WO2018202178A1 - 波束恢复方法及装置 - Google Patents

波束恢复方法及装置 Download PDF

Info

Publication number
WO2018202178A1
WO2018202178A1 PCT/CN2018/085733 CN2018085733W WO2018202178A1 WO 2018202178 A1 WO2018202178 A1 WO 2018202178A1 CN 2018085733 W CN2018085733 W CN 2018085733W WO 2018202178 A1 WO2018202178 A1 WO 2018202178A1
Authority
WO
WIPO (PCT)
Prior art keywords
time window
request
network device
terminal device
symbol
Prior art date
Application number
PCT/CN2018/085733
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
孙颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880028695.0A priority Critical patent/CN110603738A/zh
Priority to EP18794965.6A priority patent/EP3471286A4/en
Priority to BR112019004113A priority patent/BR112019004113A2/pt
Publication of WO2018202178A1 publication Critical patent/WO2018202178A1/zh
Priority to US16/374,474 priority patent/US10931334B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a beam recovery method and apparatus.
  • a beam is a communication resource, and different beams can be considered as different communication resources.
  • the transmit beam may refer to a distribution of signal strength formed in different directions of the space after the signal is transmitted through the antenna, and the receive beam may refer to a signal intensity distribution of the wireless signal received from the antenna in different directions in space.
  • a beam pair typically includes a transmit beam at the transmitter and a receive beam at the receiver. When the performance of the beam associated with the downlink control channel drops to a certain threshold, the beam fails, that is, the beam cannot be used for information transmission. Once the beam fails, the beam recovery mechanism is triggered.
  • the initial access in the process of establishing a wireless link, the link reconstruction after the failure of the establishment of the wireless link, or the positioning method based on the uplink measurement is used for positioning.
  • a random access scheme may be adopted. Specifically, the terminal device sends a scheduling request (SR) to the network device to notify the network device that the terminal device attempts to access; and the terminal device monitors the control channel in a pre-configured time window. Receive a random access response (RAR) delivered by the network device.
  • SR scheduling request
  • RAR random access response
  • the terminal device can use the random access channel (RACH) resource to transmit the SR on multiple beams in different directions, and the network device can receive multiple SRs from the same terminal device in the time window.
  • RACH random access channel
  • the technical problem to be solved by the embodiments of the present invention is to provide a beam recovery method and device, which can implement beam recovery processing of multiple request for recovering a beam sent by a network device for the same terminal device, and improve beam recovery efficiency.
  • an embodiment of the present invention provides a beam recovery method, in which a terminal device sends a request for recovering a beam to a network device by using at least one beam in a first time window; the terminal device uses at least one in a first time window.
  • the beam receives a response from the network device for the beam recovery request.
  • the request for recovering the beam may be a scheduling request or a beam failure recovery request.
  • the response for the beam recovery request may be a scheduling request response or a beam failure recovery request response.
  • the response for the beam recovery request may be a scheduling request response; when the request for recovering the beam is a beam failure recovery request, the response for the beam recovery request may be Beam failure recovery request response.
  • the first time window may be a time window configured by the network device to the terminal device.
  • the first time window may include 3 symbols or 7 symbols.
  • the first symbol included in the first time window may be the first symbol configured with a Random Access Channel (RACH) resource.
  • RACH Random Access Channel
  • the terminal device may send a request for recovering the beam to the network device by using at least one beam, and the terminal device may further use, by using the foregoing at least one beam receiving network device, the beam recovery request for the beam recovery request in the first time window.
  • the request sent by the terminal device to the network device for recovering the beam may include multiples in order to improve beam recovery efficiency.
  • the terminal device sends the request for recovering the beam to the network device by using the at least one beam in the first time window, where the terminal device may use at least one of the at least one symbol included in the first time window.
  • the first beam sends a request to the network device to recover the beam.
  • the first beam may be a beam configured by the network device to the terminal device.
  • the terminal device may send a request for recovering the beam to the network device using a first beam on a symbol included in the first time window.
  • the first time window includes three symbols, which are a first symbol, a second symbol, and a third symbol, respectively. If a symbol determined by the terminal device in the first time window is the first symbol, the terminal device may be at On the first symbol included in the first time window, the first beam is used to send a request for recovering the beam to the network device.
  • the terminal device may send a request for recovering the beam to the network device by using multiple identical first beams on one symbol included in the first time window.
  • the first time window includes three symbols, which are a first symbol, a second symbol, and a third symbol, respectively. If a symbol determined by the terminal device in the first time window is the first symbol, the terminal device may be at The first symbol included in the first time window transmits a request for recovering the beam to the network device using the first beam in different directions.
  • the terminal device may send a request for recovering the beam to the network device by using a first beam on the plurality of symbols included in the first time window.
  • the first time window includes three symbols, which are a first symbol, a second symbol, and a third symbol, respectively, if the plurality of symbols determined by the terminal device in the first time window include the second symbol and the third symbol,
  • the terminal device may send a request for recovering the beam to the network device by using the first beam on the second symbol included in the first time window, and use the first beam on the third symbol included in the first time window.
  • a request to recover the beam is sent to the network device.
  • the terminal device may send a request for restoring the beam to the network device by using multiple identical first beams on the plurality of symbols included in the first time window.
  • the first time window includes three symbols, which are a first symbol, a second symbol, and a third symbol, respectively, if the plurality of symbols determined by the terminal device in the first time window include the second symbol and the third symbol,
  • the terminal device may send a request for recovering the beam to the network device by using the first beam on the second symbol included in the first time window, and use the first beam on the third symbol included in the first time window.
  • a request to recover the beam is sent to the network device.
  • the terminal device may send a request for recovering the beam to the network device using the same first beam on one symbol, or use one or more identical first beam to the network on multiple symbols.
  • the device sends a request for recovering the beam, so that the same terminal device sends multiple requests for recovering the beam to the network device.
  • the terminal device uses the at least one beam to receive the response for the beam recovery request sent by the network device in the first time window, where the terminal device may use the at least one symbol included in the first time window.
  • a beam receives a response for a beam recovery request.
  • the terminal device may be included in the first time window. At least one symbol, using the first beam to receive a response for the beam recovery request, ensures that the beam that transmits the request for beam recovery and the beam that receives the response for the beam recovery request are the same beam.
  • the first time window may include the first unit time window and the second unit time window
  • the terminal device sends the request for recovering the beam to the network device by using the at least one beam in the first time window, where the The terminal device transmits a request for recovering the beam to the network device using the at least one identical first beam on at least one symbol included in the first unit time window.
  • the first unit time window may be a time window configured by the network device to the terminal device.
  • the first unit time window may include 3 symbols or 4 symbols.
  • the second unit time window may be a time window configured by the network device to the terminal device.
  • the second unit time window may include 4 symbols or 5 symbols.
  • the first symbol included in the second unit time window is the first symbol after the last symbol included in the first unit time window.
  • the first unit time window includes 4 symbols, which are symbol 0, symbol 1, symbol 2, and symbol 3, and the first symbol after symbol 3 is symbol 4, and the terminal device can determine the second unit time window.
  • the first symbol is the symbol 4.
  • the first unit time window in the embodiment of the present invention includes, but is not limited to, four symbols, and the length of the first unit time window and the length of the second unit time window may be the same or different, and are not specifically A definition of an embodiment of the invention.
  • the terminal device uses the at least one beam to receive the response for the beam recovery request sent by the network device in the first time window, where the terminal device may use the at least one symbol included in the second unit time window.
  • the first beam receives a response for the beam recovery request.
  • the terminal device after the terminal device sends the request for recovering the beam to the network device by using at least one identical first beam on at least one symbol included in the first unit time window, the terminal device may be in the second unit time. At least one symbol included in the window, using the first beam to receive a response for the beam recovery request, ensures that the beam that transmits the request for beam recovery and the beam that receives the response for the beam recovery request are the same beam.
  • the terminal device may determine a third time window configured by the network device to the terminal device, and at least one included in the third time window Symbolically, the request to recover the beam is sent to the network device using at least one identical second beam.
  • the third time window may be a time window configured by the network device to the terminal device.
  • the third time window may include 3 symbols or 5 symbols.
  • the terminal device when the terminal device does not detect the response for the beam recovery request in the first time window, the terminal device may retransmit the beam for resuming the beam to the network device by using a beam other than the first beam in the third time window.
  • the request if the terminal device receives the response for the beam recovery request sent by the network device by using the second beam on the at least one symbol included in the third time window, beam recovery may be implemented, and the reliability of the beam recovery may be improved.
  • the first time window may include a third unit time window and a fourth unit time window
  • the terminal device sends the request for recovering the beam to the network device by using the at least one beam in the first time window, where the The terminal device transmits a request for recovering the beam to the network device using the at least one different beam on the at least one symbol included in the third unit time window.
  • the third unit time window may be a time window configured by the network device to the terminal device.
  • the first unit time window may include 3 symbols or 5 symbols.
  • the fourth unit time window may be a time window configured by the network device to the terminal device.
  • the second unit time window may include 4 symbols or 5 symbols.
  • the first symbol included in the fourth unit time window may be the first symbol after the last symbol included in the third unit time window.
  • the third unit time window includes 4 symbols, which are symbol 0, symbol 1, symbol 2, and symbol 3, and the first symbol after symbol 3 is symbol 4, and the terminal device can determine the fourth unit time window.
  • the first symbol is the symbol 4.
  • the third unit time window in the embodiment of the present invention includes, but is not limited to, four symbols, and the length of the third unit time window and the length of the fourth unit time window may be the same or different, and are not specifically A definition of an embodiment of the invention.
  • the network device may configure the maximum number of beams for the terminal device, for example, the number of beams used when the terminal device is allowed to send a request for recovering the beam may be less than or equal to 5. It should be noted that the maximum number of beams in the embodiment of the present invention includes, but is not limited to, 5, for example, the maximum number of beams may be 3, etc., and is not specifically limited by the embodiment of the present invention.
  • the sum of the numbers of the symbols included in the third unit time window may be determined according to the maximum number of beams configured by the network device to the terminal device.
  • the sum of the number of symbols included in the third unit time window can be proportional to the maximum number of beams.
  • the maximum number of beams is 5, and the sum of the number of symbols included in the third unit time window may be 5, that is, the third unit time window contains 5 symbols.
  • the terminal device may send a request for recovering the beam to the network device using one beam on one symbol included in the third unit time window.
  • the third unit time window includes 5 symbols, which are a first symbol, a second symbol, a third symbol, a fourth symbol, and a fifth symbol, respectively, if the terminal device determines a symbol in the third unit time window.
  • the terminal device may send a request for recovering the beam to the network device using the beam 1 on the first symbol included in the third unit time window.
  • the beam 1 can be a determined beam for the terminal device, wherein the beam can be configured by the network device to the terminal device.
  • the terminal device may send a request for recovering the beam to the network device using a plurality of different beams on one symbol included in the third unit time window.
  • the third unit time window includes 5 symbols, which are a first symbol, a second symbol, a third symbol, a fourth symbol, and a fifth symbol, respectively, if the terminal device determines a symbol in the third unit time window.
  • the terminal device may send a request for restoring the beam to the network device by using multiple beams in the beam 1 to the beam 5 in different directions on the first symbol included in the third unit time window.
  • the terminal device can send the beam to the network device by using two or more beams that are greater than or equal to two and less than or equal to five beams on the first symbol included in the third unit time window. Request to recover the beam.
  • the terminal device may send a request for recovering the beam to the network device by using one beam on the plurality of symbols included in the third unit time window.
  • the third unit time window includes five symbols, which are a first symbol, a second symbol, a third symbol, a fourth symbol, and a fifth symbol, respectively, if the terminal device determines the plurality of times in the third unit time window.
  • the symbol includes a second symbol and a third symbol, and the terminal device may send a request for recovering the beam to the network device by using the beam 1 on the second symbol included in the third unit time window, and in the third unit time window On the included third symbol, beam 1 is used to send a request for resuming the beam to the network device.
  • the terminal device can transmit a request for recovering the beam to the network device using a plurality of different beams on the plurality of symbols included in the third unit time window.
  • the third unit time window includes five symbols, which are a first symbol, a second symbol, a third symbol, a fourth symbol, and a fifth symbol, respectively, if the terminal device determines the plurality of times in the third unit time window.
  • the symbol includes the second symbol and the third symbol, and the terminal device may send, in the different directions, the plurality of beams in the beam 1 to the beam 5 to the network device in the second symbol included in the third unit time window, respectively.
  • the beam request is resumed, and on the third symbol included in the third unit time window, a request for recovering the beam is sent to the network device using multiple beams in the beam 1 to the beam 5 in different directions.
  • the terminal device may send a request for restoring a beam to the network device using a plurality of different beams on one symbol, or send the recovery beam to the network device using one or more different beams on multiple symbols. Request to enable the same terminal device to send multiple requests for recovery of the beam to the network device.
  • the terminal device uses the at least one beam to receive the response for the beam recovery request sent by the network device in the first time window, where the terminal device may use the at least one symbol included in the fourth unit time window. At least one different beam receives a response for the beam recovery request.
  • the terminal device after the terminal device sends the request for recovering the beam to the network device by using the at least one different beam on the at least one symbol included in the third unit time window, the terminal device may be included in the fourth unit time window. At least one symbol, using the at least one different beam to receive the response for the beam recovery request, ensures that the beam transmitting the request for beam recovery and the beam receiving the response for the beam recovery request are the same beam.
  • the terminal device sends the request for restoring the beam to the network device by using the at least one beam in the first time window, where the terminal device may perform the beam request indication information configured by the network device on the terminal device, in the first time.
  • a request for recovering a beam is transmitted to the network device using at least one beam in the window, and the beam request indication information is used to indicate a transmission manner of the request for recovering the beam.
  • the terminal device may be in the first At least one symbol included in the time window, using at least one identical first beam, transmitting a request for recovering the beam to the network device, and using at least one symbol included in the first time window, using the first beam for receiving The response of the beam recovery request.
  • the terminal device may be in the Transmitting, by the at least one symbol included in the first unit time window, a request for recovering a beam to the network device by using at least one identical first beam, and using the first at least one symbol included in the second unit time window
  • the beam receives a response for the beam recovery request.
  • the terminal device when the beam request indication information is used to indicate that the request for recovering the beam is sent in at least one symbol included in the third unit time window, when the at least one different beam is used, the terminal device may be in the third unit. At least one symbol included in the time window, using at least one different beam to transmit a request for recovering the beam to the network device, and using at least one different beam reception on at least one symbol included in the fourth unit time window The response to the beam recovery request.
  • an embodiment of the present invention provides a beam recovery method, where a network device receives a request for recovering a beam sent by a terminal device using at least one beam in a first time window, and receives the request in a second time window.
  • the request for recovering the beam determines a request for recovering the beam, and transmits a response for the beam recovery request to the terminal using the determined beam corresponding to the request for recovering the beam.
  • the network device may receive multiple requests for recovering beams sent by the terminal device, determine a request for recovering the beam in the received request for recovering the beam, and use the determined The beam corresponding to the request for the beam is restored, and the response for the beam recovery request is sent to the terminal, so that the beam recovery process of the plurality of requests for recovering the beam sent by the network device for the same terminal device can be implemented, and the beam recovery efficiency is improved.
  • the network device determines, in the received request for recovering the beam, a request for recovering the beam, where the network device responds to the best quality beam received in the second time window. Request to recover the beam.
  • the network device may receive the request in the second time window.
  • the request for recovering the beam carried by the best quality beam is determined in the request for recovering the beam, and the determined request for recovering the beam is responded to.
  • the network device may receive the second time window.
  • the request for recovering the beam determines the request for recovering the beam carried by the best quality beam and responds to the determined request for recovering the beam.
  • the network device determines, in the received request for recovering the beam, a request for recovering the beam, where the network device responds to the first one used to recover the beam received in the second time window. request.
  • the network device may receive the message in the second time window.
  • the request for recovering the beam determines the first received request for recovering the beam and responds to the determined request for recovering the beam.
  • the network device may receive the second time window.
  • the request for recovering the beam is determined to be the first received request for recovering the beam, and the determined request for recovering the beam is responded to.
  • the network device may receive the message in the second time window.
  • the request for recovering the beam determines the first received request for recovering the beam and responds to the determined request for recovering the beam.
  • the network device sends a response for the beam recovery request to the terminal by using the determined beam corresponding to the request for recovering the beam, where the network device uses the determined one for recovery in the second time window.
  • the beam corresponding to the request of the beam transmits a response for the beam recovery request to the terminal device.
  • the network device sends a response for the beam recovery request to the terminal by using the determined beam corresponding to the request for restoring the beam, where the network device uses the determined one for use outside the second time window.
  • the beam corresponding to the request for restoring the beam transmits a response for the beam recovery request to the terminal device.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the beam recovery method provided by the first aspect of the embodiment of the present invention.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores a program, and the program includes all or part of the steps of the beam recovery method provided by the second aspect of the embodiment of the present invention.
  • an embodiment of the present invention provides a beam recovery apparatus, where the beam recovery apparatus includes a module for performing a beam recovery method disclosed in the first aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a beam recovery apparatus, where the beam recovery apparatus includes a module for performing a beam recovery method disclosed in the second aspect of the embodiments of the present invention.
  • an embodiment of the present invention provides a terminal device, including a processor, a memory, and a transceiver, wherein the memory stores a set of program codes, and the processor calls the program code stored in the memory, and is configured to execute the following. operating:
  • an embodiment of the present invention provides a network device, including a processor, a memory, and a transceiver, wherein the memory stores a set of program codes, and the processor calls the program code stored in the memory, and is configured to execute the following: operating:
  • the embodiment of the present invention provides a beam recovery system, including the terminal device disclosed in the seventh aspect of the embodiment of the present invention and the network device disclosed in the eighth aspect of the embodiment of the present invention.
  • an embodiment of the present application provides a communication chip, wherein an instruction is stored, and when it is run on a terminal device, the communication chip is caused to perform the method of the first aspect.
  • the embodiment of the present application provides a communication chip in which an instruction is stored, and when it runs on a network device, the communication chip is caused to perform the method of the second aspect.
  • FIG. 1 is a schematic structural diagram of a beam recovery system according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of information transmission according to an embodiment of the present invention.
  • 2B is a schematic diagram of information transmission according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of information transmission according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a beam recovery method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a beam recovery method according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of information transmission according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a beam recovery method according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a beam recovery method according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of information transmission according to another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a beam recovery method according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a beam recovery apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a beam recovery apparatus according to another embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a beam recovery system according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a beam recovery system according to an embodiment of the present invention.
  • the beam restoration system may include a terminal device 10 and a network device 20.
  • the data transmission between the terminal device 10 and the network device 20 can be performed through a communication connection.
  • the terminal device 10 in the embodiment of the present invention may be referred to as a User Equipment (UE), a mobile station, an access terminal, a subscriber unit, a subscriber station, a mobile station, a remote station, a remote terminal, a mobile device, a terminal, and a wireless communication.
  • UE User Equipment
  • the device, the user agent, or the user device, etc. may specifically be a station (Station, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, and a Wireless Local Loop (Wireless Local Loop, WLL) stations, Personal Digital Assistant (PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and Any one of terminal devices and the like in a publicly available Public Land Mobile Network (PLMN) network in the future.
  • PLMN Public Land Mobile Network
  • the network device 20 in the embodiment of the present invention may be a device that can communicate with the terminal device 10.
  • Network device 20 may be a base station, a relay station, or an access point.
  • the base station may be a Global System for Mobile Communication (GSM) or a Base Transceiver Station (BTS) in a Code Division Multiple Access (CDMA) network, or may be a broadband code division.
  • the NB (NodeB) in the Wideband Code Division Multiple Access (WCDMA) may also be an eNB or an eNodeB (Evolutional NodeB) in Long Term Evolution (LTE).
  • the network device 20 may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario.
  • Network device 20 may also be a network device in a future 5G network or a network device in a future evolved PLMN network.
  • Network device 20 may also be a wearable device or an in-vehicle device.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Duplex
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE LTE system
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the device capable of performing data communication with the base station can be understood as the terminal device 10.
  • the embodiment of the present invention will be introduced in a general sense.
  • the network device 20 can use signaling.
  • the terminal device 10 can transmit a request for beam recovery to the network device 20 by using a beam that is less than or equal to the maximum number of beams.
  • the network device 20 can be used with the terminal device 10 in the embodiment of the present invention.
  • the first time window is configured, wherein the first time window may include any one of a subframe, a time slot, and one or more symbols, and the terminal device 10 may use the at least one beam to the network device 20 in the first time window.
  • the network device 20 may configure the terminal device 10 with a third time window, where the third time window may include one subframe, one time slot, and one or more symbols. In either case, the terminal device 10 transmits to the network device 20 for the wave using the at least one first beam in the first time window. After the restored request, when the response for the beam recovery request sent by the network device 20 is not received within the first time window, the terminal device 10 may transmit to the network device using the at least one second beam in the third time window for In the embodiment of the present invention, the network device 20 may configure a second time window on the network device 20 side, where the second time window may include one subframe, one time slot, and one or more symbols. Then, after receiving the request for beam recovery sent by the terminal device 10 using the at least one beam in the first time window, the network device 20 may determine one of the received requests for beam recovery in the second time window. Request for beam recovery.
  • the terminal device 10 has at least two transmission modes to send a request for beam recovery to the network device 20 to implement beam recovery.
  • the first transmission mode may be: the terminal device 10 sends a request for recovering the beam to the network device 20 using the at least one identical first beam on at least one symbol included in the first time window, and is in the first time window.
  • the response for the beam recovery request sent by the network device 20 is received using the first beam on at least one of the included symbols.
  • the terminal device 10 transmits a request for restoring the beam to the network device 20 using at least one identical first beam B4' on at least one symbol included in the first time window. .
  • the network device 20 detects the request for recovering the beam sent by the terminal device 10 according to the received RACH beam scanning mode.
  • the network device 20 receives the request for beam recovery sent by the terminal device 10 in the second time window, the network device 20 The request for beam recovery may be responded to by a Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the terminal device 10 may use at least one identical number on at least one symbol included in the second time window.
  • the two beams B5' send a request for recovering the beam to the network device.
  • the terminal device 10 may determine that beam recovery is implemented.
  • the second sending manner may be: if the first time window includes the third unit time window and the fourth unit time window, the terminal device 10 may use at least one different beam on the at least one symbol included in the third unit time window.
  • a request for recovering the beam is sent to the network device 20, and the response for the beam recovery request transmitted by the network device 20 is received using at least one different beam on at least one symbol included in the fourth unit time window.
  • the terminal device 10 transmits a request for restoring a beam to the network device 20 using a plurality of different beams on at least one symbol included in the third unit time window, the network device.
  • a request for recovering the beam may be determined in a plurality of requests for recovering the beam, and the network device 20 may use the determination.
  • the resulting beam corresponding to the request for recovering the beam transmits a response for the beam recovery request to the terminal device 10.
  • the terminal device 10 may detect the response for the beam recovery request sent by the network device 20 according to the beam scanning manner. When the terminal device 10 receives the response for the beam recovery request sent by the network device 20, the terminal device 10 may determine that the beam is implemented. restore.
  • the embodiment of the present invention can use the second transmission mode to send a request for recovering a beam to the network device 20 by using multiple different beams, which can reduce the delay and improve the beam recovery efficiency.
  • FIG. 3 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention. The method includes, but is not limited to, the following steps:
  • Step S301 The terminal device sends a scheduling request to the network device by using at least one identical first beam on at least one symbol included in the first time window.
  • the terminal device may send a scheduling request to the network device by using at least one identical first beam on at least one symbol included in the first time window.
  • the first beam may be a beam configured by the network device to the terminal device, such as beam 1.
  • the terminal device may select one symbol (eg, symbol 3) in the first time window and send a scheduling request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the first time window, and send a scheduling request to the network device by using multiple beams 1 on the symbol 3, that is, the terminal device is on the symbol 3 in different directions.
  • a beam 1 is used to send a scheduling request to the network device.
  • the terminal device may select multiple symbols (for example, symbol 3, symbol 4) in the first time window, and send a beam 1 to the network device on the symbol 3.
