WO2022036612A1 - 中继节点切换方法、终端设备和网络设备 - Google Patents

中继节点切换方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022036612A1
WO2022036612A1 PCT/CN2020/110111 CN2020110111W WO2022036612A1 WO 2022036612 A1 WO2022036612 A1 WO 2022036612A1 CN 2020110111 W CN2020110111 W CN 2020110111W WO 2022036612 A1 WO2022036612 A1 WO 2022036612A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement result
relay node
operating state
state parameter
node
Prior art date
Application number
PCT/CN2020/110111
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102168.7A priority Critical patent/CN115699873A/zh
Priority to PCT/CN2020/110111 priority patent/WO2022036612A1/zh
Publication of WO2022036612A1 publication Critical patent/WO2022036612A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the field of communications, and in particular, to a relay node switching method, a terminal device and a network device.
  • D2D Device to Device
  • V2X Vehicle to Everything
  • SAlink Sidelink
  • side link or “side chain” refers to the communication link between terminals, and the link between terminals can be applied to communication nodes in any scenario, such as in-vehicle scenarios, home scenarios, etc. Communication nodes do not require network coverage.
  • the sidelink transmission has higher spectral efficiency and lower transmission delay.
  • the V2X system supports two transmission modes.
  • the transmission resources of the terminal are allocated by the base station, and the terminal transmits sidelink data on the sidelink according to the resources allocated by the base station; in mode B, the terminal adopts monitoring and The transmission mode of reservation (reservation), for example, acquires a set of available transmission resources in a resource pool by means of listening, and the terminal selects resources from the set for sideline transmission.
  • the transmission mode of reservation for example, acquires a set of available transmission resources in a resource pool by means of listening, and the terminal selects resources from the set for sideline transmission.
  • embodiments of the present application provide a relay node switching method, a terminal device, and a network device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the first device measures the downlink reference signal of the third device, and obtains a first measurement result, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote node device is at least including a second device;
  • the first device obtains its own running state parameters
  • the first device sends a relay node switching request to the third device information, wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the second device sends reference data to the first device, the reference data includes a second measurement result and/or an operating state parameter of the second device, and the second measurement result includes the second device measuring the third The measurement result obtained by the downlink reference signal of the device, and/or the monitoring result obtained by the second device by monitoring the downlink physical channel or the downlink reference signal of the first device by the third device, wherein the The second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device; the reference data is used by the first device to determine whether to send a relay node switch request information, wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the first device sends reference data to the second device, the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the first device's response to the third device.
  • the measurement result obtained by measuring the downlink reference signal, wherein the first device is currently configured as the relay node device of the third device, and the corresponding remote node device includes at least the second device; the reference
  • the data is used by the second device to determine whether to trigger relay node handover request information, wherein the relay node handover request information is used to request the third device to configure the second device as a relay node device,
  • the first device is configured as a remote node device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the second device measures the downlink reference signal of the third device for the second device to obtain a measurement result, and/or the second device measures the downlink physical channel or downlink reference signal of the third device for the first device
  • the signal is monitored to obtain a monitoring result, and the measurement result and/or the monitoring result is used as the second measurement result.
  • the second device is currently configured as the remote node device of the third device, and the corresponding middle
  • the relay node device is the first device;
  • the second device receives reference data sent by the first device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the first device a measurement result obtained by measuring the downlink reference signal of the third device;
  • the second device determines whether to send relay node handover request information based on at least one of the following: the first measurement result, the operating state parameter of the first device, the second measurement result, the second device's Running state parameters; wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the third device receives the relay node handover request information, wherein the current relay node device of the third device includes the first device, and the corresponding remote node device includes the second device;
  • the third device configures the second device as a relay node device and configures the first device as a remote node device according to the relay node handover request information.
  • the embodiment of the present application provides a relay node switching method, including:
  • the first device receives the running state parameter of the second device sent by the second device, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote node device is at least including a second device;
  • the first device sends the operating state parameter information of the first device and the operating state parameter information of the second device to the third device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the second device sends its own running state parameter information to the first device, where the second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device.
  • the embodiment of the present application provides a relay node switching method, including:
  • the third device receives the operating state parameter information of the first device and the operating state parameter information of the second device sent by the first device, where the first device is currently configured as a relay of the third device a node device, the second device is currently configured as a remote node device;
  • the third device configures the second device as a relay node device, and configures the first device as a remote node device.
  • the embodiment of the present application also provides a terminal device, including:
  • a measurement module configured to measure the downlink reference signal of the third device to obtain a first measurement result, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote node
  • the device includes at least a second device;
  • a sending module configured to send relay node switching request information to the third device when the first measurement result meets the first condition and/or when the operating state parameter meets the second condition , wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application also provides a terminal device, including:
  • a sending module configured to send reference data to the first device, where the reference data includes a second measurement result and/or an operating state parameter of the second device, and the second measurement result includes the second device measuring the The measurement result obtained by the downlink reference signal of the third device, and/or the monitoring result obtained by the second device by monitoring the downlink physical channel or the downlink reference signal of the first device by the third device, wherein the The second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device; the reference data is used by the first device to determine whether to send a relay node Handover request information, where the relay node handover request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application further provides a terminal device, which is the first device, including:
  • a sending module configured to send reference data to a second device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the relationship between the first device and the third device.
  • the measurement result obtained by measuring the downlink reference signal of the device, wherein the first device is currently configured as the relay node device of the third device, and the corresponding remote node device includes at least the second device;
  • the reference data is used by the second device to determine whether to trigger relay node handover request information, wherein the relay node handover request information is used to request the third device to configure the second device as a relay node device,
  • the first device is configured as a remote node device.
  • the embodiment of the present application also provides a terminal device, which is a second device, including:
  • a measurement module configured to measure the downlink reference signal of the second device by the third device to obtain a measurement result, and/or monitor the downlink physical channel or downlink reference signal of the first device by the third device , obtain the monitoring result, and use the measurement result and/or the monitoring result as the second measurement result, wherein the second device is currently configured as the remote node device of the third device, and the corresponding relay The node device is the first device;
  • a receiving module configured to receive reference data sent by the first device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the first device a measurement result obtained by measuring the downlink reference signal of the third device;
  • a determination module configured to determine whether to send relay node handover request information based on at least one of the following: the first measurement result, the operating state parameter of the first device, the second measurement result, the Running state parameters; wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the embodiment of the present application also provides a communication device, which is a third device, including:
  • a receiving module configured to receive relay node handover request information, wherein the current relay node device of the third device includes the first device, and the corresponding remote node device includes the second device;
  • a configuration module configured to configure the second device as a relay node device and configure the first device as a remote node device according to the relay node handover request information.
  • the embodiment of the present application further provides a terminal device, which is the first device, including:
  • a receiving module configured to receive the running state parameter of the second device sent by the second device, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote node
  • the device includes at least a second device
  • a sending module configured to send the operating state parameter information of the first device and the operating state parameter information of the second device to the third device.
  • the embodiment of the present application also provides a terminal device, which is a second device, including:
  • a sending module configured to send its own operating state parameter information to a first device, wherein the second device is currently configured as a remote node device of a third device, and the corresponding relay node device is the first device equipment.
  • the embodiment of the present application also provides a communication device, which is a third device, including:
  • a receiving module configured to receive the operating state parameter information of the first device and the operating state parameter information of the second device sent by the first device, wherein the first device is currently configured as the middle of the third device. following the node device, the second device is currently configured as a remote node device;
  • a configuration module configured to configure the second device as a relay node device and configure the first device as a remote node device under the condition that the third condition is met.
  • An embodiment of the present application further provides a terminal device, including: a processor and a memory, where the memory is used to store a computer program, the processor invokes and runs the computer program stored in the memory, and executes the above-mentioned relaying Node switching method.
  • An embodiment of the present application further provides a network device, including: a processor and a memory, where the memory is used to store a computer program, the processor invokes and runs the computer program stored in the memory, and executes the above-mentioned relaying Node switching method.
  • An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the relay node switching method as described above.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the relay node switching method as described above.
  • Embodiments of the present application further provide a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the relay node switching method as described above.
  • the embodiment of the present application also provides a computer program, the computer program enables a computer to execute the relay node switching method as described above.
  • the relay node can be switched at an appropriate time, the link failure caused by the poor relay node can be avoided as much as possible, and the reliability and effectiveness of system transmission can be improved.
  • FIG. 1 and FIG. 2 are schematic structural diagrams of two sidelink communication systems according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for switching a relay node on a first device side according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of device information interaction according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of device information interaction according to another embodiment of the present application.
  • FIG. 6 is a flowchart of a method for switching a relay node on a second device side according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a relay node switching method on a third device side according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of device information interaction according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of device information interaction according to still another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a system architecture of a relay node before and after switching according to an embodiment of the present application.
  • FIG. 11 is a schematic structural block diagram of a first device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural block diagram of a second device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural block diagram of a third device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi fifth-generation communication
  • FIG. 1 and FIG. 2 schematically show two working modes of the V2X communication system.
  • a terminal device can receive downlink DL data of a network device, and terminals can transmit data through a sidelink SL.
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • SL relay nodes may face sudden deterioration of channel conditions and relay failures resulting in downlink or sidelink transmission failures (Radio link failure);
  • SL relay nodes need to perform fronthaul and backhaul. Therefore, compared with SL remote nodes, SL relay nodes consume more power and need to be optimized.
  • the SL node is not allowed to connect and communicate with the network and other specific nodes at the same time. It is necessary to set up relay nodes and remote nodes to work.
  • a typical scenario is that a set of smart earphones includes main earphones and sub earphones. The main earphones and the sub earphones cannot be connected to the playback device node (such as a mobile phone or a speaker, etc.) at the same time. Therefore, in order to synchronize the main earphone and the sub earphone, it is necessary to One of the earphones (such as the main earphone) is used as the relay node, and the other earphone (such as the secondary earphone) is used as the remote node.
  • the main earphone receives the audio information of the playback device node and forwards the audio information to the secondary earphone to realize the simultaneous dual earphone. Receive audio information and realize synchronous playback.
  • the original relay node may also fail due to node position movement or non-line-of-sight transmission, resulting in downlink or sidelink transmission failure.
  • the sidelink SL relay node includes a terminal device configured as an SL relay node
  • the SL remote node includes a terminal device configured as an SL remote node.
  • the SL relay node is hereinafter referred to as the terminal device. It is referred to as a relay node for short, and the SL remote node is referred to as a remote node for short.
  • an embodiment of the present application provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a first device.
  • the method includes:
  • the first device measures the downlink reference signal of the third device, and obtains a first measurement result, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote node
  • the device includes at least a second device;
  • the first device obtains its own running state parameters
  • the first device in the case that the first measurement result complies with the first condition, and/or in the case that the operating state parameter complies with the second condition, the first device sends a relay node to the third device Handover request information, wherein the relay node handover request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the third device may be a network device (such as a base station) or a terminal device (such as a group head terminal or a central control node device in an SL communication group).
