WO2019237938A1 - 一种用于无线通信的通信节点中的方法和装置 - Google Patents

一种用于无线通信的通信节点中的方法和装置 Download PDF

Info

Publication number
WO2019237938A1
WO2019237938A1 PCT/CN2019/089287 CN2019089287W WO2019237938A1 WO 2019237938 A1 WO2019237938 A1 WO 2019237938A1 CN 2019089287 W CN2019089287 W CN 2019089287W WO 2019237938 A1 WO2019237938 A1 WO 2019237938A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
wireless signal
signaling
decoding
Prior art date
Application number
PCT/CN2019/089287
Other languages
English (en)
French (fr)
Inventor
刘铮
张晓博
杨林
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2019237938A1 publication Critical patent/WO2019237938A1/zh
Priority to US17/035,742 priority Critical patent/US11641639B2/en
Priority to US18/122,722 priority patent/US11877263B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, and particularly to a transmission scheme and device in non-terrestrial wireless communication.
  • the 3rd Generation Partnership Project (3GPP) Radio Access Network (RAN) # 72 plenary session decided on the new air interface technology (NR , New Radio (or 5G) to conduct research, and adopted the WI (Work Item) of New Radio Technology (NR, New Radio) at the 3GPP RAN # 75 plenary meeting, and began to standardize NR.
  • 3GPP 3rd Generation Partnership Project
  • NTN Non-Terrestrial Networks
  • HARQ Hybrid Automatic Repeat Request
  • TTI transmission time
  • this application provides a solution. It should be noted that, in the case of no conflict, the embodiments and features in the embodiments of the base station device of the present application may be applied to user equipment, and vice versa. Further, in the case of no conflict, the embodiments of the present application and the features in the embodiments can be arbitrarily combined with each other.
  • This application discloses a method for a first type of communication node in wireless communication, which is characterized in that it includes:
  • the first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits, and the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the The time-frequency resource occupied by the first wireless signal includes a second time-frequency resource.
  • Merging decoding is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for merging decoding with the first coding block and the first It is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the first signaling is used to control the combined decoding (or the HARQ switch) for one transport block (or coding block) through the configuration of the target time-frequency resource pool, thereby maximizing the combined translation.
  • the flexibility of code (or HARQ switch) configuration improves the link performance and reduces the cache growth of the user equipment.
  • the first type of communication node determines whether the decoding can be combined (or whether it is cached, based on the relationship between the first time-frequency resource or the second time-frequency resource and the target time-frequency resource pool). (Or HARQ switch), to achieve independent configuration of the HARQ process and merge decoding (or HARQ switch), so as to achieve a balance between obtaining the merge gain and reducing the user equipment cache, improving the overall network performance.
  • the above method is characterized in that the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to One candidate time-frequency resource among the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block, or the second Whether the time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal can not be used for merge decoding for the first coding block;
  • the K is a positive integer.
  • the above method is characterized in that the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and the time-frequency resources occupied by the first wireless signal
  • the number of resource elements included in is used to determine the number of bits included in the first coding block.
  • the method described above further includes:
  • the channel coding output of the first coding block obtains a first bit block, and X1 bits in the first bit block are used to generate the first wireless signal.
  • the first bit block includes no less than A positive integer number of X1 bits; the second signaling is used to determine X2 bits in the first bit block, the X2 bits are used to generate the second wireless signal; the X1 bits Among the X2 bits, only the X2 bits are used for decoding the first coding block; the second signaling is transmitted through the air interface.
  • the method described above further includes:
  • the third signaling is used to indicate whether decoding of the first wireless signal channel fails, and the third signaling is transmitted through the air interface.
  • the method described above further includes:
  • the second information is used to indicate the ability of the receiver of the first wireless signal to perform combined decoding, and the second information is transmitted through the air interface.
  • the method described above further includes:
  • the third information is used to determine a first time-frequency resource pool, the time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool, and the time in the target time-frequency resource pool is Frequency resources belong to the first time-frequency resource pool, and the third information is transmitted through the air interface.
  • the target time-frequency resource pool is determined by using the first information and the third information in combination in this application, and a PDCCH search space or a CORESET (Control Resource Set) is considered.
  • a PDCCH search space or a CORESET Control Resource Set
  • Configuration and configuration of merged decoding ensure compatibility with existing systems and avoid conflicts in signaling configuration.
  • This application discloses a method for a second type of communication node in wireless communication, which is characterized in that it includes:
  • the first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits, and the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the The time-frequency resource occupied by the first wireless signal includes a second time-frequency resource.
  • Merging decoding is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for merging decoding with the first coding block and the first It is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the above method is characterized in that the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to One candidate time-frequency resource among the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block, or the second Whether the time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal can not be used for merge decoding for the first coding block;
  • the K is a positive integer.
  • the above method is characterized in that the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and the time-frequency resources occupied by the first wireless signal
  • the number of resource elements included in is used to determine the number of bits included in the first coding block.
  • the method described above further includes:
  • the channel coding output of the first coding block obtains a first bit block, and X1 bits in the first bit block are used to generate the first wireless signal.
  • the first bit block includes no less than A positive integer number of X1 bits; the second signaling is used to determine X2 bits in the first bit block, the X2 bits are used to generate the second wireless signal; the X1 bits Of the X2 bits, only the X2 bits are used for decoding the first coding block; the second signaling is transmitted through the air interface.
  • the method described above further includes:
  • the third signaling is used to indicate whether decoding of the first wireless signal channel fails, and the third signaling is transmitted through the air interface.
  • the method described above further includes:
  • the second information is used to indicate the ability of the receiver of the first wireless signal to perform combined decoding, and the second information is transmitted through the air interface.
  • the method described above further includes:
  • the third information is used to determine a first time-frequency resource pool, the time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool, and the time in the target time-frequency resource pool is Frequency resources belong to the first time-frequency resource pool, and the third information is transmitted through the air interface.
  • the present application discloses a first type of communication node device used in wireless communication, which is characterized by including:
  • a first transceiver receiving first information, the first information being used to determine a target time-frequency resource pool
  • the second transceiver detects the first signaling
  • a first receiver if the first signaling is detected, receiving a first wireless signal
  • the first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits, and the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the The time-frequency resource occupied by the first wireless signal includes a second time-frequency resource.
  • Merging decoding is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for merging decoding with the first coding block and the first It is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the above-mentioned first type of communication node device is characterized in that the target time-frequency resource pool includes K candidate time-frequency resources, and the decoding of the first wireless signal channel fails; the first Whether the time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal can not be used for merge decoding for the first coding block, Or whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine whether the first wireless signal may not be used for the first coding block Combined decoding; K is a positive integer.
  • the above-mentioned first type of communication node device is characterized in that the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and The number of resource elements included in the time-frequency resource is used to determine the number of bits included in the first coding block.
  • the above-mentioned first type of communication node device is characterized in that the second transceiver further receives second signaling; the first receiver further receives a second wireless signal; wherein the first The channel block output of the coding block is used to obtain a first bit block. X1 bits in the first bit block are used to generate the first wireless signal.
  • the first bit block includes a positive integer number of bits not less than X1.
  • the second signaling is used to determine X2 bits in the first bit block, the X2 bits are used to generate the second wireless signal; the X1 bits and the X2 bits Only the X2 bits are used for decoding the first coding block; the second signaling is transmitted through the air interface.
  • the above-mentioned first type of communication node device is characterized in that the second transceiver further sends third signaling; wherein the third signaling is used to indicate the first wireless signal channel Whether the decoding fails, the third signaling is transmitted through the air interface.
  • the above-mentioned first type of communication node device is characterized in that the first transceiver further sends second information; wherein the second information is used to indicate a receiver of the first wireless signal The ability to perform merge decoding, and the second information is transmitted through the air interface.
  • the above-mentioned first type of communication node device is characterized in that the first transceiver further receives third information; wherein the third information is used to determine a first time-frequency resource pool, and The time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool, the time-frequency resources in the target time-frequency resource pool all belong to the first time-frequency resource pool, and the third information passes Said air interface transmission.
  • This application discloses a second type of communication node device used in wireless communication, which is characterized in that it includes:
  • a third transceiver sending first information, the first information being used to determine a target time-frequency resource pool
  • a fourth transceiver sending the first signaling
  • a first transmitter sending a first wireless signal
  • the first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits, and the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the The time-frequency resource occupied by the first wireless signal includes a second time-frequency resource.
  • Merging decoding is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for merging decoding with the first coding block and the first It is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the above-mentioned second type of communication node device is characterized in that the target time-frequency resource pool includes K candidate time-frequency resources, and the first wireless signal channel decoding fails; the first Whether the time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal can not be used for merge decoding for the first coding block, Or whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine whether the first wireless signal may not be used for the first coding block Combined decoding; K is a positive integer.
  • the above-mentioned second type of communication node device is characterized in that the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and The number of resource elements included in the time-frequency resource is used to determine the number of bits included in the first coding block.
  • the above-mentioned second type of communication node device is characterized in that the fourth transceiver further sends second signaling; the first transmitter sends a second wireless signal; wherein the first code
  • the channel-encoded output of the block obtains a first bit block, and X1 bits in the first bit block are used to generate the first wireless signal, and the first bit block includes a positive integer number of bits not less than X1;
  • the second signaling is used to determine X2 bits in the first bit block, and the X2 bits are used to generate the second wireless signal; among the X1 bits and the X2 bits Only the X2 bits are used for decoding the first encoding block; the second signaling is transmitted through the air interface.
  • the above-mentioned second type of communication node device is characterized in that the fourth transceiver further receives third signaling; wherein the third signaling is used to indicate the first wireless signal channel Whether the decoding fails, the third signaling is transmitted through the air interface.
  • the above-mentioned second type of communication node device is characterized in that the third transceiver further receives second information; wherein the second information is used to indicate a receiver of the first wireless signal The ability to perform merge decoding, and the second information is transmitted through the air interface.
  • the above-mentioned second type of communication node device is characterized in that the third transceiver further sends third information; wherein the third information is used to determine a first time-frequency resource pool, and the The time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool, the time-frequency resources in the target time-frequency resource pool all belong to the first time-frequency resource pool, and the third information passes Said air interface transmission.
  • the present application has the following main technical advantages:
  • This application provides a method for flexibly configuring and using merge decoding (or cache capability, or HARQ switch) for user equipment, by which a network device can flexibly configure merge transmission (or cache) for one transmission according to scheduling requirements Capability, or HARQ switch), without the need for dynamic signaling support, maximizing the flexibility of the merge decoding (or HARQ switch) configuration, improving the link performance and reducing the cache growth of the user equipment.
  • merge decoding or cache capability, or HARQ switch
  • the method in this application realizes the independent configuration of the HARQ process and the merge decoding (or HARQ switch), thereby achieving a balance between obtaining the merge gain and reducing the user equipment cache, and improving the overall network performance.
  • the method in this application also considers the configuration of the PDCCH search space or the CORESET (Control Resource Set, Control Resource Set) configuration and the configuration of the combined decoding (or data cache, or HARQ switch), ensuring compatibility with existing systems At the same time, the conflict of signaling configuration is avoided.
  • the configuration of the PDCCH search space or the CORESET Control Resource Set, Control Resource Set
  • the configuration of the combined decoding or data cache, or HARQ switch
  • FIG. 1 shows a flowchart of first information, first signaling, and first wireless signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first type communication node and a second type communication node according to an embodiment of the present application
  • FIG. 6 shows a flowchart of wireless signal transmission according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a relationship between a target time-frequency resource pool, a first time-frequency resource, and a second time-frequency resource according to an embodiment of the present application;
  • FIG. 8 shows a schematic diagram of K candidate time-frequency resources according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram showing a relationship between a time-frequency resource occupied by a first wireless signal and a number of bits included in a first coding block according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing a relationship between X1 bits and X2 bits of a first bit block according to an embodiment of the present application
  • FIG. 11 is a schematic diagram showing a relationship between a first time-frequency resource pool and a target time-frequency resource pool according to an embodiment of the present application
  • FIG. 12 shows a structural block diagram of a processing apparatus in a first type of communication node device according to an embodiment of the present application
  • FIG. 13 shows a structural block diagram of a processing apparatus in a second type of communication node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of transmission of first information, first signaling, and first wireless signal according to an embodiment of the present application, as shown in FIG. 1.
  • each block represents a step.
  • the first type of communication node in the present application first receives the first information, and the first information is used to determine a target time-frequency resource pool; then the first signaling is detected; then, if the first information The command is detected and a first wireless signal is received; wherein a first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits;
  • the frequency resources include a first time-frequency resource, and the time-frequency resources occupied by the first wireless signal include a second time-frequency resource.
  • the first wireless signal When the decoding of the first wireless signal channel fails, can the first wireless signal be
  • the merge decoding used for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for the first
  • the combined decoding of a coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to the K candidate time-frequency resources.
  • An alternative time-frequency resource among the resources is used to determine whether the first wireless signal may not be used for combined decoding for the first coding block, or whether the second time-frequency resource belongs to the K
  • One candidate time-frequency resource among the candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block; the K is a positive integer.
  • the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and a quantity of resource elements included in the time-frequency resources occupied by the first wireless signal. Is used to determine the number of bits included in the first coding block.
  • the method further includes:
  • the channel coding output of the first coding block obtains a first bit block, and X1 bits in the first bit block are used to generate the first wireless signal.
  • the first bit block includes no less than A positive integer number of X1 bits; the second signaling is used to determine X2 bits in the first bit block, the X2 bits are used to generate the second wireless signal; the X1 bits Among the X2 bits, only the X2 bits are used for decoding the first coding block; the second signaling is transmitted through the air interface.
  • the method further includes:
  • the third signaling is used to indicate whether decoding of the first wireless signal channel fails, and the third signaling is transmitted through the air interface.
  • the method further includes:
  • the second information is used to indicate the ability of the receiver of the first wireless signal to perform combined decoding, and the second information is transmitted through the air interface.
  • the method further includes:
  • the third information is used to determine a first time-frequency resource pool, the time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool, and the time in the target time-frequency resource pool is Frequency resources belong to the first time-frequency resource pool, and the third information is transmitted through the air interface.
  • the first information is transmitted through high-level signaling.
  • the first information is transmitted through physical layer signaling.
  • the first information includes all or part of a high-level signaling.
  • the first information includes all or part of a physical layer signaling.
  • the first information is transmitted through a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the first information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the first information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first information is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the first information includes one or more fields in a RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the first information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the first information is broadcast.
  • the first information is unicast.
  • the first information is cell-specific.
  • the first information is user-specific.
  • the first information is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first information includes all or part of a DCI (Downlink Control Information) signaling.
  • DCI Downlink Control Information
  • the first information is transmitted through a PDCCH scheduling the first wireless signal.
  • the first information includes all or part of a field (Field) of DCI (Downlink Control Information) signaling that schedules the first wireless signal.
  • Field of DCI (Downlink Control Information) signaling that schedules the first wireless signal.
  • the first information used to determine the target time-frequency resource pool refers to: the first information is used to directly indicate the target time-frequency resource pool.
  • the first information used to determine the target time-frequency resource pool refers to: the first information is used to indirectly indicate the target time-frequency resource pool.
  • the first information used to determine the target time-frequency resource pool refers to: the first information is used to explicitly indicate the target time-frequency resource pool.
  • the first information used to determine the target time-frequency resource pool refers to: the first information is used to implicitly indicate the target time-frequency resource pool.
  • the target time-frequency resource pool includes continuous frequency-domain resources.
  • the target time-frequency resource pool includes discrete frequency-domain resources.
  • the target time-frequency resource pool includes continuous time-domain resources.
  • the target time-frequency resource pool includes discrete time-domain resources.
  • the target time-frequency resource pool includes all PRBs (Physical Resource Blocks) in a carrier (Carrier) in the frequency domain.
  • PRBs Physical Resource Blocks
  • Carrier Carrier
  • the target time-frequency resource pool includes a part of PRBs (Physical Resource Blocks) in a carrier (Carrier) in the frequency domain.
  • PRBs Physical Resource Blocks
  • Carrier Carrier
  • the time domain resources included in the target time-frequency resource pool occur periodically in the time domain.
  • the target time-frequency resource pool includes M slots in the time domain, where M is a positive integer, and the first information is used to determine that the target time-frequency resource pool is: The first information is used to indicate the M slots.
  • the target time-frequency resource pool includes M subframes in the time domain, where M is a positive integer, and the first information is used to determine that the target time-frequency resource pool refers to: the The first information is used to indicate the M subframes.
  • the target time-frequency resource pool includes M sub-slots in the time domain, where M is a positive integer, and the first information is used to determine whether the target time-frequency resource pool is : The first information is used to indicate the M subslots.
  • the use of the first information to determine the target time-frequency resource pool means that the first information includes a bitmap (bitmap), and the bitmap is used to indicate M numbers in a period.
  • Time unit, each time unit in the M time units is a positive integer number of time slots (Slots), or each time unit in the M time units is a positive integer number of subframes (Subframes), or the Each time unit in the M time units is a positive integer number of sub-slots
  • the target time-frequency resource pool includes the M time units in the time domain, where M is a positive integer, where the bitmap One bit of is corresponding to one time unit among the M time units.
  • the first information includes a bitmap (bitmap) and a period value
  • bitmap is used to indicate M time units within one period, and the time length of the period to which the M time units belong Equal to the period value included in the first information
  • each time unit in the M time units is a positive integer time slot (Slot)
  • each time unit in the M time units is a positive integer Subframes
  • each time unit in the M time units is a positive integer number of sub-slots
  • the target time-frequency resource pool includes the M time units in the time domain.
  • Said M is a positive integer, wherein one bit in the bitmap corresponds to one time unit among the M time units.
  • the first signaling is unicast.
  • the first signaling is UE-Specific.
  • the first signaling is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the first signaling is transmitted through a PDCCH scrambled by a C-RNTI through a CRC (Cyclic Redundancy Check).
  • CRC Cyclic Redundancy Check
  • the first signaling is transmitted through a PDCCH in a USS (UE-specific Search Space).
  • USS UE-specific Search Space
  • the first signaling is all or part of a field in a DCI signaling.
  • the first signaling is a physical layer signaling.
  • the first signaling is a high-level signaling.
  • the first signaling is all or part of an IE (Information Element) in an RRC signaling.
  • the first information is part of the first signaling.
  • the first information is carried by signaling other than the first signaling.
  • the first signaling carries the first information.
  • the detection of the first signaling is implemented through blind detection of the first type of communication node.
  • the detection of the first signaling is implemented by the first type of communication node performing blind detection in a user-specific search space (USS, UES) configured by the communication node.
  • USS user-specific search space
  • the detection of the first signaling is implemented by performing blind decoding (Blind Decoding) in a user-specific search space (USS, UES) configured by the first type of communication node. of.
  • the detection of the first signaling is performed through each PDCCH candidate (Candidate) in the user-specific search space (USS, UES) configured by the first type of communication node. ) Verify the CRC implementation after decoding.
  • a HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) process to which the first wireless signal belongs is not defined.
  • HARQ Hybrid Automatic Repeat Request
  • a field exists in the first signaling and is used to indicate a process ID (Process ID) of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs. ).
  • a field does not exist in the first signaling and is used to indicate a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs.
  • HARQ Hybrid Automatic Repeat Request
  • a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs is equal to a default value.
  • a process number of a HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) process to which the first wireless signal belongs is equal to 0.
  • a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs is equal to a maximum value that can be supported.
  • a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs is a broadcast HARQ process (Broadcast HARQ Process), and the first wireless signal is unicast.
  • the first signaling indicating a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs, and the first The process number of the HARQ (Hybrid Automatic Repeat Request) process to which the wireless signal belongs exceeds the maximum HARQ process number that can be supported.
  • HARQ Hybrid Automatic Repeat Request
  • a field in the first signaling indicates a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the first wireless signal belongs, and the first wireless The process number of the HARQ (Hybrid Automatic Repeat Request) process to which the signal belongs exceeds the maximum number of HARQ processes that can be supported minus one.
  • HARQ Hybrid Automatic Repeat Request
  • the first wireless signal is unicast.
  • the first wireless signal is UE-specific.
  • the first wireless signal is not used to carry System Information (SI, System Information).
  • SI System Information
  • the first wireless signal is not used to carry a paging message.
  • the first wireless signal is not used in a random access procedure (Random Access Procedure).
  • the first wireless signal is not used to carry broadcast or multicast information.
  • the first wireless signal is used to transmit the first coding block.
  • the first wireless signal carries the first coding block.
  • the first wireless signal only carries the first coding block.
  • the first wireless signal further carries a coding block (CB, Code Block) other than the first coding block.
  • CB Code Block
  • the first wireless signal is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the first wireless signal is transmitted through a PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • the first wireless signal includes an initial transmission of a TB (Transport Block).
  • TB Transport Block
  • the first wireless signal includes a retransmission of a TB (Transport Block).
  • TB Transport Block
  • the first wireless signal includes an initial transmission of the first coding block.
  • the first wireless signal includes a retransmission of the first coding block.
  • the first coding block is sequentially subjected to CRC addition (CRC, Insertion), channel coding (Channel, Coding), rate matching (Rate, Matching), concatenation, Scrambling, and Modulation, Layer Mapping, Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, OFDM Baseband Signal Generation, Modulation and Upconversion to obtain the first wireless Signal, where the initial value of the scrambling sequence is related to the characteristic identification of the first type of communication node.
  • the first coding block is sequentially subjected to CRC addition (CRC, Insertion), channel coding (Channel, Coding), rate matching (Rate, Matching), concatenation (Scrambling), modulation (Modulation), Layer Mapping, Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, OFDM Baseband Signal Generation, Modulation and Upconversion to obtain the first wireless Signal, where the initial value of the scrambling sequence is related to the C-RNTI (Cell Radio Network Temporary Identifier) of the first type of communication node.
  • the first coding block is sequentially subjected to CRC addition (CRC, Insertion), channel coding (Channel, Coding), rate matching (Rate, Matching), and concatenation with other bits to obtain a first bit block, and scramble (Scrambling), Modulation, Layer Mapping, Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, OFDM Baseband Signal Generation, Modulation Up Conversion
  • CRC CRC addition
  • Insertion channel coding
  • Channel coding Chiannel, Coding
  • Rate matching Rate Matching
  • concatenation with other bits to obtain a first bit block
