WO2019096311A1 - 随机接入方法、终端及网络设备 - Google Patents

随机接入方法、终端及网络设备 Download PDF

Info

Publication number
WO2019096311A1
WO2019096311A1 PCT/CN2018/116254 CN2018116254W WO2019096311A1 WO 2019096311 A1 WO2019096311 A1 WO 2019096311A1 CN 2018116254 W CN2018116254 W CN 2018116254W WO 2019096311 A1 WO2019096311 A1 WO 2019096311A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
downlink signal
access resource
time
resource
Prior art date
Application number
PCT/CN2018/116254
Other languages
English (en)
French (fr)
Inventor
黄煌
颜矛
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020009816-7A priority Critical patent/BR112020009816A2/pt
Priority to EP21184439.4A priority patent/EP3965520A1/en
Priority to EP18879705.4A priority patent/EP3627941B1/en
Priority to JP2019571682A priority patent/JP7027466B2/ja
Priority to CN201880074812.7A priority patent/CN111373818B/zh
Priority to AU2018366798A priority patent/AU2018366798B2/en
Priority to CA3064617A priority patent/CA3064617C/en
Priority to US16/268,309 priority patent/US10582543B2/en
Publication of WO2019096311A1 publication Critical patent/WO2019096311A1/zh
Priority to US16/789,225 priority patent/US11057943B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a random access method, a terminal, and a network device.
  • the base station transmits downlink signals through multiple beams, wherein the downlink signals may be: a synchronization/PBCH signal block (SS/PBCH block), a downlink synchronization signal block, and system information.
  • SS/PBCH block synchronization/PBCH signal block
  • Block remaining minimum system information, first system information block NR SIB1, 0th system information block NR SIB0, semi-statically configured downlink subframe and/or time slot and/or OFDM symbol, reserved downlink signal, downlink demodulation Demodulation Reference Signal (DMRS), Channel State Information-reference Signal (CSI-RS).
  • DMRS downlink demodulation Demodulation Reference Signal
  • CSI-RS Channel State Information-reference Signal
  • the base station uses multiple beams to implement coverage of the cell.
  • the downlink signal is transmitted in a time division manner, that is, different downlink signals are respectively transmitted at different times, and the random access preamble sent by the terminal is also received at different times.
  • the maximum number of downlink signals of one downlink signal set may be different depending on the frequency band.
  • the maximum number of downlink signals in a downlink signal set below 3 gigahertz (GHz) is 4; the maximum number of downlink signals in a downlink signal set is 8 at 3-6 GHz; a downlink signal above 6 GHz
  • the maximum number of downlink signals of the set is 64. All downlink signals in the downlink signal set are mapped on different time slots and orthogonal frequency division multiplexing (OFDM) symbols within a window of 5 milliseconds (ms).
  • OFDM orthogonal frequency division multiplexing
  • the downlink signal set is sent in a periodic manner, and the downlink signal actually transmitted in one downlink signal set may not be the maximum number.
  • the downlink signal actually transmitted in one downlink signal set may not be the maximum number.
  • 8 bits indicate whether 8 downlink signals are actually transmitted; when the frequency is above 6 GHz, the method is adopted.
  • the 8+8 mode indicates whether the downlink signal is actually transmitted: 64 downlink signals are divided into 8 groups, and each group has 8 downlink signals, and 8 bits indicate whether the downlink signals in each group are transmitted, and 8 bits indicate 8 Whether the downlink signal set is sent.
  • the period in which the downlink signal set is transmitted in the NR technology is small, and the minimum period may be 5 ms, that is, almost all time slots in a system frame may have downlink signals.
  • the random access preamble sent by the terminal is configured in the uplink time, and the time when the base station sends the downlink signal may conflict with the time when the terminal sends the uplink random access preamble.
  • the present application provides a random access method, a terminal, and a network device, which are used to solve the problem that a time when a base station sends a downlink signal may conflict with a time when a terminal sends an uplink random access preamble.
  • the application provides a random access method, including:
  • the terminal determines the actually available random access resource according to the time location information of the random access resource and the time location information of the downlink signal actually sent by the network device, where the actually available random access resource and the actually sent random access resource
  • the downlink signal time positions do not coincide
  • the terminal uses the target random access resource to send a random access preamble to the network device.
  • the application provides a random access method, including:
  • the terminal When determining, by the terminal, that the time position of the actually transmitted downlink signal coincides with the time position of the random access resource, determining that the random access resource that coincides with the time position of the actually transmitted downlink signal is punctured; or determining that the a randomly accessed random access resource with a time position of the downlink signal that is actually transmitted, and a random access that coincides with the time position of the actually transmitted downlink signal in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal All the random access resources are punctured before the resource; or, all the random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are determined to be punctured.
  • the terminal determines the actually available random access resources according to the time position information of the random access resource and the time position information of the downlink signal actually sent by the network device, including:
  • the terminal uses a random access resource that does not coincide with the time position of the actually transmitted downlink signal as the actually available random access resource.
  • the method further includes:
  • the terminal punches a random access resource that coincides with the time position of the actually transmitted downlink signal
  • the terminal the random access resource that coincides with the time position of the actually transmitted downlink signal, and the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal, and the actually transmitted downlink signal All random access resources are punctured before random access resources with coincident time positions; or
  • the terminal punctured all the random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal.
  • the downlink signal is one or more of the following: a downlink synchronization signal block, a system information block, a remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information.
  • Block NR SIB0 semi-statically configured downlink subframe, semi-statically configured time slot, semi-statically configured OFDM symbol, reserved downlink signal.
  • the method further includes:
  • a slot in which the random access resource is located is based on a subcarrier spacing of the random access message 1, and the random connection
  • the time slot of the incoming resource is based on the subcarrier spacing of the random access message 3
  • the subcarrier spacing of the time slot in which the random access resource is located based on the uplink initial access bandwidth
  • the time slot in which the random access resource is located is based on the downlink signal.
  • the carrier interval and the length of the time slot in which the random access resource is located is
  • the downlink signal time position is determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, and the time slot is based on the downlink Subcarrier spacing of the signal, downlink/uplink protection time.
  • the method further includes:
  • the terminal punctured a semi-persistent scheduling signal that coincides with the time location of the random access resource.
  • the method further includes:
  • the terminal punctured a random access resource that coincides with a time position of a semi-persistent scheduling signal
  • the terminal compares the random access resource that coincides with the time position of the semi-persistent scheduling signal and the random access resource that coincides with the time position of the semi-persistent scheduling signal in the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal Puncturing all random access resources; or,
  • the terminal punctured all the random access resources in the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal.
  • the method further includes:
  • K is a preset or Preconfigured constant
  • the terminal adds a new random access resource as an actually available random access resource in a frequency domain that does not overlap with the actually transmitted downlink signal location, where the uplink access slot is located;
  • the terminal adds a new random access resource as an actually available random access resource in another orthogonal frequency division multiplexing OFDM symbol that does not coincide with the actually transmitted downlink signal location and is in an uplink time slot in which the random access resource is located.
  • the method further includes:
  • the terminal determines the number of punctured random access resources according to the number of OFDM symbols that the actually transmitted downlink signal and the random access resource overlap, and the random access preamble format in the time slot in which the random access resource is located.
  • the terminal includes, according to the actual available random access resources, and the association between the downlink signal and the random access resource, before determining the target random access resource corresponding to the actually transmitted downlink signal, :
  • the terminal updates the association between the downlink signal and the random access resource according to the actually transmitted downlink signal and the actually available random access resource, and acquires a relationship between the new downlink signal and the random access resource.
  • the application provides a random access method, including:
  • the network device determines the actually available random access resource according to the time location information of the random access resource and the time location information of the downlink signal actually sent by the network device, where the actually available random access resource and the actual sending The downlink signal time positions do not coincide;
  • the target random access resource corresponding to the actually transmitted downlink signal according to the actual available random access resource and the association relationship between the downlink signal and the random access resource
  • the network device receives the random access preamble sent by the terminal according to the target random access resource corresponding to the actually transmitted downlink signal.
  • the network device determines the actually available random access resources according to the time and location information of the random access resource and the time and location information of the downlink signal actually sent by the network device, including:
  • the network device uses, as the actually available random access resource, a random access resource that does not coincide with the actually transmitted downlink signal time position.
  • the downlink signal is one or more of the following: a downlink synchronization signal block, a system information block, a remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information.
  • Block NR SIB0 semi-statically configured downlink subframe, semi-statically configured time slot, semi-statically configured OFDM symbol, reserved downlink signal.
  • the method further includes:
  • the network device sends the configuration information to the terminal, where the configuration information indicates one or more of the following: the time slot in which the random access resource is located is based on the subcarrier spacing of the random access message 1, and the random access resource is located.
  • the time slot is based on the subcarrier spacing of the random access message 3, the subcarrier spacing of the time slot in which the random access resource is located based on the uplink initial access bandwidth, the time slot in which the random access resource is located, the subcarrier spacing based on the downlink signal, The length of the time slot in which the random access resource is located.
  • the downlink signal time position is determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, and the time slot is based on the downlink Subcarrier spacing of the signal, downlink/uplink protection time.
  • the method further includes:
  • the network device determines a semi-persistent scheduling signal that coincides with a time position of the random access resource according to time location information of the random access resource and time location information of the semi-persistent scheduling signal.
  • the network device determines the target random access resource corresponding to the actually transmitted downlink signal according to the actual available random access resource and the association relationship between the downlink signal and the random access resource.
  • the network device updates the association between the downlink signal and the random access resource according to the actually transmitted downlink signal and the actually available random access resource, and acquires a relationship between the new downlink signal and the random access resource.
  • the application provides a random access method, including:
  • the network device When determining, by the network device, that the time position of the actually transmitted downlink signal coincides with the time position of the random access resource, determining that the random access resource that coincides with the time position of the actually transmitted downlink signal is punctured; or determining that the location is to be a random access resource in which the time domain of the downlink signal that is actually transmitted is coincident, and a random connection that coincides with the time position of the actually transmitted downlink signal in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal All the random access resources are punctured before the resources are entered; or, all random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are determined to be punctured.
  • the application provides a terminal, including:
  • a determining module configured to determine, according to time location information of the random access resource, and time location information of the downlink signal actually sent by the network device, the actually available random access resource, where the actually available random access resource and the location The time position of the downlink signal that is actually transmitted is not coincident; the target random access resource corresponding to the actually transmitted downlink signal is determined according to the actual available random access resource and the association relationship between the downlink signal and the random access resource;
  • a sending module configured to send the random access preamble to the network device by using the target random access resource.
  • the application provides a terminal, including:
  • a determining module configured to determine, when the time position of the actually transmitted downlink signal coincides with a time position of the random access resource, to punct the random access resource that coincides with the actually transmitted downlink signal time position; or, determine And a random access resource that coincides with the time position of the actually transmitted downlink signal, and a time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal coincides with the time position of the actually transmitted downlink signal. All the random access resources are punctured before the random access resource; or, all random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are determined to be punctured.
  • the determining module is specifically configured to determine, according to the time position information of the random access resource, and the time position information of the downlink signal actually sent by the network device, to coincide with the time position of the actually transmitted downlink signal.
  • a random access resource a random access resource that does not coincide with the time position of the actually transmitted downlink signal is used as the actually available random access resource.
  • the determining module is further configured to punct a random access resource that coincides with a time position of the actually transmitted downlink signal; or, may coincide with a time position of the actually transmitted downlink signal. All random access resources are punctured before the random access resource in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal, and the random access resource that coincides with the time position of the actually transmitted downlink signal Or, all random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are punctured.
  • the downlink signal is one or more of the following: a downlink synchronization signal block, a system information block, a remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information.
  • Block NR SIB0 semi-statically configured downlink subframe, semi-statically configured time slot, semi-statically configured OFDM symbol, reserved downlink signal.
  • the method further includes:
  • a receiving module configured to receive configuration information sent by the network device, where the configuration information indicates one or more of the following: a slot in which the random access resource is located is based on a subcarrier spacing of the random access message 1, The time slot in which the random access resource is located is based on the subcarrier spacing of the random access message 3, the subcarrier spacing in which the random access resource is located based on the uplink initial access bandwidth, and the time slot in which the random access resource is located is based on the downlink signal The subcarrier spacing and the length of the time slot in which the random access resource is located.
  • the downlink signal time position is determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, and the time slot is based on the downlink Subcarrier spacing of the signal, downlink/uplink protection time.
  • the determining module is further configured to determine a semi-persistent scheduling that coincides with a time position of the random access resource according to time location information of the random access resource and time location information of the semi-persistent scheduling signal. a signal; puncturing a semi-persistent scheduling signal that coincides with a time location of the random access resource.
  • the determining module is further configured to determine a random access resource that coincides with a time position of the semi-persistent scheduling signal according to time location information of the random access resource and time location information of the semi-persistent scheduling signal; Placing a random access resource that coincides with a semi-persistent scheduling signal time position; or, when a random access resource that coincides with a semi-persistent scheduling signal time position and a random access resource that coincides with a semi-persistent scheduling signal time position All the random access resources in the slot before the random access resource that coincides with the time position of the semi-persistent scheduling signal are punctured; or, all the random access resources in the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal are played hole.
  • the determining module is further configured to add a new random access resource as actually available in the Kth uplink time slot before or after the uplink time slot in which the punctured random access resource is located.
  • a random access resource where K is a preset or pre-configured constant; or, in a frequency domain that does not coincide with the actually transmitted downlink signal position, the uplink time slot in which the random access resource is located, adding a new random access
  • the resource is used as the actually available random access resource; or, in the other orthogonal frequency division multiplexing OFDM symbols that do not coincide with the actually transmitted downlink signal location, the uplink random slot in which the random access resource is located, the new random access is added.
  • the resource acts as a randomly available random access resource.
  • the determining module is further configured to determine, according to the number of OFDM symbols that the actually transmitted downlink signal and the random access resource overlap, and the random access preamble format in the time slot in which the random access resource is located, The number of random access resources of the hole.
  • the determining module is further configured to: update the association between the downlink signal and the random access resource according to the actually transmitted downlink signal and the actually available random access resource, and acquire a new The relationship between the downlink signal and the random access resource.
  • the application provides a network device, including:
  • a determining module configured to determine, according to time location information of the random access resource, and time location information of the downlink signal actually sent by the network device, the actually available random access resource, where the actually available random access resource and the location The time position of the downlink signal that is actually transmitted is not coincident; the target random access resource corresponding to the actually transmitted downlink signal is determined according to the actual available random access resource and the association relationship between the downlink signal and the random access resource;
  • the receiving module is configured to receive a random access preamble sent by the terminal according to the target random access resource corresponding to the actually transmitted downlink signal.
  • the application provides a network device, including:
  • a determining module configured to determine, when the time position of the actually transmitted downlink signal coincides with a time position of the random access resource, to punct the random access resource that coincides with the actually transmitted downlink signal time position; or, determine And a random access resource that coincides with the time position of the actually transmitted downlink signal, and a time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal coincides with the time position of the actually transmitted downlink signal. All the random access resources are punctured before the random access resource; or, all random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are determined to be punctured.
  • the present application provides an apparatus, the apparatus comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the first aspect or the second aspect of the present application.
  • the device may be a terminal or a chip on the terminal.
  • the application provides a device, the device comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the third or fourth aspect of the present application.
  • the device may be a network device or a chip on a network device.
  • the present application provides a computer storage medium for storing a program for performing any one of the methods of the above first to fourth aspects.
  • the terminal determines the actually available random access resource according to the location information of the random access resource and the time position information of the downlink signal actually sent by the network device, and according to the actual situation.
  • the available random access resources and the association between the downlink signal and the random access resource determine the target random access resource corresponding to the actually transmitted downlink signal, and then use the target random access resource to send the random access preamble to the network device.
  • the downlink signal actually transmitted and the random access preamble collision sent by the uplink are avoided.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a random access method according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a resource structure provided by the present application.
  • FIG. 5 is a schematic structural diagram of another resource provided by the present application.
  • FIG. 6 is a schematic diagram of another resource structure provided by the present application.
  • FIG. 7 is a schematic diagram of another resource structure provided by the present application.
  • FIG. 8 is a schematic diagram of another resource structure provided by the present application.
  • FIG. 9 is a schematic diagram of still another resource structure provided by the present application.
  • FIG. 10 is a schematic diagram of another resource structure provided by the present application.
  • FIG. 11 is a schematic diagram of still another resource structure provided by the present application.
  • FIG. 13 is a schematic diagram of still another resource structure provided by the present application.
  • FIG. 14 is a schematic diagram of another resource structure provided by the present application.
  • 16(a) to 16(g) are schematic diagrams of a random access preamble format provided by the present application.
  • 17(a) to 17(g) are schematic diagrams of a random access preamble format provided by the present application.
  • FIG. 18 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • Figure 22 is a schematic diagram showing the structure of a simplified terminal device
  • Figure 23 shows a schematic diagram of a simplified network device structure.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), and Next Generation 5G Mobile Communication System
  • eMBB Enhanced Mobile Broad Band
  • URLLC Massive Machine-Type Communications
  • mMTC Massive Machine-Type Communications
  • the terminal device includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset), and a portable device.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or "cellular" phone), a computer with wireless communication function.
  • the terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device or device.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • the communication system 01 includes a network device 101 and a terminal 102.
  • the network device 101 can also be connected to the core network.
  • Network device 101 may also be in communication with an Internet Protocol (IP) network 200, such as the Internet, a private IP network, or other data network.
  • IP Internet Protocol
  • Network devices provide services to terminals within coverage.
  • network device 101 provides wireless access to one or more terminals within the coverage of network device 101.
  • network devices can also communicate with each other.
  • Network device 101 may be a device for communicating with a terminal.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolved Node B, eNB evolved base station
  • the network device may also be a relay station, an access point, an in-vehicle device, or the like.
  • D2D Device to Device
  • the network device may also be a terminal functioning as a base station.
  • the terminal may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (UE), mobile stations (mobile) Station, MS), etc.
  • a random access channel (RACH) resource may include: information such as time and frequency of random access.
  • the time of the random access may be an orthogonal frequency division multiplexing (OFDM) symbol, a minislot, a time slot, a subframe, and a time period in which the time length is H basic time units, indicating that one can be sent.
  • the time required for a predefined random access preamble, the frequency of random access indicates the bandwidth required to transmit a predefined random access preamble, where H is greater than zero.
  • a random access resource is identified by two times of a random access time and a random access frequency, that is, a random access time and frequency defines a random access resource.
  • a random access time and frequency may define multiple random access resources.
  • a random access resource may also be referred to as a random access opportunity (RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance, RO), or a random connection of one or more sets on a random access time frequency resource. Enter the lead.
  • RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance, RO random access opportunity
  • RO random access time frequency resource
  • FIG. 2 is a schematic flowchart of a random access method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes:
  • the terminal determines the actually available random access resource according to the time location information of the random access resource and the time location information of the downlink signal actually sent by the network device.
  • the actual available random access resource does not coincide with the actually transmitted downlink signal location.
  • the network device sends the first configuration information to the terminal, where the first configuration information carries one or more of the following information: a frame structure configuration index, a semi-static UL/DL configuration, and a half Continuous downlink or uplink scheduling (semi-persistent scheduling), random access configuration index, random access preamble subcarrier spacing, actually transmitted downlink signal indication information, downlink signal set period information, and random access configuration period (RACH configuration periodicity) Information, uplink channel information, slot format information (SFI).
  • the network device sends the second configuration information to the terminal, where the second configuration information includes at least one of the following: the time slot in which the random access resource is located is based on a subcarrier spacing of the random access message 1 (MSG1), The slot in which the random access resource is located is based on the subcarrier spacing of the random access message 3 (MSG3), the subcarrier spacing of the slot in which the random access resource is located based on the uplink initial access bandwidth, and the time slot in which the random access resource is located.
  • the downlink signal may refer to one or more of the following: a synchronization signal block (SS block), a system information block, a remaining minimum system information (RMSI), and a first new air interface system information block.
  • SS block synchronization signal block
  • RMSI remaining minimum system information
  • NR SIB1 0th new air interface system information block NR SIB0, reserved downlink signal, semi-semi-statically configured downlink subframe, semi-statically configured slot, semi-statically configured OFDM symbol.
