WO2019085729A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2019085729A1
WO2019085729A1 PCT/CN2018/110190 CN2018110190W WO2019085729A1 WO 2019085729 A1 WO2019085729 A1 WO 2019085729A1 CN 2018110190 W CN2018110190 W CN 2018110190W WO 2019085729 A1 WO2019085729 A1 WO 2019085729A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
res
parameters
complex numbers
signaling
Prior art date
Application number
PCT/CN2018/110190
Other languages
English (en)
French (fr)
Inventor
刘铮
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to EP18873270.5A priority Critical patent/EP3709591B1/en
Priority to EP22160454.9A priority patent/EP4047895A1/en
Publication of WO2019085729A1 publication Critical patent/WO2019085729A1/zh
Priority to US16/858,638 priority patent/US11153140B2/en
Priority to US17/464,690 priority patent/US11601233B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present application relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus that support ⁇ /2-BPSK or ⁇ /4-QPSK modulation transmission.
  • NR new air interface technology
  • WI Working Item
  • Cubic Matric (cubic parameter) SC-FDMA, (Single Carrier Frequency Division Multiple Acess) waveform (Waveform), and also supports ⁇ /2-BPSK for DFT-s-OFDM waveforms
  • the modulation method is used to further reduce the PAPR or CM, thereby improving the coverage performance of the uplink transmission and the efficiency of the power amplifier.
  • ⁇ /2-BPSK modulation and ⁇ /4-QPSK are realized by phase rotation between symbols of the conventional BPSK and QPSK, respectively, which can ensure the continuity of the phase of the modulated symbols and the constant package as much as possible.
  • the properties of the network even after filtering (or Pulse Shaping), can guarantee the low PAPR of the modulated signal and improve the coverage performance.
  • the SC-FDMA system retains the properties of a single carrier to a certain extent, it is essentially similar to the multi-carrier of OFDM due to the implementation of transform precoding (generally implemented by DFT, ie DFT-s-OFDM) or filtering.
  • transform precoding generally implemented by DFT, ie DFT-s-OFDM
  • filtering or Pulse Shaping
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the present application discloses a method for use in a user equipment in wireless communication, including:
  • the first signaling is used to determine K REs, and the K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate the first wireless signal, K
  • the first type of parameters are in one-to-one correspondence with the K first type complex numbers, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and the K REs Related to a frequency domain location, each of the K first type parameters is related to a length of a cyclic prefix of a corresponding first type complex number mapped RE; the first wireless signal carries a first bit block And the K first type parameters and the first bit block are used to generate the K first type complex numbers, and the K first type parameters are independent of bits in the first bit block, The K REs are distributed over the frequency domain over more than one subcarrier, and the K REs are distributed over more than one multicarrier symbol in the time domain.
  • the method is characterized in that the K REs are distributed in X multicarrier symbols in a time domain, the X is a positive integer greater than 1, and the target multicarrier symbol is the X multiple a multi-carrier symbol in the carrier symbol other than the oldest multi-carrier symbol in the time domain, wherein the RE occupying the target multi-carrier symbol in the K REs is a target RE group, and the first mapping on the target RE group
  • the first type of parameters corresponding to the class complex are equal.
  • the method is characterized in that the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in a frequency domain,
  • the first RE and the second RE respectively occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type complex number mapped on the second RE is equal to the mapping in the first RE
  • the product of the first type of parameter corresponding to the first type of complex number and Q, the Q is a complex number whose modulus is equal to 1, and the angle of the Q in the polar coordinate is related to the length of the cyclic prefix in the second RE
  • the Q is also in the polar coordinate angle and the position of the second RE in the frequency domain, and the K REs and the second RE occupy the same multi-carrier symbol RE in the frequency domain position ⁇ At least one of them is relevant.
  • the method is characterized in that if the first RE occupies one multi-carrier symbol in the time domain that is occupied by the K REs, the first RE is mapped on the first RE.
  • the first type of parameter corresponding to the first type of complex number is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • the method is characterized in that: a third RE exists outside the K REs, a fourth RE exists in the K REs, and the third RE and the fourth RE are in frequency
  • the domain occupies the same sub-carrier, and the third RE and the fourth RE respectively occupy two successive multi-carrier symbols in the time domain; the first corresponding to the first-type complex number mapped on the fourth RE
  • the class parameter is equal to the product of the virtual parameter and G, or the first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H; the virtual parameter and the length of the cyclic prefix in the third RE
  • the G is a complex number whose modulus is equal to 1
  • the G is related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE
  • the H is a predefined complex number, or the H is Configurable plural.
  • the above method is characterized in that the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters are Used to generate the K first type complex numbers.
  • the method is characterized in that the first bit block includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks.
  • the presence of two consecutive bits in the first coded block is discrete in the first block of bits.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a length of a cyclic prefix of each of the K REs.
  • the present invention discloses a method for use in a base station device in a wireless communication, which includes:
  • the first signaling is used to determine K REs, and the K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate the first wireless signal, K
  • the first type of parameters are in one-to-one correspondence with the K first type complex numbers, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and the K REs Related to a frequency domain location, each of the K first type parameters is related to a length of a cyclic prefix of a corresponding first type complex number mapped RE; the first wireless signal carries a first bit block And the K first type parameters and the first bit block are used to generate the K first type complex numbers, and the K first type parameters are independent of bits in the first bit block, The K REs are distributed over the frequency domain over more than one subcarrier, and the K REs are distributed over more than one multicarrier symbol in the time domain.
  • the method is characterized in that the K REs are distributed in X multicarrier symbols in a time domain, the X is a positive integer greater than 1, and the target multicarrier symbol is the X multiple a multi-carrier symbol in the carrier symbol other than the oldest multi-carrier symbol in the time domain, wherein the RE occupying the target multi-carrier symbol in the K REs is a target RE group, and the first mapping on the target RE group
  • the first type of parameters corresponding to the class complex are equal.
  • the method is characterized in that the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in a frequency domain,
  • the first RE and the second RE respectively occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type complex number mapped on the second RE is equal to the mapping in the first RE
  • the product of the first type of parameter corresponding to the first type of complex number and Q, the Q is a complex number whose modulus is equal to 1, and the angle of the Q in the polar coordinate is related to the length of the cyclic prefix in the second RE
  • the Q is also in the polar coordinate angle and the position of the second RE in the frequency domain, and the K REs and the second RE occupy the same multi-carrier symbol RE in the frequency domain position ⁇ At least one of them is relevant.
  • the method is characterized in that if the first RE occupies one multi-carrier symbol in the time domain that is occupied by the K REs, the first RE is mapped on the first RE.
  • the first type of parameter corresponding to the first type of complex number is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • the method is characterized in that: a third RE exists outside the K REs, a fourth RE exists in the K REs, and the third RE and the fourth RE are in frequency
  • the domain occupies the same sub-carrier, and the third RE and the fourth RE respectively occupy two successive multi-carrier symbols in the time domain; the first corresponding to the first-type complex number mapped on the fourth RE
  • the class parameter is equal to the product of the virtual parameter and G, or the first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H; the virtual parameter and the length of the cyclic prefix in the third RE
  • the G is a complex number whose modulus is equal to 1
  • the G is related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE
  • the H is a predefined complex number, or the H is Configurable plural.
  • the above method is characterized in that the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters are Used to generate the K first type complex numbers.
  • the method is characterized in that the first bit block includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks.
  • the presence of two consecutive bits in the first coded block is discrete in the first block of bits.
  • the above method is characterized by further comprising:
  • the second signaling is used to determine a length of a cyclic prefix of each of the K REs.
  • the present application discloses a user equipment used in wireless communication, which includes:
  • a first receiver module receiving the first signaling
  • a first transmitter module transmitting the first wireless signal
  • the first signaling is used to determine K REs, and the K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate the first wireless signal, K
  • the first type of parameters are in one-to-one correspondence with the K first type complex numbers, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and the K REs Related to a frequency domain location, each of the K first type parameters is related to a length of a cyclic prefix of a corresponding first type complex number mapped RE; the first wireless signal carries a first bit block And the K first type parameters and the first bit block are used to generate the K first type complex numbers, and the K first type parameters are independent of bits in the first bit block, The K REs are distributed over the frequency domain over more than one subcarrier, and the K REs are distributed over more than one multicarrier symbol in the time domain.
  • the user equipment is characterized in that the K REs are distributed in X multi-carrier symbols in a time domain, the X is a positive integer greater than 1, and the target multi-carrier symbol is the X a multi-carrier symbol in the multi-carrier symbol other than the oldest multi-carrier symbol in the time domain, wherein the RE occupying the target multi-carrier symbol in the K REs is a target RE group, and the mapping is performed on the target RE group.
  • the first type of parameters corresponding to a class of complex numbers are equal.
  • the foregoing user equipment is characterized in that: the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in a frequency domain, where The first RE and the second RE respectively occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type complex number mapped on the second RE is equal to the mapping in the first
  • the product of the first type of parameter corresponding to the first type of complex number on the RE and Q the Q is a complex number with a modulus equal to 1, the angle of the Q at the polar coordinate and the length of the cyclic prefix in the second RE
  • the Q is also in the polar coordinate angle and the position of the second RE in the frequency domain, and the K REs and the second RE occupy the same multi-carrier symbol RE in the frequency domain position ⁇ At least one of them is related.
  • the user equipment is characterized in that if the first RE occupies one multi-carrier symbol in the time domain that is occupied by the K REs, the first RE is mapped to the first RE.
  • the first type of parameter corresponding to the first type of complex number is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • the foregoing user equipment is characterized in that: a third RE exists outside the K REs, a fourth RE exists in the K REs, and the third RE and the fourth RE are in The frequency domain occupies the same subcarrier, and the third RE and the fourth RE respectively occupy two successive multicarrier symbols in the time domain; the first type corresponding to the first type complex number mapped on the fourth RE One type of parameter is equal to the product of the virtual parameter and G, or the first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H; the virtual parameter and the cyclic prefix in the third RE In relation to length, said G is a complex number whose modulus is equal to 1, said G being related to the length of the polar coordinate and the length of the cyclic prefix in said fourth RE, said H being a predefined complex number, or said H Is a configurable plural.
  • the user equipment is characterized in that the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters Used to generate the K first type complex numbers.
  • the user equipment is characterized in that the first bit block includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks. There are two consecutive bits in the first coded block that are discrete in the first block of bits.
  • the user equipment is characterized in that the first receiver module further receives second signaling; the second signaling is used to determine a cycle of each of the K REs The length of the prefix.
  • the present application discloses a base station device used in wireless communication, which includes:
  • a second transmitter module transmitting the first signaling
  • a second receiver module receiving the first wireless signal
  • the first signaling is used to determine K REs, and the K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate the first wireless signal, K
  • the first type of parameters are in one-to-one correspondence with the K first type complex numbers, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and the K REs Related to a frequency domain location, each of the K first type parameters is related to a length of a cyclic prefix of a corresponding first type complex number mapped RE; the first wireless signal carries a first bit block And the K first type parameters and the first bit block are used to generate the K first type complex numbers, and the K first type parameters are independent of bits in the first bit block, The K REs are distributed over the frequency domain over more than one subcarrier, and the K REs are distributed over more than one multicarrier symbol in the time domain.
  • the base station device is characterized in that the K REs are distributed in X multi-carrier symbols in a time domain, the X is a positive integer greater than 1, and the target multi-carrier symbol is the X a multi-carrier symbol in the multi-carrier symbol other than the oldest multi-carrier symbol in the time domain, wherein the RE occupying the target multi-carrier symbol in the K REs is a target RE group, and the mapping is performed on the target RE group.
  • the first type of parameters corresponding to a class of complex numbers are equal.
  • the foregoing base station device is characterized in that the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in the frequency domain,
  • the first RE and the second RE respectively occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type complex number mapped on the second RE is equal to the mapping in the first
  • the Q is a complex number with a modulus equal to 1, the angle of the Q at the polar coordinate and the length of the cyclic prefix in the second RE
  • the Q is also in the polar coordinate angle and the position of the second RE in the frequency domain, and the K REs and the second RE occupy the same multi-carrier symbol RE in the frequency domain position ⁇ At least one of them is related.
  • the foregoing base station device is characterized in that if the first RE occupies one multi-carrier symbol in the time domain that is occupied by the K REs, the first RE is mapped to the first RE.
  • the first type of parameter corresponding to the first type of complex number is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • the base station device is characterized in that: a third RE exists outside the K REs, a fourth RE exists in the K REs, and the third RE and the fourth RE are in The frequency domain occupies the same subcarrier, and the third RE and the fourth RE respectively occupy two successive multicarrier symbols in the time domain; the first type corresponding to the first type complex number mapped on the fourth RE One type of parameter is equal to the product of the virtual parameter and G, or the first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H; the virtual parameter and the cyclic prefix in the third RE In relation to length, said G is a complex number whose modulus is equal to 1, said G being related to the length of the polar coordinate and the length of the cyclic prefix in said fourth RE, said H being a predefined complex number, or said H Is a configurable plural.
  • the base station device is characterized in that the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters Used to generate the K first type complex numbers.
  • the base station device is characterized in that the first bit block includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks. There are two consecutive bits in the first coded block that are discrete in the first block of bits.
  • the base station device is characterized in that the second transmitter module further transmits second signaling; the second signaling is used to determine a cycle of each of the K REs The length of the prefix.