  • the request is scheduled and a beam 1 is used on symbol 4 to send a scheduling request to the network device.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first time window, use multiple beams 1 on symbol 3 to send a scheduling request to the network device, and use multiple beams on symbol 4. 1 sends a scheduling request to the network device.
  • the terminal device sends a scheduling request to the network device by using multiple identical first beams on at least one symbol included in the first time window, and the subcarrier spacing may be increased.
  • the network device may configure the first time window for the terminal device.
  • the first time of the first time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 4 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3, then the terminal The device can determine that the start time of the first time window is symbol 3.
  • the length of the first time window may be a fixed length, for example, 7 symbols.
  • the length of the first time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send length indication information to the terminal device to indicate the length of the first time window.
  • the length of the first time window may be indicated by a direct method, for example, the length indication information is 5, and the terminal device may determine that the length of the first time window is 5 symbols.
  • the length of the first time window may be described by using a mapping manner, for example, the mapping relationship between the length indication information and the first time window is as shown in Table 1:
  • the terminal device may determine that the length of the first time window is 3 symbols; when the length indication information is binary 11, the terminal device may determine that the length of the first time window is 7 Symbols.
  • the mapping between the length indication information and the first time length in the embodiment of the present invention includes, but is not limited to, the foregoing manner, and the research and development personnel may perform the modification in combination with different scenarios, which is not limited by the embodiment of the present invention.
  • the network device may configure the first time window for the terminal device by using signaling, such as a Radio Resource Control (RRC), a Media Access Control-Control Element (MAC-CE), or Downlink Control Information (DCI), etc.
  • signaling such as a Radio Resource Control (RRC), a Media Access Control-Control Element (MAC-CE), or Downlink Control Information (DCI), etc.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control Information
  • the network device may notify the terminal device that the first time window is configured by sending the length indication information to the terminal device.
  • Step S302 The network device determines the first scheduling request received in the second time window.
  • the network device may receive the scheduling request sent by the terminal device in the second time window according to the receiving RACH beam scanning mode, and determine the first scheduling request received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the first unit time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S303 The network device sends a scheduling request response to the terminal device by using the beam corresponding to the determined scheduling request in the second time window.
  • the network device may obtain a beam carrying the determined scheduling request, determine another beam included in the beam pair to which the beam belongs, and send a scheduling request response to the terminal device by using the determined beam in the second time window.
  • the beam pair may include a transmit beam at the transmitting end and a receive beam at the receiving end. For example, if the beam carrying the determined scheduling request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can use beam 3 to send a scheduling request response to the terminal device in the second time window.
  • the network device may send a scheduling request response to the terminal device by using another beam included in the beam pair to which the first beam belongs in the symbol 0 included in the second time window.
  • the network device may send a scheduling request response to the terminal device by using the PDCCH.
  • the terminal device may receive multiple DCI messages carried on different PDCCHs in the same subframe.
  • one CRC may be attached to each DCI message.
  • the C-RNTI of the terminal device can be included in the CRC calculation and implicitly transmitted.
  • the network device may determine the DCI to which the CRC of the C-RNTI belongs according to the C-RNTI of the terminal device, determine the PDCCH carrying the DCI, and send a scheduling request response to the terminal device by determining the obtained PDCCH.
  • the DCI may include a downlink scheduling assignment, an uplink scheduling request, power control, and the like.
  • the network device may send a scheduling request response to the terminal device by using a MAC-CE.
  • the network device may define a new MAC-CE, and send the MAC-CE to the terminal device, where the MAC-CE may carry a scheduling request response.
  • the network device may send a scheduling request response to the terminal device by using the RRC.
  • the network device may define a new RRC IE, and send the RRC IE to the terminal device, where the RRC IE may carry a scheduling request response.
  • the network device may send a scheduling request response to the terminal device by using a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • Step S304 The terminal device receives the scheduling request response sent by the network device by using the first beam on the at least one symbol included in the first time window.
  • the terminal device may receive the scheduling request response sent by the network device by using the first beam on at least one symbol included in the first time window. For example, if the terminal device sends a scheduling request to the network device by using the beam 1 on at least one symbol included in the first time window, the terminal device may use the beam 1 to receive the network on at least one symbol included in the first time window.
  • the dispatch request response sent by the device may be used.
  • the receiving time of the terminal device receiving the scheduling request response and the sending time interval of the sending scheduling request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the scheduling request response and the sending time of the sending scheduling request in the embodiment of the present invention
  • the interval is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a scheduling request to the network device using at least one identical first beam on at least one symbol included in the first time window, and the network device determines to receive in the second time window.
  • the first scheduling request the network device sends a scheduling request response to the terminal device by using the determined beam corresponding to the scheduling request in the second time window, and the terminal device uses the at least one symbol included in the first time window.
  • the first beam receives the scheduling request response sent by the network device, and implements beam recovery processing of multiple scheduling requests sent by the network device for the same terminal device, thereby improving beam recovery efficiency.
  • FIG. 5 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention. The method includes, but is not limited to, the following steps:
  • Step S501 The terminal device sends a beam failure recovery request to the network device by using at least one identical first beam on at least one symbol included in the first time window.
  • the terminal device may send a beam failure recovery request to the network device by using at least one identical first beam on at least one symbol included in the first time window.
  • the first beam may be a beam configured by the network device to the terminal device, such as beam 1.
  • the terminal device may select one symbol (eg, symbol 3) in the first time window and transmit a beam failure recovery request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the first time window, and send a beam failure recovery request to the network device by using multiple beams 1 on the symbol 3, that is, the terminal device is different on symbol 3.
  • Beam 1 is used in the direction to send a beam failure recovery request to the network device.
  • the terminal device may select multiple symbols (for example, symbol 3, symbol 4) in the first time window, and send a beam 1 to the network device on the symbol 3.
  • the beam fails to recover the request and sends a beam failure recovery request to the network device using a beam 1 on symbol 4.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first time window, and use multiple beams 1 on the symbol 3 to send a beam failure recovery request to the network device, and use the symbol 4 Beam 1 sends a beam failure recovery request to the network device.
  • the terminal device sends a beam failure recovery request to the network device by using multiple identical first beams on at least one symbol included in the first time window, and the subcarrier spacing may be increased.
  • the network device may configure the first time window for the terminal device.
  • the first time of the first time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 4 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3, then the terminal The device can determine that the start time of the first time window is symbol 3.
  • the length of the first time window may be a fixed length, for example, 7 symbols.
  • the length of the first time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send length indication information to the terminal device to indicate the length of the first time window.
  • the length of the first time window may be indicated by a direct method, for example, the length indication information is 5, and the terminal device may determine that the length of the first time window is 5 symbols.
  • the length of the first time window may be described by using a mapping manner, for example, the mapping relationship between the length indication information and the first time window is as shown in Table 1. As shown in Table 1, when the length indication information is binary 00, the terminal device may determine that the length of the first time window is 3 symbols; when the length indication information is binary 11, the terminal device may determine that the length of the first time window is 7 Symbols.
  • mapping between the length indication information and the first time length in the embodiment of the present invention includes, but is not limited to, the foregoing manner, and the research and development personnel may perform the modification in combination with different scenarios, which is not limited by the embodiment of the present invention.
  • the network device may configure the first time window for the terminal device by using signaling, such as a Radio Resource Control (RRC), a Media Access Control-Control Element (MAC-CE), or Downlink Control Information (DCI), etc.
  • signaling such as a Radio Resource Control (RRC), a Media Access Control-Control Element (MAC-CE), or Downlink Control Information (DCI), etc.
  • RRC Radio Resource Control
  • MAC-CE Media Access Control-Control Element
  • DCI Downlink Control Information
  • the network device may notify the terminal device that the first time window is configured by sending the length indication information to the terminal device.
  • Step S502 The network device determines a first beam failure recovery request received in the second time window.
  • the network device may receive the beam failure recovery request sent by the terminal device in the second time window according to the received RACH beam scanning mode, and determine the first beam failure recovery request received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the first unit time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S503 The network device sends a beam failure recovery request response to the terminal device by using the beam corresponding to the determined beam failure recovery request in the second time window.
  • the network device may obtain a beam that carries the determined beam failure recovery request, determine another beam included in the beam pair to which the beam belongs, and use the determined beam to send a beam failure recovery to the terminal device in the second time window.
  • Request a response. For example, if the beam carrying the determined beam failure recovery request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can use beam 3 to send a beam failure recovery request response to the terminal device in the second time window.
  • the network device may send a beam failure recovery request response to the terminal device by using another beam included in the beam pair to which the first beam belongs in the symbol 0 included in the second time window. .
  • the network device may send a beam failure recovery request response to the terminal device by using the PDCCH.
  • the network device may send a beam failure recovery request response to the terminal device by using the MAC-CE.
  • the network device may send a beam failure recovery request response to the terminal device by using the RRC.
  • the network device may send a beam failure recovery request response to the terminal device by using the PDSCH.
  • Step S504 The terminal device receives the beam failure recovery request response sent by the network device by using the first beam on the at least one symbol included in the first time window.
  • the terminal device may receive, by using the first beam, a beam failure recovery request response sent by the network device on the at least one symbol included in the first time window. For example, if the terminal device sends a beam failure recovery request to the network device by using the beam 1 on at least one symbol included in the first time window, the terminal device may use the beam 1 on at least one symbol included in the first time window. Receiving a beam failure recovery request response sent by the network device.
  • the receiving time of the terminal device receiving the beam failure recovery request response and the sending time interval of the transmitting beam failure recovery request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the beam failure recovery request response in the embodiment of the present invention is
  • the transmission time interval of the transmission beam failure recovery request is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a beam failure recovery request to the network device using at least one identical first beam on at least one symbol included in the first time window, and the network device determines that in the second time window Receiving the first beam failure recovery request, the network device uses the determined beam corresponding to the beam failure recovery request in the second time window, and sends a beam failure recovery request response to the terminal device, where the terminal device is in the first time window.
  • the beam failure recovery request response sent by the network device to the network device can be used to implement beam recovery processing of multiple beam failure recovery requests sent by the network device for the same terminal device to improve beam recovery efficiency.
  • FIG. 6 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention. The method includes, but is not limited to, the following steps:
  • Step S601 The terminal device sends a scheduling request to the network device by using at least one identical first beam on at least one symbol included in the first unit time window.
  • the terminal device may send a scheduling request to the network device by using at least one identical first beam on at least one symbol included in the first unit time window.
  • the first beam may be a beam configured by the network device to the terminal device, such as beam 1.
  • the terminal device may select one symbol (eg, symbol 3) in the first unit time window and send a scheduling request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the first unit time window, and send a scheduling request to the network device by using multiple beams 1 on the symbol 3, that is, the terminal device is on the symbol 3 in different directions.
  • a beam 1 is used to send a scheduling request to the network device.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first unit time window, and use one beam 1 to the network device on symbol 3.
  • a scheduling request is sent and a scheduling request is sent to the network device using a beam 1 on symbol 4.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first unit time window, use multiple beams 1 on symbol 3 to send a scheduling request to the network device, and use multiple symbols on symbol 4 Beam 1 sends a scheduling request to the network device.
  • the terminal device sends a scheduling request to the network device by using multiple identical first beams on at least one symbol included in the first unit time window, and the subcarrier spacing may be increased.
  • the network device may configure the first unit time window for the terminal device.
  • the start time of the first unit time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 7 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3,
  • the terminal device may determine that the start time of the first unit time window is symbol 3.
  • the network device may configure the second unit time window on the terminal device.
  • the first symbol included in the second unit time window is the first symbol after the last symbol included in the first unit time window, and the first unit time is taken as an example of the information transmission shown in FIG. 7 .
  • the last symbol contained in the window is symbol 6, and the terminal device can determine that the first symbol included in the second unit time window is symbol 0.
  • the length of the first unit time window may be a fixed length, for example, 4 symbols.
  • the length of the first unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the length of the second unit time window may be a fixed length, for example, 4 symbols.
  • the length of the second unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send the first length indication information to the terminal device to indicate the length of the first unit time window.
  • the length of the first unit time window may be indicated by a direct method.
  • the length of the first unit time window may be described by a mapping manner.
  • the network device may send the second length indication information to the terminal device to indicate the length of the second unit time window.
  • the length of the second unit time window may be indicated by a direct method.
  • the length of the second unit time window may be described by mapping.
  • the network device may configure, by using signaling, the first unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • the first unit time window such as RRC, MAC-CE, or DCI
  • the network device may configure, by using signaling, the second unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • the second unit time window such as RRC, MAC-CE, or DCI
  • the network device may notify the terminal device that the first unit time window is configured by sending the first length indication information to the terminal device.
  • the network device may notify the terminal device that the second unit time window is configured by sending the second length indication information to the terminal device.
  • Step S602 The network device determines a scheduling request in the received scheduling request in the second time window.
  • the network device may receive the scheduling request sent by the terminal device in the second time window according to the receiving RACH beam scanning mode, and determine a scheduling request in the received scheduling request.
  • the network device can determine the first scheduling request received within the second time window.
  • the network device may determine a scheduling request that is received by the beam that is greater than the preset quality threshold in the second time window.
  • the network device may determine a scheduling request carried by the best quality beam received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the first unit time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S603 The network device sends a scheduling request response to the terminal device by using the beam corresponding to the determined scheduling request after the second time window.
  • the network device may obtain a beam carrying the determined scheduling request, determine another beam included in the beam pair to which the beam belongs, and send a scheduling request response to the terminal device by using the determined beam after the second time window. For example, if the beam carrying the determined scheduling request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can send a scheduling request response to the terminal device using the beam 3 after the second time window.
  • the terminal device may send a scheduling to the terminal device by using another beam included in the beam pair to which the first beam belongs, the first symbol after the second time window, that is, the symbol 0. Request a response.
  • the network device may send a scheduling request response to the terminal device by using the PDCCH.
  • the network device may send a scheduling request response to the terminal device by using a MAC-CE.
  • the network device may send a scheduling request response to the terminal device by using the RRC.
  • the network device may send a scheduling request response to the terminal device by using the PDSCH.
  • Step S604 The terminal device receives the scheduling request response sent by the network device by using at least one identical first beam on at least one symbol included in the second unit time window.
  • the terminal device may receive the scheduling request response sent by the network device using the at least one identical first beam on at least one symbol included in the second unit time window. For example, if the terminal device sends a scheduling request to the network device by using the beam 1 on at least one symbol included in the first unit time window, the terminal device may use the beam 1 on at least one symbol included in the second unit time window. Receive a scheduling request response sent by the network device.
  • the receiving time of the terminal device receiving the scheduling request response and the sending time interval of the sending scheduling request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the scheduling request response and the sending time of the sending scheduling request in the embodiment of the present invention
  • the interval is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a scheduling request to the network device using at least one identical first beam on at least one symbol included in the first time window, and the network device determines to receive in the first time window.
  • the first scheduling request the network device sends a scheduling request response to the terminal device by using the determined beam corresponding to the scheduling request in the first time window, and the terminal device uses the at least one symbol included in the first time window.
  • the first beam receives the scheduling request response sent by the network device, and implements beam recovery processing of multiple scheduling requests sent by the network device for the same terminal device, thereby improving beam recovery efficiency.
  • FIG. 8 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention. The method includes, but is not limited to, the following steps:
  • Step S801 The terminal device sends a beam failure recovery request to the network device by using at least one identical first beam on at least one symbol included in the first unit time window.
  • the terminal device may send a beam failure recovery request to the network device by using at least one identical first beam on at least one symbol included in the first unit time window.
  • the first beam may be a beam configured by the network device to the terminal device, such as beam 1.
  • the terminal device may select one symbol (eg, symbol 3) in the first unit time window and transmit a beam failure recovery request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the first unit time window, and send a beam failure recovery request to the network device by using multiple beams 1 on the symbol 3, that is, the terminal device is on symbol 3, Beam 1 is used in different directions to send a beam failure recovery request to the network device.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first unit time window, and use one beam 1 to the network device on symbol 3.
  • a beam failure recovery request is sent and a beam failure recovery request is sent to the network device using a beam 1 on symbol 4.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the first unit time window, and use multiple beams 1 on the symbol 3 to send a beam failure recovery request to the network device, and use the symbol 4 Multiple beams 1 send a beam failure recovery request to the network device.
  • the terminal device sends a beam failure recovery request to the network device by using multiple identical first beams on at least one symbol included in the first unit time window, and the subcarrier spacing may be increased.
  • the network device may configure the first unit time window for the terminal device.
  • the start time of the first unit time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 7 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3,
  • the terminal device may determine that the start time of the first unit time window is symbol 3.
  • the network device may configure the second unit time window on the terminal device.
  • the first symbol included in the second unit time window is the first symbol after the last symbol included in the first unit time window, and the first unit time is taken as an example of the information transmission shown in FIG. 7 .
  • the last symbol contained in the window is symbol 8, and the terminal device can determine that the first symbol included in the second unit time window is symbol 0.
  • the length of the first unit time window may be a fixed length, for example, 4 symbols.
  • the length of the first unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the length of the second unit time window may be a fixed length, for example, 4 symbols.
  • the length of the second unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send the first length indication information to the terminal device to indicate the length of the first unit time window.
  • the length of the first unit time window may be indicated by a direct method.
  • the length of the first unit time window may be described by a mapping manner.
  • the network device may send the second length indication information to the terminal device to indicate the length of the second unit time window.
  • the length of the second unit time window may be indicated by a direct method.
  • the length of the second unit time window may be described by mapping.
  • the network device may configure, by using signaling, the first unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • the first unit time window such as RRC, MAC-CE, or DCI
  • the network device may configure, by using signaling, the second unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • the second unit time window such as RRC, MAC-CE, or DCI
  • the network device may notify the terminal device that the first unit time window is configured by sending the first length indication information to the terminal device.
  • the network device may notify the terminal device that the second unit time window is configured by sending the second length indication information to the terminal device.
  • Step S802 The network device determines a beam failure recovery request in the received beam failure recovery request in the second time window.
  • the network device may receive the beam failure recovery request sent by the terminal device in the second time window according to the received RACH beam scanning mode, and determine a beam failure recovery request in the received beam failure recovery request.
  • the network device may determine the first beam failure recovery request received in the second time window.
  • the network device may determine, by the network device, a beam failure recovery request that is received by the beam whose quality is greater than the preset quality threshold in the second time window.
  • the network device may determine a beam failure recovery request carried by the best quality beam received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the first time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S803 The network device sends a beam failure recovery request response to the terminal device by using the beam corresponding to the determined beam failure recovery request after the second time window.
  • the network device may obtain a beam that carries the determined beam failure recovery request, determine another beam included in the beam pair to which the beam belongs, and use the determined beam to send a beam failure recovery to the terminal device after the second time window.
  • Request a response. For example, if the beam carrying the determined beam failure recovery request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can use beam 3 to send a beam failure recovery request response to the terminal device after the second time window.
  • the terminal device may send a beam failure recovery request to the terminal device by using another beam included in the beam pair to which the first beam belongs on the first symbol after the second time window. response.
  • the network device may send a beam failure recovery request response to the terminal device by using the PDCCH.
  • the network device may send a beam failure recovery request response to the terminal device by using the MAC-CE.
  • the network device may send a beam failure recovery request response to the terminal device by using the RRC.
  • the network device may send a beam failure recovery request response to the terminal device by using the PDSCH.
  • Step S804 The terminal device receives the beam failure recovery request response sent by the network device by using at least one identical first beam on at least one symbol included in the second unit time window.
  • the terminal device may receive the beam failure recovery request response sent by the network device using the at least one identical first beam on at least one symbol included in the second unit time window. For example, if the terminal device sends a beam failure recovery request to the network device by using the beam 1 on at least one symbol included in the first unit time window, the terminal device may use the at least one symbol included in the second unit time window. Beam 1 receives a beam failure recovery request response sent by the network device.
  • the receiving time of the terminal device receiving the beam failure recovery request response and the sending time interval of the transmitting beam failure recovery request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the beam failure recovery request response in the embodiment of the present invention is
  • the transmission time interval of the transmission beam failure recovery request is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a beam failure recovery request to the network device using at least one identical first beam on at least one symbol included in the first time window, and the network device determines that in the first time window Receiving the first beam failure recovery request, the network device uses the beam corresponding to the determined beam failure recovery request in the first time window, and sends a beam failure recovery request response to the terminal device, where the terminal device is in the first time window.
  • the beam failure recovery request response sent by the network device to the network device can be used to implement beam recovery processing of multiple beam failure recovery requests sent by the network device for the same terminal device to improve beam recovery efficiency.
  • FIG. 9 is a schematic flowchart of a beam recovery method according to an embodiment of the present invention. The method includes, but is not limited to, the following steps:
  • Step S901 The terminal device sends a scheduling request to the network device by using at least one different beam on at least one symbol included in the third unit time window.
  • the terminal device may send a scheduling request to the network device by using at least one different beam on at least one symbol included in the third unit time window.
  • the network device can configure the maximum number of beams allowed for the terminal device, and the terminal device can send a scheduling request to the network device by using a beam that is less than or equal to the maximum number of beams.
  • the terminal device may select one symbol (eg, symbol 3) in the third unit time window and send a scheduling request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the third unit time window, and send a scheduling request to the network device by using a plurality of different beams on the symbol 3.
  • the terminal device is on the symbol 3,
  • a scheduling request is sent to the network device using beam 1 and beam 2, respectively.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the third unit time window, and use one beam 1 to the network device on symbol 3.
  • a scheduling request is sent and a scheduling request is sent to the network device using a beam 1 on symbol 4.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the third unit time window, send a scheduling request to the network device using multiple different beams on symbol 3, and use multiple symbols on symbol 4. Different beams send scheduling requests to network devices.
  • the terminal device sends a scheduling request to the network device by using multiple different beams on at least one symbol included in the third unit time window, and the subcarrier spacing may be increased.
  • the network device may configure the maximum number of beams allowed by the terminal device by using signaling such as RRC, MAC-CE, or DCI. All terminal devices in the same cell can be configured with the same maximum number of beams, or all terminal devices included in the terminal device cluster can be configured with the same maximum number of beams, or different terminal devices can be configured with different maximum beam numbers.
  • the terminal device needs to report the capability of the terminal device to the network device.
  • the maximum number of beams can be indicated by a direct method.
  • the maximum number of beams can be described by a mapping method.
  • the network device may configure a third unit time window for the terminal device.
  • the start time of the third unit time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 10 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3,
  • the terminal device can determine that the start time of the third unit time window is symbol 3.
  • the network device may configure the fourth unit time window for the terminal device.
  • the first symbol included in the fourth unit time window is the first symbol after the last symbol included in the third unit time window, and the schematic diagram of the information transmission shown in FIG. 10 is taken as an example, and the third unit time is used.