  • the actually transmitted downlink signal may correspond to one or more OFDM symbols.
  • the downlink signal includes at least one of the following: a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel Block (PBCH), and a Demodulation Reference Signal (Demodulation Reference).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel Block
  • DMRS Demodulation Reference Signal
  • SS block can also be called SS/PBCH block. Multiple signals in the SS block or SS/PBCH block may be transmitted in the same antenna port.
  • Semi-static configuration refers to the configuration of an uplink/downlink communication, which occurs periodically with the length of the configuration cycle time. That is, the corresponding uplink/downlink subframe/slot/OFDM symbol appears periodically.
  • the period may be one or two time slots corresponding to a 120 kHz subcarrier interval, 0.5 milliseconds, 1 millisecond, 2 milliseconds, 5 milliseconds, 10 milliseconds, or other values.
  • Semi-persistent scheduling means that time and frequency resources for uplink/downlink communication occur periodically at intervals of a scheduling period. That is, the frequency resources in the corresponding uplink/downlink subframe/slot/OFDM symbol appear periodically.
  • Semi-persistent scheduling is also known as semi-static scheduling.
  • reserved downlink signal refers to downlink data and/or null data carried by reserved resource elements and/or resource blocks in reserved time.
  • the downstream signal set includes one or more downstream signals.
  • the uplink channel information may include one or more of the following: uplink center frequency information, uplink channel number, uplink channel bandwidth, uplink frequency band number, uplink frequency band start position, uplink frequency band subcarrier offset value, and uplink frequency band resource block offset. Value, number of uplink access part bandwidth and/or bandwidth, subcarrier spacing of uplink initial access part bandwidth, number of random access resources.
  • the uplink channel bandwidth may be the total bandwidth of the uplink channel, and may also be the initial uplink access bandwidth.
  • the terminal may obtain time location information of the random access resource, time location information of the actually transmitted downlink signal, and the like according to the foregoing configuration information.
  • the semi-static uplink and downlink configurations are configured according to the same sub-carrier width.
  • the semi-static uplink and downlink configuration is performed according to the downlink signal, or the RMSI, or the uplink random access information 1, or the subcarrier width of the uplink random access information 3.
  • the semi-static uplink and downlink configurations are configured according to the same sub-carrier width.
  • the semi-static uplink and downlink configuration is performed according to the downlink signal, or the RMSI, or the uplink random access information 1, or the largest or smallest subcarrier of the uplink random access information 3.
  • the semi-static uplink and downlink configurations are configured according to different sub-carrier widths.
  • the downlink is configured according to the maximum or minimum subcarrier width of the RMSI according to the downlink signal;
  • the uplink is configured according to the maximum or minimum subcarrier width of the uplink random access information 1 and the uplink random access information 3.
  • the semi-static uplink and downlink configurations are configured according to the same sub-carrier width.
  • the low frequency scene (below the first preset frequency band) is configured according to a fixed subcarrier width (for example, 15 KHz).
  • the high frequency scene (higher than the second preset frequency band) is configured according to another fixed subcarrier width (for example, 60 KHz), or the high and low frequencies are configured according to the same subcarrier width (15 KHz or 60 KHz).
  • the terminal may configure the index and/or the slot structure information according to the frame structure, and determine the uplink subframe, the time slot, the number of OFDM symbols, and the time information in the system frame. Then, according to the random access configuration index and the random access preamble subcarrier spacing, the uplink subframe, the time slot, the number of OFDM symbols, and the time information where the random access resource is located may be determined.
  • the terminal further determines the actually available random access resources by combining the actually transmitted downlink signal indication information and the downlink signal set period information.
  • the terminal determines the target random access resource corresponding to the actually transmitted downlink signal according to the actually available random access resource and the association relationship between the downlink signal and the random access resource.
  • the target random access resource corresponding to the actually transmitted downlink signal is determined in the actually available random access resource, that is, the downlink signal position that is actually transmitted is not used to overlap (this application can also be understood as: partial overlap/conflict/ A random access resource (overlap/conflict/occupy/overlay/intersect/cross) or the like is used to transmit uplink information.
  • the terminal uses the target random access resource to send a random access preamble to the network device.
  • the terminal determines the actually available random access resources according to the location information of the random access resource and the time position information of the downlink signal actually sent by the network device, and according to the actually available random access resources and downlink signals.
  • the association relationship with the random access resource determines the target random access resource corresponding to the actually transmitted downlink signal, and then uses the target random access resource to send the random access preamble to the network device.
  • the downlink signal actually transmitted and the random access preamble collision sent by the uplink are avoided.
  • the network side device also determines the actually available random access resources and the target random access resources to receive the random access preamble in a targeted manner.
  • FIG. 3 is a schematic flowchart of a random access method according to another embodiment of the present disclosure. As shown in FIG. 3, the method includes:
  • the network device determines, according to the time and location information of the random access resource and the time and location information of the downlink signal that is actually sent, the actually available random access resource, where the actually available random access resource and the actually sent downlink signal are not located. coincide.
  • the network device may configure index and/or slot structure information according to the frame structure to determine uplink subframes, time slots, the number of OFDM symbols, and time information in the system frame. Then, according to the random access configuration index and the random access preamble subcarrier spacing, the uplink subframe, the time slot, the number of OFDM symbols, and the time information where the random access resource is located may be determined.
  • the network device further determines the actually available random access resources by combining the actually transmitted downlink signal indication information and the downlink signal set period information.
  • the network device determines the target random access resource corresponding to the actually transmitted downlink signal according to the actual available random access resource and the association between the downlink signal and the random access resource.
  • the network device receives the random access preamble sent by the terminal according to the target random access resource corresponding to the actually transmitted downlink signal.
  • the network device and the terminal follow the same rules to determine the actually available random access resources, the association relationship between the downlink signal and the random access resource, and the target random access resource and other related parameters. That is, the network device knows which random access resources the terminal sends the random access preamble, and then receives the random access preamble on the random access resources to complete the random access procedure. It also determines which random access resources are in the terminal, and the terminal does not send random access preambles.
  • the network device may determine the actually available random access resources according to the time position information of the random access resource and the time position information of the actually transmitted downlink signal, where the actually available random access resources are actually sent.
  • the downlink signal positions are not coincident, and the target random access resources corresponding to the actually transmitted downlink signals are determined according to the actual available random access resources and the association between the downlink signals and the random access resources, and then corresponding to the downlink signals actually transmitted.
  • the target randomly accesses the resource and receives the random access preamble sent by the terminal.
  • the downlink signal actually transmitted and the random access preamble collision sent by the uplink are avoided.
  • the time position of the downlink signal may be determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, a time interval of the subcarrier based on the downlink signal, and a downlink/uplink Protection time, the downlink/uplink protection time is a time interval.
  • the terminal determines the actually available random access resource according to the time location information of the random access resource and the time position information of the downlink signal actually sent by the network device, which may be: according to the random access resource.
  • the time position information and the time position information of the downlink signal actually transmitted by the network device determine a random access resource that coincides with the time position of the actually transmitted downlink signal. Further, the random access resource that does not coincide with the time position of the downlink signal actually transmitted is used as the actually available random access resource.
  • the terminal determines that the random access resource that coincides with the time position of the downlink signal actually transmitted is unavailable, that is, does not use the random access resource that coincides with the time position of the downlink signal actually transmitted to send the random access preamble.
  • the random access resource that does not coincide with the time position of the actually transmitted downlink signal is determined as the actually available random access resource.
  • the terminal determines that the random access resource that coincides with the time position of the downlink signal that is actually sent is not available, and may punct the random access resource that coincides with the time position of the downlink signal that is actually sent (this application can also be understood as: deleting /release (puncture/release/delete/remove), etc.).
  • the terminal determines that the random access resource that coincides with the time position of the actually transmitted downlink signal is unavailable, that is, the portion that coincides with the time position of the actually transmitted downlink signal does not need to receive the random access preamble.
  • the time slot in which the random access resource is located is based on the subcarrier spacing of at least one of the following signals: random access message 1 (MSG1), random access message 3 (MSG3), uplink initial access bandwidth, and downlink initial connection Incoming bandwidth, downlink synchronization signal block, system information (eg first new air interface system information block NR SIB1, 0th new air interface system information block NR SIB0), remaining minimum system information (RMSI), other downlink signals ( For example, a subcarrier spacing of a semi-statically configured downlink subframe and/or a slot and/or an OFDM symbol, or a slot length in which the random access resource is located is indicated by the network device.
  • system information eg first new air interface system information block NR SIB1, 0th new air interface system information block NR SIB0
  • RMSI remaining minimum system information
  • other downlink signals For example, a subcarrier spacing of a semi-statically configured downlink subframe and/or a slot and/or an OFDM symbol,
  • the downlink signal is a semi-statically configured downlink subframe and/or a time slot and/or an OFDM symbol, and one of the downlink signals Or multiple of the reserved downlink signals.
  • the downlink signal time position refers to a time slot in which the downlink signal is located and/or an OFDM symbol, and the time slot and/or OFDM symbol is based on a subcarrier spacing of the downlink signal.
  • the downlink signal time position may further include a downlink/uplink protection time (for example, for downlink and uplink handover), and the downlink/uplink protection time is a time interval.
  • a downlink/uplink protection time for example, for downlink and uplink handover
  • the downlink/uplink protection time is a time interval.
  • the subcarrier spacing is different, and the corresponding time scale, for example, the time slot and the OFDM symbol length are different. Therefore, the difference between the different signal subcarriers needs to be considered when performing random access resource adjustment.
  • the following describes an adjustment manner when the downlink synchronization signal block overlaps with the random access resource, and it is noted that the downlink synchronization signal block considered in the embodiment herein is based on the time corresponding to the downlink synchronization signal block subcarrier.
  • the scale, the random access resource is based on a time scale corresponding to the random access preamble subcarrier. Similar resource puncturing and adjustment methods are also applicable to other downlink signals (with different subcarrier spacing) adjusted when overlapping with random access resources.
  • SS/PBCH identifies the downlink signal (downlink synchronization signal block), and "PRACH” identifies the random access resource):
  • the terminal puncts the random access resource that coincides with the time position of the downlink signal actually transmitted in the time slot of the random access resource that coincides with the time position of the downlink signal that is actually transmitted, and the other random access resources are reserved. It can also continue to be used as a randomly available random access resource to transmit a random access preamble.
  • the random access resources in the time domain from the iKth to the iK+4K-1 OFDM symbols are determined to be unused ( For example, being punched).
  • the K identifies a multiple between the random access resource subcarrier spacing and the downlink signal subcarrier spacing.
  • K may be any one of the following: 1/4, 1/2, 1, 2, 4. i is an integer greater than or equal to zero.
  • a downlink signal may be transmitted at most, which may be any downlink signal in the downlink signal set. As shown in FIG. 4, the actually transmitted downlink signal occupies the 2nd to 5th OFDM symbols in the time slot, and the 12th to 13th OFDM symbols located in the time slot of the random access resource time scale can be placed in the random access resource.
  • the actually transmitted downlink signal occupies the 8th to 11th OFDM symbols in the time slot, and the 10th to 13th OFDM symbols in the time slot of the random access resource time scale can be placed in the random access resource.
  • downlink signals 0 to 3 can be transmitted, which are recorded as downlink signals 0 to 3, and can be any four downlink signals in the downlink signal set.
  • the 10th to 13th OFDM in the time slot on the time standard of the random access resource Symbols can be placed on random access resources.
  • the 6th to 13th OFDM symbols of the time slot located on the time standard of the random access resource may be placed with random access resources.
  • the third to the 13th OFDM symbols in the time slot on the time standard of the random access resource may be placed with random access resources.
  • the 10th to 13th OFDM symbols in the time slot of the random access resource time scale may be placed in the random access resource.
  • the 5th to 13th OFDM symbols located in the time slot of the random access resource time scale may be placed with random access resources.
  • the third to the 13th OFDM symbols in the time slot on the time standard of the random access resource may be placed with random access resources.
  • the non-slots in which the downlink signals are not transmitted may be placed with random access resources. For example, based on the non-slot scheduling of 7 OFDM symbols (on the time scale corresponding to the random access resource subcarrier spacing), when the downlink signal 1 is not transmitted and the downlink signal 2 is transmitted, the time resource where the downlink signal is located The 3rd to 6th OFDM symbols can be used to place random access resources. Alternatively, when the downlink signals 0 and 1 are not transmitted and the downlink signal 2 is transmitted, the 0th to 6th OFDM symbols of the time resource in which the downlink signal is located may be used to place a random access resource.
  • the downlink signal subcarrier spacing is 120 kHz and the random access resource subcarrier spacing is 60 kHz.
  • up to four downlink signals can be transmitted, for example, as downlink signals 0 to 3, which can correspond to any four downlink signals in the downlink signal set.
  • the downlink signal transmission position is 4th to 7th, 8th to 11th, 16th to 19th, 20th to 23th OFDM symbols in two adjacent (downlink signal time scale) time slots, and then the downlink signal 2 is transmitted.
  • the downlink signal 3 is not transmitted, the 10th to 13th OFDM symbols located in the time slot of the random access resource time scale may be placed with random access resources.
  • the 6th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 4th to 13th OFDM symbols of the slot k located on the time scale of the random access resource may be placed with random access resources.
  • the random access resource configuration is based on a non-slot (ie, the OFDM symbol occupied by the configured at least one random access resource in time is less than one time slot or 14 OFDM symbols, for example, the random access resource accounts for 2/4/7 OFDM symbols.
  • the time scale of the OFDM symbols may be the same as or different from the time scale of the random access resources.
  • the non-slots in which the downlink signals are not transmitted may be placed with random access resources. Specifically, based on the non-slot scheduling of 7 OFDM symbols (on the time scale corresponding to the random access resource subcarrier spacing), when the downlink signal 1 is not transmitted and the downlink signal 2 is transmitted, the downlink signal is located.
  • the 4th to 6th OFDM symbols of the time resource can be used to place random access resources.
  • the 0 to 6 OFDM symbols of the time resource in which the downlink signal is located may be used to place the random access resource.
  • downlink signal subcarrier spacing is 240 kHz and the random access resource subcarrier spacing is 120 kHz.
  • up to four downlink signals can be transmitted, for example, as downlink signals 0 to 3, which can correspond to any four downlink signals in the downlink signal set.
  • the positions of the four downlink signals are respectively 8 to 11, 12 to 15, 16 to 19, and 20 to 23 OFDM symbols in two (downstream signal time scale) slots, and then the downlink signal 2 is transmitted.
  • the 10th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 8th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 6th to 13th OFDM symbols of the slot k located on the time scale of the random access resource may be placed with random access resources.
  • the non-slots in which no downlink signals are transmitted may place random access resources. For example, based on the non-slot scheduling of 7 OFDM symbols (on the time scale corresponding to the random access resource subcarrier spacing), when the downlink signal 1 is not transmitted and the downlink signal 2 is transmitted, the time resource in which the downlink signal is located The sixth OFDM symbol can be used to place the random access resource; or when the downlink signal 0 to 1 is not transmitted and the downlink signal 2 is transmitted, the time resource of the downlink signal is 0 to 6 OFDM symbols can be used for placing Random access resources.
  • the positions of the four downlink signals are respectively 4 to 7, 8 to 11, 12 to 15, and 16 to 19 OFDM symbols in two (downstream signal time scale) slots, and then the downlink signal 2 is transmitted.
  • the 8th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 6th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 4th to 13th OFDM symbols of the slot k located on the time scale of the random access resource may be placed with random access resources.
  • the non-slots in which no downlink signals are transmitted may place random access resources. For example, based on the non-slot scheduling of 7 OFDM symbols (on the time scale corresponding to the random access resource subcarrier spacing), when the downlink signals 1 to 2 are not transmitted and the downlink signal 3 is transmitted, the downlink signal is located.
  • the fourth to sixth OFDM symbols of the time resource may be used for placing random access resources; or when the downlink signals 0 to 2 are not transmitted and the downlink signal 3 is transmitted, the time resources of the downlink signal are 0 to 6 OFDM symbols. Can be used to place random access resources.
  • FIG. 6 is a schematic diagram of another resource structure provided by the present application.
  • up to two downlink signals can be transmitted, for example, as downlink signals 0 to 1, which can correspond to any two downlink signals in the downlink signal set.
  • the first actually transmitted downlink signal 0 occupies the 2nd to 5th OFDM symbols in the slot.
  • random access resources may be placed in the 6th to 13th OFDM symbols in the tail of the time slot in which the downlink signal is located.
  • the first downlink signal 0 occupies the 4th to 7th OFDM symbols in the slot.
  • random access resources may be placed in the 8th to 13th OFDM symbols in the tail of the time slot in which the downlink signal is located.
  • the non-slots (OFDM symbol positions) in which no downlink signals are transmitted may be placed randomly.
  • Access resources Specifically, taking the non-slot scheduling based on 7 OFDM symbols as an example, when the downlink signal 0 is not transmitted and the downlink signal 1 is transmitted, the 0th to 6th OFDM symbols of the time resource in which the downlink signal is located may be used. Place random access resources.
  • K 1/4, assuming that the downlink signal subcarrier spacing is 240 kHz and the random access resource subcarrier spacing is 60 kHz.
  • up to 8 downlink signals can be transmitted, for example, as downlink signals 0 to 7, which can correspond to any 8 downlink signals in the downlink signal set.
  • the positions of the eight downlink signal transmissions are 8 to 11, 12 to 15, 16 to 19, 20 to 23, 32 to 35, 36 to 39, and 40 to 43 in the time slots of the downlink signal time scale. 44 to 47 OFDM symbols, when the downlink signal 6 is transmitted and the downlink signal 7 is not transmitted, the 11th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 10th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 9th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 7th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 5th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 4th to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the 3rd to 13th OFDM symbols of the time slot located on the time scale of the random access resource may be placed with random access resources.
  • the non-slots in which no downlink signals are transmitted may place random access resources. For example, based on the non-slot scheduling of 7 OFDM symbols (on the time scale corresponding to the random access resource subcarrier spacing), when the downlink signal 3 is not transmitted and any one of the downlink signals 4-7 is transmitted, the downlink is The 5th to 6th OFDM symbols of the time resource where the signal is located may be used for placing random access resources; or when the downlink signals 2 to 3 are not transmitted and any one of the downlink signals 4 to 7 is transmitted, the time of the downlink signal is The fourth to sixth OFDM symbols of the resource may be used to place the random access resource; or when the downlink signals 1 to 3 are not transmitted and any one of the downlink signals 4 to 7 is transmitted, the time resource in which the downlink signal is located is 3 ⁇ 6 OFDM symbols can be used to place random access resources; or when downlink signals 0 to 3 are not transmitted and any one of downlink signals 4 to 7 is transmitted,
  • the terminal overlaps the random access resource that coincides with the time position of the downlink signal actually transmitted, and the time slot of the random transmission resource that coincides with the time position of the actually transmitted downlink signal, and the time position of the downlink signal actually transmitted. All random access resources are punctured before random access to resources.
  • the random access resource that does not coincide with the time position of the downlink signal actually transmitted transmits the random access preamble, it also determines that the random access resource before the partially overlapping random access resource in the current slot does not send the random access preamble. .
  • the transmission random access preamble is uplink
  • the downlink signal is sent by the network device in the downlink
  • the random access resources before the random access resources that overlap in this part of the time slot are also punctured, thereby avoiding the upper and lower Frequent switching of lines.
  • the terminal puncts all the random access resources in the slot where the random access resource coincides with the time position of the downlink signal actually transmitted.
  • the manner in which the network device determines the total available random access resources may be performed by referring to the terminal side, and details are not described herein.
  • the uplink time slot available in the random access configuration period and the uplink OFDM symbol position in which the random access resource is not placed may be determined according to the downlink or uplink frame structure configuration and the slot format information.
  • the increased available random access resources may be determined according to the number of punctured random access resources, which may be determined by determining the time location and the number of frequency domains of the actually available random access resources.
  • the time position of the added random access resource may be at least one of a semi-statically configured uplink subframe, a semi-statically configured uplink time slot, and a semi-statically configured uplink OFDM symbol.
  • the time position where the added random access resource is located may be a semi-static configuration undetermined uplink or a downlink subframe/slot/OFDM symbol.
  • the undetermined uplink or downlink subframe/slot/OFDM symbol is also referred to as unknown subframe/slot/OFDM symbol, which means that the direction of the subframe/slot/OFDM is not determined to be uplink or downlink when random access is performed. Or means that the uplink or downlink direction of the subframe/slot/OFDM is dynamically configured or scheduled by RRC, MAC CE or DCI signaling.
  • the network device also determines the time position, the number of frequency domains, and the like of the increased actually available random access resources in the same manner as the terminal. To ensure which random access preambles are received on which random access resources.
  • random access resources may be added in the time domain, the frequency domain, and other uplink OFDM symbol locations.
  • the terminal increases the actually available random access resources in an uplink time slot other than the uplink time slot in which the punctured random access resource is located.
  • the terminal adds a new random access resource as an actually available random access resource in the adjacent uplink time slot of the uplink time slot in which the punctured random access resource is located. For example, adding a random access resource to the K1th uplink subframe/slot/OFDM symbol before the uplink time slot in which the punctured random access resource is located; for example, in the uplink time slot where the punctured random access resource is located.
  • the previous K2 uplink subframe/slot/OFDM symbol adds random access resources
  • K1 and K2 are non-negative integers.
  • K1 and K2 are preset values or values determined according to a preset rule, for example, fixed to 1 time slot.
  • the number of added random access resources is different from the number of punctured random access resources, for example, more.
  • the number of added random access resources is different from the number of punctured random access resources, for example, less.
  • the increased number of random access resources is determined according to the available uplink subframe/slot/OFDM symbol number.
  • FIG. 9 is a schematic diagram of another resource structure provided by the present application.
  • FIG. 10 is a schematic diagram of another resource structure provided by the present application.
  • the terminal adds a new random access resource as the actually available random access resource in a frequency domain that does not coincide with the actually transmitted downlink signal location and the uplink time slot in which the random access resource is located.
  • FIG. 11 is a schematic diagram of another resource structure provided by the present application
  • FIG. 12 is a schematic diagram of another resource structure provided by the present application.
  • the random access resource is added in the frequency domain, and the newly added random access resource does not coincide with the actually transmitted downlink signal in time.
  • the number of random access resources added in the frequency domain does not exceed the channel bandwidth configured by the network device or the initial uplink access bandwidth.
  • the terminal adds a new random access resource as the actually available random access in other OFDM symbols that do not coincide with the actually transmitted downlink signal location and the uplink time slot in which the random access resource is located. Resources.
  • the increased number of random access resources is determined according to the available uplink subframe/slot/OFDM symbol number.