  • the method of the present application has the following advantages:
  • a method for phase compensation in the time domain is provided in this application: before performing transform precoding (generally implemented by DFT transform), according to the length of the CP at the time of resource mapping, after modulation (if DFT is performed) Multi-antenna transmit diversity, after the pre-coding of transmit diversity), compensates for the phase on each multi-carrier symbol depending on the frequency of the signal (typically the center frequency), while maintaining the single-carrier characteristics of the signal, ensuring The continuous change of phase reduces the PAPR and improves the coverage performance.
  • transform precoding generally implemented by DFT transform
  • Multi-antenna transmit diversity after the pre-coding of transmit diversity
  • the time domain phase compensation method is also applicable to SC-FDMA signals generated by frequency conversion and filtering, providing more flexibility for implementation.
  • the present application also provides a method for frequency domain phase compensation: after the DFT transform, before the IFFT transform generates a baseband signal, the phase is compensated on each subcarrier according to the CP length and the frequency of the subcarrier on each subcarrier,
  • the frequency domain phase compensation method can also achieve the effect of reducing PAPR.
  • the phase compensation method in this application also considers the uplink frequency hopping transmission, and the data is not continuous due to the insertion of the reference signal, etc., through careful design (such as resetting the phase compensation at the beginning of frequency hopping and assuming the reference signal) Applying the same phase compensation, etc.) further ensures low PAPR of SC-FDMA transmission and improves coverage performance.
  • FIG. 1 shows a flow chart of transmission of first signaling and first wireless signal in accordance with one embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture in accordance with one embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane in accordance with one embodiment of the present application
  • FIG. 4 shows a schematic diagram of a base station device and a user equipment according to an embodiment of the present application
  • FIG. 5 illustrates a wireless signal transmission flow diagram in accordance with one embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship of K first type complex numbers and K first type parameters according to an embodiment of the present application
  • Figure 7 shows a schematic diagram of X multi-carrier symbols in accordance with one embodiment of the present application.
  • FIG. 8 is a schematic diagram showing the relationship between a first RE and a second RE according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing the relationship between a third RE and a fourth RE according to an embodiment of the present application.
  • FIG. 10 is a diagram showing the relationship between a first bit block and K second type complex numbers according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of a first coding block in accordance with one embodiment of the present application.
  • FIG. 12 is a block diagram showing the structure of a processing device in a User Equipment (UE) according to an embodiment of the present application;
  • UE User Equipment
  • FIG. 13 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of transmission of first signaling and first wireless signal in accordance with one embodiment of the present application, as shown in FIG.
  • each box represents a step.
  • the user equipment in the present application first receives the first signaling, and then sends the first wireless signal; wherein the first signaling is used to determine K REs, and K first-class complex numbers are respectively mapped.
  • the K first type complex numbers are used to generate the first wireless signal, and K first type parameters and the K first type complex numbers are in one-to-one correspondence, the K first A type of parameter is a complex number with a modulus equal to 1, the K first type parameters are related to a frequency domain position of the K REs, and each of the K first type parameters and a corresponding one
  • the length of the cyclic prefix of the RE of the first type complex is related; the first wireless signal carries a first bit block, and the K first type parameters and the first bit block are used to generate the K blocks a first type of complex number, the K first type parameters are independent of bits in the first bit block, the K REs are distributed in more than one subcarrier in a frequency domain, and the K REs are in a time domain Distributed over more than one multi-carrier symbol.
  • each of the K REs occupies one subcarrier in the frequency domain, and occupies one multicarrier symbol in the time domain, where one multicarrier symbol includes a cyclic prefix (CP, Cyclic Prefix).
  • CP Cyclic Prefix
  • each of the K REs occupies one OFDM (Orthogonal Frequency Division Multiplexing) subcarrier in the frequency domain, and occupies one OFDM in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • each of the K REs occupies one SC-FDMA (Single Carrier Frequency Division Multiple Access) subcarrier in the frequency domain.
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • One SC-FDMA symbol is occupied in the time domain, where one SC-FDMA symbol contains a cyclic prefix (CP, Cyclic Prefix).
  • REs in the K REs on the same multicarrier symbol are distributed over consecutive subcarriers.
  • the K REs are distributed on the same set of subcarriers on each multicarrier symbol.
  • REs in the K REs on the same multicarrier symbol are distributed over discrete subcarriers.
  • the cyclic prefixes in the K REs are equal in length.
  • the lengths of the cyclic prefixes of the two REs in the K REs are not equal.
  • the cyclic prefix in the K REs is a normal cyclic prefix (Normal CP).
  • the cyclic prefix in the K REs is an extended cyclic prefix (Extended CP).
  • the first wireless signal occupies the K REs.
  • the K is equal to a positive integer multiple of greater than one of 12.
  • the K first type complexes are respectively resource mapped to the K REs.
  • the K first type complex numbers respectively occupy the K REs.
  • the K first type complex numbers are equal.
  • the K first type complex numbers are related to the transmit power of the first wireless signal.
  • the K first type complex numbers generate a baseband signal that generates the first wireless signal through a baseband signal.
  • the baseband signal generation is used to generate a baseband signal for SC-FDMA.
  • the baseband signal generation is implemented following baseband signal generation in Section 5.3 of 3GPP TS 38.211 or Section 5.6 of TS 36.211.
  • the K first type complex numbers generate a baseband signal of the first wireless signal by an IFFT transform.
  • the K first type parameters are used to respectively change the phase of the K first type complex numbers in polar coordinates.
  • the K first type parameters are independent of the content of the bits in the first bit block.
  • the K first type parameters and the bits in the first bit block are related to the K first type parameters only related to the K REs.
  • the K first type parameters and the bits in the first bit block are related to the K first type parameters and only the subcarriers in the K REs are separated.
  • the frequency domain locations of the K REs, the K REs being related to at least one of the locations of the carriers occupied by the K REs, and the lengths of the cyclic prefixes of the K REs.
  • two of the K first type parameters are equal.
  • the frequency domain locations of the K REs are used to determine the K first type parameters.
  • any one of the K first type parameters is related to a frequency domain position of the corresponding first type complex mapping RE.
  • any one of the K first type parameters is related to a center frequency of the corresponding first type complex mapping RE.
  • any one of the K first type parameters and the RE of the corresponding first type complex are related to a time domain position of the K REs.
  • a time domain position of the one of the K REs in the K REs is used to determine a first type of parameter corresponding to the first type of complex number mapped on the RE.
  • the frequency domain location of the K REs refers to a distribution pattern of the K REs in the frequency domain.
  • the K REs occupy consecutive subcarriers in the frequency domain, and the frequency domain locations of the K REs refer to the center frequencies of consecutive subcarriers occupied by the K REs.
  • the frequency domain location of the K REs refers to the center frequency of the first wireless signal at the baseband.
  • the frequency domain locations of the K REs are related to the subcarrier spacing of the subcarriers occupied by the K REs.
  • any one of the K first type parameters and the RE of the corresponding first type complex number are related to a time domain position of the K REs.
  • the time domain position of the one of the K REs in the K REs refers to an index of the multicarrier symbols occupied by the RE in the multicarrier symbols occupied by the K REs.
  • any one of the K first type parameters and the RE of the corresponding first type complex number are related to a time domain position of the K REs.
  • the time domain position of the one of the K REs in the K REs refers to a sequential position of the multicarrier symbols occupied by the RE in the multicarrier symbols occupied by the K REs.
  • the K first type parameters are related to a subcarrier spacing of a carrier occupied by the K REs.
  • the first signaling includes physical layer signaling.
  • the first signaling includes higher layer signaling.
  • the first signaling includes physical layer signaling and higher layer signaling.
  • the first signaling includes one or more fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the first signaling is transmitted by using a PDCCH (Physical Downlink Control Information).
  • PDCCH Physical Downlink Control Information
  • the first signaling includes one or more IEs (Information Elements) in RRC (Radio Resource Control) signaling.
  • IEs Information Elements
  • RRC Radio Resource Control
  • the first signaling includes one or more fields in one IE in RRC signaling.
  • the first signaling is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first signaling includes a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • CE Control Element
  • the first signaling includes one or more fields in a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • the first signaling includes an uplink grant (UL Grant) in Msg-2 (message 2).
  • UL Grant uplink grant
  • the first wireless signal includes a UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • the first wireless signal is transmitted through a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the first wireless signal is transmitted through a PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the first wireless signal carries Msg-3 (message 3).
  • the first wireless signal carries UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the first wireless signal adopts a modulation mode of ⁇ /2-BPSK.
  • the first wireless signal adopts a modulation mode of ⁇ /4-QPSK.
  • the first signaling is used by the user equipment to determine the K REs.
  • the first signaling indicates the K REs.
  • the first bit block carries all or part of one transport block (TB).
  • the first block of bits carries one or more code blocks (CB).
  • CB code blocks
  • the first bit block is obtained by at least a first part of ⁇ Channel Coding, Interleaving, Scrambling ⁇ by part or all of the bits of one TB block.
  • the first bit block is obtained by channel coding of UCI.
  • the bits in the first block of bits are arranged in order.
  • the first block of bits includes a positive integer number of bits.
  • the first bit block includes K bits.
  • the first bit block includes K/2 bits.
  • Embodiment 2 illustrates a schematic diagram of a network architecture in accordance with the present application, as shown in FIG. 2 is a diagram illustrating an NR 5G, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced) system network architecture 200.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System) 200.
  • the EPS 200 may include one or more UEs (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network) , 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • UEs User Equipment
  • NG-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network
  • 5G core network 5G core network
  • HSS Home Subscriber Server
  • the NG-RAN includes an NR Node B (gNB) 203 and other gNBs 204.
  • the gNB 203 provides user and control plane protocol termination towards the UE 201.
  • the gNB 203 can be connected to other gNBs 204 via an Xn interface (eg, a backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmission and reception point), or some other suitable terminology.
  • the gNB 203 provides the UE 201 with an access point to the EPC/5G-CN 210.
  • Examples of UEs 201 include cellular telephones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, an MP3 player), a camera, a game console, a drone, an aircraft, a narrowband physical network device, a machine type communication device, a land vehicle, a car, a wearable device, or any other similar functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • a person skilled in the art may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN210 through the S1/NG interface.
  • the EPC/5G-CN210 includes an MME/AMF/UPF 211, other MME/AMF/UPF 214, an S-GW (Service Gateway) 212, and a P-GW (Packet Date Network Gateway) 213.
  • the MME/AMF/UPF 211 is a control node that handles signaling between the UE 201 and the EPC/5G-CN 210.
  • MME/AMF/UPF 211 provides bearer and connection management. All User IP (Internet Protocol) packets are transmitted through the S-GW 212, and the S-GW 212 itself is connected to the P-GW 213.
  • the P-GW 213 provides UE IP address allocation as well as other functions.
  • the P-GW 213 is connected to the Internet service 230.
  • the Internet service 230 includes an operator-compatible Internet Protocol service, and may specifically include the Internet, an intranet, an IMS (IP Multimedia Subsystem), and a PS Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the UE 201 corresponds to a user equipment in this application.
  • the gNB 203 corresponds to a base station in the present application.
  • the UE 201 supports ⁇ /2-BPSK or ⁇ /4-QPSK modulation.
  • the gNB 203 supports ⁇ /2-BPSK or ⁇ /4-QPSK modulation.
  • the UE 201 supports SC-FDMA waveforms.
  • the gNB 203 supports SC-FDMA waveforms.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane in accordance with the present application, as shown in FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane, and FIG. 3 shows a radio protocol architecture for user equipment (UE) and base station equipment (gNB or eNB) in three layers: Layer 1 , layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301.
  • Layer 2 (L2 layer) 305 is above PHY 301 and is responsible for the link between the UE and the gNB through PHY 301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol). Convergence Protocol) Sublayer 304, which terminates at the gNB on the network side.
  • the UE may have several upper layers above the L2 layer 305, including a network layer (eg, an IP layer) terminated at the P-GW on the network side and terminated at the other end of the connection (eg, Application layer at the remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting data packets, and provides handoff support for UEs between gNBs.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between the logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in one cell between UEs.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architecture for the UE and gNB is substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in Layer 3 (L3 layer).
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and configuring the lower layer using RRC signaling between the gNB and the UE.
  • the wireless protocol architecture of Figure 3 is applicable to the user equipment in this application.
  • the radio protocol architecture of Figure 3 is applicable to the base station equipment in this application.
  • the first signaling in the present application is generated in the RRC 306.
  • the first signaling in the present application is generated by the MAC 302.
  • the first signaling in the present application is generated by the PHY 301.
  • the first wireless signal in the present application is generated in the RRC 306.
  • the first wireless signal in the present application is generated by the PHY 301.
  • the second signaling in the present application is generated in the RRC 306.
  • the second signaling in the present application is generated by the MAC 302.
  • the second signaling in the present application is generated by the PHY 301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4 is a block diagram of a gNB/eNB 410 in communication with a UE 450 in an access network.
  • a controller/processor 490, a memory 480, a receiving processor 452, a transmitter/receiver 456, a transmitting processor 455 and a data source 467 are included in the user equipment (UE 450), and the transmitter/receiver 456 includes an antenna 460.
  • Data source 467 provides an upper layer packet to controller/processor 490, which provides header compression decompression, encryption decryption, packet segmentation and reordering, and multiplexing and demultiplexing between logical and transport channels.
  • the L2 layer protocol for the user plane and the control plane is implemented, and the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer control signaling generation.
  • the various signal reception processing functions implemented by the receive processor 452 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmit processor 455 into a radio frequency signal and transmit it via the antenna 460.
  • the receiver 456 converts the radio frequency signal received through the antenna 460 into a baseband signal and provides it to the receive processor 452.