  • the last symbol contained in the window is symbol 6, and the terminal device can determine that the first symbol included in the fourth unit time window is symbol 0.
  • the length of the third unit time window may be a fixed length, for example, 4 symbols.
  • the length of the third unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the length of the fourth unit time window may be a fixed length, for example, 4 symbols.
  • the length of the fourth unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send the third length indication information to the terminal device to indicate the length of the third unit time window.
  • the length of the third unit time window may be indicated by a direct method.
  • the length of the third unit time window may be described by mapping.
  • the network device may send the fourth length indication information to the terminal device to indicate the length of the fourth unit time window.
  • the length of the fourth unit time window may be indicated by a direct method.
  • the length of the fourth unit time window may be described by a mapping manner.
  • the network device may configure, by using signaling, a third unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • a third unit time window such as RRC, MAC-CE, or DCI
  • the network device may configure, by using signaling, a fourth unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • a fourth unit time window such as RRC, MAC-CE, or DCI
  • the network device may notify the terminal device that the third unit time window is configured by sending the third length indication information to the terminal device.
  • the network device may notify the terminal device that the fourth unit time window is configured by sending the fourth length indication information to the terminal device.
  • Step S902 The network device determines a scheduling request in the received scheduling request in the second time window.
  • the network device may receive the scheduling request sent by the terminal device in the second time window according to the receiving RACH beam scanning mode, and determine a scheduling request in the received scheduling request.
  • the network device can determine the first scheduling request received within the second time window.
  • the network device may determine a scheduling request carried by the beam that is received in the second time window and whose quality is greater than the preset quality threshold.
  • the network device may determine a scheduling request carried by the best quality beam received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the third unit time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S903 The network device sends a scheduling request response to the terminal device by using the beam corresponding to the determined scheduling request after the second time window.
  • the network device may obtain a beam carrying the determined scheduling request, determine another beam included in the beam pair to which the beam belongs, and send a scheduling request response to the terminal device by using the determined beam after the second time window. For example, if the beam carrying the determined scheduling request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can send a scheduling request response to the terminal device using the beam 3 after the second time window.
  • the terminal device may send a scheduling to the terminal device by using another beam included in the beam pair to which the first beam belongs, the first symbol after the second time window, that is, the symbol 0.
  • the terminal device may also send a scheduling request response to the terminal device using the second beam included in the second beam, ie, symbol 1, using another beam included in the beam pair to which the first beam belongs.
  • the network device may send a scheduling request response to the terminal device by using the PDCCH.
  • the network device may send a scheduling request response to the terminal device by using a MAC-CE.
  • the network device may send a scheduling request response to the terminal device by using the RRC.
  • the network device may send a scheduling request response to the terminal device by using the PDSCH.
  • Step S904 The terminal device receives the scheduling request response sent by the network device by using at least one different beam on at least one symbol included in the fourth unit time window.
  • the terminal device may receive the scheduling request response sent by the network device using the at least one different beam on the at least one symbol included in the fourth unit time window. For example, if the terminal device sends a scheduling request to the network device by using the beam 1 and the beam 2 on at least one symbol included in the third unit time window, the terminal device may be at least one symbol included in the fourth unit time window.
  • the beam 1 and beam 2 are respectively used to receive the scheduling request response sent by the network device.
  • the receiving time of the terminal device receiving the scheduling request response and the sending time interval of the sending scheduling request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the scheduling request response and the sending time of the sending scheduling request in the embodiment of the present invention
  • the interval is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a scheduling request to the network device by using at least one different beam on at least one symbol included in the third unit time window, and the network device receives the second time window.
  • the scheduling request determines a scheduling request
  • the network device sends a scheduling request response to the terminal device by using the determined beam corresponding to the scheduling request after the second time window, where the terminal device is at least one symbol included in the fourth unit time window.
  • the at least one different beam receiving scheduling request response sent by the network device can implement beam recovery processing of multiple beam failure recovery requests sent by the network device for the same terminal device, thereby improving beam recovery efficiency.
  • FIG. 11 is a schematic flowchart of a beam recovery method according to an embodiment of the present disclosure. The method includes, but is not limited to, the following steps:
  • Step S1101 The terminal device sends a beam failure recovery request to the network device by using at least one different beam on at least one symbol included in the third unit time window.
  • the terminal device may send a beam failure recovery request to the network device by using at least one different beam on at least one symbol included in the third unit time window.
  • the network device may configure the maximum number of beams allowed for the terminal device, and the terminal device may send a beam failure recovery request to the network device by using a beam that is less than or equal to the maximum number of beams.
  • the terminal device may select one symbol (eg, symbol 3) in the third unit time window and transmit a beam failure recovery request to the network device using one beam 1 on symbol 3.
  • the terminal device may select one symbol (for example, symbol 3) in the third unit time window, and send a beam failure recovery request to the network device by using multiple different beams on the symbol 3.
  • the terminal device is at symbol 3
  • the beam failure recovery request is sent to the network device using beam 1 and beam 2, respectively.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the third unit time window, and use one beam 1 to the network device on symbol 3.
  • a beam failure recovery request is sent and a beam failure recovery request is sent to the network device using a beam 1 on symbol 4.
  • the terminal device may select multiple symbols (eg, symbol 3, symbol 4) in the third unit time window, and send a beam failure recovery request to the network device using multiple different beams on symbol 3, and use on symbol 4
  • a plurality of different beams send a beam failure recovery request to the network device.
  • the terminal device sends a beam failure recovery request to the network device by using multiple different beams on at least one symbol included in the third unit time window, and the subcarrier spacing may be increased.
  • the network device may configure the maximum number of beams allowed by the terminal device by using signaling such as RRC, MAC-CE, or DCI. All terminal devices in the same cell can be configured with the same maximum number of beams, or all terminal devices included in the terminal device cluster can be configured with the same maximum number of beams, or different terminal devices can be configured with different maximum beam numbers.
  • the terminal device needs to report the capability of the terminal device to the network device.
  • the maximum number of beams can be indicated by a direct method.
  • the maximum number of beams can be described by a mapping method.
  • the network device may configure a third unit time window for the terminal device.
  • the start time of the third unit time window may be the first symbol configured with the RACH resource, and the schematic diagram of the information transmission shown in FIG. 10 is taken as an example, and the first symbol configured with the RACH resource is the symbol 3,
  • the terminal device can determine that the start time of the third unit time window is symbol 3.
  • the network device may configure the fourth unit time window for the terminal device.
  • the first symbol included in the fourth unit time window is the first symbol after the last symbol included in the third unit time window, and the schematic diagram of the information transmission shown in FIG. 10 is taken as an example, and the third unit time is used.
  • the last symbol contained in the window is symbol 6, and the terminal device can determine that the first symbol included in the fourth unit time window is symbol 0.
  • the length of the third unit time window may be a fixed length, for example, 4 symbols.
  • the length of the third unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the length of the fourth unit time window may be a fixed length, for example, 4 symbols.
  • the length of the fourth unit time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • the network device may send the third length indication information to the terminal device to indicate the length of the third unit time window.
  • the length of the third unit time window may be indicated by a direct method.
  • the length of the third unit time window may be described by mapping.
  • the network device may send the fourth length indication information to the terminal device to indicate the length of the fourth unit time window.
  • the length of the fourth unit time window may be indicated by a direct method.
  • the length of the fourth unit time window may be described by a mapping manner.
  • the network device may configure, by using signaling, a third unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • a third unit time window such as RRC, MAC-CE, or DCI
  • the network device may configure, by using signaling, a fourth unit time window, such as RRC, MAC-CE, or DCI, for the terminal device.
  • a fourth unit time window such as RRC, MAC-CE, or DCI
  • the network device may notify the terminal device that the third unit time window is configured by sending the third length indication information to the terminal device.
  • the network device may notify the terminal device that the fourth unit time window is configured by sending the fourth length indication information to the terminal device.
  • Step S1102 The network device determines a beam failure recovery request in the received beam failure recovery request in the second time window.
  • the network device may receive the beam failure recovery request sent by the terminal device in the second time window according to the received RACH beam scanning mode, and determine a beam failure recovery request in the received beam failure recovery request.
  • the network device may determine the first beam failure recovery request received in the second time window.
  • the network device may determine, by the network device, a beam failure recovery request that is received by the beam whose quality is greater than the preset quality threshold in the second time window.
  • the network device may determine a beam failure recovery request carried by the best quality beam received in the second time window.
  • the network device may configure a second time window on the network device side, and the first symbol included in the second time window may be the same as the first symbol included in the third unit time window.
  • the length of the second time window may be a fixed length, for example, 4 symbols.
  • the length of the second time window may also be configured by a network device, for example, 3 symbols or 5 symbols.
  • Step S1103 The network device sends a beam failure recovery request response to the terminal device by using the beam corresponding to the determined beam failure recovery request after the second time window.
  • the network device may obtain a beam that carries the determined beam failure recovery request, determine another beam included in the beam pair to which the beam belongs, and use the determined beam to send a beam failure recovery to the terminal device after the second time window.
  • Request a response. For example, if the beam carrying the determined beam failure recovery request is beam 1, and beam 1 and beam 3 form a beam pair, the network device can use beam 3 to send a beam failure recovery request response to the terminal device after the second time window.
  • the terminal device may use the first symbol after the second time window, that is, the symbol 0, to transmit the beam to the terminal device by using another beam included in the beam pair to which the first beam belongs.
  • the terminal device may also send a beam failure recovery request response to the terminal device using another beam included in the beam pair of the first beam belonging to the second symbol after the second time window, that is, symbol 1.
  • the network device may send a beam failure recovery request response to the terminal device by using the PDCCH.
  • the network device may send a beam failure recovery request response to the terminal device by using the MAC-CE.
  • the network device may send a beam failure recovery request response to the terminal device by using the RRC.
  • the network device may send a beam failure recovery request response to the terminal device by using the PDSCH.
  • Step S1104 The terminal device receives the beam failure recovery request response sent by the network device by using at least one different beam on at least one symbol included in the fourth unit time window.
  • the terminal device may receive a beam failure recovery request response sent by the network device using at least one different beam on at least one symbol included in the fourth unit time window. For example, if the terminal device sends a beam failure recovery request to the network device by using the beam 1 and the beam 2 on at least one symbol included in the third unit time window, the terminal device may include at least one of the fourth unit time window. Symbolically, beam 1 and beam 2 are respectively used to receive a beam failure recovery request response sent by the network device.
  • the receiving time of the terminal device receiving the beam failure recovery request response and the sending time interval of the transmitting beam failure recovery request are at least two subframes in the conventional beam recovery method, and the receiving time of the terminal device receiving the beam failure recovery request response in the embodiment of the present invention is
  • the transmission time interval of the transmission beam failure recovery request is up to the first time window, for example, 7 symbols, which can reduce the delay and improve the efficiency of beam recovery.
  • the terminal device sends a beam failure recovery request to the network device using at least one different beam on at least one symbol included in the third unit time window, and the network device is in the second time window. Determining a beam failure recovery request in the received beam failure recovery request, the network device sends a beam failure recovery request response to the terminal device after the second time window, using the beam corresponding to the determined beam failure recovery request, and the terminal device is in the fourth At least one symbol included in the unit time window, using at least one different beam to receive a beam failure recovery request response sent by the network device, which can implement beam recovery processing of multiple beam failure recovery requests sent by the network device for the same terminal device, and improve Beam recovery efficiency.
  • FIG. 12 is a schematic structural diagram of a beam recovery apparatus according to an embodiment of the present invention.
  • the beam recovery apparatus may include a sending module 1201 and a receiving module 1202. The detailed description of each module is as follows.
  • the sending module 1201 is configured to send, by using the at least one beam, a request for recovering a beam, where the request for restoring the beam is a scheduling request or a beam failure recovery request, in the first time window;
  • the receiving module 1202 is configured to receive, by using the at least one beam, the response sent by the network device for a beam recovery request in the first time window, where the response for the beam recovery request is a scheduling request response or a beam Failed to restore the request response.
  • the sending module 1201 is specifically configured to send, by using at least one identical first beam, the request for restoring a beam to the network device on at least one symbol included in the first time window. .
  • the receiving module 1202 is specifically configured to receive, by using the first beam, the response for the beam recovery request on the at least one symbol included in the first time window.
  • the first time window includes a first unit time window and a second unit time window, and the first symbol included in the second unit time window is the last one included in the first unit time window.
  • the sending module 1201 is specifically configured to send the request for restoring a beam to the network device by using at least one identical first beam on at least one symbol included in the first unit time window.
  • the receiving module 1202 is specifically configured to receive, by using the first beam, the response for the beam recovery request on the at least one symbol included in the second unit time window.
  • the beam recovery device in the embodiment of the present invention may further include:
  • a determining module 1203, configured to determine, when the response for the beam recovery request is not received in the first time window, the beam recovery device determines a third time that the network device configures the beam recovery device window;
  • the sending module 1201 is further configured to send the request for restoring a beam to the network device by using at least one identical second beam on at least one symbol included in the third time window.
  • the first time window includes a third unit time window and a fourth unit time window, and the first symbol included in the fourth unit time window is the last one included in the third unit time window.
  • the sending module 1201 is specifically configured to send the request for restoring a beam to the network device by using at least one different beam on at least one symbol included in the third unit time window.
  • the receiving module 1202 is specifically configured to receive, by using the at least one different beam, the response for the beam recovery request on the at least one symbol included in the fourth unit time window.
  • the sending module 1201 is specifically configured to use the at least one beam to the network device in the first time window based on beam request indication information configured by the network device to the beam recovery device.
  • the beam request indication information is used to indicate a sending manner of the request for recovering a beam.
  • the first symbol included in the first time window is the first symbol configured with the RACH resource.
  • the length of the first time window is configured by the network device.
  • the sum of the numbers of symbols included in the first time window is determined according to a maximum number of beams configured by the network device to the beam recovery device.
  • the beam recovery device in the embodiment of the present invention is completely corresponding to the terminal device in the embodiment, and the corresponding module performs the corresponding steps.
  • the sending module 1201 performs the step sent in the method embodiment
  • the receiving module 1202 executes the method embodiment.
  • the steps of receiving, except for transmitting and receiving, may be performed by the determining module 1203 or the processor.
  • the determining module 1203 For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • the transmitting module 1201 transmits a request for recovering a beam to the network device using the at least one beam in a first time window, and the receiving module 1202 uses the at least one beam receiving network in the first time window.
  • the response sent by the device for the beam recovery request may implement beam recovery processing of multiple requests for recovering the beam sent by the network device for the same beam recovery device, thereby improving beam recovery efficiency.
  • FIG. 13 is a terminal device according to an embodiment of the present invention.
  • the terminal device includes a processor 1301, a memory 1302, and a transceiver 1303.
  • the processor 1301, the memory 1302, and the transceiver 1303 are connected to each other through a bus. .
  • the memory 1302 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an Erasable Programmable Read Only Memory (EPROM), or A Compact Disc Read-Only Memory (CD-ROM) for storing related instructions and data, such as a request for restoring a beam, and the like.
  • the transceiver 1303 is configured to receive and transmit data, for example, to transmit a request for recovering a beam to a network device using at least one beam, or to receive a response for a beam recovery request sent by the network device using at least one beam.
  • the memory 1302 can be a separate device or integrated into the processor 1301.
  • the processor 1301 may be one or more Central Processing Units (CPUs) or one or more Microcontroller Units (MCUs). In the case where the processor 1301 is a CPU, the CPU may be a single core CPU or a multi-core CPU. The processor 1301 can be combined with the beam recovery device shown in FIG.
  • the transceiver 1303 described above can include a transmitter and a receiver.
  • the transceiver 1303 may further include an antenna, and the number of the antennas may be one or more.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the processor 1301 in the terminal device is configured to read the program code stored in the memory 1302 and perform the following operations:
  • the transceiver 1303 Receiving, by the transceiver 1303, the response for the beam recovery request sent by the network device by using the at least one beam in the first time window, where the response for the beam recovery request is a scheduling request response or a beam failure recovery Request a response.
  • the processor 1301 sends, by using the at least one beam, the request for recovering the beam to the network device in the first time window, where the
  • the at least one symbol included in the first time window transmits the request for recovering a beam to the network device using at least one identical first beam.
  • the processor 1301 receives, by using the at least one beam, the response that is sent by the network device, for the beam recovery request, in the first time window.
  • the first beam is used to receive the response for the beam recovery request on at least one symbol included in the first time window.
  • the first time window includes a first unit time window and a second unit time window, and the first symbol included in the second unit time window is the last one included in the first unit time window.
  • the processor 1301 sends a request for recovering the beam to the network device by using the at least one beam in the first time window, which may be specifically:
  • the at least one symbol included in the first unit time window transmits the request for recovering a beam to the network device using at least one identical first beam.
  • the processor 1301 receives, by using the at least one beam, the response that is sent by the network device, for the beam recovery request, in the first time window.
  • the first beam is used to receive the response for the beam recovery request on at least one symbol included in the second unit time window.
  • processor 1301 can also perform the following operations:
  • a third time window configured by the network device to the terminal device when the response for the beam recovery request is not received within the first time window
  • the at least one symbol included in the third time window transmits the request for recovering a beam to the network device using at least one identical second beam.
  • the first time window includes a third unit time window and a fourth unit time window, and the first symbol included in the fourth unit time window is the last one included in the third unit time window.
  • the processor 1301 sends a request for recovering the beam to the network device by using the at least one beam in the first time window, which may be specifically:
  • the at least one different symbol included in the third unit time window transmits the request for recovering a beam to the network device using at least one different beam.
  • the processor 1301 receives, by using the at least one beam, the response that is sent by the network device, for the beam recovery request, in the first time window.
  • the at least one different beam included in the fourth unit time window is used to receive the response for the beam recovery request using the at least one different beam.
  • the processor 1301 sends, by using the at least one beam, the request for recovering the beam to the network device in the first time window, where the
  • the indication information is used to indicate the manner of transmission of the request for recovering the beam.
  • the first symbol included in the first time window is the first symbol configured with the RACH resource.
  • the length of the first time window is configured by the network device.
  • the sum of the number of symbols included in the first time window is determined according to a maximum number of beams configured by the network device to the terminal device.
  • the processor 1301 transmits a request for recovering a beam to the network device using the at least one beam in the first time window, and transmits the network device using the at least one beam within the first time window.
  • the response for the beam recovery request can implement beam recovery processing of multiple requests for recovering the beam sent by the network device for the same terminal device, and improve beam recovery efficiency.
  • FIG. 14 is a schematic structural diagram of a beam recovery apparatus according to an embodiment of the present invention.
  • the beam recovery apparatus may include a receiving module 1401, a determining module 1402, and a sending module 1403.
  • the detailed description of each module is as follows.
  • the receiving module 1401 is configured to receive a request for recovering a beam that is sent by the terminal device by using the at least one beam in a first time window, where the request for recovering the beam is a scheduling request or a beam failure recovery request;
  • a determining module 1402 configured to determine, in the second time window, a request for recovering a beam in the received request for recovering a beam;
  • the sending module 1403 is configured to send, by using the determined beam corresponding to the request for restoring the beam, a response for the beam recovery request, where the response for the beam recovery request is a scheduling request response or a beam failure. Resume the request response.
  • the determining module 1402 is specifically configured to respond to a request for recovering a beam carried by a best quality beam received in the second time window, where the second time window includes One symbol is the same as the first symbol included in the first time window.
  • the determining module 1402 is specifically configured to respond to the first request for recovering a beam received in the second time window.
  • the sending module 1403 is specifically configured to send, by using the determined beam corresponding to the request for restoring the beam, the response for the beam recovery request to the terminal device in the second time window.
  • the sending module 1403 is specifically configured to send, by using the determined beam corresponding to the request for restoring the beam, a response for the beam recovery request to the terminal device, outside the second time window.
  • the beam recovery device in the embodiment of the present invention is completely corresponding to the terminal device in the embodiment of the present invention, and the corresponding module performs the corresponding steps.
  • the sending module 1403 performs the steps sent in the method embodiment
  • the receiving module 1401 executes the method embodiment.
  • the steps of receiving, except for transmitting and receiving, may be performed by the determining module 1402 or the processor.
  • the determining module 1402 may be performed by the determining module 1402 or the processor.
  • the receiving module 1401 receives a request for recovering a beam transmitted by the terminal device using at least one beam in a first time window, and the determining module 1402 is received in the second time window.
  • the request for recovering the beam determines a request for recovering the beam
  • the sending module 1403 sends a response for the beam recovery request to the terminal device by using the determined beam corresponding to the request for restoring the beam, so that the network device can implement Beam recovery processing of a plurality of requests for recovering beams transmitted by the same beam restoration device improves beam recovery efficiency.
  • FIG. 15 is a network device according to an embodiment of the present invention.
  • the network device includes a processor 1501, a memory 1502, and a transceiver 1503.
  • the processor 1501, the memory 1502, and the transceiver 1503 are connected to each other through a bus. .
  • the memory 1502 includes, but is not limited to, a RAM, a ROM, an EPROM, or a CD-ROM for storing related instructions and data, such as requests for restoring beams, and the like.
  • the transceiver 1503 is configured to receive and transmit data, for example, receiving a request for recovering a beam sent by the terminal device using at least one beam, or transmitting the beam to the terminal device by using a beam corresponding to the determined request for restoring the beam. Requested response, etc.
  • the memory 1502 can be a separate device or integrated into the processor 1501.
  • the processor 1501 may be one or more CPUs, or one or more MCUs. In the case where the processor 1501 is a CPU, the CPU may be a single core CPU or a multi-core CPU. The processor 1501 can be combined with the beam recovery device shown in FIG.
  • the transceiver 1503 described above can include a transmitter and a receiver.
  • the transceiver 1503 may further include an antenna, and the number of the antennas may be one or more.
  • the processor 1501 in the network device is configured to read the program code stored in the memory 1502 and perform the following operations:
  • a request for recovering a beam sent by the terminal device using the at least one beam in a first time window where the request for recovering the beam is a scheduling request or a beam failure recovery request;
  • the processor 1501 determines, in the received request for recovering a beam, a request for recovering a beam, which may be:
  • the first symbol included in the second time window and the first time window included The first symbol is the same.
  • the processor 1501 determines, in the received request for recovering a beam, a request for recovering a beam, which may be:
  • the processor 1501 sends a response for the beam recovery request to the terminal device by using the determined beam corresponding to the request for restoring the beam, which may be specifically:
  • the processor 1501 sends a response for the beam recovery request to the terminal device by using the determined beam corresponding to the request for restoring the beam, which may be specifically:
  • a response for the beam recovery request is sent to the terminal device using the determined beam corresponding to the request for restoring the beam outside the second time window.
  • the processor 1501 receives a request for recovering a beam transmitted by the terminal device using the at least one beam in a first time window, and in the second time window, the received beam for recovering Determining a request for recovering a beam, and transmitting a response for the beam recovery request to the terminal device by using the determined beam corresponding to the request for restoring the beam, so that the network device can transmit more for the same terminal device.
  • FIG. 16 is a beam recovery system according to an embodiment of the present invention.
  • the beam recovery system may include the terminal device 1601 shown in FIG. 13 and the network device 1602 shown in FIG. The description of the embodiment of the present invention will not be repeated.
  • the embodiment of the present application further provides a communication chip in which an instruction is stored, and when it is run on the terminal device 1601, the communication chip is caused to execute the method corresponding to the terminal device in the various implementation manners in FIG. 13 described above.
  • the embodiment of the present application further provides a communication chip in which an instruction is stored, and when it runs on the network device 1602, the communication chip is caused to execute the method corresponding to the terminal device in the various implementation manners in FIG. 15 above.
  • the network device and the terminal device of the foregoing various solutions have the functions of implementing the corresponding steps performed by the network device and the terminal device in the foregoing method; the functions may be implemented by using hardware or by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transmitting module may be replaced by a transmitter, the receiving module may be replaced by a receiver, and other modules, such as a processing module, etc., may be replaced by a processor and executed separately Transmission operations, reception operations, and related processing operations in various method embodiments.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了波束恢复方法及装置,所述方法包括:终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,用于恢复波束的请求为调度请求或者波束失败恢复请求;终端设备在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。采用本发明实施例,可实现网络设备针对同一终端设备发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。