  • scramble scramble
  • Modulation Modulation
  • Layer Mapping Precoding
  • Mapping to Resource Elements OFDM Baseband Signal Generation
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • Modulation Up Conversion After obtaining the first wireless signal, the initial value of the scrambling sequence is related to the C-RNTI (Cell Radio Network Temporary Identifier) of the first type of communication no
  • the first coding block is sequentially subjected to CRC addition (CRC, Insertion), channel coding (Channel, Coding), rate matching (Rate, Matching), scrambling (Modulation), layer mapping (Layer) Mapping ), Precoding, Mapping to Resource Elements, OFDM Baseband Signal Generation, Modulation and Upconversion to obtain the first wireless signal, and scrambling
  • CRC addition CRC, Insertion
  • channel coding Channel, Coding
  • Rate matching Rate matching
  • scrambling Modulation
  • Layer mapping Layer Mapping
  • Precoding Mapping to Resource Elements
  • OFDM Baseband Signal Generation OFDM Baseband Signal Generation
  • Modulation and Upconversion to obtain the first wireless signal
  • the first coding block is a CB (Code Block).
  • the first coding block is a transport block (TB, Transport Block) sequentially added through a transport block CRC (Cyclic Redundancy Check, cyclic redundancy check), a coding block segmentation (Code Block, Segmentation), encoding A code block (CB, Code Block) in the code block obtained by adding the block CRC.
  • TB Transport Block
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • CB Code Block
  • the first coding block is obtained by adding a transport block (TB, Transport Block) through a transport block CRC (Cyclic Redundancy Check, cyclic redundancy check).
  • TB Transport Block
  • CRC Cyclic Redundancy Check, cyclic redundancy check
  • the processing of soft buffering or soft combining when the first encoding block is transmitted in the first wireless signal and another encoding block is in the first wireless signal is different.
  • the processing of a coded block in a wireless signal other than the first wireless signal and a soft buffer or soft combining of the first coded block are different.
  • the failure of the channel decoding means that the CRC check during the channel decoding of the first wireless signal fails.
  • the failure of the channel decoding means that the first wireless signal is not received correctly.
  • only the first coding block is used to generate the first wireless signal.
  • a coding block other than the first coding block is also used to generate the first wireless signal.
  • the time-frequency resource occupied by the first signaling includes only the first time-frequency resource.
  • the time-frequency resource occupied by the first signaling is the first time-frequency resource.
  • the time-frequency resources occupied by the first signaling also include time-frequency resources other than the first time-frequency resource.
  • the time-frequency resource occupied by the first wireless signal includes only the second time-frequency resource.
  • the time-frequency resource occupied by the first wireless signal is the second time-frequency resource.
  • the time-frequency resource occupied by the first wireless signal further includes time-frequency resources other than the second time-frequency resource.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is only related to whether the first time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block is also related to whether the first time-frequency resource belongs to a factor outside the target time-frequency resource pool. .
  • whether the first wireless signal can not be used for merge decoding for the first coding block is only related to whether the second time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block is also related to whether the second time-frequency resource belongs to a factor outside the target time-frequency resource pool. .
  • whether the first wireless signal can not be used for combined decoding of the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool and the second Whether the time-frequency resource belongs to the target time-frequency resource pool is related.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block has a correspondence relationship with whether the first time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block corresponds to whether the first time-frequency resource belongs to the target time-frequency resource pool based on a given mapping relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first time-frequency resource belongs to the target time-frequency resource pool is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool has a corresponding relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block corresponds to whether the second time-frequency resource belongs to the target time-frequency resource pool based on a given mapping relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the second time-frequency resource belongs to the target time-frequency resource pool is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal may not be used for combined decoding of the first coding block; if the first time-frequency resource includes the For the time-frequency resources outside the target time-frequency resource pool, the first wireless signal is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal is used for combined decoding of the first coding block; if the first time-frequency resource includes the target time For the time-frequency resources outside the frequency-frequency resource pool, the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal may be turned off (Deactive or Off); if the first time-frequency resource includes one of the target time-frequency resource pools For external time-frequency resources, the HARQ of the first wireless signal is turned on (Active or On) and is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal is turned on (Active or On); if the first time-frequency resource includes resources other than the target time-frequency resource pool For time-frequency resources, the HARQ of the first wireless signal may be turned off (Deactive or Off).
  • the reference to the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the target time-frequency resource pool, the information carried by the first wireless signal
  • the bits of the channel coding output of the first coding block may not be buffered by the first type of communication node; if the first time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first A bit of the channel coded output of the first coding block carried by a wireless signal is buffered by the first type of communication node.
  • the reference to the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the target time-frequency resource pool, the information carried by the first wireless signal
  • the bits of the output of the channel coding of the first coding block are buffered by the first type of communication node; if the first time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first wireless
  • the bits of the channel coding output of the first coding block carried by the signal are not buffered by the first type of communication node.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal may not be used for combined decoding of the first coding block; if the second time-frequency resource includes the For the time-frequency resources outside the target time-frequency resource pool, the first wireless signal is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal is used for combined decoding of the first coding block; if the second time-frequency resource includes the target time For the time-frequency resources outside the frequency-frequency resource pool, the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the HARQ of the first wireless signal may be turned off (Deactive or off); if the second time-frequency resource includes one of the target time-frequency resource pool For external time-frequency resources, HARQ of the first wireless signal is turned on (Active or On).
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal is turned on (Active or On); if the second time-frequency resource includes resources other than the target time-frequency resource pool For time-frequency resources, the first wireless signal may be turned off (Deactive or off).
  • the decoding of the first wireless signal channel fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the second time-frequency resource is used.
  • the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the second time-frequency resource belongs to the target time-frequency resource pool, the first wireless signal carries The bits of the channel coding output of the first coding block are not buffered by the first type of communication node; if the second time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first A bit of the channel coded output of the first coding block carried by a wireless signal is buffered by the first type of communication node.
  • the decoding of the first wireless signal channel fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the second time-frequency resource is used.
  • the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the second time-frequency resource belongs to the target time-frequency resource pool, the first wireless signal carries The output bits of the channel coding of the first coding block are buffered by the first type of communication node; if the second time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first The bits of the channel coding output of the first coding block carried by the wireless signal are not buffered by the first type of communication node.
  • the first wireless signal when the decoding of the first wireless signal channel fails, the first wireless signal may not be used for combined decoding for the first coding block. Whether the first wireless signal is used for combined decoding for the first coding block when the decoding fails is determined by the first type of communication node.
  • the first wireless signal when the decoding of the first wireless signal channel fails, the first wireless signal may not be used for combined decoding for the first coding block. Whether the first wireless signal is used for combined decoding for the first coding block when decoding fails is determined by the implementation of the first type of communication node (Implementation Dependent).
  • the first wireless signal when the decoding of the first wireless signal channel fails, the first wireless signal may not be used for the combined decoding of the first coding block includes: when the first wireless signal channel is decoded When the code fails, the first wireless signal must not be used for merge decoding for the first coding block.
  • the first wireless signal when the decoding of the first wireless signal channel fails, the first wireless signal may not be used for the combined decoding of the first coding block includes: when the first wireless signal channel is decoded When the code fails, the first wireless signal may be used for merge decoding for the first coding block.
  • the first wireless signal when the decoding of the first wireless signal channel fails, the first wireless signal may not be used for the combined decoding of the first coding block includes: when the first wireless signal channel is decoded When the code fails, the first wireless signal may be used for merge decoding for the first coding block.
  • whether to be used for merge coding for the first coding block refers to whether it is used for HARQ for the first coding block.
  • whether to be used for merge decoding for the first coding block refers to whether a soft buffer (Soft buffer) is performed for the first coding block.
  • Soft buffer Soft buffer
  • the combined decoding refers to channel combining based on soft combining.
  • the combined decoding refers to channel decoding based on chase combining.
  • the combined decoding refers to IR (Incremental Redundancy) channel decoding.
  • the combined decoding refers to channel decoding based on a mixture of IR (Incremental Redundancy) and Chase Combining.
  • the air interface is wireless.
  • the air interface includes a wireless channel.
  • the air interface is an interface between a second type communication node and the first type communication node.
  • the air interface is a Uu interface.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2.
  • FIG. 2 is a diagram illustrating a network architecture 200 of an NR 5G, Long-Term Evolution (LTE), and LTE-A (Long-Term Evolution Advanced) system.
  • the NR 5G or LTE network architecture 200 may be referred to as an EPS (Evolved Packet System, evolved packet system) 200.
  • EPS Evolved Packet System, evolved packet system
  • EPS 200 may include one or more UE (User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core) / 5G-CN (5G-Core Network) 5G core network) 210, HSS (Home Subscriber Server) 220 and Internet service 230.
  • EPS can be interconnected with other access networks, but these entities / interfaces are not shown for simplicity. As shown in the figure, the EPS provides packet switching services, but those skilled in the art will readily understand that the various concepts presented throughout this application can be extended to networks providing circuit switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNB 204.
  • gNB203 provides user and control plane protocol termination towards UE201.
  • the gNB203 may be connected to other gNB204 via an Xn interface (eg, backhaul).
  • gNB203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, basic service set (BSS), extended service set (ESS), TRP (transmitting and receiving node), or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • TRP transmitting and receiving node
  • gNB203 can be a satellite, an aircraft, or a ground base station via satellite relay.
  • gNB203 provides UE201 with an access point to EPC / 5G-CN210.
  • UE201 examples include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (for example, MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similarly functional device.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players For example, MP3 players
  • cameras game consoles
  • drones aircraft
  • narrowband IoT devices machine type communication devices
  • machine type communication devices land vehicles, cars, wearable devices, or any other similarly functional device.
  • Those skilled in the art may also refer to UE201 as mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless
  • EPC / 5G-CN210 includes MME / AMF / UPF 211, other MME / AMF / UPF214, S-GW (Service Gateway) 212, and P-GW (Packet Data Network Gateway) 213.
  • MME / AMF / UPF211 is a control node that processes signaling between UE201 and EPC / 5G-CN210.
  • MME / AMF / UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • the P-GW213 is connected to Internet service 230.
  • the Internet service 230 includes an operator's corresponding Internet protocol service.
  • the Internet service 230 may include Internet, Intranet, IP Multimedia Subsystem (IMS), and Packet Switching (PS) streaming services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switching
  • the UE 201 corresponds to the first type of communication node device in this application.
  • the UE 201 supports transmission on a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • the gNB203 corresponds to the second-type communication node device in this application.
  • the gNB203 supports transmission over a non-terrestrial network (NTN).
  • NTN non-terrestrial network
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane and a control plane.
  • FIG. 3 shows three layers for a first type communication node device (UE) and a second type communication node device (gNB, eNB). (Or satellite or aircraft in NTN) radio protocol architecture: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first type communication node device and the second type communication node device through PHY301.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) radio layer control sublayer 303, and a PDCP (Packet Data Convergence Protocol) packet data (Aggregation protocol) sublayers 304, which are terminated at the second type of communication node device on the network side.
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • Aggregation protocol Packet Data Convergence Protocol
  • the first type of communication node device may have several upper layers above the L2 layer 305, including the network layer (e.g., IP layer) terminated at the P-GW on the network side and the connection terminated Application layer at the other end (eg, remote UE, server, etc.).
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides header compression for upper layer data packets to reduce radio transmission overhead, provides security by encrypting the data packets, and provides the second type of communication node devices to the first type of communication node devices. Cross-region mobile support.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (for example, resource blocks) in a cell between the first type of communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the radio protocol architectures for the first type communication node device and the second type communication node device are substantially the same for the physical layer 301 and the L2 layer 305, but there is no header compression function for the control plane.
  • the control plane also includes an RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer).
  • RRC Radio Resource Control
  • the RRC sublayer 306 is responsible for obtaining radio resources (ie, radio bearers) and using RRC signaling between the second type communication node device and the first type communication node device to configure the lower layer.
  • the wireless protocol architecture in FIG. 3 is applicable to the first type of communication node device in this application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second type of communication node device in this application.
  • the first information in this application is generated in the RRC306.
  • the first information in this application is generated in the MAC 302.
  • the first information in this application is generated in the PHY301.
  • the first signaling in this application is generated from the RRC306.
  • the first signaling in this application is generated from the PHY301.
  • the first wireless signal in the present application is generated in the RRC306.
  • the first wireless signal in the present application is generated in the MAC 302.
  • the first wireless signal in the present application is generated in the PHY301.
  • the second wireless signal in the present application is generated in the RRC306.
  • the second wireless signal in this application is generated from the MAC 302.
  • the second wireless signal in the present application is generated in the PHY301.
  • the second information in this application is generated from the RRC306.
  • the second information in this application is generated in the MAC 302.
  • the second information in this application is generated in the PHY301.
  • the second signaling in this application is generated from the RRC306.
  • the second signaling in this application is generated from the PHY301.
  • the third information in this application is generated from the RRC306.
  • the third information in this application is generated from the MAC 302.
  • the third information in this application is generated in the PHY301.
  • the third signaling in this application is generated from the RRC306.
  • the third signaling in this application is generated from the PHY301.
  • Embodiment 4 shows a schematic diagram of a base station device and a given user equipment according to the present application, as shown in FIG. 4.
  • FIG. 4 is a block diagram of a gNB / eNB 410 communicating with a UE 450 in an access network.
  • the user equipment includes a controller / processor 490, a memory 480, a receiving processor 452, a transmitter / receiver 456, a transmitting processor 455, and a data source 467.
  • the transmitter / receiver 456 includes an antenna 460.
  • Data source 467 provides upper-layer packets to the controller / processor 490.
  • the controller / processor 490 provides header compression and decompression, encryption and decryption, packet segmentation connection and reordering, and multiplexing and demultiplexing between logic and transmission channels. It is used to implement the L2 layer protocol for the user plane and the control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • the transmit processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer) including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer control signaling generation, and the like.
  • the receiving processor 452 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, physical layer control signaling extraction, and the like.
  • the transmitter 456 is configured to convert the baseband signal provided by the transmitting processor 455 into a radio frequency signal and transmit it through the antenna 460
  • the receiver 456 is configured to convert the radio frequency signal received through the antenna 460 into a baseband signal and provide it to the receiving processor 452.
  • the base station device (410) may include a controller / processor 440, a memory 430, a receiving processor 412, a transmitter / receiver 416, and a transmitting processor 415.
  • the transmitter / receiver 416 includes an antenna 420.
  • the upper layer packet arrives at the controller / processor 440.
  • the controller / processor 440 provides header compression and decompression, encryption and decryption, packet segment connection and reordering, and multiplexing and demultiplexing between logic and transmission channels to implement L2 protocol for user plane and control plane.
  • the upper layer packet may include data or control information, such as DL-SCH or UL-SCH.
  • the transmit processor 415 implements various signal transmission processing functions for the L1 layer (i.e., the physical layer) including encoding, interleaving, scrambling, modulation, power control / allocation, precoding, and physical layer signaling (including synchronization signals and reference Signal, etc.) generation.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (ie, the physical layer) including decoding, deinterleaving, descrambling, demodulation, de-precoding, physical layer signaling extraction, and the like.
  • the transmitter 416 is configured to convert the baseband signal provided by the transmission processor 415 into a radio frequency signal and transmit it through the antenna 420, and the receiver 416 is configured to convert the radio frequency signal received through the antenna 420 into a baseband signal and provide it to the reception processor 412.
  • upper layer packets (such as upper layer packets carried by the first wireless signal and the second wireless signal in this application) are provided to the controller / processor 440.
  • the controller / processor 440 implements the functions of the L2 layer.
  • the controller / processor 440 provides header compression, encryption, packet segmentation and reordering, multiplexing between logic and transport channels, and radio resource allocation to the UE 450 based on various priority metrics.
  • the controller / processor 440 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the UE 450, such as the first information, the third information, all or part of the first signaling and the second information in this application.
  • the transmit processor 415 implements various signal processing functions for the L1 layer (i.e., the physical layer).
  • the signal processing functions include decoding and interleaving to facilitate forward error correction (FEC) at the UE 450 and are based on various modulation schemes (e.g., , Binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)) to modulate the baseband signal, divide the modulation symbols into parallel streams and map each stream to the corresponding multicarrier subcarrier and / or multicarrier The symbol is then mapped by the transmit processor 415 to the antenna 420 via the transmitter 416 and transmitted as a radio frequency signal.
  • BPSK Binary phase shift keying
  • QPSK quadrature phase shift keying
  • Corresponding channels of the first signaling, the second signaling, the first information and the third information in the application at the physical layer are mapped to the target air interface resource by the transmitting processor 415 and mapped to the antenna 420 via the transmitter 416 to the radio frequency signal. Fired out.
  • each receiver 456 receives a radio frequency signal through its corresponding antenna 460, and each receiver 456 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 452.
  • the receiving processor 452 implements various signal receiving processing functions of the L1 layer.
  • the signal receiving processing functions include the reception of the first signaling, the second signaling, the first information and the third information of the physical layer signals in the present application, and perform various modulations based on the multicarrier symbols in the multicarrier symbol stream.
  • Demodulation of schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK)
  • decoding and deinterleaving to recover the data or control transmitted by gNB410 on the physical channel.
  • the judgment of the merge decoding is done at the receiving processor 452, and then the data and control signals are provided to the controller / processor 490.
  • the controller / processor 490 implements the L2 layer, and the controller / processor 490 interprets the first information, the third information, the first wireless signal, and the second wireless signal in this application.
  • the controller / processor may be associated with a memory 480 that stores program code and data.
  • the memory 480 may be referred to as a computer-readable medium.
  • a data source 467 is used to provide relevant configuration data for the signal to the controller / processor 490.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller / processor 490 implements L2 layers for the user plane and control plane by providing header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels through configuration allocation based on gNB410. protocol.
  • the controller / processor 490 is also responsible for HARQ operation, retransmission of lost packets, and signaling to gNB410 (including some or all of the second information and third signaling in this application).
  • the transmission processor 455 implements various signal transmission processing functions for the L1 layer (ie, the physical layer).
  • Signal transmission processing functions include encoding, modulation, etc.
  • the modulation symbols are divided into parallel streams and each stream is mapped to the corresponding multi-carrier subcarrier and / or multi-carrier symbol for baseband signal generation, and then mapped by the transmit processor 455 via the transmitter 456
  • the antenna 460 is transmitted in the form of a radio frequency signal, and a signal of the physical layer (including the physical layer signal and the third signaling corresponding to the second information in this application) is generated in the transmission processor 455.
  • the receiver 416 receives the radio frequency signal through its corresponding antenna 420, and each receiver 416 recovers the baseband information modulated onto the radio frequency carrier and provides the baseband information to the receiving processor 412.
  • the receiving processor 412 implements various signal receiving processing functions for the L1 layer (that is, the physical layer), including the reception of the physical layer signals of the second information and the third signaling in this application.
  • the signal receiving processing function includes acquiring multiple signals.
  • the carrier symbol stream, and then the multi-carrier symbols in the multi-carrier symbol stream are demodulated based on various modulation schemes, and then decoded to recover the data and / or control signals originally transmitted by the UE 450 on the physical channel. Data and / or control signals are then provided to the controller / processor 440.
  • the receiving processor controller / processor 440 implements the L2 layer.
  • the controller / processor may be associated with a memory 430 that stores program code and data.
  • the memory 430 may be a computer-readable medium.
  • the UE 450 corresponds to the first-type communication node device in this application.
  • the gNB410 corresponds to the second-type communication node device in this application.
  • the UE450 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one
  • the UE450 device is used at least: receiving the first information, the first information is used to determine a target time-frequency resource pool; detecting the first signaling; if the first signaling is detected, receiving the first A wireless signal; wherein a first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits, and the time-frequency resource occupied by the first signaling includes a first time-frequency resource The time-frequency resource occupied by the first wireless signal includes a second time-frequency resource; whether the first wireless signal can not be used for the first wireless signal when the first wireless signal channel decoding fails; The combined decoding of the coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for all
  • the combined decoding of the first coding block is related
  • the UE 450 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving the first information, and The first information is used to determine a target time-frequency resource pool; detecting first signaling; if the first signaling is detected, receiving a first wireless signal; wherein a first coding block is used to generate the first A wireless signal, the first coding block includes a positive integer number of bits; the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the time-frequency resource occupied by the first wireless signal includes a second Time-frequency resources; when the first wireless signal channel decoding fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the first time-frequency resource belongs to Whether the target time-frequency resource pool is related, or whether the first wireless signal can not be used for merge decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource For
  • the gNB410 device includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to process with the at least one Device together.
  • the gNB410 device at least: sends first information, the first information is used to determine a target time-frequency resource pool; sends first signaling; sends a first wireless signal; wherein a first coding block is used to generate the A first wireless signal, the first coding block includes a positive integer number of bits; the time-frequency resource occupied by the first signaling includes a first time-frequency resource, and the time-frequency resource occupied by the first wireless signal includes a first Two time-frequency resources; when the first wireless signal channel decoding fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the first time-frequency resource is It belongs to the target time-frequency resource pool, or whether the first wireless signal can not be used for merge decoding for the first coding block and whether the second time-frequency resource belongs to the target
  • the gNB410 includes: a memory storing a computer-readable instruction program, where the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending first information, and The first information is used to determine a target time-frequency resource pool; sending first signaling; sending a first wireless signal; wherein a first coding block is used to generate the first wireless signal, and the first coding block includes Positive integer bits; time-frequency resources occupied by the first signaling include first time-frequency resources, time-frequency resources occupied by the first wireless signal include second time-frequency resources; when the first wireless signal When the channel decoding fails, whether the first wireless signal can not be used for combined decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether Whether the first wireless signal can not be used for combined decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; the first information and all First signaling are transmitted via the air interface.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the first information in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the first wireless signal in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the first signaling in this application.
  • a receiver 456 (including an antenna 460) and a receiving processor 452 are used to receive the first signaling in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the second signaling in this application.
  • a receiver 456 (including an antenna 460) and a receiving processor 452 are used to receive the second signaling in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the second wireless signal in this application.
  • a receiver 456 (including an antenna 460), a receiving processor 452, and a controller / processor 490 are used to receive the third information in this application.