  • a base station device (410) may include a controller/processor 440, a memory 430, a receive processor 412, a transmitter/receiver 416 and a transmit processor 415, and the transmitter/receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller/processor 440, which provides header compression decompression, encryption and decryption, packet segmentation and reordering, and multiplexing and demultiplexing between the logical and transport channels to implement L2 layer protocol for user plane and control plane.
  • the upper layer packet may include data or control information such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control/allocation, precoding, and physical layer signaling (including synchronization signals and references). Signals, etc.) are generated.
  • the various signal reception processing functions implemented by the receive processor 412 for the L1 layer (ie, the physical layer) include decoding, deinterleaving, descrambling, demodulation, de-precoding, and physical layer signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmitting processor 415 into a radio frequency signal and transmit it via the antenna 420.
  • the receiver 416 is configured to convert the radio frequency signal received by the antenna 420 into a baseband signal and provide the signal to the receiving processor 412.
  • Controller/processor 440 implements the functionality of the L2 layer.
  • the controller/processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller/processor 440 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450, such as the generation of the first signaling and the second signaling in this application.
  • Transmit processor 415 implements various signal processing functions for the L1 layer (ie, the physical layer), including signal decoding functions including coding and interleaving to facilitate forward error correction (FEC) at UE 450 and based on various modulation schemes (eg, Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) modulates the baseband signal, separates the modulation symbols into parallel streams and maps each stream to a corresponding multicarrier subcarrier and/or multicarrier The symbols are then transmitted by the transmit processor 415 via the transmitter 416 to the antenna 420 in the form of a radio frequency signal.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • each receiver 456 receives radio frequency signals through its respective antenna 460, each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing function includes receiving a physical layer signal carrying the first signaling and the second signaling, etc.
  • the controller/processor 490 implements the L2 layer.
  • the controller/processor can be associated with a memory 480 that stores program codes and data. Memory 480 can be referred to as a computer readable medium.
  • data source 467 is used to provide the first wireless signal in the present application to controller/processor 490.
  • Data source 467 represents all protocol layers above the L2 layer.
  • Controller/processor 490 implements L2 for user plane and control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels over gNB 410 based radio resource allocation Layer protocol.
  • the controller/processor 490 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the gNB 410.
  • Transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • the signal transmission processing functions include encoding and interleaving to facilitate forward error correction (FEC) at the UE 350 and to modulate the baseband signal based on various modulation schemes (eg, ⁇ /2-BPSK or ⁇ /4-QPSK modulation), the modulation symbols Dividing into parallel streams and mapping each stream to a corresponding multi-carrier subcarrier and/or multi-carrier symbol (eg, sub-carrier or multi-carrier symbol of SC-FDMA), and then mapped by transmitter 455 to antenna 460 via transmitter 456 The form of the RF signal is transmitted.
  • Receiver 416 receives radio frequency signals through its respective antenna 420, each receiver 416 recovers baseband information modulated onto the radio frequency carrier, and provides baseband information to receive processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer), the signal receiving processing function includes acquiring a multi-carrier symbol stream, and then performing multi-carrier modulation based on various modulations in the multi-carrier symbol stream. Demodulation of the scheme (e.g., ⁇ /2-BPSK or ⁇ /4-QPSK modulation), followed by decoding and deinterleaving to recover data and/or control signals originally transmitted by the UE 450 over the physical channel. Data and/or control signals are then provided to controller/processor 440.
  • the L2 layer is implemented at the receive processor controller/processor 440.
  • the controller/processor can be associated with a memory 430 that stores program codes and data. Memory 430 can be a computer readable medium.
  • the UE 450 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together, the UE 450 device at least: receives the first signaling; transmits the first wireless signal; wherein the first signaling is used to determine K REs, and K first type complex numbers are respectively mapped to K REs
  • the K first type complex numbers are used to generate the first wireless signal, and the K first type parameters are in one-to-one correspondence with the K first type complex numbers, and the K first type parameters are all
  • the K first type parameters are related to the frequency domain positions of the K REs, and each of the K first type parameters and the corresponding first type of complex numbers
  • the length of the cyclic prefix of the mapped RE is related; the first wireless signal carries a first bit block, and the K first type parameters and the first bit block are used to generate the K first type complex numbers
  • the K first type parameters are used to be in process with the
  • the UE 450 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: receiving the first signaling; Transmitting a first wireless signal; wherein the first signaling is used to determine K REs, K first type complexes are respectively mapped to K REs, and the K first type complex numbers are used to generate the a first wireless signal, the K first type parameters and the K first type complex numbers are in one-to-one correspondence, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and The frequency domain location of the K REs is related, and each of the K first type parameters is related to a length of a cyclic prefix of a corresponding mapped first type complex RE; the first wireless The signal carries a first block of bits, the K first type of parameters and the first block of bits being used to generate the K first type of complex numbers, the K first type of parameters and the first bit block Independent of the bits, the
  • the eNB 410 apparatus includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to be in process with the at least one Used together.
  • the gNB410 device at least: transmitting the first signaling; receiving the first wireless signal; wherein the first signaling is used to determine K REs, and K first type complex numbers are respectively mapped to K REs, K first type complex numbers are used to generate the first wireless signal, and K first type parameters are in one-to-one correspondence with the K first type complex numbers, and the K first type parameters are all equal to 1 a complex number, the K first type parameters are related to a frequency domain position of the K REs, and each of the K first type parameters and the corresponding first type complex number mapped RE
  • the length of the cyclic prefix is related; the first wireless signal carries a first bit block, and the K first type parameters and the first bit block are used to generate the K first type complex numbers, the K The first type of parameters are independent of the
  • the eNB 410 includes: a memory storing a computer readable instruction program, the computer readable instruction program generating an action when executed by the at least one processor, the action comprising: transmitting the first signaling; Receiving a first wireless signal; wherein the first signaling is used to determine K REs, K first type complexes are respectively mapped to K REs, and the K first type complex numbers are used to generate the a first wireless signal, the K first type parameters and the K first type complex numbers are in one-to-one correspondence, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and The frequency domain location of the K REs is related, and each of the K first type parameters is related to a length of a cyclic prefix of a corresponding mapped first type complex RE; the first wireless The signal carries a first block of bits, the K first type of parameters and the first block of bits being used to generate the K first type of complex numbers, the K first type of parameters and the first bit block Independent of the bits in
  • the UE 450 corresponds to the user equipment in this application.
  • the gNB 410 corresponds to the base station in this application.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the first signaling.
  • receiver 456 (including antenna 460), receive processor 452 and controller/processor 490 are used in the present application to receive the second signaling.
  • transmitter 456 (including antenna 460), transmit processor 455 and controller/processor 490 are used in the present application to transmit the first wireless signal.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the first signaling in this application.
  • transmitter 416 (including antenna 420), transmit processor 415 and controller/processor 440 are used to transmit the second signaling in this application.
  • receiver 416 (including antenna 420), receive processor 412 and controller/processor 440 are used to transmit the first wireless signal in the present application.
  • Embodiment 5 illustrates a wireless signal transmission flow chart according to one embodiment of the present application, as shown in FIG.
  • the base station N1 is a maintenance base station of the serving cell of the UE U2.
  • the base station N1 in step S11 transmits a second signaling transmitted in a first signaling step S12, the first radio signal received in step S13.
  • the second signaling is received in step S21, the first signaling is received in step S22, and the first wireless signal is transmitted in step S23.
  • the first signaling is used to determine K REs, and K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate the first a wireless signal, K first type parameters and the K first type complex numbers are in one-to-one correspondence, the K first type parameters are all complex numbers with a modulus equal to 1, the K first type parameters and the The frequency domain location of the K REs is related to each of the K first type parameters and the length of the cyclic prefix of the RE mapped by the corresponding first type complex; the first wireless signal carrying a first bit block, the K first type parameters and the first bit block are used to generate the K first type complex numbers, the K first type parameters and the first bit block Independent of bits, the K REs are distributed over more than one subcarrier in the frequency domain, the K REs are distributed over more than one multicarrier symbol in the time domain, and the second signaling is used to determine the K The length of the cyclic prefix of each RE in each RE.
  • the K REs are distributed in X multicarrier symbols in a time domain, the X is a positive integer greater than 1, and the target multicarrier symbol is the earliest in the X multicarrier symbols in the time domain.
  • the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in the frequency domain, and the first RE and the second The REs occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type of complex numbers mapped on the second RE are equal to the first type of complex numbers mapped on the first RE.
  • the Q being a complex number with a modulus equal to 1
  • the Q being related to the length of the polar coordinate and the length of the cyclic prefix in the second RE, the Q being in polar coordinates
  • the angle is also related to ⁇ the location of the second RE in the frequency domain, the K REs and the second RE occupying the same multi-carrier symbol RE in at least one of the frequency domain locations ⁇ .
  • the first type complex number corresponding to the first type of the first RE is mapped.
  • the first type of parameter is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • a third RE exists outside the K REs
  • a fourth RE exists in the K REs, where the third RE and the fourth RE occupy the same subcarrier in the frequency domain.
  • the third RE and the fourth RE respectively occupy two successive multi-carrier symbols in the time domain;
  • the first type of parameters corresponding to the first type complex number mapped on the fourth RE is equal to the virtual parameter and the G a product, or a first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H;
  • the virtual parameter is related to a length of a cyclic prefix in the third RE, and the G is a mode A complex number equal to one, the G being related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE, the H being a predefined complex number, or the H being a configurable complex number.
  • the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters are used to generate the K first numbers A type of plural.
  • the first bit block includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks, and the first coding block exists. Two consecutive bits are discrete in the first block of bits.
  • the second signaling indicates a mathematical structure of the K REs.
  • the second signaling indicates a BWP (Bandwidth Part) to which the K REs belong.
  • the second signaling indicates a subcarrier Spacing of a subcarrier occupied by the K REs.
  • the second signaling is used by the user equipment to determine a length of a cyclic prefix of each of the K REs.
  • the second signaling indicates a length of a cyclic prefix of each of the K REs.
  • the second signaling includes physical layer signaling.
  • the second signaling includes higher layer signaling.
  • the second signaling includes physical layer signaling and higher layer signaling.
  • the second signaling includes one or more fields in DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • the second signaling is transmitted by using a PDCCH (Physical Downlink Control Information).
  • PDCCH Physical Downlink Control Information
  • the second signaling includes one or more IEs (Information Elements) in RRC (Radio Resource Control) signaling.
  • IEs Information Elements
  • RRC Radio Resource Control
  • the second signaling includes one or more fields in one IE in RRC signaling.
  • the second signaling is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the second signaling includes a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • the second signaling includes one or more fields in a MAC (Medium Access Control) CE (Control Element).
  • MAC Medium Access Control
  • the second signaling includes an uplink grant (UL Grant) in Msg-2 (message 2).
  • UL Grant uplink grant
  • the first signaling and the second signaling comprise the same signaling.
  • the first signaling and the second signaling are two completely different signalings.
  • Embodiment 6 illustrates a schematic diagram of the relationship of K first type complex numbers and K first type parameters according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • each small lattice represents one of K REs
  • the input of the upper arrow in each transformed symbol is one of the first one of K first-class parameters.
  • the class parameter, the output is a first type of complex number of the K first class complex numbers.
  • K first type complex numbers are respectively mapped to K REs, and the K first type complex numbers are used to generate a first wireless signal, K first type parameters and the K first numbers.
  • the K first class parameters are all complex numbers with a modulus equal to 1, and the K first class parameters are related to the frequency domain positions of the K REs, and the K first classes are related to each other.
  • Each of the first type of parameters is related to a length of a cyclic prefix of the RE of the corresponding first type of complex number; the first wireless signal carries a first bit block, the K first type of parameters and the a first bit block is used to generate the K first type complex numbers, the K first type parameters are independent of bits in the first bit block, and the K REs are distributed in the frequency domain at more than one On the subcarriers, the K REs are distributed over more than one multicarrier symbol in the time domain.
  • the K first type complex numbers generate a baseband signal that generates the first wireless signal through a baseband signal.
  • the baseband signal generation is used to generate a baseband signal for SC-FDMA.
  • the baseband signal generation is implemented following baseband signal generation in Section 5.3 of 3GPP TS 38.211 or Section 5.6 of TS 36.211.
  • the K first type complex numbers generate a baseband signal of the first wireless signal by an IFFT transform.
  • the K first type parameters are used to respectively change the phase of the K first type complex numbers in polar coordinates.
  • the K first type parameters are independent of the content of the bits in the first bit block.
  • the K first type parameters and the bits in the first bit block are related to the K first type parameters only related to the K REs.
  • the K first type parameters and the bits in the first bit block are related to the K first type parameters and only the subcarriers in the K REs are separated.
  • the frequency domain locations of the K REs, the K REs being related to at least one of the locations of the carriers occupied by the K REs, and the lengths of the cyclic prefixes of the K REs.
  • two of the K first type parameters are equal.
  • the K first type parameters are related to a subcarrier spacing of a carrier occupied by the K REs.
  • Embodiment 7 illustrates a schematic diagram of X multi-carrier symbols in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • each rectangle represents a multi-carrier symbol
  • the obliquely-filled rectangle represents the target multi-carrier symbol
  • the K REs in the present application are distributed in X multicarrier symbols in the time domain, the X is a positive integer greater than 1, and the target multicarrier symbols are in the X multicarrier symbols.
  • a multi-carrier symbol other than the oldest multi-carrier symbol in the time domain, the RE occupying the target multi-carrier symbol in the K REs is a target RE group, and the first type of complex number mapped on the target RE group The corresponding first type of parameters are equal.