Description

波束恢复方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及波束恢复方法及装置。
背景技术
波束(beam)是一种通信资源,不同的波束可以认为是不同的通信资源。在移动通信系统中使用波束进行信息传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。一个波束对通常包括一个发送端的发射波束和一个接收端的接收波束。当下行控制信道关联的波束的性能下降到某个门限值时,该波束失效,即无法使用该波束进行信息传输,一旦波束失效,将触发波束恢复机制。
在长期演进(Long Term Evolution,LTE)系统中,在建立无线链路过程中的初始接入、在无线链路建立失败之后的链路重建或者采用基于上行测量的定位方法以进行定位等过程中可以采用随机接入方案,具体可以为:终端设备向网络设备发送调度请求(Scheduling Request,SR),以通知网络设备有终端设备试图接入;终端设备在预先配置的时间窗内监测控制信道,以接收网络设备下发的随机接入响应(Random Access Response,RAR)。上述随机接入方案仅针对网络设备接收到同一终端设备发送的一个SR的场景。
当下行链路(Down Link,DL)的波束对(Beam Pair Link,BPL)失效时,为了充分利用现有的资源,以及波束失效的持续时间远小于无线链路失效(Radio Link Failure,RLF)的时间窗长度,终端设备可以利用随机接入信道(Random Access Channel,RACH)资源在不同方向的多个波束上发射SR,则网络设备在时间窗内可以接收到来自同一终端设备的多个SR。而传统LTE中随机接入的处理流程仅针对网络设备收到同一终端设备发送的一个SR的场景,在网络设备收到同一终端设备发送的多个SR时如何进行随机接入处理,是目前亟需解决的问题。
发明内容
本发明实施例所要解决的技术问题在于,提供波束恢复方法及装置,可实现网络设备针对同一终端设备发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
第一方面,本发明实施例提供了一种波束恢复方法,终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求;终端设备在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应。
其中,用于恢复波束的请求可以为调度请求或者波束失败恢复请求(beam failure recovery request)。
其中,用于波束恢复请求的响应可以为调度请求响应或者波束失败恢复请求响应。
例如,当用于恢复波束的请求为调度请求时,用于波束恢复请求的响应可以为调度请求响应;当用于恢复波束的请求为波束失败恢复请求时,用于波束恢复请求的响应可以为 波束失败恢复请求响应。
其中,第一时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第一时间窗可以包括3个符号或者7个符号等。
可选的,第一时间窗所包含的第一个符号可以为第一个配置有随机接入信道(Random Access Channel,RACH)资源的符号。
在该技术方案中,终端设备可以使用至少一个波束向网络设备发送用于恢复波束的请求,终端设备还可以在第一时间窗内使用上述至少一个波束接收网络设备发送的用于波束恢复请求的响应,则终端设备向网络设备发送的用于恢复波束的请求可以包括多个,以便提高波束恢复效率。
可选的,终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求。
其中,第一波束可以是网络设备对终端设备配置的一个波束。
例如,终端设备可以在第一时间窗所包含的一个符号上,使用一个第一波束向网络设备发送用于恢复波束的请求。示例性的,第一时间窗包括3个符号,分别为第一符号、第二符号以及第三符号,若终端设备在第一时间窗中确定的一个符号为第一符号,则终端设备可以在第一时间窗所包含的第一符号上,使用第一波束向网络设备发送用于恢复波束的请求。
又如,终端设备可以在第一时间窗所包含的一个符号上,使用多个相同的第一波束向网络设备发送用于恢复波束的请求。示例性的,第一时间窗包括3个符号,分别为第一符号、第二符号以及第三符号,若终端设备在第一时间窗中确定的一个符号为第一符号,则终端设备可以在第一时间窗所包含的第一符号上,在不同方向上使用第一波束向网络设备发送用于恢复波束的请求。
又如,终端设备可以在第一时间窗所包含的多个符号上,使用一个第一波束向网络设备发送用于恢复波束的请求。示例性的,第一时间窗包括3个符号,分别为第一符号、第二符号以及第三符号,若终端设备在第一时间窗中确定的多个符号包括第二符号和第三符号,则终端设备可以在第一时间窗所包含的第二符号上,使用第一波束向网络设备发送用于恢复波束的请求,且在第一时间窗所包含的第三符号上,使用第一波束向网络设备发送用于恢复波束的请求。
又如,终端设备可以在第一时间窗所包含的多个符号上,使用多个相同的第一波束向网络设备发送用于恢复波束的请求。示例性的,第一时间窗包括3个符号,分别为第一符号、第二符号以及第三符号,若终端设备在第一时间窗中确定的多个符号包括第二符号和第三符号,则终端设备可以在第一时间窗所包含的第二符号上,使用第一波束向网络设备发送用于恢复波束的请求,且在第一时间窗所包含的第三符号上,使用第一波束向网络设备发送用于恢复波束的请求。
在该技术方案中,终端设备可以在一个符号上使用多个相同的第一波束向网络设备发送用于恢复波束的请求,或者在多个符号上使用一个或者多个相同的第一波束向网络设备发送用于恢复波束的请求,以实现同一终端设备向网络设备发送多个用于恢复波束的请求。
可选的,终端设备在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,具体可以为:终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应。
在该技术方案中,终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求之后,可以在第一时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应,可确保发送用于波束恢复的请求的波束和接收用于波束恢复请求的响应的波束为同一波束。
可选的,第一时间窗可以包括第一单元时间窗和第二单元时间窗,则终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求。
其中,第一单元时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第一单元时间窗可以包括3个符号或者4个符号等。
其中,第二单元时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第二单元时间窗可以包括4个符号或者5个符号等。
其中,第二单元时间窗所包含的第一个符号为第一单元时间窗所包含的最后一个符号之后的第一个符号。例如第一单元时间窗包括4个符号,分别为符号0、符号1、符号2以及符号3,符号3之后的第一个符号为符号4,则终端设备可以确定第二单元时间窗所包含的第一个符号为符号4。需要说明的是,本发明实施例中的第一单元时间窗包含但不限定4个符号,第一单元时间窗的长度和第二单元时间窗的长度可以相同,也可以不相同,具体不受本发明实施例的限定。
可选的,终端设备在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,具体可以为:终端设备在第二单元时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应。
在该技术方案中,终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求之后,终端设备可以在第二单元时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应,可确保发送用于波束恢复的请求的波束和接收用于波束恢复请求的响应的波束为同一波束。
可选的,当在第一时间窗内未接收到用于波束恢复请求的响应时,终端设备可以确定网络设备对终端设备配置的第三时间窗,并在第三时间窗所包含的至少一个符号上,使用至少一个相同的第二波束向网络设备发送用于恢复波束的请求。
其中,第三时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第三时间窗可以包括3个符号或者5个符号等。
在该技术方案中,终端设备在第一时间窗未检测到用于波束恢复请求的响应时,终端设备可以在第三时间窗使用第一波束以外的其他波束重新向网络设备发送用于恢复波束的请求,若终端设备在第三时间窗所包含的至少一个符号上使用第二波束接收到网络设备发送的用于波束恢复请求的响应,则可实现波束恢复,可提高波束恢复的可靠性。
可选的,第一时间窗可以包括第三单元时间窗和第四单元时间窗,则终端设备在第一 时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送用于恢复波束的请求。
其中,第三单元时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第一单元时间窗可以包括3个符号或者5个符号等。
其中,第四单元时间窗可以是网络设备对终端设备配置的时间窗,示例性的,第二单元时间窗可以包括4个符号或者5个符号等。
其中,第四单元时间窗所包含的第一个符号可以为第三单元时间窗所包含的最后一个符号之后的第一个符号。例如第三单元时间窗包括4个符号,分别为符号0、符号1、符号2以及符号3,符号3之后的第一个符号为符号4,则终端设备可以确定第四单元时间窗所包含的第一个符号为符号4。需要说明的是,本发明实施例中的第三单元时间窗包含但不限定4个符号,第三单元时间窗的长度和第四单元时间窗的长度可以相同,也可以不相同,具体不受本发明实施例的限定。
其中,网络设备可以对终端设备配置最大波束数量,例如允许终端设备发送用于恢复波束的请求时所使用的波束的数量可以小于等于5。需要说明的是,本发明实施例中的最大波束数量包含但不限于5,例如,最大波束数量可以为3,等等,具体不受本发明实施例的限制。
其中,第三单元时间窗所包含的符号的数量总和可以是根据网络设备对终端设备配置的最大波束数量确定的。例如,第三单元时间窗所包含的符号的数量总和与最大波束数量之间可以呈正比例关系。示例性的,最大波束数量为5,则第三单元时间窗所包含的符号的数量总和可以为5,即第三单元时间窗包含5个符号。
例如,终端设备可以在第三单元时间窗所包含的一个符号上,使用一个波束向网络设备发送用于恢复波束的请求。示例性的,第三单元时间窗包括5个符号,分别为第一符号、第二符号、第三符号、第四符号以及第五符号,若终端设备在第三单元时间窗中确定的一个符号为第一符号,则终端设备可以在第三单元时间窗所包含的第一符号上,使用波束1向网络设备发送用于恢复波束的请求。波束1可以为终端设备确定得到的一个波束,其中该波束可以是网络设备对终端设备配置的。
又如,终端设备可以在第三单元时间窗所包含的一个符号上,使用多个不同波束向网络设备发送用于恢复波束的请求。示例性的,第三单元时间窗包括5个符号,分别为第一符号、第二符号、第三符号、第四符号以及第五符号,若终端设备在第三单元时间窗中确定的一个符号为第一符号,则终端设备可以在第三单元时间窗所包含的第一符号上,在不同方向上分别使用波束1~波束5中的多个波束向网络设备发送用于恢复波束的请求。其中,若网络设备对终端设备配置的最大波束数量为5,则终端设备在第三单元时间窗所包含的第一符号上,可以使用大于等于2个且小于等于5个波束向网络设备发送用于恢复波束的请求。
又如,终端设备可以在第三单元时间窗所包含的多个符号上,使用一个波束向网络设备发送用于恢复波束的请求。示例性的,第三单元时间窗包括5个符号,分别为第一符号、第二符号、第三符号、第四符号以及第五符号,若终端设备在第三单元时间窗中确定的多 个符号包括第二符号和第三符号,则终端设备可以在第三单元时间窗所包含的第二符号上,使用波束1向网络设备发送用于恢复波束的请求,且在第三单元时间窗所包含的第三符号上,使用波束1向网络设备发送用于恢复波束的请求。
又如,终端设备可以在第三单元时间窗所包含的多个符号上,使用多个不同波束向网络设备发送用于恢复波束的请求。示例性的,第三单元时间窗包括5个符号,分别为第一符号、第二符号、第三符号、第四符号以及第五符号,若终端设备在第三单元时间窗中确定的多个符号包括第二符号和第三符号,则终端设备可以在第三单元时间窗所包含的第二符号上,在不同方向上分别使用波束1~波束5中的多个波束向网络设备发送用于恢复波束的请求,且在第三单元时间窗所包含的第三符号上,在不同方向上分别使用波束1~波束5中的多个波束向网络设备发送用于恢复波束的请求。
在该技术方案中,终端设备可以在一个符号上使用多个不同波束向网络设备发送用于恢复波束的请求,或者在多个符号上使用一个或者多个不同波束向网络设备发送用于恢复波束的请求,以实现同一终端设备向网络设备发送多个用于恢复波束的请求。
可选的,终端设备在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,具体可以为:终端设备在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收用于波束恢复请求的响应。
在该技术方案中,终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同波束向网络设备发送用于恢复波束的请求之后,终端设备可以在第四单元时间窗所包含的至少一个符号上,使用上述至少一个不同的波束接收用于波束恢复请求的响应,可确保发送用于波束恢复的请求的波束和接收用于波束恢复请求的响应的波束为同一波束。
可选的,终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:终端设备基于网络设备对终端设备配置的波束请求指示信息,在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,波束请求指示信息用于指示用于恢复波束的请求的发送方式。
例如,当波束请求指示信息用于指示用于恢复波束的请求的发送方式为在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束发送时,终端设备可以在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求,并在第一时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应。
又如,当波束请求指示信息用于指示用于恢复波束的请求的发送方式为在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束发送时,终端设备可以在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求,并在第二单元时间窗所包含的至少一个符号上,使用第一波束接收用于波束恢复请求的响应。
又如,当波束请求指示信息用于指示用于恢复波束的请求的发送方式为在第三单元时间窗所包含的至少一个符号上,使用至少一个不同波束发送时,终端设备可以在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送用于恢复波束的请求,并在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收用 于波束恢复请求的响应。
第二方面,本发明实施例提供了一种波束恢复方法,网络设备接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,在第二时间窗内,在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,并使用确定得到的用于恢复波束的请求对应的波束,向终端发送用于波束恢复请求的响应。
在该技术方案中,网络设备可以接收终端设备发送的多个用于恢复波束的请求,在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,并使用确定得到的用于恢复波束的请求对应的波束,向终端发送用于波束恢复请求的响应,可实现网络设备针对同一终端设备发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
可选的,网络设备在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,具体可以为:网络设备响应在第二时间窗内接收到的质量最好的波束所承载的用于恢复波束的请求。
例如,若终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送用于恢复波束的请求,则网络设备可以在第二时间窗内接收到的用于恢复波束的请求中确定质量最好的波束所承载的用于恢复波束的请求,并对确定得到的用于恢复波束的请求进行响应。
又如,若终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求,则网络设备可以在第二时间窗内接收到的用于恢复波束的请求中确定质量最好的波束所承载的用于恢复波束的请求,并对确定得到的用于恢复波束的请求进行响应。
可选的,网络设备在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,具体可以为:网络设备响应在第二时间窗内接收到的第一个用于恢复波束的请求。
例如,若终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求,则网络设备可以在第二时间窗内接收到的用于恢复波束的请求中确定最先接收到的用于恢复波束的请求,并对确定得到的用于恢复波束的请求进行响应。
又如,若终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送用于恢复波束的请求,则网络设备可以在第二时间窗内接收到的用于恢复波束的请求中确定最先接收到的用于恢复波束的请求,并对确定得到的用于恢复波束的请求进行响应。
又如,若终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送用于恢复波束的请求,则网络设备可以在第二时间窗内接收到的用于恢复波束的请求中确定最先接收到的用于恢复波束的请求,并对确定得到的用于恢复波束的请求进行响应。
可选的,网络设备使用确定得到的用于恢复波束的请求对应的波束,向终端发送用于波束恢复请求的响应,具体可以为:网络设备在第二时间窗内使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应。
可选的,网络设备使用确定得到的用于恢复波束的请求对应的波束,向终端发送用于波束恢复请求的响应,具体可以为:网络设备在第二时间窗之外使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应。
第三方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第一方面提供的波束恢复方法中全部或部分的步骤。
第四方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质存储有程序,所述程序执行时包括本发明实施例第二方面提供的波束恢复方法中全部或部分的步骤。
第五方面,本发明实施例提供一种波束恢复装置,该波束恢复装置包括用于执行本发明实施例第一方面公开的波束恢复方法的模块。
第六方面,本发明实施例提供一种波束恢复装置,该波束恢复装置包括用于执行本发明实施例第二方面公开的波束恢复方法的模块。
第七方面,本发明实施例提供一种终端设备,其特征在于,包括处理器、存储器以及收发器,存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求;在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应。
第八方面,本发明实施例提供一种网络设备,其特征在于,包括处理器、存储器以及收发器,存储器中存储一组程序代码,且处理器调用存储器中存储的程序代码,用于执行以下操作:
接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求;在第二时间窗内,在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求;使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应。
第九方面,本发明实施例提供一种波束恢复系统,包括本发明实施例第七方面公开的终端设备和本发明实施例第八方面公开的网络设备。
第十方面,本申请实施例提供了一种通信芯片,其中存储有指令,当其在终端设备上运行时,使得所述通信芯片执行上述第一方面的方法。
第十一方面,本申请实施例提供了一种通信芯片,其中存储有指令,当其在网络设备上运行时,使得所述通信芯片执行上述第二方面的方法。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的一种波束恢复系统的架构示意图;
图2A是本发明实施例提供的一种信息传输的示意图;
图2B是本发明另一实施例提供的一种信息传输的示意图;
图3是本发明实施例提供的一种波束恢复方法的流程示意图;
图4是本发明另一实施例提供的一种信息传输的示意图;
图5是本发明另一实施例提供的一种波束恢复方法的流程示意图;
图6是本发明另一实施例提供的一种波束恢复方法的流程示意图;
图7是本发明另一实施例提供的一种信息传输的示意图;
图8是本发明另一实施例提供的一种波束恢复方法的流程示意图;
图9是本发明另一实施例提供的一种波束恢复方法的流程示意图;
图10是本发明另一实施例提供的一种信息传输的示意图;
图11是本发明另一实施例提供的一种波束恢复方法的流程示意图;
图12是本发明实施例提供的一种波束恢复装置的结构示意图;
图13是本发明实施例提供的一种终端设备的结构示意图;
图14是本发明另一实施例提供的一种波束恢复装置的结构示意图;
图15是本发明实施例提供的一种网络设备的结构示意图;
图16是本发明实施例提供的一种波束恢复系统的结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
为了更好的理解本发明实施例公开的一种波束恢复方法及装置,下面首先对本发明实施例适用的网络架构进行描述。请参见图1,图1是本发明实施例公开的一种波束恢复系统的架构示意图。如图1所示,该波束恢复系统可以包括终端设备10以及网络设备20。其中,终端设备10与网络设备20之间可以通过通信连接进行数据传输。
本发明实施例中的终端设备10可以称为用户设备(User Equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理或用户装置等,其具体可以是WLAN中的站点(Station,ST)、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等中的任意一种。
本发明实施例中的网络设备20可以是能和终端设备10通信的设备。网络设备20可以是基站、中继站或接入点。基站可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基 站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。网络设备20还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络设备20还可以是未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备。网络设备20还可以是可穿戴设备或车载设备。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:GSM系统、CDMA系统、WCDMA系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
本发明实施例中,能够和基站进行数据通信的设备均可以理解为终端设备10,本发明实施例将以一般意义上的终端设备来介绍;本发明实施例中,网络设备20可以通过信令对终端设备10配置允许的最大波束数量,则终端设备10可以使用小于等于最大波束数量的波束向网络设备20发送用于波束恢复的请求;本发明实施例中,网络设备20可以对终端设备10配置第一时间窗,其中第一时间窗可以包括一个子帧、一个时隙以及一个或多个符号中的任意一种,则终端设备10可以在第一时间窗使用至少一个波束向网络设备20发送用于波束恢复的请求;本发明实施例中,网络设备20可以对终端设备10配置第三时间窗,其中第三时间窗可以包括一个子帧、一个时隙以及一个或多个符号中的任意一种,则终端设备10在第一时间窗使用至少一个第一波束向网络设备20发送用于波束恢复的请求之后,当在第一时间窗内未接收到网络设备20发送的用于波束恢复请求的响应时,终端设备10可以在第三时间窗使用至少一个第二波束向网络设备发送用于恢复波束的请求;本发明实施例中,网络设备20可以配置网络设备20侧的第二时间窗,其中第二时间窗可以包括一个子帧、一个时隙以及一个或多个符号中的任意一种,则网络设备20接收到终端设备10在第一时间窗使用至少一个波束发送的用于波束恢复的请求之后,可以在第二时间窗,在接收到的用于波束恢复的请求中确定一个用于波束恢复的请求。
本发明实施例中,终端设备10至少有两种发送方式向网络设备20发送用于波束恢复的请求,以实现波束恢复。
第一种发送方式可以为:终端设备10在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备20发送用于恢复波束的请求,并在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备20发送的用于波束恢复请求的响应。
以图2A所示的信息传输的示意图为例,终端设备10在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束B4'向网络设备20发送用于恢复波束的请求。网络设备20按照接收RACH波束扫描方式检测终端设备10发送的用于恢复波束的请求,当网络设备20在第二时间窗内接收到终端设备10发送的用于波束恢复的请求时,网络设备20可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)对该用于波束恢复的请求进行响应。当终端设备10在第一时间窗内未接收到网络设备20发送的用于恢 复波束请求的响应时,终端设备10可以在第二时间窗所包含的至少一个符号上,使用至少一个相同的第二波束B5'向网络设备发送用于恢复波束的请求,当终端设备10在第二时间窗接收到网络设备20发送的用于波束恢复请求的响应时,终端设备10可以确定实现了波束恢复。
第二种发送方式可以为:若第一时间窗包括第三单元时间窗和第四单元时间窗,终端设备10可以在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备20发送用于恢复波束的请求,并在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备20发送的用于波束恢复请求的响应。
以图2B所示的信息传输的示意图为例,终端设备10在第三单元时间窗所包含的至少一个符号上,使用多个不同的波束向网络设备20发送用于恢复波束的请求,网络设备20在第二时间窗内接收到终端设备10发送的多个用于恢复波束的请求之后,可以在多个用于恢复波束的请求中确定一个用于恢复波束的请求,网络设备20可以使用确定得到的一个用于恢复波束的请求对应的波束,向终端设备10发送用于波束恢复请求的响应。终端设备10可以按照波束扫描方式检测网络设备20发送的用于波束恢复请求的响应,当终端设备10接收到网络设备20发送的用于波束恢复请求的响应时,终端设备10可以确定实现了波束恢复。
相对第一种发送方式,本发明实施例通过第二种发送方式可以使用多个不同的波束向网络设备20发送用于恢复波束的请求,可减小时延,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图3,图3是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S301:终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送调度请求。
具体地,当下行链路(Down Link,DL)的波束失效时,终端设备可以在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送调度请求。其中,第一波束可以是网络设备对终端设备配置的波束,例如波束1。
例如,终端设备可以在第一时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第一时间窗中选取一个符号(例如符号3),并在符号3上使用多个波束1向网络设备发送调度请求,即终端设备在符号3上,在不同方向上使用波束1向网络设备发送调度请求。又如,以图4所示的信息传输的示意图为例,终端设备可以在第一时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送调度请求,并在符号4上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第一时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个波束1向网络设备发送调度请求,并在符号4上使用多个波束1向网络设备发送调度请求。