  • the third device can send data to the relay node, and the relay node forwards the data to the remote node.
  • the third device can also receive the information reported by the relay node.
  • the remote node can send the information to the relay node, and the relay node can send the information to the relay node.
  • the node forwards the information to the third device, and the remote node can also send information to the third device by broadcasting.
  • the current first device is a relay node
  • the second device is a remote node
  • the first device can measure the downlink reference signal of the third device
  • the reference signal can be, for example, a synchronization signal block (Synchronization Signal Block) Block, SSB), channel state information reference signal (Channel state information Reference Signal, CSI-RS), etc.
  • the measurement result may be the received signal strength indicator (Received Signal Strength Indicator, RSSI) of the reference signal, the received power of the reference signal Measurements such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) or Signal to Interference Noise Ratio (SINR), etc.
  • the first device may also acquire its own operating state parameters, such as state information such as the remaining power of the device and the device temperature (eg, chip temperature).
  • the first device If the measurement result of the reference signal by the first device complies with the first condition, for example, the measurement result is lower than the preset first threshold value, it means that the transmission failure is likely to occur if the first device continues to be used as the relay node; or, the first device
  • the operating state parameters of the first device meet the second condition, for example, the remaining power of the first device is less than the corresponding threshold value (for example, the threshold value is 50%, 40%, 30% or lower of the remaining power), indicating that the first device may be in Stop working in a short time, as a relay node is prone to transmission failure; referring to FIG. 4, when one or more of the above conditions are met, the first device can send relay node switching request information to the third device for requesting The third device switches the relay node to another device.
  • the threshold value for example, 50%, 40%, 30% or lower of the remaining power
  • the first device may also receive reference data sent by the second device, where the reference data includes a second measurement result obtained by the second device and/or operating state parameter information of the second device, wherein the second measurement
  • the result includes the reference signal measurement result and/or the channel monitoring result of the second device, and is used by the first device to determine the timing of sending the relay node handover request information.
  • the first device receives a second measurement result sent by the second device, where the second measurement result includes a measurement result obtained by the second device measuring the downlink reference signal of the third device, And/or the second device monitors the monitoring result obtained by the third device for the downlink physical channel or downlink reference signal of the first device;
  • the first condition includes: the first measurement result is smaller than the second measurement result,
  • the first condition includes: the first measurement result is smaller than the second measurement result, and the first measurement result is smaller than a first threshold value.
  • the first device When the first condition is met, the first device sends relay node switching request information to the third device.
  • the first device receives operating state parameter information sent by the second device;
  • the second condition includes: the operating state parameter of the second device is greater than a corresponding threshold value
  • the second condition includes: the operating state parameter of the first device is less than a corresponding threshold value, and the operating state parameter of the second device is greater than the operating state of the first device parameter.
  • the first device When the second condition is met, the first device sends relay node switching request information to the third device.
  • the first device when the reference signal measurement result of the relay node device and/or the state information of the device itself meet the predetermined conditions, the first device can send relay node handover request information for requesting the relay The node is switched from the first device to the second device.
  • the relay node can be switched at an appropriate time, the link failure caused by the poor relay node can be avoided as much as possible, and the reliability and effectiveness of system transmission can be improved.
  • the embodiment of the present application sets different priorities for the aforementioned first condition and the second condition.
  • it can be processed as follows:
  • the first device determines to send relay node switching request information according to the first condition
  • the first device determines to send relay node switching request information according to the second condition
  • the priorities of the first condition and the second condition are preconfigured or determined by the first device.
  • the priority of the first condition can be set to be higher than that of the first condition.
  • the priority of the second condition to maintain the high-performance data transmission state; for terminal equipment such as electricity meters, water meters, watches, etc., it is mostly used to transmit small text data packets, and the priority of the second condition can be set to be higher than that of the first condition. level, the terminal equipment itself can continuously operate to achieve the required data transmission.
  • the method further includes: after the operating state parameter of the first device is less than a corresponding threshold value, the first device Sending data request information to the second device, for requesting the second device to send the second measurement result and/or operating state parameter information to the first device.
  • the first device may further send the relay node switching request information to the second device, so as to notify the second device to prepare to switch to the relay node.
  • an embodiment of the present application further provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a second device. Referring to FIG. 6 , the method includes:
  • the second device sends reference data to the first device, where the reference data includes a second measurement result and/or an operating state parameter of the second device, and the second measurement result includes the second device measuring the The measurement result obtained by the downlink reference signal of the third device, and/or the monitoring result obtained by the second device for monitoring the downlink physical channel or the downlink reference signal of the first device by the third device, wherein,
  • the second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device; the reference data is used by the first device to determine whether to send a relay Node handover request information, where the relay node handover request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the current second device is a remote node
  • the first device is a relay node
  • the second device can measure downlink reference signals (such as SSB, CSI-RS, etc.) of the communication device to obtain a measurement result
  • the second device may also monitor the downlink physical channel or downlink reference signal of the first device by the third device to obtain the monitoring result.
  • the measurement result and the monitoring result obtained by the second device are referred to as the second measurement
  • the second device can also acquire its own operating state parameters, and send the second measurement result and/or the operating state parameters to the first device as reference data.
  • the relay node can be switched at an appropriate time, the link failure caused by the poor relay node can be avoided as much as possible, and the reliability and effectiveness of system transmission can be improved.
  • the second device may send the reference data to the first device in at least one of the following manners:
  • the second device periodically or aperiodically sending the reference data to the first device
  • the second device sends the reference data to the first device after the operating state parameter is greater than or equal to the corresponding threshold value
  • the second device sends the reference data to the first device after the second measurement result is greater than or equal to the second threshold
  • the second device After receiving the reference data request information sent by the first device, the second device sends the reference data to the first device.
  • the second device receives relay node switching request information sent by the first device, indicating that the second device will be switched from a remote node to a relay node.
  • the second device receives data sent by the third device, and forwards the data to the first device.
  • an embodiment of the present application further provides a relay node switching method, which is applied to a third device.
  • the third device may be a network device or a terminal device. Referring to FIG. 7 , the method includes: :
  • the third device receives relay node handover request information, wherein the current relay node device of the third device includes the first device, and the corresponding remote node device includes the second device;
  • the third device configures the second device as a relay node device and configures the first device as a remote node device according to the relay node handover request information.
  • the relay node handover request information may come from the first device, may come from the second device, or may come from broadcast information.
  • the remote node device can send its own measurement information, monitoring information and/or operating status information to the relay node device, and the relay node device determines whether to trigger the handover of the relay node, so as to improve the system Transmission reliability and validity.
  • the embodiment of the present application also provides a relay node switching method, in which a remote node device (second device) can determine the relay node switching timing, which is described in detail below with reference to FIG. 8 .
  • An embodiment of the present application provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a first device, and the method includes:
  • a first device sends reference data to a second device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes The measurement result obtained by measuring the downlink reference signal of the device, wherein the first device is currently configured as the relay node device of the third device, and the corresponding remote node device includes at least the second device;
  • the reference data is used by the second device to determine whether to trigger relay node handover request information, wherein the relay node handover request information is used to request the third device to configure the second device as a relay node device,
  • the first device is configured as a remote node device.
  • the first device sends reference data to the second device, including at least one of the following:
  • the first device periodically or aperiodically sending the reference data to the second device;
  • the first device sends the reference data to the second device after the operating state parameter is lower than the corresponding threshold value
  • the first device sends the reference data to the second device after the first measurement result is smaller than the first threshold value.
  • the general process of channel measurement reporting is the SL remote node in the idle state (Idle) or the inactive state (Inactive) in the network.
  • the measurement result is reported to the base station, and when the cell reselection conditions are met, it switches to a node in the network.
  • the remote node can not only report measurement information to the network, but also share the measurement result information with the SL relay node (the first device), which is used to assist the relay node or the network device in linking route transmission is optimized.
  • an embodiment of the present application further provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a second device, and the method includes:
  • the second device measures the downlink reference signal of the third device for the second device to obtain a measurement result, and/or the second device measures the downlink physical channel of the third device for the first device or monitoring the downlink reference signal, obtaining a monitoring result, and using the measurement result and/or the monitoring result as a second measurement result, wherein the second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device;
  • the second device receives reference data sent by the first device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the first measurement result.
  • the second device determines whether to trigger the relay node handover request information based on at least one of the following: the first measurement result, the operating state parameter of the first device, the second measurement result, the second The operating state parameters of the device; wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • the triggering of the relay node handover request information by the second device includes: in at least one of the following cases, the second device sends the relay node handover request information to the first device or the second device sends the relay node handover request information to the first device.
  • the first measurement result is less than a first threshold
  • the first measurement result is smaller than the second measurement result and the first measurement result is smaller than a first threshold
  • the operating state parameter of the second device is greater than the corresponding threshold value
  • the operating state parameter of the first device is smaller than the corresponding threshold value, and the operating state parameter of the second device is greater than the operating state parameter of the first device.
  • the third device After receiving the relay node switching request information, the third device configures the second device as a relay node device and configures the first device as a remote node device according to the relay node switching request information.
  • the above embodiment describes the processing method of determining the switching timing of the relay node by the remote node device.
  • the remote node when the remote node satisfies the switching condition, the remote node can actively trigger the switching.
  • the embodiments of the present application also provide a relay node switching method, where the relay node switching timing can be determined by a network device or a group head terminal device (third device), which will be described in detail below with reference to FIG. 9 .
  • An embodiment of the present application provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a first device, including:
  • the first device receives the running state parameter of the second device sent by the second device, where the first device is currently configured as a relay node device of the third device, and the corresponding remote
  • the node device includes at least a second device
  • the first device sends the operating state parameter information of the first device and the operating state parameter information of the second device to the third device.
  • an embodiment of the present application further provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a second device, and the method includes:
  • the second device sends its own running state parameter information to the first device, where the second device is currently configured as a remote node device of the third device, and the corresponding relay node device is the first device equipment.
  • an embodiment of the present application further provides a relay node switching method, which is applied to a terminal device.
  • the terminal device is referred to as a third device, and the method includes:
  • the third device receives the operating state parameter information of the first device and the operating state parameter information of the second device sent by the first device, where the first device is currently configured as the third device's operating state parameter information.
  • a relay node device the second device is currently configured as a remote node device;
  • the third device configures the second device as a relay node device, and configures the first device as a remote node device.
  • the third condition includes at least one of the following:
  • the operating state parameter of the first device is less than the corresponding threshold value
  • the operating state parameter of the first device is less than the corresponding threshold value, and the operating state parameter of the second device is greater than the corresponding threshold value;
  • the operating state parameter of the first device is smaller than the corresponding threshold value, and the operating state parameter of the second device is greater than the operating state parameter of the first device.
  • the switching process of the relay node can be triggered at an appropriate time, which can avoid link failure caused by poor relay node, and improve the reliability and effectiveness of system transmission.
  • FIG. 10 schematically shows a system diagram of a relay node before and after handover according to an embodiment of the present application, wherein the first device is the relay node B, the second device is the remote node C, and the third device is the base station or Group head terminal A.
