WO2017185915A1 - 分配时频资源的方法和装置 - Google Patents

分配时频资源的方法和装置 Download PDF

Info

Publication number
WO2017185915A1
WO2017185915A1 PCT/CN2017/077442 CN2017077442W WO2017185915A1 WO 2017185915 A1 WO2017185915 A1 WO 2017185915A1 CN 2017077442 W CN2017077442 W CN 2017077442W WO 2017185915 A1 WO2017185915 A1 WO 2017185915A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time
dmrs
frequency resource
threshold
Prior art date
Application number
PCT/CN2017/077442
Other languages
English (en)
French (fr)
Inventor
罗禾佳
周悦
李榕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17788568.8A priority Critical patent/EP3439332B1/en
Publication of WO2017185915A1 publication Critical patent/WO2017185915A1/zh
Priority to US16/170,730 priority patent/US10645688B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0085Timing of allocation when channel conditions change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location

Definitions

  • the present application relates to the field of communications technology and, more particularly, to a method and apparatus for allocating time-frequency resources.
  • a demodulation reference signal is a reference signal for an uplink physical channel in a communication system.
  • the network device needs to complete the estimation of the uplink data channel through the DMRS, thereby completing the demodulation work of the data.
  • the design of DMRS time domain density requires a combination of terminal device performance and redundancy overhead to meet specific scenario requirements.
  • the DMRS time domain density is fixed, and the network device cannot configure a reasonable time domain density DMRS for the terminal device according to the current motion speed of the terminal device.
  • the speed of movement of the terminal device has a certain dynamic range. If the time domain density of the DMRS is small for the terminal device, the network device cannot track the time-varying channel of the terminal device, and the control or data coherent demodulation cannot be completed; if the time domain density of the DMRS is to the terminal device If it is large, the DMRS redundancy in the time-frequency resources used by the terminal device is too large.
  • the embodiment of the present invention provides a method and a device for allocating time-frequency resources, which can ensure the channel estimation accuracy of the network device to the terminal device, and can avoid excessive DMRS overhead in the time-frequency resources used by the terminal device, thereby ensuring uplink data. Transmission efficiency.
  • a first aspect provides a method for allocating time-frequency resources, including: determining, by a network device, N types of terminal devices according to a current moving speed of the terminal device in the coverage, the N types of terminal devices and N of different time domain densities
  • the demodulation reference signal DMRS is in one-to-one correspondence; the network device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal equipment, and the first time-frequency resource group in the N time-frequency resource groups Configuring a first DMRS of the N types of DMRSs; the network device sends resource indication information to the terminal device according to the N time-frequency resource packets, where the resource indication information is used to indicate that the network device allocates a target for the terminal device
  • the frequency resource is used to indicate the N time-frequency resource groups; wherein the N is an integer greater than or equal to 2.
  • the method for allocating time-frequency resources divides the terminal device into N types of terminal devices according to the current motion speed by the network device, and divides the time-frequency resources into N time-frequency resource groups according to the N types of terminal devices.
  • the DMRS corresponding to the time domain density is configured for the time-frequency resource in the time-frequency resource group corresponding to the terminal device of the different terminal device type, and the terminal device can perform the corresponding time-frequency according to the DMRS of the time domain density corresponding to the type of the terminal device.
  • the uplink data is transmitted on the resource.
  • the terminal equipment of different current motion speeds may adopt the DMRS of the time domain density corresponding to the current motion speed of the current motion speed as needed, thereby ensuring the channel estimation accuracy of the network equipment to the terminal equipment, and avoiding the terminal.
  • the excess DMRS overhead in the time-frequency resources used by the device ensures the transmission efficiency of the uplink data.
  • the N terminal device types include: a static terminal device, a semi-static terminal device, and a dynamic terminal device, where the static terminal device is that the current motion speed is less than a first threshold.
  • a terminal device wherein the semi-static terminal device is a terminal device whose current motion speed is greater than or equal to the first threshold and less than a second threshold, where the dynamic terminal device is a terminal device whose current motion speed is greater than or equal to the second threshold, the first The threshold is less than the second threshold.
  • the N time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, where the sparse DMRS is a DMRS whose time domain density is less than a third threshold, the regular DMRS being a DMRS whose time domain density is greater than or equal to the third threshold and less than a fourth threshold, and the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold;
  • the static terminal device corresponds to the sparse DMRS
  • the semi-static terminal device corresponds to the regular DMRS
  • the dynamic terminal device corresponds to the dense DMRS
  • the third threshold is smaller than the fourth threshold.
  • the resource indication information is carried in the authorization information, and the resource indication information is used to indicate that the network device is the terminal device The target time-frequency resource is allocated; before the network device sends the resource indication information to the terminal device according to the N time-frequency resource groups, the method further includes: the network device receiving the scheduling request information sent by the terminal device, the scheduling The request information carries the terminal device type of the terminal device; the network device determines the target time-frequency resource from the N time-frequency resource packets according to the terminal device type of the terminal device.
  • the terminal device can directly carry its own terminal device type in the scheduling request information, and the network device determines the time-frequency resource used by the terminal device according to the scheduling request information, and informs the terminal device in the authorization information.
  • the network device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal device types.
  • the method further includes: the network device determining, according to the first mapping relationship information, a DMRS corresponding to the terminal device type of the terminal device from the N types of DMRSs, where the first mapping relationship information is used to indicate the N types of terminal devices a one-to-one correspondence between the type identifier of the type and the N types of DMRSs; the network device is a time-frequency resource configuration in a time-frequency resource group corresponding to the terminal device type of the terminal device, and a terminal device type of the terminal device Corresponding DMRS.
  • the resource indication information is used to indicate the N time-frequency resource groups, and the network device is configured according to the N time-frequency resources. And sending the resource indication information to the terminal device, where the network device broadcasts the resource indication information by using a physical broadcast channel PBCH.
  • the network device and the terminal device adopt an unlicensed transmission mode, and the information of the time-frequency resource group is broadcasted by the network device, and the terminal device freely competes for the time-frequency resource in the corresponding time-frequency resource group, thereby adopting the configuration corresponding time domain.
  • the time-frequency resources of the density DMRS transmit uplink data.
  • the N time-frequency resource packets are that the network device is divided according to a first grouping rule in the at least one grouping rule,
  • the resource indication information carries the rule identifier of the first grouping rule.
  • the method further includes: determining, by the network device, the first according to the second mapping relationship information. a rule identifier of the grouping rule, the second mapping relationship information is used to indicate a one-to-one correspondence between the at least one grouping rule and the at least one rule identifier.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first group The rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • the network device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal device types.
  • the method further includes: determining, by the network device, the number of terminal devices corresponding to the N types of terminal device types; and the network device, according to the N types of terminal device devices, dividing the available time-frequency resources into N time-frequency resource packets, including The network device divides the available time-frequency resources into the N time-frequency resource packets according to the N types of terminal devices and the number of the N terminal devices.
  • the grouping of the time-frequency resources by the network device can be combined with the number of terminal devices corresponding to the terminal device type and the terminal device type, and the grouping of the time-frequency resources is more flexible.
  • a method for allocating time-frequency resources including: receiving, by a terminal device, resource indication information sent by a network device, where the resource indication information is used to indicate a target time-frequency resource allocated by the network device to the terminal device or And the target time-frequency resource is determined by the terminal device according to the resource indication information, where the target time-frequency resource is corresponding to the terminal device type of the terminal device in the N time-frequency resource packets.
  • Time-frequency resources in the target time-frequency resource group, the N time-frequency resource groups are divided into N types of terminal equipment types, and the N types of terminal equipment types and different time-domain densities are demodulated reference signals DMRS.
  • the first time-frequency resource group in the N time-frequency resource packets is configured with a first DMRS of the N types of DMRSs, where the N types of terminal devices are current according to the network device in the coverage area
  • the motion speed is determined, wherein the N is an integer greater than or equal to 2; the terminal device uses the target time-frequency resource to transmit uplink data to the network device.
  • the N terminal device types include: a static terminal device, a semi-static terminal device, and a dynamic terminal device, where the static terminal device is that the current motion speed is less than a first threshold.
  • a terminal device wherein the semi-static terminal device is a terminal device whose current motion speed is greater than or equal to the first threshold and less than a second threshold, where the dynamic terminal device is a terminal device whose current motion speed is greater than or equal to the second threshold, the first The threshold is less than the second threshold.
  • the N time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, where the sparse DMRS is a DMRS whose time domain density is less than a third threshold, the regular DMRS being a DMRS whose time domain density is greater than or equal to the third threshold and less than a fourth threshold, and the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold;
  • the static terminal device corresponds to the sparse DMRS
  • the semi-static terminal device corresponds to the regular DMRS
  • the dynamic terminal device corresponds to the dense DMRS
  • the third threshold is smaller than the fourth threshold.
  • the method before the terminal device receives the resource indication information sent by the network device, the method further includes: the terminal device to the network The device sends the scheduling request information, where the scheduling request information carries the terminal device type of the terminal device; the terminal device receives the resource indication information sent by the network device, and the terminal device receives the authorization information sent by the network device, where the authorization information carries the
  • the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the terminal device.
  • the DMRS corresponding to the terminal device type of the terminal device is determined by the network device based on the first mapping relationship information,
  • the first mapping relationship information is used to indicate a one-to-one correspondence between the N types of terminal device types and the N types of DMRSs.
  • the resource indication information is used to indicate the N time-frequency resource packets, and the terminal device receives the resource indication sent by the network device.
  • the information includes: the terminal device acquires the resource indication information by using a physical broadcast channel PBCH.
  • the N time-frequency resource packets are that the network device is divided according to a first grouping rule in the at least one grouping rule,
  • the resource indication information carries a rule identifier corresponding to the first grouping rule, and the terminal device determines the target time-frequency resource according to the resource indication information, where the terminal device determines, according to the second mapping relationship information and the resource indication information,
  • the target time-frequency resource grouping, the second mapping relationship information is used to indicate a one-to-one correspondence between the at least one grouping rule and the at least one rule identifier.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first group The rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • an apparatus for allocating a time-frequency resource for performing the method of any of the above first aspect or any of the possible implementations of the first aspect is provided.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • an apparatus for allocating time-frequency resources for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect is provided.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • an apparatus for allocating time-frequency resources comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • an apparatus for allocating time-frequency resources comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system, the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal, and when the processor executes the memory stored instructions, the execution causes the processor to perform the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a seventh aspect provides a system for allocating time-frequency resources, the system comprising the apparatus of any of the foregoing third aspect or the third aspect, and any one of the fourth aspect or the fourth aspect
  • the device in an implementation manner; or the system includes the device in any one of the possible implementations of the fifth aspect or the fifth aspect, and the device in any one of the sixth or sixth aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a ninth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a method for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a correspondence between a terminal device type and a DMRS distribution according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another method for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another method for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a time-frequency resource grouping provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another time-frequency resource grouping provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another apparatus for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of another apparatus for allocating time-frequency resources according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of another apparatus for allocating time-frequency resources according to an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • SCMA sparse code multiple access
  • SCMA sparse code multiple access
  • OFDM Orthogonal frequency division multiplexing
  • FBMC filter bank multi-carrier
  • GFDM generalized frequency division multiplexing
  • filtered-OFDM, F-OFDM filtered-OFDM, F-OFDM
  • the terminal device may communicate with one or more core networks via a radio access network (RAN), and the terminal device may be referred to as an access terminal and a user equipment (user Equipment, UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • PLMN public land mobile network
  • the network device may be used to communicate with the terminal device, where the network device may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a base station in a WCDMA system ( Node B, NB), may also be an evolved base station (evolutional node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network. Network side equipment or network equipment in a future evolved PLMN network.
  • BTS base transceiver station
  • NB WCDMA system
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, or a future 5G network.
  • Network side equipment or network equipment in a future evolved PLMN network may be used to communicate with the terminal device, where the network device may be a base
  • the next generation mobile communication system will not only support traditional communication, but also support machine to machine (M2M) communication, or machine type communication (MTC) communication.
  • M2M machine to machine
  • MTC machine type communication
  • the cellular IoT (CIoT) system is an important class of MTC communication systems based on existing cellular network infrastructure.
  • the main business areas of future IoT communications may include smart meter reading, medical detection and monitoring, logistics detection, industrial inspection and monitoring, automotive networking, smart communities, and wearable device communication. Due to the wide variety of business types, there is a big difference in network requirements.
  • the communication system 100 includes a network device 102, which may include multiple antenna groups.
  • Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components related to signal transmission and reception, such as processors, modulators, multiplexers, solutions. Tuner, demultiplexer or antenna.
  • Network device 102 can communicate with a plurality of terminal devices, for example, network device 102 can communicate with terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to the associated coverage area as compared to the manner in which the network device transmits signals to all of its terminal devices through a single antenna. When the randomly dispersed terminal devices 116 and 122 in the domain transmit signals, the mobile devices in the neighboring cells may be less interfered.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire a certain number of data bits to be transmitted to the wireless communication receiving device through a channel, for example, the wireless communication transmitting device may generate, receive from another communication device, or save in a memory, etc., to be transmitted through a channel.
  • a certain number of data bits to the wireless communication receiving device may be included in a transport block or a plurality of transport blocks of data, and the transport blocks may be segmented to produce a plurality of code blocks.
  • multiple terminal devices may use the same time-frequency resource to transmit uplink data, or one time-frequency resource may be used only for one terminal device to transmit uplink data. Therefore, the network device may perform data transmission with one or more terminal devices at the same time. Since the process of transmitting data between the network device and each terminal device is similar, for ease of understanding and explanation, the following is performed in the network device and the multiple terminal devices. The process of transmitting data by a terminal device is described as an example.
  • FIG. 2 is a schematic flowchart of a method 200 for allocating time-frequency resources provided by an embodiment of the present application.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present application is not limited thereto.
  • the network device determines, according to the current motion speed of the terminal device in the coverage, N types of terminal devices, where the N types of terminal device types correspond to the N types of demodulation reference signals DMRS of different time domain densities.
  • the network device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, where the first time-frequency resource group in the N time-frequency resource groups is configured in the N types of DMRSs.
  • the first DMRS The first DMRS.
  • the network device sends the resource indication information to the terminal device according to the N time-frequency resource packets, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the terminal device or directly used to indicate the N Time-frequency resource grouping.