  • FIG. 13 is a schematic diagram of another resource structure provided by the present application
  • FIG. 14 is a schematic diagram of another resource structure provided by the present application.
  • the added random access resources may be uniformly distributed in other time slots or OFDM symbol positions in the random access configuration period in the time domain, which is not limited herein.
  • the network device may indicate an uplink time position where the added random access resource is located, and the terminal increases the random access resource at an uplink time position indicated by the network device.
  • the uplink time position where the random access resource indicated by the network device is located may be an alternate random access resource, where the actually transmitted downlink signal overlaps with the random access resource, or is sent within a random access configuration period.
  • the standby random access resources are activated.
  • the above four schemes for increasing random access resources may be configured with different identifiers, for example, by using two bits to identify, and the network device carries the “additional random access resource scheme” identifier in the configuration information, so that the terminal knows Which scheme is adopted to increase random access resources.
  • the terminal when the terminal sends the random access preamble on the newly added random access resource, it is the same as the previous transmission method, and is not limited herein.
  • the random access configuration period may also be adjusted:
  • the random access resources in the original N random access configuration periods are adjusted to M new random access configuration periods, and N and M may be any integer greater than 0.
  • N and M may be any integer greater than 0.
  • the total number of random access resources in the first N random access configuration periods is greater than the total random access resources in the M new random access configuration periods.
  • the total number of random access resources in the first N random access configuration periods is equal to the total number of random access resources in the M new random access configuration periods. or,
  • the total number of random access resources in the first N random access configuration periods is smaller than the total number of random access resources in the M new random access configuration periods.
  • the total number of random access resources in a random access configuration period before the adjustment is greater than the total number of random access resources in the adjusted one random access configuration period;
  • the total number of random access resources in a random access configuration period before adjustment is equal to the total number of random access resources in a new random access configuration period;
  • the total number of random access resources in a random access configuration period before adjustment is smaller than the total number of random access resources in a new random access configuration period.
  • adjusting the random access configuration period may include adding and/or puncturing random access resources.
  • FIG. 15 is a schematic diagram of still another resource structure provided by the present application. As shown in FIG. 15, the downlink signal actually transmitted, that is, the black portion in the first row, is determined first.
  • the random access configuration period is further adjusted by adding and/or puncturing random access resources.
  • one of the number of random access resources that overlaps with the actually transmitted downlink signal during a random access configuration period according to the actually transmitted downlink signal, the period during which the downlink signal is actually transmitted, and the period during which the random access configuration period is randomly transmitted is randomly transmitted.
  • the number of random access resources that coincide with the actually transmitted downlink signal in a random access configuration period is less than or equal to the first preset threshold, it is determined to adjust the random access configuration period.
  • the terminal may further determine, according to one or more of a downlink/uplink frame structure configuration, a slot format configuration information, and a random access configuration information, to determine a random access resource. the way.
  • the network device also needs to perform corresponding adjustments, for example, adjusting the association relationship between the downlink signal and the random access resource, and adjusting the random access configuration period, and so on, and details are not described herein again.
  • the terminal may further determine the downlink signal that is actually sent before determining the target random access resource corresponding to the actually transmitted downlink signal according to the actual available random access resource and the association relationship between the downlink signal and the random access resource. And the actually available random access resource, updating the association relationship between the downlink signal and the random access resource, and acquiring the association relationship between the new downlink signal and the random access resource.
  • the terminal determines the target random access resource corresponding to the actually transmitted downlink signal according to the actual available random access resource and the relationship between the adjusted downlink signal and the random access resource.
  • the downlink signal and/or the downlink signal group originally associated with the punctured random access resource may be associated with the remaining random access resources in the random access configuration period.
  • the number of random access resources associated with each downlink signal in the downlink signal actually transmitted is smaller than the number of random access resources associated with each downlink signal.
  • the number of random access resources associated with part of the downlink signals in the actually transmitted downlink signal is smaller than the number of random access resources associated with the downlink signal actually transmitted in the original part.
  • the adjusted random access configuration period is unchanged, and the random access resources are added in the adjusted random access configuration period, and the time and/or frequency position of the random access resources associated with each or a part of the downlink signals is adjusted. .
  • the actual available random access resources to be added are associated with each or part of the actually transmitted downlink signals.
  • the adjusted random access configuration period becomes longer, and the time and/or frequency position of the random access resources associated with each or part of the downlink signals is adjusted according to the random access resources in the adjusted random access configuration period.
  • the adjusted random access configuration period is shortened, and the time and/or frequency position of the random access resources associated with each or part of the downlink signals is adjusted according to the random access resources in the adjusted random access configuration period.
  • the actually transmitted downlink signal may be associated with the random access resource one-to-one, and changed to become a plurality of actually transmitted downlink signals associated with one random access resource.
  • a plurality of actually transmitted downlink signals may be associated with one random access resource, and the plurality of actually transmitted downlink signals may be associated with multiple random access resources.
  • the downlink signal actually transmitted may be changed to be one-to-one with the random access resource, and in the downlink signal actually transmitted by another part, the plurality of actually transmitted downlink signals are associated with one random access resource.
  • the time position of the random access resource may also coincide with the time position of the semi-persistent scheduling signal.
  • the downlink signal actually transmitted has the highest priority. Once coincident, the downlink signal is preferentially transmitted, and other signals are temporarily not transmitted.
  • the priority of the random access resource and the semi-persistent scheduling signal can be configured according to actual needs.
  • the terminal determines the random access resource that coincides with the time position of the semi-persistent scheduling signal according to the time location information of the random access resource and the time location information of the semi-persistent scheduling signal.
  • the priority of the random access resource is higher than the priority of the semi-persistent scheduling signal, and the terminal puncts the semi-persistent scheduling signal that coincides with the time position of the random access resource.
  • Random access resources that coincide with the time position of the semi-persistent scheduling signal are punctured.
  • Random access resources that coincide with the time position of the semi-persistent scheduling signal, and random access resources that coincide with the time position of the semi-persistent scheduling signal in the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal are all randomly connected. Into the resource punch. or,
  • the network device also determines the random access resource that coincides with the time position of the semi-persistent scheduling signal according to the time location information of the random access resource and the time location information of the semi-persistent scheduling signal.
  • the random access resource that determines the time position coincident with the semi-persistent scheduling signal does not transmit the random access preamble; or determines the random access resource that coincides with the time position of the semi-persistent scheduling signal, and coincides with the time position of the semi persistent scheduling signal. All random access resources in the time slot in which the random access resource is located coincides with the time position of the semi-persistent scheduling signal do not transmit a random access preamble; or a random access resource that coincides with the time position of the semi-persistent scheduling signal All random access resources in the time slot do not transmit random access preambles.
  • the format of the random access preamble may be one or more of the following Table 1 formats in the existing standard: A0, A1, A2, A3, B0, B1, B2, B3, B4 , C0, C2; or one or more of Table 2: 0, 1, 2, 3.
  • the formats A0 to C2 and the formats 0 to 3 may also be other names, which are not limited herein.
  • 64
  • ⁇ f RA denotes a random access preamble subcarrier spacing
  • N u denotes the length of the random access preamble sequence
  • the terminal may determine the random access of the punch according to the number of OFDM symbols that the actually transmitted downlink signal and the random access resource overlap, and the random access preamble format in the slot where the random access resource is located. The amount of resources.
  • the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 OFDM symbols; if the random access preamble format is A1, the number of punctured random access resources is determined to be 1 OFDM symbol; if the random access preamble format is B1, the number of punctured random access resources is determined to be 1 OFDM symbol; if the random access preamble format is C1, the number of punctured random access resources is determined to be 1 OFDM symbol.
  • the number of OFDM symbols actually transmitted in the time slot in which the random access resource is located overlaps with the random access resource is six consecutively, if the random access preamble format is A0, the number of punctured random access resources is determined to be 1 or 2 or 3 or 4 or 5 or 6. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted by the downlink signal in the time slot in which the random access resource is located overlaps with the random access resource is eight consecutive times, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted in the time slot in which the random access resource is located overlaps with the random access resource is nine consecutively, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted by the downlink signal in the time slot in which the random access resource is located overlaps with the random access resource is 10 consecutive times, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted in the time slot in which the random access resource is located overlaps with the random access resource is 11 consecutively, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted by the downlink signal in the time slot in which the random access resource is located overlaps with the random access resource is 12 consecutive times, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12. Others and so on will not repeat them.
  • the number of OFDM symbols actually transmitted in the time slot in which the random access resource is located overlaps with the random access resource is 13 consecutively, if the random access preamble format is A0, the number of random access resources determined to be punctured is 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13. Others and so on will not repeat them.
  • the number of increased random access preambles is related to the length of time in the available uplink subframe/slot/OFDM corresponding to the random access preamble time scale, for example according to Table 1 ⁇ Table 12 determines the number of increased random access preambles in time that cannot exceed the maximum number allowed in the response table.
  • 16(a) to 16(g) are schematic diagrams of a random access preamble format provided by the present application. specifically:
  • N random access preamble formats A0 are continuously distributed in a subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A0 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats A0 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats A1/B1 are continuously distributed in the subframe.
  • the total time length of the N random access preamble formats A1/B1 does not exceed one subframe under the corresponding subcarrier spacing.
  • the total time length of the N random access preamble formats A1/B1 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats A2/B2 are continuously distributed in the subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A2/B2 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats A2/B2 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats A3/B3 are continuously distributed in the subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A3/B3 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats A3/B3 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats B4 are continuously distributed in the subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats B4 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats B4 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats C0 are continuously distributed in the subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats C0 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats C0 does not exceed K time slots, and K and N are positive integers.
  • N random access preamble formats C2 are continuously distributed in the subframe. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats C2 does not exceed one subframe. In another implementation manner, the total time length of the N random access preamble formats C2 does not exceed K time slots, and K and N are positive integers.
  • 17(a) to 17(g) are schematic diagrams of a random access preamble format provided by the present application. specifically:
  • N random access preamble formats A0 are continuously distributed in slots. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A0 does not exceed one slot. N is a positive integer.
  • N random access preamble formats A1/B1 are continuously distributed in the slots. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A1/B1 does not exceed one slot. N is a positive integer.
  • N random access preamble formats A2/B2 are continuously distributed in the slots. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A2/B2 does not exceed one slot. N is a positive integer.
  • N random access preamble formats A3/B3 are continuously distributed in time slots. Under the corresponding subcarrier spacing, the total time length of the N random access preamble formats A3/B3 does not exceed one slot. N is a positive integer.
  • N random access preamble formats B4 are continuously distributed in the slots. At the corresponding subcarrier spacing, the total time length of the N random access preamble formats B4 does not exceed one slot. N is a positive integer.
  • N random access preamble formats C0 are continuously distributed in slots. At the corresponding subcarrier spacing, the total time length of the N random access preamble formats C0 does not exceed one slot. The total time length of the N random access preamble formats C0 does not exceed K time slots, and K is a positive integer. K and N are positive integers.
  • N random access preamble formats C2 are continuously distributed in the slots. At the corresponding subcarrier spacing, the total time length of the N random access preamble formats C2 does not exceed one slot.
  • K and N are positive integers.
  • the two random access resource patterns of FIG. 16(a) to FIG. 16(g) and FIGS. 17(a) to 17(g) may be indicated by the base station configuration information, or may be pre-configured.
  • the method described in FIGS. 16(a) to 16(g) is fixed; for example, the method described in FIGS. 17(a) to 17(g) is fixed.
  • Flag When indicated by the network device, it can be indicated as Flag by 1 bit, when Flag is 0, it means the mode in FIG. 16(a) to FIG. 16(g), and when Flag is 1, it means FIG. 17(a) to FIG. The mode in (g); or the case where Flag is 1, the mode in FIGS. 16(a) to 16(g), and when Flag is 0, the mode in FIGS. 17(a) to 17(g) is shown.
  • FIG. 18 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 18, the terminal includes: a determining module 181 and a sending module 182, where:
  • the determining module 181 is configured to determine, according to the time location information of the random access resource and the time location information of the downlink signal actually sent by the network device, the actually available random access resource, where the actually available random access resource and The time position of the actually transmitted downlink signal does not coincide; the target random access resource corresponding to the actually transmitted downlink signal is determined according to the actual available random access resource and the association relationship between the downlink signal and the random access resource.
  • the sending module 182 is configured to send the random access preamble to the network device by using the target random access resource.
  • the determining module 181 is configured to determine, according to the time location information of the random access resource, and the time location information of the downlink signal actually sent by the network device, the random access that coincides with the time position of the actually transmitted downlink signal.
  • the determining module 181 is further configured to punct the random access resource that coincides with the time position of the actually transmitted downlink signal; or randomly, the random access resource that coincides with the time position of the actually transmitted downlink signal. And all the random access resources before the random access resource that coincides with the time position of the actually transmitted downlink signal in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal is punctured; or, All random access resources in the time slot of the random access resource that coincides with the time position of the actually transmitted downlink signal are punctured.
  • the downlink signal is one or more of the following: a downlink synchronization signal block, a system information block, remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information block NR SIB0, a semi-statically configured downlink subframe, a semi-statically configured time slot, a semi-statically configured OFDM symbol, and a reserved downlink signal.
  • the downlink signal time position is determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, and the time slot is based on a sub Carrier interval, downlink/uplink protection time, and the downlink/uplink protection time is a time interval.
  • FIG. 19 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal further includes: a receiving module 191, configured to receive configuration information sent by the network device, where The configuration information indicates one or more of the following: the time slot in which the random access resource is located is based on the subcarrier spacing of the random access message 1, and the time slot in which the random access resource is located is based on the subcarrier of the random access message 3.
  • the determining module 181 is further configured to determine, according to the time location information of the random access resource and the time location information of the semi-persistent scheduling signal, a semi-persistent scheduling signal that coincides with the time position of the random access resource; The semi-persistent scheduling signal punctured with the random access resource time positions coincident.
  • the determining module 181 is further configured to determine, according to the time location information of the random access resource and the time location information of the semi-persistent scheduling signal, a random access resource that coincides with a time position of the semi-persistent scheduling signal;
  • the random access resource with the signal time position coincident is punctured; or the random access resource that coincides with the time position of the semi-persistent scheduling signal and the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal are semi-continuous All the random access resources in the time slot of the random access resource with the coincidence time of the scheduling signal are punctured; or all the random access resources in the time slot of the random access resource that coincides with the time position of the semi-persistent scheduling signal are punctured.
  • the determining module 181 is further configured to add a new random access resource as the actually available random access resource, in the Kth uplink time slot before or after the uplink time slot where the punctured random access resource is located, where K is a preset or pre-configured constant; or, in the frequency domain that does not coincide with the actually transmitted downlink signal position, the new random access resource is added as the actually available random frequency. Accessing the resource; or, in the other orthogonal frequency division multiplexing OFDM symbols that do not coincide with the actually transmitted downlink signal location that does not coincide with the uplink time slot in which the random access resource is located, add a new random access resource as the actually available random Access resources.
  • the determining module 181 is further configured to: determine, according to the number of OFDM symbols that the actually transmitted downlink signal and the random access resource overlap, and the random access preamble format, according to the time slot in which the random access resource is located, The number of randomly accessed resources that are punctured.
  • the determining module 181 is further configured to update the association between the downlink signal and the random access resource according to the actually transmitted downlink signal and the actually available random access resource, to obtain a new downlink.
  • the relationship between signals and random access resources is further configured to update the association between the downlink signal and the random access resource according to the actually transmitted downlink signal and the actually available random access resource, to obtain a new downlink. The relationship between signals and random access resources.
  • FIG. 20 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 20, the network device includes: a determining module 211 and a receiving module 212, where:
  • the determining module 211 is configured to determine, according to the time location information of the random access resource and the time location information of the downlink signal actually sent by the network device, the actually available random access resource, where the actually available random access resource and The time position of the actually transmitted downlink signal does not coincide; the target random access resource corresponding to the actually transmitted downlink signal is determined according to the actual available random access resource and the association relationship between the downlink signal and the random access resource.
  • the receiving module 212 is configured to receive a random access preamble sent by the terminal according to the target random access resource corresponding to the actually transmitted downlink signal.
  • the determining module 211 is configured to determine, according to the time location information of the random access resource, and the time location information of the downlink signal actually sent by the network device, the random access that coincides with the time position of the actually transmitted downlink signal.
  • the downlink signal is one or more of the following: a downlink synchronization signal block, a system information block, remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information block NR SIB0
  • a downlink synchronization signal block a system information block, remaining minimum system information, a first new air interface system information block NR SIB1, and a 0th new air interface system information block NR SIB0
  • FIG. 21 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • the network device further includes: a sending module 213, configured to send configuration information to the terminal, where the configuration is performed.
  • the information indicates one or more of the following: the time slot in which the random access resource is located is based on the subcarrier spacing of the random access message 1, and the time slot in which the random access resource is located is based on the subcarrier spacing of the random access message 3.
  • the time slot in which the random access resource is located is based on the subcarrier spacing of the uplink initial access bandwidth, the time slot in which the random access resource is located, the subcarrier spacing based on the downlink signal, and the time slot in which the random access resource is located.
  • the time position of the downlink signal is determined by one or more of the following: a time slot in which the downlink signal is located, or an OFDM symbol in which the downlink signal is located, and the time slot is based on a sub Carrier interval, downlink/uplink protection time, and the downlink/uplink protection time is a time interval.
  • the determining module 211 is further configured to: update the association relationship between the downlink signal and the random access resource according to the actually transmitted downlink signal, and the actually available random access resource, to obtain a new downlink signal and a random The association relationship of access resources.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device.
  • the above-mentioned devices can be used to execute the above-mentioned methods, and the specific implementations and technical effects are similar, and details are not described herein again.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC). The function of the module.
  • SOC system-on-a-chip
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • Fig. 22 is a block diagram showing the structure of a simplified terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input/output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit) of the terminal device, and a processor having a processing function is regarded as a processing unit of the terminal device.
  • the terminal device includes a receiving unit 1201, a processing unit 1202, and a transmitting unit 1203.
  • the receiving unit 1201 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 1203 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the transmitting unit 1203 is configured to perform step S203 of the embodiment shown in FIG. 2.
  • FIG 23 shows a schematic diagram of a simplified network device structure.
  • the network device includes a radio frequency signal transceiving and converting portion and a portion 1302.
  • the radio frequency signal transceiving and converting portion further includes a receiving unit 1301 portion and a transmitting unit 1303 portion (also collectively referred to as a transceiving unit).
  • the RF signal transmission and reception and conversion part is mainly used for transmitting and receiving RF signals and converting RF signals and baseband signals; the 1302 part is mainly used for baseband processing and control of network equipment.
  • the receiving unit 1301 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 1303 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the portion 1302 is typically a control center for a network device, and may generally be referred to as a processing unit for controlling the network device to perform the steps performed by the second communication device of FIG. 5 or FIG. 9 above. For details, please refer to the description of the relevant part above.
  • the 1302 portion may include one or more boards, each of which may include one or more processors and one or more memories for reading and executing programs in the memory to implement baseband processing functions and to network devices control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • SoC system-on-chip
  • all or part of the functions of the 1302 part and the 1301 part may be implemented by SoC technology, for example, by a base station function.
  • the chip realizes that the base station function chip integrates a processor, a memory, an antenna interface and the like, and the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the terminal or the network device may also include only a processor.
  • the memory for storing the program is located outside the device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.
  • the embodiment of the present application further provides a computer storage medium, which is stored with a computer program, which is used to execute the random access method provided by the foregoing embodiment.
  • the embodiment of the present application further provides a computer program product comprising instructions, which when executed on a computer, causes the computer to execute the random access method provided by the foregoing embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请提供一种随机接入方法、终端及网络设备,该随机接入方法,包括终端确定用于随机接入的资源以及用于接收下行信号的资源是否有冲突,如果用于随机接入的资源与用于下行信号的资源有冲突,则,将冲突的随机接入资源不用于随机接入,优先用于下行信号的接收,因此避免了下行信号的接收和上行发送的随机接入前导冲突。