  • the X multicarrier symbols are time domain contiguous.
  • the X multicarrier symbols are time domain discrete.
  • the first type parameter corresponding to the first type of complex number mapped on the target RE group is related to the characteristic frequency of the frequency domain resource occupied by the target RE group.
  • the characteristic frequency is a center frequency; as another sub-embodiment, the characteristic frequency is a lowest frequency; as another sub-embodiment, the characteristic frequency is a highest frequency; as another sub-embodiment
  • the characteristic frequency is a frequency after the center frequency passes a fixed offset.
  • the first type parameter corresponding to the first type of complex number mapped on the target RE group is independent of the number of REs in the target RE group.
  • the first type parameter corresponding to the first type of complex number mapped on the target RE group is independent of the subcarrier spacing of the subcarriers in the target RE group.
  • Embodiment 8 is a schematic diagram of the relationship between a first RE and a second RE according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time
  • the vertical axis represents frequency
  • each small square represents one of the K REs
  • the small square filled by the cross line represents the first RE
  • the small square filled with the diagonal line represents
  • the second RE, the corresponding first type parameter on the first RE and the corresponding first type parameter on the second RE are respectively a solid line vector representation in which the endpoint in the polar coordinate is a dot.
  • the first RE and the second RE are present in the K REs in the application, and the first RE and the second RE occupy the same subcarrier in the frequency domain, and the first RE And the second RE occupies two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type of complex numbers mapped on the second RE is equal to the first mapping on the first RE a product of a first type of parameter corresponding to a complex number, Q is a complex number whose modulus is equal to 1, and the Q is related to the length of the polar coordinate and the length of the cyclic prefix in the second RE.
  • Q is at least one of a polar coordinate angle and a position of the second RE in the frequency domain, and the K REs and the second RE occupy the same multi-carrier symbol RE in the frequency domain.
  • the first RE occupies one of the multi-carrier symbols occupied by the K REs in the time domain, the first class corresponding to the first type of complex numbers on the first RE
  • the parameter is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • the two multi-carrier symbols to which the first RE and the second RE belong are two multi-carrier symbols adjacent in the time domain.
  • the two multi-carrier symbols to which the first RE and the second RE belong are two multi-carrier symbols that are not adjacent in the time domain.
  • the CPs in the first RE and the CPs in the second RE are equal in length.
  • the length of the CP in the first RE and the CP in the second RE are not equal.
  • the Q is linearly related to the length of the cyclic prefix in the second RE.
  • the location of the second RE in the frequency domain refers to a center frequency of a subcarrier occupied by the second RE.
  • the location of the second RE in the frequency domain refers to a center frequency of a subcarrier occupied by the second RE at a baseband.
  • the location of the second RE in the frequency domain refers to an absolute location of the second RE in the baseband frequency domain.
  • the location of the RE in the frequency domain of the K REs and the second RE occupying the same multi-carrier symbol means that the K-RE and the second RE occupy the same multi-carrier symbol.
  • the center frequency of the frequency domain resources occupied by the RE means that the K-RE and the second RE occupy the same multi-carrier symbol.
  • the location of the RE in the frequency domain of the K REs and the second RE occupying the same multi-carrier symbol means that the K-RE and the second RE occupy the same multi-carrier symbol.
  • the position of the RE in the frequency domain in which the second RE and the second RE occupy the same multi-carrier symbol refers to the position of the frequency domain resource occupied by the first wireless signal in the frequency domain.
  • the position of the RE in the frequency domain in which the second RE occupies the same multi-carrier symbol is the characteristic frequency in the frequency domain resource occupied by the first wireless signal.
  • the location of the domain As a sub-embodiment, the characteristic frequency is a center frequency. As another sub-embodiment, the characteristic frequency is a frequency at which the center frequency passes a fixed offset.
  • the location of the RE in the frequency domain in which the second RE and the second RE occupy the same multi-carrier symbol means that the frequency domain resource occupied by the first wireless signal is at a center frequency of the baseband.
  • the Q is obtained by:
  • N is the length of the data symbol in the first RE
  • N CP is the length of the cyclic prefix in the second RE
  • f is the same multicarrier in the K REs and the second RE The center frequency of the frequency domain resource occupied by the symbol's RE.
  • the Q is obtained by:
  • N is the length of the data symbol in the first RE
  • N CP is the length of the cyclic prefix in the second RE
  • f is the center frequency of the subcarrier occupied by the second RE.
  • the P is equal to one.
  • the P is not equal to one.
  • the modulus of P is equal to one.
  • the P is a complex number whose modulus is a polar coordinate phase greater than zero.
  • the length of the CP of the first RE is greater than the length of the CP in the multi-carrier symbol except the multi-carrier symbol occupied by the first RE in the multi-carrier symbol occupied by the K REs.
  • the lengths of the CPs of the multi-carrier symbols occupied by the K REs are equal.
  • Embodiment 9 exemplifies a relationship of a third RE and a fourth RE according to an embodiment of the present application, as shown in FIG.
  • the horizontal axis represents time and the vertical axis represents frequency.
  • the small square of each solid line border represents one RE of K REs, and the small square filled by the cross line represents the third RE, and the diagonal line is filled.
  • the small square represents the fourth RE.
  • the virtual parameter is a vector corresponding to the polar coordinate of the dot of the third RE.
  • the first type of parameter corresponding to the fourth RE is the polar coordinate of the fourth RE corresponding to the polar point of the dot. vector.
  • a third RE exists in addition to the K REs in the present application, and a fourth RE exists in the K REs, and the third RE and the fourth RE occupy the same frequency domain.
  • Subcarriers, the third RE and the fourth RE respectively occupy two successive multicarrier symbols in the time domain;
  • the first type of parameters corresponding to the first type complex number mapped on the fourth RE is equal to a product of a virtual parameter and a G, or a first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H;
  • the virtual parameter is related to a length of a cyclic prefix in the third RE
  • G is a complex number whose modulus is equal to 1
  • the G is related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE
  • the H is a predefined complex number, or the H is configurable plural.
  • the G is further related to at least one of a frequency domain resource occupied by the fourth RE and a frequency domain resource occupied by the first wireless signal.
  • the H is equal to one.
  • the H is not equal to one.
  • the modulus of H is equal to one.
  • the H is a complex number whose modulus is a polar coordinate phase greater than zero.
  • the fourth RE is an RE other than the RE of the K REs occupying the earliest multi-carrier symbol.
  • the first wireless signal is frequency hopped by using a multicarrier symbol occupied by the fourth RE as a starting multicarrier symbol.
  • the third RE is used to transmit an uplink reference signal.
  • the third RE is used to transmit an UL DMRS (Uplink Demodulation Reference Signal).
  • UL DMRS Uplink Demodulation Reference Signal
  • the third RE is used to transmit an UL SRS (Uplink Sounding Reference Signal).
  • UL SRS Uplink Sounding Reference Signal
  • the third RE is scheduled for transmission by a user equipment other than the user equipment.
  • the third RE is not scheduled for transmission.
  • the RE on the previous multicarrier symbol of the same subcarrier as the third RE belongs to the K REs.
  • the RE on the previous multicarrier symbol of the same subcarrier as the third RE belongs to one RE other than the K REs.
  • the virtual parameter is a first type of parameter obtained by the user equipment assuming that the third RE is used to transmit the first wireless signal.
  • the fifth RE is an RE on a previous multi-carrier symbol of the third RE on the same sub-carrier, and the fifth RE is one of the K REs, Virtual parameter Obtained by:
  • N is the length of the data symbol in the fifth RE
  • N CP is the length of the cyclic prefix in the third RE
  • f is the center frequency of the subcarrier occupied by the third RE.
  • the fifth RE is an RE on a previous multi-carrier symbol of the third RE on the same sub-carrier, and the fifth RE is one of the K REs, Virtual parameter Obtained by:
  • N is the length of the data symbol in the fifth RE
  • N CP is the length of the cyclic prefix in the third RE
  • f is the center frequency of the first wireless signal.
  • the G is obtained by:
  • N is the length of the data symbol in the third RE
  • N CP is the length of the cyclic prefix in the fourth RE
  • f is the same multicarrier in the K REs and the fourth RE The center frequency of the frequency domain resource occupied by the symbol's RE.
  • the G is obtained by:
  • N is the length of the data symbol in the third RE
  • N CP is the length of the cyclic prefix in the fourth RE
  • f is the center frequency of the subcarrier occupied by the fourth RE.
  • Embodiment 10 illustrates a schematic diagram of the relationship of a first bit block and K second type complex numbers according to one embodiment of the present application, as shown in FIG.
  • the block diagram represents modulation
  • the two block diagrams in case B represent modulation and DFT conversion, respectively.
  • the first bit block in the present application is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters in the present application. Used to generate the K first-class complex numbers in this application.
  • the bits in the first bit block sequentially pass through at least a first one of ⁇ Modulation, Layer Mapping, Precoding, and Transform Precoding ⁇ .
  • the modulation is ⁇ /2-BPSK; as another sub-embodiment, the modulation is ⁇ /4-QPSK; as another sub-embodiment, the pre-coding is Alamouti-based transmit diversity
  • the pre-coding is SC-SFBC (Single Carrier Space Frequency Block Code); as another sub-embodiment, the pre-coding is SC-STBC (Single) Carrier Space Time Block Code); as another sub-embodiment, the transform precoding follows the 6.3.1.4 section in 3GPP TS 38.211 or the 5.3.3 in 3GPP TS 36.211 Transform precoding definition; as another sub-embodiment, the transform precoding is implemented based on DFT.
  • the bits in the first bit block are ⁇ /2-BPSK modulated to obtain the K second type complex numbers.
  • the bits in the first bit block are sequentially subjected to ⁇ /2-BPSK modulation, and layer mapping (Layer Mapping) obtains the K second type complex numbers.
  • the bits in the first bit block are sequentially subjected to ⁇ /2-BPSK modulation, layer mapping and precoding to obtain the K second type complex numbers.
  • the precoding is Alamouti-based transmit diversity; as another sub-embodiment, the pre-coding is SC-SFBC (Single Carrier Space Frequency Block Code); In another sub-embodiment, the precoding is SC-STBC (Single Carrier Space Time Block Code).
  • the bits in the first bit block are sequentially subjected to ⁇ /2-BPSK modulation and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 6.3 in 3GPP TS 38.211. Section 1.4 or the transform precoding definition in 5.3.3 of 3GPP TS 36.211. .
  • the bits in the first bit block are sequentially subjected to ⁇ /2-BPSK modulation, layer mapping and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 3GPP TS38.211.
  • the transform precoding definition in 6.3.1.4 or 5.3.3 in 3GPP TS 36.211.
  • the bits in the first bit block are sequentially subjected to ⁇ /2-BPSK modulation, layer mapping, precoding, and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 3GPP. Transform precoding definitions in 6.3.1.4 of TS 38.211 or 5.3.3 in 3GPP TS 36.211.
  • the precoding is Alamouti-based transmit diversity; as another sub-embodiment, the pre-coding is SC-SFBC (Single Carrier Space Frequency Block Code); In another sub-embodiment, the precoding is SC-STBC (Single Carrier Space Time Block Code).
  • the bits in the first bit block are modulated by ⁇ /4-QPSK to obtain the K second type complex numbers.
  • the bits in the first bit block are sequentially subjected to ⁇ /4-QPSK modulation, and layer mapping (Layer Mapping) obtains the K second type complex numbers.
  • the bits in the first bit block are sequentially subjected to ⁇ /4-QPSK modulation, layer mapping and precoding to obtain the K second type complex numbers.
  • the precoding is Alamouti-based transmit diversity; as another sub-embodiment, the pre-coding is SC-SFBC (Single Carrier Space Frequency Block Code); In another sub-embodiment, the precoding is SC-STBC (Single Carrier Space Time Block Code).
  • the bits in the first bit block are sequentially subjected to ⁇ /4-QPSK modulation and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 6.3 in 3GPP TS38.211. Section 1.4 or the transform precoding definition in 5.3.3 of 3GPP TS 36.211. .
  • the bits in the first bit block are sequentially subjected to ⁇ /4-QPSK modulation, layer mapping and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 3GPP TS38.211.
  • the transform precoding definition in 6.3.1.4 or 5.3.3 in 3GPP TS 36.211.
  • the bits in the first bit block are sequentially subjected to ⁇ /4-QPSK modulation, layer mapping, precoding, and transform precoding to obtain the K second type complex numbers, and the transform precoding follows 3GPP. Transform precoding definitions in 6.3.1.4 of TS 38.211 or 5.3.3 in 3GPP TS 36.211.
  • the precoding is Alamouti-based transmit diversity; as another sub-embodiment, the pre-coding is SC-SFBC (Single Carrier Space Frequency Block Code); In another sub-embodiment, the precoding is SC-STBC (Single Carrier Space Time Block Code).
  • the corresponding products of the K second type complex numbers and the K first parameters generate the K first type complex numbers.
  • the corresponding products of the K second type complex numbers and the K first parameters are subjected to transform precoding to generate the K first type complex numbers.
  • the transform precoding is implemented based on DFT (Discrete Fourier Transform); as another sub-embodiment, the transform precoding follows 6.3.1.4 in 3GPP TS 38.211 Or the transform precoding definition in 5.3.3 of 3GPP TS 36.211.
  • the corresponding products of the K second type complex numbers and the K first parameters are subjected to transform precoding and precoding to generate the K first type complex numbers.
  • the transform precoding is implemented based on DFT (Discrete Fourier Transform); as another sub-embodiment, the transform precoding follows 6.3.1.4 in 3GPP TS 38.211 Or the transform precoding definition in 5.3.3 of 3GPP TS 36.211.