  • a transmitter 456 (including an antenna 460), a transmit processor 455, and a controller / processor 490 are used to send the second information in this application.
  • a transmitter 456 (including an antenna 460), a transmit processor 455, and a controller / processor 490 are used to send the third signaling in this application.
  • a transmitter 456 (including an antenna 460) and a transmit processor 455 are used to send the third signaling in this application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the first information in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to transmit the first wireless signal in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the first signaling in the present application.
  • the transmitter 416 (including the antenna 420) and the transmission processor 415 are used to send the first signaling in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the second signaling in this application.
  • the transmitter 416 (including the antenna 420) and the transmission processor 415 are used to send the second signaling in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to transmit the second wireless signal in the present application.
  • the transmitter 416 (including the antenna 420), the transmission processor 415, and the controller / processor 440 are used to send the third information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412, and the controller / processor 440 are used to send the second information in this application.
  • the receiver 416 (including the antenna 420), the receiving processor 412, and the controller / processor 440 are used to send the third signaling in this application.
  • the receiver 416 (including the antenna 420) and the receiving processor 412 are used to send the third signaling in this application.
  • Embodiment 5 illustrates a wireless signal transmission flowchart according to an embodiment of the present application, as shown in FIG. 5.
  • the communication node N1 of the second type is a maintenance base station of the serving cell of the communication node U2 of the first type.
  • the second information received in step S11, step S12 transmits third information, the first information transmitted in step S13, the first signaling transmitted in step S14, in step S15 transmission
  • the first wireless signal receives the third signaling in step S16, sends the second signaling in step S17, and sends the second wireless signal in step S18.
  • a second transmission information in step S21 receives the third information in a step S22, the first information received in step S23, detecting a first signaling step S24, in step S25 the reception
  • the first wireless signal is transmitted with the third signaling in step S26, the second signaling is received in step S27, and the second wireless signal is received in step S28.
  • the first information is used to determine a target time-frequency resource pool, a first coding block is used to generate the first wireless signal, and the first coding block includes a positive integer number of bits; the The time-frequency resource occupied by the first signaling includes the first time-frequency resource, and the time-frequency resource occupied by the first wireless signal includes the second time-frequency resource; when the decoding of the first wireless signal channel fails, all the Whether the first wireless signal can not be used for combined decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal can
  • the merge decoding not used for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling pass through an air interface Transmission; a channel coding output of the first coding block obtains a first bit block, and X1 bits in the first bit block are used to generate the first wireless signal, and the first bit block includes no less than A positive integer number
  • the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to the K candidate time-frequency resources.
  • An alternative time-frequency resource among the resources is used to determine whether the first wireless signal may not be used for combined decoding for the first coding block, or whether the second time-frequency resource belongs to the K
  • One candidate time-frequency resource among the candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block; the K is a positive integer.
  • the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and a quantity of resource elements included in the time-frequency resources occupied by the first wireless signal. Is used to determine the number of bits included in the first coding block.
  • a transmission start time of the second signaling in the time domain is later than a transmission start time of the first wireless signal.
  • the start time of sending the second signaling in the time domain is later than the end time of sending the first wireless signal.
  • the second signaling is transmitted through a PDCCH.
  • the second signaling is all or part of a field in a DCI signaling.
  • the second signaling is a physical layer signaling.
  • the second signaling is a high-level signaling.
  • the second signaling is all or part of an Information Element (IE) in an RRC signaling.
  • IE Information Element
  • the second signaling is a signaling indicating time-frequency resources that cannot be occupied by the first wireless signal.
  • the second signaling is used by the first type of communication node to determine the X2 bits in the first bit block.
  • the second signaling is used indirectly by the first type of communication node to determine the X2 bits in the first bit block.
  • the second signaling is directly used by the first type of communication node to determine the X2 bits in the first bit block.
  • the second signaling explicitly indicates the X2 bits in the first bit block.
  • the second signaling implicitly indicates the X2 bits in the first bit block.
  • the second signaling indicates an RV (Redundancy Version) of the second wireless signal
  • the RV of the second wireless signal is used to determine the RV in the first bit block. Said X2 bits.
  • a field exists in the second signaling and is used to indicate a HARQ (Hybrid Automatic Repeat Request) process ID (Process ID) of the second wireless signal. ).
  • HARQ Hybrid Automatic Repeat Request
  • Process ID Process ID
  • a field does not exist in the second signaling and is used to indicate a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the second wireless signal belongs.
  • HARQ Hybrid Automatic Repeat Request
  • the process number of the HARQ (Hybrid, Automatic, Repeat, Request) process to which the signal belongs exceeds the maximum HARQ process number that can be supported.
  • the process number of the HARQ (Hybrid Automatic Repeat Request) process to which the signal belongs exceeds the maximum number of HARQ processes that can be supported minus one.
  • the first signaling includes a first domain, and the first domain is used to indicate a HARQ process number for the first wireless signal;
  • the second signaling includes a second domain, the The second domain is used to indicate the HARQ process number for the second wireless signal;
  • the first domain is equal to the second domain.
  • the third signaling is a physical layer signaling.
  • the third signaling is a high-level signaling.
  • the third signaling is all or part of an IE (Information Element) in an RRC signaling.
  • the third signaling is transmitted through a PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel, Physical Uplink Control Channel
  • the third signaling is transmitted through a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the third signaling is piggybacked for transmission through a PUSCH (Physical Uplink Shared Channel, Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel, Physical Uplink Shared Channel
  • the third signaling carries UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the third signaling includes all or part of a field in a UCI.
  • the third signaling carries A / N (ACK / NACK, acknowledgement / non-acknowledgement) feedback information.
  • the third signaling is used to indicate whether the decoding of the first wireless signal channel fails: the third signaling is used to directly indicate whether the decoding of the first wireless signal channel is failure.
  • the third signaling is used to indicate whether the decoding of the first wireless signal channel fails: the third signaling is used to indirectly indicate whether the decoding of the first wireless signal channel is failure.
  • the third signaling is used to indicate whether the decoding of the first wireless signal channel fails: the third signaling is used to explicitly instruct the first wireless signal channel to be decoded. Whether the code failed.
  • the third signaling is used to indicate whether the decoding of the first wireless signal channel fails: the third signaling is used to implicitly instruct the first wireless signal channel to be decoded. Whether the code failed.
  • the third signaling is used to indicate whether the decoding of the first wireless signal channel fails: the third signaling is used to carry A / N for the first wireless signal (ACK / NACK) feedback.
  • Embodiment 6 illustrates a wireless signal transmission flowchart according to another embodiment of the present application, as shown in FIG. 6.
  • the communication node N3 of the second type is a maintenance base station of the serving cell of the communication node U4 of the first type.
  • step S31 receives the second information, third information transmitted in step S32, the first information transmitted in step S33, the first signaling transmitted in step S34, in step S15 transmission First wireless signal.
  • a second transmission information in step S41 receives the third information in a step S42, the first information received in step S43, the detected signaling in a first step S44.
  • the first information is used to determine a target time-frequency resource pool, a first coding block is used to generate the first wireless signal, and the first coding block includes a positive integer number of bits; the The time-frequency resource occupied by the first signaling includes the first time-frequency resource, and the time-frequency resource occupied by the first wireless signal includes the second time-frequency resource; when the decoding of the first wireless signal channel fails, all the Whether the first wireless signal can not be used for combined decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal can
  • the merge decoding not used for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling pass through an air interface Transmission; the second information is used to indicate the ability of the receiver of the first wireless signal to perform combined decoding, the second information is transmitted through the air interface; and the third information is used to determine the first Time-frequency resource pool, the first The
  • the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to the K candidate time-frequency resources.
  • An alternative time-frequency resource among the resources is used to determine whether the first wireless signal may not be used for combined decoding for the first coding block, or whether the second time-frequency resource belongs to the K
  • One candidate time-frequency resource among the candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block; the K is a positive integer.
  • the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and a quantity of resource elements included in the time-frequency resources occupied by the first wireless signal. Is used to determine the number of bits included in the first coding block.
  • the second information is transmitted through high-level signaling.
  • the second information is transmitted through physical layer signaling.
  • the second information includes all or part of a high-level signaling.
  • the second information includes all or part of a physical layer signaling.
  • the second information is transmitted through a PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the second information is carried through a PRACH (Physical Random Access Channel, Physical Random Access Channel).
  • PRACH Physical Random Access Channel, Physical Random Access Channel
  • the second information is transmitted in a random access process.
  • the second information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the second information is unicast.
  • the second information includes a UE capability report.
  • the ability of the second information to be used to instruct the receiver of the first wireless signal to perform combined decoding refers to: the second information is used to directly indicate the reception of the first wireless signal The ability to perform merge decoding.
  • the ability of the second information to be used to instruct the receiver of the first wireless signal to perform combined decoding means that the second information is used to indirectly indicate the reception of the first wireless signal.
  • the ability to perform merge decoding means that the second information is used to indirectly indicate the reception of the first wireless signal.
  • the ability of the second information to be used to indicate a receiver of the first wireless signal to perform combined decoding means that the second information is used to explicitly indicate the first wireless signal The receiver's ability to perform merge decoding.
  • the ability of the second information to indicate the receiver of the first wireless signal to perform combined decoding means that the second information is used to implicitly indicate the first wireless signal.
  • the receiver's ability to perform merge decoding means that the second information is used to implicitly indicate the first wireless signal.
  • the capability of the receiver of the first wireless signal to perform combined decoding refers to the capability of a soft buffer of the receiver of the first wireless signal.
  • the ability of the receiver of the first wireless signal to perform combined decoding refers to the ability of the receiver of the first wireless signal to decode.
  • the ability of the receiver of the first wireless signal to perform combined decoding refers to the maximum number of soft bits stored by the receiver of the first wireless signal.
  • the capability of the receiver of the first wireless signal to perform combined decoding refers to the maximum number of bits in the circular buffer supported by the receiver of the first wireless signal during channel decoding.
  • the ability of the receiver of the first wireless signal to perform combined decoding refers to the ability of the receiver of the first wireless signal to support the maximum decoding complexity during channel decoding.
  • the third information is transmitted through high-level signaling.
  • the third information is transmitted through physical layer signaling.
  • the third information includes all or part of a high-level signaling.
  • the third information includes all or part of a physical layer signaling.
  • the third information is transmitted through a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the third information includes one or more fields in a MIB (Master Information Block).
  • MIB Master Information Block
  • the third information is transmitted through a DL-SCH (Downlink Shared Channel, downlink shared channel).
  • DL-SCH Downlink Shared Channel, downlink shared channel
  • the third information is transmitted through a PDSCH (Physical Downlink Shared Channel, Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • the third information includes one or more fields in a SIB (System Information Block).
  • SIB System Information Block
  • the third information includes one or more fields in a RMSI (Remaining System Information).
  • RMSI Remaining System Information
  • the third information includes all or part of an RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the third information is broadcast.
  • the third information is unicast.
  • the third information is cell-specific.
  • the third information is UE-specific.
  • the third information is transmitted through a PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel, Physical Downlink Control Channel
  • the third information includes all or part of a DCI (Downlink Control Information) signaling field.
  • DCI Downlink Control Information
  • the use of the third information to determine the first time-frequency resource pool refers to that the third information is used to directly indicate the first time-frequency resource pool.
  • the use of the third information to determine the first time-frequency resource pool refers to that the third information is used to indirectly indicate the first time-frequency resource pool.
  • the use of the third information to determine the first time-frequency resource pool means that the third information is used to explicitly indicate the first time-frequency resource pool.
  • the use of the third information to determine the first time-frequency resource pool means that the third information is used to implicitly indicate the first time-frequency resource pool.
  • the third information includes an IE (Information Element, Information Element) "ControlResourceSet” in 3GPP TS38.331 (v15.1.0).
  • IE Information Element, Information Element
  • the third information includes an IE (Information Element, information unit) "SearchSpace” in 3GPP TS38.331 (v15.1.0).
  • IE Information Element, information unit
  • Embodiment 7 illustrates a relationship between a target time-frequency resource pool, a first time-frequency resource, and a second time-frequency resource according to an embodiment of the present application, as shown in FIG. 7.
  • the rectangle without filling represents the target time-frequency resource pool
  • the rectangle filled with oblique lines represents the first time-frequency resource
  • the rectangle filled with crosshairs represents the second time-frequency resource.
  • Case A, Case B, Case C, and Case D lists the relationships between the four target time-frequency resource pools, the first time-frequency resource, and the second time-frequency resource.
  • a first coding block is used to generate the first wireless signal in the present application, and the first coding block includes a positive integer number of bits;
  • the time-frequency resource includes a first time-frequency resource, and the time-frequency resource occupied by the first wireless signal includes a second time-frequency resource.
  • the merge decoding that is not used for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool in this application, or whether the first wireless signal may not be used.
  • the merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is only related to whether the first time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block is also related to whether the first time-frequency resource belongs to a factor outside the target time-frequency resource pool. .
  • whether the first wireless signal can not be used for merge decoding for the first coding block is only related to whether the second time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block is also related to whether the second time-frequency resource belongs to a factor outside the target time-frequency resource pool. .
  • whether the first wireless signal can not be used for combined decoding of the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool and the second Whether the time-frequency resource belongs to the target time-frequency resource pool is related.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block has a correspondence relationship with whether the first time-frequency resource belongs to the target time-frequency resource pool.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block corresponds to whether the first time-frequency resource belongs to the target time-frequency resource pool based on a given mapping relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the first time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first time-frequency resource belongs to the target time-frequency resource pool is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool has a corresponding relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the first wireless signal can not be used for merge decoding for the first coding block corresponds to whether the second time-frequency resource belongs to the target time-frequency resource pool based on a given mapping relationship.
  • whether the first wireless signal can not be used for combined decoding for the first coding block and whether the second time-frequency resource belongs to the target time-frequency resource pool refers to: Whether the second time-frequency resource belongs to the target time-frequency resource pool is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal may not be used for combined decoding of the first coding block; if the first time-frequency resource includes the For the time-frequency resources outside the target time-frequency resource pool, the first wireless signal is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal is used for combined decoding of the first coding block; if the first time-frequency resource includes the target time For the time-frequency resources outside the frequency-frequency resource pool, the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal may be turned off (Deactive or Off); if the first time-frequency resource includes one of the target time-frequency resource pools For external time-frequency resources, the HARQ of the first wireless signal is turned on (Active or On) and is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool means: The first time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal is turned on (Active or On); if the first time-frequency resource includes resources other than the target time-frequency resource pool For time-frequency resources, the HARQ of the first wireless signal may be turned off (Deactive or Off).
  • the reference to the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the target time-frequency resource pool, the information carried by the first wireless signal
  • the bits of the channel coding output of the first coding block may not be buffered by the first type of communication node; if the first time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first A bit of the channel coded output of the first coding block carried by a wireless signal is buffered by the first type of communication node.
  • the reference to the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the target time-frequency resource pool, the information carried by the first wireless signal
  • the bits of the output of the channel coding of the first coding block are buffered by the first type of communication node; if the first time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first wireless
  • the bits of the channel coding output of the first coding block carried by the signal are not buffered by the first type of communication node.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal may not be used for combined decoding of the first coding block; if the second time-frequency resource includes the For the time-frequency resources outside the target time-frequency resource pool, the first wireless signal is used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the first wireless signal is used for combined decoding of the first coding block; if the second time-frequency resource includes the target time For the time-frequency resources outside the frequency-frequency resource pool, the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and the HARQ of the first wireless signal may be turned off (Deactive or off); if the second time-frequency resource includes one of the target time-frequency resource pool For external time-frequency resources, HARQ of the first wireless signal is turned on (Active or On).
  • whether the first wireless signal can not be used for merge decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool means: The second time-frequency resource belongs to the target time-frequency resource pool, and HARQ of the first wireless signal is turned on (Active or On); if the second time-frequency resource includes resources other than the target time-frequency resource pool For time-frequency resources, the first wireless signal may be turned off (Deactive or off).
  • the decoding of the first wireless signal channel fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the second time-frequency resource is used.
  • the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the second time-frequency resource belongs to the target time-frequency resource pool, the first wireless signal carries The bits of the channel coding output of the first coding block are not buffered by the first type of communication node; if the second time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first A bit of the channel coded output of the first coding block carried by a wireless signal is buffered by the first type of communication node.
  • the decoding of the first wireless signal channel fails, whether the first wireless signal can not be used for combined decoding of the first coding block and whether the second time-frequency resource is used.
  • the target time-frequency resource pool means that when the decoding of the first wireless signal channel fails, if the second time-frequency resource belongs to the target time-frequency resource pool, the first wireless signal carries The output bits of the channel coding of the first coding block are buffered by the first type of communication node; if the second time-frequency resource includes time-frequency resources other than the target time-frequency resource pool, the first The bits of the channel coding output of the first coding block carried by the wireless signal are not buffered by the first type of communication node.
  • Embodiment 8 illustrates a schematic diagram of K candidate time-frequency resources according to an embodiment of the present application, as shown in FIG. 8.
  • each rectangle represents an alternative time-frequency resource among the K alternative time-frequency resources, and the rectangle filled with diagonal lines represents the first time-frequency among the K alternative time-frequency resources.
  • the alternative time-frequency resource to which the resource belongs in case B, each unfilled rectangle represents an alternative time-frequency resource among the K alternative time-frequency resources, and the rectangle filled with diagonal lines represents the first time-frequency resource;
  • each rectangle represents an alternative time-frequency resource among the K alternative time-frequency resources, and the rectangle filled by the cross line represents the alternative time-frequency to which the second time-frequency resource of the K alternative time-frequency resources belongs.
  • Resources in case D, each unfilled rectangle represents one of the K candidate time-frequency resources, and the rectangle filled by the cross line represents the second time-frequency resource.
  • the target time-frequency resource pool in this application includes K candidate time-frequency resources, and the first wireless signal channel decoding in this application fails; the first wireless signal channel in this application fails to decode; Whether the time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the first coding block in the present application. Combined decoding, or whether the second time-frequency resource in this application belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used For merge decoding for the first coded block; K is a positive integer.
  • the target time-frequency resource pool is composed of the K candidate time-frequency resources.
  • the target time-frequency resource pool includes only the K candidate time-frequency resources.
  • the target time-frequency resource pool further includes time-frequency resources other than the K candidate time-frequency resources.
  • any two of the K candidate time-frequency resources are orthogonal, and K is greater than 1.
  • K is greater than 1.
  • K is equal to 1.
  • any one of the K candidate time-frequency resources includes a positive integer number of time slots (Slots) in the time domain.
  • any one of the K candidate time-frequency resources includes a positive integer number of subframes in the time domain.
  • any one of the K candidate time-frequency resources includes a positive integer number of sub-slots in the time domain.
  • any one of the K candidate time-frequency resources includes continuous frequency-domain resources in the frequency domain.
  • any one of the K candidate time-frequency resources includes discrete frequency-domain resources in the frequency domain.
  • any one of the K candidate time-frequency resources includes continuous time-domain resources in the time domain.
  • any one of the K candidate time-frequency resources includes discrete time-domain resources in the time domain.
  • any one of the K candidate time-frequency resources includes all PRBs (Physical Resource Blocks) in a carrier (Carrier) in the frequency domain.
  • PRBs Physical Resource Blocks
  • Carrier Carrier
  • any one of the K candidate time-frequency resources includes a PRB (Physical Resource Block) of a carrier in a frequency domain.
  • PRB Physical Resource Block
  • any two candidate time-frequency resources among the K candidate time-frequency resources occupy the same frequency-domain resources in the frequency domain, and K is greater than 1.
  • two candidate time-frequency resources occupy different frequency-domain resources in the frequency domain, and K is greater than 1.
  • the number of multi-carrier symbols (OFDM symbols) occupied by any two of the K candidate time-frequency resources in the time domain is the same, and K is greater than 1.
  • the number of multi-carrier symbols (OFDM symbols) occupied by two candidate time-frequency resources in the time domain is different, and K is greater than 1.
  • the first information used in this application to determine the target time-frequency resource pool refers to: the first information indicates the K candidate time-frequency resources.
  • the first information used in this application to determine the target time-frequency resource pool refers to: the first information includes a bitmap (bitmap), and the bitmap is used to The K candidate time-frequency resources are indicated internally, where one bit in the bitmap corresponds to one candidate time-frequency resource of the K candidate time-frequency resources.
  • bitmap bitmap
  • the first information in this application includes a bitmap (bitmap) and a period value, and the bitmap is used to indicate the K candidate time-frequency resources in a period, and the K The time length of the period to which the candidate time-frequency resources belong is equal to the period value included in the first information, where one bit in the bitmap corresponds to one candidate time-frequency in the K candidate time-frequency resources Resources.
  • bitmap bitmap
  • the bitmap is used to indicate the K candidate time-frequency resources in a period
  • the K The time length of the period to which the candidate time-frequency resources belong is equal to the period value included in the first information, where one bit in the bitmap corresponds to one candidate time-frequency in the K candidate time-frequency resources Resources.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to: whether the first time-frequency resource belongs to one of the K candidate time-frequency resources and is used by the first type of communication node to determine the Whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to whether the first time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping relationship. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to: whether the first time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping function. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to whether the first time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping table. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources there are other factors used to determine whether the first wireless signal can Not used for merge coding for the first coded block.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to: whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used by the first type of communication node to determine the Whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping relationship. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping function. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to whether the second time-frequency resource belongs to one of the K candidate time-frequency resources and is used to determine the first time-frequency resource based on a given mapping table. Whether a wireless signal can not be used for merge decoding for the first coding block.
  • the second time-frequency resource belongs to one of the K candidate time-frequency resources, there are other factors used to determine whether the first wireless signal can Not used for merge coding for the first coded block.
