriers, each subcarrier has a bandwidth of 15000 Hz, and the first signal occupies each frequency in the frequency domain.
  • the 10 consecutive subcarriers of the domain unit located at the center position, and each subcarrier of each frequency domain unit located on both sides of the central location does not carry a signal.
  • each of the N frequency domain units includes 144 consecutive subcarriers, each subcarrier has a bandwidth of 1250 Hz, and the first signal occupies 1 symbol in the time domain.
  • the first signal occupies 120 consecutive subcarriers located at a central position of each frequency domain unit in the frequency domain, and 12 consecutive subcarriers of each frequency domain unit on each side of the central location are not Carry the signal.
  • the S symbols in the M symbols carry uplink control information, where the uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information. , where S ⁇ M, M > 1.
  • the uplink control information is HARQ information
  • the method further includes:
  • the first frequency domain unit and the second frequency domain unit are included in the N frequency domain units, where the first frequency domain unit and the second frequency domain unit respectively carry first HARQ information and second HARQ information, the first HARQ The information and the second HARQ information respectively correspond to different carriers or subframes.
  • frequency domain intervals between any two adjacent frequency domain units in the N frequency domain units are equal.
  • the processor 510 may be a central processing unit (CPU), and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 530 can include read only memory and random access memory and provides instructions and data to processor 510.
  • a portion of processor 510 may also include a non-volatile random access memory.
  • processor 510 can also store information of the type of device.
  • the bus system 540 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 540 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the method for transmitting a signal disclosed in the embodiment of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 530, and processor 510 reads the information in memory 530 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 500 for transmitting signals according to an embodiment of the present invention may correspond to a terminal device in a method of transmitting a signal according to an embodiment of the present invention. Moreover, each unit in device 500 and the other operations and/or functions described above are respectively implemented to implement the various steps performed by the terminal device in FIG. For the sake of brevity, it will not be repeated here.
  • different random access preamble sequences may be orthogonally segmented by orthogonal sequence codes in one frequency domain unit, thereby ensuring random access preamble sequences occupying frequency domain discrete resources. Demodulation performance.
  • FIG. 9 is a block diagram showing a schematic configuration of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • device 600 includes a processor 610, a transceiver 620, and a memory 630.
  • the device 600 further includes a bus system 640, wherein the processor 610, the transceiver 620, and the memory 630 can be connected by a bus system 640, the memory 630 can be used to store instructions, and the processor 610 is configured to execute the memory 630 storage. instruction,
  • the second signal is used to receive the first signal sent by the terminal device, where the second signal includes at least the M first sequences, each of the first sequences of the M first sequences
  • the length is Z
  • each first sequence is obtained according to at least one second sequence of length L, the second sequence being a sequence in an orthogonal sequence group, the orthogonal sequence group including at least two lengths a second sequence of L, and any two second sequences of the orthogonal sequence set are orthogonal to each other;
  • the transceiver 620 is configured to receive, according to the second signal generated by the processor 610, the first signal sent by the terminal device, where the first signal occupies M symbols in a time domain, where the first signal is occupied in a frequency domain.
  • N frequency domain units, each frequency domain unit including K consecutive subcarriers, the first The signal occupies L consecutive subcarriers in each frequency domain unit, and the M sequences are in one-to-one correspondence with the M symbols, wherein Z N ⁇ L, M ⁇ 1, N ⁇ 2, K ⁇ 12,1 ⁇ L ⁇ K, Z, M, N, K, and L are all natural numbers.
  • M>1 the M symbols are consecutive symbols.
  • each of the first sequences of the M first sequences is obtained according to a third sequence of length Z and any one of the at least one second sequence.
  • the bandwidth of each of the N frequency domain units is 180,000 Hz
  • each of the frequency domain units includes K consecutive subcarriers, including at least one of the following:
  • Each frequency domain unit includes 144 consecutive subcarriers, wherein the bandwidth of each subcarrier is 1250 Hz;
  • Each frequency domain unit includes 72 consecutive subcarriers, wherein the bandwidth of each subcarrier is 2500 Hz;
  • Each frequency domain unit includes 36 consecutive subcarriers, wherein the bandwidth of each subcarrier is 5000 Hz;
  • Each frequency domain unit includes 24 consecutive subcarriers, wherein the bandwidth of each subcarrier is 7500 Hz;
  • Each frequency domain unit includes 12 consecutive subcarriers, wherein the bandwidth of each subcarrier is 15000 Hz.
  • the first signal occupies M symbols in the time domain, including at least one of the following:
  • the first signal occupies 1 symbol in the time domain
  • the first signal occupies two consecutive symbols in the time domain
  • the first signal occupies consecutive 4 symbols in the time domain
  • the first signal occupies a continuous 12 symbols in the time domain
  • the first signal occupies a continuous 14 symbols in the time domain.
  • each of the N frequency domain units includes 12 consecutive subcarriers, each subcarrier has a bandwidth of 15000 Hz, and the first signal occupies each frequency in the frequency domain.
  • the 10 consecutive subcarriers of the domain unit located at the center position, and each subcarrier of each frequency domain unit located on both sides of the central location does not carry a signal.
  • each of the N frequency domain units includes 144 consecutive subcarriers, each subcarrier has a bandwidth of 1250 Hz, and the first signal occupies 1 symbol in the time domain.
  • the first signal occupies 120 consecutive subcarriers located at a central position of each frequency domain unit in the frequency domain, and 12 consecutive subcarriers of each frequency domain unit on each side of the central location are not Carry the signal.