  • the base station or group head terminal A can transmit data to the current relay node B, and the relay node B forwards the data to the remote node C to realize sharing and synchronization of data information.
  • node A can be, for example, a multimedia player (such as a mobile phone, a speaker)
  • node B can be a main headset
  • node C can be a secondary headset.
  • the relay node handover request can be sent based on the channel measurement situation of the remote node C and/or the relay node B (which can be obtained by measuring the reference signal of the base station or the group head terminal A),
  • the operating state of the terminal itself (such as the low battery of relay node B and remote node C, the device temperature is too high, artificial triggering, etc.) can also be used as "trigger information”, and the base station or group head terminal A can be based on The handover request information or "trigger information" is used to reconfigure the new relay node.
  • the relay node in Figure 10 is switched from B to C, that is, the original remote node C is reconfigured as a relay node.
  • the original relay node B is reconfigured as a remote node, so that the data transmission among the three nodes A, B, and C is not affected by the deterioration of the relay node. Specific embodiments and processing procedures are described below.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal (such as SSB, CSI-RS, etc.) of node A, and obtains measurement result 1 (corresponding to A-B link).
  • Node C downlinks receives and measures the measurement reference signal (such as SSB, CSI-RS, etc.) of node A, and obtains measurement result 2 (corresponding to the A-C link).
  • node C sends measurement result 2 to B, wherein,
  • Node C may send measurement result 2 to relay Node B periodically or aperiodically;
  • the node C When the node C satisfies the first event, it reports and sends the measurement result 2 to the relay node B, wherein the first event may be that the node B satisfies the first trigger condition (for example, the power, temperature or other state conditions reach the corresponding threshold; value); wherein, the first event may also be that when the measurement result 2 of node C meets the preset threshold, the measurement result 2 is reported to B.
  • the first event may be that the node B satisfies the first trigger condition (for example, the power, temperature or other state conditions reach the corresponding threshold; value); wherein, the first event may also be that when the measurement result 2 of node C meets the preset threshold, the measurement result 2 is reported to B.
  • the first trigger condition for example, the power, temperature or other state conditions reach the corresponding threshold; value
  • Node B may also send request information to Node C for requesting Node C to report measurement result 2 to Node B.
  • node B sends relay node handover request information to node A, optionally, node B can also send relay node handover request information to node C ;
  • Node A reconfigures the new relay node as C based on the handover request information, configures transmission resources to node C and disconnects the connection with node B for transmission.
  • Node C as a new relay node, receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through the switching request information, which ensures the quality of link communication and improves the efficiency of relay and forwarding, which can better solve the link failure, balance the power consumption of SL nodes or save energy. electricity to ensure the reliability and effectiveness of the transmission of the system.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal of node A, and obtains measurement result 1.
  • Node C downlink receives and measures the measurement reference signal of node A, and obtains measurement result 2.
  • Node C sends measurement result 2 to B.
  • Embodiment 1 The main difference between this embodiment and Embodiment 1 is that if the measurement value of measurement result 1 is lower than the measurement value of measurement result 2 reported by node B, node B sends relay node handover request information to node A, or at the same time sent to node C.
  • Node A reconfigures the new relay node as C based on the handover request information, configures transmission resources to node C and disconnects the connection with node B for transmission.
  • Node C as a new relay node, receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through the switching request information, which ensures the quality of link communication and improves the efficiency of relay and forwarding, which can better solve the link failure, balance the power consumption of SL nodes or save energy. electricity to ensure the reliability and effectiveness of the transmission of the system.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal of node A, and obtains measurement result 1.
  • Node C downlink receives and measures the measurement reference signal of node A, and obtains measurement result 2.
  • Node C sends measurement result 2 to B.
  • the relay node B obtains its own device state parameters, such as the remaining power of the device, the device temperature or other state index parameters, when at least one state parameter of the relay node B satisfies the trigger condition
  • the relay node B compares the measurement results, specifically:
  • node B When the measurement value of measurement result 1 is lower than the corresponding measurement threshold, or when the measurement value of measurement result 1 is lower than the measurement value of measurement result 2 reported by node C, node B sends relay node handover request information to Node A can also send to node C at the same time.
  • Node A reconfigures the new relay node as C based on the handover request information, configures transmission resources to node C and disconnects the connection with node B for transmission.
  • C receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through the switching request information, which ensures the quality of link communication and improves the efficiency of relay and forwarding, which can better solve the link failure, balance the power consumption of SL nodes or save energy. electricity to ensure the reliability and effectiveness of the transmission of the system.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal of node A, and obtains measurement result 1.
  • Node C downlink receives and measures the measurement reference signal of node A, and obtains measurement result 2.
  • Node C sends measurement result 2 to B.
  • the main difference between this embodiment and Embodiment 1 is that when the relay node B satisfies the first trigger condition (for example, the power, temperature or other state conditions of the node B device reach the threshold value), the node B sends the measurement result request information to the Node C; Node C reports the latest measurement result 2 to B; B receives the measurement result 2, where,
  • the first trigger condition for example, the power, temperature or other state conditions of the node B device reach the threshold value
  • node B If the measurement value of measurement result 1 is lower than the measurement value of the latest measurement result 2 reported by C, node B sends relay node handover request information to node A (or node A and node C);
  • Point A reconfigures the new relay node as C based on the handover request information, configures transmission resources to node C and disconnects the connection with node B for transmission.
  • C receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through double judgment of trigger conditions and switching requests, which can ensure the quality of link communication and improve the efficiency of relay and forwarding, and can better solve link failures and balance SL.
  • the power consumption or power saving of the node ensures the transmission reliability and effectiveness of the system.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal of node A, and obtains measurement result 1.
  • Node C downlink receives and measures the measurement reference signal of node A, and obtains measurement result 2.
  • Node C sends measurement result 2 to B.
  • the main difference between this embodiment and Embodiment 1 is that when the relay node B satisfies the first trigger condition (for example, the power, temperature or other state conditions of the node B device reach the threshold value), the node B sends the measurement result request information to the Node C; Node C reports the latest measurement result 2 to B; B receives the measurement result 2, where,
  • the first trigger condition for example, the power, temperature or other state conditions of the node B device reach the threshold value
  • Node B sends the first relay node handover request information to Node A (or A and C );
  • Node A reconfigures the new relay node as C based on the handover request information, configures transmission resources to node C and disconnects the connection with node B for transmission.
  • C receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through double judgment of trigger conditions and switching requests, which can ensure the quality of link communication and improve the efficiency of relay and forwarding, and can better solve link failures and balance SL.
  • the power consumption or power saving of the node ensures the transmission reliability and effectiveness of the system.
  • node A sends information to node B, and node B relays the transmission to node C.
  • Node B downlink receives and measures the measurement reference signal of node A, and obtains measurement result 1.
  • Node C downlink receives and measures the measurement reference signal of node A, and obtains measurement result 2.
  • Node C sends measurement result 2 to B.
  • node B collects the device running state information of itself and node C in real time, such as the remaining power of the device, device temperature or other state index parameters, and node B collects its own and node C's device operating status information in real time.
  • the device running status information is reported to node A.
  • node A triggers the relay node switching process, reconfigures the relay node as C, and configures transmission resources to node C And disconnect the transmission from Node B.
  • C receives A's information and relays it to node B.
  • the switching of relay nodes can be dynamically realized through double judgment of trigger conditions and switching requests, which can ensure the quality of link communication and improve the efficiency of relay and forwarding, and can better solve link failures and balance SL.
  • the power consumption or power saving of the node ensures the transmission reliability and effectiveness of the system.
  • the remote node C may send the measurement result 2 (A-C link) to the relay node B, and the node B compares the measurement result and determines whether to trigger the relay node handover.
  • the relay node B can also send the measurement result 1 to the remote node C, and the remote node C compares the measurement results and determines whether to switch.
  • the relay node B may be connected to multiple remote nodes (such as C1, C2 and C3) at the same time, the node B can use the measurement result 1 (AB link) It is sent to C1, C2, and C3 in a multicast mode.
  • the measurement result 1 of Node B is obtained by measuring the network downlink reference signal in the RRC connection state.
  • C1, C2 and C3 can measure and obtain the measurement result 2 used for cell selection or reselection in the idle state or inactive state, then the remote nodes C1, C2 and C3 can compare the measurement result 1 and the measurement result 2 to judge the remote Whether nodes C1, C2 and C3 are switched to node A.
  • node C in addition to measuring the measurement reference signal (such as SSB, CSI-RS, etc.) of node A to obtain measurement result 2 (AC link), node C can also monitor Or it is called listening to the information sent by node A to node B, and measuring the signal quality of the information (such as RSRP or RSSI, etc.), that is to say, the measurement result 2 in this embodiment of the present application may include the downlink sent by node A to node B Physical channels such as RSSI, RSRP, RSRQ or SINR of PDCCH, PDSCH or downlink reference signals.
  • the measurement result 2 in this embodiment of the present application may include the downlink sent by node A to node B Physical channels such as RSSI, RSRP, RSRQ or SINR of PDCCH, PDSCH or downlink reference signals.
  • the terminal nodes in the various embodiments of the present application may be smart wearable devices such as mobile phones, watches, and earphones, or may be non-intelligent devices such as electricity meters and water meters.
  • the transmission channels of the AB link, the BC link, and the AC link in the various embodiments of the present application may be borne on a licensed frequency band or an unlicensed frequency band (for example, SL-U); BC
  • the transmission of the link may be based on resource configuration under network scheduling (mode A) or resource configuration under autonomous scheduling (mode B).
  • the thresholds or thresholds mentioned in the various embodiments of the present application may be pre-configured, network-configured, or terminal-configured.
  • an embodiment of the present application further provides a terminal device 100.
  • a terminal device 100 Referring to FIG. 11, it is a first device, and the first device includes:
  • the measurement module 110 is configured to measure the downlink reference signal of the third device to obtain a first measurement result, wherein the first device is currently configured as a relay node device of the third device, and the corresponding remote
  • the node device includes at least a second device;
  • an acquisition module 120 configured to acquire its own running state parameters
  • a sending module 130 configured to send relay node switching to the third device when the first measurement result meets the first condition and/or when the operating state parameter meets the second condition request information, wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • a determining module is further included,
  • the determining module is configured to determine to send relay node switching request information according to the first condition when the priority of the first condition is higher than the priority of the second condition;
  • the determining module is further configured to, when the priority of the second condition is higher than the priority of the first condition, the first device determines to send relay node switching request information according to the second condition;
  • the priorities of the first condition and the second condition are preconfigured or determined by the first device.
  • the first condition includes: the first measurement result is less than a first threshold value.
  • a receiving module configured to receive a second measurement result sent by the second device, where the second measurement result includes a measurement result obtained by the second device measuring the downlink reference signal of the third device, and/or, The second device monitors the monitoring result obtained by the third device for the downlink physical channel or downlink reference signal of the first device;
  • the first condition includes: the first measurement result is smaller than the second measurement result,
  • the first condition includes: the first measurement result is smaller than the second measurement result, and the first measurement result is smaller than a first threshold value.