  • first time-frequency resource belongs to one of the K candidate time-frequency resources and whether the second time-frequency resource belongs to the K candidate time-frequency resources
  • One of the alternative time-frequency resources is commonly used to determine whether the first wireless signal may not be used for merge decoding for the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the first time-frequency resource belongs to one of the K candidate time-frequency resources, the first wireless signal may not be used for Merge decoding of the first coding block; if the first time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the first wireless signal is used for the first Combined decoding of coded blocks.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the first time-frequency resource belongs to one of the K candidate time-frequency resources, the first wireless signal is used for the Merge decoding of the first coding block; if the first time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the first wireless signal may not be used for the first Combined decoding of coded blocks.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the first time-frequency resource belongs to one of the K candidate time-frequency resources, the HARQ of the first wireless signal may be turned off. (Deactive or Off); if the first time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the HARQ of the first wireless signal is turned on (Active or On) and is used for Merge decoding of the first coding block.
  • whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the first time-frequency resource belongs to one of the K candidate time-frequency resources, HARQ of the first wireless signal is turned on (Active Or On); if the first time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the HARQ of the first wireless signal may be turned off (Deactive or off).
  • the decoding of the first wireless signal channel fails, whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine the candidate time-frequency resource.
  • Whether the first wireless signal can not be used for combined decoding for the first coding block refers to: when decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the K number of One of the alternative time-frequency resources, the bit of the channel coding output of the first coding block carried by the first wireless signal may not be buffered by the first type of communication node;
  • the first time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, and the output bits of the channel code of the first coding block carried by the first wireless signal are received by the first Class communication node cache.
  • the decoding of the first wireless signal channel fails, whether the first time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine the candidate time-frequency resource.
  • Whether the first wireless signal can not be used for combined decoding for the first coding block refers to: when decoding of the first wireless signal channel fails, if the first time-frequency resource belongs to the K number of One of the alternative time-frequency resources, the bits of the output of the channel coding of the first coding block carried by the first wireless signal are buffered by the first type of communication node; if the first A time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, and the output bits of the channel code of the first coding block carried by the first wireless signal are not used by the first type. Communication node cache.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the second time-frequency resource belongs to one of the K candidate time-frequency resources, the first wireless signal may not be used for Merge decoding of the first coding block; if the second time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the first wireless signal is used for the first Combined decoding of coded blocks.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the second time-frequency resource belongs to one of the K candidate time-frequency resources, the first wireless signal is used for the Combined decoding of the first coding block; if the second time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the first wireless signal may not be used for the first Combined decoding of coded blocks.
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block refers to: if the second time-frequency resource belongs to one of the K candidate time-frequency resources, the HARQ of the first wireless signal may be turned off (Deactive or off); if the second time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, HARQ of the first wireless signal is turned on (Active or On).
  • whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine whether the first wireless signal may not be used for the
  • the combined decoding of the first coding block means that if the second time-frequency resource belongs to one of the K candidate time-frequency resources, HARQ of the first wireless signal is turned on (Active Or On); if the second time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, the first wireless signal may be turned off (Deactive or off).
  • the decoding of the first wireless signal channel fails, whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine the candidate time-frequency resource.
  • Whether the first wireless signal can not be used for combined decoding for the first coding block refers to: when the first wireless signal channel decoding fails, if the second time-frequency resource belongs to the K number of One of the alternative time-frequency resources, the bit of the channel coding output of the first coding block carried by the first wireless signal is not buffered by the first type of communication node; if the The second time-frequency resource includes time-frequency resources other than the K candidate time-frequency resources, and the output bits of the channel code of the first coding block carried by the first wireless signal are determined by the first type. Communication node cache.
  • the decoding of the first wireless signal channel fails, whether the second time-frequency resource belongs to one of the K candidate time-frequency resources is used to determine the candidate time-frequency resource.
  • Whether the first wireless signal can not be used for combined decoding for the first coding block refers to: when the first wireless signal channel decoding fails, if the second time-frequency resource belongs to the K number of One of the alternative time-frequency resources, the bits of the output of the channel coding of the first coding block carried by the first wireless signal are buffered by the first type of communication node; if the first The two time-frequency resources include time-frequency resources other than the K candidate time-frequency resources, and the output bits of the channel code of the first coding block carried by the first wireless signal are not used by the first type. Communication node cache.
  • Embodiment 9 illustrates a relationship between a time-frequency resource occupied by a first wireless signal and a number of bits included in a first coding block according to an embodiment of the present application, as shown in FIG. 9. 9 in the drawings, the first column N 'RE-frequency resources of each PRB (Physical Resource Block, physical resource blocks) in one slot of resource elements included in the first radio signal representative of the occupied Quantity, in the second column Representative N 'RE elapsed number of resource elements after quantization, the number of resources in the PRB (Physical Resource Block, physical resource block) in the frequency domain of the third column n PRB signal representative of said first radio frequency occupied by the first Four columns represent the modulation order (Modulation Order) used by the first wireless signal, and the fifth column represents the number of bits included in the first coding block.
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal in the present application is used to determine the number of resource elements included in the first coding block in the present application.
  • the first signaling is further used to indicate a modulation and coding scheme (MCS, Modulation Coding Scheme) used by the first wireless signal, and the modulation and coding scheme used by the first wireless signal. It is also used to determine the number of bits included in the first coding block.
  • MCS Modulation Coding Scheme
  • the first signaling is further used to indicate a space resource occupied by the first wireless signal, and the space resource occupied by the first wireless signal is also used to determine the first The number of bits included in the coding block.
  • the first signaling is a signaling indicating time-frequency resources that cannot be occupied by the first wireless signal.
  • the first signaling directly indicates a time-frequency resource occupied by the first wireless signal.
  • the first signaling indirectly indicates a time-frequency resource occupied by the first wireless signal.
  • the first signaling explicitly indicates a time-frequency resource occupied by the first wireless signal.
  • the first signaling implicitly indicates a time-frequency resource occupied by the first wireless signal.
  • the time-frequency resource occupied by the first wireless signal includes a positive integer resource element (RE, Resource Element).
  • RE positive integer resource element
  • an RE occupies an OFDM (Orthogonal Frequency Division Multiplexing) subcarrier in the frequency domain, and an OFDM (Orthogonal Frequency Division Multiplexing) OFDM subcarrier in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal is used by the first type of communication node to determine the Quantity.
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal is used by the first type of communication node to determine the first encoding block based on a specific mapping relationship.
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal is used by the first type of communication node to determine the number of The number of bits included.
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal is used to determine a reference number of the resource element, the reference number of the resource element, and the first wireless signal.
  • the MCS Modulation Coding Scheme
  • the MCS Modulation Coding Scheme
  • the first transport block passes the transport block CRC Addition, encoding block segmentation (Code Blocking) and encoding block CRC addition determine the number of bits included in the first encoding block.
  • the number of resource elements included in the time-frequency resource occupied by the first wireless signal is determined according to section 5.1.3.2 of 3GPP TS38.214 (v15.1.0).
  • the first transmission block determines the number of bits included in the first encoding block according to sections 5.1 and 5.2 in 3GPP TS38.212 (v15.1.0), and the first encoding block is transmitted by the first transmission block.
  • the blocks are sequentially added by the transmission block CRC, the code block segmentation (Code Block Segmentation), and the code block CRC addition.
  • Embodiment 10 illustrates a relationship between X1 bits and X2 bits of a first bit block according to an embodiment of the present application, as shown in FIG. 10.
  • the ring-shaped area filled with oblique lines represents the first bit block.
  • the area indicated by the solid arrow in the circular area represents X1 bits
  • the area indicated by the dashed arrow in the circular area represents X2 bits
  • the area indicated by the dashed arrow in the circular area represents X2 bits.
  • the area indicated by the dashed arrow in the circular area represents X2 bits.
  • the first coding block in the present application is output through channel coding to obtain a first bit block, and X1 bits in the first bit block are used to generate the first bit block in the present application.
  • a wireless signal, the first bit block includes a positive integer number of bits not less than X1; the second signaling in this application is used to determine X2 bits in the first bit block, and the X2 bits Is used to generate the second wireless signal in the present application; only the X2 bits of the X1 bits and the X2 bits are used for decoding of the first encoding block.
  • the X2 bits are used for decoding the first coding block together with the bits other than the X1 bits.
  • only the X2 bits are used for decoding of the first coding block.
  • only the X2 bits are used for the translation of the first encoding block. code.
  • the position of the X2 bits in the first bit block is related to the position of the X1 bits in the first bit block.
  • the transmission start time of the second wireless signal in the time domain is later than the transmission start time of the first wireless signal.
  • a transmission start time of the second wireless signal in the time domain is later than a transmission end time of the first wireless signal.
  • the X1 bits are sequentially subjected to rate matching, rate matching, concatenation, scrambling, modulation mapper, layer mapper, and precoding.
  • a resource particle mapper (Resource Element Mapper), and obtaining the first wireless signal after OFDM baseband signal generation (Baseband Signal Generation).
  • the X1 bits are sequentially subjected to rate matching (Rate matching), and are concatenated with other bits to obtain a second bit block.
  • the second bit block is sequentially subjected to scrambling, and a modulation mapper is used.
  • Modulation mapper layer mapper (Layer mapper), precoding (Precoding), resource particle mapper (Resource element Mapper), OFDM baseband signal generation (Baseband Signal Generation) to obtain the first wireless signal.
  • bits other than the X1 bits are also used to generate the first wireless signal.
  • the first wireless signal is generated only by the X1 bits.
  • the first wireless signal is generated by the X1 bits and bits other than the X1 bits.
  • the X2 bits are sequentially subjected to rate matching, rate matching, concatenation, scrambling, modulation mapper, layer mapper, and precoding. ), A resource particle mapper (Resource element Mapper), and obtaining the second wireless signal after OFDM baseband signal generation (Baseband Signal Generation).
  • the X2 bits are sequentially subjected to rate matching (Rate matching), and are concatenated with other bits to obtain a third bit block.
  • the third bit block is sequentially subjected to scrambling, and the modulation mapper (Modulation Mapper), Layer Mapper, Precoding, Resource Element Mapper, and OFDM baseband signal generation (Baseband Signal Generation) to obtain the second wireless signal.
  • Modulation Mapper Modulation Mapper
  • Layer Mapper Layer Mapper
  • Precoding Precoding
  • Resource Element Mapper Resource Element Mapper
  • OFDM baseband signal generation Baseband Signal Generation
  • bits other than the X2 bits are also used to generate the second wireless signal.
  • the second wireless signal is generated only by the X2 bits.
  • the second wireless signal is generated by the X2 bits and bits other than the X2 bits.
  • the second wireless signal includes an initial transmission of a TB (Transport Block).
  • TB Transport Block
  • the second wireless signal includes a retransmission of a TB (Transport Block).
  • the second wireless signal includes an initial transmission of the first coding block.
  • the second wireless signal includes a retransmission of the first coding block.
  • the second wireless signal is a retransmission of a Transport Block (TB) in a HARQ (Hybrid Automatic Repeat Request) process.
  • TB Transport Block
  • HARQ Hybrid Automatic Repeat Request
  • the second wireless signal is a retransmission of one or more code block groups (CBG, Code Block Group) in a HARQ (Hybrid Automatic Repeat Request) process.
  • CBG Code Block Group
  • HARQ Hybrid Automatic Repeat Request
  • the second wireless signal is a retransmission of a coding block (CB, CodeBlock) in a HARQ (Hybrid Automatic Repeat Request) process.
  • CB coding block
  • HARQ Hybrid Automatic Repeat Request
  • the second wireless signal does not belong to any HARQ (Hybrid, Automatic, Repeat, Request) process.
  • HARQ Hybrid, Automatic, Repeat, Request
  • a HARQ (Hybrid Automatic Repeat Request) process to which the second wireless signal belongs is not defined.
  • HARQ Hybrid Automatic Repeat Request
  • a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the second wireless signal belongs is equal to a default value.
  • a process number of a HARQ (Hybrid Automatic Repeat Request, Hybrid Automatic Repeat Request) process to which the second wireless signal belongs is equal to 0.
  • a process number of a HARQ (Hybrid Automatic Repeat Request) process to which the second wireless signal belongs is equal to a maximum value that can be supported.
  • a HARQ (Hybrid Automatic Repeat Request) process to which the second wireless signal belongs is a broadcast HARQ process (Broadcast HARQ Process), and the first wireless signal is unicast.
  • the X2 is smaller than the number of bits in the first bit block.
  • X2 is a positive integer not larger than X1.
  • X2 is a positive integer greater than X1.
  • the X2 is equal to the number of bits in the first bit block.
  • the X2 bits include all the bits in the first bit block.
  • the X2 bits include only a part of the bits in the first bit block.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X1 bits are X1 consecutive bits in the first bit block.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X1 bits are X1 discrete bits in the first bit block.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X1 bits are the first bit block starting from the start bit of the first bit block. X1 consecutive bits.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X1 bits are non-starting bits from the first bit block in the first bit block.
  • the first X1 consecutive bits are sequentially output through channel coding to obtain the first bit block, and the X1 bits are non-starting bits from the first bit block in the first bit block. The first X1 consecutive bits.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X2 bits are X2 consecutive bits in the first bit block.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X2 bits are X2 discrete bits in the first bit block.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X2 bits are the first bit block starting from the start bit of the first bit block. X2 consecutive bits.
  • the first coding block is sequentially output through channel coding to obtain the first bit block, and the X2 bits are non-starting bits from the first bit block in the first bit block.
  • the first X2 consecutive bits are sequentially output through channel coding to obtain the first bit block, and the X2 bits are non-starting bits from the first bit block in the first bit block. The first X2 consecutive bits.
  • any one of the X2 bits belongs to the X1 bits.
  • the redundancy version (RV, Redundancy Version) corresponding to the X1 bits is equal to zero.
  • the redundancy version (RV, Redundancy Version) corresponding to the X1 bits is greater than zero.
  • the first bit block is a sequential output of the first coding block after channel coding
  • the X1 bits are starting bits obtained in the first bit block according to a redundancy version equal to 0. X1 consecutive bits.
  • the first bit block is a sequential output of the first coding block after channel coding, and the X1 bits are based on a redundancy version equal to 0 in the rate matching process. X1 consecutive bits of the determined start bit in the first bit block.
  • the first bit block is a sequential output of the first coding block after channel coding, and the X1 bits are in the first bit block according to 3GPP TS38.212 (v15.1.0)
  • the operation in Section 5.4.2 is based on the redundancy version equal to 0 X1 consecutive bits of the start bit determined in the first bit block.
  • the redundancy version (RV, Redundancy Version) corresponding to the X2 bits is equal to zero.
  • the redundancy version (RV, Redundancy Version) corresponding to the X2 bits is greater than zero.
  • the first bit block is a sequential output of the first coding block after channel coding
  • the X2 bits are starting bits obtained in the first bit block according to a redundancy version equal to 0. X2 consecutive bits.
  • the first bit block is a sequential output of the first coding block after channel coding, and the X2 bits are based on a redundancy version equal to 0 during the rate matching process. X2 consecutive bits of the determined start bit in the first bit block.
  • the first bit block is a sequential output of the first coding block after channel coding, and the X2 bits are in the first bit block according to 3GPP TS38.212 (v15.1.0)
  • the operation in Section 5.4.2 is based on the redundancy version equal to 0 X2 consecutive bits of the start bit determined in the first bit block.
  • the channel coding is LDPC (Low Density, Parity Check Code, Low Density Parity Check Code) coding.
  • the channel coding is Turbo coding.
  • the channel coding is Polar coding.
  • the channel coding is a Convolutional coding.
  • the channel coding is a Low Density Parity Check Code (LDPC) code in Section 5.3.2 of 3GPP TS38.212 (v15.1.0).
  • LDPC Low Density Parity Check Code
  • the channel coding is Polar coding in Section 5.3.1 of 3GPP TS38.212 (v15.1.0).
  • the channel coding is the Turbo coding in Section 5.1.3.2 of 3GPP TS36.212.
  • the channel coding is a convolutional coding in section 5.1.3.1 of 3GPP TS36.212.
  • the X1 bits are not used for decoding the first coding block after the second wireless signal is received.
  • the X1 bits are not used for the combined decoding for the first coding block.
  • the first wireless signal and the second wireless signal correspond to the same HARQ process number.
  • Embodiment 11 illustrates a schematic diagram of a relationship between a first time-frequency resource pool and a target time-frequency resource pool according to an embodiment of the present application, as shown in FIG. 11.
  • each rectangle represents a time-frequency resource in the first time-frequency resource pool
  • each rectangle filled with a diagonal line represents a time-frequency resource in the target time-frequency resource pool.
  • the time-frequency resources occupied by the first signaling in this application belong to the first time-frequency resource pool, and all the time-frequency resources in the target time-frequency resource pool in this application belong to The first time-frequency resource pool.
  • the target time-frequency resource pool is the first time-frequency resource pool.
  • the first time-frequency resource pool further includes time-frequency resources outside the target time-frequency resource pool.
  • the first time-frequency resource pool includes user-specific search space sets (USS Sets, UE-specific Search Space Sets).
  • the first time-frequency resource pool includes a positive integer CORESET (Control-resource set, control resource set).
  • the first time-frequency resource pool includes time-frequency resources that may be used to transmit a PDCCH.
  • the first time-frequency resource pool is used to determine a user-specific search space (USS).
  • USS user-specific search space
  • the first information used in this application to determine the target time-frequency resource pool refers to: the first information in this application indicates a second time-frequency resource pool and belongs to the first A time-frequency resource pool and time-frequency resources of the second time-frequency resource pool form the target time-frequency resource pool.
  • the use of the first information in this application to determine the target time-frequency resource pool refers to: the first information in this application indicates the first time-frequency resource pool in the application. Target time-frequency resource pool.
  • Embodiment 12 illustrates a structural block diagram of a processing apparatus in a first type of communication node device, as shown in FIG. 12.
  • the first type of communication node device processing device 1200 is mainly composed of a first transceiver 1201, a second transceiver 1202, and a first receiver 1203.
  • the first transceiver 1201 includes the transmitter / receiver 456 (including the antenna 460), the receiving processor 452, the transmitting processor 455, and the controller / processor 490 in FIG. 4 of the present application;
  • the second transceiver 1202 includes the present application
  • the transmitter / receiver 456 including the antenna 460
  • the first receiver 1203 includes the transmitter / receiver 456 (including the antenna 460) in FIG. 4 of the present application. ), Receiving processor 452 and controller / processor 490.
  • the first transceiver 1201 receives the first information, and the first information is used to determine a target time-frequency resource pool; the second transceiver 1202 detects the first signaling; the first receiver 1203, if The first signaling is detected and a first wireless signal is received; wherein a first coding block is used to generate the first wireless signal, the first coding block includes a positive integer number of bits; the first signal Let the occupied time-frequency resources include a first time-frequency resource, and the time-frequency resources occupied by the first wireless signal include a second time-frequency resource; when the decoding of the first wireless signal channel fails, the first Whether the wireless signal can not be used for the combined decoding for the first coding block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal can not be used The combined decoding for the first coding block is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air
  • the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to the K candidate time-frequency resources.
  • An alternative time-frequency resource among the resources is used to determine whether the first wireless signal may not be used for combined decoding for the first coding block, or whether the second time-frequency resource belongs to the K
  • One candidate time-frequency resource among the candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block; the K is a positive integer.
  • the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and a quantity of resource elements included in the time-frequency resources occupied by the first wireless signal. Is used to determine the number of bits included in the first coding block.
  • the second transceiver 1202 further receives the second signaling; the first receiver 1203 also receives the second wireless signal; wherein the channel coding output of the first coding block obtains the first bit block, and X1 bits in a first bit block are used to generate the first wireless signal, and the first bit block includes a positive integer number of bits not less than X1; the second signaling is used in the first X2 bits are determined in the bit block, and the X2 bits are used to generate the second wireless signal; only the X2 bits of the X1 bits and the X2 bits are used for the first encoding Decoding of a block; the second signaling is transmitted over the air interface.
  • the second transceiver 1202 further sends third signaling; wherein the third signaling is used to indicate whether decoding of the first wireless signal channel fails, and the third signaling passes the Air interface transmission.
  • the first transceiver 1201 further sends second information; wherein the second information is used to indicate a capability of a receiver of the first wireless signal to perform combined decoding, and the second information passes Said air interface transmission.
  • the first transceiver 1201 further receives third information; wherein the third information is used to determine a first time-frequency resource pool, and the time-frequency resources occupied by the first signaling belong to the first time-frequency resource pool.
  • Embodiment 13 illustrates a structural block diagram of a processing device in a second type of communication node device, as shown in FIG. 13.
  • the second-type communication node device processing apparatus 1300 is mainly composed of a third transceiver 1301, a fourth transceiver 1302, and a first transmitter 1303.
  • the third transceiver 1301 includes the transmitter / receiver 416 (including the antenna 420), the transmitting processor 415, the receiving processor 412, and the controller / processor 440 in FIG. 4 of the present application;
  • the fourth transceiver 1302 includes the present application
  • the transmitter / receiver 416 including the antenna 420
  • the first transmitter 1303 includes the transmitter / receiver 416 (including the antenna 420) in FIG. 4 of the present application ), Transmitting processor 415 and controller / processor 440.
  • the third transceiver 1301 sends the first information, and the first information is used to determine the target time-frequency resource pool; the fourth transceiver 1302 sends the first signaling; the first transmitter 1303, Sending a first wireless signal; wherein a first encoding block is used to generate the first wireless signal, the first encoding block includes a positive integer number of bits; and the time-frequency resource occupied by the first signaling includes a first Time-frequency resource, the time-frequency resource occupied by the first wireless signal includes a second time-frequency resource; and when the first wireless signal channel decoding fails, whether the first wireless signal may not be used for
  • the merge decoding of the first code block is related to whether the first time-frequency resource belongs to the target time-frequency resource pool, or whether the first wireless signal may not be used for the merge of the first code block.
  • the decoding is related to whether the second time-frequency resource belongs to the target time-frequency resource pool; both the first information and the first signaling are transmitted through an air interface.
  • the target time-frequency resource pool includes K candidate time-frequency resources, the first wireless signal channel decoding fails, and whether the first time-frequency resource belongs to the K candidate time-frequency resources.
  • An alternative time-frequency resource among the resources is used to determine whether the first wireless signal may not be used for combined decoding for the first coding block, or whether the second time-frequency resource belongs to the K
  • One candidate time-frequency resource among the candidate time-frequency resources is used to determine whether the first wireless signal may not be used for merge decoding for the first coding block; the K is a positive integer.
  • the first signaling is used to indicate time-frequency resources occupied by the first wireless signal, and a quantity of resource elements included in the time-frequency resources occupied by the first wireless signal. Is used to determine the number of bits included in the first coding block.
  • the fourth transceiver 1302 further sends second signaling; the first transmitter 1303 sends a second wireless signal; wherein the channel coding output of the first coding block obtains a first bit block, and the first X1 bits in a bit block are used to generate the first wireless signal, the first bit block includes a positive integer number of bits not less than X1; the second signaling is used in the first bit X2 bits are determined in the block, and the X2 bits are used to generate the second wireless signal; only the X2 bits of the X1 bits and the X2 bits are used for the first encoding Decoding of a block; the second signaling is transmitted over the air interface.
  • the fourth transceiver 1302 further receives third signaling; wherein the third signaling is used to indicate whether decoding of the first wireless signal channel fails, and the third signaling passes the Air interface transmission.
  • the third transceiver 1301 further receives second information; wherein the second information is used to indicate a capability of a receiver of the first wireless signal to perform combined decoding, and the second information passes Said air interface transmission.
  • the third transceiver 1301 further sends third information; wherein the third information is used to determine a first time-frequency resource pool, and the time-frequency resource occupied by the first signaling belongs to the first time-frequency resource pool.
  • the first type of communication node device or UE or terminal in this application includes, but is not limited to, mobile phones, tablets, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, aircraft, and aircraft. Man-machine, remote control aircraft and other wireless communication equipment.
  • the second type of communication node equipment or base station or network side equipment in this application includes, but is not limited to, macrocell base stations, microcell base stations, home base stations, relay base stations, eNBs, gNB, transmitting and receiving nodes TRP, relay satellites, and satellite base stations. , Air base station and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于无线通信的通信节点中的方法和装置。通信节点首先接收第一信息,所述第一信息被用于确定目标时频资源池;接着检测第一信令;然后如果所述第一信令被检测到,接收第一无线信号;第一编码块被用于生成所述第一无线信号;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;本申请增大缓存配置灵活性。