  • the S symbols in the M symbols carry uplink control information, where the uplink control information includes at least one of hybrid automatic repeat request HARQ information, channel state information, and scheduling request information. , where S ⁇ M, M > 1.
  • the uplink control information is HARQ information
  • the method further includes:
  • the first frequency domain unit and the second frequency domain unit are included in the N frequency domain units, where the first frequency domain unit and the second frequency domain unit respectively carry first HARQ information and second HARQ information, the first HARQ The information and the second HARQ information respectively correspond to different carriers or subframes.
  • frequency domain intervals between any two adjacent frequency domain units in the N frequency domain units are equal.
  • the processor 610 may be a central processing unit (CPU), and the processor 610 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 630 can include read only memory and random access memory and provides instructions and data to processor 610.
  • a portion of processor 610 may also include a non-volatile random access memory.
  • the processor 610 can also store information of the device type.
  • the bus system 640 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 640 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method for transmitting a signal disclosed in the embodiment of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc.
  • the storage medium is located in the memory 630, and the processor 610 reads the information in the memory 630 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus 600 for transmitting a signal according to an embodiment of the present invention may correspond to a network device in a method of transmitting a signal according to an embodiment of the present invention.
  • each unit in the device 600 and the other operations and/or functions described above are respectively configured to implement the corresponding processes performed by the network device in FIG. 2, and are not described herein again for brevity.
  • different random access preamble sequences may be orthogonally segmented by orthogonal sequence codes in one frequency domain unit, thereby ensuring random access preamble sequences occupying frequency domain discrete resources. Demodulation performance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (RAM), a random access memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种发送信号的方法、终端设备和网络设备。该方法包括:终端设备生成第一信号,第一信号包括M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;终端设备发送该第一信号,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,该N个频域单元中的每个频域单元包括K个连续的子载波,该第一信号在每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应,Z=N·L当M>1时,该M个符号为连续的符号。

Description

发送信号的方法、终端设备和网络设备 技术领域
本发明涉及通信领域,并且更具体地,涉及一种发送信号的方法、终端设备和网络设备。
背景技术
在无线通信领域,频谱资源主要分为许可频谱资源和免许可频谱资源,在现有的长期演进(Long Term Evolution,LTE)系统中,运营商所使用的频谱资源主要为许可频谱资源,随着移动通信网络用户数量的增加,以及用户对通信速率、服务质量的要求的提高,现有的许可频谱资源已经难以满足运营商的现有业务的需求。考虑到新的许可频谱价格高昂、资源紧缺,运营商开始将目光投向免许可频谱资源上,期望能够通过利用免许可频谱资源以达到网络容量分流、提高服务质量的目的。
不同的国家或地区对免许可频谱资源的使用都有一定的要求。例如,设备在免许可频谱资源上发送信号时应遵循先检测后发送(Listen Before Talk,LBT)的竞争资源方法;设备在免许可频谱资源上发送信号时使用的最大发射功率或最大发射功率谱密度受法规所限;设备在免许可频谱资源上发送信号时信号需要占用信道带宽的80%,等等。
在现有LTE系统中,终端设备(User Equipment,UE)在随机接入过程中需要在物理随机接入信道(Physical Random Access CHannel,PRACH)资源上发送随机接入前导序列,其中,PRACH占用频域上6个连续的资源块(Resource Block,RB)。如果在免许可频谱资源上使用现有的PRACH结构,由于法规的限制,不能满足信号占用信道带宽的80%的要求,以及随机接入前导序列的发射功率受到最大发射功率谱密度限制。
因此,为了满足上述要求,需要设计新的PRACH信道结构以及随机接入前导序列。
发明内容
本申请提供一种传输参考信号的方法,能够提高占用离散频域资源的随机接入前导序列的解调性能。
第一方面,本申请提供一种发送信号的方法,该方法包括:终端设备生成第一信号,其中,该第一信号包括M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;该终端设备发送该第一信号,其中,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,该N个频域单元中的每个频域单元包括K个连续的子载波,该第一信号在每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应;其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
第二方面,本申请提供一种发送信号的方法,该方法包括:网络设备生成第二信号,该第二信号用于接收终端设备发送的第一信号,其中,该第二信号至少包括该M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;该网络设备根据该第二信号接收终端设备发送的该第一信号,其中,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,每个频域单元包括K个连续的子载波,该第一信号在每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
可选地,在某些实现方式中,该M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列中的任意一个第二序列得到的。
可选地,在某些实现方式中,该N个频域单元中的每个频域单元的带宽是180000Hz,每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;每个频域单元包括24个连续的子载波,其中,每个子载波 的带宽是7500Hz;每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,在某些实现方式中,该第一信号在时域上占用M个符号,包括以下情况中的至少一个:该第一信号在时域上占用1个符号;该第一信号在时域上占用连续的2个符号;该第一信号在时域上占用连续的4个符号;该第一信号在时域上占用连续的12个符号;该第一信号在时域上占用连续的14个符号。
可选地,在某些实现方式中,该M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
可选地,在某些实现方式中,该N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,该第一信号在频域上占用该每个频域单元的位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各1个子载波不承载信号。
可选地,在某些实现方式中,该N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,该第一信号在时域上占用1个符号,该第一信号在频域上占用每个频域单元的位于中心位置的120个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各12个连续的子载波不承载信号。
可选地,在某些实现方式中,该M个符号中的S个符号上承载有上行控制信息,该上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,M>S,M>1。
可选地,在某些实现方式中,该上行控制信息为HARQ信息,该方法还包括:该N个频域单元中包括第一频域单元和第二频域单元,该第一频域单元和该第二频域单元上分别承载第一HARQ信息和第二HARQ信息,该第一HARQ信息和该第二HARQ信息分别对应不同的载波或子帧。
可选地,在某些实现方式中,该N个频域单元中任意两个相邻的频域单元之间的频域间隔相等,N>2。
第三方面,本申请提供一种传输信号的终端设备,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种传输参考信号的网络设备,用于执行第二方面或 第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,本申请提供一种传输信号的终端设备,该终端设备包括:处理器、收发器和存储器。可选地,该终端设备还包括总线系统,其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器收发信号,并且当处理器执行存储器存储的指令时,使得处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种传输信号的网络设备,该网络设备包括:处理器、收发器和存储器。可选地,该终端设备还包括总线系统,其中,收发器、存储器和处理器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制收发器收发信号,并且当处理器执行存储器存储的指令时,使得处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
本申请提供一种发送信号的方法、终端设备和网络设备,能够提高占用离散频域资源的随机接入前导序列的解调性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是适用本发明实施例的传输参考信号的方法的应用场景。
图2a示出了第一信号占用频域资源的一种方式。
图2b示出了第一信号占用的频域资源的另一种方式。
图3a示出了第一信号占用时域资源的一种方式。
图3b示出了第一信号占用时域资源的另一种方式。
图4a示出了根据本发明一实施例的发送信号的方法。
图4b示出了根据本发明另一实施例的发送信号的方法。
图4c示出了根据本发明再一实施例的发送信号的方法。
图4d示出了根据本发明又一实施例的发送信号的方法。
图4e示出了根据本发明又一实施例的发送信号的方法。
图4f示出了根据本发明又一实施例的发送信号的方法。
图5示出了从设备交互的角度描述的根据本发明实施例的发送信号的方法100的示意性流程图。
图6示出了根据本发明一实施例的传输信号的终端设备的示意性框图。
图7示出了根据本发明另一实施例的传输信号的网络设备的示意性框图。
图8示出了根据本发明一实施例的传输信号的设备的示意性结构框图。
图9示出了根据本发明另一实施例的传输信号的设备的示意性结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的技术方案,可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,LTE系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),未来的5G通信系统等,本发明实施例并不限定。
本发明实施例的技术方案主要应用于长期演进(Long Term Evolution,LTE)系统及其演进系统,特别是许可辅助接入LTE(LAA-LTE, Licensed-Assisted Access Using LTE)系统或载波聚合(Carrier Aggregation,CA)SA-LTE系统。本发明实施例应用的通信系统中,涉及的网元是接入网设备(也称网络设备)和终端设备(也称终端设备)。
本发明实施例结合终端设备描述了各个实施例,终端设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来5G网络中的终端设备,它们与无线接入网交换语音和/或数据。