  • the second condition includes: the operating state parameter of the first device is less than a corresponding threshold value.
  • a receiving module configured to receive the operating state parameter information sent by the second device
  • the second condition includes: the operating state parameter of the second device is greater than the corresponding threshold value
  • the second condition includes: the operating state parameter of the first device is smaller than a corresponding threshold value, and the operating state parameter of the second device is greater than the operating state parameter of the first device.
  • the sending module is further configured to send data request information to the second device after the operating state parameter of the first device is less than the corresponding threshold value, for use in requesting the second device to send the second measurement result and/or operating state parameter information to the first device.
  • the operating state parameter includes a remaining power parameter of the device; and/or the first measurement result includes at least one of the following: received signal strength indication RSSI, reference signal received power RSRP, reference signal received quality RSRQ, signal-to-interference-plus-noise ratio SINR; and/or, the second measurement result includes at least one of the following: received signal strength indication RSSI, reference signal received power RSRP, reference signal received quality RSRQ, Signal-to-interference-plus-noise ratio SINR.
  • the sending module is further configured to send the relay node switching request information to the second device.
  • the third device is a network device, or the third device is a terminal device.
  • an embodiment of the present application further provides a terminal device 200, which is a second device, including:
  • the sending module 210 is configured to send reference data to the first device, where the reference data includes a second measurement result and/or an operating state parameter of the second device, and the second measurement result includes a measurement result of the second device.
  • the sending module 210 sends the reference data to the first device periodically or aperiodically;
  • the sending module 210 sends the reference data to the first device after the operating state parameter is greater than or equal to the corresponding threshold value
  • the sending module 210 sends the reference data to the first device after the second measurement result is greater than or equal to a second threshold
  • the sending module 210 sends the reference data to the first device.
  • a receiving module configured to receive relay node switching request information sent by the first device.
  • a transceiver module configured to receive data sent by the third device after the second device is configured as a relay node device by the third device, and forward the data to the first device.
  • An embodiment of the present application further provides a terminal device, which is a first device, and the first device includes:
  • a sending module configured to send reference data to a second device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the relationship between the first device and the third device.
  • the measurement result obtained by measuring the downlink reference signal of the device, wherein the first device is currently configured as the relay node device of the third device, and the corresponding remote node device includes at least the second device;
  • the reference data is used by the second device to determine whether to trigger relay node handover request information, wherein the relay node handover request information is used to request the third device to configure the second device as a relay node device,
  • the first device is configured as a remote node device.
  • the sending module sends the reference data to the second device periodically or aperiodically;
  • the sending module sends the reference data to the second device after the operating state parameter is lower than the corresponding threshold value
  • the sending module sends the reference data to the second device after the first measurement result is less than a first threshold value.
  • An embodiment of the present application further provides a terminal device, which is a second device, and the second device includes:
  • a measurement module configured to measure the downlink reference signal of the second device by the third device to obtain a measurement result, and/or to monitor the downlink physical channel or downlink reference signal of the first device by the third device , obtain the monitoring result, and use the measurement result and/or the monitoring result as the second measurement result, wherein the second device is currently configured as the remote node device of the third device, and the corresponding relay The node device is the first device;
  • a receiving module configured to receive reference data sent by the first device, where the reference data includes a first measurement result and/or an operating state parameter of the first device, and the first measurement result includes the first device a measurement result obtained by measuring the downlink reference signal of the third device;
  • a determination module configured to determine whether to send relay node handover request information based on at least one of the following: the first measurement result, the operating state parameter of the first device, the second measurement result, the Running state parameters; wherein the relay node switching request information is used to request the third device to configure the second device as a relay node device and configure the first device as a remote node device.
  • it further includes: a sending module, configured to send the relay node switching request information to the first device or the second device through broadcast information in at least one of the following cases Send relay node switching request information:
  • the first measurement result is less than a first threshold
  • the first measurement result is smaller than the second measurement result and the first measurement result is smaller than a first threshold
  • the operating state parameter of the second device is greater than the corresponding threshold value
  • the operating state parameter of the first device is smaller than the corresponding threshold value, and the operating state parameter of the second device is greater than the operating state parameter of the first device.
  • an embodiment of the present application further provides a communication device 300, which is a third device, including:
  • the receiving module 310 is configured to receive relay node handover request information, wherein the current relay node device of the third device includes the first device, and the corresponding remote node device includes the second device;
  • the configuration module 320 is configured to configure the second device as a relay node device and configure the first device as a remote node device according to the relay node handover request information.
  • the relay node handover request information comes from at least one of the following: the first device, the second device, and broadcast information;
  • the third device is a network device, or the third device is a terminal device.
  • An embodiment of the present application further provides a terminal device, which is a first device, and the first device includes:
  • a receiving module configured to receive the operating state parameter of the second device sent by the second device, the first device is currently configured as a relay node device of the third device, and the corresponding remote node device at least includes second equipment;
  • a sending module configured to send the operating state parameter information of the first device and the operating state parameter information of the second device to the third device.
  • An embodiment of the present application further provides a terminal device, which is a second device, and the second device includes:
  • a sending module configured to send its own operating state parameter information to a first device, wherein the second device is currently configured as a remote node device of a third device, and the corresponding relay node device is the first device equipment.
  • An embodiment of the present application further provides a communication device, which is a third device, and the third device includes:
  • a receiving module configured to receive the operating state parameter information of the first device and the operating state parameter information of the second device sent by the first device, wherein the first device is currently configured as the third device a relay node device, the second device is currently configured as a remote node device;
  • a configuration module configured to configure the second device as a relay node device and configure the first device as a remote node device under the condition that the third condition is met.
  • the third condition includes at least one of the following:
  • the operating state parameter of the first device is less than the corresponding threshold value
  • the operating state parameter of the first device is less than the corresponding threshold value, and the operating state parameter of the second device is greater than the corresponding threshold value;
  • the operating state parameter of the first device is smaller than the corresponding threshold value, and the operating state parameter of the second device is greater than the operating state parameter of the first device.
  • the operating state parameter includes the remaining power parameter of the device
  • the first measurement result includes at least one of the following: received signal strength indication RSSI, reference signal received power RSRP, reference signal received quality RSRQ, and signal-to-interference-plus-noise ratio SINR;
  • the second measurement result includes at least one of the following: received signal strength indication RSSI, reference signal received power RSRP, reference signal received quality RSRQ, and signal-to-interference-plus-noise ratio SINR;
  • the communication device is a network device, or the third device is a terminal device.
  • Each device in the embodiments of the present application can implement the corresponding functions of each device in the foregoing method embodiments, and the corresponding processes, functions, implementations, and beneficial effects of each module (sub-module, unit, or component, etc.) in each device can be Refer to the corresponding descriptions in the foregoing method embodiments, which will not be repeated here.
  • each module in each device in the embodiments of the present application may be implemented by different modules (submodule, unit, or component, etc.), or by the same Modules (sub-modules, units, or components, etc.) are implemented.
  • the first sending module and the second sending module may be different modules, or may be the same module, both of which can implement the corresponding terminal equipment in the embodiments of the present application. Function.
  • FIG. 14 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the network device of this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 15 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiments of the present application as shown in FIGS. 7-9 , and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiments of the present application. Repeat.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), a synchronous Dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic Random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on.
  • the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • FIG. 16 is a schematic block diagram of a communication system 800 according to an embodiment of the present application, where the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the methods of the various embodiments of the present application
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the methods of the various embodiments of the present application. function. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种中继节点切换方法、终端设备和网络设备,该方法包括:第一设备对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;所述第一设备获取自身的运行状态参数;在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,所述第一设备向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。

Description

中继节点切换方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体地,涉及一种中继节点切换方法、终端设备和网络设备。
背景技术
设备到设备(Device to Device,D2D)和车辆到其他设备(Vehicle to everything,V2X,也可称车联网)技术是移动通信的重要组成部分。在D2D或V2X场景下,通过侧行链路(Sidelink,SL)传输技术支持设备间的直接通信。通常,“侧行链路”或称“侧链”指终端之间的通信链路,终端之间的链路可适用于任意场景中的通信节点,如车内场景、家庭场景等等,这些通信节点无需网络覆盖。相对于蜂窝系统中需要通过基站收发通信数据的上行链路或下行链路,侧行链路传输具有更高的频谱效率和更低的传输时延。V2X系统支持两种传输模式,在模式A中,终端的传输资源由基站分配,终端根据基站分配的资源在侧行链路上传输侧行数据;在模式B中,终端采用监听(monitoring)和预留(reservation)的传输方式,例如在资源池中通过侦听的方式获取可用的传输资源集合,终端从该集合中选取资源进行侧行传输。随着下一代移动通信5G新空口NR系统的不断演进,尤其是自动驾驶技术的兴起,对V2X系统中多终端之间的侧行数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围以及更灵活的资源分配等。
在NR sidelink技术中,考虑到更广泛的应用范围,已经对基于侧链的中继(relay)功能展开研究,由于侧链SL的中继节点容易受突然的信道条件恶化影响,导致下行链路或者侧行链路传输失败,需要进一步探索侧链通信的中继传输机制。
发明内容
有鉴于此,本申请实施例提供一种中继节点切换方法、终端设备和网络设备。
本申请实施例提供一种中继节点切换方法,包括:
第一设备对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
所述第一设备获取自身的运行状态参数;
在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,所述第一设备向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例提供一种中继节点切换方法,包括:
第二设备向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例提供一种中继节点切换方法,包括:
第一设备向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例提供一种中继节点切换方法,包括:
第二设备对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,所述第二设备对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
所述第二设备接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到 测量结果;
所述第二设备基于以下至少一项确定是否发送中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例提供一种中继节点切换方法,包括:
第三设备接收中继节点切换请求信息,其中,所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
所述第三设备根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例提供一种中继节点切换方法,包括:
第一设备接收所述第二设备发送的所述第二设备的运行状态参数,其中所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
所述第一设备将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
本申请实施例提供一种中继节点切换方法,包括:
第二设备将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
本申请实施例提供一种中继节点切换方法,包括:
第三设备接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
在符合第三条件的情况下,所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,包括:
测量模块,用于对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
获取模块,用于获取自身的运行状态参数;
发送模块,用于在所述第一测量结果符合第一条件的情况下,和/或在所述运行状态参数符合第二条件的情况下,向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,包括:
发送模块,用于向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,其为第一设备,包括:
发送模块,用于向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,其为第二设备,包括:
测量模块,用于对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
接收模块,用于接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第 一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果;
确定模块,用于基于以下至少一项确定是否发送中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种通信设备,其为第三设备,包括:
接收模块,用于接收中继节点切换请求信息,其中,所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
配置模块,用于根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,其为第一设备,包括:
接收模块,用于接收所述第二设备发送的所述第二设备的运行状态参数,其中所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
发送模块,用于将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
本申请实施例还提供一种终端设备,其为第二设备,包括:
发送模块,用于将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
本申请实施例还提供一种通信设备,其为第三设备,包括:
接收模块,用于接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
配置模块,用于在符合第三条件的情况下,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请实施例还提供一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如上所述的中继节点切换方法。
本申请实施例还提供一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如上所述的中继节点切换方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上所述的中继节点切换方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序使得计算机执行如上所述的中继节点切换方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,所述计算机程序指令使得计算机执行如上所述的中继节点切换方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行如上所述的中继节点切换方法。
利用本申请的实施例能够在合适的时机对中继节点进行切换,能够尽可能地避免由中继节点不良造成的链路失败,提高系统传输的可靠性和有效性。
附图说明
图1和图2是本申请实施例的两种侧行链路通信系统的架构示意图。
图3是本申请实施例的第一设备侧的中继节点切换方法的流程框图。
图4是本申请一个实施例的设备信息交互的示意图。
图5是本申请另一个实施例的设备信息交互的示意图。
图6是本申请实施例的第二设备侧的中继节点切换方法的流程框图。
图7是本申请实施例的第三设备侧的中继节点切换方法的流程框图。
图8是本申请又一个实施例的设备信息交互的示意图。
图9是本申请再一个实施例的设备信息交互的示意图。
图10是本申请实施例的中继节点切换前与切换后的系统架构示意图。
图11是本申请实施例的第一设备的示意性结构框图。
图12是本申请实施例的第二设备的示意性结构框图。
图13是本申请实施例的第三设备的示意性结构框图。
图14是本申请实施例的通信设备示意性框图。
图15是本申请实施例的芯片的示意性框图。
图16是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。图1和图2示意性地示出了V2X通信系统的两种工作模式,终端设备可以接收网络设备的下行链路DL数据,终端之间可通过侧行链路SL传输数据。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的 PLMN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为了清楚地阐述本申请实施例的思想,以下对侧行链路中继传输SL relay场景中可能存在的问题进行简要描述。
1、信道条件变化:SL中继节点可能会面临突然的信道条件恶化,中继失败而造成下行链路或者侧行链路传输失败(Radio link failure);
2、功耗或省电需求:SL中继节点需进行前传和回传,因此较SL远端(remote)节点而言,SL中继节点的功耗更大,存在优化需求。