Description

随机接入方法、终端及网络设备
本申请要求于2017年11月17日提交中国国家知识产权局、申请号为201711149117.6、申请名称为“随机接入方法、终端及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种随机接入方法、终端及网络设备。
背景技术
新空口(New Radio,NR)技术中,基站通过多个波束发送下行信号,其中下行信号可以是:下行同步信号块(synchronization/PBCH signal block,SS/PBCH block)、下行同步信号块、系统信息块、剩余最小系统信息、第一系统信息块NR SIB1、第0系统信息块NR SIB0、半静态配置的下行子帧和/或时隙和/或OFDM符号、预留的下行信号、下行解调参考信号(Demodulation Reference Signal,DMRS)、下行信道状态信息参考信号(Channel state information–reference signal,CSI-RS)。具体地,基站利用多个波束实现对小区的覆盖,基站与终端通信过程中,需要合理的波束方向才能进行通信,需要基站需要合理的波束方向接收终端发送的随机接入前导、以及向终端发送随机接入响应等。其中,下行信号的发送采用时分的方式,即分别在不同时间发送不同的下行信号,也在不同时间接收终端发送的随机接入前导。而且,NR技术中,一个下行信号集的下行信号的最大数目根据频段的不同可以不同。例如:在3千兆赫兹(GHz)以下一个下行信号集的下行信号的最大数目为4个;在3~6GHz时一个下行信号集的下行信号的最大数目为8个;在6GHz以上一个下行信号集的下行信号的最大数目为64个。下行信号集中所有下行信号映射在5毫秒(ms)的窗口内的不同时隙和正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上。
具体地,下行信号集以周期发送,且一个下行信号集中实际发送的下行信号可能不是最大数目,例如:在6GHz以下时,由8比特指示8个下行信号是否实际发送;在6GHz以上时,采用8+8的方式指示下行信号是否实际发送:64个下行信号分成8个组,每个组8个下行信号,由8比特指示每个组中的下行信号是否发送,另外还有8比特指示8个下行信号集是否发送。
但是,NR技术中发送下行信号集的周期较小,最小可以为5ms,也就是一个系统帧中几乎所有时隙都可能有下行信号发送。相应地,终端发送的随机接入前导会配置在上行时间上,那么基站发送下行信号的时间就可能与终端发送上行随机接入前导的时间冲突。
发明内容
本申请提供一种随机接入方法、终端及网络设备,用于解决基站发送下行信号的时间可能与终端发送上行随机接入前导的时间冲突的问题。
第一方面,本申请提供一种随机接入方法,包括:
终端根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位 置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;
所述终端根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源;
所述终端采用所述目标随机接入资源,向网络设备发送随机接入前导。
第二方面,本申请提供一种随机接入方法,包括:
终端在确定实际传输的下行信号的时间位置与随机接入资源的时间位置重合时,确定将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,确定将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,确定与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述终端根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,包括:
所述终端根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与所述实际发送的下行信号时间位置重合的随机接入资源;
所述终端将与所述实际发送的下行信号时间位置不重合的随机接入资源作为所述实际可用的随机接入资源。
一种可能的设计中,所述终端确定与所述实际发送的下行信号时间位置重合的随机接入资源之后,还包括:
所述终端将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,
所述终端将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,
所述终端将与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述下行信号为下述一项或多项:下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
一种可能的设计中,所述方法还包括:
所述终端接收所述网络设备发送的配置信息,所述配置信息指示下述一项或多项:所述随机接入资源所在时隙基于随机接入消息1的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙长度。
一种可能的设计中,所述下行信号时间位置由下述一项或多项确定:所述下行信号所在的时隙、或者所述下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间。
一种可能的设计中,所述方法还包括:
所述终端根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与所述随机接入资源时间位置重合的半持续调度信号;
所述终端将与所述随机接入资源时间位置重合的半持续调度信号打孔。
一种可能的设计中,所述方法还包括:
所述终端根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与半持续调度信号时间位置重合的随机接入资源;
所述终端将与半持续调度信号时间位置重合的随机接入资源打孔;或者,
所述终端将与半持续调度信号时间位置重合的随机接入资源、以及与半持续调度信号时间位置重合的随机接入资源所在时隙中与半持续调度信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,
所述终端将与半持续调度信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述方法还包括:
所述终端在被打孔的随机接入资源所在上行时隙之前或者之后的第K个上行时隙,增加新的随机接入资源作为实际可用的随机接入资源,其中,K为预设或者预配置的常数;或者,
所述终端在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的频域上,增加新的随机接入资源作为实际可用的随机接入资源;或者,
所述终端在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的其他正交频分复用OFDM符号中,增加新的随机接入资源作为实际可用的随机接入资源。
一种可能的设计中,所述方法还包括:
所述终端根据随机接入资源所在时隙中,实际发送的下行信号与随机接入资源重合的OFDM符号数量、以及随机接入前导格式,确定打孔的随机接入资源数量。
一种可能的设计中,所述终端根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源之前,还包括:
所述终端根据所述实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
第三方面,本申请提供一种随机接入方法,包括:
网络设备根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;
所述网络设备根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源;
所述网络设备根据所述实际发送的下行信号对应的目标随机接入资源,接收终端发送的随机接入前导。
一种可能的设计中,所述网络设备根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,包括:
所述网络设备根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与所述实际发送的下行信号时间位置重合的随机接入资源;
所述网络设备将与所述实际发送的下行信号时间位置不重合的随机接入资源作为所述实际可用的随机接入资源。
一种可能的设计中,所述下行信号为下述一项或多项:下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
一种可能的设计中,所述方法还包括:
所述网络设备向终端发送配置信息,所述配置信息指示下述一项或多项:所述随机接入资源所在时隙基于随机接入消息1的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙长度。
一种可能的设计中,所述下行信号时间位置由下述一项或多项确定:所述下行信号所在的时隙、或者所述下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间。
一种可能的设计中,所述方法还包括:
所述网络设备根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与所述随机接入资源时间位置重合的半持续调度信号。
一种可能的设计中,所述网络设备根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源之前,还包括:
所述网络设备根据所述实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
第四方面,本申请提供一种随机接入方法,包括:
网络设备在确定实际传输的下行信号的时间位置与随机接入资源的时间位置重合时,确定将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,确定将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,确定与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
第五方面,本申请提供一种终端,包括:
确定模块,用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源;
发送模块,用于采用所述目标随机接入资源,向网络设备发送随机接入前导。
第六方面,本申请提供一种终端,包括:
确定模块,用于在确定实际传输的下行信号的时间位置与随机接入资源的时间位置重合时,确定将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,确定将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行 信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,确定与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述确定模块,具体用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与所述实际发送的下行信号时间位置重合的随机接入资源;将与所述实际发送的下行信号时间位置不重合的随机接入资源作为所述实际可用的随机接入资源。
一种可能的设计中,所述确定模块,还用于将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,将与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述下行信号为下述一项或多项:下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
一种可能的设计中,所述方法还包括:
接收模块,用于接收所述网络设备发送的配置信息,所述配置信息指示下述一项或多项:所述随机接入资源所在时隙基于随机接入消息1的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙长度。
一种可能的设计中,所述下行信号时间位置由下述一项或多项确定:所述下行信号所在的时隙、或者所述下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间。
一种可能的设计中,所述确定模块,还用于根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与所述随机接入资源时间位置重合的半持续调度信号;将与所述随机接入资源时间位置重合的半持续调度信号打孔。
一种可能的设计中,所述确定模块,还用于根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与半持续调度信号时间位置重合的随机接入资源;将与半持续调度信号时间位置重合的随机接入资源打孔;或者,将与半持续调度信号时间位置重合的随机接入资源、以及与半持续调度信号时间位置重合的随机接入资源所在时隙中与半持续调度信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,将与半持续调度信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一种可能的设计中,所述确定模块,还用于在被打孔的随机接入资源所在上行时隙之前或者之后的第K个上行时隙,增加新的随机接入资源作为实际可用的随机接入资源,其中,K为预设或者预配置的常数;或者,在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的频域上,增加新的随机接入资源作为实际可用的随机接入资源;或者,在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的其他正交频分复用OFDM符号中,增加新的随机接入资源作为实际可用的随机接入资源。
一种可能的设计中,所述确定模块,还用于根据随机接入资源所在时隙中,实际发送的下行信号与随机接入资源重合的OFDM符号数量、以及随机接入前导格式,确定打孔的随机接入资源数量。
一种可能的设计中,所述确定模块,还用于根据所述实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
第七方面,本申请提供一种网络设备,包括:
确定模块,用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源;
接收模块,用于根据所述实际发送的下行信号对应的目标随机接入资源,接收终端发送的随机接入前导。
第八方面,本申请提供一种网络设备,包括:
确定模块,用于在确定实际传输的下行信号的时间位置与随机接入资源的时间位置重合时,确定将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,确定将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,确定与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
第九方面,本申请提供一种装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面或第二方面提供的方法,所述装置可以为终端,也可以为终端上的芯片。
第十方面,本申请提供一种装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第三方面或第四方面提供的方法,所述装置可以为网络设备,也可以为网络设备上的芯片。
第十一方面,本申请提供一种计算机存储介质,该计算机存储介质用于存储程序,该程序用于执行以上第一至第四方面所述的任意一种方法。
本申请提供的随机接入方法、终端及网络设备中,终端根据随机接入资源的位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,并根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源,进而采用目标随机接入资源,向网络设备发送随机接入前导。避免了实际发送的下行信号和上行发送的随机接入前导冲突。
附图说明
图1为本申请提供的一种通信系统架构示意图;
图2为本申请一实施例提供的随机接入方法流程示意图;
图3为本申请另一实施例提供的随机接入方法流程示意图;
图4为本申请提供的一种资源结构示意图;
图5为本申请提供的另一种资源结构示意图;
图6为本申请提供的另一种资源结构示意图;
图7为本申请提供的另一种资源结构示意图;
图8为本申请提供的另一种资源结构示意图;
图9为本申请提供的又一种资源结构示意图;
图10为本申请提供的另一种资源结构示意图;
图11为本申请提供的又一种资源结构示意图;
图12为本申请提供的另一种资源结构示意图;
图13为本申请提供的又一种资源结构示意图;
图14为本申请提供的另一种资源结构示意图;
图15为本申请提供的又一种资源结构示意图;
图16(a)~图16(g)为本申请提供的一种随机接入前导格式示意图;
图17(a)~图17(g)为本申请提供的一种随机接入前导格式示意图;
图18为本申请一实施例提供的终端结构示意图;
图19为本申请另一实施例提供的终端结构示意图;
图20为本申请一实施例提供的网络设备结构示意图;
图21为本申请另一实施例提供的网络设备结构示意图;
图22示出了一种简化的终端设备结构示意图;
图23示出了一种简化网络设备结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统的三大应用场景增强型移动宽带(Enhanced Mobile Broad Band,eMBB)、URLLC以及大规模机器通信(Massive Machine-Type Communications,mMTC)。
在本申请实施例中,终端(terminal device)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置或设备。
图1为本申请提供的一种通信系统架构示意图。
如图1所示,通信系统01包括网设备101和终端102。当无线通信网络01包括核心网时,该网络设备101还可以与核心网相连。网络设备101还可以与互联网协议(Internet Protocol,IP)网络200进行通信,例如,因特网(internet),私有的IP网,或其它数据网等。网络设备为覆盖范围内的终端提供服务。例如,参见图1所示,网络设备101为网 络设备101覆盖范围内的一个或多个终端提供无线接入。另外,网络设备之间还可以可以互相通信。
网络设备101可以是用于与终端进行通信的设备。例如,可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolved Node B,eNB或eNodeB)或未来5G网络中的网络侧设备等。或者该网络设备还可以是中继站、接入点、车载设备等。在终端对终端(Device to Device,D2D)通信系统中,该网络设备还可以是担任基站功能的终端。终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS)等。
本申请中,随机接入(random access channel,RACH)资源可以包括:随机接入的时间、频率等信息。其中随机接入的时间可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、微时隙、时隙、子帧、时间长度为H个基本时间单元的时间段,表示可以发送一个预定义的随机接入前导所需要的时间,随机接入的频率表示发送一个预定义的随机接入前导所需要的带宽,其中H大于0。在一种实现方式中,一个随机接入资源由随机接入的时间和随机接入的频率两个维度来标识,即一个随机接入的时间、频率定义一个随机接入资源。在另一实现方式中,一个随机接入的时间、频率可以定义多个随机接入资源。
一个随机接入资源还可以称为一个随机接入机会(RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance,RO),或者在一个随机接入时间频率资源上的一个/多个集合的随机接入前导。
图2为本申请一实施例提供的随机接入方法流程示意图,如图2所示,该方法包括:
S201、终端根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源。
其中,实际可用的随机接入资源与实际发送的下行信号位置不重合。
可选地,网络设备向终端发送第一配置信息,该第一配置信息携带下述一种或多种信息:帧结构配置索引、半静态上下行配置(semi-static UL/DL configuration)、半持续下行或者上行调度(semi-persistent scheduling)、随机接入配置索引、随机接入前导子载波间隔、实际发送的下行信号指示信息、下行信号集周期信息、随机接入配置周期(RACH configuration periodicity)信息、上行信道信息、时隙结构信息(slot format information,SFI)。
和/或,网络设备向终端发送第二配置信息,该第二配置信息包括以下至少一种:所述随机接入资源所在时隙基于随机接入消息1(MSG1)的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3(MSG3)的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙基于下行初始接入部分带宽的子载波间隔、所述随机接入资源所在时隙长度。
其中,下行信号可以指下述一项或多项:同步信号块(synchronization signal block,SS block)、系统信息块、剩余最小系统信息(remaining minimum system information,RMSI)、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、预留(reserved)的下行 信号、半半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号。
实际传输的下行信号可以对应一个或多个OFDM符号。下行信号中包含以下至少一项:主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信号(Physical Broadcast Channel Block,PBCH)、解调参考信号(Demodulation Reference Signal,DMRS);SS block也可以称为SS/PBCH block。SS block或者SS/PBCH block中的多个信号可以是以相同的天线端口发送。
半静态配置是指在一种上行/下行通信的配置,以配置周期时间的时间长度,周期性出现。即相应的上行/下行子帧/时隙/OFDM符号以周期性的出现。周期可以为120kHz子载波间隔对应的一个或者2个时隙、0.5毫秒、1毫秒、2毫秒、5毫秒、10毫秒或者其它值。半持续调度是指用于上行/下行通信的时间和频率资源以调度周期的时间间隔,周期性出现。即相应的上行/下行子帧/时隙/OFDM符号中的频率资源以周期性的出现。半持续调度也称为半静态调度(semi-static scheduling)。
应理解,预留(reserved)下行信号是指:由预留时间上的预留资源元素和/或资源块,承载的下行数据和/或空数据。
下行信号集包括一个或多个下行信号。
上行信道信息可以包括下述一项或多项:上行中心频率信息、上行信道号、上行信道带宽、上行频带数量、上行频带起始位置、上行频带子载波偏移值、上行频带资源块偏移值、上行初始接入部分带宽数量和/或带宽、上行初始接入部分带宽的子载波间隔、随机接入资源数量。其中,上行信道带宽可以指上行信道总带宽,也可以指上行初始接入带宽,本申请不作限制。
终端可以根据上述配置信息获取随机接入资源的时间位置信息、实际发送的下行信号的时间位置信息等。
可选地,半静态上下行配置按照相同的子载波宽度进行配置。例如根据下行信号,或者RMSI,或者上行随机接入信息1,或者上行随机接入信息3的子载波宽度来进行半静态上下行配置。
可选地,半静态上下行配置按照相同的子载波宽度进行配置。例如根据下行信号,或者RMSI,或者上行随机接入信息1,或者上行随机接入信息3的其中的最大或者最小子载波来进行半静态上下行配置。
可选地,半静态上下行配置按照不同的子载波宽度进行配置。例如下行根据根据下行信号,RMSI的最大或者最小子载波宽度来配置;上行按照上行随机接入信息1和上行随机接入信息3的最大或者最小子载波宽度来配置。
可选地,半静态上下行配置按照相同的子载波宽度进行配置。低频场景(低于第一预设频段)按照一个固定的子载波宽度(例如15KHz)配置。高频场景(高于第二预设频段)按照另外一个固定的子载波宽度(例如60KHz)配置,或者高低频按照相同的子载波宽度(15KHz或者60KHz)配置。
可选地,终端可以根据帧结构配置索引和/或时隙结构信息,确定系统帧中的上行子帧、时隙、OFDM符号的数量以及时间信息。进而可以根据随机接入配置索引、随机接入前导子载波间隔,确定随机接入资源所在的上行子帧、时隙、OFDM符号的数量和时间信息。
进一步地,终端再结合实际发送的下行信号指示信息、下行信号集周期信息,确定实 际可用的随机接入资源。
S202、终端根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源。
即在实际可用的随机接入资源中确定实际发送的下行信号对应的目标随机接入资源,即不会使用与实际发送的下行信号位置重合(本申请中还可以理解为:部分重叠/冲突/占用(overlap/conflict/occupy/overlay/intersect/cross)等)的随机接入资源来发送上行信息。
S203、终端采用目标随机接入资源,向网络设备发送随机接入前导。
本实施例中,终端根据随机接入资源的位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,并根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源,进而采用目标随机接入资源,向网络设备发送随机接入前导。避免了实际发送的下行信号和上行发送的随机接入前导冲突。
相应地,网络侧设备也会确定实际可用的随机接入资源以及目标随机接入资源,以便针对性地接收随机接入前导。
图3为本申请另一实施例提供的随机接入方法流程示意图,如图3所示,该方法包括:
S301、网络设备根据随机接入资源的时间位置信息、实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,实际可用的随机接入资源与实际发送的下行信号位置不重合。
类似地,网络设备可以根据帧结构配置索引和/或时隙结构信息,确定系统帧中的上行子帧、时隙、OFDM符号的数量以及时间信息。进而可以根据随机接入配置索引、随机接入前导子载波间隔,确定随机接入资源所在的上行子帧、时隙、OFDM符号的数量和时间信息。
进一步地,网络设备再结合实际发送的下行信号指示信息、下行信号集周期信息,确定实际可用的随机接入资源。
S302、网络设备根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源。
S303、网络设备根据实际发送的下行信号对应的目标随机接入资源,接收终端发送的随机接入前导。
需要说明的是,网络设备和终端遵循同样的规则确定实际可用的随机接入资源、下行信号与随机接入资源的关联关系、目标随机接入资源等相关参数。即网络设备会知道终端在哪些随机接入资源发送随机接入前导,进而在这些随机接入资源上接收随机接入前导,以完成随机接入过程。也会确定出在哪些随机接入资源,终端不发送随机接入前导了。
本实施例中,网络设备可以根据随机接入资源的时间位置信息、实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,实际可用的随机接入资源与实际发送的下行信号位置不重合,并根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源,进而根据实际发送的下行信号对应的目标随机接入资源,接收终端发送的随机接入前导。避免了实际发送的下行信号和上行发送的随机接入前导冲突。
上述下行信号时间位置可以由下述一项或多项确定:下行信号所在的时隙、或者所述 下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间,所述下行/上行保护时间为一段时间间隔。
在上述实施例的基础上,终端根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,可以为:根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与实际发送的下行信号时间位置重合的随机接入资源。进而将与实际发送的下行信号时间位置不重合的随机接入资源作为实际可用的随机接入资源。
具体地,终端确定与实际发送的下行信号时间位置重合的随机接入资源不可用,即不使用与实际发送的下行信号时间位置重合的随机接入资源发送随机接入前导。相应地,确定与实际发送的下行信号时间位置不重合的随机接入资源作为实际可用的随机接入资源。
其中,终端确定与实际发送的下行信号时间位置重合的随机接入资源不可用,可以是将与实际发送的下行信号时间位置重合的随机接入资源打孔(本申请中还可以理解为:删除/释放(puncture/release/delete/remove)等)。
基于同样的原理,终端确定与实际发送的下行信号时间位置重合的随机接入资源不可用,即与实际发送的下行信号时间位置重合的部分无需接收随机接入前导。
本申请中,所述随机接入资源所在时隙基于以下至少一个信号的子载波间隔:随机接入消息1(MSG1)、随机接入消息3(MSG3)、上行初始接入带宽、下行初始接入带宽、下行同步信号块、系统信息(例如第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0)、剩余最小系统信息(remaining minimum system information,RMSI)、其它下行信号(例如半静态配置的下行子帧和/或时隙和/或OFDM符号)的子载波间隔,或者所述随机接入资源所在时隙长度由网络设备指示。
第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、所述下行信号为半静态配置的下行子帧和/或时隙和/或OFDM符号、所述下行信号中一项或多项为预留的下行信号。
本申请中,下行信号时间位置是指所述下行信号所在的时隙和/或OFDM符号、所述时隙和/或OFDM符号基于所述下行信号的子载波间隔。
所述下行信号时间位置还可以包括下行/上行保护时间(guard period,例如用于下行与上行切换),所述下行/上行保护时间为一段时间间隔。
在本申请中,由于下行同步信号块、下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧和/或时隙和/或OFDM符号、预留的下行信号、半持续调度的下行子帧和/或时隙和/或OFDM符号、下行解调参考信号、下行信道状态信息参考信号)的子载波间隔、上行PRACH、半静态配置的上行子帧和/或时隙和/或OFDM符号、预留的上行信号、半持续调度的上行子帧和/或时隙和/或OFDM符号的子载波间隔各不一样,对应的时间尺度,例如时隙、OFDM符号长度也不一样,因此进行随机接入资源调整时需要考虑各个不同信号子载波之间的差异。
具体地,以下行同步信号块与随机接入资源进行重叠时的调整方式为例进行说明,值得注意的是,这里的实施例考虑的下行同步信号块是基于下行同步信号块子载波对应的时间尺度,随机接入资源是基于随机接入前导子载波对应的时间尺度。类似的资源打孔、调 整方法同样适用于其他下行信号(以不同的子载波间隔)与随机接入资源重叠时进行调整的方式。
具体实现过程中,可以有下述几种情况(需要说明的是,本申请附图中“SS/PBCH”标识下行信号(下行同步信号块),“PRACH”标识随机接入资源):
(1)终端将与实际发送的下行信号时间位置重合的随机接入资源打孔。
本实施方式中,终端将与实际发送的下行信号时间位置重合的随机接入资源所在时隙中,与实际发送的下行信号时间位置重合的随机接入资源打孔,其他随机接入资源保留,还可以作为实际可用的随机接入资源继续用来发送随机接入前导。
例如实际传输的下行信号占用时域上第i个到第i+3个OFDM符号,那么时域上位于第iK个到第iK+4K-1个OFDM符号的随机接入资源确定为不使用(例如被打孔)。其中,K标识随机接入资源子载波间隔与下行信号子载波间隔之间的倍数,例如K可以是下述任一种:1/4、1/2、1、2、4。i为大于或等于0的整数。
图4为本申请提供的一种资源结构示意图。如图4所示,K=2时,假设下行信号子载波间隔为15千赫兹(15kHz)、随机接入资源子载波间隔为30kHz。
一个随机接入资源所在时隙的时间长度内,最多可以传1个下行信号,具体可以是下行信号集中的任意1个下行信号。如图4所示,实际发送的下行信号占用时隙中第2~5个OFDM符号,位于随机接入资源时间尺度上的时隙中第12~13个OFDM符号可以放置随机接入资源。
再举例说明,假设实际发送的下行信号占用时隙中第8~11个OFDM符号,位于随机接入资源时间尺度上的时隙中第10~13个OFDM符号可以放置随机接入资源。
图5为本申请提供的另一种资源结构示意图。如图5所示,K=1/2时,假设下行信号子载波间隔为30kHz、随机接入资源子载波间隔为15kHz。
此时,一个随机接入资源所在的时隙时间长度内,最多可以传4个下行信号,记为下行信号0~3,可以为下行信号集中的任意4个下行信号。
如图5所示,实际发送的下行信号占用时隙中的第2~5和/或第8~11个OFDM符号时,位于随机接入资源时间尺度上的时隙中第10~13个OFDM符号可以放置随机接入资源。
又例如,下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第6~13个OFDM符号可以放置随机接入资源。
下行信号1、下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙中第3~13个OFDM符号可以放置随机接入资源。
或者,实际发送的下行信号占用时隙中的第2~5或6~9个OFDM符号时,位于随机接入资源时间尺度上的时隙中第10~13个OFDM符号可以放置随机接入资源。
下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙中第5~13个OFDM符号可以放置随机接入资源。
下行信号1、下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙中第3~13个OFDM符号可以放置随机接入资源。
需要说明的是,如果随机接入资源配置基于非时隙调度,则没有被传输的下行信号所在的非时隙可以放置随机接入资源。例如,基于7个OFDM符号(在随机接入资源子载波间隔对应的时间尺度上)的非时隙调度,在下行信号1没有被传输而下行信号2被传输时, 该下行信号所在的时间资源的第3~6个OFDM符号可以用于放置随机接入资源。或者则在下行信号0和1没有被传输而下行信号2被传输时,该下行信号所在的时间资源的第0~6个OFDM符号可以用于放置随机接入资源。
又如假设下行信号子载波间隔为120kHz、随机接入资源子载波间隔为60kHz。此时,一个随机接入资源所在的时隙时间长度内,最多可以传4个下行信号,例如记为下行信号0~3,可以对应下行信号集中的任意4个下行信号。
例如下行信号传输的位置分别为两个相邻(下行信号时间尺度的)时隙中的第4~7、8~11、16~19、20~23个OFDM符号,则当下行信号2被传输而下行信号3没有被传输时,位于随机接入资源时间尺度上时隙的第10~13个OFDM符号可以放置随机接入资源。
当下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第6~13个OFDM符号可以放置随机接入资源。
当下行信号1、下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙k的第4~13个OFDM符号可以放置随机接入资源。
如果随机接入资源配置基于非时隙(即所配置的至少一个随机接入资源在时间上所占的OFDM符号小于一个时隙或者14个OFDM符号,例如随机接入资源占2/4/7个OFDM符号。所述OFDM符号的时间尺度可以与随机接入资源的时间尺度相同或者不相同。)调度,则没有被传输的下行信号所在的非时隙可以放置随机接入资源。具体地,基于7个OFDM符号(在随机接入资源子载波间隔对应的时间尺度上)的非时隙调度,则在下行信号1没有被传输而下行信号2被传输时,该下行信号所在的时间资源第4~6个OFDM符号可以用于放置随机接入资源。
或者则在下行信号0~1没有被传输而下行信号2被传输时,该下行信号所在的时间资源第0~6个OFDM符号可以用于放置随机接入资源。
或者,假设下行信号子载波间隔为240kHz、随机接入资源子载波间隔为120kHz。此时,一个随机接入资源所在的时隙时间长度内,最多可以传4个下行信号,例如记为下行信号0~3,可以对应下行信号集中的任意4个下行信号。
例如4个下行信号传输的位置分别为两个(下行信号时间尺度的)时隙中的8~11、12~15、16~19、20~23个OFDM符号,则当下行信号2被传输而下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第10~13个OFDM符号可以放置随机接入资源。
当下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第8~13个OFDM符号可以放置随机接入资源。
当下行信号1、下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙k的第6~13个OFDM符号可以放置随机接入资源。
如果随机接入资源配置基于非时隙调度,则没有被传输的下行信号所在的非时隙可以放置随机接入资源。例如,基于7个OFDM符号(在随机接入资源子载波间隔对应的时间尺度上)的非时隙调度,在下行信号1没有被传输而下行信号2被传输时,该下行信号所在的时间资源第6个OFDM符号可以用于放置随机接入资源;或者在下行信号0~1没有被传输而下行信号2被传输时,该下行信号所在的时间资源第0~6个OFDM符号可以用于放置随机接入资源。
或者,4个下行信号传输的位置分别为两个(下行信号时间尺度的)时隙中的4~7、 8~11、12~15、16~19个OFDM符号,则当下行信号2被传输而下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第8~13个OFDM符号可以放置随机接入资源。
当下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙的第6~13个OFDM符号可以放置随机接入资源。
当下行信号1、下行信号2和下行信号3没有被传输时,位于随机接入资源时间尺度上的时隙k的第4~13个OFDM符号可以放置随机接入资源。
如果随机接入资源配置基于非时隙调度,则没有被传输的下行信号所在的非时隙可以放置随机接入资源。例如,基于7个OFDM符号(在随机接入资源子载波间隔对应的时间尺度上)的非时隙调度,在下行信号1~2没有被传输而下行信号3被传输时,该下行信号所在的时间资源第4~6个OFDM符号可以用于放置随机接入资源;或者在下行信号0~2没有被传输而下行信号3被传输时,该下行信号所在的时间资源第0~6个OFDM符号可以用于放置随机接入资源。
图6为本申请提供的另一种资源结构示意图。如图6所示,K=1,即下行信号子载波间隔和随机接入资源子载波间隔相同,均可以为15kHz、30kHz、120kHz中的任意一种。
一个随机接入资源所在的时隙时间长度内,最多可以传2个下行信号,例如记为下行信号0~1,可以对应下行信号集中的任意2个下行信号。
如图6所示,第一个实际发送的下行信号0占用时隙中的第2~5个OFDM符号。此时如果时隙内的下行信号1没有被传输,则该下行信号所在的时隙尾部第6~13个OFDM符号中可以放置随机接入资源。再例如,第一个下行信号0占用时隙中的第4~7个OFDM符号。此时如果时隙内的下行信号1没有被传输,则该下行信号所在的时隙尾部第8~13个OFDM符号中可以放置随机接入资源。
如果随机接入资源配置基于非时隙调度(指小于14个OFDM符号,例如2/4/7个OFDM符号),则没有被传输的下行信号所在的非时隙(OFDM符号位置)可以放置随机接入资源。特别地,以基于7个OFDM符号的非时隙调度为例,在下行信号0没有被传输而下行信号1被传输时,该下行信号所在的时间资源的第0~6个OFDM符号可以用于放置随机接入资源。
再一种可能性中,K=1/4,假设下行信号子载波间隔为240kHz、随机接入资源子载波间隔为60kHz。
此时,一个随机接入资源所在的时隙时间长度内,最多可以传8个下行信号,例如记为下行信号0~7,可以对应下行信号集中的任意8个下行信号。
例如8个下行信号传输的位置分别为4个(下行信号时间尺度的)时隙中的8~11、12~15、16~19、20~23、32~35、36~39、40~43、44~47个OFDM符号,则当下行信号6被传输而下行信号7没有被传输时,位于随机接入资源时间尺度上的时隙的第11~13个OFDM符号可以放置随机接入资源。
当下行信号5被传输而下行信号6~7没有被传输时,位于随机接入资源时间尺度上的时隙的第10~13个OFDM符号可以放置随机接入资源。
当下行信号4被传输而下行信号5~7没有被传输时,位于随机接入资源时间尺度上的时隙的第9~13个OFDM符号可以放置随机接入资源。
当下行信号3被传输而下行信号4~7没有被传输时,位于随机接入资源时间尺度上的 时隙的第7~13个OFDM符号可以放置随机接入资源。
当下行信号2被传输而下行信号6~7没有被传输时,位于随机接入资源时间尺度上的时隙的第5~13个OFDM符号可以放置随机接入资源。
当下行信号1被传输而下行信号2~7没有被传输时,位于随机接入资源时间尺度上的时隙的第4~13个OFDM符号可以放置随机接入资源。
当下行信号1被传输而下行信号1~7没有被传输时,位于随机接入资源时间尺度上的时隙的第3~13个OFDM符号可以放置随机接入资源。
如果随机接入资源配置基于非时隙调度,则没有被传输的下行信号所在的非时隙可以放置随机接入资源。例如,基于7个OFDM符号(在随机接入资源子载波间隔对应的时间尺度上)的非时隙调度,在下行信号3没有被传输而下行信号4~7中任意一个被传输时,该下行信号所在的时间资源第5~6个OFDM符号可以用于放置随机接入资源;或者在下行信号2~3没有被传输而下行信号4~7中任意一个被传输时,该下行信号所在的时间资源第4~6个OFDM符号可以用于放置随机接入资源;或者在下行信号1~3没有被传输而下行信号4~7中任意一个被传输时,该下行信号所在的时间资源第3~6个OFDM符号可以用于放置随机接入资源;或者在下行信号0~3没有被传输而下行信号4~7中任意一个被传输时,该下行信号所在的时间资源第0~6个OFDM符号可以用于放置随机接入资源。
(2)终端将与实际发送的下行信号时间位置重合的随机接入资源、以及与该实际发送的下行信号时间位置重合的随机接入资源所在时隙中与实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔。
图7为本申请提供的另一种资源结构示意图。如图7所示,假设K=1。
除了确定不在与实际发送的下行信号时间位置重合的随机接入资源发送随机接入前导,还确定本时隙中这部分重合的随机接入资源之前的随机接入资源也不发送随机接入前导。
需要说明的是,发送随机接入前导是上行的,而下行信号是网络设备下行发送的,将本时隙中这部分重合的随机接入资源之前的随机接入资源也打孔,可以避免上下行的频繁切换。
(3)终端将与实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
图8为本申请提供的另一种资源结构示意图。如图8所示,假设K=2。
与(2)类似,为了更好地避免上下行频繁切换,确定与实际发送的下行信号时间位置重合的随机接入资源所在时隙都不发送随机接入前导。
需要说明的是,网络设备确定合计可用的随机接入资源的方式,可以参照终端侧执行,不再赘述。
在上述实施例的基础上,因为原来的一部分随机接入资源不用了,那么一种实施方式中,需要增加实际可用的随机接入资源。
可选地,可以先根据下行或上行帧结构配置、以及时隙格式配置信息(slot format information),确定随机接入配置周期内可用的上行时隙以及没有放置随机接入资源的上行OFDM符号位置。
进而可以根据打孔的随机接入资源数量,确定增加的实际可用的随机接入资源,具体 可以是确定增加的实际可用的随机接入资源的时间位置、频域数量等。所述增加的随机接入资源所在的时间位置可以是半静态配置的上行子帧、半静态配置的上行时隙、半静态配置的上行OFDM符号中的至少一种。在另外的实现方式中,所述增加的随机接入资源所在的时间位置可以是半静态配置未定上行或者下行子帧/时隙/OFDM符号。所述未定上行或者下行子帧/时隙/OFDM符号又称为unknown子帧/时隙/OFDM符号,是指在随机接入时没有确定该子帧/时隙/OFDM的方向是上行或者下行,或者是指在该子帧/时隙/OFDM的上行或者下行方向由RRC、MAC CE或者DCI信令动态配置或者调度。
相应地,网络设备也会采用跟终端相同的方式确定增加的实际可用的随机接入资源的时间位置、频域数量等。以确保在哪些随机接入资源上接收随机接入前导。
具体实现时,可以在时域、频域、其他上行OFDM符号位置增加随机接入资源。
1)一种可选方案中,终端在除被打孔的随机接入资源所在上行时隙以外的上行时隙增加实际可用的随机接入资源。
例如,终端在被打孔的随机接入资源所在上行时隙的相邻上行时隙,增加新的随机接入资源作为实际可用的随机接入资源。例如,在被打孔的随机接入资源所在上行时隙之前的第K1个上行子帧/时隙/OFDM符号增加随机接入资源;再例如在被打孔的随机接入资源所在上行时隙之前的第K2个上行子帧/时隙/OFDM符号增加随机接入资源,所述K1和K2为非负整数。可选地,K1和K2为预设值或者根据预设定规则确定的值,例如固定为1个时隙。可选地,增加的随机接入资源数量与被打孔的随机接入资源数量不一样,例如更多。可选地,增加的随机接入资源数量与被打孔的随机接入资源数量不一样,例如更少。可选地,根据可用的上行子帧/时隙/OFDM符号数量确定增加的随机接入资源数量。
图9为本申请提供的又一种资源结构示意图;图10为本申请提供的另一种资源结构示意图。
如图9、图10所示,被打孔的随机接入资源所在上行时隙的相邻上行时隙中,没有下行信号传输,确定这个时隙中部分或全部来传输随机接入前导。
2)另一种可选地方案中,终端在与实际发送的下行信号位置不重合随机接入资源所在上行时隙的频域上,增加新的随机接入资源作为实际可用的随机接入资源。
图11为本申请提供的又一种资源结构示意图;图12为本申请提供的另一种资源结构示意图。
如图11、12所示,在频域上增加随机接入资源,新增加的随机接入资源在时间上也不与实际发送的下行信号重合。
可选地,频域上增加的随机接入资源数量不超过网络设备配置的信道带宽或者初始上行接入带宽。
3)再一种可选地方案中,终端在与实际发送的下行信号位置不重合随机接入资源所在上行时隙的其他OFDM符号中,增加新的随机接入资源作为实际可用的随机接入资源。可选地,根据可用的上行子帧/时隙/OFDM符号数量确定增加的随机接入资源数量。
图13为本申请提供的又一种资源结构示意图;图14为本申请提供的另一种资源结构示意图。
如图13、14所示,在被打孔的随机资源所在时隙的其他OFDM符号中,增加新的随机接入资源作为实际可用的随机接入资源。
可选地,增加的随机接入资源可以在时域上均匀分布于随机接入配置周期内的其它上行时隙或OFDM符号位置上,在此不作限制。
4)一种可选地方案中,网络设备可以指示增加的随机接入资源所在的上行时间位置,终端在网络设备指示的上行时间位置增加随机接入资源。
其中,网络设备指示的随机接入资源所在的上行时间位置,可以是备用的随机接入资源,在实际发送的下行信号与随机接入资源有重合,或者一个随机接入配置周期内与实际发送的下行信号重合的随机接入资源数量大于第一预设阈值时,或者实际发送的下行信号大于第二预设阈值时,激活备用的随机接入资源。
需要说明的是,以上4种增加随机接入资源的方案可以配置不同的标识,例如用2个bit来标识,网络设备在配置信息中携带“增加随机接入资源的方案”标识,以便终端知道采用哪种方案增加随机接入资源。
另外,终端在新增加的随机接入资源上发送随机接入前导时,与之前的发送方法相同,在此不作限制。
可选地,在确定将部分随机接入资源打孔后,还可以调整随机接入配置周期:
一种方式中,将原来N个随机接入配置周期内的随机接入资源,调整成M个新的随机接入配置周期,N和M可以为任意大于0的整数。在新的随机接入配置周期内,不再有与下行信号重叠的随机接入资源。
可选地,调整前N个随机接入配置周期内总的随机接入资源数量大于调整后M个新的随机接入配置周期内总的随机接入资源数量。或者,
调整前N个随机接入配置周期内总的随机接入资源数量等于调整后M个新的随机接入配置周期内总的随机接入资源数量。或者,
调整前N个随机接入配置周期内总的随机接入资源数量小于调整后M个新的随机接入配置周期内总的随机接入资源数量。
可选地,调整前的一个随机接入配置周期内总的随机接入资源数量大于调整后的一个新的随机接入配置周期内总的随机接入资源数量;或者,
调整前的一个随机接入配置周期内总的随机接入资源数量等于调整后的一个新的随机接入配置周期内总的随机接入资源数量;或者,
调整前的一个随机接入配置周期内总的随机接入资源数量小于调整后的一个新的随机接入配置周期内总的随机接入资源数量。
需要说明的是,上述调整随机接入配置周期可以包括增加和/或打孔随机接入资源。
图15为本申请提供的又一种资源结构示意图。如图15所示,先确定实际传输的下行信号,即第一排中黑色部分。
进而通过增加和/或打孔随机接入资源,调整随机接入配置周期。
在上述实施例的基础上,S201之前,还可以根据实际发送的下行信号、实际发送下行信号的周期、一个随机接入配置周期内与实际发送的下行信号重合的随机接入资源数量中的一种或多种,确定调整随机接入资源的方式。
例如:一个随机接入配置周期内与实际发送的下行信号重合的随机接入资源数量大于第一预设阈值时,确定增加随机接入资源。具体增加方式可以参见前述图9~图14所示的实施例,在此不再赘述。
或者,一个随机接入配置周期内与实际发送的下行信号重合的随机接入资源数量小于或等于第一预设阈值时,确定调整随机接入配置周期。
或者,在上述实施例的基础上,S201之前,终端还可以根据下行/上行帧结构配置、时隙格式配置信息、随机接入配置信息中的一种或多种,确定调整随机接入资源的方式。
需要说明的是,终端执行的调整,网络设备也要执行相应地调整,例如调整下行信号与随机接入资源的关联关系、调整随机接入配置周期等,在此不再赘述。
进一步地,终端根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源之前,还可以根据实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
即由于原来的部分随机接入资源被确定不可用,还可能增加了新的实际可用的随机接入资源,下行信号与随机接入资源的关联关系也需要适应性地更新调整。
调整之后,终端根据实际可用的随机接入资源、以及调整后的下行信号与随机接入资源的关联关系,确定实际发送的下行信号对应的目标随机接入资源。
具体地,可以将被打孔的随机接入资源原先关联的下行信号和/或下行信号组,关联到随机接入配置周期内剩余的随机接入资源。
或者,更新实际传输的下行信号中每个下行信号关联的随机接入资源数量。更新后,实际传输的下行信号中每个下行信号关联的随机接入资源数量小于原来每个下行信号关联的随机接入资源数量。
或者更新实际传输的下行信号中部分下行信号关联的随机接入资源数量。更新后,更新的这部分实际传输的下行信号关联的随机接入资源数量小于原来这部分实际传输的下行信号关联的随机接入资源数量。
或者,调整后的随机接入配置周期不变,在调整后的随机接入配置周期内的增加随机接入资源,调整每个或部分下行信号关联的随机接入资源的时间和/或频率位置。即将增加的实际可用的随机接入资源与每个或部分实际发送的下行信号关联。
或者,调整后的随机接入配置周期变长,根据调整后的随机接入配置周期内的随机接入资源,调整每个或部分下行信号关联的随机接入资源的时间和/或频率位置。
或者,调整后的随机接入配置周期变短,根据调整后的随机接入配置周期内的随机接入资源,调整每个或部分下行信号关联的随机接入资源的时间和/或频率位置。
或者,根据调整后的随机接入配置周期,确定变更下行信号与随机接入资源的关联方法。具体地,可以将实际发送的下行信号与随机接入资源一对一关联,变更为变成多个实际发送的下行信号关联一个随机接入资源。或者可以多个实际发送的下行信号关联一个随机接入资源,变更为多个实际发送的下行信号关联多个随机接入资源。或者可以变更为所有实际发送的下行信号映射同一个随机接入资源。或者可以变更为部分实际发送的下行信号与随机接入资源一对一关联,另一部分实际发送的下行信号中,多个实际发送的下行信号关联一个随机接入资源。
在上述实施例的基础上,随机接入资源的时间位置还有可能跟半持续调度信号的时间位置重合。