Description

一种用于无线通信的通信节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及非地面无线通信中的传输方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。
为了能够适应多样的应用场景和满足不同的需求,在3GPP RAN#75次全会上还通过了NR下的非地面网络(NTN,Non-Terrestrial Networks)的研究项目,该研究项目在R15版本开始,然后在R16版本中启动WI对相关技术进行标准化。在NTN网络中,传输延时远远超过地面网络。
发明内容
在大传输延时网络中(比如NTN),为了保证传输速率(Data Rate),增大HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程数或者通过增大TTI(Transmission Time Interval,传输时间间隔)的长度是有效的方法。但是另一方面,增大HARQ进程数或增大TTI的长度传输块要求大得多的用户设备(UE,User Equipment)的缓存能力。支持HARQ的开关来控制需要存储的用于合并译码的软信息的数量从而降低UE的缓存需求是一种行之有效的方法。
针对大传输延时网络中的或缓存能力受限的网络中的HARQ的配置的问题,本申请提供了一种解决方案。需要说明的是,在不冲突的情况下,本申请的基站设备中的实施例和实施例中的特征可以应用到用户设备中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
接收第一信息,所述第一信息被用于确定目标时频资源池;
检测第一信令;
如果所述第一信令被检测到,接收第一无线信号;
其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,通过所述第一信令通过对所述目标时频资源池的配置来控制对于一个传输块(或编码块)的合并译码(或HARQ的开关),最大化了合并译码(或HARQ开关)配置的灵活性,提高了链路性能的同时降低了用户设备的缓存的增长。
作为一个实施例,所述第一类通信节点通过所述第一时频资源或者所述第二时频资源与所述目标时频资源池的关系来判断是否可以合并译码(或者是否缓存,或者HARQ的 开关),实现了将HARQ进程与合并译码(或者HARQ开关)的独立配置,从而在获取合并增益和降低用户设备缓存之间实现平衡,提高网络整体性能。
根据本申请的一个方面,上述方法的特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信令;
接收第二无线信号;
其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信令;
其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信息;
其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信息;
其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
作为一个实施例,通过本申请中的所述第一信息和所述第三信息结合使用来确定所述目标时频资源池,同时考虑了PDCCH的搜索空间或CORESET(Control Resource Set,控制资源集合)的配置和合并译码(或数据缓存,或HARQ开关)的配置,保证了和现有系统的兼容,同时避免了信令配置的冲突。
本申请公开了一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
发送第一信息,所述第一信息被用于确定目标时频资源池;
发送第一信令;
发送第一无线信号;
其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并 译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述方法的特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
根据本申请的一个方面,上述方法的特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第二信令;
发送第二无线信号;
其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中的只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第三信令;
其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
接收第二信息;
其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
根据本申请的一个方面,上述方法的特征在于,还包括:
发送第三信息;
其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
本申请公开了一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
第一收发机,接收第一信息,所述第一信息被用于确定目标时频资源池;
第二收发机,检测第一信令;
第一接收机,如果所述第一信令被检测到,接收第一无线信号;
其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否 属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二收发机还接收第二信令;所述第一接收机还接收第二无线信号;其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第二收发机还发送第三信令;其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一收发机还发送第二信息;其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
根据本申请的一个方面,上述第一类通信节点设备的特征在于,所述第一收发机还接收第三信息;其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
本申请公开了一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
第三收发机,发送第一信息,所述第一信息被用于确定目标时频资源池;
第四收发机,发送第一信令;
第一发射机,发送第一无线信号;
其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第四收发机还 发送第二信令;所述第一发射机发送第二无线信号;其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中的只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第四收发机还接收第三信令;其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第三收发机还接收第二信息;其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
根据本申请的一个方面,上述第二类通信节点设备的特征在于,所述第三收发机还发送第三信息;其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
作为一个实施例,本申请具有如下主要技术优势:
-本申请提供了一种为用户设备灵活配置使用合并译码(或缓存能力,或HARQ开关)的方法,通过该方法网络设备可以根据调度的需求来灵活配置一次传输的合并译码(或缓存能力,或HARQ开关),而不需要动态信令的支持,最大化了合并译码(或HARQ开关)配置的灵活性,提高了链路性能的同时降低了用户设备的缓存的增长。
-本申请中的方法实现了将HARQ进程与合并译码(或者HARQ开关)的独立配置,从而在获取合并增益和降低用户设备缓存之间实现平衡,提高网络整体性能。
-本申请中的方法同时考虑了PDCCH的搜索空间或CORESET(Control Resource Set,控制资源集合)的配置和合并译码(或数据缓存,或HARQ开关)的配置,保证了和现有系统的兼容,同时避免了信令配置的冲突。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信息,第一信令和第一无线信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一类通信节点和第二类通信节点的示意图;
图5示出了根据本申请的一个实施例的无线信号传输流程图;
图6示出了根据本申请的另一个实施例的无线信号传输流程图;
图7示出了根据本申请的一个实施例的目标时频资源池和第一时频资源以及第二时频资源之间的关系的示意图;
图8示出了根据本申请的一个实施例的K个备选时频资源的示意图;
图9示出了根据本申请的一个实施例的第一无线信号所占用的时频资源和第一编码块中所包括的比特的数量的关系的示意图;
图10示出了根据本申请的一个实施例的第一比特块,X1个比特和X2个比特的关系的示意图;
图11示出了根据本申请的一个实施例的第一时频资源池和目标时频资源池的关系的示意图;
图12示出了根据本申请的一个实施例的第一类通信节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二类通信节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信息,第一信令和第一无线信号的传输的流程图,如附图1所示。附图1中,每个方框代表一个步骤。在实施例1中,本申请中的第一类通信节点首先接收第一信息,所述第一信息被用于确定目标时频资源池;接着检测第一信令;然后如果所述第一信令被检测到,接收第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,还包括:
接收第二信令;
接收第二无线信号;
其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
作为一个实施例,还包括:
发送第三信令;
其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
作为一个实施例,还包括:
发送第二信息;
其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
作为一个实施例,还包括:
接收第三信息;
其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源 池,所述第三信息通过所述空中接口传输。
作为一个实施例,所述第一信息是通过高层信令传输的。
作为一个实施例,所述第一信息是通过物理层信令传输的。
作为一个实施例,所述第一信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第一信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第一信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第一信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一信息通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第一信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第一信息是广播的。
作为一个实施例,所述第一信息是单播的。
作为一个实施例,所述第一信息是小区特定的(Cell Specific)。
作为一个实施例,所述第一信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第一信息通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息通过调度所述第一无线信号的PDCCH传输的。
作为一个实施例,所述第一信息包括调度所述第一无线信号的DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于直接指示所述目标时频资源池。
作为一个实施例,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于间接指示所述目标时频资源池。
作为一个实施例,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于显式地指示所述目标时频资源池。
作为一个实施例,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于隐式地指示所述目标时频资源池。
作为一个实施例,所述目标时频资源池中包括连续的频域资源。
作为一个实施例,所述目标时频资源池中包括离散的频域资源。
作为一个实施例,所述目标时频资源池中包括连续的时域资源。
作为一个实施例,所述目标时频资源池中包括离散的时域资源。
作为一个实施例,所述目标时频资源池在频域包括了所属载波(Carrier)中的所有的PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标时频资源池在频域包括了所属载波(Carrier)中的部分的PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述目标时频资源池中所包括的时域资源在时域是周期出现的。
作为一个实施例,所述目标时频资源池在时域包括M个时隙(Slot),所述M是正整数,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于指示所述M个时隙。
作为一个实施例,所述目标时频资源池在时域包括M个子帧(subframe),所述M是正整数,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于指示所述M个子帧。
作为一个实施例,所述目标时频资源池在时域包括M个子时隙(sub-slot),所述M是正整数,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息被用于指示所述M个子时隙。
作为一个实施例,所述第一信息被用于确定所述目标时频资源池是指:所述第一信息中包括一个bitmap(比特图),该bitmap被用于在一个周期内指示M个时间单元,所述M个时间单元中的每个时间单元都是正整数个时隙(Slot),或者所述M个时间单元中的每个时间单元都是正整数个子帧(Subframe),或者所述M个时间单元中的每个时间单元都是正整数个子时隙(Sub-slot),所述目标时频资源池在时域包括所述M个时间单元,所述M是正整数,其中该bitmap中的一个比特对应所述M个时间单元中的一个时间单元。
作为一个实施例,所述第一信息中包括一个bitmap(比特图)和一个周期值,该bitmap被用于在一个周期内指示M个时间单元,所述M个时间单元所属的周期的时间长度等于所述第一信息所包括的周期值,所述M个时间单元中的每个时间单元都是正整数个时隙(Slot),或者所述M个时间单元中的每个时间单元都是正整数个子帧(Subframe),或者所述M个时间单元中的每个时间单元都是正整数个子时隙(Sub-slot),所述目标时频资源池在时域包括所述M个时间单元,所述M是正整数,其中该bitmap中的一个比特对应所述M个时间单元中的一个时间单元。
作为一个实施例,所述第一信令是单播的。
作为一个实施例,所述第一信令是用户设备特有的(UE-Specific)。
作为一个实施例,所述第一信令通过一个PDCCH(Physical Downlink Control Channel,物理下行控制信道)传输。
作为一个实施例,所述第一信令通过一个CRC(Cyclic Redundancy Check,循环冗余校验)被C-RNTI加扰的PDCCH传输。
作为一个实施例,所述第一信令通过在一个USS(UE-specific Search Space,用户特定的搜索空间)中的PDCCH传输。
作为一个实施例,所述第一信令是一个DCI信令中的全部或部分域(Field)。
作为一个实施例,所述第一信令是一个物理层信令。
作为一个实施例,所述第一信令是一个高层信令。
作为一个实施例,所述第一信令是一个RRC信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第一信息是所述第一信令的一部分。
作为一个实施例,所述第一信息通过所述第一信令之外的信令携带的。
作为一个实施例,所述第一信令携带所述第一信息。
作为一个实施例,所述第一信令的检测是通过所述第一类通信节点的盲检测实现的。
作为一个实施例,所述第一信令的检测是通过所述第一类通信节点在其所配置的用户特定的搜索空间(USS,UE-specific Search Space)中进行盲检测实现的。
作为一个实施例,所述第一信令的检测是通过所述第一类通信节点在其所配置的用户特定的搜索空间(USS,UE-specific Search Space)中进行盲解码(Blind Decoding)实现的。
作为一个实施例,所述第一信令的检测是通过所述第一类通信节点在其所配置的用 户特定的搜索空间(USS,UE-specific Search Space)中的每个PDCCH备选(Candidate)进行解码后验证CRC实现的。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程(Process)不被定义。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程被定义。
作为一个实施例,所述第一信令中存在一个域(Field)被用于指示所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号(Process ID)。
作为一个实施例,所述第一信令中不存在一个域(Field)被用于指示所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号等于一个默认(Default)的值。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程(Process)的进程号等于0。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号等于可以支持的最大的值。
作为一个实施例,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的是广播HARQ进程(Broadcast HARQ Process),所述第一无线信号是单播的。
作为一个实施例,所述第一信令中存在一个域(Field)指示所述第一无线信号所属的HARQ(Hybrid Automat ic Repeat Request,混合自动重传请求)进程的进程号,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号超过了可以支持的最大的HARQ进程号。
作为一个实施例,所述第一信令中存在一个域(Field)指示所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号,所述第一无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号超过了可以支持的最大的HARQ进程的数量减1。
作为一个实施例,所述第一无线信号是单播的。
作为一个实施例,所述第一无线信号是用户特定的(UE-specific)。
作为一个实施例,所述第一无线信号不被用于携带系统信息(SI,System Information)。
作为一个实施例,所述第一无线信号不被用于携带寻呼消息(Paging Message)。
作为一个实施例,所述第一无线信号不被用于随机接入过程(Random Access Procedure)。
作为一个实施例,所述第一无线信号不被用于携带广播或组播信息。
作为一个实施例,所述第一无线信号被用于传输所述第一编码块。
作为一个实施例,所述第一无线信号携带所述第一编码块。
作为一个实施例,所述第一无线信号仅携带所述第一编码块。
作为一个实施例,所述第一无线信号还携带所述第一编码块之外的编码块(CB,Code Block)。
作为一个实施例,所述第一无线信号通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第一无线信号通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第一无线信号包括一个TB(Transport Block,传输块)的初传。
作为一个实施例,所述第一无线信号包括一个TB(Transport Block,传输块)的重传。
作为一个实施例,所述第一无线信号包括所述第一编码块的初传。
作为一个实施例,所述第一无线信号包括所述第一编码块的重传。
作为一个实施例,所述第一编码块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号,其中加扰序列的初始值和所述第一类通信节点的特征标识有关。
作为一个实施例,所述第一编码块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号,其中加扰序列的初始值和所述第一类通信节点的C-RNTI(Cell Radio Network Temporary Identifier--小区无线网络临时标识)有关。
作为一个实施例,所述第一编码块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),与其它比特的串联(Concatenation)得到第一比特块,加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号,其中加扰序列的初始值和所述第一类通信节点的C-RNTI(Cell Radio Network Temporary Identifier--小区无线网络临时标识)有关。
作为一个实施例,所述第一编码块依次经过CRC添加(CRC Insertion),信道编码(Channel Coding),速率匹配(Rate Matching),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),预编码(Precoding),映射到资源粒子(Mapping to Resource Element),OFDM基带信号生成(OFDM Baseband Signal Generation),调制上变频(Modulation and Upconversion)之后得到所述第一无线信号,其中加扰序列的初始值和所述第一类通信节点的C-RNTI(Cell Radio Network Temporary Identifier--小区无线网络临时标识)有关。
作为一个实施例,所述第一编码块是一个CB(Code Block)。
作为一个实施例,所述第一编码块是一个传输块(TB,Transport Block)依次经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加,编码块分段(Code Block Segmentation),编码块CRC添加得到的编码块中的一个编码块(CB,Code Block)。
作为一个实施例,所述第一编码块就是一个传输块(TB,Transport Block)经过传输块CRC(Cyclic Redundancy Check,循环冗余校验)添加得到的。
作为一个实施例,所述第一编码块在所述第一无线信号中传输时的软缓存(Soft Buffer)或软合并(Soft Combining)的处理与另一个编码块在所述第一无线信号之外的一个无线信号中的处理不同。
作为一个实施例,存在所述第一无线信号之外的一个无线信号中的编码块和所述第一编码块的软缓存(Soft Buffer)或软合并(Soft Combining)的处理不同。
作为一个实施例,所述信道译码失败是指对所述第一无线信号进行信道译码时的CRC 校验没通过。
作为一个实施例,所述信道译码失败是指没有正确接收所述第一无线信号。
作为一个实施例,只有所述第一编码块被用于生成所述第一无线信号。
作为一个实施例,存在所述第一编码块之外的编码块也被用于生成所述第一无线信号。
作为一个实施例,所述第一信令所占用的时频资源只包括所述第一时频资源。
作为一个实施例,所述第一信令所占用的时频资源就是所述第一时频资源。
作为一个实施例,所述第一信令所占用的时频资源还包括所述第一时频资源之外的时频资源。
作为一个实施例,所述第一无线信号所占用的时频资源只包括所述第二时频资源。
作为一个实施例,所述第一无线信号所占用的时频资源就是所述第二时频资源。
作为一个实施例,所述第一无线信号所占用的时频资源还包括所述第二时频资源之外的时频资源。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码只与所述第一时频资源是否属于所述目标时频资源池有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码还与所述第一时频资源是否属于所述目标时频资源池之外的因素有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码只与所述第二时频资源是否属于所述目标时频资源池有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码还与所述第二时频资源是否属于所述目标时频资源池之外的因素有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池以及所述第二时频资源是否属于所述目标时频资源池都有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池具有对应关系。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码基于给定的映射关系与所述第一时频资源是否属于所述目标时频资源池对应。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一时频资源是否属于所述目标时频资源池被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池具有对应关系。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码基于给定的映射关系与所述第二时频资源是否属于所述目标时频资源池对应。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第二时频资源是 否属于所述目标时频资源池被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号的HARQ可以被关掉(Deactive或者Off);如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号的HARQ被打开(Active或者On);如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特可以不被所述第一类通信节点缓存;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号的HARQ可以被关掉(Deactive或者off);如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号的HARQ被打开(Active或者On);如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时所述第一无线信号是否被用于针对所述第一编码块的合并译码由所述第一类通信节点自行决定。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时所述第一无线信号是否被用于针对所述第一编码块的合并译码是由所述第一类通信节点的实现决定的(Implementation Dependent)。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号可以不被用于针对所述第一编码块的合并译码包括:当所述第一无线信号信道译码失败时所述第一无线信号一定不被用于针对所述第一编码块的合并译码。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号可以不被用于针对所述第一编码块的合并译码包括:当所述第一无线信号信道译码失败时所述第一无线信号可能被用于针对所述第一编码块的合并译码。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号可以不被用于针对所述第一编码块的合并译码包括:当所述第一无线信号信道译码失败时所述第一无线信号可能被用于针对所述第一编码块的合并译码。
作为一个实施例,是否被用于针对所述第一编码块的合并译码是指是否被用于针对所述第一编码块的HARQ。
作为一个实施例,是否被用于针对所述第一编码块的合并译码是指是否针对所述第一编码块进行软缓存(Soft buffer)。
作为一个实施例,所述合并译码是指基于软合并(Soft Combining)的信道译码。
作为一个实施例,所述合并译码是指基于追踪合并(Chase Combining)的信道译码。
作为一个实施例,所述合并译码是指基于IR(Incremental Redundancy增量冗余)的信道译码。
作为一个实施例,所述合并译码是指基于IR(Incremental Redundancy增量冗余)和追踪合并(Chase Combining)混合的信道译码。
作为一个实施例,所述空中接口(Air Interface)是无线的。
作为一个实施例,所述空中接口(Air Interface)包括无线信道。
作为一个实施例,所述空中接口是第二类通信节点和所述第一类通信节点之间的接口。
作为一个实施例,所述空中接口是Uu接口。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。图2是说明了NR 5G,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统网络架构200的图。NR 5G或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语,在NTN网络中,gNB203可以是卫星,飞行器或通过卫星中继的地面基站。gNB203为UE201提供对EPC/5G-CN210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN210。EPC/5G-CN210包括MME/AMF/UPF 211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和PS(Packet Switching,包交换)串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述UE201支持在非地面网络(NTN)的传输。
作为一个实施例,所述gNB203对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述gNB203支持在非地面网络(NTN)的传输。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面和控制平面的无线电协议架构的实施例的示意图,图3用三个层展示用于第一类通信节点设备(UE)和第二类通信节点设备(gNB,eNB或NTN中的卫星或飞行器)的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一类通信节点设备与第二类通信节点设备之间的链路。在用户平面中,L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于网络侧上的第二类通信节点设备处。虽然未图示,但第一类通信节点设备可具有在L2层305之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供用于上部层数据包的标头压缩以减少无线电发射开销,通过加密数据包而提供安全性,以及提供第二类通信节点设备之间的对第一类通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与输送信道之间的多路复用。MAC子层302还负责在第一类通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。在控制平面中,用于第一类通信节点设备和第二类通信节点设备的无线电协议架构对于物理层301和L2层305来说大体上相同,但没有用于控制平面的标头压缩功能。控制平面还包括层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306。RRC子层306负责获得无线电资源(即,无线电承载)且使用第二类通信节点设备与第一类通信节点设备之间的RRC信令来配置下部层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一类通信节点设备。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二类通信节点设备。