3、在某些网络中,不允许SL节点与网络以及其他特定节点同时连接通信,需设置中继节点和远端节点作业。一种典型的场景是,一套智能耳机包括主耳机和副耳机,主耳机和副耳机不能同时与播放设备节点(例如手机或音箱等)连接,因此,为了使主耳机和副耳机同步,需要将其中一个耳机(例如主耳机)作为中继节点,另一个耳机(例如副耳机)作为远端节点,主耳机接收播放设备节点的音频信息,并向副耳机转发音频信息,来实现双耳机同时收到音频信息,实现同步播放。在其他典型场景中例如在家庭异构网络中,因为节点位置移动或者非视距传输等原因,也可能导致原来的中继节点失效,造成下行或侧行链路传输失败。
本文中,侧行链路SL中继节点包括被配置为SL中继节点的终端设备,SL远端节点包括被配置为SL远端节点的终端设备,为描述方便,下文中将SL中继节点简称为中继节点,将SL远端节点简称为远端节点。
为此,本申请实施例提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第一设备,参考图3,该方法包括:
S11,第一设备对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
S12,所述第一设备获取自身的运行状态参数;
S13,在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,所述第一设备向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
本申请的实施例中,可选地,所述的第三设备可以是网络设备(例如基站),也可以是终端设备(例如SL通信组中的组头终端或中央控制节点设备),该第三设备可以向中继节点发送数据,由中继节点将数据转发至远端节点,第三设备还可以接收中继节点上报的信息,远端节点可将信息发送给中继节点,由中继节点转发给第三设备,远端节点也可以通过广播的方式向第三设备发送信息。
根据本申请的实施例,当前第一设备为中继节点,第二设备为远端节点,第一设备可对第三设备的下行参考信号进行测量,参考信号可以为例如同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel state information Reference Signal,CSI-RS)等,其中,测量结果可以是参考信号的接收信号强度指示(Received Signal Strength Indicator,RSSI),参考信号的接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ)或信号与干扰加噪声比(Signal to Interference Noise Ratio,SINR)等测量值。其中,第一设备还可以获取自身的运行状态参数,例如:设备的剩余电量、设备温度(如芯片温度)等状态信息。
如果第一设备对参考信号的测量结果符合第一条件,例如测量结果低于预设的第一门限值,说明继续以该第一设备作为中继节点容易出现传输失败;或者,第一设备的运行状态参数符合第二条件,例如第一设备的剩余电量小于对应的门限值(例如门限值为剩余电量50%、40%、30%或更低),说明该第一设备可能在短时间内停止工作,作为中继节点容易出现传输失败;参考图4,在符合上述一项或多项情况时,该第一设备可向第三设备发出中继节点切换请求信息,用于请求第三设备将中继节点切换为其他设备。
参考图5,所述第一设备还可接收所述第二设备发送的参考数据,参考数据包括第二设备得到的第二测量结果和/或第二设备的运行状态参数信息,其中第二测量结果包括第二设备的参考信号测量结果和/或信道监听结果,用于第一设备确定发出中继节点切换请求信息的时机。以下分别进行说明。
可选地,所述第一设备接收所述第二设备发送的第二测量结果,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果;
在一种实施方式中,所述第一条件包括:所述第一测量结果小于所述第二测量结果,
在另一种实施方式中,所述第一条件包括:所述第一测量结果小于所述第二测量结果,且所述第一测量结果小于第一门限值。
在符合第一条件的情况下,第一设备向第三设备发送中继节点切换请求信息。
可选地,所述第一设备接收所述第二设备发送的运行状态参数信息;
在一种实施方式中,所述第二条件包括:所述第二设备的运行状态参数大于对应的门限值,
在另一种实施方式中,所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
在符合第二条件的情况下,第一设备向第三设备发送中继节点切换请求信息。
也就是说,利用本申请实施例,在中继节点设备的参考信号测量结果和/或设备本身状态信息符合预定条件时,第一设备可发出中继节点切换请求信息,用于请求将中继节点由第一设备切换为第二设备。
利用本申请的实施例能够在合适的时机对中继节点进行切换,能够尽可能地避免由中继节点不良造成的链路失败,提高系统传输的可靠性和有效性。
考虑到不同业务类型的数据传输量不同,本申请实施例对前述的第一条件和第二条件设置不同的优先级,可选地,可按照如下方式处理:
①当所述第一条件的优先级高于所述第二条件的优先级时,所述第一设备根据所述第一条件确定发送中继节点切换请求信息;
②当所述第二条件的优先级高于所述第一条件的优先级时,所述第一设备根据所述第二条件确定发送中继节点切换请求信息;
其中,所述第一条件和所述第二条件的优先级是预配置的或由所述第一设备确定的。
举例来说,对于智能终端设备上运行游戏类、视频类等功耗较大且对服务质量(Quality of Service,QoS)保障要求较高的业务,可设置为第一条件的优先级高于第二条件的优先级,以维持高性能的数据传输状态;对电表、水表、手表等终端设备,多用于传输文本类小数据包,可设置为第二条件的优先级高于第一条件的优先级,终端设备本身持续运行即可实现需要的数据传输。
可选地,在所述第一设备接收所述第二设备发送的信息之前,所述方法还包括:在所述第一设备的运行状态参数小于对应的门限值后,所述第一设备向所述第二设备发送数据请求信息,用于请求所述第二设备向所述第一设备发送所述第二测量结果和/或运行状态参数信息。
可选地,所述第一设备还可以向所述第二设备发送所述中继节点切换请求信息,用于通知第二设备准备切换为中继节点。
相对应地,本申请实施例还提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第二设备,参考图6,该方法包括:
S21,第二设备向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
根据本申请的实施例,当前第二设备为远端节点,第一设备为中继节点,第二设备可对通信设备的下行参考信号(例如SSB、CSI-RS等)进行测量,得到测量结果,第二设备还可以对第三设备针对第 一设备的下行物理信道或下行参考信号进行监听,得到监听结果,本申请实施例中将第二设备得到的测量结果和监听结果称为第二测量结果,第二设备还可获取自身的运行状态参数,并将第二测量结果和/或运行状态参数作为参考数据发送给所述第一设备。
利用本申请的实施例能够在合适的时机对中继节点进行切换,能够尽可能地避免由中继节点不良造成的链路失败,提高系统传输的可靠性和有效性。
可选地,所述第二设备可采取以下至少一种方式向第一设备发送参考数据:
·第二设备周期性地或非周期性地将所述参考数据发送给第一设备;
·第二设备在运行状态参数大于或等于对应的门限值后,将所述参考数据发送给第一设备;
·第二设备在所述第二测量结果大于或等于第二门限值后,将所述参考数据发送给第一设备;
·第二设备在接收到第一设备发送的参考数据请求信息后,将所述参考数据发送给第一设备。
可选地,所述第二设备接收所述第一设备发送的中继节点切换请求信息,表示第二设备将由远端节点切换为中继节点。
可选地,所述第二设备被所述第三设备配置为中继节点设备之后,接收所述第三设备发送的数据,并将所述数据转发送给所述第一设备。
相对应地,本申请实施例还提供一种中继节点切换方法,应用于第三设备,本实施例中该第三设备可以是网络设备,也可以是终端设备,参考图7,该方法包括:
S31,第三设备接收中继节点切换请求信息,其中所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
S32,所述第三设备根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
可选地,与前述多个实施例对应地,所述中继节点切换请求信息可以来自所述第一设备,可以来自所述第二设备,还可以来自广播信息。
基于以上多个实施例,远端节点设备可将自身的测量信息、监听信息和/或运行状态信息发送给中继节点设备,由中继节点设备确定是否触发中继节点的切换,以提高系统传输的可靠性和有效性。本申请实施例还提供一种中继节点切换方法,可由远端节点设备(第二设备)确定中继节点的切换时机,以下结合图8进行详细描述。
本申请实施例提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第一设备,该方法包括:
S101,第一设备向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
可选地,所述第一设备向第二设备发送参考数据,包括以下至少一项:
·第一设备周期性地或非周期性地将所述参考数据发送给第二设备;
·第一设备在运行状态参数低于对应的门限值后,将所述参考数据发送给第二设备;
·第一设备在所述第一测量结果小于第一门限值后,将所述参考数据发送给第二设备。
参考图12,对于网络的远端节点(第二设备),通常的信道测量上报大致过程为网络中处于空闲态(Idle)或非激活态(Inactive)的SL远端节点,因小区重选将测量结果上报给基站,当满足小区重选条件时切换为网络中的节点。在本申请实施例中,应当注意,远端节点不仅可以向网络上报测量信息,还可以将测量结果信息共享给SL中继节点(第一设备),用于辅助中继节点或网络设备对链路传输进行优化。
相对应地,本申请实施例还提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第二设备,该方法包括:
S201,第二设备对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,所述第二设备对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
S202,所述第二设备接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果;
S203,所述第二设备基于以下至少一项确定是否触发中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
可选地,所述第二设备触发中继节点切换请求信息包括:在以下至少一种情况下,所述第二设备向所述第一设备发送中继节点切换请求信息或者所述第二设备通过广播信息发送中继节点切换请求信息:
所述第一测量结果小于第一门限值;
所述第一测量结果小于所述第二测量结果且所述第一测量结果小于第一门限值;
所述第二设备的运行状态参数大于对应的门限值;
所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
第三设备接收中继节点切换请求信息后,根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
以上实施例描述了由远端节点设备确定中继节点切换时机的处理方式,该方式下当远端节点满足切换条件时,可由远端节点主动触发切换。除此之外,本申请实施例还提供一种中继节点切换方法,可由网络设备或组头终端设备(第三设备)确定中继节点的切换时机,以下结合图9进行详细描述。
本申请实施例提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第一设备,包括:
S110,第一设备接收所述第二设备发送的所述第二设备的运行状态参数,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
S120,所述第一设备将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
相对应地,本申请实施例还提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第二设备,该方法包括:
S210,第二设备将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
相对应地,本申请实施例还提供一种中继节点切换方法,应用于终端设备,本实施例中将该终端设备称为第三设备,该方法包括:
S310,第三设备接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
S320,在符合第三条件的情况下,所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
可选地,所述第三条件包括以下至少一者:
·第一设备的运行状态参数小于对应的门限值;
·第一设备的运行状态参数小于对应的门限值,且第二设备的运行状态参数大于对应的门限值;
·第一设备的运行状态参数小于对应的门限值,且第二设备的运行状态参数大于第一设备的运行状态参数。
基于本申请提供的至少一个实施例可在合适的时机触发中继节点的切换过程,可避免由中继节点不良造成的链路失败,提高系统传输的可靠性和有效性。
以上通过多个实施例描述了本申请的多种实现方式,以下通过多个具体的例子,详细描述本申请实施例的具体实现过程。
图10示意性地示出了本申请实施例的中继节点切换前与切换后的系统示意图,其中第一设备为中继节点B,第二设备为远端节点C,第三设备为基站或组头终端A。参考图10,基站或组头终端A可向当前的中继节点B传输数据,并由中继节点B向远端节点C转发数据,实现数据信息的共享和同步。在实际应用中,节点A可为例如多媒体播放器(如手机、音箱),节点B可为主耳机,节点C可为副耳机。
根据本申请的实施例,一方面,可基于远端节点C和/或中继节点B的信道测量情况(可通过对基站或组头终端A的参考信号测量获得)发出中继节点切换请求,一方面,还可以以终端自身的运行状态(如中继节点B和远端节点C的电量过低、设备温度过高、人为触发等)作为“触发信息”,基站或组头终端A可以基于切换请求信息或者“触发信息”,来重新配置新的中继节点,例如,将图10中的中继节点由B切换为C,也就是将原来的远端节点C重新配置为中继节点,将原来的中继节点B重新 配置为远端节点,使A、B、C三个节点之间的数据传输不因中继节点变劣而受影响。以下描述具体实施例及处理过程。
实施例1
参考图10,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号(如SSB,CSI-RS等),得到测量结果1(对应A-B链路)。节点C下行接收并测量节点A的测量参考信号(如SSB,CSI-RS等),得到测量结果2(对应A-C链路)。
根据本申请的实施例,节点C将测量结果2发送给B,其中,
1)节点C可周期性或非周期性地向中继节点B发送测量结果2;或者,
2)节点C在满足第一事件时,向中继节点B上报发送测量结果2,其中,第一事件可以是节点B满足第一触发条件(例如电量、温度或者其他状态条件达到对应的门限值);其中,第一事件还可以是节点C的测量结果2满足预设门限时,上报测量结果2给B。
3)节点B还可以向节点C发送请求信息,用于请求节点C上报测量结果2给节点B。
如果测量结果1的测量值低于预设的测量门限值,则节点B发送中继节点切换请求信息给节点A,可选地,节点B还可将中继节点切换请求信息发送给节点C;
节点A基于切换请求信息重新配置新的中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。节点C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请实施例,可通过切换请求信息动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
实施例2
参考图10,与实施例1类似地,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号,得到测量结果1。节点C下行接收并测量节点A的测量参考信号,得到测量结果2。节点C将测量结果2发送给B。
本实施例与实施例1的不同之处主要在于,如果测量结果1的测量值低于节点B上报的测量结果2的测量值,节点B发出中继节点切换请求信息给节点A,也可同时发送给节点C。
节点A基于切换请求信息来重新配置新的中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。节点C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请实施例,可通过切换请求信息动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
实施例3
参考图10,与实施例1类似地,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号,得到测量结果1。节点C下行接收并测量节点A的测量参考信号,得到测量结果2。节点C将测量结果2发送给B。
本实施例与实施例1的不同之处主要在于,中继节点B获取自身的设备状态参数,例如设备剩余电量、设备温度或者其他状态指标参数,当中继节点B的至少一个状态参数满足触发条件时(例如电量低于预设阈值,或者设备温度高于预设阈值),节点B对测量结果进行比较,具体地:
当测量结果1的测量值低于对应的测量门限值时,或者,在测量结果1的测量值低于节点C上报的测量结果2的测量值,则节点B发送中继节点切换请求信息给节点A,也可同时发送给节点C。
节点A基于切换请求信息来重新配置新的中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请实施例,可通过切换请求信息动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
实施例4
参考图10,与实施例1类似地,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号,得到测量结果1。节点C下行接收并测量节点A的测量参考信号,得到测量结果2。节点C将测量结果2发送给B。
本实施例与实施例1的不同之处主要在于,当中继节点B满足第一触发条件(例如节点B设备的电量、温度或者其他状态条件达到门限值),节点B发送测量结果请求信息给节点C;节点C上报最新的测量结果2给B;B收到测量结果2,其中,
如果测量结果1的测量值低于C上报的最新的测量结果2的测量值,则节点B发送中继节点切换 请求信息给节点A(或节点A和节点C);
点A基于切换请求信息来重新配置新的中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请的实施例可通过触发条件和切换请求双重判断,来动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
实施例5
参考图10,与实施例1类似地,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号,得到测量结果1。节点C下行接收并测量节点A的测量参考信号,得到测量结果2。节点C将测量结果2发送给B。
本实施例与实施例1的不同之处主要在于,当中继节点B满足第一触发条件(例如节点B设备的电量、温度或者其他状态条件达到门限值),节点B发送测量结果请求信息给节点C;节点C上报最新的测量结果2给B;B收到测量结果2,其中,
如果测量结果1的测量值低于C上报的测量结果2的测量值、且低于预设的测量门限值,则节点B发送第一中继节点切换请求信息给节点A(或A和C);