本发明实施例结合网络设备描述了各个实施例,网络设备可以是LTE系统及其演进系统,特别是LAA-LTE系统或SA-LTE系统中的演进型基站(Evolutional Node B,简称可以为eNB或e-NodeB)、宏基站、微基站(也称为“小基站”)、微微基站、接入站点(Access Point,AP)或传输站点(Transmission Point,TP)等。
本发明实施例的技术方案中提及的一个符号,至少包括循环前缀(Cyclic Prefix,CP)部分和信息段部分。其中,信息段部分包括了一个符号的全部信息。CP是对一部分信息段信号的重复。本发明实施例的技术方案中提及的符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,也可以是单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号,还可以是随机接入前导序列占用的符号。本发明实施例的技术方案中提及的符号也可以是其它类型的通信的符号,本发明对此不做限定。
物理信道(physical channel)承载来自高层(higher layers)的数据信息。物理信道可以是物理下行共享信道(Physical Downlink Shared CHannel,PDSCH),物理下行控制信道(Physical Downlink Control CHannel,PDCCH),物理控制格式指示信道(Physical Control Format Indicator CHannel,PCFICH),物理混合重传指示信道(Physical Hybrid ARQ Indicator CHannel,PHICH),增强物理下行控制信道(Enhanced-Physical Downlink Control CHannel,EPDCCH),物理上行共享信道(Physical Uplink Shared CHannel,PUSCH),物理上行控制信道(Physical Uplink Control CHannel,PUCCH), 物理随机接入信道(Physical Random Access CHannel,PRACH)等,或是标准中新引入的功能相同、但名称不同的信道。也可以是以上信道的组合。
参考信号(Reference Signal,RS)用于物理层,不承载来自高层的数据信息。例如,用于下行的小区特定参考信号(Cell-specific Reference Signal,CRS),用于下行的终端设备特定参考信号(UE-specific Reference Signal,UE-RS)或用于下行的组特定参考信号(Group-specific Reference Signal,GRS),用于上行的解调参考信号(Demodulation Reference Signal,DMRS),探测参考信号(Sounding reference signal,SRS)等。RS主要用于信道估计,物理信道解调,无线资源管理(Radio Resource Management,RRM)测量,信道状态信息测量等。
从频率维度上来看,资源的最小单位是子载波。1个资源块(Resource Block,RB)在频域的带宽是180000Hz。当子载波间隔是15000Hz时,1个RB包括12个子载波;当子载波间隔是1250Hz时,1个RB包括144个子载波;当子载波间隔是7500Hz时,1个RB包括24个子载波。
从时间维度上来看,一个无线帧的时间长度为10ms,包含10个子帧,一个子帧的时间长度为1ms。当无线资源用于上行或下行中除PRACH外的物理信道传输时,有正常循环前缀(Normal Cyclic Prefix,NCP)和长循环前缀(Extended Cyclic Prefix,ECP)两种子帧格式,一个NCP子帧包括14个符号,一个ECP子帧包括12个符号,其中,每个符号的信息段长度为2048·Ts,Ts为最小时间单元,Ts=1/(15000×2048)秒。对于NCP子帧,符号0和符号7的CP长度是160·Ts,其它符号的CP长度是144·Ts。对于ECP子帧,每个符号的CP长度是512·Ts。对于在PRACH上传输的随机接入前导序列,可以包括表1所示的5种格式。其中,传输时占用时间中还包括保护时长。
表1
序列格式 循环前缀 信息段 传输时占用时间
0 3168·Ts 24576·Ts 30720·Ts
1 21024·Ts 24576·Ts 2·30720·Ts
2 6240·Ts 2·24576·Ts 2·30720·Ts
3 21024·Ts 2·24576·Ts 3·30720·Ts
4 448·Ts 4096·Ts 4832·Ts
在免许可频谱资源上发送信号时,在一些国家或地区,由于法规的限制,要求设备发送的信号占用信道带宽的80%,并且信号的发射功率受到该频段上的最大发射功率谱密度限制。如果是下行传输,网络设备可以在频域调度多个终端设备来满足上述要求;对于上行传输,如果想支持多用户频分复用,需要让每个终端设备都满足上述要求。终端设备的PUSCH或PUCCH传输可以通过调度该频段上不同位置的RB来满足要求。但是现有的PRACH在频域上占用连续的6个RB,为了满足该要求,也需要将PRACH离散映射到整个系统频带。
一种可能的方式是上行的PUSCH或PUCCH或PRACH都离散映射到整个系统频带。例如,假设系统带宽是20MHz,整个频带包括100个RB,可以将该100个RB分成10个簇,每个簇包括10个连续的RB,其中每个簇里相对位置相同的RB可以组成一个新的组,每个组包括频域上离散的10个RB。在进行PUSCH或PUCCH或PRACH的资源分配时以组为单位,从而保证每个上行物理信道都能满足带宽占用要求。
在这种资源分配结构下,一种方式是将现有的随机接入前导序列映射到离散的RB上。但是,这种映射方式下随机接入前导序列在频域上占用的带宽极有可能超过信道的相干带宽,从而导致不同的随机接入前导序列在经历信道衰落后正交性被破坏。另一种方式是使用上行的SRS发送来替代随机接入前导序列发送。但是,发送随机接入前导序列的一个目的是为了测量终端设备和基站之间信号传输的往返时延,假设免许可频谱上小区的覆盖范围最大是1.5公里,那么CP的长度至少需要10us。目前免许可频谱的资源上仅支持NCP子帧格式,该子帧格式下的符号CP最长为160·Ts,即约5.2us,不能满足该要求。
因此,需要设计新的PRACH信道结构以及随机接入前导序列。
图1示出了可以应用本发明提出的方案的其中一种应用场景,如图1所示,该场景中包括小区基站101,与小区基站101邻近的小区基站202,处在小区基站101覆盖范围内并与小区基站101进行通信的终端设备103。其中,小区基站101和终端设备103具体为支持使用免许可频谱资源进行通信,且具有固定的帧边界或子帧边界或符号边界的通信设备;小区基站102支持的频段可以与小区基站101相同,小区基站102可以是与小区基站101相同类型的通信设备,也可以是与小区基站101不同类型的通信设备。举例来说, 小区基站101可以是LTE系统的基站,对应的终端设备103可以是LTE系统的终端设备;小区基站102可以也是LTE系统的基站,也可以是Wi-Fi系统的无线路由器、无线中继器、终端设备,具体此处不做限定。
下面将结合具体的例子详细描述本发明实施例。应理解,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
还应理解,在本发明实施例中,编号“第一”、“第二”仅仅为了区分不同的对象,比如为了区分不同的序列等,并不对本发明实施例的范围构成任何限定。
下面结合附图对本发明实施例的发送信号的方法进行详细描述。
首先,对第一信号占用的频域资源进行详细说明。
在频域上,第一信号占用N个频域单元,N个频域单元中的每个频域单元包括K个连续的子载波,第一信号在每个频域单元中占用L个连续的子载波,其中,N是大于或等于2的正整数,K是大于或等于12的正整数,L是小于或等于K的正整数。
需要说明的是,N个频域单元在时域上占用相同的符号。
可选地,N个频域单元中至少有两个频域单元不连续。进一步可选地,N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
可选地,1个频域单元可以认为是1个RB,即频域单元的带宽是180000Hz。其中,每个频域单元包括K个连续的子载波,可以是以下情况中的至少一个:
K=144,每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
K=72,每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
K=36,每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
K=24,每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
K=12,每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,第一信号在每个频域单元中占用K个连续的子载波,即每个频域单元中的每个子载波上都承载第一信号。
可选地,第一信号在每个频域单元中占用L个连续的子载波,L是小于K的正整数,即每个频域单元中的至少有1个子载波上不承载第一信号。进一步可选地,第一信号在每个频域单元中占用位于中心位置的L个连续的子载波,每个频域单元的位于该中心位置两侧的每侧剩余的子载波中至少1个子载波上不承载信号。采用这种映射方式可以避免两个相邻的频域单元上承载的信号之间产生干扰。
图2a示出了第一信号占用频域资源的一种方式。如图2a所示,第一信号占用N个频域单元,N个频域单元中至少有两个频域单元不连续,N个频域单元中的每个频域单元包括K个连续的子载波,第一信号在每个频域单元中占用中心位置的L个连续的子载波,其中,每个频域单元的位于该中心位置两侧的一侧预留N1个子载波不进行信号映射,另一侧预留N2个子载波不进行信号映射。
图2b示出了第一信号占用的频域资源的另一种方式。如图2b所示,第一信号1和第一信号2占用相同时域资源上的不同频域资源。其中,第一信号1占用5个RB,5个RB中任意两个相邻的RB之间的频域间隔相等。5个RB中的每个RB包括144个连续的子载波,每个子载波的带宽是1250Hz。第一信号1在每个RB中占用中心位置的120个连续的子载波,其中,每个RB的位于该中心位置两侧的每侧各预留12个子载波不进行信号映射(或者说,不用于承载信号)。第一信号2占用4个RB,4个RB中任意两个相邻的RB之间的频域间隔相等。4个RB中的每个RB包括12个连续的子载波,每个子载波的带宽是15000Hz,第一信号2在每个RB中占用所有的12个子载波。
下面对第一信号占用的时域资源进行详细说明。
在时域上,第一信号占用M个符号,其中,M是大于或等于1的正整数。当M大于1时,所述M个符号为连续的符号。
可选地,M个符号是NCP子帧格式中的M个符号。
可选地,M个符号是ECP子帧格式中的M个符号。
可选地,M个符号可以为上述表1中所示的随机接入前导序列占用符号的5种格式中的一种,其中,M=1。
可选地,M个符号在时域上占用1个子帧,即1ms。
进一步可选地,M个符号占用1ms中的全部时域资源。例如,M个符号是一个NCP子帧中的14个连续的符号,或是一个ECP子帧中的12个连续的符号。
进一步可选地,M个符号占用1ms中的部分时域资源,例如,M个符号是一个NCP子帧中的13个连续的符号,或是一个ECP子帧中的11个连续的符号。在这种方式下,没被占用的1个符号可以用于终端设备进行LBT信道资源竞争。
可选地,M个符号中至少第一个符号的CP的长度大于160·Ts,即,M个符号中至少第一个符号的CP的长度大于NCP子帧格式中的任意一个符号的CP的长度。
图3a示出了第一信号占用时域资源的一种方式。如图3a所示,第一信号占用1个符号,该符号是1个子帧中的部分资源。例如,该符号可以为上述表1中所示的随机接入前导序列格式0所占用的符号的格式,即,该符号的CP长度为3168·Ts,信息段长度为24576·Ts。
可以理解的是,在免许可频谱的信道上,可能需要预留一定的时域资源用于终端设备根据LBT进行信道资源竞争。
因此,可选地,该符号的起始时刻距离子帧的起始时刻的时间长度为T1,该符号的结束时刻距离子帧的结束时刻的时间长度为T2,T1或T2为不等于0的数。可选地,T1=0,T2=2976·Ts,即符号的起始时刻与子帧的起始时刻对齐。可选地,T1=2976·Ts,T2=0,即符号的结束时刻与子帧的结束时刻对齐。可选地,T1=2208·Ts,T2=768·Ts,即符号的起始时刻与NCP子帧的第二个符号的起始时刻对齐。
图3b示出了第一信号占用时域资源的另一种方式。如图3b所示,第一信号1和第一信号2占用相同时域资源上的不同频域资源。其中,第一信号1占用1个符号,该符号为1个子帧中的部分资源。例如,该符号可以为上述表1中所示的随机接入前导序列格式0所占用的符号的格式,即,该符号的CP长度为3168·Ts,信息段长度为24576·Ts。第一信号2占用一个NCP子帧中的M个连续的符号,M为小于或等于14的自然数。可选地,第一信号1的符号起始时刻与第一信号2的M个连续符号中的第一个符号的符号起始时刻对齐。进一步可选地,该第一信号1和第一信号2的符号起始时刻 与子帧的起始时刻对齐,或者,该第一信号1和第一信号2的符号起始时刻与NCP子帧的第二个符号的起始时刻对齐。例如,对于传输信号1来说,T1=2208·Ts,T2=768·Ts,对于第一信号2来说,M为小于或等于13的自然数。
下面对根据本发明实施例的第一信号传输的内容进行详细说明。
情况1
第一信号在M个符号中每个符号上传输长度为Z的第一序列。
具体地说,所述第一信号包括M个第一序列,所述M个第一序列中的每个第一序列的长度为Z,且所述每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述正交序列组中的任意两个第二序列相互正交,其中,Z=N·L,M≥1,N≥2,Z、M、N和L均为自然数。
可选地,作为一个实施例,所述M个第一序列相同。即,所述第一信号是由所述第一序列重复M次得到的。
可选地,作为一个实施例,所述M个第一序列中的至少有两个第一序列不相同。
可选地,作为一个实施例,所述M个第一序列中的每个第一序列是根据一个第二序列得到的。例如,将一个第二序列重复N次,得到一个第一序列。
应理解,所述M个第一序列可以根据同一个第二序列得到,也可以根据多个第二序列得到,本发明实施例不作特别限定。
可选地,作为一个实施例,所述M个第一序列中的每个第一序列是根据N个第二序列得到的。例如,将所述N个第二序列组合,得到所述一个第一序列。
在具体实施过程中,可选地,所述正交序列组中包括的至少两个第二序列可以通过以下方式得到。
方式1
正交序列组由长度为L的沃尔什(Walsh)正交序列得到。
例如,所述沃尔什正交序列为:
W=ejαn,n=0,1,...,L-1
其中,α表示循环移位,α可以通过下述公式得到:
Figure PCTCN2016078224-appb-000001
其中,m是小于L的任意整数,m取值不同时,可以得到不同的循环移位值α,每一个α值对应一个沃尔什正交序列,即,每一个α值可以对应一个第二序列。
方式2
正交序列组由长度为L的佐道夫-楚(Zadoff-Chu,ZC)序列得到。
具体地,由同一个基序列的ZC序列的不同循环移位得到的,每一个循环移位对应一个第二序列。其中,所述ZC序列的生成方式参见后文的描述。
方式3
正交序列组由长度为L1的正交掩码OCC序列得到,其中,L1为小于或等于L的偶数。
例如,L1为小于L的偶数。例如,L=4,L1=2,选取长度为2的相互正交的OCC序列#1和OCC序列#2作为基序列,其中,OCC序列#1为[1 1],OCC序列#2为[-1 1],将OCC序列#1重复2次得到序列#3为[1 1 1 1],将OCC序列#2重复2次,得到序列#4为[-1 1 -1 1],序列#3和序列#4即为正交序列组中的第二序列。又例如,将OCC序列#1以一正一反的方式重复2次得到序列#5为[1 1 1 1],将OCC序列#2以一正一反的方式重复2次,得到序列#6为[-1 1 1 -1],序列#5和序列#6即为正交序列组中的第二序列。