  • the terminal device receives the resource indication information sent by the network device, and determines a target time-frequency resource according to the resource indication information, where the target time-frequency resource is a terminal device type of the N time-frequency resource group and the terminal device The time-frequency resource in the corresponding target time-frequency resource group.
  • the terminal device uses the target time-frequency resource to transmit uplink data to the network device.
  • the available time-frequency resources are for time-frequency resources in the same communication system.
  • the N types of terminal devices are classified according to the current motion speed of the terminal device, and the current motion speed of the terminal device in the N types of terminal devices and the DMRS of the N time domain densities
  • the time domain density is proportional to the size, that is, the terminal device with a large average speed corresponds to a DMRS with a large time domain density, and the terminal device with a small average speed corresponds to a DMRS with a small time domain density.
  • FIG. 3 shows the correspondence between N types of terminal devices and N types of DMRSs with different time domain densities.
  • the current motion speed of the terminal device corresponding to the terminal device type 1 to the terminal device type N is sequentially decreased, so that the time domain density of the DMRS corresponding to the terminal device type 1 to the terminal device type N is also sequentially decreased.
  • the division of the terminal device type by the network device may be performed once every certain period, or may be performed once when a new terminal device accesses the network device, which is not limited in this embodiment of the present application.
  • time domain density distribution of the DMRS in FIG. 3 is only an example, and the foregoing N types of terminal devices may also correspond to other time domain density DMRSs, which is not limited in this embodiment of the present application.
  • the N types of terminal devices include: a static terminal device and a semi-static terminal device. And a dynamic terminal device, wherein the static terminal device is a terminal device whose current motion speed is less than a first threshold, and the semi-static terminal device is a terminal device whose current motion speed is greater than or equal to the first threshold and less than a second threshold, The dynamic terminal device is a terminal device whose current motion speed is greater than or equal to the second threshold, and the first threshold is smaller than the second threshold.
  • the N types of time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, wherein the sparse DMRS is a DMRS whose time domain density is less than a third threshold, and the regular DMRS is a time domain density.
  • a DMRS greater than or equal to the third threshold and less than the fourth threshold the dense DMRS being a DMRS whose time domain density is greater than or equal to the fourth threshold, the third threshold being less than the fourth threshold.
  • the static terminal device corresponds to the sparse DMRS
  • the semi-static terminal device corresponds to the regular DMRS for the dense DMRS.
  • the network device may divide the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, because the N types of terminal devices are in one-to-one correspondence with the N types of time domain density DMRSs. Therefore, the network device can configure DMRSs of different time domain densities for time-frequency resources in time-frequency resource packets corresponding to different terminal device types according to N types of DMRSs corresponding to N types of terminal devices, and thus, the terminal The device may use the time-frequency resource in the corresponding time-frequency resource group according to the type of the terminal device, that is, transmit the uplink data according to the DMRS corresponding to the time domain density.
  • the resource indication information herein may be understood as: after the network device learns the terminal device type of the terminal device, the network device is instructed to use the target time-frequency in the target time-frequency resource group in the N time-frequency resource packets.
  • the resource that is, the time-frequency resource in the time-frequency resource group corresponding to the terminal device type of the terminal device; the network device can also be used to indicate the N time-frequency resource groupings to the terminal device by using the resource indication information,
  • the terminal device determines a target time-frequency resource packet from the N time-frequency resource packets according to the type of the terminal device, and uses the corresponding time-frequency resource to perform uplink data transmission in a contention manner.
  • Non-spreading non-aliasing modulation means that the terminal equipment adopts single carrier transmission, and one terminal equipment corresponds to one carrier; spread spectrum aliasing modulation means that one terminal equipment corresponds to multiple carriers, and data of multiple terminal equipments is mapped to corresponding carriers by superposition.
  • the spread spectrum technology includes orthogonal frequency division multiple access (OFDMA), sparse code multiple access (SCMA), low density signature (LDS), and the like.
  • OFDMA is an orthogonal spread spectrum technique
  • SCMA and LDS are non-orthogonal spread spectrum techniques.
  • LDS single-carrier frequency-division multiple access
  • SC-FDMA single-carrier frequency-division multiple access
  • MCA message passing algorithm
  • a system using a 4*6 SCMA codebook in the case of occupying 4 narrowband carriers, 6 terminal devices according to resources indicated by the selected codebook The mapping locations are superimposed on each other to occupy the four narrowband carriers, and each terminal device occupies only two narrowband carriers of the four narrowband carriers for data transmission according to the selected codebook.
  • the minimum frequency granularity of the terminal equipment scheduling can be as low as a single carrier, that is, in the frequency domain, one terminal device uses one carrier for data transmission, and the terminal devices do not affect each other, and the terminal device
  • the time-frequency resources used are determined by the type of the terminal device.
  • the spread spectrum aliasing modulation mode taking 4 carriers as an example, 6 terminal devices occupy 4 carriers to transmit data, because they are superimposed and occupied, so the four carriers correspond to The DMRS density must be the same, that is, the terminal device types of the six terminal devices occupying the four subcarriers must be the same. Therefore, if the spread spectrum aliasing modulation mode is adopted, the same type of terminal equipment transmits using the time-frequency resources in the corresponding time-frequency resource group to ensure that the same type of terminal equipment uses the same time domain density DMRS.
  • the method before the network device sends the resource indication information to the terminal device according to the N time-frequency resource groups, the method further includes:
  • the terminal device sends scheduling request information to the network device, where the scheduling request information carries a terminal device type of the terminal device.
  • the network device receives the scheduling request information, and determines a target time-frequency resource used by the terminal device in the data transmission process according to the terminal device type of the terminal device.
  • the network device sends the authorization information to the terminal device, where the authorization information carries the resource indication information, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the terminal device.
  • the terminal device receives the authorization information, and determines the target time-frequency resource according to the indication in the authorization information.
  • the terminal device uses the target time-frequency resource to perform uplink data transmission.
  • the data transmission between the network device and the terminal device can be divided into two modes: an authorized transmission mode and a grant free mode. If the authorized transmission mode is adopted, the terminal device needs to send scheduling request information to the network device, and the network device allocates time-frequency resources to the terminal device according to the scheduling request information, and sends authorization information to the terminal device, where the authorization information is sent to the terminal device.
  • the terminal device indicates the time-frequency resource used by the terminal device.
  • the unlicensed transmission means that the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and the selected one is used.
  • the transmission resource sends uplink data.
  • the unlicensed transmission is a kind of contention transmission. Specifically, multiple terminals can simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance without requiring the base station to perform authorization.
  • the resource indication information may be used to indicate the target time-frequency resource allocated by the network device to the terminal device, and in the unlicensed transmission mode, the resource indication information may be used to indicate the N time-frequency resources. Grouping.
  • the network device in the unlicensed transmission mode, sends the resource indication information to the terminal device according to the N time-frequency resource packets, including:
  • the network device broadcasts the resource indication information by using a physical broadcast channel (PBCH), where the resource indication information is used to indicate the N time-frequency resource packets.
  • PBCH physical broadcast channel
  • the terminal device acquires the resource indication information broadcast by the network device by using the PBCH, and determines the used target time-frequency resource group according to the resource indication information and its own terminal device type.
  • the terminal device determines a target time-frequency resource from the target time-frequency resource group by using contention, and uses the target time-frequency resource to perform uplink data transmission.
  • the network device can directly broadcast the packet condition through the PBCH after the N time-frequency resource packets are divided, and the terminal device with the uplink data transmission requirement can obtain the N time-frequency resource packets by using the broadcast. And selecting, according to the type of the terminal device, the target time-frequency resource in the target time-frequency resource group corresponding to the terminal device type of the N time-frequency resource groups, and using the target time-frequency resource transmission Lose the uplink data.
  • the terminal device type of the terminal device may be represented by a type identifier corresponding to the terminal device type, and the network device divides the available time-frequency resources into N according to the N types of terminal device types. After the time-frequency resources are grouped, the method further includes:
  • the network device determines, according to the first mapping relationship information, a DMRS corresponding to the terminal device type of the terminal device, where the first mapping relationship information is used to indicate a type identifier of the N types of terminal devices and the A one-to-one correspondence between the N types of DMRSs; the network device configures, for the time-frequency resources in the time-frequency resource group corresponding to the terminal device type of the terminal device, a DMRS corresponding to the terminal device type of the terminal device.
  • the network device may store an entry for recording a one-to-one correspondence between the type identifiers of the N types of terminal device types and the N types of DMRSs, that is, the first mapping relationship.
  • N DMRSs with different time domain densities can be understood as N DMRS types, and different DMRS types correspond to different time domain density distributions.
  • An example of this entry is shown in Table 1 below.
  • Table 1 is merely an exemplary description, and the embodiment of the present application is not limited thereto.
  • a 2-bit character is used to identify the terminal device type of the terminal device, and is carried in the scheduling request information sent by the terminal device to the network device. If the network device receives “01”, the terminal device can be determined.
  • the type of the terminal device and the DMRS type corresponding to the terminal device are Type 2. It should be understood that one or more bits may be used as the type identifier to identify the terminal device type of the terminal device, as long as the type identifier can identify all the DMRS types, which is not limited in this embodiment of the present application.
  • the N time-frequency resource packets are divided by the network device according to a first grouping rule in the at least one grouping rule, where the resource indication information further includes a rule identifier corresponding to the first grouping rule .
  • the method further includes: determining, by the network device, a rule identifier of the first grouping rule according to the second mapping relationship information, where the second mapping relationship information is used Representing a one-to-one correspondence between the at least one grouping rule and the at least one rule identifier.
  • the terminal device acquires the resource indication information by using the PBCH, and determines the target time-frequency resource group according to the second mapping relationship information and the resource indication information.
  • the network device may divide the N time-frequency resource packets based on the first grouping rule in the at least one grouping rule.
  • the terminal device For the authorized transmission mode, the terminal device directly uses the time-frequency resource in the time-frequency resource group allocated by the network device in the authorization information, and does not need to know how the network device groups the available time-frequency resources.
  • the terminal device acquires information of the N time-frequency resource packets from the broadcast information, and the terminal device selects the terminal device type from the N time-frequency resource packets according to the terminal device type of the terminal device.
  • the network device may be configured to record at least one grouping rule and at least one rule.
  • the one-to-one correspondence between the identifiers is a specific example of the second mapping relationship information.
  • An example of this entry is shown in Table 2 below.
  • Rule identifier Grouping rules for time-frequency resources 00 Rule 1 01 Rule 2 10 Rule 3 11 Rule 4
  • Table 2 is merely an exemplary description, and the embodiment of the present application is not limited thereto.
  • a 2-bit character is used to identify a packet rule, which is carried in the resource indication information sent by the network device to the terminal device, and more specifically, in the PBCH broadcast information. If the terminal device receives "01", it can be determined that the grouping rule adopted by the network device is "rule 2".
  • one or more bits may be used as the rule identifier to identify the grouping rule of the time-frequency resource, as long as the rule identifier can identify all the grouping rules, which is not limited by the embodiment of the present application.
  • the network device may send the second mapping relationship information (for example, Table 2) to the terminal device by using, for example, broadcast information.
  • the second mapping relationship information for example, Table 2
  • the manner in which the terminal device listed above obtains the second mapping relationship information is only an exemplary description, and the present application is not limited thereto, as long as the mapping relationship used by the network device or the terminal device can be ensured to be the same, for example,
  • the second mapping relationship information may be configured in the terminal device by the operator or the manufacturer in advance.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first grouping rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • FIG. 6 is a schematic diagram showing that the N time-frequency resource packets respectively correspond to different frequency resources.
  • the terminal device type is three, that is, a static terminal device, a semi-static terminal device, and a dynamic terminal device.
  • the time-frequency resources of different types of terminal devices are divided according to frequency, and the frequencies are respectively arranged from high to low. Static terminal device.
  • FIG. 6 is only an example of dividing the time-frequency resource according to the frequency.
  • FIG. 7 is a schematic diagram showing that the N time-frequency resource packets respectively correspond to different time resources.
  • the terminal device type is three, that is, a static terminal device, a semi-static terminal device, and a dynamic terminal device, and time-frequency resources of different types of terminal devices are divided according to time, and terminal devices of different motion speeds occupy different time.
  • the time-frequency resources of the slots that is, the signals of different types of terminal devices are alternately transmitted in the time domain.
  • FIG. 7 is only an example of time-frequency resources divided according to time. There may be many grouping rules according to time, and there may be more terminal device types, which is not limited in this embodiment of the present application.
  • the method before the network device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, the method further includes:
  • the network device Determining, by the network device, the number of the terminal devices corresponding to the type of the N terminal devices; the network device, according to the N types of the terminal device, dividing the available time-frequency resources into N time-frequency resource packets, including: the network device according to the N The terminal device type and the N number of the terminal devices divide the available time-frequency resources into the N time-frequency resource packets.
  • the network device may consider each terminal device type when grouping available time-frequency resources.
  • the number of terminal devices is allocated to the terminal device corresponding to the terminal device type with a large number of terminal devices, and the terminal device corresponding to the terminal device type with a small number of terminal devices is allocated less time-frequency resources. For example, if there are 3 dynamic terminal devices, 2 semi-static terminal devices, and 5 static terminal devices, the network device can allocate 3/10 time-frequency to the dynamic terminal device when grouping available time-frequency resources.
  • the resource allocates 2/10 time-frequency resources for semi-static terminal devices and 5/10 time-frequency resources for static terminal devices. In this way, the network device comprehensively considers the N types of terminal devices and the number of terminal devices corresponding to the N types of terminal devices, and can more flexibly allocate time-frequency resources to meet the actual needs of the terminal devices.
  • any of the foregoing methods for grouping time-frequency resources may be used as the first grouping rule in the at least one grouping rule, and is learned by the terminal device according to the second mapping relationship information.
  • the method for allocating time-frequency resources divides the terminal device into N types of terminal devices according to the current motion speed by the network device, and divides the time-frequency resources into N time-frequency resource groups according to the N types of terminal devices.
  • the DMRS corresponding to the time domain density is configured for the time-frequency resource in the time-frequency resource group corresponding to the terminal device of the different terminal device type, and the terminal device can perform the corresponding time-frequency according to the DMRS of the time domain density corresponding to the type of the terminal device.
  • the uplink data is transmitted on the resource.
  • the terminal equipment of different current motion speeds may adopt the DMRS of the time domain density corresponding to the current motion speed of the current motion speed as needed, thereby ensuring the channel estimation accuracy of the network equipment to the terminal equipment, and avoiding the terminal.
  • the excess DMRS overhead in the time-frequency resources used by the device ensures the transmission efficiency of the uplink data.
  • FIG. 8 shows an apparatus 500 for allocating time-frequency resources according to an embodiment of the present application.
  • the apparatus 500 includes:
  • the determining unit 510 is configured to determine N types of terminal devices according to the current motion speed of the terminal device in the coverage area, where the N types of terminal device types are in one-to-one correspondence with the N types of demodulation reference signals DMRS of different time domain densities;
  • the grouping unit 520 is configured to divide the available time-frequency resources into N time-frequency resource groups according to the N types of terminal equipments, where the first time-frequency resource group in the N time-frequency resource groups is configured in the N types of DMRSs.
  • the sending unit 530 is configured to send the resource indication information to the terminal device according to the N time-frequency resource groups, where the resource indication information is used to indicate the target time-frequency resource allocated by the device to the terminal device or used to indicate the N times.