作为一个实施例,本申请中的所述第一信息生成于所述RRC306。
作为一个实施例,本申请中的所述第一信息生成于所述MAC302。
作为一个实施例,本申请中的所述第一信息生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述RRC306。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第一无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第一无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二无线信号生成于所述RRC306。
作为一个实施例,本申请中的所述第二无线信号生成于所述MAC302。
作为一个实施例,本申请中的所述第二无线信号生成于所述PHY301。
作为一个实施例,本申请中的所述第二信息生成于所述RRC306。
作为一个实施例,本申请中的所述第二信息生成于所述MAC302。
作为一个实施例,本申请中的所述第二信息生成于所述PHY301。
作为一个实施例,本申请中的所述第二信令生成于所述RRC306。
作为一个实施例,本申请中的所述第二信令生成于所述PHY301。
作为一个实施例,本申请中的所述第三信息生成于所述RRC306。
作为一个实施例,本申请中的所述第三信息生成于所述MAC302。
作为一个实施例,本申请中的所述第三信息生成于所述PHY301。
作为一个实施例,本申请中的所述第三信令生成于所述RRC306。
作为一个实施例,本申请中的所述第三信令生成于所述PHY301。
实施例4
实施例4示出了根据本申请的一个基站设备和给定用户设备的示意图,如附图4所示。图4是在接入网络中与UE450通信的gNB/eNB410的框图。
在用户设备(UE450)中包括控制器/处理器490,存储器480,接收处理器452,发射器/接收器456,发射处理器455和数据源467,发射器/接收器456包括天线460。数据源467提供上层包到控制器/处理器490,控制器/处理器490提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议,上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层控制信令生成等。接收处理器452实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层控制信令提取等。发射器456用于将发射处理器455提供的基带信号转换成射频信号并经由天线460发射出去,接收器456用于通过天线460接收的射频信号转换成基带信号提供给接收处理器452。
在基站设备(410)中可以包括控制器/处理器440,存储器430,接收处理器412,发射器/接收器416和发射处理器415,发射器/接收器416包括天线420。上层包到达控制器/处理器440,控制器/处理器440提供包头压缩解压缩、加密解密、包分段连接和重排序以及逻辑与传输信道之间的多路复用解复用,来实施用于用户平面和控制平面的L2层协议。上层包中可以包括数据或者控制信息,例如DL-SCH或UL-SCH。发射处理器415实施用于L1层(即,物理层)的各种信号发射处理功能包括编码、交织、加扰、调制、功率控制/分配、预编码和物理层信令(包括同步信号和参考信号等)生成等。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能包括解码、解交织、解扰、解调、解预编码和物理层信令提取等。发射器416用于将发射处理器415提供的基带信号转换成射频信号并经由天线420发射出去,接收器416用于通过天线420接收的射频信号转换成基带信号提供给接收处理器412。
在DL(Downlink,下行)中,上层包(比如本申请中的第一无线信号和第二无线信号所携带的上层包)提供到控制器/处理器440。控制器/处理器440实施L2层的功能。在DL中,控制器/处理器440提供包头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对UE450的无线电资源分配。控制器/处理器440还负责HARQ操作、丢失包的重新发射,和到UE450的信令,比如本申请中的第一信息,第三信息,第一信令中的全部或部分和第二信令中的全部或部分均在控制器/处理器440中生成。发射处理器415实施用于L1层(即,物理层)的各种信号处理功能,信号处理功能包括译码和交织以促进UE450处的前向纠错(FEC)以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))对基带信号进行调制,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号,然后由发射处理器415经由发射器416映射到天线420以射频信号的形式发射出去。本申请中的第一信令,第二信令,第一信息和第三信息在物理层的对应信道由发射处理器415映射到目标空口资源上并经由发射器416映射到天线420以射频信号的形式发射出去。在接收端,每一接收器456通过其相应天线460接收射频信号,每一接收器456恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器452。接收处理器452实施L1层的各种信号接收处理功能。信号接收处理功能包括在本申请中的第一信令,第二信令,第一信息和第三信息的物理层信号的接收等,通过多载波符号流中的多载波符号进行基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK))的解调,随后解码和解交织以恢复在物理信道上由gNB410发射的数据或者控制,本申请中的对合并译码的判断在接收处理器452完成,随后将数据和控制信号提供到控制器/处理器490。控制器/处理器490实施L2层,控制器/处理器490对本申请中的第一信息,第三信息,第一无线信号和第二无线信号进行解读。控制器/处理器可与存储程序代码和数据的存储器480相关联。存储器480可称为计算机可读媒体。
在上行(UL)传输中,使用数据源467来将信号的相关配置数据提供到控制器/处理器490。数据源467表示L2层之上的所有协议层。控制器/处理器490通过基于gNB410的配置 分配提供标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,来实施用于用户平面和控制平面的L2层协议。控制器/处理器490还负责HARQ操作、丢失包的重新发射,和到gNB410的信令(包括本申请中的第二信息和第三信令中的部分或全部)。发射处理器455实施用于L1层(即,物理层)的各种信号发射处理功能。信号发射处理功能包括编码,调制等,将调制符号分成并行流并将每一流映射到相应的多载波子载波和/或多载波符号进行基带信号生成,然后由发射处理器455经由发射器456映射到天线460以射频信号的形式发射出去,物理层的信号(包括本申请中第二信息所对应的物理层信号和第三信令)生成于发射处理器455。接收器416通过其相应天线420接收射频信号,每一接收器416恢复调制到射频载波上的基带信息,且将基带信息提供到接收处理器412。接收处理器412实施用于L1层(即,物理层)的各种信号接收处理功能,包括本申请中的第二信息和第三信令的物理层信号的接收,信号接收处理功能包括获取多载波符号流,接着对多载波符号流中的多载波符号进行基于各种调制方案的解调,随后解码以恢复在物理信道上由UE450原始发射的数据和/或控制信号。随后将数据和/或控制信号提供到控制器/处理器440。在接收处理器控制器/处理器440实施L2层。控制器/处理器可与存储程序代码和数据的存储器430相关联。存储器430可以为计算机可读媒体。
作为一个实施例,所述UE450对应本申请中的所述第一类通信节点设备。
作为一个实施例,所述gNB410对应本申请中的所述第二类通信节点设备。
作为一个实施例,所述UE450装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述UE450装置至少:接收第一信息,所述第一信息被用于确定目标时频资源池;检测第一信令;如果所述第一信令被检测到,接收第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述UE450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息,所述第一信息被用于确定目标时频资源池;检测第一信令;如果所述第一信令被检测到,接收第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述gNB410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述gNB410装置至少:发送第一信息,所述第一信息被用于确定目标时频资源池;发送第一信令;发送第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有 关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述gNB410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息,所述第一信息被用于确定目标时频资源池;发送第一信令;发送第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信息。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第一信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二信令。
作为一个实施例,接收器456(包括天线460)和接收处理器452被用于本申请中接收所述第二信令。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第二无线信号。
作为一个实施例,接收器456(包括天线460),接收处理器452和控制器/处理器490被用于本申请中接收所述第三信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第二信息。
作为一个实施例,发射器456(包括天线460),发射处理器455和控制器/处理器490被用于本申请中发送所述第三信令。
作为一个实施例,发射器456(包括天线460)和发射处理器455被用于本申请中发送所述第三信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信息。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第一信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二信令。
作为一个实施例,发射器416(包括天线420)和发射处理器415被用于发送本申请中的所述第二信令。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第二无线信号。
作为一个实施例,发射器416(包括天线420),发射处理器415和控制器/处理器440被用于发送本申请中的所述第三信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第二信息。
作为一个实施例,接收器416(包括天线420),接收处理器412和控制器/处理器440被用于发送本申请中的所述第三信令。
作为一个实施例,接收器416(包括天线420)和接收处理器412被用于发送本申请中的所述第三信令。
实施例5
实施例5示例了根据本申请的一个实施例的无线信号传输流程图,如附图5所示。在附图5中,第二类通信节点N1是第一类通信节点U2的服务小区的维持基站。
对于 第二类通信节点N1,在步骤S11中接收第二信息,在步骤S12中发送第三信息,在步骤S13中发送第一信息,在步骤S14中发送第一信令,在步骤S15中发送第一无线信号,在步骤S16中接收第三信令,在步骤S17中发送第二信令,在步骤S18中发送第二无线信号。
对于 第一类通信节点U2,在步骤S21中发送第二信息,在步骤S22中接收第三信息,在步骤S23中接收第一信息,在步骤S24中检测第一信令,在步骤S25中接收第一无线信号,在步骤S26中发送第三信令,在步骤S27中接收第二信令,在步骤S28中接收第二无线信号。
在实施例5中,所述第一信息被用于确定目标时频资源池,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输;所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输;所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输;所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输;所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
作为一个实施例,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第二信令在时域的发送起始时刻晚于所述第一无线信号的发送起始时刻。
作为一个实施例,所述第二信令在时域的发送起始时刻晚于所述第一无线信号的发送结束时刻。
作为一个实施例,所述第二信令通过PDCCH传输。
作为一个实施例,所述第二信令是一个DCI信令中的全部或部分域(Field)。
作为一个实施例,所述第二信令是一个物理层信令。
作为一个实施例,所述第二信令是一个高层信令。
作为一个实施例,所述第二信令是一个RRC信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第二信令是一个指示不能被所述第一无线信号占用的时频资源的信令。
作为一个实施例,所述第二信令被所述第一类通信节点用于在所述第一比特块中确定所述X2个比特。
作为一个实施例,所述第二信令被所述第一类通信节点间接用于在所述第一比特块中确定所述X2个比特。
作为一个实施例,所述第二信令被所述第一类通信节点直接用于在所述第一比特块中确定所述X2个比特。
作为一个实施例,所述第二信令在所述第一比特块中显性指示所述X2个比特。
作为一个实施例,所述第二信令在所述第一比特块中隐性指示所述X2个比特。
作为一个实施例,所述第二信令指示所述第二无线信号的RV(Redundancy Version,冗余版本),所述第二无线信号的RV被用于在所述第一比特块中确定所述X2个比特。
作为一个实施例,所述第二信令中存在一个域(Field)被用于指示所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号(Process ID)。
作为一个实施例,所述第二信令中不存在一个域(Field)被用于指示所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号。
作为一个实施例,所述第二信令中存在一个域(Field)指示所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号超过了可以支持的最大的HARQ进程号。
作为一个实施例,所述第二信令中存在一个域(Field)指示所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号超过了可以支持的最大的HARQ进程的数量减1。
作为一个实施例,所述第一信令包括第一域,所述第一域被用于指示针对所述第一无线信号的HARQ进程号;所述第二信令包括第二域,所述第二域被用于指示针对所述第二无线信号的HARQ进程号;所述第一域等于所述第二域。
作为一个实施例,所述第三信令是一个物理层信令。
作为一个实施例,所述第三信令是一个高层信令。
作为一个实施例,所述第三信令是一个RRC信令中的全部或部分IE(Information Element,信息单元)。
作为一个实施例,所述第三信令是通过PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输的。
作为一个实施例,所述第三信令是通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输的。
作为一个实施例,所述第三信令是通过PUSCH(Physical Uplink Shared Channel,物理上行共享信道)背负(Piggyback)传输的。
作为一个实施例,所述第三信令携带UCI(Uplink Control Information,上行控制信息)。
作为一个实施例,所述第三信令包括一个UCI中的全部或部分域(Field)。
作为一个实施例,所述第三信令携带A/N(ACK/NACK,确认/不确认)反馈(Feedback)信息。
作为一个实施例,所述第三信令被用于指示所述第一无线信号信道译码是否失败是指:所述第三信令被用于直接指示所述第一无线信号信道译码是否失败。
作为一个实施例,所述第三信令被用于指示所述第一无线信号信道译码是否失败是指:所述第三信令被用于间接指示所述第一无线信号信道译码是否失败。
作为一个实施例,所述第三信令被用于指示所述第一无线信号信道译码是否失败是指:所述第三信令被用于显式地指示所述第一无线信号信道译码是否失败。
作为一个实施例,所述第三信令被用于指示所述第一无线信号信道译码是否失败是指:所述第三信令被用于隐式地指示所述第一无线信号信道译码是否失败。
作为一个实施例,所述第三信令被用于指示所述第一无线信号信道译码是否失败是指:所述第三信令被用于携带针对所述第一无线信号的A/N(ACK/NACK)反馈。
实施例6
实施例6示例了根据本申请的另一个实施例的无线信号传输流程图,如附图6所示。在附图6中,第二类通信节点N3是第一类通信节点U4的服务小区的维持基站。
对于 第二类通信节点N3,在步骤S31中接收第二信息,在步骤S32中发送第三信息,在步骤S33中发送第一信息,在步骤S34中发送第一信令,在步骤S15中发送第一无线信号。
对于 第一类通信节点U4,在步骤S41中发送第二信息,在步骤S42中接收第三信息,在步骤S43中接收第一信息,在步骤S44中检测第一信令。
在实施例6中,所述第一信息被用于确定目标时频资源池,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输;所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输;所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
作为一个实施例,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第二信息是通过高层信令传输的。
作为一个实施例,所述第二信息是通过物理层信令传输的。
作为一个实施例,所述第二信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第二信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第二信息通过PUSCH(Physical Uplink Shared Channel,物理上行共享)传输。
作为一个实施例,所述第二信息通过PRACH(Physical Random Access Channel,物理随机接入信道)携带的。
作为一个实施例,所述第二信息在随机接入过程中传输的。
作为一个实施例,所述第二信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第二信息是单播的。
作为一个实施例,所述第二信息包括用户能力(UE Capability)上报。
作为一个实施例,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力是指:所述第二信息被用于直接指示所述第一无线信号的接收者进行合并译码的能力。
作为一个实施例,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力是指:所述第二信息被用于间接指示所述第一无线信号的接收者进行合并译码的能力。
作为一个实施例,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力是指:所述第二信息被用于显式地指示所述第一无线信号的接收者进行合并译码的能力。
作为一个实施例,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力是指:所述第二信息被用于隐式地指示所述第一无线信号的接收者进行合并译码的能力。
作为一个实施例,所述第一无线信号的接收者进行合并译码的能力是指所述第一无线信号的接收者的软缓存(Soft Buffer)的能力。
作为一个实施例,所述第一无线信号的接收者进行合并译码的能力是指所述第一无线信号的接收者的解码(Decoding)的能力。
作为一个实施例,所述第一无线信号的接收者进行合并译码的能力是指所述第一无线信号的接收者存储的最大软比特(Soft Bit)的数量。
作为一个实施例,所述第一无线信号的接收者进行合并译码的能力是指所述第一无线信号的接收者在信道解码时支持的最大的循环缓存中的比特数。
作为一个实施例,所述第一无线信号的接收者进行合并译码的能力是指所述第一无线信号的接收者在信道解码时支持的最大解码复杂度的能力。
作为一个实施例,所述第三信息是通过高层信令传输的。
作为一个实施例,所述第三信息是通过物理层信令传输的。
作为一个实施例,所述第三信息包括了一个高层信令中的全部或部分。
作为一个实施例,所述第三信息包括了一个物理层信令中的全部或部分。
作为一个实施例,所述第三信息通过PBCH(Physical Broadcast Channel,物理广播信道)传输。
作为一个实施例,所述第三信息包括MIB(Master Information Block,主信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息通过DL-SCH(Downlink Shared Channel,下行共享信道)传输。
作为一个实施例,所述第三信息通过PDSCH(Physical Downlink Shared Channel,物理下行共享信道)传输。
作为一个实施例,所述第三信息包括一个SIB(System Information Block,系统信息块)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括RMSI(Remaining System Information,余下系统信息)中的一个或多个域(Field)。
作为一个实施例,所述第三信息包括一个RRC(Radio Resource Control,无线资源控制)信令的全部或部分。
作为一个实施例,所述第三信息是广播的。
作为一个实施例,所述第三信息是单播的。
作为一个实施例,所述第三信息是小区特定的(Cell Specific)。
作为一个实施例,所述第三信息是用户设备特定的(UE-specific)。
作为一个实施例,所述第三信息通过PDCCH(Physical Downlink Control Channel,物 理下行控制信道)传输。
作为一个实施例,所述第三信息包括一个DCI(Downlink Control Information)信令的全部或部分域(Field)。
作为一个实施例,所述第三信息被用于确定所述第一时频资源池是指:所述第三信息被用于直接指示所述第一时频资源池。
作为一个实施例,所述第三信息被用于确定所述第一时频资源池是指:所述第三信息被用于间接指示所述第一时频资源池。
作为一个实施例,所述第三信息被用于确定所述第一时频资源池是指:所述第三信息被用于显式地指示所述第一时频资源池。
作为一个实施例,所述第三信息被用于确定所述第一时频资源池是指:所述第三信息被用于隐式地指示所述第一时频资源池。
作为一个实施例,所述第三信息包括3GPP TS38.331(v15.1.0)中的IE(Information Element,信息单元)“ControlResourceSet”。
作为一个实施例,所述第三信息包括3GPP TS38.331(v15.1.0)中的IE(Information Element,信息单元)“SearchSpace”。
实施例7
实施例7示例了根据本申请的一个实施例的目标时频资源池和第一时频资源以及第二时频资源之间的关系的示意图,如附图7所示。在附图7中,无填充的矩形代表目标时频资源池,斜线填充的矩形代表第一时频资源,十字线填充的矩形代表第二时频资源,情况A,情况B,情况C和情况D分别列举了四种目标时频资源池和第一时频资源以及第二时频资源之间的关系。
在实施例7中,第一编码块被用于生成本申请中的所述第一无线信号,所述第一编码块包括正整数个比特;本申请中的所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于本申请中的所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码只与所述第一时频资源是否属于所述目标时频资源池有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码还与所述第一时频资源是否属于所述目标时频资源池之外的因素有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码只与所述第二时频资源是否属于所述目标时频资源池有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码还与所述第二时频资源是否属于所述目标时频资源池之外的因素有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池以及所述第二时频资源是否属于所述目标时频资源池都有关。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池具有对应关系。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码基于给定的映射关系与所述第一时频资源是否属于所述目标时频资源池对应。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:所述第一时频资源是否属于所述目标时频资源池被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池具有对应关系。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码基于给定的映射关系与所述第二时频资源是否属于所述目标时频资源池对应。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:所述第二时频资源是否属于所述目标时频资源池被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号的HARQ可以被关掉(Deactive或者Off);如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号的HARQ被打开(Active或者On);如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特可以不被所述第一类通信节点缓存;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信 节点缓存;如果所述第一时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号的HARQ可以被关掉(Deactive或者off);如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)。
作为一个实施例,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号的HARQ被打开(Active或者On);如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述目标时频资源池,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存;如果所述第二时频资源包括所述目标时频资源池之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
实施例8
实施例8示例了根据本申请的一个实施例的K个备选时频资源的示意图,如附图8所示。在附图8中,在情况A中,每个矩形代表K个备选时频资源中的一个备选时频资源,斜线填充的矩形代表K个备选时频资源中的第一时频资源所属的备选时频资源;在情况B中,每个无填充的矩形代表K个备选时频资源中的一个备选时频资源,斜线填充的矩形代表第一时频资源;在情况C中,每个矩形代表K个备选时频资源中的一个备选时频资源,交叉线填充的矩形代表K个备选时频资源中的第二时频资源所属的备选时频资源;在情况D中,每个无填充的矩形代表K个备选时频资源中的一个备选时频资源,交叉线填充的矩形代表第二时频资源。
在实施例8中,本申请中的所述目标时频资源池中包括K个备选时频资源,本申请中的所述第一无线信号信道译码失败;本申请中的所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对本申请中的 所述第一编码块的合并译码,或者本申请中的所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述目标时频资源池由所述K个备选时频资源组成。
作为一个实施例,所述目标时频资源池只包括所述K个备选时频资源。
作为一个实施例,所述目标时频资源池还包括所述K个备选时频资源之外的时频资源。
作为一个实施例,所述K个备选时频资源中的任意两个备选时频资源都正交,所述K大于1。
作为一个实施例,不存在一个时频资源同时属于所述K个备选时频资源中的两个备选时频资源,所述K大于1。
作为一个实施例,所述K等于1。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在时域都包括正整数个时隙(Slot)。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在时域都包括正整数个子帧(Subframe)。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在时域都包括正整数个子时隙(Sub-slot)。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在频域包括连续的频域资源。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在频域包括离散的频域资源。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在时域包括连续的时域资源。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在时域包括离散的时域资源。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在频域包括了所属载波(Carrier)中的所有的PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述K个备选时频资源中的任意一个备选时频资源在频域包括了所属载波(Carrier)中的部分的PRB(Physical Resource Block,物理资源块)。
作为一个实施例,所述K个备选时频资源中的任意两个备选时频资源在频域占用相同的频域资源,所述K大于1。
作为一个实施例,所述K个备选时频资源中的存在两个备选时频资源在频域占用不同的频域资源,所述K大于1。
作为一个实施例,所述K个备选时频资源中的任意两个备选时频资源在时域占用的多载波符号(OFDM symbol)数相同,所述K大于1。
作为一个实施例,所述K个备选时频资源中的存在两个备选时频资源在时域占用的多载波符号(OFDM symbol)数不同,所述K大于1。
作为一个实施例,本申请中的所述第一信息被用于确定所述目标时频资源池是指:所述第一信息指示所述K个备选时频资源。
作为一个实施例,本申请中的所述第一信息被用于确定所述目标时频资源池是指:所述第一信息中包括一个bitmap(比特图),该bitmap被用于在一个周期内指示所述K个备选时频资源,其中该bitmap中的一个比特对应所述K个备选时频资源中的一个备选时频资源。