又例如,L1为等于L的偶数。例如,L=4,L1=4,选取长度为4的相互正交的OCC序列#1、#2、#3、#4,其中,OCC序列#1为[1 1 1 1],OCC序列#2为[1 -1 1 -1],OCC序列#3为[1 1 -1 -1],OCC序列#4为[1 -1 -1 1],基序列#1、#2、#3、#4即为正交序列组中的第二序列。
需要说明的是,上述选取的相互正交的OCC序列为示例而非限定。
可选地,作为一个实施例,所述M个第一序列中的每个第一序列是根据长度为Z的第三序列和一个第二序列得到的。
例如,将一个第二序列重复N次后得到的长度为Z的序列中的元素与所述第三序列中的元素一一对应点乘,得到一个第一序列。
例如,将一个第二序列重复N次后得到长度为Z的序列(为了便于区分描述,记作序列#A),然后将序列#A中的元素与所述第三序列中的元素一一对应点乘,得到一个第一序列。
可选地,作为一个实施例,所述M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列得到的。
例如,所述至少一个第二序列为N个第二序列,将所述N个第二序列组合后得到的长度为Z的序列中的元素与所述第三序列中的元素一一对应点乘,得到所述每个第一序列。
在具体实施过程中,可选地,所述第三序列由时域或频域的自相关特性和/或互相关特性都很好的恒包络零自相关(Constant Amplitude Zero Auto Correlation,CAZAC)序列构成。可选地,可以使用佐道夫-楚(Zadoff-Chu,ZC)序列构成所述第三序列。特别地,可以通过中心对称的ZC序列构成所述第三序列。
下面对ZC序列或中心对称的ZC序列进行详细描述。ZC序列的基序列表达式可以是:
Figure PCTCN2016078224-appb-000002
其中,S是正整数,表示ZC序列的长度,r是与S互质的整数,每一个r值对应一个基序列,q值为整数,可以设置为0;ar,S(n)表示在给定的r和S时的ZC序列中的第n个元素。
中心对称的ZC序列的基序列表达式可以是:
Figure PCTCN2016078224-appb-000003
其中,S是偶数,表示ZC序列的长度,r是与S+1互质的整数,每一个r值对应一个基序列;ar,S(n)表示在给定的r和S时的ZC序列中的第n个元素。
ZC序列具有以下性质:
(1)一个基序列的循环移位序列之间是正交的;
(2)当S是质数时,任意两个序列之间的互相关值很低;
(3)少量的截短和循环扩展对序列性质的影响很小。
由此可以知道,当给定一个ZC序列的长度S,则可用的基序列的数目就是上式中r的可能值的数目。因此,在所述ZC序列长度相同的条件下, 可以使用不同的r或者不同的循环移位位数来得到多个互相关值很低的序列。
可选地,所述长度为Z的第三序列通过长度为Z的ZC序列得到,即S=Z。
可选地,所述长度为Z的第三序列通过长度为Z1的ZC序列循环扩展得到,即S=Z1,其中,Z1为小于Z的最大质数。
可选地,所述长度为Z的第三序列通过长度为Z2的ZC序列截短得到,即S=Z2,其中,Z2为大于Z的最小质数。
可选地,所述第三序列是伪随机序列。
例如,所述长度Z的第三序列由下述公式得到:
Figure PCTCN2016078224-appb-000004
其中,c(x)表示伪随机序列的生成公式。
情况2
第一信号在M个符号中每个符号上传输长度为Z的第一序列,并在M个符号中的S个符号上传输数据信息,其中,S<M,M>1。
应理解,此处的第一序列可以根据上述情况1中描述的生成第一序列的各种方式得到,此处不再赘述。
可选地,作为一个实施例,该数据信息为上行控制信息,该上行控制信息包括混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)信息、信道状态信息、调度请求信息中的至少一种。
可选地,作为一个实施例,该数据信息是HARQ信息。所述N个频域单元中包括第一频域单元和第二频域单元,所述第一频域单元和所述第二频域单元上分别承载第一HARQ信息和第二HARQ信息,所述第一HARQ信息和所述第二HARQ信息分别对应不同的载波或子帧。其中,所述第一HARQ信息或所述第二HARQ信息为编码前的原始HARQ信息比特。
可选地,将该S个符号中每个符号上传输的第一序列中的元素与该数据信息点乘,得到该S个符号中的每个符号上传输的信息。
由于第一信号占用N个频域单元,且占用每个频域单元中的L个子载波。因此,可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个频域单元中每个频域单元上承载的编码前的原始上行控制信息 相同,且每个频域单元中的12个子载波上承载的编码前的原始上行控制信息也相同。
可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个频域单元中至少有两个频域单元上承载的编码前的原始上行控制信息不同,且每个频域单元中包括的所有子载波上承载的编码前的原始上行控制信息相同。
可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个RB中每个RB上承载的编码前的原始上行控制信息相同,每个RB中的12个子载波中至少两个子载波上承载的编码前的原始上行控制信息不同。
可选地,S个符号中至少两个符号上承载的编码前的原始上行控制信息不同,N个RB中每个RB上承载的编码前的原始上行控制信息相同且每个RB中的12个子载波上承载的编码前的原始上行控制信息也相同,S>2。
可选地,S个符号中至少两个符号上承载的编码前的原始上行控制信息不同,N个RB中至少两个RB上承载的编码前的原始上行控制信息不同,每个RB中的12个子载波上承载的编码前的原始上行控制信息相同,S>2。
优选地,频域单元的大小为1个RB,且一个RB中包括12个子载波。
可选地,作为一个实施例,所述数据信息是上行控制信息,所述上行控制信息为混合自动重传请求信息,所述N个频域单元中至少有两个频域单元上承载不同的混合自动重传请求信息,所述至少两个混合自动重传请求信息对应至少两个不同载波或子帧。
需要说明的是,第一信号占用频域资源的方式中的任意一种方式,第一信号占用时域资源的方式中的任意一种方式,以及第一信号在每个符号上传输的内容的确定方式中的任意一种方式,都可以相互组合。下面将结合具体的例子详细描述。
图4a示出了根据本发明一实施例的发送信号的方法。如图4a所示,频域上,第一信号占用6个RB,6个RB中任意两个相邻的RB之间的频域间隔相等,6个RB中的每个RB包括144个连续的子载波,每个子载波的带宽是1250Hz,第一信号在每个RB中占用中心位置的120个连续的子载波,其中,每个RB的位于该中心位置两侧的每侧各预留12个子载波不进行信号映射。
时域上,第一信号占用1个符号(为了便于描述和理解,记作符号#a)。 符号#a为表1中所示的随机接入前导序列格式0所占用的符号的格式,即符号#a的CP长度为3168·Ts,信息段长度为24576·Ts。符号#a的起始时刻与NCP子帧的第二个符号的起始时刻对齐,即符号#a的起始时刻与NCP子帧的起始时刻之间的时间长度是2208·Ts。
第一信号在符号#a上应传输的内容是第一序列,该第一序列可用于终端设备随机接入。该第一序列的长度为Z,可以由长度为Z的第三序列和长度为L的第二序列得到。其中,第三序列可以由长度为Z1的ZC序列循环扩展得到,第二序列为包括至少两个长度为L的相互正交的沃尔什序列的正交序列组中的任意一个序列。具体地,第一序列的生成过程如下:
R1(n)=R2(n)·R3(n),0≤n<Z
R2(n)=ejαn,0≤n<Z,其中,
Figure PCTCN2016078224-appb-000005
R3(n)=au(nmodZ1),0≤n<Z,其中,
Figure PCTCN2016078224-appb-000006
其中,每一个u值对应一个基序列,u是与Z1互质的整数。R1(n)表示长度为Z的第一序列,R2(n)表示将长度为L的第二序列重复N次得到的长度为Z的序列,R3(n)表示长度为Z的第三序列由长度为Z1的ZC序列循环扩展得到。需要说明的是,不同的v值对应不同的循环移位,即对应不同的第二序列,由于Z=N·L,上述的R2(n)生成的序列相当于将该v值对应的长度为L的第二序列重复N次得到。可选地,u值可以根据小区标识计算得到或根据基站通知的信令得到。可选地,任意两个v值之间的差值大于循环移位的间隔,该循环移位的间隔可以预定义或根据基站通知的信令得到。
以图4a为例,Z=720,L=120,Z1=719,u值为大于或等于0且小于或等于717的整数,v值为大于或等于0且小于120的整数。假设循环移位的间隔为10,那么系统中可用的v值包括0,10,20,30,40,50,60,70,80,90,100,110。即第一序列的取值有12个。如果一个基序列和该12个循环移位得到的第一序列的个数不能满足小区要求,还可以有多个基序列。例如,使用2个基序列时,可用序列为24个,使用3个基序列时,可用序列为36个,以此类推,可以得到满足小区需求的序列的个数。
应理解,上述生成第一序列的过程中,各个序列之间的生成顺序不应对本发明实施例的保护范围构成任何限定。各个序列的生成顺序应以其内在逻 辑而定,即,不论采用何种顺序生成上述的多个序列,并最终生成第一序列,都应落入本发明实施例的保护范围。
当系统中存在多个用户时,可选地,每个用户选择一个第一序列,多个用户可以在相同的时频资源上发送各自对应的第一序列。
图4a中所示的发送信号的方法,由于不同用户在一个频域单元内发送的第一序列通过正交序列码分段正交,在第一序列映射到离散的RB上的情况下,仍然可以保证多个第一序列在经历信道衰落后正交性。另外,第一序列对应的符号的CP长度为3168·Ts,远大于10us,足以支持免许可频谱上小区的覆盖范围。
图4b示出了根据本发明另一实施例的发送信号的方法。如图4b所示,频域上,第一信号占用6个RB,6个RB中任意两个相邻的RB之间的频域间隔相等,6个RB中的每个RB包括24个连续的子载波,每个子载波的带宽是7500Hz,第一信号在每个RB中占用中心位置的20个连续的子载波,其中,每个RB的位于该中心位置两侧的每侧各预留2个子载波不进行信号映射。
时域上,第一信号占用至少1个符号。图中以1个符号为例,该符号可以为上述表1中所示的随机接入前导序列格式4所占用的符号的格式,即该符号的CP长度为448·Ts,信息段长度为4096·Ts。可选地,即该符号的起始时刻与NCP子帧的起始时刻之间的时间长度是2208·Ts。可选地,该符号的起始时刻与NCP或ECP子帧的一个符号的起始时刻对齐。可选地,该符号的结束时刻与NCP或ECP子帧的一个符号的结束时刻对齐,如图所示。
第一信号在该符号上应传输的内容是第一序列,该第一序列可用于终端设备随机接入。该第一序列的生成方式可以和图4a描述的例子中的生成方式类似,其中,Z=120,L=20,Z1=113。此处不再赘述。
同样地,当系统中存在多个用户时,可选地,每个用户选择一个第一序列,多个用户可以在相同的时频资源上发送第一序列。
图4b中所示的发送信号的方法,由于不同用户在一个频域单元内发送的第一序列通过正交序列码分段正交,在第一序列映射到离散的RB上的情况下,仍然可以保证多个第一序列在经历信道衰落后正交性。另外,第一序列对应的符号的CP长度为448·Ts,也大于10us,可以支持免许可频谱上小区的覆盖范围。
由于ECP子帧格式中每个符号对应的CP长度为512·Ts,大于10us,可以支持免许可频谱上小区的覆盖范围。因此,当第一信号为随机接入前导序列时,该随机接入前导序列所在的子帧可以为ECP子帧。
图4c示出了根据本发明再一实施例的发送信号的方法。如图4c所示,第一信号为随机接入前导序列,第一信号所在的子帧p是ECP子帧,第一信号占用该子帧中连续的M个符号。子帧p+1为不承载第一信号的子帧,因此,子帧p+1为NCP子帧。可选地,基站通过物理层信令通知某一个上行子帧是NCP子帧格式还是ECP子帧格式。对于和PRACH复用同一个子帧的PUSCH采用ECP子帧格式。可选地,该子帧中预留一个符号用于设备进行LBT信道竞争。其中,第一序列可以是SRS序列或DMRS序列。
图4d示出了根据本发明又一实施例的发送信号的方法。PRACH使用ECP子帧格式,其它上行物理信道使用NCP子帧格式。如图4d所示,为了避免PRACH信道和PUSCH或PUCCH信道之间的干扰,第一信号在每个RB中占用位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各至少1个子载波上不承载信号。
图4e示出了根据本发明又一实施例的发送信号的方法。第一信号在M个符号中每个符号上传输长度为Z的第一序列,在M个符号中的S个符号上还传输有数据信息,其中,M>S,M>1。如图4e所示,PUCCH占用一个时隙,第一信号占用了该时隙包括的全部符号,即,第一信号占用了7个符号,每个符号上传输的序列相同(可对应图4e中的第一序列)。其中,该7个符号中的4个符号上还传输有HARQ信息(可对应图4e中的符号0、符号1、符号5和符号6)。
图4f示出了根据本发明又一实施例的发送信号的方法。第一信号在M个符号中每个符号上传输长度为Z的第一序列,在M个符号中的S个符号上还有传输数据信息,其中,M>S,M>1。如图4f所示,PUCCH占用一个时隙,第一信号在占用该时隙包括的全部符号,即第一信号占用了7个符号。该7个符号中的4个符号上还传输有HARQ信息(可对应图4f中的符号0、符号1、符号5和符号6)。其中,第0个RB和第8个RB上传输的新息相同,即为第一序列和第二HARQ信息。第4个RB和第12个RB上传输的信息相同,即为第一序列和第一HARQ。
需要说明的是,图4f中所示的RB上传输的信息仅作为一种示例。例如, 还可以为,第0个RB、第4个RB和第8个RB上传输第一序列和第一HARQ信息,第12个RB传输第一序列和第二HARQ信息。
针对图4f所述的传输方式,对于UE而言,在向基站反馈信息是否成功接收时,先反馈相同子帧的不同载波的HARQ信息,当一个子帧反馈完毕后,开始反馈另一子帧的不同载波。换句话说,UE是按子帧进行反馈的,在一个子帧的所有载波反馈完成后,才开始反馈下一个子帧。
例如,UE需要对2个子帧(为了便于描述,记作子帧n和子帧n+1)的载波进行反馈。假设反馈时使用的RB分别为第0个RB、第1个RB、第2个RB和第3个RB。那么,UE在第0个RB上反馈子帧n的0号载波,在第1个RB上反馈子帧n的1号载波。在第2个RB上反馈子帧n+1的0号载波,在第3个RB上反馈子帧n+1的1号载波上。
下文结合图5,以上行传输(即,发送设备为终端设备,接收设备为网络设备)为例,说明根据本发明实施例的发送信号的方法。
图5示出了从设备交互的角度描述的根据本发明实施例的发送信号的方法100的示意性流程图。该方法100包括网络设备和终端设备,如图5所示,该方法100包括:
101、终端设备生成第一信号。
其中,第一信号包括M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且该每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的所有第二序列相互正交。其中,Z=N·L,M≥1,N≥2,Z、M、N和L均为自然数。
可选地,M个第一序列中的任意两个第一序列都相同。即,M个第一序列是重复的。
可选地,M个第一序列中的至少有两个第一序列不相同。
可选地,M个第一序列中的每个第一序列是根据一个第二序列得到的。例如,将一个第二序列重复N次,得到一个第一序列。
可选地,M个第一序列中的每个第一序列是根据N个第二序列得到的。例如,将N个第二序列组合,得到一个第一序列。
可选地,正交序列组由长度为L的沃尔什正交序列得到。
可选地,正交序列组由长度为L的同一个基序列的ZC序列的不同循环 移位得到。
可选地,正交序列组由长度为L1的正交掩码OCC序列得到,其中,L1为小于或等于L的偶数。
可选地,M个第一序列中的每个第一序列是根据长度为Z的第三序列和一个第二序列得到的。例如,将第三序列中的元素与第二序列重复N次后得到的长度为Z的序列中的元素一一对应点乘,得到一个第一序列。