在实际发送的下行信号、随机接入资源、半持续调度信号中,实际发送的下行信号的 优先级最高,一旦重合,优先发送下行信号,其他信号暂不传输。
随机接入资源和半持续调度信号的优先级可以根据实际需要进行配置。
可选地,终端根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与半持续调度信号时间位置重合的随机接入资源。
一种方式中,随机接入资源的优先级高于半持续调度信号的优先级,终端将与所述随机接入资源时间位置重合的半持续调度信号打孔。
另一种方式中:
将与半持续调度信号时间位置重合的随机接入资源打孔。或者,
将与半持续调度信号时间位置重合的随机接入资源、以及与半持续调度信号时间位置重合的随机接入资源所在时隙中与半持续调度信号时间位置重合的随机接入资源之前所有随机接入资源打孔。或者,
将与半持续调度信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
需要说明的是,网络设备也会根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与半持续调度信号时间位置重合的随机接入资源。
具体地,确定与半持续调度信号时间位置重合的随机接入资源不传输随机接入前导;或者,确定与半持续调度信号时间位置重合的随机接入资源、以及与半持续调度信号时间位置重合的随机接入资源所在时隙中与半持续调度信号时间位置重合的随机接入资源之前所有随机接入资源不传输随机接入前导;或者,与半持续调度信号时间位置重合的随机接入资源所在时隙中所有随机接入资源不传输随机接入前导。
进一步地,需要说明的是,随机接入前导的格式可以是现有标准中下述表1格式中的一种或多种:A0、A1、A2、A3、B0、B1、B2、B3、B4、C0、C2;或者表2中的一种或者多种:0、1、2、3。在实际中,格式A0~C2以及格式0~3还可以是其它称呼,这里不作限定。
具体地,表1为序列长度L=127或者139时的前导格式。
表1
Figure PCTCN2018116254-appb-000001
表2为序列长度L=839时的前导格式
表2
Figure PCTCN2018116254-appb-000002
其中,κ=64,Δf RA表示随机接入前导的子载波间隔,N u表示随机接入前导序列的长度,
Figure PCTCN2018116254-appb-000003
表示随机接入前导的循环前缀(cyclic prefix,CP)长度,
Figure PCTCN2018116254-appb-000004
表示保护时间。
在上述实施例的基础上,终端可以根据随机接入资源所在时隙中,实际发送的下行信号与随机接入资源重合的OFDM符号数量、以及随机接入前导格式,确定打孔的随机接入资源数量。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续2个时,如表3所示,
表3
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 2 A1 1 B1 1 C1 1    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续2个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2个OFDM符号;若随机接入前导格式为A1,确定打孔的随机接入资源数量为1个OFDM符号;若随机接入前导格式为B1,确定打孔的随机接入资源数量为1个OFDM符号;若随机接入前导格式为C1,确定打孔的随机接入资源数量为1个OFDM符号。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续3个时,如表4所示,
表4
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 2 A0 3 A1 1 B1 1 C1 1
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续3个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续4个时,如表5所示,
表5
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 3 A1 3 A2 1 B1 2 C1 1
A0 2 A0 4 A1 2 B1 1 B2 1 C1 2
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符 号数量有连续4个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续5个时,如表6所示,
表6
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 4 A1 2 B1 2 C1 2    
A0 2 A0 5 A2 1 B2 1 C1 3    
A0 3 A1 1 B1 1 C1 1        
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续5个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续6个时,如表7所示,
表7
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 5 A1 3 B1 2 C1 1    
A0 2 A0 6 A2 1 B1 3 C1 2    
A0 3 A1 1 A3 1 B2 1 C1 3    
A0 4 A1 2 B1 1 B3 1        
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续6个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续7个时,如表8所示,
表8
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 5 A1 2 B1 1 B3 1 C1 4
A0 2 A0 6 A1 3 B1 2 C1 1 C2 1
A0 3 A0 7 A2 1 B1 3 C1 2    
A0 4 A1 1 A3 1 B2 1 C1 3    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续7个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续8个时,如表9所示,
表9
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 6 A1 3 B1 1 B2 2 C1 4
A0 2 A0 7 A1 4 B1 2 B3 1 C1 5
A0 3 A0 8 A2 1 B1 3 C1 1 C2 1
A0 4 A1 1 A2 2 B1 4 C1 2    
A0 5 A1 2 A3 1 B2 1 C1 3    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续8个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续9个时,如表10所示,
表10
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 6 A1 2 A3 1 B2 1 C1 3
A0 2 A0 7 A1 3 B1 1 B2 2 C1 4
A0 3 A0 8 A1 4 B1 2 B3 1 C1 5
A0 4 A0 9 A2 1 B1 3 C1 1 C2 1
A0 5 A1 1 A2 2 B1 4 C1 2    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续9个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8或9。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续10个时,如表11所示,
表11
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 7 A1 3 B1 1 B2 2 C1 5
A0 2 A0 8 A1 4 B1 2 B3 1 C1 6
A0 3 A0 9 A1 5 B1 3 C1 1 C2 1
A0 4 A0 10 A2 1 B1 4 C1 2    
A0 5 A1 1 A2 2 B1 5 C1 3    
A0 6 A1 2 A3 1 B2 1 C1 4    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续10个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8或9或10。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续11个时,如表12所示,
表12
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 7 A1 2 A3 1 B2 1 C1 4
A0 2 A0 8 A1 3 B1 1 B2 2 C1 5
A0 3 A0 9 A1 4 B1 2 B3 1 C1 6
A0 4 A0 10 A1 5 B1 3 C1 1 C1 7
A0 5 A0 11 A2 1 B1 4 C1 2 C2 1
A0 6 A1 1 A2 2 B1 5 C1 3 C2 2
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符 号数量有连续11个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8或9或10或11。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续12个时,如表13所示,
表13
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 9 A1 5 B1 1 B2 3 C1 6
A0 2 A0 10 A1 6 B1 2 B3 1 C1 7
A0 3 A0 11 A2 1 B1 3 B3 2 C2 1
A0 4 A0 12 A2 2 B1 4 C1 1 C2 2
A0 5 A1 1 A2 3 B1 5 C1 2    
A0 6 A1 2 A3 1 B1 6 C1 3    
A0 7 A1 3 A3 2 B2 1 C1 4    
A0 8 A1 4 B1 1 B2 2 C1 5    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续12个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8或9或10或11或12。其他的以此类推不再赘述。
随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续13个时,如表14所示,
表14
格式 数目 格式 数目 格式 数目 格式 数目 格式 数目 格式 数目
A0 1 A0 9 A1 4 B1 1 B2 2 C1 5
A0 2 A0 10 A1 5 B1 1 B2 3 C1 6
A0 3 A0 11 A1 6 B1 2 B3 1 C1 7
A0 4 A0 12 A2 1 B1 3 B3 2 C1 8
A0 5 A0 13 A2 2 B1 4 C1 1 C2 1
A0 6 A1 1 A2 3 B1 5 C1 2 C2 2
A0 7 A1 2 A3 1 B1 6 C1 3    
A0 8 A1 3 A3 2 B2 1 C1 4    
可见,随机接入资源所在时隙中实际发送的下行信号与随机接入资源重合的OFDM符号数量有连续13个时,若随机接入前导格式为A0,确定打孔的随机接入资源数量为1或2或3或4或5或6或7或8或9或10或11或12或13。其他的以此类推不再赘述。
应理解,在增加随机接入资源时,增加的随机接入前导的数目与可用的上行子帧/时隙/OFDM中对应到随机接入前导时间尺度上的时间长度有关,例如根据表1~表12确定增加的随机接入前导在时间上的数目,增加的数目不能超过响应表格中允许的最大数目。
图16(a)~图16(g)为本申请提供的一种随机接入前导格式示意图。具体地:
图16(a)中:N个随机接入前导格式A0连续分布于子帧(subframe)中。在相应的子载波间隔下,其中N个随机接入前导格式A0的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式A0的总的时间长度不超过K个时隙,K、N为正整数。
图16(b)中:N个随机接入前导格式A1/B1连续分布于子帧中。在相应的子载波间 隔下,其中N个随机接入前导格式A1/B1的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式A1/B1的总的时间长度不超过K个时隙,K、N为正整数。
图16(c)中:N个随机接入前导格式A2/B2连续分布于子帧中。在相应的子载波间隔下,其中N个随机接入前导格式A2/B2的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式A2/B2的总的时间长度不超过K个时隙,K、N为正整数。
图16(d)中:N个随机接入前导格式A3/B3连续分布于子帧中。在相应的子载波间隔下,其中N个随机接入前导格式A3/B3的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式A3/B3的总的时间长度不超过K个时隙,K、N为正整数。
图16(e)中:N个随机接入前导格式B4连续分布于子帧中。在相应的子载波间隔下,其中N个随机接入前导格式B4的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式B4的总的时间长度不超过K个时隙,K、N为正整数。
图16(f)中:N个随机接入前导格式C0连续分布于子帧中。在相应的子载波间隔下,其中N个随机接入前导格式C0的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式C0的总的时间长度不超过K个时隙,K、N为正整数。
图16(g)中:N个随机接入前导格式C2连续分布于子帧中。在相应的子载波间隔下,其中N个随机接入前导格式C2的总的时间长度不超过一个子帧。在另外的实现方式中,N个随机接入前导格式C2的总的时间长度不超过K个时隙,K、N为正整数。
图17(a)~图17(g)为本申请提供的一种随机接入前导格式示意图。具体地:
图17(a)中:N个随机接入前导格式A0连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式A0的总的时间长度不超过一个时隙。N为正整数。
图17(b)中:N个随机接入前导格式A1/B1连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式A1/B1的总的时间长度不超过一个时隙。N为正整数。
图17(c)中:N个随机接入前导格式A2/B2连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式A2/B2的总的时间长度不超过一个时隙。N为正整数。
图17(d)中:N个随机接入前导格式A3/B3连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式A3/B3的总的时间长度不超过一个时隙。N为正整数。
图17(e)中:N个随机接入前导格式B4连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式B4的总的时间长度不超过一个时隙。N为正整数。
图17(f)中:N个随机接入前导格式C0连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式C0的总的时间长度不超过一个时隙。N个随机接入前导格式C0的总的时间长度不超过K个时隙,K为正整数。K、N为正整数。
图17(g)中:N个随机接入前导格式C2连续分布于时隙中。在相应的子载波间隔下,其中N个随机接入前导格式C2的总的时间长度不超过一个时隙。K、N为正整数。
应理解,图16(a)~图16(g)和图17(a)~图17(g)两种随机接入资源图案可以由基站配置信息指示,也可以预配置。例如固定为图16(a)~图16(g)中所述的方式;再例如固定为图17(a)~图17(g)中所述的方式。由网络设备指示时,可以通过1个比特指示为Flag,当Flag为0时表示图16(a)~图16(g)中的方式,当Flag为1时表示图17(a)~图17(g)中的方式;或者Flag为1时表示图16(a)~图16(g)中的方式,当Flag为0时表示图17(a)~图17(g)中的方式。
图18为本申请一实施例提供的终端结构示意图,如图18所示,该终端包括:确定模块181和发送模块182,其中:
确定模块181,用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源。
发送模块182,用于采用所述目标随机接入资源,向网络设备发送随机接入前导。
可选地,确定模块181,具体用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与所述实际发送的下行信号时间位置重合的随机接入资源;将与所述实际发送的下行信号时间位置不重合的随机接入资源作为所述实际可用的随机接入资源。
可选地,确定模块181,还用于将与所述实际发送的下行信号时间位置重合的随机接入资源打孔;或者,将与所述实际发送的下行信号时间位置重合的随机接入资源、以及与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中与所述实际发送的下行信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,将与所述实际发送的下行信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
一实施例中,所述下行信号为下述一项或多项:下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
另一实施例中,下行信号时间位置由下述一项或多项确定:所述下行信号所在的时隙、或者所述下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间,所述下行/上行保护时间为一段时间间隔。
本发明实施例和上述方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照方法实施例的描述,此处不再赘述。
图19为本申请另一实施例提供的终端结构示意图,如图19所示,在图18的基础上,该终端还包括:接收模块191,用于接收所述网络设备发送的配置信息,所述配置信息指示下述一项或多项:所述随机接入资源所在时隙基于随机接入消息1的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙长度。
进一步地,确定模块181,还用于根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与所述随机接入资源时间位置重合的半持续调度信号;将与所述随机接入资源时间位置重合的半持续调度信号打孔。
进一步地,确定模块181,还用于根据随机接入资源的时间位置信息、以及半持续调度信号的时间位置信息,确定与半持续调度信号时间位置重合的随机接入资源;将与半持续调度信号时间位置重合的随机接入资源打孔;或者,将与半持续调度信号时间位置重合的随机接入资源、以及与半持续调度信号时间位置重合的随机接入资源所在时隙中与半持续调度信号时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,将与半持续 调度信号时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
另外,确定模块181,还用于在被打孔的随机接入资源所在上行时隙之前或者之后的第K个上行时隙,增加新的随机接入资源作为实际可用的随机接入资源,其中,K为预设或者预配置的常数;或者,在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的频域上,增加新的随机接入资源作为实际可用的随机接入资源;或者,在与所述实际发送的下行信号位置不重合随机接入资源所在上行时隙的其他正交频分复用OFDM符号中,增加新的随机接入资源作为实际可用的随机接入资源。
可选地一种实现方式中,确定模块181,还用于根据随机接入资源所在时隙中,实际发送的下行信号与随机接入资源重合的OFDM符号数量、以及随机接入前导格式,确定打孔的随机接入资源数量。
又一种实现方式中,确定模块181,还用于根据所述实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
本发明实施例和上述方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照方法实施例的描述,此处不再赘述。
图20为本申请一实施例提供的网络设备结构示意图,如图20所示,该网络设备包括:确定模块211、接收模块212,其中:
确定模块211,用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定实际可用的随机接入资源,其中,所述实际可用的随机接入资源与所述实际发送的下行信号时间位置不重合;根据实际可用的随机接入资源、以及下行信号与随机接入资源的关联关系,确定所述实际发送的下行信号对应的目标随机接入资源。
接收模块212,用于根据所述实际发送的下行信号对应的目标随机接入资源,接收终端发送的随机接入前导。
可选地,确定模块211,具体用于根据随机接入资源的时间位置信息、以及网络设备实际发送的下行信号的时间位置信息,确定与所述实际发送的下行信号时间位置重合的随机接入资源;将与所述实际发送的下行信号时间位置不重合的随机接入资源作为所述实际可用的随机接入资源。
可选地,所述下行信号为下述一项或多项:下行同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
本发明实施例和上述方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照方法实施例的描述,此处不再赘述。
图21为本申请另一实施例提供的网络设备结构示意图,如图21所示,在图20的基础上,该网络设备还包括:发送模块213,用于向终端发送配置信息,所述配置信息指示下述一项或多项:所述随机接入资源所在时隙基于随机接入消息1的子载波间隔、所述随机接入资源所在时隙基于随机接入消息3的子载波间隔、所述随机接入资源所在时隙基于上行初始接入带宽的子载波间隔、所述随机接入资源所在时隙基于下行信号的子载波间隔、所述随机接入资源所在时隙长度。
可选地,所述下行信号时间位置由下述一项或多项确定:所述下行信号所在的时隙、或者所述下行信号所在的OFDM符号、所述时隙基于所述下行信号的子载波间隔、下行/上行保护时间,所述下行/上行保护时间为一段时间间隔。
可选地,确定模块211,还用于根据所述实际发送的下行信号、以及所述实际可用的随机接入资源,更新下行信号与随机接入资源的关联关系,获取新的下行信号与随机接入资源的关联关系。
本发明实施例和上述方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照方法实施例的描述,此处不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图22示出了一种简化的终端设备结构示意图。便于理解和图示方便,图22中,终端设备以手机作为例子。
如图22所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频 信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图22中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图22所示,终端设备包括接收单元1201、处理单元1202和发送单元1203。接收单元1201也可以称为接收器、接收机、接收电路等,发送单元1203也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,发送单元1203用于执行图2所示实施例的步骤S203。
图23示出了一种简化网络设备结构示意图。网络设备包括射频信号收发及转换部分以及1302部分,该射频信号收发及转换部分又包括接收单元1301部分和发送单元1303部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;1302部分主要用于基带处理,对网络设备进行控制等。接收单元1301也可以称为接收器、接收机、接收电路等,发送单元1303也可以称为发送器、发射器、发射机、发射电路等。1302部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图5或图9中关于第二通信装置所执行的步骤。具体可参见上述相关部分的描述。
1302部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
作为另一种可选的实施方式,随着片上系统(system-on-chip,SoC)技术的发展,可以将1302部分和1301部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
可选的,当上述实施例的随机接入方法中的部分或全部通过软件实现时,上述终端或网络设备也可以只包括处理器。用于存储程序的存储器位于装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor, NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
本申请实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序用于执行上述实施例提供的随机接入方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的随机接入方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (66)