  • the corresponding products of the K second type complex numbers and the K first parameters are sequentially subjected to layer mapping, transform precoding, and precoding (Precoding) to generate the K first class plural.
  • the transform precoding is implemented based on DFT (Discrete Fourier Transform); as another sub-embodiment, the transform precoding follows 6.3.1.4 in 3GPP TS 38.211 Or the transform precoding definition in 5.3.3 of 3GPP TS 36.211.
  • the K second type complex numbers d(0), . . . , d(K-1) are obtained by:
  • b(0),...,b(K-1) are the bits in the first block of bits.
  • the K second type complex numbers d(0), . . . , d(K-1) are obtained by the following operations:
  • c(0), . . . , c(K-1) is that the bits in the first bit block are modulated to output a complex symbol
  • M sc represents the number of subcarriers occupied by the first wireless signal
  • Embodiment 11 illustrates a schematic diagram of a first coding block in accordance with one embodiment of the present application, as shown in FIG.
  • the horizontal axis represents the direction in which the bits in the first bit block are ordered
  • each small square represents one bit
  • the small square filled with oblique lines represents one bit in the first coding block
  • the small square without padding represents One bit other than the first coded block in the first bit block.
  • the first bit block in the present application includes M coding blocks, the M is an integer greater than 1, and the first coding block is one of the M coding blocks, the first There are two consecutive bits in the coded block that are discrete in the first block of bits.
  • any one of the M coding blocks (CBs) is obtained by segmentation by a transport block (TB).
  • any one of the M coding blocks (CB) includes a positive integer number of bits.
  • any two of the M coding blocks include equal numbers of bits.
  • the number of bits included in the two coding blocks in the M coding blocks is not equal.
  • only one code block in the M coding blocks is different from the number of bits included in other coding blocks.
  • the first wireless signal is frequency hopped, and the bits in the first coding block are used to generate the first wireless signal on two or more frequency hopping frequency domain resources. signal.
  • the first wireless signal is subjected to frequency hopping transmission, and bits in the first coding block are used to generate the mapping in the K first type complex numbers in two different multicarrier symbols and different The first type of plural on the RE.
  • Embodiment 12 exemplifies a structural block diagram of a processing device in a user equipment, as shown in FIG.
  • the user equipment processing apparatus 1200 is mainly composed of a first receiver module 1201 and a first transmitter module 1202.
  • the first receiver module 1201 includes the transmitter/receiver 456 (including the antenna 460) of the present application, the receiving processor 452 and the controller/processor 490; the first transmitter module 1202 includes the drawing 4 of the present application.
  • Transmitter/receiver 456 (including antenna 460), transmit processor 455 and controller/processor 490.
  • the first receiver module 1201 receives the first signaling; the first transmitter module 1202 transmits the first wireless signal; wherein the first signaling is used to determine K REs, K first The class complex numbers are respectively mapped to K REs, the K first class complex numbers are used to generate the first wireless signal, and the K first class parameters and the K first class complex numbers are in one-to-one correspondence.
  • the K first type parameters are all complex numbers whose modulo is equal to 1, the K first type parameters are related to the frequency domain positions of the K REs, and each of the K first type parameters is the first type The parameter is related to a length of a cyclic prefix of the RE of the corresponding first type complex; the first wireless signal carries a first bit block, and the K first type parameters and the first bit block are used to generate The K first type complex numbers, the K first type parameters are independent of the bits in the first bit block, and the K REs are distributed in the frequency domain over more than 1 subcarrier, the K The REs are distributed over more than one multicarrier symbol in the time domain.
  • the K REs are distributed in X multicarrier symbols in a time domain, the X is a positive integer greater than 1, and the target multicarrier symbol is the earliest in the X multicarrier symbols in the time domain.
  • the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in the frequency domain, and the first RE and the second The REs occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type of complex numbers mapped on the second RE are equal to the first type of complex numbers mapped on the first RE.
  • the Q being a complex number with a modulus equal to 1
  • the Q being related to the length of the polar coordinate and the length of the cyclic prefix in the second RE, the Q being in polar coordinates
  • the angle is also related to ⁇ the location of the second RE in the frequency domain, the K REs and the second RE occupying the same multi-carrier symbol RE in at least one of the frequency domain locations ⁇ .
  • the first type complex number corresponding to the first type of the first RE is mapped.
  • the first type of parameter is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • a third RE exists outside the K REs
  • a fourth RE exists in the K REs, where the third RE and the fourth RE occupy the same subcarrier in the frequency domain.
  • the third RE and the fourth RE respectively occupy two successive multi-carrier symbols in the time domain;
  • the first type of parameters corresponding to the first type complex number mapped on the fourth RE is equal to the virtual parameter and the G a product, or a first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H;
  • the virtual parameter is related to a length of a cyclic prefix in the third RE, and the G is a mode A complex number equal to one, the G being related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE, the H being a predefined complex number, or the H being a configurable complex number.
  • the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters are used to generate the K first numbers A type of plural.
  • the first bit block includes M coding blocks, the M is an integer greater than 1, the first coding block is one of the M coding blocks, and two of the first coding blocks exist.
  • the consecutive bits are discrete in the first block of bits.
  • the first receiver module 1201 also receives second signaling; the second signaling is used to determine a length of a cyclic prefix of each of the K REs.
  • Embodiment 13 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station processing apparatus 1300 is mainly composed of a second transmitter module 1301 and a second receiver module 1302.
  • the second transmitter module 1301 includes the transmitter/receiver 416 (including the antenna 420) of the present application, the transmitting processor 415 and the controller/processor 440; the second receiver module 1302 includes the drawing 4 of the present application.
  • Transmitter/receiver 416 (including antenna 420), receive processor 412 and controller/processor 440.
  • the second transmitter module 1301 transmits the first signaling; the second receiver module 1302 receives the first wireless signal; wherein the first signaling is used to determine K REs, K first The class complex numbers are respectively mapped to K REs, the K first class complex numbers are used to generate the first wireless signal, and the K first class parameters and the K first class complex numbers are in one-to-one correspondence.
  • the K first type parameters are all complex numbers whose modulo is equal to 1, the K first type parameters are related to the frequency domain positions of the K REs, and each of the K first type parameters is the first type The parameter is related to a length of a cyclic prefix of the RE of the corresponding first type complex; the first wireless signal carries a first bit block, and the K first type parameters and the first bit block are used to generate The K first type complex numbers, the K first type parameters are independent of the bits in the first bit block, and the K REs are distributed in the frequency domain over more than 1 subcarrier, the K The REs are distributed over more than one multicarrier symbol in the time domain.
  • the K REs are distributed in X multicarrier symbols in a time domain, the X is a positive integer greater than 1, and the target multicarrier symbol is the earliest in the X multicarrier symbols in the time domain.
  • the first RE and the second RE are present in the K REs, and the first RE and the second RE occupy the same subcarrier in the frequency domain, and the first RE and the second The REs occupy two consecutive multi-carrier symbols in the time domain, and the first type of parameters corresponding to the first type of complex numbers mapped on the second RE are equal to the first type of complex numbers mapped on the first RE.
  • the Q being a complex number with a modulus equal to 1
  • the Q being related to the length of the polar coordinate and the length of the cyclic prefix in the second RE, the Q being in polar coordinates
  • the angle is also related to ⁇ the location of the second RE in the frequency domain, the K REs and the second RE occupying the same multi-carrier symbol RE in at least one of the frequency domain locations ⁇ .
  • the first type complex number corresponding to the first type of the first RE is mapped.
  • the first type of parameter is equal to P, the P is a predefined complex number, or the P is a configurable complex number.
  • a third RE exists outside the K REs
  • a fourth RE exists in the K REs, where the third RE and the fourth RE occupy the same subcarrier in the frequency domain.
  • the third RE and the fourth RE respectively occupy two successive multi-carrier symbols in the time domain;
  • the first type of parameters corresponding to the first type complex number mapped on the fourth RE is equal to the virtual parameter and the G a product, or a first type of parameter corresponding to the first type of complex number mapped on the fourth RE is equal to H;