可选地,M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列得到的。例如,M个第一序列中的每个第一序列根据长度为Z的第三序列和N个第二序列得到,具体为,将第三序列中的元素与N个第二序列组合后得到的长度为Z的序列中的元素一一对应点乘,得到一个第一序列。
可选地,第三序列是长度为Z的CAZAC序列或ZC序列或中心对称的ZC序列。
可选地,第三序列通过长度为Z的ZC序列得到。
可选地,第三序列通过长度为Z1的ZC序列循环扩展得到,其中,Z1为小于Z的最大质数。
可选地,第三序列通过长度为Z2的ZC序列截短得到,其中,Z2为大于Z的最小质数。
可选地,第三序列是伪随机序列。
102、终端设备发送第一信号。
其中,第一信号在时域上占用M个符号,第一信号在频域上占用N个频域单元,N个频域单元中的每个频域单元包括K个连续的子载波,第一信号在每个频域单元中占用L个连续的子载波。其中,M个序列与M个符号一一对应。其中,K≥12,1≤L≤K,K为自然数,当M>1时,所述M个符号为连续的符号。
可选地,N个频域单元中至少有两个频域单元不连续。进一步可选地,N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
可选地,1个频域单元可以认为是1个RB,即频域单元的带宽是180000Hz。
可选地,K=144,每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz。
可选地,K=72,每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz。
可选地,K=36,每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz。
可选地,K=24,每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz。
可选地,K=12,每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,第一信号在每个频域单元中占用K个连续的子载波,即每个频域单元中的每个子载波上都承载第一信号。
可选地,第一信号在每个频域单元中占用L个连续的子载波,L为小于K的正整数,即每个频域单元中的至少有1个子载波上不承载第一信号。
进一步可选地,第一信号在每个频域单元中占用位于中心位置的L个连续的子载波,每个频域单元中位于中心位置两侧的每侧剩余的至少一个子载波上不承载信号。采用这种映射方式,可以避免两个相邻的频域单元上的信号之间产生干扰。
可选地,M个符号可以为NCP子帧格式中的M个符号。
可选地,M个符号可以为ECP子帧格式中的M个符号。
可选地,M个符号可以为上述表1中所示的随机接入前导序列所占用的符号的5种格式中的一种,其中,M=1。
可选地,M个符号在时域上占用一个子帧中的全部资源。
可选地,M个符号在时域上占用一个子帧中的部分资源。
可选地,M个符号中的至少第一个符号的CP的长度大于160·Ts。
可选地,第一信号是随机接入前导序列。该随机接入前导序列对应的PRACH在频域占用N个RB,在时域占用M个符号,其中M个符号中至少第一个符号的CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
下面对本发明实施例的发送信号的方法,在第一信号为随机接入前导序列的时的几种可能的方式进行说明。
需要说明的是,当第一信号为SRS或DMRS时,本发明实施例的发送信号的方法也是适用的。
优选地,一个频域单元为一个RB。以下,以一个频域单元为一个RB 为例,对随机接入前导序列在频域上的映射方式(或者说,分布方式)进行说明。
在一种可能的方式中,PRACH包括1个符号,该符号可以为上述表1中所示的随机接入前导序列格式0所占用的符号的格式。即,该符号的CP长度为3168·Ts,信息段长度为24576·Ts,该符号在时域上占用一个子帧。相应地,在频域上,N个RB中的每个RB包括144个连续的子载波,每个子载波的带宽是1250Hz(可参见图4a)。
可选地,随机接入前导序列映射到每个RB中位于中心位置的L个连续的子载波,每个RB的位于该中心位置两侧的一侧预留有N1个子载波不进行信号映射(或者说,不用于承载信号),另一侧预留有N2个子载波不进行信号映射。优选地,随机接入前导序列映射到每个RB中位于中心位置的120个连续的子载波,每个RB的位于中心位置两侧的每侧各预留12个子载波不进行信号映射。
可选地,PRACH对应的符号的起始时刻与一个子帧的起始时刻对齐。考虑到终端设备在使用免许可频谱上的资源时,需要先检测信道是否空闲,因此,一个子帧里的第一个符号可以用于终端设备进行LBT检测。可选地,PRACH对应的符号的起始时刻与一个子帧中的第二个符号的起始时刻对齐。
可选地,随机接入前导序列是根据长度为Z的第三序列和一个第二序列得到的。
具体地,将长度为Z的第三序列中的元素与第二序列重复N次后得到的序列中的元素一一对应点乘,得到一个随机接入前导序列。其中,第二序列由不同循环移位的沃尔什正交序列得到,循环移位的个数由第二序列长度和循环移位的间隔确定。第三序列为ZC序列,每一个基序列可以得到一个第三序列。假设第二序列的个数为P,根据一个基序列得到的第三序列和P个第二序列可以得到P个随机接入前导序列。如果小区内需要的随机接入前导序列的个数大于P,那么可以根据另一个基序列得到的第三序列和P个第二序列得到新的P个随机接入前导序列,直到生成的随机接入前导序列的个数满足要求。
可选地,网络设备将携带有第三序列生成参数或循环移位间隔信息的信令发送给终端设备。
可选地,终端设备选择一个随机接入前导序列进行发送。
可选地,终端设备根据基站发送的指示信息确定一个随机接入前导序列并发送该随机接入前导序列。
在该实施例中,随机接入前导序列对应的符号的CP长度可以支持免许可频谱上小区的覆盖范围,且可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
在另一种可能的方式中,PRACH包括1个符号,该符号可以为上述表1中所示的随机接入前导序列格式4所占用的符号的格式。即,该符号的CP长度为448·Ts,信息段长度为4096·Ts。该符号在时域上占用NCP子帧格式中的约2个符号。相应地,在频域上,N个RB中的每个RB包括24个连续的子载波,每个子载波的带宽是7500Hz。
可选地,随机接入前导序列映射到每个RB中的24个子载波上。可选地,随机接入前导序列映射到每个RB中位于中心位置的L个连续的子载波,每个RB的位于该中心位置两侧的一侧预留有N1个子载波不进行信号映射,另一侧预留N2个子载波不进行信号映射。优选地,随机接入前导序列映射到每个RB中位于中心位置的20个连续的子载波,每个RB的位于该中心位置两侧的每侧各预留2个子载波不进行信号映射。
可选地,PRACH对应的符号的起始时刻与NCP或ECP子帧的一个符号的起始时刻对齐。可选地,PRACH对应的符号的结束时刻与NCP或ECP子帧的一个符号的结束时刻对齐。考虑终端设备在使用免许可频谱上的资源时,需要先检测信道是否空闲,因此,一个子帧里的第一个符号可以用于终端设备进行LBT检测。可选地,PRACH对应的符号的起始时刻与一个子帧里的第二个符号的起始时刻对齐。
在该实施例中,随机接入前导序列的生成方式或发送方式,可参见前文描述的随机接入前导序列的生成方式或发送方式,此处不再赘述。
在该实施例中,随机接入前导序列对应的符号的CP长度可以支持免许可频谱上小区的覆盖范围,且可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
在再一种可能的方式中,PRACH包括M个符号,其中,M个符号是一 个ECP子帧中的符号,M大于或等于1且小于或等于14。M个符号中每个符号的CP长度为512·Ts。在频域上,N个RB中的每个RB包括12个连续的子载波,每个子载波的带宽是15000Hz。
在该实施例中,随机接入前导序列的生成方式或发送方式,可参见前文描述的随机接入前导序列的生成方式或发送方式,此处不再赘述。
可选地,PRACH和PUSCH或PUCCH在同一个子帧内频分复用。
具体地说,在PRACH和PUSCH或PUCCH在同一个子帧内频分复用可以包括以下两种方式。
(1)PRACH和PUSCH或PUCCH均以ECP子帧格式在一个子帧内复用。优选地,随机接入前导序列(或者说,PRACH)映射到N个RB中,并且占用每个RB中的12个子载波上。(可参见图4c)
在这种方式中,换句话说,随机接入前导序列没有占满所有的符号,可以预留符号用于终端设备的LBT。
可选地,终端设备根据预定义或网络设备发送的指示消息确定一个子帧的子帧格式。
(2)PRACH以ECP子帧格式,PUSCH或PUCCH以NCP子帧格式在一个子帧内复用。为了避免PRACH和PUSCH或PUCCH之间产生干扰,优选地,随机接入前导序列映射到每个RB中位于中心位置的10个连续的子载波,每个RB的位于该中心位置两侧的每侧各预留1个子载波不进行信号映射。(可参见图4d)
类似地,在这种方式中,也可以预留符号用于终端设备的LBT,即随机接入前导序列不占满所有符号。
在该实施例中,随机接入前导序列对应的符号的CP长度可以支持免许可频谱上小区的覆盖范围,且可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
可选地,第一信号中包括数据信息,即,M个符号中的S个符号上承载有数据信息,S<M,M>1。优选地,该数据信息为上行控制信息,该上行控制信息包括HARQ信息、信道状态信息、调度请求信息中的至少一种。
可选地,M个第一序列中的S个第一序列上调制有上行控制信息。
需要说明的是,M个第一序列中每个第一序列的生成方式,可参见前文 对第一序列的生成方式的说明。
需要说明的是,本发明实施例的发送信号的方法,对于SRS或PUCCH的DMRS或PUSCH的DMRS也是适用的。
优选地,在频域上N个RB中的每个RB包括12个连续的子载波,每个子载波的带宽是15000Hz,第一信号映射到每个RB中的12个子载波上。
可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个RB中每个RB上承载的编码前的原始上行控制信息相同且每个RB中的12个子载波上承载的编码前的原始上行控制信息也相同。
可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个RB中至少两个RB上承载的编码前的原始上行控制信息不同,每个RB中的12个子载波上承载的编码前的原始上行控制信息相同。
可选地,S个符号中每个符号上承载的编码前的原始上行控制信息相同,N个RB中每个RB上承载的编码前的原始上行控制信息相同,每个RB中的12个子载波中至少两个子载波上承载的编码前的原始上行控制信息不同。
可选地,S个符号中至少两个符号上承载的编码前的原始上行控制信息不同,N个RB中每个RB上承载的编码前的原始上行控制信息相同且每个RB中的12个子载波上承载的编码前的原始上行控制信息也相同,S>2。
可选地,S个符号中至少两个符号上承载的编码前的原始上行控制信息不同,N个RB中至少两个RB上承载的编码前的原始上行控制信息不同,每个RB中的12个子载波上承载的编码前的原始上行控制信息相同,S>2。
在根据本发明实施例的发送信号的方法的又一种可能的方式中,N个RB中的每个RB上承载的编码前的原始HARQ信息比特相同。
在该实施例中,终端设备在N个RB上发送携带相同的编码前的HARQ信息比特,可以增加该HARQ信息比特的发射功率,从而提高该HARQ信息比特的解调性能。
以图4e为例,终端设备向网络设备发送第一信号,第一信号在时域上占用了7个符号,在频域上占用4个RB。其中,该7个符号中的4个符号上还传输有HARQ信息(可对应图4e中的符号0、符号1、符号5和符号6)。在该4个符号的每个符号上,在第0个RB,第4个RB、第8个RB和第12个RB上传输相同的HARQ信息。
在根据本发明实施例的发送信号的方法的又一种可能的方式中,N个 RB中包括第一RB和第二RB,其中,第一RB和第二RB上分别承载第一HARQ信息和第二HARQ信息,第一HARQ信息和第二HARQ信息分别对应不同的载波或子帧。
在该实施例中,终端设备在N个RB上发送多个编码前的HARQ信息比特,可以使不同的载波或子帧对应的HARQ信息在同一个子帧上反馈,在上行子帧较少的系统中可以提高HARQ信息反馈的效率。
以图4f为例,对于UE而言,在向基站反馈信息是否成功接收时,先反馈相同子帧的不同载波的HARQ信息,当一个子帧反馈完毕后,开始反馈另一子帧的不同载波。换句话说,UE是按子帧进行反馈的,在一个子帧的所有载波反馈完成后,才开始反馈下一个子帧。
例如,UE需要对2个子帧(为了便于描述,记作子帧n和子帧n+1)的载波进行反馈。假设反馈时使用的RB分别为第0个RB、第1个RB、第2个RB和第3个RB。那么,UE在第0个RB上反馈子帧n的0号载波,在第1个RB上反馈子帧n的1号载波。在第2个RB上反馈子帧n+1的0号载波,在第3个RB上反馈子帧n+1的1号载波上。
103、网络设备生成第二信号。
所述第二信号用于接收终端设备发送的第一信号,其中,所述第二信号至少包括所述M个第一序列,所述M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述正交序列组中的任意两个第二序列相互正交,其中,Z=N·L,M≥1,N≥2,Z、M、N和L均为自然数。
需要说明的是,网络设备生成第二信号的方式与终端设备生成第一信号的方式类似,第二信号的生成方法可参见前文中对第一信号的生成方式的说明,此处不再赘述。
另外,上述第一信号在时域和频域上占用资源的各种可能的方式,对于第二信号也是适用的。换句话说,第二信号在时域和频域上占用资源的方式,可以参见前文中对第一信号占用时域和频域上的各种可能的方式的说明,为了简洁,此处不再赘述。
需要说明的是,第二信号包括的序列中至少包括所述M个第一序列。假设,第二信号包括R个序列。如果将第一信号包括的M个第一序列看作 第一序列集合,将第二信号包括的R个序列看作第二序列集合。那么,第二序列集合至少包括了第一序列集合。
例如,第一信号包括3个序列(即,3个第一序列),为了便于区分和描述,分别记作序列#a、序列#b、和序列#c。那么,第二信号至少包括有序列#a、序列#b、和序列#c。例如,第二信号包括5个序列(即,5个第四序列),该5个第四序列可以为序列#a、序列#b、序列#c、序列#d和序列#e。
应理解,步骤103与步骤101、步骤102之间并没有顺序之分,文中对步骤的编号顺序仅仅是作为示例,不应对本发明实施例的发送信号的方法构成不必要的限定。例如,步骤103也可以在步骤102之前,或者,步骤103还可以在步骤101之前或与步骤101同步。即,终端设备生成第一信号与网络设备生成第二信号之间并没有相互的关联与限制。步骤的执行顺序应以本发明实施例的发送信号的方法中的内在逻辑而定。
104、网络设备根据第二信号接收终端设备发送的第一信号。
所述第二信号在时域上占用M个符号,第二信号在频域上占用N个频域单元,N个频域单元中的每个频域单元包括K个连续的子载波,第二信号在每个频域单元中占用L个连续的子载波。其中,M个序列与M个符号一一对应,K≥12,1≤L≤K,K为自然数,当M>1时,所述M个符号为连续的符号。
可选地,第二信号为随机接入前导序列。
与上述的接收信号的过程类似,网络设备将接收到的随机接入前导序列与网络设备生成的随机接入前导序列进行相关检测并判断峰值。如果峰值超过预设门限值,则网络设备判断该随机接入前导序列接收成功。
例如,终端设备生成第一信号,该第一信号包括4个序列(即,4个第一序列),且,该4个序列相同(为了便于描述,记作序列#1)。网络设备生成第二信号,该第二信号包括5个序列。根据本发明实施例的发送信号的方法,该5个序列应包括了上述序列#1,另外,还有不同于上述序列#1的4个序列。