  • Frequency resource grouping
  • the N is an integer greater than or equal to 2.
  • the N types of terminal devices include: a static terminal device, a semi-static terminal device, and a dynamic terminal device, where the static terminal device is a terminal device whose current motion speed is less than a first threshold, where the semi-static terminal device is current The terminal device that is greater than or equal to the first threshold and less than the second threshold, the dynamic terminal device is a terminal device whose current motion speed is greater than or equal to the second threshold, and the first threshold is smaller than the second threshold.
  • the N types of time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, wherein the sparse DMRS is a DMRS whose time domain density is less than a third threshold, where the regular DMRS is greater than or equal to the time domain density. a third threshold and less than a fourth threshold DMRS, the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold, the third threshold is smaller than the fourth threshold; the static terminal device corresponds to a sparse DMRS, the semi-static The terminal device corresponds to the regular DMRS, and the dynamic terminal device corresponds to the dense DMRS.
  • the resource indication information is carried in the authorization information, and the resource indication information is used to indicate the target time-frequency resource allocated by the device to the terminal device;
  • the device further includes: a receiving unit, configured to receive, after the device sends the resource indication information to the terminal device according to the N time-frequency resource packets, the scheduling request information sent by the terminal device, where the scheduling request information carries the terminal device Terminal device type;
  • the determining unit is further configured to: determine the target time-frequency resource from the N time-frequency resource groups according to the terminal device type of the terminal device.
  • the terminal device type of the terminal device may be represented by a type identifier corresponding to the terminal device type, and the determining unit is further configured to:
  • the device After the device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, determining, according to the first mapping relationship information, the terminal with the terminal device from the N types of time-domain density DMRSs.
  • the apparatus further includes: a configuration unit, configured to configure a DMRS corresponding to the terminal device type of the terminal device for the time-frequency resource in the time-frequency resource packet corresponding to the terminal device type of the terminal device.
  • the resource indication information is used to indicate the information of the N time-frequency resource groups, and the sending unit is specifically configured to: broadcast the resource indication information by using a physical broadcast channel PBCH.
  • the N time-frequency resource packets are divided by the apparatus according to a first grouping rule in the at least one grouping rule, the resource indication information further includes a rule identifier corresponding to the first grouping rule;
  • the determining unit is further configured to: determine, according to the second mapping relationship information, a rule identifier of the first grouping rule, where the second mapping relationship information is used to indicate the at least one grouping rule A one-to-one correspondence with at least one rule identifier.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first grouping rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • the determining unit is further configured to: before the device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, determining the number of the terminal devices corresponding to the N types of terminal devices respectively.
  • the grouping unit is specifically configured to: divide the available time-frequency resources into the N time-frequency resource groups according to the N types of terminal devices and the number of the N terminal devices.
  • the device can be a network device.
  • the apparatus 500 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor eg, a shared processor, a proprietary processor, or a group
  • memory merge logic, and/or other suitable components that support the described functionality.
  • the device 500 may be specifically the network device in the foregoing embodiment, and the device 500 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiments. To avoid repetition, we will not repeat them here.
  • FIG. 9 shows an apparatus 600 for allocating time-frequency resources according to an embodiment of the present application.
  • the apparatus 600 includes:
  • the receiving unit 610 is configured to receive the resource indication information that is sent by the network device, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device for the device or to indicate the N time-frequency resource packets.
  • a determining unit 620 configured to determine, according to the resource indication information, a target time-frequency resource, where the target time-frequency resource is Time-frequency resources in the target time-frequency resource group corresponding to the device type of the device in the N time-frequency resource packets, the N time-frequency resource packets being divided by the network device according to the N device types, the N device types Corresponding to the N types of demodulation reference signals DMRS of different time domain densities, and the first time frequency resource group of the N time frequency resource groups is configured with the first DMRS of the N types of DMRSs, the N types of devices Determining, for the network device, according to a current moving speed of the device in the coverage, wherein the N is an integer greater than or equal to 2;
  • the transmitting unit 630 is configured to transmit uplink data to the network device by using the target time-frequency resource.
  • the N types of devices include: a static device, a semi-static device, and a dynamic device, wherein the static device is a device whose current motion speed is less than a first threshold, and the semi-static device has a current motion speed greater than or equal to the first a device that is a threshold and less than a second threshold, the dynamic device being a device whose current motion speed is greater than or equal to the second threshold, the first threshold being less than the second threshold.
  • the N types of time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, wherein the sparse DMRS is a DMRS whose time domain density is less than a third threshold, where the regular DMRS is greater than or equal to the time domain density. a third threshold and less than a fourth threshold DMRS, the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold, the third threshold is smaller than the fourth threshold; the static device corresponds to a sparse DMRS, the semi-static device In response to conventional DMRS, the dynamic device corresponds to dense DMRS.
  • the device further includes: a sending unit, configured to send, to the network device, scheduling request information, where the device carries the resource indication information sent by the network device, where the scheduling request information carries a device type of the device; Specifically, the method is: receiving the authorization information sent by the network device, where the authorization information carries the resource indication information, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the device.
  • the device type of the device may be represented by a type identifier corresponding to the device type, and the DMRS corresponding to the device type of the device is determined by the network device based on the first mapping relationship information, where the first mapping relationship information is used.
  • a one-to-one correspondence between the N types of devices and the DMRSs of the N time domain densities is indicated.
  • the resource indication information is used to indicate the N time-frequency resource groups, and the receiving unit is specifically configured to: acquire the resource indication information by using a physical broadcast channel PBCH.
  • the N time-frequency resource packets are divided by the network device according to a first grouping rule in the at least one grouping rule, the resource indication information further includes a rule identifier corresponding to the first grouping rule; the determining unit And the method is further configured to: determine, according to the second mapping relationship information and the resource indication information, the target time-frequency resource group, where the second mapping relationship information is used to indicate a one-to-one correspondence between the at least one grouping rule and the at least one rule identifier. relationship.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first grouping rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • the device can be a terminal device.
  • the apparatus 600 herein is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (eg, a shared processor, a proprietary processor, or a group) for executing one or more software or firmware programs. Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processor eg, a shared processor, a proprietary processor, or a group
  • memory merge logic, and/or other suitable components that support the described functionality.
  • the device 600 may be specifically the terminal device in the foregoing embodiment, and the device 600 may be used to perform various processes and/or steps corresponding to the terminal device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 10 shows an apparatus 700 for allocating time-frequency resources according to an embodiment of the present application.
  • the apparatus 700 includes a processor 710, a transmitter 720, a receiver 730, a memory 740, and a bus system 750.
  • Receiver 730 and memory 740 are coupled by a bus system 750 for storing instructions for executing instructions stored by the memory 740 to control the transmitter 720 to transmit signals and to control the receiver. 730 receives the signal.
  • the processor 710 is configured to determine N types of terminal devices according to a current motion speed of the terminal device in the coverage area, where the N types of terminal device types correspond to N types of demodulation reference signals DMRS of different time domain densities; The processor 710 is further configured to divide the available time-frequency resources into N time-frequency resource packets according to the N types of terminal devices, where the time-frequency resources in the N time-frequency resource packets are respectively configured with the N DMRSs.
  • the transmitter 720 is configured to send the resource indication information to the terminal device according to the N time-frequency resource packets, where the resource indication information is used to indicate the target time-frequency resource allocated by the device to the terminal device or used to indicate the N times. a frequency resource grouping; wherein the N is an integer greater than or equal to 2.
  • the N types of terminal devices include: a static terminal device, a semi-static terminal device, and a dynamic terminal device, where the static terminal device is a terminal device whose current motion speed is less than a first threshold, where the semi-static terminal device is current The terminal device that is greater than or equal to the first threshold and less than the second threshold, the dynamic terminal device is a terminal device whose current motion speed is greater than or equal to the second threshold, and the first threshold is smaller than the second threshold.
  • the N types of time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, wherein the sparse DMRS is a DMRS whose time domain density is less than a third threshold, where the regular DMRS is greater than or equal to the time domain density. a third threshold and less than a fourth threshold DMRS, the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold, the third threshold is smaller than the fourth threshold; the static terminal device corresponds to a sparse DMRS, the semi-static The terminal device corresponds to the regular DMRS, and the dynamic terminal device corresponds to the dense DMRS.
  • the resource indication information is carried in the authorization information, and the resource indication information is used to indicate the target time-frequency resource allocated by the device to the terminal device;
  • the receiver 730 is configured to: when the device is configured according to the N The frequency resource grouping, before sending the resource indication information to the terminal device, receiving the scheduling request information sent by the terminal device, where the scheduling request information carries the terminal device type of the terminal device;
  • the processor 710 is further configured to: according to the terminal device of the terminal device The device type determines the target time-frequency resource from the N time-frequency resource groups.
  • the terminal device type of the terminal device may be represented by a type identifier corresponding to the terminal device type
  • the processor 710 is further configured to: at the device, use the available time-frequency resource according to the N types of terminal device types.
  • the DMRS corresponding to the terminal device type of the terminal device is determined from the N types of DMRSs based on the first mapping relationship information, where the first mapping relationship information is used to indicate the N types of terminal devices.
  • the one-to-one correspondence between the type identifier and the N DMRSs; the processor 710 is further configured to configure, for the time-frequency resource in the time-frequency resource group corresponding to the terminal device type of the terminal device, The DMRS corresponding to the terminal device type.
  • the resource indication information is used to indicate the information of the N time-frequency resource groups, and the transmitter 720 is specifically configured to: broadcast the resource indication information by using a physical broadcast channel PBCH.
  • the N time-frequency resource packets are divided by the apparatus according to a first grouping rule in the at least one grouping rule, the resource indication information further includes a rule identifier corresponding to the first grouping rule; the processor further And determining, before the device broadcasts the resource indication information by using a physical broadcast channel PBCH, determining, according to the second mapping relationship information, a rule identifier of the first grouping rule, where the second mapping relationship information is used to indicate the at least one grouping rule A one-to-one correspondence with at least one rule identifier.
  • PBCH physical broadcast channel
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first grouping rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • the processor 710 is further configured to: before the device divides the available time-frequency resources into N time-frequency resource groups according to the N types of terminal devices, determining, by the device, the terminal devices corresponding to the N types of terminal devices respectively.
  • the processor 710 is specifically configured to: divide the available time-frequency resources into the N time-frequency resource packets according to the N types of terminal devices and the number of the N terminal devices.
  • the device can be a network device.
  • the device 700 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiments.
  • the memory 740 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 730 can be configured to execute instructions stored in a memory, and when the processor executes instructions stored in the memory, the processor is operative to perform various steps and/or processes of the method embodiments described above.
  • FIG. 11 shows an apparatus 800 for allocating time-frequency resources according to an embodiment of the present application.
  • the apparatus 800 includes a receiver 810, a processor 820, a transmitter 830, a memory 840, and a bus system 850.
  • the receiver 810, the processor 820, the transmitter 830, and the memory 840 are connected by a bus system 850 for storing instructions for executing instructions stored in the memory 840 to control the receiver 810.
  • a signal is received and the transmitter 830 is controlled to send an instruction.
  • the receiver 810 is configured to receive the resource indication information that is sent by the network device, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the device or to indicate the N time-frequency resource packets.
  • the processor 820 is configured to determine, according to the resource indication information, a target time-frequency resource, where the target time-frequency resource is a time-frequency resource in the target time-frequency resource group corresponding to the device type of the device in the N time-frequency resource packets.
  • the N time-frequency resource groups are divided into network devices according to the N types of devices, and the N device types are corresponding to the N types of demodulation reference signals DMRS of different time domain densities, and the N time-frequency resource groups are
  • the first time-frequency resource group is configured with a first one of the N types of DMRSs, the N device types being determined by the network device according to a current moving speed of the device in the coverage, wherein the N is an integer greater than or equal to 2. ;
  • the transmitter 830 is configured to transmit uplink data to the network device by using the target time-frequency resource.
  • the N types of devices include: a static device, a semi-static device, and a dynamic device, wherein the static device is a device whose current motion speed is less than a first threshold, and the semi-static device has a current motion speed greater than or equal to the first a device that is a threshold and less than a second threshold, the dynamic device being a device whose current motion speed is greater than or equal to the second threshold, the first threshold being less than the second threshold.
  • the N types of time domain density DMRSs include: a sparse DMRS, a regular DMRS, and a dense DMRS, wherein the sparse DMRS is a DMRS whose time domain density is less than a third threshold, where the regular DMRS is greater than or equal to the time domain density. a third threshold and less than a fourth threshold DMRS, the dense DMRS is a DMRS whose time domain density is greater than or equal to the fourth threshold, the third threshold is smaller than the fourth threshold; the static device corresponds to a sparse DMRS, the semi-static device In response to conventional DMRS, the dynamic device corresponds to dense DMRS.
  • the transmitter 830 is further configured to: before the device receives the resource indication information sent by the network device, send scheduling request information to the network device, where the scheduling request information carries a device type of the device; And receiving the authorization information sent by the network device, where the authorization information carries the resource indication information, where the resource indication information is used to indicate the target time-frequency resource allocated by the network device to the device.
  • the device type of the device may be represented by a type identifier corresponding to the device type, and the DMRS corresponding to the device type of the device is determined by the network device based on the first mapping relationship information, the first mapping relationship information The information is used to indicate a one-to-one correspondence between the N types of devices and the N types of DMRSs.
  • the resource indication information is used to indicate the N time-frequency resource packets
  • the receiver 810 is specifically configured to: acquire the resource indication information by using a physical broadcast channel PBCH.
  • the N time-frequency resource packets are divided by the network device according to a first grouping rule in the at least one grouping rule, the resource indication information further includes a rule identifier corresponding to the first grouping rule; the processor And the method is further configured to: determine, according to the second mapping relationship information and the resource indication information, the target time-frequency resource group, where the second mapping relationship information is used to indicate a one-to-one correspondence between the at least one grouping rule and the at least one rule identifier. relationship.
  • the first grouping rule is that the N time-frequency resource groups respectively correspond to different frequency resources, or the first grouping rule is that the N time-frequency resource groups respectively correspond to different time resources.
  • the device can be a terminal device.
  • the device 800 may be specifically the terminal device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the terminal device in the foregoing method embodiments.
  • the memory 840 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 820 can be configured to execute instructions stored in a memory, and when the processor executes the instructions, the processor can perform various steps and/or processes corresponding to the terminal devices in the above method embodiments.
  • the processor of the foregoing apparatus may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interface, device or single Indirect coupling or communication connections of the elements may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