本发明实施例中,终端设备在第一时间窗所包含的至少一个符号上,使用多个相同的第一波束向网络设备发送调度请求,可加大子载波间隔。
本发明实施例中,网络设备可以对终端设备配置第一时间窗。其中,第一时间窗的起 始时刻可以是配置有RACH资源的第一个符号,以图4所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第一时间窗的起始时刻为符号3。
其中,第一时间窗的长度可以是固定长度,例如7个符号,可选的,第一时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送长度指示信息,以指示第一时间窗的长度。可选的,可以通过直接法指示第一时间窗的长度,例如长度指示信息为5,则终端设备可以确定第一时间窗的长度为5个符号。可选的,可以通过映射方式描述第一时间窗的长度,例如长度指示信息和第一时间窗的映射关系如表一所示:
表一
Figure PCTCN2018085733-appb-000001
通过表一可知,当长度指示信息为二进制00时,终端设备可以确定第一时间窗的长度为3个符号;当长度指示信息为二进制11时,终端设备可以确定第一时间窗的长度为7个符号。需要说明的是,本发明实施例中的长度指示信息和第一时间长度的映射关系包含但不局限于上述方式,研发人员可以结合不同场景进行修改,具体不受本发明实施例的限制。
其中,网络设备可以通过信令对终端设备配置第一时间窗,例如无线资源控制协议(Radio Resource Control,RRC)、媒体介入控制-控制元素协议(Media Access Control-Control Element,MAC-CE)或者下行控制信息协议(Downlink Control Information,DCI)等。
其中,网络设备可以通过向终端设备发送长度指示信息的方式,通知终端设备配置了第一时间窗。
步骤S302:网络设备确定在第二时间窗内接收到的第一个调度请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的调度请求,并确定在第二时间窗内接收到的第一个调度请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第一单元时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S303:网络设备在第二时间窗内使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应。
具体实现中,网络设备可以获取承载确定得到的调度请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗内使用确定得到的波束向终端设备发送调度请求响应。其中,波束对可以包括一个发送端的发射波束和一个接收端的接收波束。例如承载确 定得到的调度请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗内使用波束3向终端设备发送调度请求响应。
以图4所示的信息传输的示意图为例,网络设备可以在第二时间窗所包含的符号0上,使用第一波束所属波束对所包含的另一波束向终端设备发送调度请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送调度请求响应。例如,终端设备可以在同一子帧接收多个承载在不同PDCCH上的DCI消息。对于一个PDCCH所承载的DCI消息,每个DCI消息上可以附着一个CRC。终端设备的C-RNTI可以被包含在CRC计算之中并隐式传输。则网络设备可以根据该终端设备的C-RNTI,确定包含该C-RNTI的CRC所属的DCI,进而确定承载该DCI的PDCCH,通过确定得到的PDCCH向终端设备发送调度请求响应。其中,DCI可以包括下行调度分配、上行调度请求、功率控制等。
可选的,网络设备可以通过MAC-CE向终端设备发送调度请求响应。例如,网络设备可以定义一个新的MAC-CE,将该MAC-CE发送给终端设备,其中该MAC-CE可以携带调度请求响应。
可选的,网络设备可以通过RRC向终端设备发送调度请求响应。例如,网络设备可以定义一个新的RRC IE,将该RRC IE发送给终端设备,其中该RRC IE可以携带调度请求响应。
可选的,网络设备可以通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)向终端设备发送调度请求响应。
步骤S304:终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的调度请求响应。
终端设备可以在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的调度请求响应。例如,若终端设备在第一时间窗所包含的至少一个符号上,使用波束1向网络设备发送调度请求,则终端设备可以在第一时间窗所包含的至少一个符号上,使用波束1接收网络设备发送的调度请求响应。
相对传统的波束恢复方法中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图3所描述的方法中,终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送调度请求,网络设备确定在第二时间窗内接收到的第一个调度请求,网络设备在第二时间窗内使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应,则终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的调度请求响应,可实现网络设备针对同一终端设备发送的多个调度请求的波束恢复处理,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图5,图5是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S501:终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第 一波束向网络设备发送波束失败恢复请求。
具体地,当DL波束失效时,终端设备可以在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送波束失败恢复请求。其中,第一波束可以是网络设备对终端设备配置的波束,例如波束1。
例如,终端设备可以在第一时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第一时间窗中选取一个符号(例如符号3),并在符号3上使用多个波束1向网络设备发送波束失败恢复请求,即终端设备在符号3上,在不同方向上使用波束1向网络设备发送波束失败恢复请求。又如,以图4所示的信息传输的示意图为例,终端设备可以在第一时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送波束失败恢复请求,并在符号4上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第一时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个波束1向网络设备发送波束失败恢复请求,并在符号4上使用多个波束1向网络设备发送波束失败恢复请求。
本发明实施例中,终端设备在第一时间窗所包含的至少一个符号上,使用多个相同的第一波束向网络设备发送波束失败恢复请求,可加大子载波间隔。
本发明实施例中,网络设备可以对终端设备配置第一时间窗。其中,第一时间窗的起始时刻可以是配置有RACH资源的第一个符号,以图4所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第一时间窗的起始时刻为符号3。
其中,第一时间窗的长度可以是固定长度,例如7个符号,可选的,第一时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送长度指示信息,以指示第一时间窗的长度。可选的,可以通过直接法指示第一时间窗的长度,例如长度指示信息为5,则终端设备可以确定第一时间窗的长度为5个符号。可选的,可以通过映射方式描述第一时间窗的长度,例如长度指示信息和第一时间窗的映射关系如表一所示。通过表一可知,当长度指示信息为二进制00时,终端设备可以确定第一时间窗的长度为3个符号;当长度指示信息为二进制11时,终端设备可以确定第一时间窗的长度为7个符号。需要说明的是,本发明实施例中的长度指示信息和第一时间长度的映射关系包含但不局限于上述方式,研发人员可以结合不同场景进行修改,具体不受本发明实施例的限制。
其中,网络设备可以通过信令对终端设备配置第一时间窗,例如无线资源控制协议(Radio Resource Control,RRC)、媒体介入控制-控制元素协议(Media Access Control-Control Element,MAC-CE)或者下行控制信息协议(Downlink Control Information,DCI)等。
其中,网络设备可以通过向终端设备发送长度指示信息的方式,通知终端设备配置了第一时间窗。
步骤S502:网络设备确定在第二时间窗内接收到的第一个波束失败恢复请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的波束失败恢复请求,并确定在第二时间窗内接收到的第一个波束失败恢复请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第一单元时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S503:网络设备在第二时间窗内使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应。
具体实现中,网络设备可以获取承载确定得到的波束失败恢复请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗内使用确定得到的波束向终端设备发送波束失败恢复请求响应。例如承载确定得到的波束失败恢复请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗内使用波束3向终端设备发送波束失败恢复请求响应。
以图4所示的信息传输的示意图为例,网络设备可以在第二时间窗所包含的符号0上,使用第一波束所属波束对所包含的另一波束向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过MAC-CE向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过RRC向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDSCH向终端设备发送波束失败恢复请求响应。
步骤S504:终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的波束失败恢复请求响应。
终端设备可以在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的波束失败恢复请求响应。例如,若终端设备在第一时间窗所包含的至少一个符号上,使用波束1向网络设备发送波束失败恢复请求,则终端设备可以在第一时间窗所包含的至少一个符号上,使用波束1接收网络设备发送的波束失败恢复请求响应。
相对传统的波束恢复方法中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图5所描述的方法中,终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送波束失败恢复请求,网络设备确定在第二时间窗内接收到的第一个波束失败恢复请求,网络设备在第二时间窗内使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应,则终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的波束失败恢复请求响应,可实现网络设备针对同一终端设备发送的多个波束失败恢复请求的波束恢复处理,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图6,图6是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S601:终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同 的第一波束向网络设备发送调度请求。
具体地,当DL波束失效时,终端设备可以在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送调度请求。其中,第一波束可以是网络设备对终端设备配置的波束,例如波束1。
例如,终端设备可以在第一单元时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第一单元时间窗中选取一个符号(例如符号3),并在符号3上使用多个波束1向网络设备发送调度请求,即终端设备在符号3上,在不同方向上使用波束1向网络设备发送调度请求。又如,以图7所示的信息传输的示意图为例,终端设备可以在第一单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送调度请求,并在符号4上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第一单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个波束1向网络设备发送调度请求,并在符号4上使用多个波束1向网络设备发送调度请求。
本发明实施例中,终端设备在第一单元时间窗所包含的至少一个符号上,使用多个相同的第一波束向网络设备发送调度请求,可加大子载波间隔。
本发明实施例中,网络设备可以对终端设备配置第一单元时间窗。其中,第一单元时间窗的起始时刻可以是配置有RACH资源的第一个符号,以图7所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第一单元时间窗的起始时刻为符号3。
本发明实施例中,网络设备可以对终端设备配置第二单元时间窗。其中,第二单元时间窗所包含的第一个符号为第一单元时间窗所包含的最后一个符号之后的第一个符号,以图7所示的信息传输的示意图为例,第一单元时间窗所包含的最后一个符号为符号6,则终端设备可以确定第二单元时间窗所包含的第一个符号为符号0。
其中,第一单元时间窗的长度可以是固定长度,例如4个符号,可选的,第一单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,第二单元时间窗的长度可以是固定长度,例如4个符号,可选的,第二单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送第一长度指示信息,以指示第一单元时间窗的长度。可选的,可以通过直接法指示第一单元时间窗的长度。可选的,可以通过映射方式描述第一单元时间窗的长度。
其中,网络设备可以向终端设备发送第二长度指示信息,以指示第二单元时间窗的长度。可选的,可以通过直接法指示第二单元时间窗的长度。可选的,可以通过映射方式描述第二单元时间窗的长度。
其中,网络设备可以通过信令对终端设备配置第一单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过信令对终端设备配置第二单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过向终端设备发送第一长度指示信息的方式,通知终端设备配 置了第一单元时间窗。
其中,网络设备可以通过向终端设备发送第二长度指示信息的方式,通知终端设备配置了第二单元时间窗。
步骤S602:网络设备在第二时间窗内,在接收到的调度请求中确定一个调度请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的调度请求,并在接收到的调度请求中确定一个调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的第一个调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量大于预设质量阈值的波束所承载的调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量最好的波束所承载的调度请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第一单元时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S603:网络设备在第二时间窗之后使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应。
具体实现中,网络设备可以获取承载确定得到的调度请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗之后使用确定得到的波束向终端设备发送调度请求响应。例如承载确定得到的调度请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗之后使用波束3向终端设备发送调度请求响应。
以图7所示的信息传输的示意图为例,终端设备可以在第二时间窗之后的第一个符号,即符号0,使用第一波束所属波束对所包含的另一波束向终端设备发送调度请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送调度请求响应。
可选的,网络设备可以通过MAC-CE向终端设备发送调度请求响应。
可选的,网络设备可以通过RRC向终端设备发送调度请求响应。
可选的,网络设备可以通过PDSCH向终端设备发送调度请求响应。
步骤S604:终端设备在第二单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束接收网络设备发送的调度请求响应。
终端设备可以在第二单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束接收网络设备发送的调度请求响应。例如,若终端设备在第一单元时间窗所包含的至少一个符号上,使用波束1向网络设备发送调度请求,则终端设备可以在第二单元时间窗所包含的至少一个符号上,使用波束1接收网络设备发送的调度请求响应。
相对传统的波束恢复方法中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图6所描述的方法中,终端设备在第一时间窗所包含的至少一个符号上,使用至少 一个相同的第一波束向网络设备发送调度请求,网络设备确定在第一时间窗内接收到的第一个调度请求,网络设备在第一时间窗内使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应,则终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的调度请求响应,可实现网络设备针对同一终端设备发送的多个调度请求的波束恢复处理,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图8,图8是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S801:终端设备在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送波束失败恢复请求。
具体地,当DL波束失效时,终端设备可以在第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送波束失败恢复请求。其中,第一波束可以是网络设备对终端设备配置的波束,例如波束1。
例如,终端设备可以在第一单元时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第一单元时间窗中选取一个符号(例如符号3),并在符号3上使用多个波束1向网络设备发送波束失败恢复请求,即终端设备在符号3上,在不同方向上使用波束1向网络设备发送波束失败恢复请求。又如,以图7所示的信息传输的示意图为例,终端设备可以在第一单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送波束失败恢复请求,并在符号4上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第一单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个波束1向网络设备发送波束失败恢复请求,并在符号4上使用多个波束1向网络设备发送波束失败恢复请求。
本发明实施例中,终端设备在第一单元时间窗所包含的至少一个符号上,使用多个相同的第一波束向网络设备发送波束失败恢复请求,可加大子载波间隔。
本发明实施例中,网络设备可以对终端设备配置第一单元时间窗。其中,第一单元时间窗的起始时刻可以是配置有RACH资源的第一个符号,以图7所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第一单元时间窗的起始时刻为符号3。
本发明实施例中,网络设备可以对终端设备配置第二单元时间窗。其中,第二单元时间窗所包含的第一个符号为第一单元时间窗所包含的最后一个符号之后的第一个符号,以图7所示的信息传输的示意图为例,第一单元时间窗所包含的最后一个符号为符号8,则终端设备可以确定第二单元时间窗所包含的第一个符号为符号0。
其中,第一单元时间窗的长度可以是固定长度,例如4个符号,可选的,第一单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,第二单元时间窗的长度可以是固定长度,例如4个符号,可选的,第二单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送第一长度指示信息,以指示第一单元时间窗的长 度。可选的,可以通过直接法指示第一单元时间窗的长度。可选的,可以通过映射方式描述第一单元时间窗的长度。
其中,网络设备可以向终端设备发送第二长度指示信息,以指示第二单元时间窗的长度。可选的,可以通过直接法指示第二单元时间窗的长度。可选的,可以通过映射方式描述第二单元时间窗的长度。
其中,网络设备可以通过信令对终端设备配置第一单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过信令对终端设备配置第二单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过向终端设备发送第一长度指示信息的方式,通知终端设备配置了第一单元时间窗。
其中,网络设备可以通过向终端设备发送第二长度指示信息的方式,通知终端设备配置了第二单元时间窗。
步骤S802:网络设备在第二时间窗内,在接收到的波束失败恢复请求中确定一个波束失败恢复请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的波束失败恢复请求,并在接收到的波束失败恢复请求中确定一个波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的第一个波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量大于预设质量阈值的波束所承载的波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量最好的波束所承载的波束失败恢复请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第一时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S803:网络设备在第二时间窗之后使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应。
具体实现中,网络设备可以获取承载确定得到的波束失败恢复请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗之后使用确定得到的波束向终端设备发送波束失败恢复请求响应。例如承载确定得到的波束失败恢复请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗之后使用波束3向终端设备发送波束失败恢复请求响应。
以图7所示的信息传输的示意图为例,终端设备可以在第二时间窗之后的第一个符号上,使用第一波束所属波束对所包含的另一波束向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过MAC-CE向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过RRC向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDSCH向终端设备发送波束失败恢复请求响应。
步骤S804:终端设备在第二单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束接收网络设备发送的波束失败恢复请求响应。
终端设备可以在第二单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束接收网络设备发送的波束失败恢复请求响应。例如,若终端设备在第一单元时间窗所包含的至少一个符号上,使用波束1向网络设备发送波束失败恢复请求,则终端设备可以在第二单元时间窗所包含的至少一个符号上,使用波束1接收网络设备发送的波束失败恢复请求响应。
相对传统的波束恢复方法中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图8所描述的方法中,终端设备在第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向网络设备发送波束失败恢复请求,网络设备确定在第一时间窗内接收到的第一个波束失败恢复请求,网络设备在第一时间窗内使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应,则终端设备在第一时间窗所包含的至少一个符号上,使用第一波束接收网络设备发送的波束失败恢复请求响应,可实现网络设备针对同一终端设备发送的多个波束失败恢复请求的波束恢复处理,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图9,图9是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S901:终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送调度请求。
具体地,当DL波束失效时,终端设备可以在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送调度请求。其中,网络设备可以对终端设备配置允许的最大波束数量,则终端设备可以使用小于等于最大波束数量的波束向网络设备发送调度请求。
例如,终端设备可以在第三单元时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第三单元时间窗中选取一个符号(例如符号3),并在符号3上使用多个不同波束向网络设备发送调度请求,示例性的,终端设备在符号3上,分别使用波束1和波束2向网络设备发送调度请求。又如,以图10所示的信息传输的示意图为例,终端设备可以在第三单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送调度请求,并在符号4上使用一个波束1向网络设备发送调度请求。又如,终端设备可以在第三单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个不同波束向网络设备发送调度请求,并在符号4上使用多个不同波束向网络设备发送调度请求。
本发明实施例中,终端设备在第三单元时间窗所包含的至少一个符号上,使用多个不 同波束向网络设备发送调度请求,可加大子载波间隔。
本发明实施例中,网络设备可通过RRC、MAC-CE或者DCI等信令对终端设备配置允许的最大波束数量。其中,同一小区所有终端设备可以配置相同的最大波束数量,或者终端设备集群所包含的所有终端设备可以配置相同的最大波束数量,或者不同终端设备可配置不同的最大波束数量,当不同终端设备配置不同的最大波束数量时,该终端设备需要向网络设备上报该终端设备的能力。其中,可以通过直接法指示最大波束数量。可选的,可以通过映射方法描述最大波束数量。
本发明实施例中,网络设备可以对终端设备配置第三单元时间窗。其中,第三单元时间窗的起始时刻可以是配置有RACH资源的第一个符号,以图10所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第三单元时间窗的起始时刻为符号3。
本发明实施例中,网络设备可以对终端设备配置第四单元时间窗。其中,第四单元时间窗所包含的第一个符号为第三单元时间窗所包含的最后一个符号之后的第一个符号,以图10所示的信息传输的示意图为例,第三单元时间窗所包含的最后一个符号为符号6,则终端设备可以确定第四单元时间窗所包含的第一个符号为符号0。