假设终端设备向网络设备发送第一信号,该第一信号在时域上占用4个符号,每个符号上传输一个序列(即,传输序列#1)。网络设备首先遍历上述4个符号,接收到该4个符号上传输的4个序列#1。接下来,网络设备可以对该4个序列#1进行合并,得到一个信噪比较好的序列#1。最后,网络设 备使用生成的第二信号中的5个序列,对该序列#1进行相关检测,如果序列#5与序列#1之间的相关峰值超过了预设门限,网络设备则认为终端设备传输的就是序列#1,即接收成功。
进一步可选地,所述方法还包括:网络设备向终端设备发送随机序列接入响应,以指示终端设备随机接入成功。
可选地,待接收信号中包括数据信息,即M个符号中的S个符号上承载有数据信息,S<M,M>1。优选地,该数据信息是上行控制信息,该上行控制信息包括HARQ信息、信道状态信息、调度请求信息中的至少一种。
可选地,网络设备接收第一信号的方法包括:
网络设备根据生成的序列对M个符号中不承载上行控制信息的符号进行信道估计,根据信道估计结果解调M个符号中的S个符号上承载的上行控制信息。
现有技术中,随机接入前导序列映射到频域离散的RB上,该随机接入前导序列在频域上占用的带宽极有可能超过信道的相干带宽,从而导致不同的随机接入前导序列在经历信道衰落后正交性被破坏。因此,本发明实施例提供的传输随机接入前导序列的方法,可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
以上结合图1至图5,详细说明了根据本发明实施例的发送信号的方法。以下结合图6和图7,说明根据本发明实施例的传输信号的终端设备和网络设备。
图6示出了本发明实施例的传输信号的终端设备300的示意性框图。如图6所示,该终端设备300包括处理单元310和发送单元320,其中,
处理单元310,用于生成第一信号,其中,该第一信号包括M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且该每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;
发送单元320,用于发送该第一信号,其中,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,该N个频域单元中的每个频域单元包括K个连续的子载波,该第一信号在该每个频域单元中占用 L个连续的子载波,该M个序列与该M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
可选地,作为一个实施例,该M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列中的任意一个第二序列得到的。
可选地,作为一个实施例,该N个频域单元中的每个频域单元的带宽是180000Hz,每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,作为一个实施例,该第一信号在时域上占用M个符号,包括以下情况中的至少一个:
该第一信号在时域上占用1个符号;
该第一信号在时域上占用连续的2个符号;
该第一信号在时域上占用连续的4个符号;
该第一信号在时域上占用连续的12个符号;
该第一信号在时域上占用连续的14个符号。
可选地,作为一个实施例,该M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,该第一信号在频域上占用每个频域单元的位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各1个子载波不承载信号。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,该第一信号在时域上占用1个符号,该第一信号在频域上占用每个频域单元的位于中心位置的120个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各12个连续的子载波不承载信号。
可选地,作为一个实施例,该M个符号中的S个符号上承载有上行控制信息,该上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
可选地,作为一个实施例,该上行控制信息为HARQ信息,该方法还包括:
该N个频域单元中包括第一频域单元和第二频域单元,该第一频域单元和该第二频域单元上分别承载第一HARQ信息和第二HARQ信息,该第一HARQ信息和该第二HARQ信息分别对应不同的载波或子帧。
可选地,作为一个实施例,当N>2,该N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
根据本发明实施例的传输信号的终端设备300可对应于根据本发明实施例的发送信号的方法中的终端设备。并且,终端设备300中的各单元和上述其它操作和/或功能分别为了实现图2中由终端设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送信号的方法,可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
图7示出了根据本发明实施例的传输信号的网络设备400的示意性框图。如图7所示,网络设备400包括处理单元410和接收单元420,其中,
处理单元410,用于生成第二信号,该第二信号用于接收终端设备发送的第一信号,其中,该第二信号至少包括该M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;
接收单元420,用于根据该处理单元410生成的该第二信号接收终端设 备发送的该第一信号,其中,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,每个频域单元包括K个连续的子载波,该第一信号在每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
可选地,作为一个实施例,该M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列中的任意一个第二序列得到的。
可选地,作为一个实施例,该N个频域单元中的每个频域单元的带宽是180000Hz,每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,作为一个实施例,该第一信号在时域上占用M个符号,包括以下情况中的至少一个:
该第一信号在时域上占用1个符号;
该第一信号在时域上占用连续的2个符号;
该第一信号在时域上占用连续的4个符号;
该第一信号在时域上占用连续的12个符号;
该第一信号在时域上占用连续的14个符号。
可选地,作为一个实施例,该M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,该第一信号在频域上占用 每个频域单元的位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各1个子载波不承载信号。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,该第一信号在时域上占用1个符号,该第一信号在频域上占用每个频域单元的位于中心位置的120个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各12个连续的子载波不承载信号。
可选地,作为一个实施例,该M个符号中的S个符号上承载有上行控制信息,该上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
可选地,作为一个实施例,该上行控制信息为HARQ信息,该方法还包括:
该N个频域单元中包括第一频域单元和第二频域单元,该第一频域单元和该第二频域单元上分别承载第一HARQ信息和第二HARQ信息,该第一HARQ信息和该第二HARQ信息分别对应不同的载波或子帧。
可选地,作为一个实施例,当N>2时,该N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
根据本发明实施例的传输信号的网络设备400可对应根据本发明实施例的发送信号的方法中的网络设备。并且,接入网设备400中的各个单元和上述其它操作和/或功能分别为了实现图2中由网络设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送信号的方法,可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
上文结合图6和图7,详细说明了根据本发明实施例的传输信号的终端设备和网络设备。以下结合图8和图9说明根据本发明实施例的传输信号的设备。
图8示出了根据本发明实施例的传输信号的设备500的示意性结构框图。如图8所示,该设备500包括处理器510、收发器520和存储器530。可选地,该设备500还包括总线系统540,其中,处理器510、收发器520和存储器530可以通过总线系统540相连。存储器530可以用于存储指令, 处理器510用于执行存储器530存储的指令,
用于生成第一信号,其中,该第一信号包括M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;
收发器520用于发送该处理器510生成的第一信号,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,该N个频域单元中的每个频域单元包括K个连续的子载波,该第一信号在该每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
可选地,作为一个实施例,该M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列中的任意一个第二序列得到的。
可选地,作为一个实施例,该N个频域单元中的每个频域单元的带宽是180000Hz,每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,作为一个实施例,该第一信号在时域上占用M个符号,包括以下情况中的至少一个:
该第一信号在时域上占用1个符号;
该第一信号在时域上占用连续的2个符号;
该第一信号在时域上占用连续的4个符号;
该第一信号在时域上占用连续的12个符号;
该第一信号在时域上占用连续的14个符号。
可选地,作为一个实施例,该M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,该第一信号在频域上占用每个频域单元的位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各1个子载波不承载信号。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,该第一信号在时域上占用1个符号,该第一信号在频域上占用每个频域单元的位于中心位置的120个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各12个连续的子载波不承载信号。
可选地,作为一个实施例,该M个符号中的S个符号上承载有上行控制信息,该上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
可选地,作为一个实施例,该上行控制信息为HARQ信息,该方法还包括:
该N个频域单元中包括第一频域单元和第二频域单元,该第一频域单元和该第二频域单元上分别承载第一HARQ信息和第二HARQ信息,该第一HARQ信息和该第二HARQ信息分别对应不同的载波或子帧。
可选地,作为一个实施例,当N>2,该N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
应理解,在本发明实施例中,处理器510可以是中央处理单元(central processing unit,CPU),处理器510还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器530可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。处理器510的一部分还可以包括非易失性随机存取存储器。 例如,处理器510还可以存储设备类型的信息。
总线系统540除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统540。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的发送信号的方法的步骤,可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器510读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的传输信号的设备500可对应于根据本发明实施例的发送信号的方法中的终端设备。并且,设备500中的各单元和上述其它操作和/或功能分别为了实现图2中由终端设备执行的各个步骤。为了简洁,此处不再赘述。
根据本发明实施例的发送信号的方法,可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
图9示出了根据本发明另一实施例的传输信号的设备的示意性结构框图。如图9所示,设备600包括处理器610、收发器620和存储器630。可选地,该设备600还包括总线系统640,其中,处理器610、收发器620和存储器630可以通过总线系统640相连,存储器630可以用于存储指令,处理器610用于执行存储器630存储的指令,
用于生成第二信号,该第二信号用于接收终端设备发送的第一信号,其中,该第二信号至少包括该M个第一序列,该M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,该第二序列为正交序列组中的一个序列,该正交序列组中包括至少两个长度为L的第二序列,且该正交序列组中的任意两个第二序列相互正交;
收发器620用于根据该处理器610生成的该第二信号接收终端设备发送的该第一信号,其中,该第一信号在时域上占用M个符号,该第一信号在频域上占用N个频域单元,每个频域单元包括K个连续的子载波,该第一 信号在每个频域单元中占用L个连续的子载波,该M个序列与该M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,该M个符号为连续的符号。
可选地,作为一个实施例,该M个第一序列中的每个第一序列是根据长度为Z的第三序列和至少一个第二序列中的任意一个第二序列得到的。
可选地,作为一个实施例,该N个频域单元中的每个频域单元的带宽是180000Hz,每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
可选地,作为一个实施例,该第一信号在时域上占用M个符号,包括以下情况中的至少一个:
该第一信号在时域上占用1个符号;
该第一信号在时域上占用连续的2个符号;
该第一信号在时域上占用连续的4个符号;
该第一信号在时域上占用连续的12个符号;
该第一信号在时域上占用连续的14个符号。
可选地,作为一个实施例,该M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,该第一信号在频域上占用每个频域单元的位于中心位置的10个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各1个子载波不承载信号。
可选地,作为一个实施例,该N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,该第一信号在时域上占用1个符号,该第一信号在频域上占用每个频域单元的位于中心位置的120个连续的子载波,每个频域单元的位于该中心位置两侧的每侧各12个连续的子载波不承载信号。
可选地,作为一个实施例,该M个符号中的S个符号上承载有上行控制信息,该上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