  1. 一种用于通信系统中的随机接入方法,包括:
    根据随机接入资源的时间位置信息以及用于下行信号的时间位置信息,确定实际可用的随机接入资源;其中,所述实际可用的随机接入资源的时间位置与所述用于下行信号的时间位置不重合;
    基于所述实际可用的随机接入资源向网络设备发送随机接入前导。
  2. 根据权利要求1所述的方法,还包括:
    接收随机接入配置索引,基于所述随机接入配置索引获取所述随机接入资源的时间位置信息。
  3. 根据权利要求1或2所述的方法,还包括:
    获取随机接入前导子载波间隔,基于所述随机接入前导子载波间隔确定所述随机接入资源所在的时间位置信息。
  4. 根据权利要求1-3任一项所述的方法,还包括:
    如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不使用与所述用于下行信号的时间位置相重合的随机接入资源发送所述随机接入前导。
  5. 根据权利要求1-4任一项所述的方法,还包括:
    如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,将重合的资源优先用于所述下行信号。
  6. 根据权利要求1-5任一项所述的方法,还包括:
    如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不使用与所述用于下行信号时间位置重合的随机接入资源所在时隙中与所述用于下行信号时间位置重合的随机接入资源之前所有随机接入资源发送所述随机接入前导。
  7. 根据权利要求1-6任意一项所述的方法,还包括:
    确定所述随机接入资源的时间位置与所述用于下行信号的时间位置是否有重合;
    如果确定随机接入资源的时间位置与所述用于下行信号的时间位置有重合,则确定与所述用于下行信号的时间位置重合的随机接入资源不可用。
  8. 根据权利要求1-7任意一项所述的方法,还包括:
    将与所述用于下行信号的时间位置相重合的随机接入资源打孔;或者,
    将与所述用于下行信号的时间位置重合的随机接入资源、以及与所述用于下行信号的时间位置重合的随机接入资源所在时隙中与所述用于下行信号的时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,
    将与所述用于下行信号的时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述随机接入资源所在的时间位置信息包括以下一项或多项:正交频分复用OFDM符号、微时隙、时隙、子帧、或者时间长度为H个基本时间单元的时间段,其中H大于0。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述随机接入资源所在的时隙与子载波间隔有关。
  11. 根据权利要求1-10任一项所述的方法,还包括:
    接收下行信号指示信息和/或下行信号集周期信息,获取所述用于下行信号的时间位置信息。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述用于下行信号的时间位置信息包括以下一项或多项:时隙、正交频分复用OFDM符号、上行或下行保护时间。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述基于所述实际可用的随机接入资源向网络设备发送随机接入前导,包括:
    基于实际可用的随机资源,以及下行信号与随机接入资源的关联关系,确定下行信号对应的目标随机接入资源,使用目标随机接入资源向所述网络设备发送所述随机接入前导。
  14. 根据权利要求1-13任一项所述的方法,所述方法还包括:
    接收配置信息,所述配置信息指示以下一项或多项:所述随机接入资源所在时隙与随机接入消息1的子载波间隔有关、所述随机接入资源所在时隙与随机接入消息3的子载波间隔有关、所述随机接入资源所在时隙与上行初始接入带宽的子载波间隔有关、所述随机接入资源所在时隙与下行信号的子载波间隔有关、或者所述随机接入资源所在时隙长度。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,所述下行信号为同步信号块。
  16. 根据权利要求1-15任一项所述的方法,还包括:如果确定所述随机接入资源的时间位置与半持续调度信号的时间位置重合,优先将所述重合的资源用于随机接入。
  17. 根据权利要求1-16任一项所述的方法,其特征在于:如果确定所述随机接入资源的时间位置与半持续调度信号的时间位置重合,将与所述随机接入资源时间位置重合的半持续调度信号打孔。
  18. 一种用于通信系统中的随机接入方法,其特征在于,包括:
    根据随机接入资源的时间位置信息以及用于下行信号的时间位置信息,确定实际可用的随机接入资源;其中,所述实际可用的随机接入资源的时间位置与所述用于下行信号的时间位置不重合;
    基于所述实际可用的随机接入资源接收终端发送的随机接入前导。
  19. 根据权利要求18所述的方法,其特征在于,发送随机接入配置索引,所述随机接入配置索引用于指示所述随机接入资源的时间位置信息。
  20. 根据权利要求18或19所述的方法,其特征在于,发送随机接入前导子载波间隔,所述随机接入前导子载波间隔用于指示所述随机接入资源的时间位置信息。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不在所述重合的资源上接收随机接入前导。
  22. 根据权利要求18-21任一项所述的方法,其特征在于,如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不在所述用于下行信号时间位置重合的随机接入资源所在时隙中与所述用于下行信号时间位置重合的随机接入资源之前所有的随机接入资源上接收随机接入前导。
  23. 根据权利要求18-22任一项所述的方法,其特征在于,所述随机接入资源所在的时间位置信息包括以下一项或多项:正交频分复用OFDM符号、微时隙、时隙、子帧、或者时间长度为H个基本时间单元的时间段,其中H大于0。
  24. 根据权利要求18-23任一项所述的方法,其特征在于,所述随机接入资源所在的时隙与子载波间隔有关。
  25. 根据权利要求18-24任一项所述的方法,包括:
    发送下行信号指示信息和/或下行信号集周期信息,所述下行信号指示信息或所述下行信号集周期信息用于指示所述下行信号的时间位置信息。
  26. 根据权利要求18-25任一项所述的方法,其特征在于,所述用于下行信号的时间位置信息包括以下一项或多项:时隙、正交频分复用OFDM符号、上行或下行保护时间。
  27. 根据权利要求18-26任一项所述的方法,所述方法包括:
    发送配置信息,所述配置信息指示以下一项或多项:所述随机接入资源所在时隙与随机接入消息1的子载波间隔有关、所述随机接入资源所在时隙与随机接入消息3的子载波间隔有关、所述随机接入资源所在时隙与上行初始接入带宽的子载波间隔有关、所述随机接入资源所在时隙与下行信号的子载波间隔有关、或者所述随机接入资源所在时隙长度。
  28. 根据权利要求18-27任一项所述的方法,其特征在于,所述下行信号为同步信号块。
  29. 根据权利要求18-28任一项所述的方法,还包括:如果确定所述随机接入资源的时间位置与半持续调度信号时间位置重合,优先将所述重合的资源用于随机接入。
  30. 一种用于通信系统中装置,其特征在于,包括:
    确定模块,用于根据随机接入资源的时间位置信息以及用于下行信号的时间位置信息,确定实际可用的随机接入资源;其中,所述实际可用的随机接入资源的时间位置与所述用于下行信号的时间位置不重合;
    发送模块,用于基于所述实际可用的随机接入资源向网络设备发送随机接入前导。
  31. 根据权利要求30所述的装置,其特征在于,还包括接收模块,用于:
    接收随机接入配置索引;
    所述确定模块,用于基于所述随机接入配置索引获取所述随机接入资源的时间位置信息。
  32. 根据权利要求30或31所述的装置,其特征在于,还包括接收模块,用于:
    获取随机接入前导子载波间隔;
    所述确定模块,用于基于所述随机接入前导子载波间隔确定所述随机接入资源所在的时间位置信息。
  33. 根据权利要求30-32任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不使用与所述用于下行信号的时间位置相重合的随机接入资源发送随机接入前导。
  34. 根据权利要求30-33任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定随机接入资源的时间位置与所述用于下行信号的时间位置有重合,且将重合的资源优先用于所述下行信号。
  35. 根据权利要求30-34任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不使 用与所述用于下行信号时间位置重合的随机接入资源所在时隙中与所述用于下行信号时间位置重合的随机接入资源之前所有随机接入资源发送所述随机接入前导。
  36. 根据权利要求30-35任一项所述的装置,其特征在于,所述确定模块,用于:
    确定随机接入资源的时间位置与所述用于下行信号的时间位置是否有重合;
    如果确定随机接入资源的时间位置与所述用于下行信号的时间位置有重合,则确定与所述用于下行信号的时间位置重合的随机接入资源不可用。
  37. 根据权利要求30-36任一项所述的装置,其特征在于,所述确定模块,用于:
    将与所述用于下行信号的时间位置相重合的随机接入资源打孔;或者,
    将与所述用于下行信号的时间位置重合的随机接入资源、以及与所述用于下行信号的时间位置重合的随机接入资源所在时隙中与所述用于下行信号的时间位置重合的随机接入资源之前所有随机接入资源打孔;或者,
    将与所述用于下行信号的时间位置重合的随机接入资源所在时隙中所有随机接入资源打孔。
  38. 根据权利要求30-37任一项所述的装置,其特征在于,所述随机接入资源所在的时间位置信息包括,随机接入资源所在的子帧、或时隙、或正交频分复用符号。
  39. 根据权利要求30-38任一项所述的装置,其特征在于,所述随机接入资源所在的时隙与子载波间隔有关。
  40. 根据权利要求31-39任一项所述的装置,所述接收模块用于:
    接收下行信号指示信息和/或下行信号集周期信息,获取所述用于下行信号的时间位置信息。
  41. 根据权利要求30-40任一项所述的装置,其特征在于,所述用于下行信号的时间位置信息包括以下一项或多项:正交频分复用OFDM符号、微时隙、时隙、子帧、或者时间长度为H个基本时间单元的时间段,其中H大于0。
  42. 根据权利要求30-41任一项所述的装置,其特征在于,所述确定模块,用于:
    基于实际可用的随机资源,以及下行信号与随机接入资源的关联关系,确定下行信号对应的目标随机接入资源;
    所述发送模块,用于使用目标随机接入资源向所述网络设备发送所述随机接入前导。
  43. 根据权利要求30-42任一项所述的装置,所述接收模块,用于:
    接收配置信息,所述配置信息指示以下一项或多项:所述随机接入资源所在时隙与随机接入消息1的子载波间隔有关、所述随机接入资源所在时隙与随机接入消息3的子载波间隔有关、所述随机接入资源所在时隙与上行初始接入带宽的子载波间隔有关、所述随机接入资源所在时隙与下行信号的子载波间隔有关、或者所述随机接入资源所在时隙长度。
  44. 根据权利要求30-43任一项所述的装置,其特征在于,所述下行信号为同步信号块。
  45. 根据权利要求30-44任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定所述随机接入资源的时间位置与半持续调度信号的时间位置重合,优先将所述重合的资源用于随机接入。
  46. 根据权利要求30-44任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定所述随机接入资源的时间位置与半持续调度信号的时间位置重合,将与所述随机接入资源时间位置重合的半持续调度信号打孔。
  47. 一种用于通信系统中的装置,其特征在于,包括:
    确定模块,用于根据随机接入资源的时间位置信息以及用于下行信号的时间位置信息,确定实际可用的随机接入资源;其中,所述实际可用的随机接入资源的时间位置与所述用于下行信号的时间位置不重合;
    接收模块,用于基于所述实际可用的随机接入资源接收终端发送的随机接入前导。
  48. 根据权利要求47所述的装置,其特征在于,还包括发送模块,用于:
    发送随机接入配置索引,所述随机接入配置索引用于指示所述随机接入资源的时间位置信息。
  49. 根据权利要求47或48所述的装置,其特征在于,还包括发送模块,用于:
    发送随机接入前导子载波间隔,所述随机接入前导子载波间隔用于指示所述随机接入资源的时间位置信息。
  50. 根据权利要求47-49任一项所述的装置,其特征在于,所述确定模块,用于:
    如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不在所述重合的资源上接收随机接入前导。
  51. 根据权利要求47-50任一项所述的装置,其特征在于,所述发送模块,用于:
    如果确定所述随机接入资源的时间位置与所述用于下行信号的时间位置有重合,不在所述用于下行信号时间位置重合的随机接入资源所在时隙中与所述用于下行信号时间位置重合的随机接入资源之前所有的随机接入资源上接收随机接入前导。
  52. 根据权利要求47-51任一项所述的网络设备,其特征在于,所述随机接入资源所在的时间位置信息包括以下一项或多项:正交频分复用OFDM符号、微时隙、时隙、子帧、或者时间长度为H个基本时间单元的时间段,其中H大于0。
  53. 根据权利要求46-52任一项所述的网络设备,其特征在于,所述随机接入资源所在的时隙与子载波间隔有关。
  54. 根据权利要求46-53任一项所述的网络设备,所述发送模块,用于:
    发送下行信号指示信息和/或下行信号集周期信息,所述下行信号指示信息或所述下行信号集周期信息用于指示所述下行信号的时间位置信息。
  55. 根据权利要求46-54任一项所述的网络设备,其特征在于,所述用于下行信号的时间位置信息包括以下一项或多项:时隙、正交频分复用OFDM符号、上行或下行保护时间。
  56. 根据权利要求47-55任一项所述的网络设备,所述发送模块,用于:
    发送配置信息,所述配置信息指示以下一项或多项:所述随机接入资源所在时隙与随机接入消息1的子载波间隔有关、所述随机接入资源所在时隙与随机接入消息3的子载波间隔有关、所述随机接入资源所在时隙与上行初始接入带宽的子载波间隔有关、所述随机接入资源所在时隙与下行信号的子载波间隔有关、或者所述随机接入资源所在时隙长度。
  57. 根据权利要求46-56任一项所述的网络设备,其特征在于,所述下行信号为 同步信号块。
  58. 根据权利要求46-57任一项所述的网络设备,所述确定模块,用于:
    如果确定所述随机接入资源的时间位置与半持续调度信号时间位置重合,优先将所述重合的资源用于随机接入。
  59. 一种用于通信系统中的随机接入方法,其特征在于,包括:
    获取随机接入资源以及半持续调度信号的资源;
    确定所述随机接入资源与所述半持续调度信号的资源是否有重合;
    如果所述随机接入资源与所述半持续调度信号的资源有重合,优先将重合的资源用于随机接入。
  60. 一种用于通信系统中的随机接入方法,其特征在于,包括:
    获取随机接入资源以及用于下行信号的资源;
    确定所述随机接入资源以及用于下行信号的资源是否有重合;
    如果所述随机接入资源与所述用于下行信号的资源有重合,优先将重合的资源用于下行信号。
  61. 如权利要求60所述的方法,其特征在于,所述下行信号为以下一项或多项:同步信号块、系统信息块、剩余最小系统信息、第一新空口系统信息块NR SIB1、第0新空口系统信息块NR SIB0、半静态配置的下行子帧、半静态配置的时隙、半静态配置的OFDM符号、预留的下行信号。
  62. 一种装置,用于执行如权利要求1-17、或者18-29或者59-61任一项所述的方法。
  63. 一种通信装置,包括处理器和存储器,存储器存储程序,所述处理器用于执行程序以使得如权利要求1-17、或者18-29、或者59-61任一项所述的方法被执行。
  64. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-17任一项所述的方法,或者,使得所述计算机执行如权利要求18-29任一项所述的方法。
  65. 一种计算机程序产品,当其在计算机上运行时,使得所述计算机执行如权利要求1-17任一项所述的方法,或者,使得所述计算机执行如权利要求18-29任一项所述的方法。
  66. 一种通信系统,包括如权利要求30-45任一项所述的通信装置,以及如权利要求46-58任一项所述的网络设备。
PCT/CN2018/116254 2017-11-17 2018-11-19 随机接入方法、终端及网络设备 WO2019096311A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112020009816-7A BR112020009816A2 (pt) 2017-11-17 2018-11-19 método de acesso aleatório, terminal, e dispositivo de rede
EP21184439.4A EP3965520A1 (en) 2017-11-17 2018-11-19 Random access method, apparatus, and system
EP18879705.4A EP3627941B1 (en) 2017-11-17 2018-11-19 Random access method, terminal and network device
JP2019571682A JP7027466B2 (ja) 2017-11-17 2018-11-19 ランダムアクセス方法および装置
CN201880074812.7A CN111373818B (zh) 2017-11-17 2018-11-19 随机接入方法、终端及网络设备
AU2018366798A AU2018366798B2 (en) 2017-11-17 2018-11-19 Random access method, terminal and network device
CA3064617A CA3064617C (en) 2017-11-17 2018-11-19 Random access method, terminal, and network device
US16/268,309 US10582543B2 (en) 2017-11-17 2019-02-05 Random access method, terminal, and network device
US16/789,225 US11057943B2 (en) 2017-11-17 2020-02-12 Random access method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711149117.6A CN109803421A (zh) 2017-11-17 2017-11-17 随机接入方法、终端及网络设备
CN201711149117.6 2017-11-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/268,309 Continuation US10582543B2 (en) 2017-11-17 2019-02-05 Random access method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2019096311A1 true WO2019096311A1 (zh) 2019-05-23