  • the virtual parameter is related to a length of a cyclic prefix in the third RE, and the G is a mode A complex number equal to one, the G being related to the length of the polar coordinate and the length of the cyclic prefix in the fourth RE, the H being a predefined complex number, or the H being a configurable complex number.
  • the first bit block is used to generate K second type complex numbers, and the corresponding products of the K second type complex numbers and the K first parameters are used to generate the K first numbers A type of plural.
  • the first bit block includes M coding blocks, the M is an integer greater than 1, the first coding block is one of the M coding blocks, and two of the first coding blocks exist.
  • the consecutive bits are discrete in the first block of bits.
  • the second transmitter module 1301 further transmits second signaling; the second signaling is used to determine a length of a cyclic prefix of each of the K REs.
  • the UE or the terminal in the present application includes but is not limited to a wireless communication device such as a mobile phone, a tablet computer, a notebook, an internet card, a low power consumption device, an eMTC device, an NB-IoT device, and an in-vehicle communication device.
  • the base station or network side device in this application includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, an eNB, a gNB, a transmission receiving node TRP, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。用户设备首先接收接收第一信令,接着发送第一无线信号;所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数。本申请能提升上行的覆盖性能。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方案,特别是涉及支持π/2-BPSK或π/4-QPSK调制传输的方法和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)进行研究。在3GPP RAN#75次全会上通过了5G新空口技术(NR)的工作项目(WI,Working Item)的立项,开始对5G新空口技术进行标准化。
为了能够灵活适应多种不同的应用场景,未来的无线通信系统,特别是5G NR将可以支持多种数理结构(Numerology),多种数理结构是指多种子载波间隔,多种符号时间长度,多种CP(Cyclic Prefix,循环前缀)长度等。另一方面,为了能够保证覆盖性能,特别是由于发射功率受限导致的上行覆盖的问题,在5G NR的WI标准化过程中同意支持低PAPR(Peak to Average Power Ratio,峰均比)或CM(Cubic Matric,立方参数)的SC-FDMA,(Single Carrier Frequency Division Multiple Acess,单载波频分复用多址接入)波形(Waveform),同时对于DFT-s-OFDM波形还支持π/2-BPSK的调制方式来进一步降低PAPR或CM,从而提高上行传输的覆盖性能和功率放大器的效率。
发明内容
π/2-BPSK调制和π/4-QPSK是分别通过对传统的BPSK和QPSK进行符号间的相位旋转来实现的,这种相位旋转可以尽量保证调制出的符号的相位的连续性和恒包络的属性,即使在经过滤波后(或冲击赋型,Pulse Shaping)后还能保证调制后的信号的低PAPR,提高覆盖的性能。SC-FDMA系统虽然一定程度上保留了单载波的属性,但是由于在实现中变换预编码(一般由DFT实现,即DFT-s-OFDM)或滤波的采用,本质上还是类似于OFDM的多载波形式,同时为了抵抗多径干扰,在每个多载波符号之前插入了循环前缀(CP)。这种DFT-s-OFDM波形的生成和CP的插入都会影响π/2-BPSK调制或π/4-QPSK调制下的基带信号的相位连续性和恒包络属性,从而使PAPR或CM上升,大大抵消了π/2-BPSK调制或π/4-QPSK调制所带来的覆盖性能的提升。
为了解决上述π/2-BPSK调制或π/4-QPSK调制在DFT-s-OFDM波形下面临的问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的用户设备中的方法,其特征在于,包括:
-接收第一信令;
-发送第一无线信号;
其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在 时域分布在多于1个多载波符号上。
根据本申请的一个方面,上述方法的特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
根据本申请的一个方面,上述方法的特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
根据本申请的一个方面,上述方法的特征在于,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
根据本申请的一个方面,上述方法的特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
根据本申请的一个方面,上述方法的特征在于,还包括:
-接收第二信令;
其中,所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
本申请公开了一种用于无线通信中的基站设备中的方法,其特征在于,包括:
-发送第一信令;
-接收第一无线信号;
其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
根据本申请的一个方面,上述方法的特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的 RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
根据本申请的一个方面,上述方法的特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
根据本申请的一个方面,上述方法的特征在于,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
根据本申请的一个方面,上述方法的特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
根据本申请的一个方面,上述方法的特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
根据本申请的一个方面,上述方法的特征在于,还包括:
-发送第二信令;
其中,所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
本申请公开了一种用于无线通信中的用户设备,其特征在于,包括:
-第一接收机模块,接收第一信令;
-第一发射机模块,发送第一无线信号;
其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
根据本申请的一个方面,上述用户设备的特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
根据本申请的一个方面,上述用户设备的特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对 应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
根据本申请的一个方面,上述用户设备的特征在于,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
根据本申请的一个方面,上述用户设备的特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
根据本申请的一个方面,上述用户设备的特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
根据本申请的一个方面,上述用户设备的特征在于,所述第一接收机模块还接收第二信令;所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
本申请公开了一种用于无线通信中的基站设备,其特征在于,包括:
-第二发射机模块,发送第一信令;
-第二接收机模块,接收第一无线信号;
其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
根据本申请的一个方面,上述基站设备的特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
根据本申请的一个方面,上述基站设备的特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
根据本申请的一个方面,上述基站设备的特征在于,如果所述第一RE占用所述K个 RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
根据本申请的一个方面,上述基站设备的特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
根据本申请的一个方面,上述基站设备的特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
根据本申请的一个方面,上述基站设备的特征在于,所述第二发射机模块还发送第二信令;所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
作为一个实施例,本申请中的方法具有如下优点:
-本申请中提供一种时域的相位补偿的方法:在进行变换预编码(Transform Precoding,一般由DFT变换实现)之前,根据资源映射的时候的CP的长度对调制后(如果进行DFT前的多天线发射分集,则在发射分集的预编码之后)的信号依据信号的频率(一般为中心频率)对每个多载波符号上的相位进行补偿,在保持了信号的单载波特性的同时,保证了相位的连续变化,降低了PAPR,提高了覆盖性能。
-该时域相位补偿的方法也同时适用于通过频率变换和滤波产生的SC-FDMA信号,为实现提供了更多的灵活性。
-本申请还提供了一种频域相位补偿的方法:在DFT变换之后,IFFT变换生成基带信号之前,在每个子载波上依据各个子载波上的CP长度和子载波的频率对相位进行补偿,使用该频域相位补偿的方法也能够达到降低PAPR的效果。
-本申请中的相位补偿方法还同时考虑了上行跳频传输,由于参考信号的插入导致数据不连续等情况,通过精巧的设计(比如在跳频开始对相位补偿进行重置和假设参考信号也应用相同的相位补偿等),进一步保证了SC-FDMA传输的低PAPR,提高了覆盖性能。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令和第一无线信号的传输的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的基站设备和用户设备的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的一个实施例的K个第一类复数和K个第一类参数的关系的示意图;
图7示出了根据本申请的一个实施例的X个多载波符号的示意图;
图8示出了根据本申请的一个实施例的第一RE和第二RE的关系的示意图;
图9示出了根据本申请的一个实施例的第三RE和第四RE的关系的示意图;
图10示出了根据本申请的一个实施例的第一比特块和K个第二类复数的关系的示意图;
图11示出了根据本申请的一个实施例的第一编码块的示意图;
图12示出了根据本申请的一个实施例的用户设备(UE)中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令和第一无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的用户设备首先接收第一信令,接着发送第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述K个RE(Resource Element,资源元素)中的每个RE在频域占用一个子载波,在时域占用一个多载波符号,其中一个多载波符号包含循环前缀(CP,Cyclic Prefix)。
作为一个实施例,所述K个RE(Resource Element,资源元素)中的每个RE在频域占用一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)子载波,在时域占用一个OFDM符号,其中一个OFDM符号包含循环前缀(CP,Cyclic Prefix)。
作为一个实施例,所述K个RE(Resource Element,资源元素)中的每个RE在频域占用一个SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分复用接入)子载波,在时域占用一个SC-FDMA符号,其中一个SC-FDMA符号包含循环前缀(CP,Cyclic Prefix)。
作为一个实施例,在同一个多载波符号上的所述K个RE中的RE分布在连续的子载波上。
作为一个实施例,所述K个RE在每个多载波符号上都分布在相同的一组子载波上。
作为一个实施例,在同一个多载波符号上的所述K个RE中的RE分布在离散的子载波上。
作为一个实施例,存在两个多载波符号上的所述K个RE中的RE分布在不相同的两组子载波上。
作为一个实施例,所述K个RE中的循环前缀的长度相等。
作为一个实施例,所述K个RE中存在两个RE的循环前缀的长度不等。
作为一个实施例,所述K个RE中的循环前缀为正常循环前缀(Normal CP)。
作为一个实施例,所述K个RE中的循环前缀为扩展循环前缀(Extended CP)。
作为一个实施例,所述第一无线信号占用所述K个RE。
作为一个实施例,所述K等于12的大于1的正整数倍。
作为一个实施例,所述K个第一类复数分别资源映射(Resource Mapping)到所述K个RE上。
作为一个实施例,所述K个第一类复数分别占用所述K个RE。
作为一个实施例,所述K个第一类复数的模都相等。
作为一个实施例,所述K个第一类复数的模和所述第一无线信号的发射功率有关。
作为一个实施例,所述K个第一类复数通过基带信号产生生成所述第一无线信号的基带信号。作为一个子实施例,所述基带信号产生是用来生成SC-FDMA的基带信号的。作为另一个子实施例,所述基带信号产生是遵循3GPP TS38.211中的5.3节或TS36.211中的5.6节的基带信号产生实现的。
作为一个实施例,所述K个第一类复数通过IFFT变换生成所述第一无线信号的基带信号。
作为一个实施例,所述K个第一类参数被用于分别改变所述K个第一类复数在极坐标的相位。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特的内容无关。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特无关是指所述K个第一类参数只和所述K个RE有关。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特无关是指所述K个第一类参数只和{所述K个RE中的子载波间隔,所述K个RE的频域位置,所述K个RE在所述K个RE所占用的载波中的位置,所述K个RE的循环前缀的长度}中至少之一有关。
作为一个实施例,所述K个第一类参数中存在实数。
作为一个实施例,所述K个第一类参数中存在两个第一类参数相等。
作为一个实施例,所述K个RE的频域位置被用于确定所述K个第一类参数。
作为一个实施例,所述K个第一类参数中任意一个第一类参数和所对应的第一类复数映射的RE的频域位置有关。
作为一个实施例,所述K个第一类参数中任意一个第一类参数和所对应的第一类复数映射的RE的中心频率有关。
作为一个实施例,所述K个第一类参数中的任意一个第一类参数和对应的第一类复数所映射的RE在所述K个RE中的时域位置有关。
作为一个实施例,所述K个RE中的一个RE在所述K个RE中的时域位置被用于确定映射在该RE上的第一类复数所对应的第一类参数。
作为一个实施例,所述K个RE的频域位置是指所述K个RE在频域的分布图样。
作为一个实施例,所述K个RE在频域占用连续的子载波,所述K个RE的频域位置是指所述K个RE所占用的连续的子载波的中心频率。
作为一个实施例,所述K个RE的频域位置是指所述第一无线信号在基带的中心频率。
作为一个实施例,所述K个RE的频域位置和所述K个RE所占用的子载波的子载波间隔有关。
作为一个实施例,作为一个实施例,所述K个第一类参数中的任意一个第一类参数和对应的第一类复数所映射的RE在所述K个RE中的时域位置有关,所述K个RE中的一个RE在所述K个RE中的时域位置是指这个RE所占用的多载波符号在所述K个RE所占用的多载波符号中的索引。
作为一个实施例,作为一个实施例,所述K个第一类参数中的任意一个第一类参数和对应的第一类复数所映射的RE在所述K个RE中的时域位置有关,所述K个RE中的一个RE在所述K个RE中的时域位置是指这个RE所占用的多载波符号在所述K个RE所占用的多载波符号中的先后位置。
作为一个实施例,所述K个第一类参数和所述K个RE所占用的载波的子载波间隔有关。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括高层信令。
作为一个实施例,所述第一信令包括物理层信令和高层信令。
作为一个实施例,所述第一信令包括DCI(Downlink Control Information,下行控制信息)中的一个或多个域(Field)。
作为一个实施例,所述第一信令通过PDCCH(Physical Downlink Control Information, 物理下行控制信息)传输。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线资源控制)信令中的一个或多个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括RRC信令中的一个IE中的一个或多个域(Field)。
作为一个实施例,所述第一信令通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信令包括MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素)。
作为一个实施例,所述第一信令包括MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素)中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括Msg-2(消息2)中的上行授予(UL Grant)。
作为一个实施例,所述第一无线信号包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述第一无线信号通过PUSCH传输(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第一无线信号通过PUCCH传输(Physical Uplink Control Channel,物理上行控制信道)。
作为一个实施例,所述第一无线信号携带Msg-3(消息3)。
作为一个实施例,所述第一无线信号携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第一无线信号所采用的调制方式为π/2-BPSK。
作为一个实施例,所述第一无线信号所采用的调制方式为π/4-QPSK。
作为一个实施例,所述第一信令被所述用户设备用于确定所述K个RE。
作为一个实施例,所述第一信令指示所述K个RE。
作为一个实施例,所述第一比特块携带一个传输块(TB,Transport Block)的全部或部分。
作为一个实施例,所述第一比特块携带一个或多个编码块(CB,Code Block)。
作为一个实施例,所述第一比特块由一个TB块的部分或全部比特经过{信道编码(Channel Coding),交织(Interleaving),加扰(Scrambling)}中至少第一者得到的。
作为一个实施例,所述第一比特块由UCI经过信道编码后得到的。
作为一个实施例,所述第一比特块中的比特按照顺序排列的。
作为一个实施例,所述第一比特块中包括正整数个比特。
作为一个实施例,所述第一比特块中包括K个比特。
作为一个实施例,所述第一比特块中包括K/2个比特。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制 平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS串流服务(PSS)。
作为一个实施例,所述UE201对应本申请中的用户设备。
作为一个实施例,所述gNB203对应本申请中的基站。
作为一个实施例,所述UE201支持π/2-BPSK或π/4-QPSK调制。
作为一个实施例,所述gNB203支持π/2-BPSK或π/4-QPSK调制。
作为一个实施例,所述UE201支持SC-FDMA波形。