可选地,作为一个实施例,该上行控制信息为HARQ信息,该方法还包括:
该N个频域单元中包括第一频域单元和第二频域单元,该第一频域单元和该第二频域单元上分别承载第一HARQ信息和第二HARQ信息,该第一HARQ信息和该第二HARQ信息分别对应不同的载波或子帧。
可选地,作为一个实施例,当N>2时,该N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
应理解,在本发明实施例中,处理器610可以是中央处理单元(central processing unit,CPU),处理器610还可以是其它通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器630可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。处理器610的一部分还可以包括非易失性随机存取存储器。例如,处理器610还可以存储设备类型的信息。
总线系统640除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统640。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的发送信号的方法的步骤,可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的 存储介质中。该存储介质位于存储器630,处理器610读取存储器630中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的用于传输信号的设备600可对应于根据本发明实施例的发送信号的方法中的网络设备。并且,设备600中的各单元和上述其它操作和/或功能分别为了实现图2中由网络设备执行的相应流程,为了简洁,在此不再赘述。
根据本发明实施例的发送信号的方法,可以使不同的随机接入前导序列在一个频域单元内通过正交序列码分段正交,从而保证占用频域离散资源的随机接入前导序列的解调性能。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,RAM)、随机存取存储器(random access memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种发送信号的方法,其特征在于,所述方法包括:
    终端设备生成第一信号,其中,所述第一信号包括M个第一序列,所述M个第一序列中的每个第一序列的长度为Z,且所述每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述正交序列组中的任意两个第二序列相互正交;
    所述终端设备发送所述第一信号,其中,所述第一信号在时域上占用M个符号,所述第一信号在频域上占用N个频域单元,所述N个频域单元中的每个频域单元包括K个连续的子载波,所述第一信号在所述每个频域单元中占用L个连续的子载波,所述M个序列与所述M个符号一一对应;
    其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,所述M个符号为连续的符号。
  2. 根据权利要求1所述的方法,其特征在于,所述M个第一序列中的每个第一序列是根据长度为Z的第三序列和所述至少一个第二序列得到的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个频域单元中的每个频域单元的带宽是180000Hz,所述每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
    所述每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
    所述每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
    所述每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
    所述每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
    所述每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一信号在时域上占用M个符号,包括以下情况中的至少一个:
    所述第一信号在时域上占用1个符号;
    所述第一信号在时域上占用连续的2个符号;
    所述第一信号在时域上占用连续的4个符号;
    所述第一信号在时域上占用连续的12个符号;
    所述第一信号在时域上占用连续的14个符号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
  6. 根据权利要求5所述的方法,其特征在于,所述N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,所述第一信号在频域上占用所述每个频域单元的位于中心位置的10个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各1个子载波不承载信号。
  7. 根据权利要求5所述的方法,其特征在于,所述N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,所述第一信号在时域上占用1个符号,所述第一信号在频域上占用所述每个频域单元的位于中心位置的120个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各12个连续的子载波不承载信号。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述M个符号中的S个符号上承载有上行控制信息,所述上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
  9. 根据权利要求8所述的方法,其特征在于,所述上行控制信息为HARQ信息,所述方法还包括:
    所述N个频域单元中包括第一频域单元和第二频域单元,所述第一频域单元和所述第二频域单元上分别承载第一HARQ信息和第二HARQ信息,所述第一HARQ信息和所述第二HARQ信息分别对应不同的载波或子帧。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,N>2,所述N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
  11. 一种发送信号的方法,其特征在于,所述方法包括:
    网络设备生成第二信号,所述第二信号用于接收终端设备发送的第一信号,其中,所述第二信号至少包括所述M个第一序列,所述M个第一序列 中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述正交序列组中的任意两个第二序列相互正交;
    所述网络设备根据所述第二信号接收终端设备发送的所述第一信号,其中,所述第一信号在时域上占用M个符号,所述第一信号在频域上占用N个频域单元,每个频域单元包括K个连续的子载波,所述第一信号在每个频域单元中占用L个连续的子载波,所述M个序列与所述M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,所述M个符号为连续的符号。
  12. 根据权利要求11所述的方法,其特征在于,所述M个序列中的每个序列是根据长度为Z的第三序列和所述第二序列得到的。
  13. 根据权利要求11或12所述的方法,其特征在于,所述N个频域单元中的每个频域单元的带宽是180000Hz,所述每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
    所述每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
    所述每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
    所述每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
    所述每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
    所述每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述第一信号在时域上占用M个符号,包括以下情况中的至少一个:
    所述第一信号在时域上占用1个符号;
    所述第一信号在时域上占用连续的2个符号;
    所述第一信号在时域上占用连续的4个符号;
    所述第一信号在时域上占用连续的12个符号;
    所述第一信号在时域上占用连续的14个符号。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
  16. 根据权利要求15所述的方法,其特征在于,所述N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,所述第一信号在频域上占用所述每个频域单元的位于中心位置的10个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各1个子载波不承载第一信号。
  17. 根据权利要求15所述的方法,其特征在于,所述N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,所述第一信号在时域上占用1个符号,所述第一信号在频域上占用所述每个频域单元的位于中心位置的120个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各12个连续的子载波不承载第一信号。
  18. 根据权利要求11至16中任一项所述的方法,其特征在于,所述M个符号中的S个符号上承载有上行控制信息,所述上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1,所述方法还包括:
    所述网络设备还接收所述S个符号上承载的上行控制信息。
  19. 根据权利要求18所述的方法,其特征在于,所述上行控制信息为HARQ信息,所述N个频域单元中包括第一频域单元和第二频域单元,所述第一频域单元和所述第二频域单元上分别承载第一HARQ信息和第二HARQ信息,所述第一HARQ信息和所述第二HARQ信息分别对应不同的载波或子帧。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,N>2,所述N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
  21. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于生成第一信号,其中,所述第一信号包括M个第一序列,所述M个第一序列中的每个第一序列的长度为Z,且所述每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述 正交序列组中的任意两个第二序列相互正交;
    发送单元,用于发送所述第一信号,其中,所述第一信号在时域上占用M个符号,所述第一信号在频域上占用N个频域单元,所述N个频域单元中的每个频域单元包括K个连续的子载波,所述第一信号在所述每个频域单元中占用L个连续的子载波,所述M个序列与所述M个符号一一对应;
    其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,所述M个符号为连续的符号。
  22. 根据权利要求21中所述的终端设备,其特征在于,所述M个第一序列中的每个第一序列是根据长度为Z的第三序列和所述至少一个第二序列得到的。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述N个频域单元中的每个频域单元的带宽是180000Hz,所述每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
    所述每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
    所述每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
    所述每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
    所述每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
    所述每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
  24. 根据权利要求21至23中任一项所的终端设备,其特征在于,所述第一信号在时域上占用M个符号,包括以下情况中的至少一个:
    所述第一信号在时域上占用1个符号;
    所述第一信号在时域上占用连续的2个符号;
    所述第一信号在时域上占用连续的4个符号;
    所述第一信号在时域上占用连续的12个符号;
    所述第一信号在时域上占用连续的14个符号。
  25. 根据权利要求21至24中任一项所述的终端设备,其特征在于,所 述M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
  26. 根据权利要求25所述的终端设备,其特征在于,所述N个频域单元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,所述第一信号在频域上占用所述每个频域单元的位于中心位置的10个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各1个子载波不承载信号。
  27. 根据权利要求25所述的终端设备,其特征在于,所述N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,所述第一信号在时域上占用1个符号,所述第一信号在频域上占用所述每个频域单元的位于中心位置的120个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各12个连续的子载波不承载信号。
  28. 根据权利要求21至26中任一项所述的终端设备,其特征在于,所述M个符号中的S个符号上承载有上行控制信息,所述上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1。
  29. 根据权利要求28所述的终端设备,其特征在于,所述上行控制信息为HARQ信息,所述方法还包括:
    所述N个频域单元中包括第一频域单元和第二频域单元,所述第一频域单元和所述第二频域单元上分别承载第一HARQ信息和第二HARQ信息,所述第一HARQ信息和所述第二HARQ信息分别对应不同的载波或子帧。
  30. 根据权利要求21至29中任一项所述的方法,其特征在于,N>2,所述N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
  31. 一种网络设备,其特征在于,所述网络设备包括:
    处理单元,用于生成第二信号,所述第二信号用于接收终端设备发送的第一信号,其中,所述第二信号至少包括所述M个第一序列,所述M个第一序列中的每个第一序列的长度为Z,且每个第一序列是根据至少一个长度为L的第二序列得到的,所述第二序列为正交序列组中的一个序列,所述正交序列组中包括至少两个长度为L的第二序列,且所述正交序列组中的任意两个第二序列相互正交;