作为一个实施例,本申请中的所述第一信息中包括一个bitmap(比特图)和一个周期值,该bitmap被用于在一个周期内指示所述K个备选时频资源,所述K个备选时频资源所属的周期的时间长度等于所述第一信息所包括的所述周期值,其中该bitmap中的一个比特对应所述K个备选时频资源中的一个备选时频资源。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被所述第一类通信节点用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射关系确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射函数确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射表格确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源之外,还存在其它因素被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,只有所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被所述第一类通信节点用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射关系确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射函数确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于基于给定的映射表格确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源之外,还存在其它因素被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,只有所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源以及所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源共同被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频 资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号的HARQ可以被关掉(Deactive或者Off);如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号的HARQ被打开(Active或者On);如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号的HARQ可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特可以不被所述第一类通信节点缓存;如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时,如果所述第一时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存;如果所述第一时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号被用于针对所述第一编码块的合并译码;如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号可以不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指: 如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号的HARQ可以被关掉(Deactive或者off);如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号的HARQ被打开(Active或者On)。
作为一个实施例,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号的HARQ被打开(Active或者On);如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号可以被关掉(Deactive或者off)。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存;如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存。
作为一个实施例,当所述第一无线信号信道译码失败时,所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码是指:当所述第一无线信号信道译码失败时,如果所述第二时频资源属于所述K个备选时频资源中的一个备选时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特被所述第一类通信节点缓存;如果所述第二时频资源包括所述K个备选时频资源之外的时频资源,所述第一无线信号所携带的所述第一编码块的信道编码的输出的比特不被所述第一类通信节点缓存。
实施例9
实施例9示例了根据本申请的一个实施例的第一无线信号所占用的时频资源和第一编码块中所包括的比特的数量的关系的示意图,如附图9所示。在附图9中,第一列中的N' RE代表第一无线信号所占用的时频资源中的每个PRB(Physical Resource Block,物理资源块)在一个时隙中所包括的资源元素的数量,第二列中的
Figure PCTCN2019089287-appb-000001
代表N' RE经过量化后的资源元素的数量,第三列n PRB代表所述第一无线信号所占用的时频资源中在频域的PRB(Physical Resource Block,物理资源块)的数量,第四列代表第一无线信号所采用的调制阶数(Modulation Order),第五列代表第一编码块中所包括的比特的数量。在实施例9中,本申请中的所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定本申请中的所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一信令还被用于指示所述第一无线信号所采用的调制编码方式(MCS,Modulation Coding Scheme),所述第一无线信号所采用的所述调制编码方式也被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一信令还被用于指示所述第一无线信号所占用的空间资源,所述第一无线信号所占用的所述空间资源也被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一信令是一个指示不能被所述第一无线信号占用的时频资源的信令。
作为一个实施例,所述第一信令直接指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令间接指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令显性指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一信令隐性指示所述第一无线信号所占用的时频资源。
作为一个实施例,所述第一无线信号所占用的所述时频资源中包括正整数个资源元素(RE,Resource Element)。
作为一个实施例,一个RE在频域占用一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)子载波,在时域占用一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)多载波符号,其中一个多载波符号包含循环前缀(CP,Cyclic Prefix)。
作为一个实施例,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被所述第一类通信节点用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被所述第一类通信节点基于特定的映射关系用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被所述第一类通信节点基于特定运算规则用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定资源元素的参考数量,所述资源元素的参考数量和所述第一无线信号所使用的MCS(Modulation Coding Scheme,调制编码方式)以及所占用的层(Layer)数被用于确定所述第一传输块总所包括的比特数,所述第一传输块经过传输块CRC添加,编码块分段(Code Block Segmentation)和编码块CRC添加确定所述第一编码块中所包括的比特的数量。
作为一个实施例,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量依据3GPP TS38.214(v15.1.0)中的5.1.3.2节确定第一传输块的大小,所述第一传输块依据3GPP TS38.212(v15.1.0)中的5.1和5.2节确定所述第一编码块中所包括的比特的数量,所述第一编码块由所述第一传输块依次经过传输块CRC添加,编码块分段(Code Block Segmentation)和编码块CRC添加得到。
实施例10
实施例10示例了根据本申请的一个实施例的第一比特块,X1个比特和X2个比特的关系的示意图,如附图10所示。在附图10中,斜线填充的环形区域代表第一比特块,在情况A中(本申请中的所述第一类通信节点同时缓存了本申请中的所述X1个比特和本申请中的所述X2个比特),在环形区域中实线箭头所指示的区域代表X1个比特,在环形区域中虚线箭头所指示的区域代表X2个比特;在情况B中(本申请中的所述第一类通信节点只缓存了本申请中的所述X2个比特),在环形区域中虚线箭头所指示的区域代表X2个比特。
在实施例10中,本申请中的所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成本申请中的所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;本申请中的所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成本申请中的所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码。
作为一个实施例,所述X2个比特还和所述X1个比特之外的比特一起被用于所述第一编码块的译码。
作为一个实施例,只有所述X2个比特被用于所述第一编码块的译码。
作为一个实施例,在接收所述第二无线信号之后并且在接收携带所述第一比特块中的比特的其它无线信号之前,只有所述X2个比特被用于所述第一编码块的译码。
作为一个实施例,在接收所述第二无线信号之后还接收携带所述第一比特块中的比特的其它无线信号,所述X2个比特被用于所述第一编码块的译码。
作为一个实施例,在接收所述第二无线信号之后还接收携带所述第一比特块中的比特的其它无线信号,所述X2个比特不被用于所述第一编码块的译码。
作为一个实施例,所述X2个比特在所述第一比特块中的位置和所述X1个比特在所述第 一比特块中的位置有关。
作为一个实施例,所述第二无线信号在时域的发送起始时刻晚于所述第一无线信号的发送起始时刻。
作为一个实施例,所述第二无线信号在时域的发送起始时刻晚于所述第一无线信号的发送结束时刻。
作为一个实施例,所述X1个比特依次经过速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM基带信号发生(Baseband Signal Generation)之后得到所述第一无线信号。
作为一个实施例,所述X1个比特依次经过速率匹配(Rate Matching),与其它比特的串联(Concatenation)得到第二比特块,所述第二比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM基带信号发生(Baseband Signal Generation)之后得到所述第一无线信号。
作为一个实施例,存在所述X1个比特之外的比特也被用于生成所述第一无线信号。
作为一个实施例,所述第一无线信号仅由所述X1个比特生成。
作为一个实施例,所述第一无线信号由所述X1个比特和所述X1个比特之外的比特生成。
作为一个实施例,所述X2个比特依次经过速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM基带信号发生(Baseband Signal Generation)之后得到所述第二无线信号。
作为一个实施例,所述X2个比特依次经过速率匹配(Rate Matching),与其它比特的串联(Concatenation)得到第三比特块,所述第三比特块依次经过加扰(Scrambling),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM基带信号发生(Baseband Signal Generation)之后得到所述第二无线信号。
作为一个实施例,存在所述X2个比特之外的比特也被用于生成所述第二无线信号。
作为一个实施例,所述第二无线信号仅由所述X2个比特生成。
作为一个实施例,所述第二无线信号由所述X2个比特和所述X2个比特之外的比特生成。
作为一个实施例,所述第二无线信号包括一个TB(Transport Block,传输块)的初传。
作为一个实施例,所述第二无线信号包括一个TB(Transport Block,传输块)的重传。
作为一个实施例,所述第二无线信号包括所述第一编码块的初传。
作为一个实施例,所述第二无线信号包括所述第一编码块的重传。
作为一个实施例,所述第二无线信号是一个HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程中的一个传输块(TB,Transport Block)的重传。
作为一个实施例,所述第二无线信号是一个HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程中的一个或多个编码块组(CBG,Code Block Group)的重传。
作为一个实施例,所述第二无线信号是一个HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程中的一个编码块(CB,Code Block)的重传。
作为一个实施例,所述第二无线信号不属于任何HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程不被定义。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程被定义。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request, 混合自动重传请求)进程的进程号等于一个默认(Default)的值。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程(Process)的进程号等于0。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的进程号等于可以支持的最大的值。
作为一个实施例,所述第二无线信号所属的HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程的是广播HARQ进程(Broadcast HARQ Process),所述第一无线信号是单播的。
作为一个实施例,所述X2小于所述第一比特块中的比特的数量。
作为一个实施例,所述X2是不大于所述X1的正整数。
作为一个实施例,所述X2是大于所述X1的正整数。
作为一个实施例,所述X2等于所述第一比特块中的比特的数量。
作为一个实施例,所述X2个比特包括了所述第一比特块中的所有的比特。
作为一个实施例,所述X2个比特仅包括了所述第一比特块中的部分比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X1个比特是所述第一比特块中的X1个连续的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X1个比特是所述第一比特块中的X1个离散的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X1个比特是所述第一比特块中从所述第一比特块的起始比特开始的X1个连续的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X1个比特是所述第一比特块中从所述第一比特块的非起始比特开始的X1个连续的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X2个比特是所述第一比特块中的X2个连续的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X2个比特是所述第一比特块中的X2个离散的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X2个比特是所述第一比特块中从所述第一比特块的起始比特开始的X2个连续的比特。
作为一个实施例,所述第一编码块经过信道编码的依次输出得到所述第一比特块,所述X2个比特是所述第一比特块中从所述第一比特块的非起始比特开始的X2个连续的比特。
作为一个实施例,所述X2个比特中的任意一个比特属于所述X1个比特。
作为一个实施例,所述X1个比特所对应的冗余版本(RV,Redundancy Version)等于0。
作为一个实施例,所述X1个比特所对应的冗余版本(RV,Redundancy Version)大于0。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X1个比特是在所述第一比特块中依据冗余版本等于0得到的起始比特的X1个连续的比特。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X1个比特是在速率匹配(Rate Matching)的过程中依据冗余版本等于0在所述第一比特块中确定的起始比特的X1个连续的比特。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X1个比特是在所述第一比特块中按照3GPP TS38.212(v15.1.0)中的5.4.2节中的运算依据冗余版本等于0在所述第一比特块中确定的起始比特的X1个连续的比特。
作为一个实施例,所述X2个比特所对应的冗余版本(RV,Redundancy Version)等于0。
作为一个实施例,所述X2个比特所对应的冗余版本(RV,Redundancy Version)大于0。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X2个比特是在所述第一比特块中依据冗余版本等于0得到的起始比特的X2个连续的比特。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X2 个比特是在速率匹配(Rate Matching)的过程中依据冗余版本等于0在所述第一比特块中确定的起始比特的X2个连续的比特。
作为一个实施例,所述第一比特块是所述第一编码块经过信道编码的依次输出,所述X2个比特是在所述第一比特块中按照3GPP TS38.212(v15.1.0)中的5.4.2节中的运算依据冗余版本等于0在所述第一比特块中确定的起始比特的X2个连续的比特。
作为一个实施例,所述信道编码是LDPC(Low Density Parity Check Code,低密度奇偶校验码)编码。
作为一个实施例,所述信道编码是Turbo编码。
作为一个实施例,所述信道编码是极化(Polar)编码。
作为一个实施例,所述信道编码是卷积(Convolutional)编码。
作为一个实施例,所述信道编码是3GPP TS38.212(v15.1.0)中的5.3.2节的LDPC(Low Density Parity Check Code,低密度奇偶校验码)编码。
作为一个实施例,所述信道编码是3GPP TS38.212(v15.1.0)中的5.3.1节的极化(Polar)编码。
作为一个实施例,所述信道编码是3GPP TS36.212中的5.1.3.2节的Turbo编码。
作为一个实施例,所述信道编码是3GPP TS36.212中的5.1.3.1节的卷积编码。
作为一个实施例,所述X1个比特在所述第二无线信号被接收后不被用于所述第一编码块的译码。
作为一个实施例,当所述第一无线信号信道译码失败时,所述X1个比特不被用于针对所述第一编码块的合并译码。
作为一个实施例,所述第一无线信号和所述第二无线信号对应相同的HARQ进程号。
实施例11
实施例11示例了根据本申请的一个实施例的第一时频资源池和目标时频资源池的关系的示意图,如附图11所示。在附图11中,每一个矩形代表第一时频资源池中的一个时频资源,每个斜线填充的矩形代表目标时频资源池中的一个时频资源。
在实施例11中,本申请中的所述第一信令所占用的时频资源属于所述第一时频资源池,本申请中的所述目标时频资源池中的时频资源都属于所述第一时频资源池。
作为一个实施例,所述目标时频资源池就是所述第一时频资源池。
作为一个实施例,所述第一时频资源池中还包括所述目标时频资源池之外的时频资源。
作为一个实施例,所述第一时频资源池包括了用户特有的搜索空间集合(USS Sets,UE-specific Search Space Sets)。
作为一个实施例,所述第一时频资源池中包括了正整数个CORESET(Control-resource set,控制资源集合)。
作为一个实施例,所述第一时频资源池包括了可能用于传输PDCCH的时频资源。
作为一个实施例,所述第一时频资源池被用于确定用户特有的搜索空间(USS)。
作为一个实施例,本申请中的所述第一信息被用于确定所述目标时频资源池是指:本申请中的所述第一信息指示第二时频资源池,同时属于所述第一时频资源池和所述第二时频资源池的时频资源组成所述目标时频资源池。
作为一个实施例,本申请中的所述第一信息被用于确定所述目标时频资源池是指:本申请中的所述第一信息在所述第一时频资源池中指示所述目标时频资源池。
实施例12
实施例12示例了一个第一类通信节点设备中的处理装置的结构框图,如附图12所示。附图12中,第一类通信节点设备处理装置1200主要由第一收发机1201,第二收发机1202和第一接收机1203组成。第一收发机1201包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452,发射处理器455和控制器/处理器490;第二收发机1202包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452 和发射处理器455;第一接收机1203包括本申请附图4中的发射器/接收器456(包括天线460),接收处理器452和控制器/处理器490。
在实施例12中,第一收发机1201接收第一信息,所述第一信息被用于确定目标时频资源池;第二收发机1202,检测第一信令;第一接收机1203,如果所述第一信令被检测到,接收第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,第二收发机1202还接收第二信令;第一接收机1203还接收第二无线信号;其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
作为一个实施例,第二收发机1202还发送第三信令;其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
作为一个实施例,第一收发机1201还发送第二信息;其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
作为一个实施例,第一收发机1201还接收第三信息;其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
实施例13
实施例13示例了一个第二类通信节点设备中的处理装置的结构框图,如附图13所示。在附图13中,第二类通信节点设备处理装置1300主要由第三收发机1301,第四收发机1302和第一发射机1303组成。第三收发机1301包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415,接收处理器412和控制器/处理器440;第四收发机1302包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和接收处理器412;第一发射机1303包括本申请附图4中的发射器/接收器416(包括天线420),发射处理器415和控制器/处理器440。
在实施例13中,第三收发机1301,发送第一信息,所述第一信息被用于确定目标时频资源池;第四收发机1302,发送第一信令;第一发射机1303,发送第一无线信号;其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特; 所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
作为一个实施例,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
作为一个实施例,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
作为一个实施例,第四收发机1302还发送第二信令;第一发射机1303发送第二无线信号;其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中的只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
作为一个实施例,第四收发机1302还接收第三信令;其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
作为一个实施例,第三收发机1301还接收第二信息;其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
作为一个实施例,第三收发机1301还发送第三信息;其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一类通信节点设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二类通信节点设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,中继卫星,卫星基站,空中基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种用于无线通信中的第一类通信节点中的方法,其特征在于,包括:
    接收第一信息,所述第一信息被用于确定目标时频资源池;
    检测第一信令;
    如果所述第一信令被检测到,接收第一无线信号;
    其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
  2. 根据权利要求1所述的方法,其特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
  3. 根据权利要求1或2中任一权利要求所述的方法,其特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
  4. 根据权利要求1至3中任一权利要求所述的方法,其特征在于,还包括:
    接收第二信令;
    接收第二无线信号;
    其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
  5. 根据权利要求1至4中任一权利要求所述的方法,其特征在于,还包括:
    发送第三信令;
    其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
  6. 根据权利要求1至5中任一权利要求所述的方法,其特征在于,还包括:
    发送第二信息;
    其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
  7. 根据权利要求1至6中任一权利要求所述的方法,其特征在于,还包括:
    接收第三信息;
    其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
  8. 一种用于无线通信中的第二类通信节点中的方法,其特征在于,包括:
    发送第一信息,所述第一信息被用于确定目标时频资源池;
    发送第一信令;
    发送第一无线信号;
    其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比 特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
  9. 根据权利要求8所述的方法,其特征在于,所述目标时频资源池中包括K个备选时频资源,所述第一无线信号信道译码失败;所述第一时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码,或者所述第二时频资源是否属于所述K个备选时频资源中的一个备选时频资源被用于确定所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码;所述K是正整数。
  10. 根据权利要求8或9中任一权利要求所述的方法,其特征在于,所述第一信令被用于指示所述第一无线信号所占用的时频资源,所述第一无线信号所占用的所述时频资源中所包括的资源元素的数量被用于确定所述第一编码块中所包括的比特的数量。
  11. 根据权利要求8至10中任一权利要求所述的方法,其特征在于,还包括:
    发送第二信令;
    发送第二无线信号;
    其中,所述第一编码块经过信道编码的输出得到第一比特块,所述第一比特块中的X1个比特被用于生成所述第一无线信号,所述第一比特块包括不小于X1的正整数个比特;所述第二信令被用于在所述第一比特块中确定X2个比特,所述X2个比特被用于生成所述第二无线信号;所述X1个比特和所述X2个比特中的只有所述X2个比特被用于所述第一编码块的译码;所述第二信令通过所述空中接口传输。
  12. 根据权利要求8至11中任一权利要求所述的方法,其特征在于,还包括:
    接收第三信令;
    其中,所述第三信令被用于指示所述第一无线信号信道译码是否失败,所述第三信令通过所述空中接口传输。
  13. 根据权利要求8至12中任一权利要求所述的方法,其特征在于,还包括:
    接收第二信息;
    其中,所述第二信息被用于指示所述第一无线信号的接收者进行合并译码的能力,所述第二信息通过所述空中接口传输。
  14. 根据权利要求8至13中任一权利要求所述的方法,其特征在于,还包括:
    发送第三信息;
    其中,所述第三信息被用于确定第一时频资源池,所述第一信令所占用的时频资源属于所述第一时频资源池,所述目标时频资源池中的时频资源都属于所述第一时频资源池,所述第三信息通过所述空中接口传输。
  15. 一种用于无线通信中的第一类通信节点设备,其特征在于,包括:
    第一收发机,接收第一信息,所述第一信息被用于确定目标时频资源池;
    第二收发机,检测第一信令;
    第一接收机,如果所述第一信令被检测到,接收第一无线信号;
    其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一 信令都通过空中接口传输。
  16. 一种用于无线通信中的第二类通信节点设备,其特征在于,包括:
    第三收发机,发送第一信息,所述第一信息被用于确定目标时频资源池;
    第四收发机,发送第一信令;
    第一发射机,发送第一无线信号;
    其中,第一编码块被用于生成所述第一无线信号,所述第一编码块包括正整数个比特;所述第一信令所占用的时频资源包括第一时频资源,所述第一无线信号所占用的时频资源包括第二时频资源;当所述第一无线信号信道译码失败时,所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第一时频资源是否属于所述目标时频资源池有关,或者所述第一无线信号是否可以不被用于针对所述第一编码块的合并译码与所述第二时频资源是否属于所述目标时频资源池有关;所述第一信息和所述第一信令都通过空中接口传输。
PCT/CN2019/089287 2018-06-11 2019-05-30 一种用于无线通信的通信节点中的方法和装置 WO2019237938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/035,742 US11641639B2 (en) 2018-06-11 2020-09-29 Method and device for HARQ transmissions in communication nodes for wireless communication
US18/122,722 US11877263B2 (en) 2018-06-11 2023-03-17 Method and device in communication nodes for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810594265.7A CN110581748B (zh) 2018-06-11 2018-06-11 一种用于无线通信的通信节点中的方法和装置
CN201810594265.7 2018-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/035,742 Continuation US11641639B2 (en) 2018-06-11 2020-09-29 Method and device for HARQ transmissions in communication nodes for wireless communication