节点A基于切换请求信息来重新配置新的中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请的实施例可通过触发条件和切换请求双重判断,来动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
实施例6
参考图10,与实施例1类似地,节点A给节点B发送信息,节点B中继传输给节点C。节点B下行接收并测量节点A的测量参考信号,得到测量结果1。节点C下行接收并测量节点A的测量参考信号,得到测量结果2。节点C将测量结果2发送给B。
本实施例与实施例1的不同之处主要在于,节点B实时收集自身和节点C的设备运行状态信息,例如设备剩余电量、设备温度或者其他状态指标参数,并且节点B将自身和节点C的设备运行状态信息上报给节点A。
当节点B和节点C的设备运行状态信息满足第二触发条件时(例如,设备状态信息为设备的剩余电量,节点B的剩余电量低于预设的剩余电量门限值,或者节点B的剩余电量低于该剩余电量门限值、且节点C的剩余电量高于该剩余电量门限值),则节点A触发中继节点切换过程,重新配置中继节点为C,配置传输资源给节点C并断开与节点B的连接传输。C作为新的中继节点接收A的信息并中继转发给节点B。
利用本申请的实施例可通过触发条件和切换请求双重判断,来动态实现中继节点的切换,保证链路通信质量的同时提高中继转发的效率,能够更好地解决链路失败、平衡SL节点的功耗或省电,保证系统的传输可靠性和有效性。
在本申请的一个或多个实施例中,可以由远端节点C向中继节点B发送测量结果2(A-C链路),由节点B比较测量结果和判断是否触发中继节点切换。反之,中继节点B也可以将测量结果1发送给远端节点C,由远端节点C比较测量结果和判断是否切换。
在本申请的一种实施方式中,可选地,考虑到中继节点B可能同时连接着多个远端节点(如C1、C2和C3),节点B可以将测量结果1(A-B链路)以组播的方式发送给C1、C2和C3,其中节点B的测量结果1是处于RRC连接态下测量网络下行参考信号得到的,由于C1、C2和C3没有与网络连接但处于网络覆盖范围内,C1、C2和C3可测量得到idle态或inactive态的用于小区选择或重选的测量结果2,则远端节点C1、C2和C3可比较测量结果1和测量结果2,来判断远端节点C1、C2和C3是否切换连接到节点A。
在本申请的另外一种实施方式中,可选地,节点C除了可以测量节点A的测量参考信号(如SSB,CSI-RS等)得到测量结果2(A-C链路),节点C还可以监听或称侦听节点A发送给节点B的信息,并测量该信息的信号质量(如RSRP或RSSI等),也就是说,本申请实施例的测量结果2可以包括节点A发送给节点B的下行物理信道例如PDCCH、PDSCH或下行参考信号的RSSI,RSRP,RSRQ或SINR等的测量值。
在本申请的实施例中,可选地,本申请各个实施例中的终端节点可以是手机、手表、耳机等智能穿戴设备,也可以是电表、水表等非智能设备。
在本申请实施例中,可选地,本申请各个实施例中的A-B链路、B-C链路和A-C链路的传输信道 可以承载在授权频段或者非授权频段(例如SL-U)上;B-C链路的传输可以是基于网络调度(模式A)下的资源配置,也可以是基于自主调度(模式B)下的资源配置。
在本申请的实施例中,可选地,本申请各个实施例中的提到的门限值或阈值可以是预配置的,也可以是网络配置的,还可以是终端配置的。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端设备100,参考图11,其为第一设备,所述第一设备包括:
测量模块110,用于对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
获取模块120,用于获取自身的运行状态参数;
发送模块130,用于在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,还包括确定模块,
所述确定模块用于当所述第一条件的优先级高于所述第二条件的优先级时,根据所述第一条件确定发送中继节点切换请求信息;
所述确定模块还用于当所述第二条件的优先级高于所述第一条件的优先级时,所述第一设备根据所述第二条件确定发送中继节点切换请求信息;
其中,所述第一条件和所述第二条件的优先级是预配置的或由所述第一设备确定的。
在本申请实施例中,可选地,所述第一条件包括:所述第一测量结果小于第一门限值。
在本申请的实施例中,可选地,还包括:
接收模块,用于接收所述第二设备发送的第二测量结果,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果;
所述第一条件包括:所述第一测量结果小于所述第二测量结果,
或者,所述第一条件包括:所述第一测量结果小于所述第二测量结果,且所述第一测量结果小于第一门限值。
在本申请的实施例中,可选地,所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值。
在本申请的实施例中,可选地,还包括:
接收模块,用于接收所述第二设备发送的运行状态参数信息;
所述第二条件包括:所述第二设备的运行状态参数大于对应的门限值,
或者,所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
在本申请的实施例中,可选地,所述发送模块还用于在所述第一设备的运行状态参数小于对应的门限值后,向所述第二设备发送数据请求信息,用于请求所述第二设备向所述第一设备发送所述第二测量结果和/或运行状态参数信息。
在本申请的实施例中,可选地,所述运行状态参数包括设备的剩余电量参数;和/或,所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;和/或,所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR。
在本申请的实施例中,可选地,所述发送模块还用于向所述第二设备发送所述中继节点切换请求信息。
本申请实施例中,可选地,所述第三设备是网络设备,或者所述第三设备是终端设备。
参考图12,本申请实施例还提供一种终端设备200,其为第二设备,包括:
发送模块210,用于向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,所述发送模块210周期性地或非周期性地将所述参考数据发送给所述第一设备;
和/或,所述发送模块210在运行状态参数大于或等于对应的门限值后,将所述参考数据发送给所述第一设备;
和/或,所述发送模块210在所述第二测量结果大于或等于第二门限值后,将所述参考数据发送给所述第一设备;
和/或,所述发送模块210在接收到所述第一设备发送的参考数据请求信息后,将所述参考数据发送给所述第一设备。
在本申请的实施例中,可选地,还包括:
接收模块,用于接收所述第一设备发送的中继节点切换请求信息。
在本申请的实施例中,可选地,还包括:
收发模块,用于在所述第二设备被所述第三设备配置为中继节点设备之后,接收所述第三设备发送的数据,并将所述数据转发送给所述第一设备。
本申请实施例还提供一种终端设备,其为第一设备,所述第一设备包括:
发送模块,用于向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,所述发送模块周期性地或非周期性地将所述参考数据发送给所述第二设备;
和/或,所述发送模块在运行状态参数低于对应的门限值后,将所述参考数据发送给所述第二设备;
和/或,所述发送模块在所述第一测量结果小于第一门限值后,将所述参考数据发送给所述第二设备。
本申请实施例还提供一种终端设备,其为第二设备,所述第二设备包括:
测量模块,用于对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
接收模块,用于接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果;
确定模块,用于基于以下至少一项确定是否发送中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,还包括:发送模块,用于在以下至少一种情况下,向所述第一设备发送中继节点切换请求信息或者所述第二设备通过广播信息发送中继节点切换请求信息:
所述第一测量结果小于第一门限值;
所述第一测量结果小于所述第二测量结果且所述第一测量结果小于第一门限值;
所述第二设备的运行状态参数大于对应的门限值;
所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
参考图13,本申请实施例还提供一种通信设备300,其为第三设备,包括:
接收模块310,用于接收中继节点切换请求信息,其中,所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
配置模块320,用于根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,所述中继节点切换请求信息来自以下至少一者:所述第一设备、所述第二设备、广播信息;
所述第三设备是网络设备,或者,所述第三设备是终端设备。
本申请实施例还提供一种终端设备,其为第一设备,所述第一设备包括:
接收模块,用于接收所述第二设备发送的所述第二设备的运行状态参数,第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
发送模块,用于将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
本申请实施例还提供一种终端设备,其为第二设备,所述第二设备包括:
发送模块,用于将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
本申请实施例还提供一种通信设备,其为第三设备,所述第三设备包括:
接收模块,用于接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
配置模块,用于在符合第三条件的情况下,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
在本申请的实施例中,可选地,所述第三条件包括以下至少一者:
所述第一设备的运行状态参数小于对应的门限值;
所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述对应的门限值;
所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
在本申请的实施例中,可选地,
所述运行状态参数包括设备的剩余电量参数;
和/或,所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
和/或,所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
所述通信设备是网络设备,或者,所述第三设备是终端设备。
本申请实施例的各个设备能够实现前述的方法实施例中的各个设备的对应功能,各设备中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。
需要说明,关于本申请实施例的各设备中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现本申请实施例的终端设备的相应功能。
图14是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图15是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请如图7-9实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图16是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现本申请各个实施例的方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现本申请各个实施例的方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (56)

  1. 一种中继节点切换方法,包括:
    第一设备对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
    所述第一设备获取自身的运行状态参数;
    在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,所述第一设备向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  2. 根据权利要求1所述的方法,其中,
    当所述第一条件的优先级高于所述第二条件的优先级时,所述第一设备根据所述第一条件确定发送中继节点切换请求信息;
    当所述第二条件的优先级高于所述第一条件的优先级时,所述第一设备根据所述第二条件确定发送中继节点切换请求信息;
    所述第一条件和所述第二条件的优先级是预配置的或由所述第一设备确定的。
  3. 根据权利要求1或2所述的方法,其中,
    所述第一条件包括:所述第一测量结果小于第一门限值。
  4. 根据权利要求1或2所述的方法,还包括:
    所述第一设备接收所述第二设备发送的第二测量结果,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果;
    所述第一条件包括:所述第一测量结果小于所述第二测量结果,
    或者,
    所述第一条件包括:所述第一测量结果小于所述第二测量结果,且所述第一测量结果小于第一门限值。
  5. 根据权利要求1或2所述的方法,其中,
    所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值。
  6. 根据权利要求1或2所述的方法,还包括:
    所述第一设备接收所述第二设备发送的运行状态参数信息;
    所述第二条件包括:所述第二设备的运行状态参数大于对应的门限值,
    或者,
    所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
  7. 根据权利要求4或6所述的方法,在所述第一设备接收所述第二设备发送的信息之前,所述方法还包括:
    在所述第一设备的运行状态参数小于对应的门限值后,所述第一设备向所述第二设备发送数据请求信息,用于请求所述第二设备向所述第一设备发送所述第二测量结果和/或运行状态参数信息。
  8. 根据权利要求1-7中任一项所述的方法,其中,
    所述运行状态参数包括设备的剩余电量参数;
    和/或,
    所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR。
  9. 根据权利要求1-8中任一项所述的方法,还包括:
    所述第一设备还向所述第二设备发送所述中继节点切换请求信息。
  10. 根据权利要求1-9中任一项所述的方法,其中,
    所述第三设备是网络设备,或者,所述第三设备是终端设备。
  11. 一种中继节点切换方法,包括:
    第二设备向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和 /或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  12. 根据权利要求11所述的方法,所述第二设备向第一设备发送参考数据,包括:
    所述第二设备周期性地或非周期性地将所述参考数据发送给所述第一设备;
    和/或,
    所述第二设备在运行状态参数大于或等于对应的门限值后,将所述参考数据发送给所述第一设备;
    和/或,
    所述第二设备在所述第二测量结果大于或等于第二门限值后,将所述参考数据发送给所述第一设备;
    和/或,
    所述第二设备在接收到所述第一设备发送的参考数据请求信息后,将所述参考数据发送给所述第一设备。
  13. 根据权利要求11或12所述的方法,还包括:
    所述第二设备接收所述第一设备发送的中继节点切换请求信息。
  14. 根据权利要求11或12所述的方法,还包括:
    所述第二设备被所述第三设备配置为中继节点设备之后,接收所述第三设备发送的数据,并将所述数据转发送给所述第一设备。
  15. 一种中继节点切换方法,包括:
    第一设备向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  16. 根据权利要求15所述的方法,所述第一设备向第二设备发送参考数据,包括:
    所述第一设备周期性地或非周期性地将所述参考数据发送给所述第二设备;
    和/或,
    所述第一设备在运行状态参数低于对应的门限值后,将所述参考数据发送给所述第二设备;
    和/或,
    所述第一设备在所述第一测量结果小于第一门限值后,将所述参考数据发送给所述第二设备。
  17. 一种中继节点切换方法,包括:
    第二设备对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,所述第二设备对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
    所述第二设备接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果;
    所述第二设备基于以下至少一项确定是否发送中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  18. 根据权利要求17所述的方法,其中,
    在以下至少一种情况下,所述第二设备向所述第一设备发送中继节点切换请求信息或者所述第二设备通过广播信息发送中继节点切换请求信息:
    所述第一测量结果小于第一门限值;
    所述第一测量结果小于所述第二测量结果且所述第一测量结果小于第一门限值;
    所述第二设备的运行状态参数大于对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设 备的运行状态参数。
  19. 一种中继节点切换方法,包括:
    第三设备接收中继节点切换请求信息,其中,所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
    所述第三设备根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  20. 根据权利要求19所述的方法,其中,
    所述中继节点切换请求信息来自以下至少一者:所述第一设备、所述第二设备、广播信息;
    所述第三设备是网络设备,或者,所述第三设备是终端设备。
  21. 一种中继节点切换方法,包括:
    第一设备接收所述第二设备发送的所述第二设备的运行状态参数,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
    所述第一设备将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
  22. 一种中继节点切换方法,包括:
    第二设备将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
  23. 一种中继节点切换方法,包括:
    第三设备接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