其中,第三单元时间窗的长度可以是固定长度,例如4个符号,可选的,第三单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,第四单元时间窗的长度可以是固定长度,例如4个符号,可选的,第四单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送第三长度指示信息,以指示第三单元时间窗的长度。可选的,可以通过直接法指示第三单元时间窗的长度。可选的,可以通过映射方式描述第三单元时间窗的长度。
其中,网络设备可以向终端设备发送第四长度指示信息,以指示第四单元时间窗的长度。可选的,可以通过直接法指示第四单元时间窗的长度。可选的,可以通过映射方式描述第四单元时间窗的长度。
其中,网络设备可以通过信令对终端设备配置第三单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过信令对终端设备配置第四单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过向终端设备发送第三长度指示信息的方式,通知终端设备配置了第三单元时间窗。
其中,网络设备可以通过向终端设备发送第四长度指示信息的方式,通知终端设备配置了第四单元时间窗。
步骤S902:网络设备在第二时间窗内,在接收到的调度请求中确定一个调度请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的调度请求,并在接收到的调度请求中确定一个调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的第一个调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量大于预设质量阈值的波束所 承载的调度请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量最好的波束所承载的调度请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第三单元时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S903:网络设备在第二时间窗之后使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应。
具体实现中,网络设备可以获取承载确定得到的调度请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗之后使用确定得到的波束向终端设备发送调度请求响应。例如承载确定得到的调度请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗之后使用波束3向终端设备发送调度请求响应。
以图10所示的信息传输的示意图为例,终端设备可以在第二时间窗之后的第一个符号,即符号0,使用第一波束所属波束对所包含的另一波束向终端设备发送调度请求响应,终端设备还可以在第二时间窗之后的第二个符号,即符号1,使用第一波束所属波束对所包含的另一波束向终端设备发送调度请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送调度请求响应。
可选的,网络设备可以通过MAC-CE向终端设备发送调度请求响应。
可选的,网络设备可以通过RRC向终端设备发送调度请求响应。
可选的,网络设备可以通过PDSCH向终端设备发送调度请求响应。
步骤S904:终端设备在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的调度请求响应。
终端设备可以在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的调度请求响应。例如,若终端设备在第三单元时间窗所包含的至少一个符号上,分别使用波束1和波束2向网络设备发送调度请求,则终端设备可以在第四单元时间窗所包含的至少一个符号上,分别使用波束1和波束2接收网络设备发送的调度请求响应。
相对传统的波束恢复方法中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收调度请求响应的接收时间与发送调度请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图9所描述的方法中,终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送调度请求,网络设备在第二时间窗内,在接收到的调度请求中确定一个调度请求,网络设备在第二时间窗之后使用确定得到的调度请求对应的波束,向终端设备发送调度请求响应,终端设备在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的调度请求响应,可实现网络设备针对同一终端设备发送的多个波束失败恢复请求的波束恢复处理,提高波束恢复效率。
基于图1所示的波束恢复系统的架构示意图,请参见图11,图11是本发明实施例提供的一种波束恢复方法的流程示意图,该方法包括但不限于如下步骤:
步骤S1101:终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送波束失败恢复请求。
具体地,当DL波束失效时,终端设备可以在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送波束失败恢复请求。其中,网络设备可以对终端设备配置允许的最大波束数量,则终端设备可以使用小于等于最大波束数量的波束向网络设备发送波束失败恢复请求。
例如,终端设备可以在第三单元时间窗中选取一个符号(例如符号3),并在符号3上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第三单元时间窗中选取一个符号(例如符号3),并在符号3上使用多个不同波束向网络设备发送波束失败恢复请求,示例性的,终端设备在符号3上,分别使用波束1和波束2向网络设备发送波束失败恢复请求。又如,以图10所示的信息传输的示意图为例,终端设备可以在第三单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用一个波束1向网络设备发送波束失败恢复请求,并在符号4上使用一个波束1向网络设备发送波束失败恢复请求。又如,终端设备可以在第三单元时间窗中选取多个符号(例如符号3,符号4),在符号3上使用多个不同波束向网络设备发送波束失败恢复请求,并在符号4上使用多个不同波束向网络设备发送波束失败恢复请求。
本发明实施例中,终端设备在第三单元时间窗所包含的至少一个符号上,使用多个不同波束向网络设备发送波束失败恢复请求,可加大子载波间隔。
本发明实施例中,网络设备可通过RRC、MAC-CE或者DCI等信令对终端设备配置允许的最大波束数量。其中,同一小区所有终端设备可以配置相同的最大波束数量,或者终端设备集群所包含的所有终端设备可以配置相同的最大波束数量,或者不同终端设备可配置不同的最大波束数量,当不同终端设备配置不同的最大波束数量时,该终端设备需要向网络设备上报该终端设备的能力。其中,可以通过直接法指示最大波束数量。可选的,可以通过映射方法描述最大波束数量。
本发明实施例中,网络设备可以对终端设备配置第三单元时间窗。其中,第三单元时间窗的起始时刻可以是配置有RACH资源的第一个符号,以图10所示的信息传输的示意图为例,配置有RACH资源的第一个符号为符号3,则终端设备可以确定第三单元时间窗的起始时刻为符号3。
本发明实施例中,网络设备可以对终端设备配置第四单元时间窗。其中,第四单元时间窗所包含的第一个符号为第三单元时间窗所包含的最后一个符号之后的第一个符号,以图10所示的信息传输的示意图为例,第三单元时间窗所包含的最后一个符号为符号6,则终端设备可以确定第四单元时间窗所包含的第一个符号为符号0。
其中,第三单元时间窗的长度可以是固定长度,例如4个符号,可选的,第三单元时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,第四单元时间窗的长度可以是固定长度,例如4个符号,可选的,第四单元时 间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
其中,网络设备可以向终端设备发送第三长度指示信息,以指示第三单元时间窗的长度。可选的,可以通过直接法指示第三单元时间窗的长度。可选的,可以通过映射方式描述第三单元时间窗的长度。
其中,网络设备可以向终端设备发送第四长度指示信息,以指示第四单元时间窗的长度。可选的,可以通过直接法指示第四单元时间窗的长度。可选的,可以通过映射方式描述第四单元时间窗的长度。
其中,网络设备可以通过信令对终端设备配置第三单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过信令对终端设备配置第四单元时间窗,例如RRC、MAC-CE或者DCI等。
其中,网络设备可以通过向终端设备发送第三长度指示信息的方式,通知终端设备配置了第三单元时间窗。
其中,网络设备可以通过向终端设备发送第四长度指示信息的方式,通知终端设备配置了第四单元时间窗。
步骤S1102:网络设备在第二时间窗内,在接收到的波束失败恢复请求中确定一个波束失败恢复请求。
具体地,网络设备可以按照接收RACH波束扫描方式在第二时间窗内接收终端设备发送的波束失败恢复请求,并在接收到的波束失败恢复请求中确定一个波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的第一个波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量大于预设质量阈值的波束所承载的波束失败恢复请求。
可选的,网络设备可以确定在第二时间窗内接收到的质量最好的波束所承载的波束失败恢复请求。
其中,网络设备可以配置网络设备侧的第二时间窗,第二时间窗所包含的第一个符号可以和第三单元时间窗所包含的第一个符号相同。
其中,第二时间窗的长度可以是固定长度,例如4个符号,可选的,第二时间窗的长度也可以是网络设备配置的,例如3个符号或者5个符号等。
步骤S1103:网络设备在第二时间窗之后使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应。
具体实现中,网络设备可以获取承载确定得到的波束失败恢复请求的波束,确定该波束所属波束对所包含的另一波束,在第二时间窗之后使用确定得到的波束向终端设备发送波束失败恢复请求响应。例如承载确定得到的波束失败恢复请求的波束为波束1,波束1与波束3构成一个波束对,则网络设备可以在第二时间窗之后使用波束3向终端设备发送波束失败恢复请求响应。
以图10所示的信息传输的示意图为例,终端设备可以在第二时间窗之后的第一个符号,即符号0,使用第一波束所属波束对所包含的另一波束向终端设备发送波束失败恢复请求响应,终端设备还可以在第二时间窗之后的第二个符号,即符号1,使用第一波束所 属波束对所包含的另一波束向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDCCH向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过MAC-CE向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过RRC向终端设备发送波束失败恢复请求响应。
可选的,网络设备可以通过PDSCH向终端设备发送波束失败恢复请求响应。
步骤S1104:终端设备在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的波束失败恢复请求响应。
终端设备可以在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的波束失败恢复请求响应。例如,若终端设备在第三单元时间窗所包含的至少一个符号上,分别使用波束1和波束2向网络设备发送波束失败恢复请求,则终端设备可以在第四单元时间窗所包含的至少一个符号上,分别使用波束1和波束2接收网络设备发送的波束失败恢复请求响应。
相对传统的波束恢复方法中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔至少两个子帧,本发明实施例中终端设备接收波束失败恢复请求响应的接收时间与发送波束失败恢复请求的发送时间间隔最多第一时间窗,例如7个符号,可降低延迟,提高波束恢复的效率。
在图11所描述的方法中,终端设备在第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向网络设备发送波束失败恢复请求,网络设备在第二时间窗内,在接收到的波束失败恢复请求中确定一个波束失败恢复请求,网络设备在第二时间窗之后使用确定得到的波束失败恢复请求对应的波束,向终端设备发送波束失败恢复请求响应,终端设备在第四单元时间窗所包含的至少一个符号上,使用至少一个不同的波束接收网络设备发送的波束失败恢复请求响应,可实现网络设备针对同一终端设备发送的多个波束失败恢复请求的波束恢复处理,提高波束恢复效率。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
请参见图12,图12是本发明实施例提供的一种波束恢复装置的结构示意图,该波束恢复装置可以包括发送模块1201以及接收模块1202,其中,各个模块的详细描述如下。
发送模块1201,用于在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
接收模块1202,用于在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
可选的,所述发送模块1201,具体用于在所述第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
可选的,所述接收模块1202,具体用于在所述第一时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
可选的,所述第一时间窗包括第一单元时间窗和第二单元时间窗,所述第二单元时间窗所包含的第一个符号为所述第一单元时间窗所包含的最后一个符号之后的第一个符号;
所述发送模块1201,具体用于在所述第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
可选的,所述接收模块1202,具体用于在所述第二单元时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
可选的,本发明实施例中的波束恢复装置还可以包括:
确定模块1203,用于当在所述第一时间窗内未接收到所述用于波束恢复请求的响应时,所述波束恢复装置确定所述网络设备对所述波束恢复装置配置的第三时间窗;
所述发送模块1201,还用于在所述第三时间窗所包含的至少一个符号上,使用至少一个相同的第二波束向所述网络设备发送所述用于恢复波束的请求。
可选的,所述第一时间窗包括第三单元时间窗和第四单元时间窗,所述第四单元时间窗所包含的第一个符号为所述第三单元时间窗所包含的最后一个符号之后的第一个符号;
所述发送模块1201,具体用于在所述第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向所述网络设备发送所述用于恢复波束的请求。
可选的,所述接收模块1202,具体用于在所述第四单元时间窗所包含的至少一个符号上,使用所述至少一个不同的波束接收所述用于波束恢复请求的响应。
可选的,所述发送模块1201,具体用于基于所述网络设备对所述波束恢复装置配置的波束请求指示信息,在所述第一时间窗内使用所述至少一个波束向所述网络设备发送所述用于恢复波束的请求,所述波束请求指示信息用于指示所述用于恢复波束的请求的发送方式。
可选的,所述第一时间窗所包含的第一个符号为第一个配置有RACH资源的符号。
可选的,所述第一时间窗的长度是所述网络设备配置的。
可选的,所述第一时间窗所包含的符号的数量总和是根据所述网络设备对所述波束恢复装置配置的最大波束数量确定的。
需要说明的是,本发明实施例可具体参见图3、5、6、8、9、11所示实施例的相关描述,不再赘述。
本发明实施例中的波束恢复装置和方法实施例中的终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块1201执行方法实施例中发送的步骤,接收模块1202执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由确定模块1203或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
在图12所描述的波束恢复装置中,发送模块1201在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,接收模块1202在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,可实现网络设备针对同一波束恢复装置发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
请参见图13,图13是本发明实施例提供的一种终端设备,该终端设备包括处理器1301、存储器1302以及收发器1303,所述处理器1301、存储器1302以及收发器1303通过总线相互连接。
存储器1302包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读 存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),该存储器1302用于存储相关指令及数据,例如用于恢复波束的请求等。收发器1303用于接收和发送数据,例如使用至少一个波束向网络设备发送用于恢复波束的请求,或者使用至少一个波束接收网络设备发送的用于波束恢复请求的响应等。存储器1302可以是一个单独的器件,也可以集成在处理器1301中。
处理器1301可以是一个或多个中央处理器(Central Processing Unit,CPU),或者一个或多个微控制单元(Microcontroller Unit,MCU)。在处理器1301是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。其中,处理器1301可结合图12所示的波束恢复装置。
应理解,上述的收发器1303可以包括发射机和接收机。收发器1303还可以进一步包括天线,天线的数量可以为一个或多个。
上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
该终端设备中的处理器1301用于读取所述存储器1302中存储的程序代码,执行以下操作:
通过收发器1303在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
通过收发器1303在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
可选的,处理器1301在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:
在所述第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
可选的,处理器1301在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,具体可以为:
在所述第一时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
可选的,所述第一时间窗包括第一单元时间窗和第二单元时间窗,所述第二单元时间窗所包含的第一个符号为所述第一单元时间窗所包含的最后一个符号之后的第一个符号;
处理器1301在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:
在所述第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
可选的,处理器1301在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,具体可以为:
在所述第二单元时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
可选的,处理器1301还可以执行以下操作:
当在所述第一时间窗内未接收到所述用于波束恢复请求的响应时,确定所述网络设备对所述终端设备配置的第三时间窗;
在所述第三时间窗所包含的至少一个符号上,使用至少一个相同的第二波束向所述网络设备发送所述用于恢复波束的请求。
可选的,所述第一时间窗包括第三单元时间窗和第四单元时间窗,所述第四单元时间窗所包含的第一个符号为所述第三单元时间窗所包含的最后一个符号之后的第一个符号;
处理器1301在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:
在所述第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向所述网络设备发送所述用于恢复波束的请求。
可选的,处理器1301在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,具体可以为:
在所述第四单元时间窗所包含的至少一个符号上,使用所述至少一个不同的波束接收所述用于波束恢复请求的响应。
可选的,处理器1301在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,具体可以为:
基于所述网络设备对所述终端设备配置的波束请求指示信息,在所述第一时间窗内使用所述至少一个波束向所述网络设备发送所述用于恢复波束的请求,所述波束请求指示信息用于指示所述用于恢复波束的请求的发送方式。
可选的,所述第一时间窗所包含的第一个符号为第一个配置有RACH资源的符号。
可选的,所述第一时间窗的长度是所述网络设备配置的。
可选的,所述第一时间窗所包含的符号的数量总和是根据所述网络设备对所述终端设备配置的最大波束数量确定的。
需要说明的是,本发明实施例可具体参见图3、5、6、8、9、11所示实施例的相关描述,不再赘述。
在图13所描述的终端设备中,处理器1301在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,并在第一时间窗内使用至少一个波束接收网络设备发送的用于波束恢复请求的响应,可实现网络设备针对同一终端设备发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
请参见图14,图14是本发明实施例提供的一种波束恢复装置的结构示意图,该波束恢复装置可以包括接收模块1401、确定模块1402以及发送模块1403,其中,各个模块的详细描述如下。
接收模块1401,用于接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
确定模块1402,用于在第二时间窗内,在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求;
发送模块1403,用于使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
可选的,所述确定模块1402,具体用于响应在所述第二时间窗内接收到的质量最好的波束所承载的用于恢复波束的请求,所述第二时间窗所包含的第一个符号与所述第一时间窗所包含的第一个符号相同。
可选的,所述确定模块1402,具体用于响应在所述第二时间窗内接收到的第一个用于恢复波束的请求。
可选的,所述发送模块1403,具体用于在所述第二时间窗内使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
可选的,所述发送模块1403,具体用于在所述第二时间窗之外使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
需要说明的是,本发明实施例可具体参见图3、5、6、8、9、11所示实施例的相关描述,不再赘述。
本发明实施例中的波束恢复装置和方法实施例中的终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块1403执行方法实施例中发送的步骤,接收模块1401执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由确定模块1402或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
在图14所描述的波束恢复装置中,接收模块1401接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,确定模块1402在第二时间窗内,在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,发送模块1403使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应,可实现网络设备针对同一波束恢复装置发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
请参见图15,图15是本发明实施例提供的一种网络设备,该网络设备包括处理器1501、存储器1502以及收发器1503,所述处理器1501、存储器1502以及收发器1503通过总线相互连接。
存储器1502包括但不限于是RAM、ROM、EPROM、或CD-ROM,该存储器1502用于存储相关指令及数据,例如用于恢复波束的请求等。收发器1503用于接收和发送数据,例如接收终端设备使用至少一个波束发送的用于恢复波束的请求,或者使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应等。存储器1502可以是一个单独的器件,也可以集成在处理器1501中。
处理器1501可以是一个或多个CPU,或者一个或多个MCU。在处理器1501是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。其中,处理器1501可结合图14所示的波束恢复装置。
应理解,上述的收发器1503可以包括发射机和接收机。收发器1503还可以进一步包括天线,天线的数量可以为一个或多个。
该网络设备中的处理器1501用于读取所述存储器1502中存储的程序代码,执行以下 操作:
通过收发器1503接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
在第二时间窗内,在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求;
通过收发器1503使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
可选的,处理器1501在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,具体可以为:
响应在所述第二时间窗内接收到的质量最好的波束所承载的用于恢复波束的请求,所述第二时间窗所包含的第一个符号与所述第一时间窗所包含的第一个符号相同。
可选的,处理器1501在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,具体可以为:
响应在所述第二时间窗内接收到的第一个用于恢复波束的请求。
可选的,处理器1501使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,具体可以为:
在所述第二时间窗内使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
可选的,处理器1501使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,具体可以为:
在所述第二时间窗之外使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
在图15所描述的网络设备中,处理器1501接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,在第二时间窗内,在接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,并使用确定得到的用于恢复波束的请求对应的波束,向终端设备发送用于波束恢复请求的响应,可实现网络设备针对同一终端设备发送的多个用于恢复波束的请求的波束恢复处理,提高波束恢复效率。
请参见图16,图16是本发明实施例提供的一种波束恢复系统,该波束恢复系统可以包括图13所示的终端设备1601和图15所示的网络设备1602,具体可以参见图15、16的描述,本发明实施例不再赘述。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在终端设备1601上运行时,使得所述通信芯片执行上述图13中的各种实现方式中终端设备对应的方法。
本申请实施例还提供了一种通信芯片,其中存储有指令,当其在网络设备1602上运行时,使得所述通信芯片执行上述图15中的各种实现方式中终端设备对应的方法。
上述各个方案的网络设备及终端设备具有实现上述方法中网络设备及终端设备执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所 述硬件或软件包括一个或多个与上述功能相对应的模块;例如发送模块可以由发射机替代,接收模块可以由接收机替代,其它模块,如处理模块等可以由处理器替代,分别执行各个方法实施例中的发送操作、接收操作以及相关的处理操作。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (28)