本申请实施例提供了一种分配时频资源的方法和装置。该方法包括:网络设备根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS;该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息。本申请实施例的分配时频资源的方法和装置,能够保证网络设备对终端设备的信道估计精度,又能够避免终端设备采用的时频资源中过量的DMRS开销,从而保证上行数据的传输效率。

Description

分配时频资源的方法和装置
本申请要求于2016年04月26日提交中国专利局、申请号为201610266301.8、发明名称为“分配时频资源的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及分配时频资源的方法和装置。
背景技术
解调参考信号(demodulation reference signal,DMRS)是通信系统中上行物理信道的参考信号。网络设备需要通过DMRS来完成上行数据信道的估计,从而完成数据的解调工作。在不同系统中,DMRS时域密度的设计需要综合考虑终端设备性能以及冗余开销来满足特定场景需求。
现有技术中,对于一个通信系统而言,DMRS时域密度是固定的,网络设备无法根据终端设备的当前运动速度来为该终端设备配置合理的时域密度的DMRS。然而,在一些应用场景中,例如蜂窝物联网(cellular internet of things,CIoT),终端设备的运动速度有着一定的动态范围。若DMRS的时域密度对该终端设备来说较小,则无法满足网络设备对该终端设备时变信道的跟踪,无法完成控制或数据的相干解调;若DMRS的时域密度对该终端设备来说较大,则会造成该终端设备采用的时频资源中DMRS冗余过大。
发明内容
本申请实施例提供了一种分配时频资源的方法和装置,能够保证网络设备对终端设备的信道估计精度,又能够避免终端设备采用的时频资源中过量的DMRS开销,从而保证上行数据的传输效率。
第一方面,提供了一种分配时频资源的方法,包括:网络设备根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS;该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息,该资源指示信息用于指示该网络设备为该终端设备分配的目标时频资源或用于指示该N个时频资源分组;其中,该N为大于或等于2的整数。
本申请实施例提供的分配时频资源的方法,通过网络设备根据当前运动速度将终端设备划分为N种终端设备类型,根据N种终端设备类型将时频资源分为N个时频资源分组,再为不同终端设备类型的终端设备对应的时频资源分组中的时频资源配置对应时域密度的DMRS,终端设备就可以按照与自身终端设备类型对应的时域密度的DMRS在对应的时频资源上传输上行数据。因此,在本申请实施例中,不同当前运动速度的终端设备可以根据需要采用与自身的当前运动速度对应的时域密度的DMRS,能够保证网络设备对终端设备的信道估计精度,又能够避免终端设备采用的时频资源中过量的DMRS开销,从而保证上行数据的传输效率。
在第一方面的第一种可能的实现方式中,该N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,其中,该静态终端设备为当前运动速度小于第一阈值的终端设备,该半静态终端设备为当前运动速度大于或等于该第一阈值且小于第二阈值的终端设备,该动态终端设备为当前运动速度大于或等于该第二阈值的终端设备,该第一阈值小于该第二阈值。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS;该静态终端设备对应该稀疏DMRS,该半静态终端设备对应该常规DMRS,该动态终端设备对应该密集DMRS,该第三阈值小于该第四阈值。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,该资源指示信息携带在授权信息中,且该资源指示信息用于指示该网络设备为该终端设备分配的该目标时频资源;在该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息之前,该方法还包括:该网络设备接收该终端设备发送的调度请求信息,该调度请求信息携带该终端设备的终端设备类型;该网络设备根据该终端设备的终端设备类型,从该N个时频资源分组中确定该目标时频资源。
这样,通过采用授权传输模式,终端设备可以直接在调度请求信息中携带自身的终端设备类型,网络设备根据调度请求信息确定该终端设备所使用的时频资源,并在授权信息中告知该终端设备。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,在该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之后,该方法还包括:该网络设备基于第一映射关系信息,从该N种DMRS中确定与该终端设备的终端设备类型对应的DMRS,该第一映射关系信息用于表示该N种终端设备类型的类型标识符与该N种DMRS之间的一一对应关系;该网络设备为与该终端设备的终端设备类型对应的时频资源分组中的时频资源配置与该终端设备的终端设备类型对应的DMRS。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,该资源指示信息用于指示该N个时频资源分组,该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息,包括:该网络设备通过物理广播信道PBCH广播该资源指示信息。
在该实现方式中,网络设备和终端设备采用免授权传输模式,通过网络设备广播时频资源分组的信息,由终端设备自由竞争对应时频资源分组中的时频资源,从而采用配置对应时域密度DMRS的时频资源传输上行数据。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,该N个时频资源分组是该网络设备基于至少一个分组规则中的第一分组规则划分的,该资源指示信息携带该第一分组规则的规则标识符,在该网络设备通过物理广播信道PBCH广播该资源指示信息之前,该方法还包括:该网络设备根据第二映射关系信息,确定该第一分组规则的规则标识符,该第二映射关系信息用于指示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
结合第一方面的上述可能的实现方式,在第一方面的第七种可能的实现方式中,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
结合第一方面的上述可能的实现方式,在第一方面的第八种可能的实现方式中,在该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之前,该方法还包括:该网络设备确定该N种终端设备类型分别对应的终端设备数量;该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,包括:该网络设备根据该N种终端设备类型和N个该终端设备数量,将可用的时频资源分成该N个时频资源分组。
这样,该网络设备对时频资源的分组可以结合终端设备类型与终端设备类型对应的终端设备数量,对时频资源的分组更加灵活。
第二方面,提供了另一种分配时频资源的方法,包括:终端设备接收网络设备发送的资源指示信息,该资源指示信息用于指示该网络设备为该终端设备分配的目标时频资源或用于指示该N个时频资源分组;该终端设备根据该资源指示信息,确定目标时频资源,该目标时频资源为该N个时频资源分组中与该终端设备的终端设备类型对应的目标时频资源分组中的时频资源,该N个时频资源分组为该网络设备根据N种终端设备类型划分的,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应,且该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS,该N种终端设备类型为该网络设备根据覆盖范围内终端设备的当前运动速度确定的,其中,该N为大于或等于2的整数;该终端设备采用该目标时频资源向该网络设备传输上行数据。
在第二方面的第一种可能的实现方式中,该N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,其中,该静态终端设备为当前运动速度小于第一阈值的终端设备,该半静态终端设备为当前运动速度大于或等于该第一阈值且小于第二阈值的终端设备,该动态终端设备为当前运动速度大于或等于该第二阈值的终端设备,该第一阈值小于该第二阈值。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS;该静态终端设备对应该稀疏DMRS,该半静态终端设备对应该常规DMRS,该动态终端设备对应该密集DMRS,该第三阈值小于该第四阈值。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,在该终端设备接收网络设备发送的资源指示信息之前,该方法还包括:该终端设备向该网络设备发送调度请求信息,该调度请求信息携带该终端设备的终端设备类型;该终端设备接收网络设备发送的资源指示信息,包括:该终端设备接收该网络设备发送的授权信息,该授权信息携带该资源指示信息,该资源指示信息用于指示该网络设备为该终端设备分配的该目标时频资源。
结合第二方面的上述可能的实现方式,在第二方面的第四种可能的实现方式中,与该终端设备的终端设备类型对应的DMRS是该网络设备基于第一映射关系信息确定的, 该第一映射关系信息用于指示该N种终端设备类型与该N种DMRS之间的一一对应关系。
结合第二方面的上述可能的实现方式,在第二方面的第五种可能的实现方式中,该资源指示信息用于指示该N个时频资源分组,该终端设备接收网络设备发送的资源指示信息,包括:该终端设备通过物理广播信道PBCH获取该资源指示信息。
结合第二方面的上述可能的实现方式,在第二方面的第六种可能的实现方式中,该N个时频资源分组是该网络设备基于至少一个分组规则中的第一分组规则划分的,该资源指示信息携带与该第一分组规则对应的规则标识符,该终端设备根据该资源指示信息,确定目标时频资源,包括:该终端设备根据第二映射关系信息和该资源指示信息,确定该目标时频资源分组,该第二映射关系信息用于指示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
结合第二方面的上述可能的实现方式,在第二方面的第七种可能的实现方式中,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
第三方面,提供了一种分配时频资源的装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种分配时频资源的装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种分配时频资源的装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种分配时频资源的装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种分配时频资源的系统,该系统包括上述第三方面或第三方面的任一种可能实现方式中的装置以及第四方面或第四方面中的任一种可能实现方式中的装置;或者该系统包括上述第五方面或第五方面的任一种可能实现方式中的装置以及第六方面或第六方面中的任一种可能实现方式中的装置。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1是本申请实施例应用的通信系统的示意图。
图2是本申请实施例提供的分配时频资源的方法的示意性流程图。
图3是本申请实施例提供的终端设备类型与DMRS分布的对应关系的示意图。
图4是本申请实施例提供的另一分配时频资源的方法的示意性流程图。
图5是本申请实施例提供的另一分配时频资源的方法的示意性流程图。
图6是本申请实施例提供的时频资源分组的示意图。
图7是本申请实施例提供的另一时频资源分组的示意图。
图8是本申请实施例提供的分配时频资源的装置的示意性框图。
图9是本申请实施例提供的另一分配时频资源的装置的示意性框图。
图10是本申请实施例提供的另一分配时频资源的装置的示意性框图。
图11是本申请实施例提供的另一分配时频资源的装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、以及未来的5G通信系统等。
还应理解,本申请实施例的技术方案还可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(sparse code multiple access,SCMA)系统,当然SCMA在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(orthogonal frequency division multiplexing,OFDM)、滤波器组多载波(filter bank multi-carrier,FBMC)、通用频分复用(generalized frequency division multiplexing,GFDM)、滤波正交频分复用(filtered-OFDM,F-OFDM)系统等。
还应理解,在本申请实施例中,终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
还应理解,在本申请实施例中,网络设备可用于与终端设备通信,该网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(node B,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的PLMN网络中的网络设备等。
现有的蜂窝通信系统,如GSM、WCDMA、LTE等系统,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信系统将不仅支持传统的通信,还将支持机器到机器(machine to machine,M2M)通信,或者叫做机器类通信(machine type communication,MTC)通信。蜂窝物联网(cellular IoT,CIoT)系统是基于现有蜂窝网络基础架构的一类重要的MTC通信系统。未来物联网通信的主要业务范围可能涵盖智能抄表、医疗检测监控、物流检测、工业检测监控、汽车联网、智能社区以及可穿戴设备通信等等。由于其业务种类千差万别,对网络需求存在很大差异。
图1是本申请实施例所用的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可以对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制器、复用器、解调器、解复用器或天线等。