作为一个实施例,所述gNB203支持SC-FDMA波形。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于用户设备(UE)和基站设备(gNB或eNB)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在UE与gNB之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的gNB处。虽然未图示,但UE可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供gNB之间的对UE的越区移交支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在UE之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于UE和gNB的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用gNB与UE之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的用户设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的基站设备。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC302。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述MAC302。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令,比如本申请中的第一信令和第二信令的生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信令和第二信令在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申 请中携带第一信令和第二信令的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,使用数据源467来将本申请中的第一无线信号提供到控制器/处理器490。数据源467表示L2层之上的所有协议层。控制器/处理器490通过基于gNB410的无线电资源分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能。信号发射处理功能包括编码和交织以促进UE350处的前向错误校正(FEC)以及基于各种调制方案(例如π/2-BPSK或π/4-QPSK调制)对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号(例如SC-FDMA的子载波或多载波符号),然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案(例如,例如π/2-BPSK或π/4-QPSK调制)的解调,随后解码和解交织以恢复在物理信道上由UE450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在接收处理器控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信令;发送第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;发送第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述eNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信令;接收第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第 一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述eNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;接收第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述UE450对应本申请中的所述用户设备。
作为一个实施例,所述gNB410对应本申请中的所述基站。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收第二信令。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送第一无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的第二信令。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的第一无线信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。附图5中,基站N1是UE U2的服务小区的维持基站。
对于 基站N1,在步骤S11中发送第二信令,在步骤S12中发送第一信令,在步骤S13中接收第一无线信号。
对于 UE U2,在步骤S21中接收第二信令,在步骤S22中接收第一信令,在步骤S23中发送第一无线信号。
在实施例5中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上,第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
作为一个实施例,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
作为一个实施例,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
作为一个实施例,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
作为一个实施例,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
作为一个实施例,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
根作为一个实施例,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
作为一个实施例,所述第二信令指示所述K个RE的数理结构(Numerology)。
作为一个实施例,所述第二信令指示所述K个RE所属的BWP(Bandwidth Part,带宽部分)。
作为一个实施例,所述第二信令指示所述K个RE所占用的子载波的子载波间隔(Subcarrier Spacing)。
作为一个实施例,所述第二信令被所述用户设备用于确定所述K个RE中的每个RE的循环前缀的长度。
作为一个实施例,所述第二信令指示所述K个RE中的每个RE的循环前缀的长度。
作为一个实施例,所述第二信令包括物理层信令。
作为一个实施例,所述第二信令包括高层信令。
作为一个实施例,所述第二信令包括物理层信令和高层信令。
作为一个实施例,所述第二信令包括DCI(Downlink Control Information,下行控制信息)中的一个或多个域(Field)。
作为一个实施例,所述第二信令通过PDCCH(Physical Downlink Control Information,物理下行控制信息)传输。
作为一个实施例,所述第二信令包括RRC(Radio Resource Control,无线资源控制)信令中的一个或多个IE(Information Element,信息元素)。
作为一个实施例,所述第二信令包括RRC信令中的一个IE中的一个或多个域(Field)。
作为一个实施例,所述第二信令通过PDSCH(Physical Downlink Shared Channel, 物理下行共享信道)传输。
作为一个实施例,所述第二信令包括MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素)。
作为一个实施例,所述第二信令包括MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制元素)中的一个或多个域(Field)。
作为一个实施例,所述第二信令包括Msg-2(消息2)中的上行授予(UL Grant)。
作为一个实施例,所述第一信令和所述第二信令包括同一个信令。
作为一个实施例,所述第一信令和所述第二信令是完全不同的两个信令。
实施例6
实施例6示例了根据本申请的一个实施例的K个第一类复数和K个第一类参数的关系的示意图,如附图6所示。附图6中,横轴代表时间,纵轴代表频率,每个小格子代表K个RE中的一个RE,每个变换符号中的上面箭头的输入为K个第一类参数中的一个第一类参数,输出为K个第一类复数中的一个第一类复数。
在实施例6中,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述K个第一类复数通过基带信号产生生成所述第一无线信号的基带信号。作为一个子实施例,所述基带信号产生是用来生成SC-FDMA的基带信号的。作为另一个子实施例,所述基带信号产生是遵循3GPP TS38.211中的5.3节或TS36.211中的5.6节的基带信号产生实现的。
作为一个实施例,所述K个第一类复数通过IFFT变换生成所述第一无线信号的基带信号。
作为一个实施例,所述K个第一类参数被用于分别改变所述K个第一类复数在极坐标的相位。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特的内容无关。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特无关是指所述K个第一类参数只和所述K个RE有关。
作为一个实施例,所述K个第一类参数和所述第一比特块中的比特无关是指所述K个第一类参数只和{所述K个RE中的子载波间隔,所述K个RE的频域位置,所述K个RE在所述K个RE所占用的载波中的位置,所述K个RE的循环前缀的长度}中至少之一有关。
作为一个实施例,所述K个第一类参数中存在实数。
作为一个实施例,所述K个第一类参数中存在两个第一类参数相等。
作为一个实施例,所述K个第一类参数和所述K个RE所占用的载波的子载波间隔有关。
实施例7
实施例7示例了根据本申请的一个实施例的X个多载波符号的示意图,如附图7所示。在附图7中,横轴代表时间,纵轴代表频率,每个矩形代表一个多载波符号,其中斜线填充的矩形代表目标多载波符号,
Figure PCTCN2018110190-appb-000001
代表每个多载波符号对应的第一类参数。
在实施例7中,本申请中的所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标 RE组上的第一类复数所对应的第一类参数都相等。
作为一个实施例,所述X个多载波符号是时域连续的。
作为一个实施例,所述X个多载波符号是时域离散的。
作为一个实施例,映射在所述目标RE组上的第一类复数所对应的第一类参数和所述目标RE组所占用的频域资源的特征频率有关。作为一个子实施例,所述特征频率为中心频率;作为另一个子实施例,所述特征频率为最低频率;作为另一个子实施例,所述特征频率为最高频率;作为另一个子实施例,所述特征频率为中心频率经过一个固定的偏移之后的频率。
作为一个实施例,映射在所述目标RE组上的第一类复数所对应的第一类参数和所述目标RE组中的RE的数量无关。
作为一个实施例,映射在所述目标RE组上的第一类复数所对应的第一类参数和所述目标RE组中的子载波的子载波间隔无关。
实施例8
实施例8根据本申请的一个实施例的第一RE和第二RE的关系的示意图,如附图8所示。在附图8中,横轴代表时间,纵轴代表频率,每一个小方格代表K个RE中的一个RE,交叉线填充的小方格代表第一RE,斜线填充的小方格代表第二RE,第一RE上对应的第一类参数和第二RE上对应的第一类参数分别为极坐标中的端点为圆点的实线向量表示。
在实施例8中,本申请中的所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关;如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
作为一个实施例,所述第一RE和所述第二RE所属的两个多载波符号为在时域相邻的两个多载波符号。
作为一个实施例,所述第一RE和所述第二RE所属的两个多载波符号为在时域不相邻的两个多载波符号。
作为一个实施例,所述第一RE中的CP和所述第二RE中的CP的长度相等。
作为一个事实,所述第一RE中的CP和所述第二RE中的CP的长度不等。
作为一个实施例,对于给定的所述第二RE所占用的子载波,所述Q在极坐标的所述角度和所述第二RE中的循环前缀的长度线性相关。
作为一个实施例,所述第二RE在频域的所述位置是指所述第二RE所占用的子载波的中心频率。
作为一个实施例,所述第二RE在频域的所述位置是指所述第二RE所占用的子载波在基带的中心频率。
作为一个实施例,所述第二RE在频域的所述位置是指所述第二RE在基带频域的绝对位置。
作为一个实施例,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置是指所述K个RE中和所述第二RE占用相同的多载波符号的RE所占用的频域资源的中心频率。
作为一个实施例,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置是指所述K个RE中和所述第二RE占用相同的多载波符号的RE所占用的频域资源基带的中心频率。
作为一个实施例,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置是指所述第一无线信号所占用的频域资源在频域的位置。
作为一个实施例,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置是指所述第一无线信号所占用的频域资源中的特征频率在频域的位置。作为一个子实施例,所述特征频率为中心频率。作为另一个子实施例,所述特征频率为中心频率经过一个固定的偏移后的频率。
作为一个实施例,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置是指所述第一无线信号所占用的频域资源在基带的中心频率。
作为一个实施例,所述Q由下式得到:
Figure PCTCN2018110190-appb-000002
其中,N是所述第一RE中的数据符号的长度,N CP是所述第二RE中的循环前缀的长度,f是所述K个RE中和所述第二RE占用相同的多载波符号的RE所占用的频域资源的中心频率。
作为一个实施例,所述Q由下式得到:
Figure PCTCN2018110190-appb-000003
其中,N是所述第一RE中的数据符号的长度,N CP是所述第二RE中的循环前缀的长度,f是所述第二RE所占用的子载波的中心频率。
作为一个实施例,所述P等于1。
作为一个实施例,所述P不等于1。
作为一个实施例,所述P的模等于1。
作为一个实施例,所述P为一个模为1极坐标相位大于0的复数。
作为一个实施例,所述第一RE的CP的长度大于所述K个RE所占用的多载波符号中所述第一RE所占用的多载波符号之外的多载波符号中的CP的长度。
作为一个实施例,所述K个RE所占用的多载波符号的CP的长度都相等。
实施例9
实施例9示例了根据本申请的一个实施例的第三RE和第四RE的关系的示意图,如附图9所示。在附图9中,横轴代表时间,纵轴代表频率,每一个实线边框的小方格代表K个RE中的一个RE,交叉线填充的小方格代表第三RE,斜线填充的小方格代表第四RE。在情况A中虚拟参数为第三RE对应的端点为圆点的极坐标的向量,在情况B中,第四RE对应的第一类参数为第四RE对应的端点为圆点的极坐标的向量。
在实施例9中,本申请中的所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
作为一个实施例,所述G在极坐标的角度还和{所述第四RE所占用的频域资源,所述第一无线信号所占用的频域资源}中至少之一有关。
作为一个实施例,所述H等于1。
作为一个实施例,所述H不等于1。
作为一个实施例,所述H的模等于1。
作为一个实施例,所述H为一个模为1极坐标相位大于0的复数。
作为一个实施例,所述第四RE是所述K个RE中占用最早的多载波符号的RE之外的一个RE。
作为一个实施例,所述第一无线信号以所述第四RE所占用的多载波符号为起始多载波符号进行了跳频。
作为一个实施例,所述第三RE被用于传输上行参考信号。
作为一个实施例,所述第三RE被用于传输UL DMRS(Uplink Demodulation Reference Signal,上行解调参考信号)。
作为一个实施例,所述第三RE被用于传输UL SRS(Uplink Sounding Reference Signal,上行探测参考信号)。
作为一个实施例,所述第三RE被调度用于所述用户设备之外的一个用户设备的传输。
作为一个实施例,所述第三RE没有被调度用于传输。
作为一个实施例,与所述第三RE同一个子载波的前一个多载波符号上的RE属于所述K个RE。
作为一个实施例,与所述第三RE同一个子载波的前一个多载波符号上的RE属于所述K个RE之外的一个RE。
作为一个实施例,所述虚拟参数是所述用户设备假设所述第三RE被用于传输所述第一无线信号得到的一个第一类参数。
作为一个实施例,第五RE为所述第三RE同一个子载波上的所述第三RE前一个多载波符号上的RE,所述第五RE为所述K个RE中之一,所述虚拟参数
Figure PCTCN2018110190-appb-000004
通过下式得到:
Figure PCTCN2018110190-appb-000005
其中
Figure PCTCN2018110190-appb-000006
为映射在所述第五RE上的第一类复数所对应的第一类参数,N是所述第五RE中的数据符号的长度,N CP是所述第三RE中的循环前缀的长度,f是所述第三RE所占用的子载波的中心频率。
作为一个实施例,第五RE为所述第三RE同一个子载波上的所述第三RE前一个多载波符号上的RE,所述第五RE为所述K个RE中之一,所述虚拟参数
Figure PCTCN2018110190-appb-000007
通过下式得到:
Figure PCTCN2018110190-appb-000008
其中
Figure PCTCN2018110190-appb-000009
为映射在所述第五RE上的第一类复数所对应的第一类参数,N是所述第五RE中的数据符号的长度,N CP是所述第三RE中的循环前缀的长度,f是所述第一无线信号的中心频率。
作为一个实施例,所述G由下式得到:
Figure PCTCN2018110190-appb-000010
其中,N是所述第三RE中的数据符号的长度,N CP是所述第四RE中的循环前缀的长度,f是所述K个RE中和所述第四RE占用相同的多载波符号的RE所占用的频域资源的 中心频率。
作为一个实施例,所述G由下式得到:
Figure PCTCN2018110190-appb-000011
其中,N是所述第三RE中的数据符号的长度,N CP是所述第四RE中的循环前缀的长度,f是所述第四RE所占用的子载波的中心频率。
实施例10
实施例10示例了根据本申请的一个实施例的第一比特块和K个第二类复数的关系的示意图,如附图10所示。在附图10中,在情况A中,框图代表调制,在情况B中的两个框图分别代表调制和DFT变换。
在实施例10中,本申请中的所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和本申请中的所述K个第一参数的对应乘积被用于生成本申请中的所述K个第一类复数。
作为一个实施例,所述第一比特块中的比特依次经过{调制(Modulation),层映射(Layer Mapping),预编码(Precoding),变换预编码(Transform Precoding)}中至少第一者生成所述K个第二类复数。作为一个子实施例,所述调制为π/2-BPSK;作为另一个子实施例,所述调制为π/4-QPSK;作为另一个子实施例,所述预编码为基于Alamouti的发送分集;作为另一个子实施例,所述预编码为SC-SFBC(Single Carrier Space Frequency Block Code,单载波空频码块编码);作为另一个子实施例,所述预编码为SC-STBC(Single Carrier Space Time Block Code,单载波空时码块编码);作为另一个子实施例,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义;作为另一个子实施例,所述变换预编码是基于DFT实现的。
作为一个实施例,所述第一比特块中的比特经过π/2-BPSK调制得到所述K个第二类复数。
作为一个实施例,所述第一比特块中的比特依次经过π/2-BPSK调制,层映射(Layer Mapping)得到所述K个第二类复数。
作为一个实施例,所述第一比特块中的比特依次经过π/2-BPSK调制,层映射(Layer Mapping)和预编码(Precoding)得到所述K个第二类复数。作为一个子实施例,所述预编码为基于Alamouti的发送分集;作为另一个子实施例,所述预编码为SC-SFBC(Single Carrier Space Frequency Block Code,单载波空频码块编码);作为另一个子实施例,所述预编码为SC-STBC(Single Carrier Space Time Block Code,单载波空时码块编码)。
作为一个实施例,所述第一比特块中的比特依次经过π/2-BPSK调制和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。。
作为一个实施例,所述第一比特块中的比特依次经过π/2-BPSK调制,层映射和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。
作为一个实施例,所述第一比特块中的比特依次经过π/2-BPSK调制,层映射,预编码和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。作为一个子实施例,所述预编码为基于Alamouti的发送分集;作为另一个子实施例,所述预编码为SC-SFBC(Single Carrier Space Frequency Block Code,单载波空频码块编码);作为 另一个子实施例,所述预编码为SC-STBC(Single Carrier Space Time Block Code,单载波空时码块编码)。
作为一个实施例,所述第一比特块中的比特经过π/4-QPSK调制得到所述K个第二类复数。
作为一个实施例,所述第一比特块中的比特依次经过π/4-QPSK调制,层映射(Layer Mapping)得到所述K个第二类复数。
作为一个实施例,所述第一比特块中的比特依次经过π/4-QPSK调制,层映射(Layer Mapping)和预编码(Precoding)得到所述K个第二类复数。作为一个子实施例,所述预编码为基于Alamouti的发送分集;作为另一个子实施例,所述预编码为SC-SFBC(Single Carrier Space Frequency Block Code,单载波空频码块编码);作为另一个子实施例,所述预编码为SC-STBC(Single Carrier Space Time Block Code,单载波空时码块编码)。
作为一个实施例,所述第一比特块中的比特依次经过π/4-QPSK调制和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。。
作为一个实施例,所述第一比特块中的比特依次经过π/4-QPSK调制,层映射和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。
作为一个实施例,所述第一比特块中的比特依次经过π/4-QPSK调制,层映射,预编码和变换预编码后得到所述K个第二类复数,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。作为一个子实施例,所述预编码为基于Alamouti的发送分集;作为另一个子实施例,所述预编码为SC-SFBC(Single Carrier Space Frequency Block Code,单载波空频码块编码);作为另一个子实施例,所述预编码为SC-STBC(Single Carrier Space Time Block Code,单载波空时码块编码)。
作为一个实施例,所述K个第二类复数和所述K个第一参数的对应乘积生成所述K个第一类复数。
作为一个实施例,所述K个第二类复数和所述K个第一参数的对应乘积经过变换预编码(Transform Precoding)后生成所述K个第一类复数。作为一个子实施例,所述变换预编码基于DFT(Discrete Fourier Transform,离散傅里叶变换)实现的;作为另一个子实施例,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。
作为一个实施例,所述K个第二类复数和所述K个第一参数的对应乘积依次经过变换预编码(Transform Precoding)和预编码(Precoding)后生成所述K个第一类复数。作为一个子实施例,所述变换预编码基于DFT(Discrete Fourier Transform,离散傅里叶变换)实现的;作为另一个子实施例,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。