    在符合第三条件的情况下,所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  24. 根据权利要求23所述的方法,所述第三条件包括以下至少一者:
    所述第一设备的运行状态参数小于对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
  25. 根据权利要求23或24所述的方法,其中,
    所述运行状态参数包括设备的剩余电量参数;
    和/或,
    所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述第三设备是网络设备,或者,所述第三设备是终端设备。
  26. 一种终端设备,其为第一设备,所述第一设备包括:
    测量模块,用于对第三设备的下行参考信号进行测量,得到第一测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
    获取模块,用于获取自身的运行状态参数;
    发送模块,用于在所述第一测量结果符合第一条件的情况下,和/或,在所述运行状态参数符合第二条件的情况下,向所述第三设备发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  27. 根据权利要求26所述的终端设备,还包括确定模块,
    所述确定模块用于当所述第一条件的优先级高于所述第二条件的优先级时,根据所述第一条件确定发送中继节点切换请求信息;
    所述确定模块还用于当所述第二条件的优先级高于所述第一条件的优先级时,所述第一设备根据所述第二条件确定发送中继节点切换请求信息;
    其中,所述第一条件和所述第二条件的优先级是预配置的或由所述第一设备确定的。
  28. 根据权利要求26或27所述的终端设备,其中,
    所述第一条件包括:所述第一测量结果小于第一门限值。
  29. 根据权利要求26或27所述的终端设备,还包括:
    接收模块,用于接收所述第二设备发送的第二测量结果,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果;
    所述第一条件包括:所述第一测量结果小于所述第二测量结果,
    或者,
    所述第一条件包括:所述第一测量结果小于所述第二测量结果,且所述第一测量结果小于第一门限值。
  30. 根据权利要求26或27所述的终端设备,其中,
    所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值。
  31. 根据权利要求26或27所述的终端设备,还包括:
    接收模块,用于接收所述第二设备发送的运行状态参数信息;
    所述第二条件包括:所述第二设备的运行状态参数大于对应的门限值,
    或者,
    所述第二条件包括:所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
  32. 根据权利要求29或31所述的终端设备,其中,
    所述发送模块还用于在所述第一设备的运行状态参数小于对应的门限值后,向所述第二设备发送数据请求信息,用于请求所述第二设备向所述第一设备发送所述第二测量结果和/或运行状态参数信息。
  33. 根据权利要求26-32中任一项所述的终端设备,其中,
    所述运行状态参数包括设备的剩余电量参数;
    和/或,
    所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR。
  34. 根据权利要求26-33中任一项所述的终端设备,其中,
    所述发送模块还用于向所述第二设备发送所述中继节点切换请求信息。
  35. 根据权利要求26-34中任一项所述的终端设备,其中,
    所述第三设备是网络设备,或者,所述第三设备是终端设备。
  36. 一种终端设备,其为第二设备,所述第二设备包括:
    发送模块,用于向第一设备发送参考数据,所述参考数据包括第二测量结果和/或所述第二设备的运行状态参数,所述第二测量结果包括所述第二设备测量所述第三设备的下行参考信号所得到的测量结果,和/或,所述第二设备监听所述第三设备针对所述第一设备的下行物理信道或下行参考信号所得到的监听结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;所述参考数据用于所述第一设备确定是否发送中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  37. 根据权利要求36所述的终端设备,其中,
    所述发送模块周期性地或非周期性地将所述参考数据发送给所述第一设备;
    和/或,
    所述发送模块在运行状态参数大于或等于对应的门限值后,将所述参考数据发送给所述第一设备;
    和/或,
    所述发送模块在所述第二测量结果大于或等于第二门限值后,将所述参考数据发送给所述第一设备;
    和/或,
    所述发送模块在接收到所述第一设备发送的参考数据请求信息后,将所述参考数据发送给所述第一设备。
  38. 根据权利要求36或37所述的终端设备,还包括:
    接收模块,用于接收所述第一设备发送的中继节点切换请求信息。
  39. 根据权利要求36-38中任一项所述的终端设备,还包括:
    收发模块,用于在所述第二设备被所述第三设备配置为中继节点设备之后,接收所述第三设备发送的数据,并将所述数据转发送给所述第一设备。
  40. 一种终端设备,其为第一设备,所述第一设备包括:
    发送模块,用于向第二设备发送参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括所述第二设备;所述参考数据用于所述第二设备确定是否触发中继节点切换请求信息,其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  41. 根据权利要求40所述的终端设备,其中,
    所述发送模块周期性地或非周期性地将所述参考数据发送给所述第二设备;
    和/或,
    所述发送模块在运行状态参数低于对应的门限值后,将所述参考数据发送给所述第二设备;
    和/或,
    所述发送模块在所述第一测量结果小于第一门限值后,将所述参考数据发送给所述第二设备。
  42. 一种终端设备,其为第二设备,所述第二设备包括:
    测量模块,用于对第三设备针对所述第二设备的下行参考信号进行测量,得到测量结果,和/或,对所述第三设备针对第一设备的下行物理信道或下行参考信号进行监听,得到监听结果,将所述测量结果和/或所述监听结果作为第二测量结果,其中,所述第二设备当前被配置为所述第三设备的远端节点设备,且对应的中继节点设备为所述第一设备;
    接收模块,用于接收所述第一设备发送的参考数据,所述参考数据包括第一测量结果和/或所述第一设备的运行状态参数,所述第一测量结果包括所述第一设备对第三设备的下行参考信号进行测量所得到测量结果;
    确定模块,用于基于以下至少一项确定是否发送中继节点切换请求信息:所述第一测量结果、所述第一设备的运行状态参数、所述第二测量结果、所述第二设备的运行状态参数;其中所述中继节点切换请求信息用于请求所述第三设备将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  43. 根据权利要求42所述的终端设备,还包括:
    发送模块,用于在以下至少一种情况下,向所述第一设备发送中继节点切换请求信息或者所述第二设备通过广播信息发送中继节点切换请求信息:
    所述第一测量结果小于第一门限值;
    所述第一测量结果小于所述第二测量结果且所述第一测量结果小于第一门限值;
    所述第二设备的运行状态参数大于对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
  44. 一种通信设备,其为第三设备,所述第三设备包括:
    接收模块,用于接收中继节点切换请求信息,其中,所述第三设备当前的中继节点设备包括第一设备,对应的远端节点设备包括第二设备;
    配置模块,用于根据所述中继节点切换请求信息,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  45. 根据权利要求44所述的通信设备,其中,
    所述中继节点切换请求信息来自以下至少一者:所述第一设备、所述第二设备、广播信息;
    所述第三设备是网络设备,或者,所述第三设备是终端设备。
  46. 一种终端设备,其为第一设备,所述第一设备包括:
    接收模块,用于接收所述第二设备发送的所述第二设备的运行状态参数,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,且对应的远端节点设备至少包括第二设备;
    发送模块,用于将所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息发送给所述第三设备。
  47. 一种终端设备,其为第二设备,所述第二设备包括:
    发送模块,用于将自身的运行状态参数信息发送给第一设备,其中,所述第二设备当前被配置为第 三设备的远端节点设备,且对应的中继节点设备为所述第一设备。
  48. 一种通信设备,其为第三设备,所述第三设备包括:
    接收模块,用于接收第一设备发送的所述第一设备的运行状态参数信息和所述第二设备的运行状态参数信息,其中,所述第一设备当前被配置为所述第三设备的中继节点设备,所述第二设备当前被配置为远端节点设备;
    配置模块,用于在符合第三条件的情况下,将所述第二设备配置为中继节点设备,将所述第一设备配置为远端节点设备。
  49. 根据权利要求48所述的通信设备,所述第三条件包括以下至少一者:
    所述第一设备的运行状态参数小于对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述对应的门限值;
    所述第一设备的运行状态参数小于对应的门限值,且所述第二设备的运行状态参数大于所述第一设备的运行状态参数。
  50. 根据权利要求48或49所述的通信设备,其中,
    所述运行状态参数包括设备的剩余电量参数;
    和/或,
    所述第一测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述第二测量结果包括以下至少一项:接收信号强度指示RSSI、参考信号接收功率RSRP,参考信号接收质量RSRQ、信号与干扰加噪声比SINR;
    和/或,
    所述通信设备是网络设备,或者,所述第三设备是终端设备。
  51. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1至25中任一项所述的方法。
  52. 一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求19、20和23-25中任一项所述的方法。
  53. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法。
  54. 一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  55. 一种计算机程序产品,包括计算机程序指令,其中,所述计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法。
  56. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
PCT/CN2020/110111 2020-08-19 2020-08-19 中继节点切换方法、终端设备和网络设备 WO2022036612A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102168.7A CN115699873A (zh) 2020-08-19 2020-08-19 中继节点切换方法、终端设备和网络设备
PCT/CN2020/110111 WO2022036612A1 (zh) 2020-08-19 2020-08-19 中继节点切换方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110111 WO2022036612A1 (zh) 2020-08-19 2020-08-19 中继节点切换方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022036612A1 true WO2022036612A1 (zh) 2022-02-24

Family

ID=80322414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110111 WO2022036612A1 (zh) 2020-08-19 2020-08-19 中继节点切换方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN115699873A (zh)
WO (1) WO2022036612A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761206A (zh) * 2023-08-17 2023-09-15 中国电信股份有限公司 数据传输方法、装置、通信设备、介质和程序产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161853A1 (zh) * 2015-04-09 2016-10-13 中兴通讯股份有限公司 中继节点切换方法及系统
CN107211476A (zh) * 2015-02-11 2017-09-26 索尼公司 通信设备、基础设施设备、移动通信网络以及方法
CN111294773A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 一种参考信号的测量方法和终端设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215537B (zh) * 2010-04-09 2014-06-04 华为技术有限公司 一种切换方法、基站和家庭网关
CN102843716B (zh) * 2011-06-24 2015-11-25 中国移动通信集团公司 一种移动中继网络中的切换方法、系统和设备
CN105375970B (zh) * 2015-09-30 2018-12-18 青岛海信移动通信技术股份有限公司 一种移动设备进行中继的方法和装置
WO2018063081A1 (en) * 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Relaying between a user equipment and a network
CN108024295B (zh) * 2016-11-03 2022-04-19 中兴通讯股份有限公司 中继转移方法及装置、终端、基站
CN108668326B (zh) * 2017-03-10 2021-05-04 联发科技(新加坡)私人有限公司 虚拟漫游方法及装置
JP6918962B2 (ja) * 2017-03-23 2021-08-11 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 切替方法、端末機器及びネットワーク機器
CN108924962B (zh) * 2017-03-24 2021-05-04 华为技术有限公司 信息指示的方法和装置
CN110034832B (zh) * 2018-01-12 2020-08-07 华为技术有限公司 监控信道质量的方法和终端设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211476A (zh) * 2015-02-11 2017-09-26 索尼公司 通信设备、基础设施设备、移动通信网络以及方法
WO2016161853A1 (zh) * 2015-04-09 2016-10-13 中兴通讯股份有限公司 中继节点切换方法及系统
CN111294773A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 一种参考信号的测量方法和终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116761206A (zh) * 2023-08-17 2023-09-15 中国电信股份有限公司 数据传输方法、装置、通信设备、介质和程序产品
CN116761206B (zh) * 2023-08-17 2023-11-21 中国电信股份有限公司 数据传输方法、装置、通信设备、介质和程序产品

Also Published As

Publication number Publication date
CN115699873A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
TWI578818B (zh) 用於多重跳躍為底之網路的網路發起探索和路徑選擇程序
WO2021000289A1 (zh) 用于传输小数据的方法及设备
US20230063901A1 (en) Sidelink feedback method and terminal device
CN109076639A (zh) 信息传输装置、方法以及通信系统
JP6872634B2 (ja) 協調セル決定方法及びネットワークデバイス
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2021189367A1 (zh) 物理信道监测方法和终端设备
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2022052117A1 (zh) 配置辅助上行链路sul的方法和装置
WO2022036612A1 (zh) 中继节点切换方法、终端设备和网络设备
US20230107139A1 (en) Relay discovery method and terminal
WO2023020482A1 (zh) 通信方法与装置、终端和网络设备
WO2022198569A1 (zh) 测量配置方法、终端设备、网络设备、芯片和存储介质
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2022021035A1 (zh) 测量方法、终端设备和网络设备
WO2021189366A1 (zh) 物理信道监测方法和终端设备
WO2023102693A1 (zh) 无线通信的方法、远端终端和网络设备
WO2023092456A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021217513A1 (zh) 工作带宽部分的切换方法、终端设备和网络设备
WO2024174243A1 (zh) 无线通信的方法和装置
WO2022236511A1 (zh) 侦听方法、终端设备、网络设备、芯片和存储介质
WO2021243887A1 (zh) 数据传输的方法和设备
WO2022217615A1 (zh) 进入连接态的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949823

Country of ref document: EP

Kind code of ref document: A1