网络设备102可以与多个终端设备通信,例如,网络设备102可以与终端设备116和终端设备122通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区 域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取要通过信道发送至无线通信接收装置的一定数目的数据比特,例如,无线通信发送装置可生成、从其它通信装置接收、或在存储器中保存等要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
在本申请实施例中,多个终端设备可以复用同一时频资源传输上行数据,或者,一个时频资源仅用于一个终端设备传输上行数据。因此,网络设备在同一时刻可能与一个或多个终端设备进行数据传输,由于网络设备与各终端设备传输数据的过程类似,为了便于理解和说明,以下,以网络设备与多个终端设备中的某一终端设备传输数据的流程为例进行说明。
图2示出了本申请实施例提供的分配时频资源的方法200的示意性流程图。该方法200可以应用于图1所示的通信系统100,但本申请实施例不限于此。
S210,网络设备根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应。
S220,该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS。
S230,该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息,该资源指示信息用于指示该网络设备为该终端设备分配的目标时频资源或直接用于指示该N个时频资源分组。
S240,该终端设备接收该网络设备发送的资源指示信息,并根据该资源指示信息,确定目标时频资源,该目标时频资源为该N个时频资源分组中与该终端设备的终端设备类型对应的目标时频资源分组中的时频资源。
S250,该终端设备采用该目标时频资源向该网络设备传输上行数据。
这里,应理解,在不同的通信系统中可用的时频资源是不相同的,因此,本申请实施例中,可用的时频资源是针对同一个通信系统中的时频资源而言的。
具体地,在S210中,N种终端设备类型是网络设备根据终端设备的当前运动速度划分的,且该N种终端设备类型中终端设备的当前运动速度大小与该N种时域密度的DMRS的时域密度大小成正比,即平均速度大的终端设备对应时域密度大的DMRS,平均速度小的终端设备对应时域密度小的DMRS。图3示出了N种终端设备类型与不同时域密度的N种DMRS的对应关系。在图3中,终端设备类型1到终端设备类型N对应的终端设备的当前运动速度依次减小,故终端设备类型1到终端设备类型N对应的DMRS的时域密度也依次减小。
这里,网络设备对终端设备类型的划分可以每隔一定周期进行一次,也可以在每当有新的终端设备接入该网络设备时进行一次,本申请实施例对此不作限定。
应理解,图3中DMRS的时域密度分布仅仅是作为一个示例,上述N种终端设备类型还可以对应其他时域密度大小的DMRS,本申请实施例对此不作限定。
作为一个可选的实施例,该N种终端设备类型包括:静态终端设备、半静态终端设 备和动态终端设备,其中,该静态终端设备为当前运动速度小于第一阈值的终端设备,该半静态终端设备为当前运动速度大于或等于该第一阈值且小于第二阈值的终端设备,该动态终端设备为当前运动速度大于或等于该第二阈值的终端设备,该第一阈值小于该第二阈值。
作为一个可选的实施例,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS,该第三阈值小于该第四阈值。该静态终端设备对应该稀疏DMRS,该半静态终端设备对应该常规DMRS,该动态终端设备对于该密集DMRS。
具体地,在S220中,网络设备根据该N种终端设备类型可以将可用的时频资源分成N个时频资源分组,由于该N种终端设备类型与N种时域密度的DMRS是一一对应的关系,因此,该网络设备可以根据N种终端设备类型对应的N种DMRS,为不同终端设备类型对应的时频资源分组中的时频资源分别配置不同时域密度的DMRS,从而,该终端设备可用根据自身的终端设备类型,采用对应的时频资源分组中的时频资源,即按照对应时域密度的DMRS传输上行数据。
在S230中,这里的资源指示信息可以理解为网络设备在获知了该终端设备的终端设备类型后,指示该终端设备使用该N个时频资源分组中的目标时频资源分组中的目标时频资源,即与该终端设备的终端设备类型对应的时频资源分组中的时频资源;也可以理解为该网络设备通过该资源指示信息向该终端设备指示该N个时频资源分组的情况,由该终端设备根据自身的终端设备类型,从该N个时频资源分组中确定目标时频资源分组,通过竞争方式采用对应的时频资源进行上行数据的传输。
目前,通信系统常用的空口技术可以分为非扩频无混叠调制以及扩频混叠调制两种方式。非扩频无混叠调制是指终端设备采用单载波传输,一个终端设备对应一个载波;扩频混叠调制是指一个终端设备对应多个载波,多个终端设备的数据通过叠加映射到对应载波上。具体地,扩频技术包含正交频分多址(orthogonal frequency division multiple access,OFDMA)、稀疏码多址(sparse code multiple access,SCMA)、低密度特征码(low density signature,LDS)等,其中OFDMA为正交扩频技术、SCMA和LDS为非正交扩频技术。LDS和SCMA的区别在于扩频序列不同。对于LTE系统,上行传输采用单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)技术,其通过给不同的终端设备分配不同的子载波,从而实现在单个子载波上的传输。LDS是一种特殊的码分多址(code division multiple access,CDMA)传播序列,它在一个大的特征长度内仅分布少量的非零元素,从而能通过信息传递算法(message passing algorithm,MPA)完成多用户信息的检测。SCMA是一种利用码本稀疏特性的非正交多接入方法,例如,使用4*6SCMA码本的系统,在占用4个窄带载波情况下,6个终端设备根据所选码本指示的资源映射位置相互叠加的占用这4个窄带载波,每个终端设备根据所选码本,只占用4个窄带载波中的2个窄带载波来进行数据传输。
在非扩频无混叠调制方式下,终端设备调度最小频率颗粒度可以低至单载波,即在频域上,一个终端设备使用一个载波进行数据传输,终端设备之间互不影响,终端设备所采用的时频资源由该终端设备的类型决定。而在扩频混叠调制方式下,以4个载波为例,6个终端设备占用4个载波传输数据,因为是相互叠加占用,故这4个载波对应的 DMRS密度必须相同,也就是说,同时占用这4个子载波的6个终端设备的终端设备类型必须相同。因此,若采用扩频混叠调制方式,相同类型的终端设备采用对应时频资源分组中的时频资源进行传输,以确保这些相同类型的终端设备使用相同时域密度的DMRS。
作为一个可选的实施例,如图4所示,在该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息之前,该方法还包括:
S310,该终端设备向该网络设备发送调度请求信息,该调度请求信息携带该终端设备的终端设备类型。
S320,该网络设备接收该调度请求信息,并根据该终端设备的终端设备类型,确定该终端设备在数据传输过程中所采用的目标时频资源。
S330,该网络设备向该终端设备发送授权信息,该授权信息携带该资源指示信息,该资源指示信息用于指示该网络设备为该终端设备分配的该目标时频资源。
S340,该终端设备接收该授权信息,并根据该授权信息中的指示,确定该目标时频资源。
S350,该终端设备采用该目标时频资源进行上行数据的传输。
应理解,网络设备与终端设备之间的数据传输可以分为两种模式:授权传输模式和免授权传输模式(grant free)。若采用授权传输模式,则需要终端设备需要向网络设备发送调度请求信息,网络设备根据该调度请求信息为该终端设备分配时频资源,并向该终端设备发送授权信息,在授权信息中向该终端设备指示该终端设备采用的时频资源。
若采用免授权传输模式,终端设备无需向网络设备发送调度请求信息,网络设备也无需向终端设备发送授权信息。免授权传输是指网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。免授权传输是一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
因此,在授权传输模式下,上述资源指示信息可用于指示该网络设备为该终端设备分配的目标时频资源;而在免授权传输模式下,上述资源指示信息可用于指示该N个时频资源分组。
作为一个可选的实施例,如图5所示,在采用免授权传输模式下,该网络设备根据该N个时频资源分组,向终端设备发送资源指示信息,包括:
S410,该网络设备通过物理广播信道(physical broadcast channel,PBCH)广播该资源指示信息,该资源指示信息用于指示该N个时频资源分组。
S420,该终端设备通过PBCH获取该网络设备广播的该资源指示信息,并根据该资源指示信息和自身的终端设备类型,确定所采用的目标时频资源分组。
S430,该终端设备通过竞争从该目标时频资源分组中确定目标时频资源,并采用该目标时频资源进行上行数据的传输。
具体地,在该实施例中,网络设备在划分完N个时频资源分组之后可以直接将分组情况通过PBCH进行广播,有上行数据传输需求的终端设备可以通过广播获取该N个时频资源分组的信息,再根据自身的终端设备类型,从该N个时频资源分组中选择与自身的终端设备类型对应的目标时频资源分组中的目标时频资源,并采用该目标时频资源传 输上行数据。
作为一个可选的实施例,该终端设备的终端设备类型可以采用该终端设备类型对应的类型标识符来表示,在该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之后,该方法还包括:
该网络设备基于第一映射关系信息,从该N种DMRS中确定与该终端设备的终端设备类型对应的DMRS,该第一映射关系信息用于表示该N种终端设备类型的类型标识符与该N种DMRS之间的一一对应关系;该网络设备为与该终端设备的终端设备类型对应的时频资源分组中的时频资源配置与该终端设备的终端设备类型对应的DMRS。
具体地,在本申请实施例中,网络设备中可以存储用于记录该N种终端设备类型的类型标识符与该N种DMRS之间的一一对应关系的表项,即为第一映射关系信息的一种具体示例。不同时域密度的N种DMRS可以理解为N种DMRS类型,不同DMRS类型对应不同时域密度分布。以下表1示出了该表项的一个例子。
表1
类型标识符 DMRS类型
00 类型1
01 类型2
10 类型3
应理解,表1仅为示例性说明,本申请实施例不限于此。例如,在表1中采用2比特字符来标识终端设备的终端设备类型,携带在终端设备发送给网络设备的调度请求信息中,若该网络设备收到“01”,便可以确定该终端设备的终端设备类型以及该终端设备对应的DMRS类型为“类型2”。应理解,也可以采用一个比特或更多比特作为类型标识符,来标识终端设备的终端设备类型,只要该类型标识符能够标识完所有的DMRS类型即可,本申请实施例对此不作限定。
作为一个可选的实施例,该N个时频资源分组是该网络设备基于至少一个分组规则中的第一分组规则划分的,该资源指示信息还包括与该第一分组规则对应的规则标识符。在该网络设备通过物理广播信道PBCH广播该资源指示信息之前,该方法还包括:该网络设备根据第二映射关系信息,确定该第一分组规则的规则标识符,该第二映射关系信息用于表示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。该终端设备通过PBCH获取该资源指示信息,并根据该第二映射关系信息和该资源指示信息,确定该目标时频资源分组。
具体地,网络设备可以基于至少一个分组规则中的第一分组规则划分N个时频资源分组。对于授权传输模式而言,终端设备直接使用网络设备在授权信息中为其分配好的时频资源分组中的时频资源,不需要获知网络设备是如何对可用的时频资源进行分组的。而对于免授权传输模式来说,终端设备从广播信息中获取N个时频资源分组的信息,该终端设备根据自身的终端设备类型从该N个时频资源分组中选择与自身的终端设备类型对应的目标时频资源分组,再采用该目标时频资源分组中的时频资源进行上行数据的传输,故在这种传输模式下,该终端设备需要获知网络设备是如何对可用的时频资源分组的。
在本申请实施例中,网络设备中可以存储用于记录至少一个分组规则与至少一个规 则标识符之间的一一对应关系的表项,即为第二映射关系信息的一种具体示例。以下表2示出了该表项的一个例子。
表2
规则标识符 时频资源的分组规则
00 规则1
01 规则2
10 规则3
11 规则4
应理解,表2仅为示例性说明,本申请实施例不限于此。例如,在表2中采用2比特字符来标识分组规则,携带在网络设备发送给终端设备的资源指示信息中,更具体地,携带在PBCH广播信息中。若该终端设备收到“01”,便可以确定该网络设备采用的分组规则为“规则2”。应理解,也可以采用一个比特或更多比特作为规则标识符,来标识时频资源的分组规则,只要该规则标识符能够标识完所有的分组规则即可,本申请实施例对此不作限定。
网络设备可以通过例如广播信息等,将上述第二映射关系信息(例如,表2)下发给终端设备。
应理解,以上列举的终端设备获取第二映射关系信息的方式仅为示例性说明,本申请并不限定于此,只要能够确保网络设备或终端设备所使用的映射关系相同即可,例如,还可以由运营商或生产厂家预先将该第二映射关系信息配置在终端设备中。
作为一个可选的实施例,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
图6示出了该N个时频资源分组分别对应不同的频率资源的示意图。在图6中,终端设备类型为三个,即静态终端设备、半静态终端设备和动态终端设备,将不同类型的终端设备的时频资源按照频率进行划分,频率由高至低分别排列高速至静态的终端设备。应理解,图6仅仅为按照频率划分时频资源的一个示例,按照频率的分组规则可以有很多个,终端设备类型也可以有更多,本申请实施例对此不作限定。
图7示出了该N个时频资源分组分别对应不同的时间资源的示意图。在图7中,终端设备类型为三个,即静态终端设备、半静态终端设备和动态终端设备,将不同类型的终端设备的时频资源按照时间进行划分,不同运动速度的终端设备占用不同时隙的时频资源,即不同类型的终端设备的信号在时域上交替传递。应理解,图7仅仅为按照时间划分时频资源的一个示例,按照时间的分组规则可以有很多个,终端设备类型也可以有更多,本申请实施例对此不作限定。
作为一个可选的实施例,在该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之前,该方法还包括:
该网络设备确定该N种终端设备类型分别对应的终端设备数量;该网络设备根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,包括:该网络设备根据该N种终端设备类型和N个该终端设备数量,将可用的时频资源分成该N个时频资源分组。
具体地,网络设备在对可用的时频资源进行分组时可以考虑各个终端设备类型对应 的终端设备数量,为终端设备数量较多的终端设备类型对应的终端设备分配较多的时频资源,为终端设备数量较少的终端设备类型对应的终端设备分配较少的时频资源。例如,动态终端设备有3个,半静态终端设备有2个,静态终端设备有5个,那么网络设备在对可用的时频资源进行分组时,可以为动态终端设备分配3/10的时频资源,为半静态终端设备分配2/10的时频资源,为静态终端设备分配5/10的时频资源。这样,网络设备综合考虑了N种终端设备类型以及该N种终端设备类型分别对应的终端设备数量,能够更加灵活分配时频资源,满足终端设备的实际需求。
应理解,上述任何一种对时频资源分组的方式都可以作为至少一个分组规则中的第一分组规则,由终端设备根据第二映射关系信息获知。
本申请实施例提供的分配时频资源的方法,通过网络设备根据当前运动速度将终端设备划分为N种终端设备类型,根据N种终端设备类型将时频资源分为N个时频资源分组,再为不同终端设备类型的终端设备对应的时频资源分组中的时频资源配置对应时域密度的DMRS,终端设备就可以按照与自身终端设备类型对应的时域密度的DMRS在对应的时频资源上传输上行数据。因此,在本申请实施例中,不同当前运动速度的终端设备可以根据需要采用与自身的当前运动速度对应的时域密度的DMRS,能够保证网络设备对终端设备的信道估计精度,又能够避免终端设备采用的时频资源中过量的DMRS开销,从而保证上行数据的传输效率。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图7,详细描述了根据本申请实施例的分配时频资源的方法,下面将结合图8至图11,详细描述根据本申请实施例的分配时频资源的装置。
图8示出了本申请实施例提供的分配时频资源的装置500,该装置500包括:
确定单元510,用于根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;
分组单元520,用于根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS;
发送单元530,用于根据该N个时频资源分组,向终端设备发送资源指示信息,该资源指示信息用于指示该装置为该终端设备分配的目标时频资源或用于指示该N个时频资源分组;
其中,该N为大于或等于2的整数。
可选地,该N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,其中,该静态终端设备为当前运动速度小于第一阈值的终端设备,该半静态终端设备为当前运动速度大于或等于该第一阈值且小于第二阈值的终端设备,该动态终端设备为当前运动速度大于或等于该第二阈值的终端设备,该第一阈值小于该第二阈值。
可选地,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS,该第三阈值小于该第四阈值;该静态终端设备对应该稀疏DMRS,该半静态终端设备对应该常规DMRS,该动态终端设备对应该密集DMRS。
可选地,该资源指示信息携带在授权信息中,且该资源指示信息用于指示该装置为该终端设备分配的该目标时频资源;
该装置还包括:接收单元,用于在该装置根据该N个时频资源分组,向终端设备发送资源指示信息之前,接收该终端设备发送的调度请求信息,该调度请求信息携带该终端设备的终端设备类型;
该确定单元还用于:根据该终端设备的终端设备类型,从该N个时频资源分组中确定该目标时频资源。
可选地,该终端设备的终端设备类型可以用与该终端设备类型对应的类型标识符表示,该确定单元还用于:
在该装置根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之后,基于第一映射关系信息,从该N种时域密度的DMRS中确定与该终端设备的终端设备类型对应的DMRS,该第一映射关系信息用于表示该N种终端设备类型的类型标识符与该N种时域密度的DMRS之间的一一对应关系;
该装置还包括:配置单元,用于为与该终端设备的终端设备类型对应的时频资源分组中的时频资源配置与该终端设备的终端设备类型对应的DMRS。
可选地,该资源指示信息用于指示该N个时频资源分组的信息,该发送单元具体用于:通过物理广播信道PBCH广播该资源指示信息。
可选地,该N个时频资源分组是该装置基于至少一个分组规则中的第一分组规则划分的,该资源指示信息还包括与该第一分组规则对应的规则标识符;在该装置通过物理广播信道PBCH广播该资源指示信息之前,该确定单元还用于:根据第二映射关系信息,确定该第一分组规则的规则标识符,该第二映射关系信息用于指示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
可选地,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
可选地,该确定单元还用于:在该装置根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之前,确定该N种终端设备类型分别对应的终端设备数量;该分组单元具体用于:根据该N种终端设备类型和N个该终端设备数量,将可用的时频资源分成该N个时频资源分组。
可选地,该装置可以为网络设备。
应理解,这里的装置500以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的网络设备,装置500可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图9示出了本申请实施例提供的分配时频资源的装置600,该装置600包括:
接收单元610,用于接收网络设备发送的资源指示信息,该资源指示信息用于指示该网络设备为该装置分配的目标时频资源或用于指示该N个时频资源分组;
确定单元620,用于根据该资源指示信息,确定目标时频资源,该目标时频资源为该 N个时频资源分组中与该装置的装置类型对应的目标时频资源分组中的时频资源,该N个时频资源分组为该网络设备根据N种装置类型划分的,该N种装置类型与不同时域密度的N种解调参考信号DMRS一一对应,且该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一DMRS,该N种装置类型为该网络设备根据覆盖范围内装置的当前运动速度确定的,其中,该N为大于或等于2的整数;
传输单元630,用于采用该目标时频资源向该网络设备传输上行数据。
可选地,该N种装置类型包括:静态装置、半静态装置和动态装置,其中,该静态装置为当前运动速度小于第一阈值的装置,该半静态装置为当前运动速度大于或等于该第一阈值且小于第二阈值的装置,该动态装置为当前运动速度大于或等于该第二阈值的装置,该第一阈值小于该第二阈值。
可选地,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS,该第三阈值小于该第四阈值;该静态装置对应该稀疏DMRS,该半静态装置对应该常规DMRS,该动态装置对应该密集DMRS。
可选地,该装置还包括:发送单元,用于在该装置接收网络设备发送的资源指示信息之前,向该网络设备发送调度请求信息,该调度请求信息携带该装置的装置类型;该接收单元具体用于:接收该网络设备发送的授权信息,该授权信息携带该资源指示信息,该资源指示信息用于指示该网络设备为该装置分配的该目标时频资源。
可选地,该装置的装置类型可以用与该装置类型对应的类型标识符表示,该装置的装置类型对应的DMRS是该网络设备基于第一映射关系信息确定的,该第一映射关系信息用于指示该N种装置类型与该N种时域密度的DMRS之间的一一对应关系。
可选地,该资源指示信息用于指示该N个时频资源分组,该接收单元具体用于:通过物理广播信道PBCH获取该资源指示信息。
可选地,该N个时频资源分组是该网络设备基于至少一个分组规则中的第一分组规则划分的,该资源指示信息还包括与该第一分组规则对应的规则标识符;该确定单元还用于:根据第二映射关系信息和该资源指示信息,确定该目标时频资源分组,该第二映射关系信息用于指示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
可选地,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
可选地,该装置可以为终端设备。
应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的终端设备,装置600可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图10示出了本申请实施例提供的分配时频资源的装置700。该装置700包括处理器710、发送器720、接收器730、存储器740和总线系统750。其中,处理器710、发送器 720、接收器730和存储器740通过总线系统750相连,该存储器740用于存储指令,该处理器710用于执行该存储器740存储的指令,以控制该发送器720发送信号,并控制该接收器730接收信号。
其中,该处理器710用于根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,该N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;该处理器710还用于根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组,该N个时频资源分组中的时频资源分别配置有该N种DMRS。
该发送器720用于根据该N个时频资源分组,向终端设备发送资源指示信息,该资源指示信息用于指示该装置为该终端设备分配的目标时频资源或用于指示该N个时频资源分组;其中,该N为大于或等于2的整数。
可选地,该N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,其中,该静态终端设备为当前运动速度小于第一阈值的终端设备,该半静态终端设备为当前运动速度大于或等于该第一阈值且小于第二阈值的终端设备,该动态终端设备为当前运动速度大于或等于该第二阈值的终端设备,该第一阈值小于该第二阈值。
可选地,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS,该第三阈值小于该第四阈值;该静态终端设备对应该稀疏DMRS,该半静态终端设备对应该常规DMRS,该动态终端设备对应该密集DMRS。
可选地,该资源指示信息携带在授权信息中,且该资源指示信息用于指示该装置为该终端设备分配的该目标时频资源;该接收器730用于在该装置根据该N个时频资源分组,向终端设备发送资源指示信息之前,接收该终端设备发送的调度请求信息,该调度请求信息携带该终端设备的终端设备类型;该处理器710还用于:根据该终端设备的终端设备类型,从该N个时频资源分组中确定该目标时频资源。
可选地,该终端设备的终端设备类型可以用与该终端设备类型对应的类型标识符表示,该处理器710还用于:在该装置根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之后,基于第一映射关系信息,从该N种DMRS中确定与该终端设备的终端设备类型对应的DMRS,该第一映射关系信息用于指示该N种终端设备类型的类型标识符与该N种DMRS之间的一一对应关系;该处理器710还用于为与该终端设备的终端设备类型对应的时频资源分组中的时频资源配置与该终端设备的终端设备类型对应的DMRS。
可选地,该资源指示信息用于指示该N个时频资源分组的信息,该发送器720具体用于:通过物理广播信道PBCH广播该资源指示信息。
可选地,该N个时频资源分组是该装置基于至少一个分组规则中的第一分组规则划分的,该资源指示信息还包括与该第一分组规则对应的规则标识符;该处理器还用于:在该装置通过物理广播信道PBCH广播该资源指示信息之前,根据第二映射关系信息,确定该第一分组规则的规则标识符,该第二映射关系信息用于表示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
可选地,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
可选地,该处理器710还用于:在该装置根据该N种终端设备类型,将可用的时频资源分成N个时频资源分组之前,确定该N种终端设备类型分别对应的终端设备数量;该处理器710具体用于:根据该N种终端设备类型和N个该终端设备数量,将可用的时频资源分成该N个时频资源分组。
可选地,该装置可以为网络设备。
应理解,装置700可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中与网络设备对应的各个步骤和/或流程。可选地,该存储器740可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器730可以用于执行存储器中存储的指令,并且当该处理器执行存储器中存储的指令时,该处理器用于执行上述方法实施例的各个步骤和/或流程。
图11示出了本申请实施例提供的分配时频资源的装置800。该装置800包括接收器810、处理器820、发送器830、存储器840和总线系统850。其中,接收器810、处理器820、发送器830和存储器840通过总线系统850相连,该存储器840用于存储指令,该处理器820用于执行该存储器840存储的指令,以控制该接收器810接收信号,并控制该发送器830发送指令。
其中,该接收器810用于接收网络设备发送的资源指示信息,该资源指示信息用于指示该网络设备为该装置分配的目标时频资源或用于指示该N个时频资源分组;
该处理器820用于根据该资源指示信息,确定目标时频资源,该目标时频资源为该N个时频资源分组中与该装置的装置类型对应的目标时频资源分组中的时频资源,该N个时频资源分组为网络设备根据N种装置类型划分的,该N种装置类型与不同时域密度的N种解调参考信号DMRS一一对应,且该N个时频资源分组中的第一时频资源分组配置有该N种DMRS中的第一,该N种装置类型为该网络设备根据覆盖范围内装置的当前运动速度确定的,其中,该N为大于或等于2的整数;
该发送器830用于采用该目标时频资源向该网络设备传输上行数据。
可选地,该N种装置类型包括:静态装置、半静态装置和动态装置,其中,该静态装置为当前运动速度小于第一阈值的装置,该半静态装置为当前运动速度大于或等于该第一阈值且小于第二阈值的装置,该动态装置为当前运动速度大于或等于该第二阈值的装置,该第一阈值小于该第二阈值。