作为一个实施例,所述K个第二类复数和所述K个第一参数的对应乘积依次经过层映射(Layer Mapping),变换预编码(Transform Precoding),预编码(Precoding)后生成所述K个第一类复数。作为一个子实施例,所述变换预编码基于DFT(Discrete Fourier Transform,离散傅里叶变换)实现的;作为另一个子实施例,所述变换预编码遵循3GPP TS38.211中的6.3.1.4节或者3GPP TS 36.211中的5.3.3节中的变换预编码定义。
作为一个实施例,所述K个第二类复数d(0),...,d(K-1)通过下式得到:
Figure PCTCN2018110190-appb-000012
其中b(0),...,b(K-1)为所述第一比特块中的比特。
作为一个实施例,所述K个第二类复数d(0),...,d(K-1)通过下面运算得到:
Figure PCTCN2018110190-appb-000013
Figure PCTCN2018110190-appb-000014
k=0,...,M sc-1
l=0,...,K/M sc-1
其中c(0),...,c(K-1)为所述第一比特块中的比特经过调制后输出复数符号,M sc代表所述第一无线信号所占用的子载波数。
实施例11
实施例11示例了根据本申请的一个实施例的第一编码块的示意图,如附图11所示。在附图11中,横轴代表第一比特块中的比特排序的方向,每个小方形代表一个比特,斜线填充的小方形代表第一编码块中的一个比特,无填充的小方形代表第一比特块中的第一编码块之外的一个比特。
在实施例11中,本申请中的所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
作为一个实施例,所述M个编码块(CB,Code Block)中的任意一个编码块是由一个传输块(TB,Transport Block)经过分段(Segmentation)得到的。
作为一个实施例,所述M个编码块(CB,Code Block)中的任意一个编码块包括正整数个比特。
作为一个实施例,所述M个编码块中任意两个编码块所包括的比特数相等。
作为一个实施例,所述M个编码块中存在两个编码块所包括的比特数不等。
作为一个实施例,所述M个编码块中只存在一个编码块与其它的编码块所包括的比特数不等。
作为一个实施例,所述第一无线信号进行了跳频传输,所述第一编码块中的比特被用于生成所述第一无线信号在两个或两个以上的跳频频域资源上的信号。
作为一个实施例,所述第一无线信号进行了跳频传输,所述第一编码块中的比特被用于生成所述K个第一类复数中映射在两个不同的多载波符号和不同的RE上的第一类复数。
实施例12
实施例12示例了一个用户设备中的处理装置的结构框图,如附图12所示。附图12中,用户设备处理装置1200主要由第一接收机模块1201,和第一发射机模块1202组成。第一接收机模块1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490;第一发射机模块1202包括本申请附图4中的发射器/接收器456(包括天线460),发射处理器455和控制器/处理器490。
在实施例12中,第一接收机模块1201接收第一信令;第一发射机模块1202发送第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
作为一个实施例,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
作为一个实施例,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
作为一个实施例,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
作为一个实施例,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
作为一个实施例,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
作为一个实施例,所述第一接收机模块1201还接收第二信令;所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
实施例13
实施例13示例了一个基站设备中的处理装置的结构框图,如附图13所示。在附图13中,基站处理装置1300主要由第二发射机模块1301和第二接收机模块1302组成。第二发射机模块1301包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440;第二接收机模块1302包括本申请附图4中的发射器/接收器416(包括天线420),接收处理器412和控制器/处理器440。
在实施例13中,第二发射机模块1301发送第一信令;第二接收机模块1302接收第一无线信号;其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个 第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
作为一个实施例,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
作为一个实施例,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
作为一个实施例,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
作为一个实施例,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
作为一个实施例,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
作为一个实施例,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
作为一个实施例,所述第二发射机模块1301还发送第二信令;所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备等无线通信设备。本申请中的基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种用于无线通信中的用户设备中的方法,其特征在于,包括:
    -接收第一信令;
    -发送第一无线信号;
    其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
  2. 根据权利要求1所述的方法,其特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
  4. 根据权利要求3中所述的方法,其特征在于,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
  8. 根据权利要求1至7中任一权利要求所述的方法,其特征在于,还包括:
    -接收第二信令;
    其中,所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
  9. 一种用于无线通信中的基站设备中的方法,其特征在于,包括:
    -发送第一信令;
    -接收第一无线信号;
    其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
  10. 根据权利要求9所述的方法,其特征在于,所述K个RE在时域分布在X个多载波符号中,所述X是大于1的正整数,目标多载波符号是所述X个多载波符号中在时域最早的多载波符号之外的一个多载波符号,所述K个RE中占用所述目标多载波符号的RE为目标RE组,映射在所述目标RE组上的第一类复数所对应的第一类参数都相等。
  11. 根据权利要求9或10中任一权利要求所述的方法,其特征在于,所述K个RE中存在第一RE和第二RE,所述第一RE和所述第二RE在频域占用相同的子载波,所述第一RE和所述第二RE在时域分别占用先后的两个多载波符号,映射在所述第二RE上的第一类复数所对应的第一类参数等于映射在所述第一RE上的第一类复数所对应的第一类参数和Q的乘积,所述Q是一个模等于1的复数,所述Q在极坐标的角度和所述第二RE中的循环前缀的长度有关,所述Q在极坐标的角度还和{所述第二RE在频域的位置,所述K个RE中和所述第二RE占用相同的多载波符号的RE在频域的位置}中至少之一有关。
  12. 根据权利要求11中所述的方法,其特征在于,如果所述第一RE占用所述K个RE所占用的多载波符号中在时域最早的一个多载波符号,映射在所述第一RE上的第一类复数所对应的第一类参数等于P,所述P是一个预定义的复数,或者所述P是可配置的复数。
  13. 根据权利要求9至12中任一权利要求所述的方法,其特征在于,所述K个RE之外存在一个第三RE,所述K个RE中存在第四RE,所述第三RE和所述第四RE在频域占用相同的子载波,所述第三RE和所述第四RE在时域分别占用两个先后连续的多载波符号;映射在所述第四RE上的第一类复数所对应的第一类参数等于虚拟参数和G的乘积,或者映射在所述第四RE上的第一类复数所对应的第一类参数等于H;所述虚拟参数和所述第三RE中的循环前缀的长度有关,所述G是一个模等于1的复数,所述G在极坐标的角度和所述第四RE中的循环前缀的长度有关,所述H是一个预定义的复数,或者所述H是可配置的复数。
  14. 根据权利要求9至13中任一权利要求所述的方法,其特征在于,所述第一比特块被用于生成K个第二类复数,所述K个第二类复数和所述K个第一参数的对应乘积被用于生成所述K个第一类复数。
  15. 根据权利要求9至14中任一权利要求所述的方法,其特征在于,所述第一比特块包括M个编码块,所述M是大于1的整数,第一编码块是所述M个编码块中之一,所述第一编码块中存在两个连续的比特在所述第一比特块中是离散的。
  16. 根据权利要求9至15中任一权利要求所述的方法,其特征在于,还包括:
    -发送第二信令;
    其中,所述第二信令被用于确定所述K个RE中的每个RE的循环前缀的长度。
  17. 一种用于无线通信中的用户设备,其特征在于,包括:
    -第一接收机模块,接收第一信令;
    -第一发射机模块,发送第一无线信号;
    其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复 数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
  18. 一种用于无线通信中的基站设备,其特征在于,包括:
    -第二发射机模块,发送第一信令;
    -第二接收机模块,接收第一无线信号;
    其中,所述第一信令被用于确定K个RE,K个第一类复数分别映射到K个RE上,所述K个第一类复数被用于生成所述第一无线信号,K个第一类参数和所述K个第一类复数一一对应,所述K个第一类参数都为模等于1的复数,所述K个第一类参数和所述K个RE的频域位置有关,所述K个第一类参数中的每个第一类参数和对应的第一类复数所映射的RE的循环前缀的长度有关;所述第一无线信号携带第一比特块,所述K个第一类参数和所述第一比特块被用于生成所述K个第一类复数,所述K个第一类参数和所述第一比特块中的比特无关,所述K个RE在频域分布在多于1个子载波上,所述K个RE在时域分布在多于1个多载波符号上。
PCT/CN2018/110190 2017-11-06 2018-10-15 一种被用于无线通信的用户设备、基站中的方法和装置 WO2019085729A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18873270.5A EP3709591B1 (en) 2017-11-06 2018-10-15 Method and device used in user equipment and base station for wireless communication
EP22160454.9A EP4047895A1 (en) 2017-11-06 2018-10-15 Method and device used in user equipment and base station for wireless communication
US16/858,638 US11153140B2 (en) 2017-11-06 2020-04-26 Method and device in UE and base station used for wireless communication
US17/464,690 US11601233B2 (en) 2017-11-06 2021-09-02 Method and device in UE and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711079561.5 2017-11-06
CN201711079561.5A CN109756440B (zh) 2017-11-06 2017-11-06 一种被用于无线通信的用户设备、基站中的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/858,638 Continuation US11153140B2 (en) 2017-11-06 2020-04-26 Method and device in UE and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2019085729A1 true WO2019085729A1 (zh) 2019-05-09

Family

ID=66332841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110190 WO2019085729A1 (zh) 2017-11-06 2018-10-15 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (4)

Country Link
US (2) US11153140B2 (zh)
EP (2) EP4047895A1 (zh)
CN (3) CN111478758B (zh)
WO (1) WO2019085729A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312350A (zh) * 2019-08-02 2021-02-02 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4113926A4 (en) * 2020-03-25 2023-04-05 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
CN112436870B (zh) * 2020-08-28 2023-10-27 上海移远通信技术股份有限公司 一种被用于无线通信的节点中的方法和装置
CN112655171B (zh) * 2020-09-07 2022-12-27 华为技术有限公司 一种参考信号传输方法及装置
CN115714703A (zh) * 2021-08-23 2023-02-24 华为技术有限公司 一种通信方法和通信装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932073A (zh) * 2009-06-22 2010-12-29 北京三星通信技术研究有限公司 发送和接收专用参考信号的方法、基站和用户终端

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041362B2 (en) * 2006-03-20 2011-10-18 Intel Corporation Downlink resource allocation and mapping
KR101530750B1 (ko) * 2008-06-12 2015-06-22 애플 인크. Sc-fdma 전송 다이버시티 시스템 및 방법
CN102055702B (zh) * 2009-10-30 2014-02-19 中兴通讯股份有限公司南京分公司 下行链路解调参考信号的传输方法、基站、中继站及系统
US8718168B2 (en) * 2010-01-20 2014-05-06 Electronics And Telecommunications Research Institute Method of transmitting uplink DM-RS multiplexed with data in uplink MIMO transmission
CN101815050B (zh) * 2010-03-03 2012-09-12 宁波大学 一种多媒体广播无线信号单频网抗干扰传输方法
KR101514982B1 (ko) * 2012-10-15 2015-04-24 포항공과대학교 산학협력단 무선 통신 시스템에서 데이터를 송신 및 수신하는 방법 및 이를 지원하는 장치
CN103929816A (zh) * 2013-10-15 2014-07-16 上海朗帛通信技术有限公司 一种tdd-fdd联合系统中的用户和系统设备及方法
US10136462B2 (en) * 2014-04-17 2018-11-20 Lg Electronics Inc. Method for determining resource for transmitting signal in wireless communications system and apparatus therefor
KR102248783B1 (ko) * 2014-11-05 2021-05-07 한국전자통신연구원 Lte 기반의 무선 인터페이스에서 저속데이터 전송 기법
CN104683280B (zh) * 2014-12-02 2018-04-24 北京星河亮点技术股份有限公司 DFT-s-OFDM系统大频偏的精确估计方法
US10200181B2 (en) * 2015-04-05 2019-02-05 Ofinno Technologies, Llc Sounding reference signal in a wireless network
CN106559202B (zh) * 2015-09-29 2019-09-10 上海朗帛通信技术有限公司 一种支持低空口延迟的方法、用户设备和基站设备
CN110870262B (zh) * 2017-07-03 2022-12-20 上海朗帛通信技术有限公司 一种被用于多天线通信的用户设备、基站中的方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932073A (zh) * 2009-06-22 2010-12-29 北京三星通信技术研究有限公司 发送和接收专用参考信号的方法、基站和用户终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG-RAN; E-UTRA; Physical Channels and Modulation (Release 10", 3GPP TS 36.211 V10.1.0, 31 March 2011 (2011-03-31), XP055608638 *
NOKIA ET AL.: "On PAPR/CM Reduction Techniques over QPSKDFT-S-OFDM Uplink", 3GPP TSG-RAN WGI #87, R1-1612270, 18 November 2016 (2016-11-18), XP051176219 *
SAMSUNG: "Scaled Numerology for UL Control Channels", 3GPP TSG RAN WGI NR AD-HOC MEETING, R1-1700954, 20 January 2017 (2017-01-20), XP051203247 *
See also references of EP3709591A4 *

Also Published As

Publication number Publication date
US11153140B2 (en) 2021-10-19
EP4047895A1 (en) 2022-08-24
CN111478759A (zh) 2020-07-31
US11601233B2 (en) 2023-03-07
US20200267038A1 (en) 2020-08-20
US20210399856A1 (en) 2021-12-23
CN111478758A (zh) 2020-07-31
CN109756440A (zh) 2019-05-14
EP3709591A4 (en) 2020-12-23
EP3709591A1 (en) 2020-09-16
CN109756440B (zh) 2020-05-22
EP3709591B1 (en) 2022-05-04
CN111478758B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2021204156A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
WO2019085729A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN111447689B (zh) 一种被用于动态调度的用户设备、基站中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021227823A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2018054155A1 (zh) 一种ue、基站中的发射功率调整的方法和装置
WO2019028885A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
CN109392115B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020042862A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020216013A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020052462A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113365348B (zh) 一种被用于无线通信的节点中的方法和装置
CN113260055B (zh) 一种被用于无线通信的节点中的方法和装置
CN113939035B (zh) 一种用于无线通信的节点中的方法和装置
CN112688765B (zh) 一种被用于无线通信的节点中的方法和装置
CN113497686B (zh) 一种被用于无线通信的节点中的方法和装置
CN113285786B (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023005781A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023024964A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143500A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023284598A1 (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018873270

Country of ref document: EP

Effective date: 20200608