    接收单元,用于根据所述第二信号接收终端设备发送的所述第一信号, 其中,所述第一信号在时域上占用M个符号,所述第一信号在频域上占用N个频域单元,每个频域单元包括K个连续的子载波,所述第一信号在每个频域单元中占用L个连续的子载波,所述M个序列与所述M个符号一一对应,其中,Z=N·L,M≥1,N≥2,K≥12,1≤L≤K,Z、M、N、K和L均为自然数,当M>1时,所述M个符号为连续的符号。
  32. 根据权利要求31所述的网络设备,其特征在于,所述M个序列中的每个序列是根据长度为Z的第三序列和所述第二序列得到的。
  33. 根据权利要求31或32所述的网络设备,其特征在于,所述N个频域单元中的每个频域单元的带宽是180000Hz,所述每个频域单元包括K个连续的子载波,包括以下情况中的至少一个:
    所述每个频域单元包括144个连续的子载波,其中,每个子载波的带宽是1250Hz;
    所述每个频域单元包括72个连续的子载波,其中,每个子载波的带宽是2500Hz;
    所述每个频域单元包括36个连续的子载波,其中,每个子载波的带宽是5000Hz;
    所述每个频域单元包括24个连续的子载波,其中,每个子载波的带宽是7500Hz;
    所述每个频域单元包括12个连续的子载波,其中,每个子载波的带宽是15000Hz。
  34. 根据权利要求31至33中任一项所述的网络设备,其特征在于,所述第一信号在时域上占用M个符号,包括以下情况中的至少一个:
    所述第一信号在时域上占用1个符号;
    所述第一信号在时域上占用连续的2个符号;
    所述第一信号在时域上占用连续的4个符号;
    所述第一信号在时域上占用连续的12个符号;
    所述第一信号在时域上占用连续的14个符号。
  35. 根据权利要求31至34中任一项所述的网络设备,其特征在于,所述M个符号中的至少第一个符号的循环前缀CP的长度大于160·Ts,其中,Ts=1/(15000×2048)秒。
  36. 根据权利要求35所述的网络设备,其特征在于,所述N个频域单 元中的每个频域单元包括12个连续的子载波,每个子载波的带宽是15000Hz,所述第一信号在频域上占用所述每个频域单元的位于中心位置的10个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各1个子载波不承载第一信号。
  37. 根据权利要求35所述的网络设备,其特征在于,所述N个频域单元中的每个频域单元包括144个连续的子载波,每个子载波的带宽是1250Hz,所述第一信号在时域上占用1个符号,所述第一信号在频域上占用所述每个频域单元的位于中心位置的120个连续的子载波,所述每个频域单元的位于所述中心位置两侧的每侧各12个连续的子载波不承载第一信号。
  38. 根据权利要求31至36中任一项所述的网络设备,其特征在于,所述M个符号中的S个符号上承载有上行控制信息,所述上行控制信息包括混合自动重传请求HARQ信息、信道状态信息、调度请求信息中的至少一种,其中,S<M,M>1,
    所述接收单元具体还用于接收所述S个符号上承载的上行控制信息。
  39. 根据权利要求38所述的网络设备,其特征在于,所述上行控制信息为HARQ信息,所述N个频域单元中包括第一频域单元和第二频域单元,所述第一频域单元和所述第二频域单元上分别承载第一HARQ信息和第二HARQ信息,所述第一HARQ信息和所述第二HARQ信息分别对应不同的载波或子帧。
  40. 根据权利要求31至39中任一项所述的网络设备,其特征在于,N>2,所述N个频域单元中任意两个相邻的频域单元之间的频域间隔相等。
PCT/CN2016/078224 2016-03-31 2016-03-31 发送信号的方法、终端设备和网络设备 WO2017166254A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16896034.2A EP3432529A4 (en) 2016-03-31 2016-03-31 METHOD FOR SENDING SIGNAL, TERMINAL DEVICE, AND NETWORK DEVICE
PCT/CN2016/078224 WO2017166254A1 (zh) 2016-03-31 2016-03-31 发送信号的方法、终端设备和网络设备
CN201680084046.3A CN108886505B (zh) 2016-03-31 2016-03-31 发送信号的方法、终端设备和网络设备
US16/146,099 US10616019B2 (en) 2016-03-31 2018-09-28 Signal sending method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078224 WO2017166254A1 (zh) 2016-03-31 2016-03-31 发送信号的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/146,099 Continuation US10616019B2 (en) 2016-03-31 2018-09-28 Signal sending method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2017166254A1 true WO2017166254A1 (zh) 2017-10-05

Family

ID=59962482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078224 WO2017166254A1 (zh) 2016-03-31 2016-03-31 发送信号的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US10616019B2 (zh)
EP (1) EP3432529A4 (zh)
CN (1) CN108886505B (zh)
WO (1) WO2017166254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147817A1 (zh) * 2019-01-18 2020-07-23 维沃移动通信有限公司 随机接入过程的信息传输方法及终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190058628A (ko) 2016-11-03 2019-05-29 텔레폰악티에볼라겟엘엠에릭슨(펍) 업링크 전송 대역폭 제어 및 지원
JP2021533606A (ja) * 2018-07-27 2021-12-02 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. ランダムアクセス方法及び装置
US11917697B2 (en) * 2018-08-21 2024-02-27 Qualcomm Incorporated Interlace PRACH design in NR-U
CA3195826A1 (en) * 2020-10-15 2022-04-21 Qiong JIA Uplink control information sending method and receiving method, and communication apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119351A (zh) * 2006-08-02 2008-02-06 华为技术有限公司 正交频分复用信号收发方法及装置
CN101170532A (zh) * 2006-10-23 2008-04-30 华为技术有限公司 正交频分复用系统中反向信号收发方法及设备
US20120314652A1 (en) * 2011-06-09 2012-12-13 Pantech Co., Ltd. Apparatus and method for performing random access in wireless communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264968B (zh) 2014-04-29 2019-10-01 华为技术有限公司 一种随机接入的装置及方法
US9867187B2 (en) * 2014-08-04 2018-01-09 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
WO2016068667A1 (ko) * 2014-10-31 2016-05-06 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 전송 자원을 선택하는 방법 및 장치
WO2016182356A1 (ko) * 2015-05-12 2016-11-17 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 서로 다른 타입의 신호를 전송하기 위한 채널 접속 과정을 수행하는 방법 및 장치
WO2017010762A1 (ko) * 2015-07-10 2017-01-19 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 송수신하는 방법 및 장치
CN107925494B (zh) * 2015-07-10 2019-11-29 Lg 电子株式会社 在支持未授权带的无线接入系统中发送发现参考信号的方法和设备
WO2017065524A1 (ko) * 2015-10-13 2017-04-20 엘지전자 주식회사 비면허 대역을 지원하는 무선접속시스템에서 서브프레임 길이 정보를 송수신하는 방법 및 장치
US10581571B2 (en) * 2015-10-21 2020-03-03 Lg Electronics Inc. Methods and devices for transmitting/receiving discovery signal in wireless access system supporting unlicensed band
US10568081B2 (en) * 2016-03-21 2020-02-18 Samsung Electronics Co., Ltd. Scheduling uplink transmissions
EP3419322B1 (en) * 2016-03-31 2021-08-25 Huawei Technologies Co., Ltd. Signal transmission method, a terminal device, and an apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119351A (zh) * 2006-08-02 2008-02-06 华为技术有限公司 正交频分复用信号收发方法及装置
CN101170532A (zh) * 2006-10-23 2008-04-30 华为技术有限公司 正交频分复用系统中反向信号收发方法及设备
US20120314652A1 (en) * 2011-06-09 2012-12-13 Pantech Co., Ltd. Apparatus and method for performing random access in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432529A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147817A1 (zh) * 2019-01-18 2020-07-23 维沃移动通信有限公司 随机接入过程的信息传输方法及终端

Also Published As

Publication number Publication date
US10616019B2 (en) 2020-04-07
EP3432529A4 (en) 2019-04-03
CN108886505A (zh) 2018-11-23
EP3432529A1 (en) 2019-01-23
US20190036753A1 (en) 2019-01-31
CN108886505B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
US11937243B2 (en) Allocation and logical to physical mapping of scheduling request indicator channel in wireless networks
US10805863B2 (en) Method and apparatus for generating and using reference signal for broadcast channel for radio system
JP6616905B2 (ja) ランダムアクセスのための周波数ホッピング
WO2017185915A1 (zh) 分配时频资源的方法和装置
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
CN109391431B (zh) 一种获取参考信号的方法、装置和计算机可读存储介质
CN111818647B (zh) 数据传输方法及装置
US10616019B2 (en) Signal sending method, terminal device, and network device
WO2016112543A1 (zh) 一种传输消息的方法和装置
US20180076980A1 (en) Terminal device, wireless transmission method, base station device, and channel estimation method
WO2017166255A1 (zh) 发送物理随机接入信道prach的方法、设备及系统
TW202008828A (zh) 資源配置的方法和終端設備
TW202008829A (zh) 資源配置的方法和終端設備
CN112242892B (zh) 一种物理上行控制信道的资源配置方法及装置
CN113067690A (zh) 上行信号的传输方法和装置
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2017045179A1 (zh) 数据传输的方法、终端设备和基站
WO2019029523A1 (zh) 一种信号发送、信号接收方法以及相关设备
WO2020200056A1 (zh) 解调导频参考信号生成方法及装置
EP3550779B1 (en) Signal sending and receiving method and apparatus
TWI715883B (zh) Pucch傳輸方法、終端及網路側設備
US20230379121A1 (en) Method performed by user equipment, and user equipment
WO2020088250A1 (zh) 一种上行资源请求的通信处理方法和相关设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016896034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016896034

Country of ref document: EP

Effective date: 20181015

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896034

Country of ref document: EP

Kind code of ref document: A1