可选地,该N种时域密度的DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,其中,该稀疏DMRS为时域密度小于第三阈值的DMRS,该常规DMRS为时域密度大于或等于该第三阈值且小于第四阈值的DMRS,该密集DMRS为时域密度大于或等于该第四阈值的DMRS,该第三阈值小于该第四阈值;该静态装置对应该稀疏DMRS,该半静态装置对应该常规DMRS,该动态装置对应该密集DMRS。
可选地,该发送器830还用于在该装置接收网络设备发送的资源指示信息之前,向该网络设备发送调度请求信息,该调度请求信息携带该装置的装置类型;该接收器810具体用于:接收该网络设备发送的授权信息,该授权信息携带该资源指示信息,该资源指示信息用于指示该网络设备为该装置分配的该目标时频资源。
可选地,该装置的装置类型可以用与该装置类型对应的类型标识符表示,该装置的装置类型对应的DMRS是该网络设备基于第一映射关系信息确定的,该第一映射关系信 息用于指示该N种装置类型与该N种DMRS之间的一一对应关系。
可选地,该资源指示信息用于指示该N个时频资源分组,该接收器810具体用于:通过物理广播信道PBCH获取该资源指示信息。
可选地,该N个时频资源分组是该网络设备基于至少一个分组规则中的第一分组规则划分的,该资源指示信息还包括与该第一分组规则对应的规则标识符;该处理器还用于:根据第二映射关系信息和该资源指示信息,确定该目标时频资源分组,该第二映射关系信息用于指示该至少一个分组规则与至少一个规则标识符之间的一一对应关系。
可选地,该第一分组规则为该N个时频资源分组分别对应不同的频率资源,或该第一分组规则为该N个时频资源分组分别对应不同的时间资源。
可选地,该装置可以为终端设备。
应理解,装置800可以具体为上述实施例中的终端设备,并且可以用于执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器840可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器820可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与终端设备对应的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单 元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种分配时频资源的方法,其特征在于,包括:
    网络设备根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,所述N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;
    所述网络设备根据所述N种终端设备类型,将可用的时频资源分成N个时频资源分组,所述N个时频资源分组中的第一时频资源分组配置有所述N种DMRS中的第一DMRS;
    所述网络设备根据所述N个时频资源分组,向终端设备发送资源指示信息,所述资源指示信息用于指示所述网络设备为所述终端设备分配的目标时频资源或用于指示所述N个时频资源分组;
    其中,所述N为大于或等于2的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,
    其中,所述静态终端设备为当前运动速度小于第一阈值的终端设备,所述半静态终端设备为当前运动速度大于或等于所述第一阈值且小于第二阈值的终端设备,所述动态终端设备为当前运动速度大于或等于所述第二阈值的终端设备,所述第一阈值小于所述第二阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述N种DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,
    其中,所述稀疏DMRS为时域密度小于第三阈值的DMRS,所述常规DMRS为时域密度大于或等于所述第三阈值且小于第四阈值的DMRS,所述密集DMRS为时域密度大于或等于所述第四阈值的DMRS,所述第三阈值小于所述第四阈值;
    所述静态终端设备对应所述稀疏DMRS,所述半静态终端设备对应所述常规DMRS,所述动态终端设备对应所述密集DMRS。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述资源指示信息携带在授权信息中,且所述资源指示信息用于指示所述网络设备为所述终端设备分配的所述目标时频资源;
    在所述网络设备根据所述N个时频资源分组,向终端设备发送资源指示信息之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的调度请求信息,所述调度请求信息携带所述终端设备的终端设备类型;
    所述网络设备根据所述终端设备的终端设备类型,从所述N个时频资源分组中确定所述目标时频资源。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述资源指示信息用于指示所述N个时频资源分组,
    所述网络设备根据所述N个时频资源分组,向终端设备发送资源指示信息,包括:
    所述网络设备通过物理广播信道PBCH广播所述资源指示信息。
  6. 一种分配时频资源的方法,其特征在于,包括:
    终端设备接收网络设备发送的资源指示信息,所述资源指示信息用于指示所述网络设备为所述终端设备分配的目标时频资源或用于指示所述N个时频资源分组;
    所述终端设备根据所述资源指示信息,确定目标时频资源,所述目标时频资源为所述N个时频资源分组中与所述终端设备的终端设备类型对应的目标时频资源分组中的时频资源,所述N个时频资源分组为所述网络设备根据N种终端设备类型划分的,所述N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应,且所述N个时频资源分组中的第一时频资源分组配置有所述N种DMRS中的第一DMRS,所述N种终端设备类型为所述网络设备根据覆盖范围内终端设备的当前运动速度确定的,其中,所述N为大于或等于2的整数;
    所述终端设备采用所述目标时频资源向所述网络设备传输上行数据。
  7. 根据权利要求6所述的方法,其特征在于,所述N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,
    其中,所述静态终端设备为当前运动速度小于第一阈值的终端设备,所述半静态终端设备为当前运动速度大于或等于所述第一阈值且小于第二阈值的终端设备,所述动态终端设备为当前运动速度大于或等于所述第二阈值的终端设备,所述第一阈值小于所述第二阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述N种DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,
    其中,所述稀疏DMRS为时域密度小于第三阈值的DMRS,所述常规DMRS为时域密度大于或等于所述第三阈值且小于第四阈值的DMRS,所述密集DMRS为时域密度大于或等于所述第四阈值的DMRS,所述第三阈值小于所述第四阈值;
    所述静态终端设备对应所述稀疏DMRS,所述半静态终端设备对应所述常规DMRS,所述动态终端设备对应所述密集DMRS。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,在所述终端设备接收网络设备发送的资源指示信息之前,所述方法还包括:
    所述终端设备向所述网络设备发送调度请求信息,所述调度请求信息携带所述终端设备的终端设备类型;
    所述终端设备接收网络设备发送的资源指示信息,包括:
    所述终端设备接收所述网络设备发送的授权信息,所述授权信息携带所述资源指示信息,所述资源指示信息用于指示所述网络设备为所述终端设备分配的所述目标时频资源。
  10. 根据权利要求6至8中任一项所述的方法,其特征在于,所述资源指示信息用于指示所述N个时频资源分组,
    所述终端设备接收网络设备发送的资源指示信息,包括:
    所述终端设备通过物理广播信道PBCH获取所述资源指示信息。
  11. 一种分配时频资源的装置,其特征在于,包括接收器、发送器、处理器和存储器,其中,所述存储器用于存储指令,所述处理器用于调用所述指令执行以下处理:
    根据覆盖范围内终端设备的当前运动速度,确定N种终端设备类型,所述N种终端设备类型与不同时域密度的N种解调参考信号DMRS一一对应;
    根据所述N种终端设备类型,将可用的时频资源分成N个时频资源分组,所述N个时频资源分组中的第一时频资源分组配置有所述N种DMRS中的第一DMRS;
    指示所述发送器根据所述N个时频资源分组,向终端设备发送资源指示信息,所述 资源指示信息用于指示所述装置为所述终端设备分配的目标时频资源或用于指示所述N个时频资源分组;
    其中,所述N为大于或等于2的整数。
  12. 根据权利要求11所述的装置,其特征在于,所述N种终端设备类型包括:静态终端设备、半静态终端设备和动态终端设备,
    其中,所述静态终端设备为当前运动速度小于第一阈值的终端设备,所述半静态终端设备为当前运动速度大于或等于所述第一阈值且小于第二阈值的终端设备,所述动态终端设备为当前运动速度大于或等于所述第二阈值的终端设备,所述第一阈值小于所述第二阈值。
  13. 根据权利要求12所述的装置,其特征在于,所述N种DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,
    其中,所述稀疏DMRS为时域密度小于第三阈值的DMRS,所述常规DMRS为时域密度大于或等于所述第三阈值且小于第四阈值的DMRS,所述密集DMRS为时域密度大于或等于所述第四阈值的DMRS,所述第三阈值小于所述第四阈值;
    所述静态终端设备对应所述稀疏DMRS,所述半静态终端设备对应所述常规DMRS,所述动态终端设备对应所述密集DMRS。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,所述资源指示信息携带在授权信息中,且所述资源指示信息用于指示所述装置为所述终端设备分配的所述目标时频资源;
    所述接收器用于在所述装置根据所述N个时频资源分组,向终端设备发送资源指示信息之前,接收所述终端设备发送的调度请求信息,所述调度请求信息携带所述终端设备的终端设备类型;
    所述处理器还用于根据所述终端设备的终端设备类型,从所述N个时频资源分组中确定所述目标时频资源。
  15. 根据权利要求11至13中任一项所述的装置,其特征在于,所述资源指示信息用于指示所述N个时频资源分组,
    所述发送器具体用于:
    通过物理广播信道PBCH广播所述资源指示信息。
  16. 一种分配时频资源的装置,其特征在于,包括接收器、发送器、处理器和存储器,其中,所述存储器用于存储指令,所述处理器用于调用所述指令执行以下处理:
    指示所述接收器接收网络设备发送的资源指示信息,所述资源指示信息用于指示所述网络设备为所述装置分配的目标时频资源或用于指示所述N个时频资源分组;
    根据所述资源指示信息,确定目标时频资源,所述目标时频资源为所述N个时频资源分组中与所述装置的装置类型对应的目标时频资源分组中的时频资源,所述N个时频资源分组为所述网络设备根据N种装置类型划分的,所述N种装置类型与不同时域密度的N种解调参考信号DMRS一一对应,且所述N个时频资源分组中的第一时频资源分组配置有所述N种DMRS中的第一DMRS,所述N种装置类型为所述网络设备根据覆盖范围内装置的当前运动速度确定的,其中,所述N为大于或等于2的整数;
    指示所述发送器用于采用所述目标时频资源向所述网络设备传输上行数据。
  17. 根据权利要求16所述的装置,其特征在于,所述N种装置类型包括:静态装置、 半静态装置和动态装置,
    其中,所述静态装置为当前运动速度小于第一阈值的装置,所述半静态装置为当前运动速度大于或等于所述第一阈值且小于第二阈值的装置,所述动态装置为当前运动速度大于或等于所述第二阈值的装置,所述第一阈值小于所述第二阈值。
  18. 根据权利要求17所述的装置,其特征在于,所述N种DMRS包括:稀疏DMRS、常规DMRS和密集DMRS,
    其中,所述稀疏DMRS为时域密度小于第三阈值的DMRS,所述常规DMRS为时域密度大于或等于所述第三阈值且小于第四阈值的DMRS,所述密集DMRS为时域密度大于或等于所述第四阈值的DMRS,所述第三阈值小于所述第四阈值;
    所述静态装置对应所述稀疏DMRS,所述半静态装置对应所述常规DMRS,所述动态装置对应所述密集DMRS。
  19. 根据权利要求16至18中任一项所述的装置,其特征在于,所述发送器用于在所述装置接收网络设备发送的资源指示信息之前,向所述网络设备发送调度请求信息,所述调度请求信息携带所述装置的装置类型;
    所述接收器具体用于:
    接收所述网络设备发送的授权信息,所述授权信息携带所述资源指示信息,所述资源指示信息用于指示所述网络设备为所述装置分配的所述目标时频资源。
  20. 根据权利要求16至18中任一项所述的装置,其特征在于,所述资源指示信息用于指示所述N个时频资源分组,
    所述接收器具体用于:
    通过物理广播信道PBCH获取所述资源指示信息。
PCT/CN2017/077442 2016-04-26 2017-03-21 分配时频资源的方法和装置 WO2017185915A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17788568.8A EP3439332B1 (en) 2016-04-26 2017-03-21 Time-frequency resource allocation method and apparatus
US16/170,730 US10645688B2 (en) 2016-04-26 2018-10-25 Time-frequency resource allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610266301.8A CN107318086B (zh) 2016-04-26 2016-04-26 分配时频资源的方法和装置
CN201610266301.8 2016-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/170,730 Continuation US10645688B2 (en) 2016-04-26 2018-10-25 Time-frequency resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2017185915A1 true WO2017185915A1 (zh) 2017-11-02