  1. 一种波束恢复方法,其特征在于,所述方法包括:
    终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
    所述终端设备在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,包括:
    所述终端设备在所述第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
  3. 如权利要求2所述的方法,其特征在于,所述终端设备在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,包括:
    所述终端设备在所述第一时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
  4. 如权利要求1所述的方法,其特征在于,所述第一时间窗包括第一单元时间窗和第二单元时间窗,所述第二单元时间窗所包含的第一个符号为所述第一单元时间窗所包含的最后一个符号之后的第一个符号;
    所述终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,包括:
    所述终端设备在所述第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
  5. 如权利要求4所述的方法,其特征在于,所述终端设备在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,包括:
    所述终端设备在所述第二单元时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
  6. 如权利要求2~5任一项所述的方法,其特征在于,所述方法还包括:
    当在所述第一时间窗内未接收到所述用于波束恢复请求的响应时,所述终端设备确定所述网络设备对所述终端设备配置的第三时间窗;
    所述终端设备在所述第三时间窗所包含的至少一个符号上,使用至少一个相同的第二波束向所述网络设备发送所述用于恢复波束的请求。
  7. 如权利要求1所述的方法,其特征在于,所述第一时间窗包括第三单元时间窗和第四单元时间窗,所述第四单元时间窗所包含的第一个符号为所述第三单元时间窗所包含的最后一个符号之后的第一个符号;
    所述终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,包括:
    所述终端设备在所述第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向所述网络设备发送所述用于恢复波束的请求。
  8. 如权利要求7所述的方法,其特征在于,所述终端设备在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,包括:
    所述终端设备在所述第四单元时间窗所包含的至少一个符号上,使用所述至少一个不同的波束接收所述用于波束恢复请求的响应。
  9. 如权利要求1~8任一项所述的方法,其特征在于,所述终端设备在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,包括:
    所述终端设备基于所述网络设备对所述终端设备配置的波束请求指示信息,在所述第一时间窗内使用所述至少一个波束向所述网络设备发送所述用于恢复波束的请求,所述波束请求指示信息用于指示所述用于恢复波束的请求的发送方式。
  10. 一种波束恢复方法,其特征在于,所述方法包括:
    网络设备接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
    所述网络设备在第二时间窗内,在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求;
    所述网络设备使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
  11. 如权利要求10所述的方法,其特征在于,所述网络设备在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,包括:
    所述网络设备响应在所述第二时间窗内接收到的质量最好的波束所承载的用于恢复波束的请求,所述第二时间窗所包含的第一个符号与所述第一时间窗所包含的第一个符号相同。
  12. 如权利要求10所述的方法,其特征在于,所述网络设备在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求,包括:
    所述网络设备响应在所述第二时间窗内接收到的第一个用于恢复波束的请求。
  13. 如权利要求10~12任一项所述的方法,其特征在于,所述网络设备使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,包括:
    所述网络设备在所述第二时间窗内使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
  14. 如权利要求10~12任一项所述的方法,其特征在于,所述网络设备使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,包括:
    所述网络设备在所述第二时间窗之外使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
  15. 一种波束恢复装置,其特征在于,所述装置包括:
    发送模块,用于在第一时间窗内使用至少一个波束向网络设备发送用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
    接收模块,用于在所述第一时间窗内使用所述至少一个波束接收所述网络设备发送的用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
  16. 如权利要求15所述的装置,其特征在于,所述发送模块,具体用于:
    在所述第一时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
  17. 如权利要求16所述的装置,其特征在于,
    所述接收模块,具体用于在所述第一时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
  18. 如权利要求15所述的装置,其特征在于,所述第一时间窗包括第一单元时间窗和第二单元时间窗,所述第二单元时间窗所包含的第一个符号为所述第一单元时间窗所包含的最后一个符号之后的第一个符号;
    所述发送模块,具体用于在所述第一单元时间窗所包含的至少一个符号上,使用至少一个相同的第一波束向所述网络设备发送所述用于恢复波束的请求。
  19. 如权利要求18所述的装置,其特征在于,
    所述接收模块,具体用于在所述第二单元时间窗所包含的至少一个符号上,使用所述第一波束接收所述用于波束恢复请求的响应。
  20. 如权利要求16~19任一项所述的装置,其特征在于,所述装置还包括:
    确定模块,用于当在所述第一时间窗内未接收到所述用于波束恢复请求的响应时,所述终端设备确定所述网络设备对所述终端设备配置的第三时间窗;
    所述发送模块,还用于在所述第三时间窗所包含的至少一个符号上,使用至少一个相同的第二波束向所述网络设备发送所述用于恢复波束的请求。
  21. 如权利要求15所述的装置,其特征在于,所述第一时间窗包括第三单元时间窗和第四单元时间窗,所述第四单元时间窗所包含的第一个符号为所述第三单元时间窗所包含的最后一个符号之后的第一个符号;
    所述发送模块,具体用于在所述第三单元时间窗所包含的至少一个符号上,使用至少一个不同的波束向所述网络设备发送所述用于恢复波束的请求。
  22. 如权利要求21所述的装置,其特征在于,
    所述接收模块,具体用于在所述第四单元时间窗所包含的至少一个符号上,使用所述至少一个不同的波束接收所述用于波束恢复请求的响应。
  23. 如权利要求15~22任一项所述的装置,其特征在于,
    所述发送模块,具体用于基于所述网络设备对所述终端设备配置的波束请求指示信息,在所述第一时间窗内使用所述至少一个波束向所述网络设备发送所述用于恢复波束的请求,所述波束请求指示信息用于指示所述用于恢复波束的请求的发送方式。
  24. 一种波束恢复装置,其特征在于,所述装置包括:
    接收模块,用于接收终端设备在第一时间窗内使用至少一个波束发送的用于恢复波束的请求,所述用于恢复波束的请求为调度请求或者波束失败恢复请求;
    确定模块,用于在第二时间窗内,在所述接收到的用于恢复波束的请求中确定一个用于恢复波束的请求;
    发送模块,用于使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应,所述用于波束恢复请求的响应为调度请求响应或者波束失败恢复请求响应。
  25. 如权利要求24所述的装置,其特征在于,
    所述确定模块,具体用于响应在所述第二时间窗内接收到的质量最好的波束所承载的用于恢复波束的请求,所述第二时间窗所包含的第一个符号与所述第一时间窗所包含的第一个符号相同。
  26. 如权利要求24所述的装置,其特征在于,
    所述确定模块,具体用于响应在所述第二时间窗内接收到的第一个用于恢复波束的请求。
  27. 如权利要求24~26任一项所述的装置,其特征在于,
    所述发送模块,具体用于在所述第二时间窗内使用确定得到的用于恢复波束的请求对 应的波束,向所述终端设备发送用于波束恢复请求的响应。
  28. 如权利要求24~26任一项所述的装置,其特征在于,
    所述发送模块,具体用于在所述第二时间窗之外使用确定得到的用于恢复波束的请求对应的波束,向所述终端设备发送用于波束恢复请求的响应。
PCT/CN2018/085733 2017-05-05 2018-05-04 波束恢复方法及装置 WO2018202178A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880028695.0A CN110603738A (zh) 2017-05-05 2018-05-04 波束恢复方法及装置
EP18794965.6A EP3471286A4 (en) 2017-05-05 2018-05-04 METHOD AND DEVICE FOR RADIATION RECOVERY
BR112019004113A BR112019004113A2 (pt) 2017-05-05 2018-05-04 método e aparelho de recuperação de feixe
US16/374,474 US10931334B2 (en) 2017-05-05 2019-04-03 Beam recovery method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710315436.3A CN108810933A (zh) 2017-05-05 2017-05-05 波束恢复方法及装置
CN201710315436.3 2017-05-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/374,474 Continuation US10931334B2 (en) 2017-05-05 2019-04-03 Beam recovery method and apparatus