Publications (1)

Publication Number Publication Date
WO2019237938A1 true WO2019237938A1 (zh) 2019-12-19

Family

ID=68809560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089287 WO2019237938A1 (zh) 2018-06-11 2019-05-30 一种用于无线通信的通信节点中的方法和装置

Country Status (3)

Country Link
US (2) US11641639B2 (zh)
CN (2) CN110581748B (zh)
WO (1) WO2019237938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11405891B2 (en) * 2018-01-12 2022-08-02 Zte Corporation Data transmission method and apparatus, terminal, and base station

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117939681A (zh) * 2019-06-04 2024-04-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11418294B2 (en) * 2019-09-20 2022-08-16 Qualcomm Incorporated Single step in-place operation method for 5G NR de-interleaving, de-rate matching, and HARQ combination
CN113132056B (zh) * 2020-01-16 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113660631A (zh) * 2020-05-12 2021-11-16 上海朗帛通信技术有限公司 用于中继传输的方法和装置
CN118074877A (zh) * 2020-12-23 2024-05-24 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114696949A (zh) * 2020-12-30 2022-07-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115173997B (zh) * 2022-07-01 2023-07-18 北京神经元网络技术有限公司 Pdcch盲检测的译码过滤处理方法、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594637A (zh) * 2008-05-28 2009-12-02 京瓷株式会社 发送装置和无线通信方法
WO2017078128A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN107431581A (zh) * 2015-03-06 2017-12-01 高通股份有限公司 简化的harq管理

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286825A (zh) * 2007-04-11 2008-10-15 松下电器产业株式会社 实现基于可靠性的混合自动重传的方法、发送端和系统
EP2214340A1 (en) * 2009-01-30 2010-08-04 Panasonic Corporation HARQ operation for macro-diversity transmissions in the downlink
US8942208B2 (en) * 2009-06-22 2015-01-27 Qualcomm Incorporated Wireless communication having reduced feedback delay
CN102264039B (zh) 2011-04-29 2013-12-11 电信科学技术研究院 一种实现半持续调度传输的方法及装置
US10027391B2 (en) * 2012-04-12 2018-07-17 Nokia Technologies Oy Transmit diversity on a control channel without additional reference signals
JP6427207B2 (ja) * 2014-06-16 2018-11-21 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて装置対装置端末の信号送受信方法及び装置
US9961581B2 (en) * 2014-10-31 2018-05-01 Qualcomm Incorporated Status prohibition timer disabling for partial status report
WO2017026408A1 (ja) * 2015-08-12 2017-02-16 京セラ株式会社 無線端末
WO2017076601A1 (en) * 2015-11-04 2017-05-11 Sony Corporation Communications device, infrastructure equipment, communications system and methods
CN106998591B (zh) 2016-01-24 2018-03-23 上海朗帛通信技术有限公司 一种调度方法和装置
CN110099451B (zh) * 2016-02-01 2023-04-07 上海朗帛通信技术有限公司 一种无线通信中的调度方法和装置
CN108464050B (zh) * 2016-02-02 2021-11-09 松下电器(美国)知识产权公司 eNodeB、用户设备以及无线通信方法
CN109194456B (zh) * 2016-08-05 2020-11-06 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107969034B (zh) * 2016-10-20 2020-02-18 上海朗帛通信技术有限公司 一种ue、基站中的随机接入的方法和装置
MX2020002417A (es) * 2017-09-11 2020-07-21 Ericsson Telefon Ab L M Seleccion de recursos para señalizacion de control en una red de acceso por radio.
EP3695536B1 (en) * 2017-10-13 2021-12-08 Telefonaktiebolaget LM Ericsson (publ) Transport block size determination for new radio
CN107947904B (zh) * 2017-11-23 2021-01-29 上海华为技术有限公司 一种重传调度方法及基站
EP3720010A4 (en) * 2018-01-19 2020-10-21 Huawei Technologies Co., Ltd. INFORMATION TRANSMISSION PROCESS, INFORMATION RECEPTION PROCESS, TRANSMISSION APPARATUS AND RECEPTION APPARATUS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594637A (zh) * 2008-05-28 2009-12-02 京瓷株式会社 发送装置和无线通信方法
CN107431581A (zh) * 2015-03-06 2017-12-01 高通股份有限公司 简化的harq管理
WO2017078128A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC: "Considerations on HARQ Management for Non-Terrestrial Networks", 3GPP TSG RAN WG1 MEETING #92 R1-1802631, 17 February 2018 (2018-02-17), XP051398069 *
INTERDIGITAL INC: "Deactivating HARQ for Non-Terrestrial Networks", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804857, 7 April 2018 (2018-04-07), XP051414209 *
NOKIA ET AL.: "Consideration on HARQ Impact for NTN", 3GPP TSG RAN WG1 MEETING #93 R1-1805848, 11 May 2018 (2018-05-11), XP051461578 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11405891B2 (en) * 2018-01-12 2022-08-02 Zte Corporation Data transmission method and apparatus, terminal, and base station

Also Published As

Publication number Publication date
US11877263B2 (en) 2024-01-16
US20230224869A1 (en) 2023-07-13
CN111884768B (zh) 2024-04-09
US20210014832A1 (en) 2021-01-14
CN110581748A (zh) 2019-12-17
CN110581748B (zh) 2020-09-01
CN111884768A (zh) 2020-11-03
US11641639B2 (en) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2019237938A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2019149050A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018024152A1 (zh) 一种无线通信中的方法和装置
US11711185B2 (en) Method and device in communication node for wireless communication
WO2021147892A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019228410A1 (zh) 一种用于无线通信的通信节点中的方法和装置
WO2018028444A1 (zh) 一种无线通信中的方法和装置
JP7165954B2 (ja) チャネル符号化に用いるユーザー装置、基地局における方法及び装置
US11750215B2 (en) Method and device in UE and base station for channel coding
WO2022227428A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2021031899A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2018082504A1 (zh) 一种用于动态调度的用户设备、基站中的方法和装置
CN110662254B (zh) 一种被用于无线通信的通信节点中的方法和装置
WO2023051491A1 (zh) 一种用于无线通信的节点中的方法和装置
CN109644066B (zh) 一种被用于无线通信的用户、基站中的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820133

Country of ref document: EP

Kind code of ref document: A1