Family

ID=66428145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116254 WO2019096311A1 (zh) 2017-11-17 2018-11-19 随机接入方法、终端及网络设备

Country Status (8)

Country Link
US (2) US10582543B2 (zh)
EP (2) EP3965520A1 (zh)
JP (1) JP7027466B2 (zh)
CN (3) CN109803421A (zh)
AU (1) AU2018366798B2 (zh)
BR (1) BR112020009816A2 (zh)
CA (1) CA3064617C (zh)
WO (1) WO2019096311A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803421A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 随机接入方法、终端及网络设备
US11405960B2 (en) * 2017-12-01 2022-08-02 Ntt Docomo, Inc. User equipment and base station
MX2020009910A (es) * 2018-03-28 2020-10-14 Ericsson Telefon Ab L M Metodo y aparato para utilizar informacion de indicacion de asignacion de recursos en el dominio del tiempo.
CN110351852B (zh) 2018-04-04 2021-12-10 华为技术有限公司 一种通信方法及装置
US20190261454A1 (en) * 2018-05-11 2019-08-22 Intel Corporation Handling radio resource control (rrc) configured channels and signals with conflict direction
US10912012B2 (en) * 2018-06-29 2021-02-02 Qualcomm Incorporated Initial network access for downlink unlicensed deployment
US11115972B2 (en) * 2018-11-02 2021-09-07 Qualcomm Incorporated Techniques for updating resource types
CN111615209B (zh) * 2019-04-29 2022-03-15 维沃移动通信有限公司 随机接入方法及装置、用户设备
EP3949661A1 (en) * 2019-05-03 2022-02-09 Apple Inc. Random access channel configuration in time domain for nr in unlicensed spectrum
CN111954308B (zh) * 2019-05-17 2022-05-31 华为技术有限公司 通信方法和通信装置
KR20200140560A (ko) * 2019-06-07 2020-12-16 삼성전자주식회사 전자 장치 및 그 시스템
CN112312553B (zh) * 2019-07-31 2024-04-12 华为技术有限公司 数据传输方法及其装置
KR20220079581A (ko) * 2020-10-08 2022-06-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2022075796A1 (ko) * 2020-10-08 2022-04-14 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
KR20230034731A (ko) * 2021-09-03 2023-03-10 삼성전자주식회사 무선 통신 시스템에서 중첩된 하향링크와 상향링크 채널 전송 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392368A (zh) * 2011-02-18 2013-11-13 株式会社Ntt都科摩 移动终端装置、基站装置及通信控制方法
CN107295662A (zh) * 2016-04-01 2017-10-24 上海贝尔股份有限公司 用于实施上行接入的方法及其装置
WO2017197125A1 (en) * 2016-05-11 2017-11-16 Convida Wireless, Llc New radio downlink control channel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299873A (zh) * 2007-04-30 2008-11-05 北京三星通信技术研究有限公司 配置随机接入信道的方法
KR101534354B1 (ko) * 2007-05-08 2015-07-06 삼성전자주식회사 Hspa에서의 전송 전력 제어 관리 방법 및 시스템
EP2661133B1 (en) * 2007-08-08 2016-06-15 Huawei Technologies Co., Ltd. Timing alignment in a radio communication system
CN101483915B (zh) * 2008-01-07 2012-06-27 三星电子株式会社 传输随机接入前导信号的设备和方法
CN101772181A (zh) * 2009-01-06 2010-07-07 三星电子株式会社 初始随机接入的方法
WO2010124228A2 (en) * 2009-04-23 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for random access in multicarrier wireless communications
WO2013094967A1 (ko) * 2011-12-19 2013-06-27 엘지전자 주식회사 Tdd 기반 무선통신 시스템에서 통신 방법 및 무선기기
WO2013113158A1 (en) * 2012-02-01 2013-08-08 Renesas Mobile Corporation Random access channel enhancement for carrier aggregation with different uplink/downlink configuration
CN104904300B (zh) * 2013-01-15 2019-10-22 华为技术有限公司 无线通信方法、用户设备和网络侧设备
EP3128782B1 (en) * 2014-04-02 2019-10-23 LG Electronics Inc. Method for transceiving signal in wireless communication system and apparatus therefor
US10070400B2 (en) * 2014-09-24 2018-09-04 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus therefor
CN105517182A (zh) 2014-09-26 2016-04-20 中兴通讯股份有限公司 一种随机接入信令的发送方法及装置
US10172162B2 (en) * 2016-01-26 2019-01-01 Lg Electronics Inc. Method for performing a random access procedure in wireless communication system and a device therefor
CN107105504B (zh) * 2016-02-19 2021-10-15 中兴通讯股份有限公司 一种系统接入的资源分配方法和装置
KR102198746B1 (ko) * 2016-03-30 2021-01-06 아이디에이씨 홀딩스, 인크. Lte(long term evolution) 지원형 nr플렉시블 무선 액세스
US11246049B2 (en) * 2017-05-05 2022-02-08 Motorola Mobility Llc Method and apparatus for transmitting a measurement report on a wireless network
CN109152029B (zh) 2017-06-16 2024-04-16 华为技术有限公司 一种通信方法、网络设备及用户设备
CN110771108B (zh) * 2017-06-27 2022-06-24 株式会社Ntt都科摩 用户装置、基站及随机接入控制方法
WO2019049352A1 (ja) 2017-09-08 2019-03-14 株式会社Nttドコモ 基地局装置及びユーザ装置
CN109474995A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种无线通信方法及装置
US10425974B2 (en) * 2017-10-02 2019-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Configuring random access channels for wireless communications
CN109803421A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 随机接入方法、终端及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103392368A (zh) * 2011-02-18 2013-11-13 株式会社Ntt都科摩 移动终端装置、基站装置及通信控制方法
CN107295662A (zh) * 2016-04-01 2017-10-24 上海贝尔股份有限公司 用于实施上行接入的方法及其装置
WO2017197125A1 (en) * 2016-05-11 2017-11-16 Convida Wireless, Llc New radio downlink control channel

Also Published As

Publication number Publication date
CN111373818B (zh) 2024-03-15
JP7027466B2 (ja) 2022-03-01
EP3627941B1 (en) 2021-08-25
CN109803421A (zh) 2019-05-24
BR112020009816A2 (pt) 2020-11-03
US20200187268A1 (en) 2020-06-11
CN111373818A (zh) 2020-07-03
US11057943B2 (en) 2021-07-06
JP2020529756A (ja) 2020-10-08
EP3627941A1 (en) 2020-03-25
CA3064617C (en) 2023-08-15
AU2018366798B2 (en) 2021-02-04
CN109756980A (zh) 2019-05-14
US10582543B2 (en) 2020-03-03
AU2018366798A1 (en) 2020-01-02
CN109756980B (zh) 2020-02-21
CA3064617A1 (en) 2019-05-23
EP3965520A1 (en) 2022-03-09
EP3627941A4 (en) 2020-07-15
US20190174550A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
AU2021215138B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
WO2019192601A1 (zh) 一种通信方法及装置
JP6949140B2 (ja) リソース割り当て方法、ユーザ機器、およびネットワークデバイス
TWI765931B (zh) 傳輸資訊的方法、終端設備和網路設備
WO2017113279A1 (zh) 系统信息传输方法、基站和用户设备
WO2019096312A1 (zh) 通信方法及装置
CN106162888B (zh) 载波聚合中的pucch资源配置方法及其设备
WO2019063007A1 (zh) 随机接入方法及装置
JP7094995B2 (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
WO2017113514A1 (zh) 传输数据的方法和用户设备
EP3648389A1 (en) Communication method, network device, and relay device
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019096282A1 (zh) 检测窗指示方法及装置
WO2020029258A1 (zh) 信息发送和接收方法以及装置
TW202008829A (zh) 資源配置的方法和終端設備
EP3506694B1 (en) Signal transmission method, terminal device, and network device
KR20220050157A (ko) 리소스 다중화 방법 및 장치
EP3557921A1 (en) Data multiplexing device, method, and communication system
WO2019095927A1 (zh) 随机接入方法、网络设备及终端
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
EP3840281A1 (en) Communication method and apparatus
JP2023513296A (ja) アップリンク伝送方法及び装置
CN116250323A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064617

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019571682

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018366798

Country of ref document: AU

Date of ref document: 20181119

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018879705

Country of ref document: EP

Effective date: 20191218

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009816

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009816

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200515