Family

ID=60161818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077442 WO2017185915A1 (zh) 2016-04-26 2017-03-21 分配时频资源的方法和装置

Country Status (4)

Country Link
US (1) US10645688B2 (zh)
EP (1) EP3439332B1 (zh)
CN (1) CN107318086B (zh)
WO (1) WO2017185915A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342942A (zh) * 2018-12-19 2020-06-26 北京展讯高科通信技术有限公司 上行控制信息的上报方法及装置、存储介质、用户终端

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547179A (zh) * 2016-06-23 2018-01-05 中兴通讯股份有限公司 物理层传输参数配置、获取方法及装置
CN109803399B (zh) * 2017-11-17 2021-04-27 维沃移动通信有限公司 一种免调度上行信号传输方法、相关设备和系统
MX2020007484A (es) * 2018-01-10 2020-09-14 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de transmision de datos, metodo de recepcion de datos, dispositivo de terminal y dispositivo de red.
KR102381602B1 (ko) 2018-01-12 2022-04-01 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 파워 제어를 위한 방법, 단말기 디바이스 및 네트워크 디바이스
BR112020017109A2 (pt) 2018-02-23 2021-02-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de transmissão de informações de controle de enlace descendente e dispositivo terminal
CN110324847B (zh) * 2018-03-30 2022-10-11 上海华为技术有限公司 一种空口资源的处理方法、基站以及服务器
CN110417524B (zh) 2018-04-28 2022-02-25 华为技术有限公司 一种传输参数配置方法和装置
CN110662254B (zh) 2018-06-28 2021-03-09 上海推络通信科技合伙企业(有限合伙) 一种被用于无线通信的通信节点中的方法和装置
CN109068353B (zh) * 2018-07-13 2022-01-25 中国移动通信集团江苏有限公司 终端的调度方法、装置、设备及介质
CN110798891B (zh) * 2018-08-03 2023-07-14 大唐移动通信设备有限公司 一种上行传输配置方法、装置及设备
CN112335194B (zh) * 2018-08-10 2023-07-04 株式会社Ntt都科摩 解调参考信号的资源分配方法和基站
CN111886821A (zh) * 2018-08-16 2020-11-03 Oppo广东移动通信有限公司 传输信息的方法、终端设备和网络设备
US11863480B2 (en) * 2018-08-28 2024-01-02 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for transmitting reference signal
CN111869140B (zh) * 2018-09-11 2022-01-25 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
WO2020087446A1 (zh) 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 传输数据的方法和终端设备
US11071091B2 (en) * 2019-01-10 2021-07-20 At&T Intellectual Property I, L.P. Contention level signaling for resource pools
CN111866799B (zh) * 2019-04-30 2021-10-01 华为技术有限公司 资源请求方法、资源分配方法、装置及介质
EP3813422A1 (en) * 2019-10-23 2021-04-28 Volkswagen AG Adjusting an antenna diagram
CN113709867A (zh) * 2020-05-21 2021-11-26 展讯半导体(南京)有限公司 数据传输方法、装置及设备
WO2022077517A1 (zh) * 2020-10-16 2022-04-21 华为技术有限公司 一种通信方法和装置
CN114826518A (zh) * 2021-01-29 2022-07-29 北京紫光展锐通信技术有限公司 参考信号图案的确定方法及装置
CN117014956A (zh) * 2022-04-28 2023-11-07 华为技术有限公司 一种信号传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005326A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种上行资源分配方法和无线通信系统
CN102195906A (zh) * 2011-06-22 2011-09-21 北京交通大学 Ofdm系统中导频信号的设计方法及系统
US20150288483A1 (en) * 2014-04-04 2015-10-08 Samsung Electronics Co., Ltd METHOD, eNB, TERMINAL AND SYSTEM FOR ADAPTIVELY ADJUSTING MODULATION CODING SCHEME AND REFERENCE SIGNAL PATTERN
CN105191461A (zh) * 2013-03-13 2015-12-23 华为技术有限公司 用于确定导频信号的系统和方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343477A9 (en) * 2011-11-04 2013-12-26 Research In Motion Limited PUSCH Reference Signal Design for High Doppler Frequency
WO2014084029A1 (ja) * 2012-11-28 2014-06-05 京セラ株式会社 基地局、プロセッサ、通信制御方法及びユーザ端末
EP2929708B1 (en) * 2012-12-04 2019-09-25 LG Electronics Inc. Method for changing pattern of reference signals according to movement speed of user equipment in wireless communication system, and an apparatus therefor
US9936486B2 (en) * 2013-02-08 2018-04-03 Lg Electronics Inc. Method and user equipment for reporting demodulation reference signal information and method and base station for receiving demodulation reference signal information
JP6058820B2 (ja) * 2013-02-12 2017-01-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて基地局が端末に参照信号を送信する方法及びそのための装置
US8964705B2 (en) * 2013-02-14 2015-02-24 Blackberry Limited For small cell demodulation reference signal and initial synchronization
WO2014137105A1 (ko) * 2013-03-03 2014-09-12 엘지전자 주식회사 Epdcch를 통한 제어 정보 수신 방법
EP2978272A1 (en) * 2013-03-18 2016-01-27 Sharp Kabushiki Kaisha Base station, terminal, communication system, communication method and integrated circuit
EP3335352A1 (en) * 2015-08-12 2018-06-20 Intel Corporation Demodulation in wireless communications
CN107852707A (zh) * 2015-08-21 2018-03-27 富士通株式会社 解调参考信号的传输方法、装置以及通信系统
US10708796B2 (en) * 2016-04-21 2020-07-07 Qualcomm Incorporated High doppler channel performance enhancement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005326A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种上行资源分配方法和无线通信系统
CN102195906A (zh) * 2011-06-22 2011-09-21 北京交通大学 Ofdm系统中导频信号的设计方法及系统
CN105191461A (zh) * 2013-03-13 2015-12-23 华为技术有限公司 用于确定导频信号的系统和方法
US20150288483A1 (en) * 2014-04-04 2015-10-08 Samsung Electronics Co., Ltd METHOD, eNB, TERMINAL AND SYSTEM FOR ADAPTIVELY ADJUSTING MODULATION CODING SCHEME AND REFERENCE SIGNAL PATTERN

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439332A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342942A (zh) * 2018-12-19 2020-06-26 北京展讯高科通信技术有限公司 上行控制信息的上报方法及装置、存储介质、用户终端

Also Published As

Publication number Publication date
US10645688B2 (en) 2020-05-05
CN107318086B (zh) 2020-03-20
CN107318086A (zh) 2017-11-03
US20190069282A1 (en) 2019-02-28
EP3439332A1 (en) 2019-02-06
EP3439332B1 (en) 2021-12-01
EP3439332A4 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
WO2017185915A1 (zh) 分配时频资源的方法和装置
JP6731002B2 (ja) 周波数領域リソース構成方法及び装置
US11139906B2 (en) Wireless communication method and wireless communications apparatus
JP7227297B2 (ja) データ通信方法、端末、および基地局
KR102303022B1 (ko) 데이터를 전송하는 방법 및 단말 장치
US20210160852A1 (en) Resource configuration method and terminal device
JP2020500475A (ja) 無線通信方法及び機器
JP2019527972A (ja) デバイス間通信方法およびユーザ機器
WO2019052334A1 (zh) 一种通信方法及设备
US11523418B2 (en) Method and apparatus for resource indication
AU2016429558B2 (en) Uplink signal transmission method and device
JP2020523933A (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
WO2020143689A1 (zh) 一种参考信号传输方法及装置
JP2018207520A (ja) データを伝送するための方法およびデバイス
KR20200016831A (ko) 시퀀스 생성을 위한 방법 및 장치
JP7400794B2 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
CN112205046B (zh) 用于非正交多址资源利用可缩放性的方法和装置
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
CN115315930B (zh) 保护间隔的确定方法、设备及存储介质
JP7313420B2 (ja) データ伝送方法及び装置
JP7324294B2 (ja) 制御チャネルの伝送方法、機器及び記憶媒体
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
CN115989707A (zh) 在无线通信系统中使用协作通信收发数据的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017788568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017788568

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788568

Country of ref document: EP

Kind code of ref document: A1