Publications (1)

Publication Number Publication Date
WO2018202178A1 true WO2018202178A1 (zh) 2018-11-08

Family

ID=64015838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085733 WO2018202178A1 (zh) 2017-05-05 2018-05-04 波束恢复方法及装置

Country Status (5)

Country Link
US (1) US10931334B2 (zh)
EP (1) EP3471286A4 (zh)
CN (3) CN110062398B (zh)
BR (1) BR112019004113A2 (zh)
WO (1) WO2018202178A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479284A (zh) * 2019-01-24 2020-07-31 电信科学技术研究院有限公司 波束失败恢复响应的发送方法、监测方法、基站及终端
US11917581B2 (en) 2017-04-19 2024-02-27 Apex Beam Technologies Llc Method and device in UE and base station used for paging

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10893540B2 (en) * 2017-07-28 2021-01-12 Qualcomm Incorporated Random access channel procedures with multiple carriers
US11444676B2 (en) * 2017-12-27 2022-09-13 Ntt Docomo, Inc. User terminal and radio communication method
CN111200832B (zh) * 2018-11-16 2021-09-10 大唐移动通信设备有限公司 一种波束失败恢复方法、装置及终端
CN111385890B (zh) * 2018-12-29 2023-05-02 成都华为技术有限公司 一种波束失败恢复方法及装置
WO2020159286A1 (en) * 2019-02-01 2020-08-06 Lg Electronics Inc. Provision of rach related information for connection failure detection
CN110933695B (zh) * 2019-04-24 2021-12-28 华为技术有限公司 波束故障恢复请求发送方法及终端设备
CN112788754B (zh) * 2019-11-07 2022-08-02 维沃移动通信有限公司 信息传输方法及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008013A2 (ko) * 2009-07-13 2011-01-20 엘지전자 주식회사 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
US9699668B2 (en) * 2012-04-24 2017-07-04 Lg Electronics Inc. Methods for measuring and transmitting downlink signals and apparatuses therefor
EP3100488B1 (en) * 2015-02-13 2021-10-27 MediaTek Singapore Pte. Ltd. Handling of intermittent disconnection in a millimeter wave (mmw) system
US10355828B2 (en) * 2015-03-02 2019-07-16 Qualcomm Incorporated Fast radio link control error recovery with low latency transmissions
EP3335494A4 (en) * 2015-08-11 2018-08-01 Telefonaktiebolaget LM Ericsson (PUBL) Recovery from beam failure
MX2019003701A (es) * 2016-09-30 2019-07-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para gestionar un haz de onda, dispositivo terminal y dispositivo de red.
CN108631845B (zh) * 2017-03-24 2021-11-02 中兴通讯股份有限公司 波束恢复的处理和波束恢复的方法,基站和终端

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022902A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Radio Link Monitoring, Beam Failure and Radio Link Failure", 3GPP TSG RAN WG 2 MEETING #97BIS R2-1703423, 7 April 2017 (2017-04-07), XP051245279 *
QUALCOM INCORPORATED: "Beam Management", 3GPP TSG-RAN WG 2 MEETING #97BIS, R2-1703564, 7 April 2017 (2017-04-07), XP051245403 *
QUALCOMM INCORPORATED: "Beam Recovery Request", 3 GPP TSG-RAN WG 2 MEETING #97BIS, R2-1703562, 7 April 2017 (2017-04-07), XP051222086 *
See also references of EP3471286A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917581B2 (en) 2017-04-19 2024-02-27 Apex Beam Technologies Llc Method and device in UE and base station used for paging
CN111479284A (zh) * 2019-01-24 2020-07-31 电信科学技术研究院有限公司 波束失败恢复响应的发送方法、监测方法、基站及终端
CN111479284B (zh) * 2019-01-24 2022-02-08 大唐移动通信设备有限公司 波束失败恢复响应的发送方法、监测方法、基站及终端

Also Published As

Publication number Publication date
BR112019004113A2 (pt) 2020-02-04
US20190229777A1 (en) 2019-07-25
EP3471286A1 (en) 2019-04-17
US10931334B2 (en) 2021-02-23
CN110062398B (zh) 2020-07-24
CN108810933A (zh) 2018-11-13
CN110062398A (zh) 2019-07-26
EP3471286A4 (en) 2019-08-07
CN110603738A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2018202178A1 (zh) 波束恢复方法及装置
EP3777407B1 (en) Methods and related devices for performing cross-carrier scheduling with beam operations
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
WO2018149273A1 (zh) 一种多码字传输方法及装置
WO2018188652A1 (zh) 随机接入及响应方法、终端设备、网络设备
WO2019157911A1 (zh) 波束管理方法、终端、网络设备以及存储介质
US20230308226A1 (en) Harq codebook construction with feedback enabling/disabling per harq process
CN108668374B (zh) 一种调度请求的传输方法及装置
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
CN112399493B (zh) 通信方法和通信装置
EP3993483A1 (en) Processing method and device for beam failure
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
EP3242525A1 (en) Data transmission method and apparatus
JP7189207B2 (ja) 信号送信方法、関連する装置及びシステム
WO2018171461A1 (zh) 信息传输方法、装置及系统
US20240056247A1 (en) Enhancements for Beam Group Reporting in Multi-TRP Scenarios
WO2018152788A1 (zh) 一种传输数据的方法、终端设备和网络设备
WO2018058584A1 (zh) 发送或接收信道状态信息的方法和设备
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
US11627582B2 (en) Method, network device and terminal device for semi-persistent scheduling
WO2019185055A1 (zh) 无线资源调度
EP4156816A1 (en) Uplink signal transmission method and device, communication node and storage medium
US11252702B2 (en) Uplink control information sending method, uplink control information receiving method, and device
EP4042802A1 (en) Systems and methods of monitoring ul cancelation indications
US11569947B2 (en) Method and apparatus for managing a resource in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018794965

Country of ref document: EP

Effective date: 20190114

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004113

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019004113

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190227