WO2018152788A1 - 一种传输数据的方法、终端设备和网络设备 - Google Patents

一种传输数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018152788A1
WO2018152788A1 PCT/CN2017/074830 CN2017074830W WO2018152788A1 WO 2018152788 A1 WO2018152788 A1 WO 2018152788A1 CN 2017074830 W CN2017074830 W CN 2017074830W WO 2018152788 A1 WO2018152788 A1 WO 2018152788A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal device
uplink
uplink data
information
Prior art date
Application number
PCT/CN2017/074830
Other languages
English (en)
French (fr)
Inventor
杨宁
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to KR1020197027771A priority Critical patent/KR20190118639A/ko
Priority to PCT/CN2017/074830 priority patent/WO2018152788A1/zh
Priority to JP2019546230A priority patent/JP6882502B2/ja
Priority to US16/486,426 priority patent/US11252746B2/en
Priority to CN201780086207.7A priority patent/CN110291825B/zh
Priority to EP17898183.3A priority patent/EP3589043B1/en
Priority to TW107105089A priority patent/TW201832589A/zh
Publication of WO2018152788A1 publication Critical patent/WO2018152788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a method, a terminal device, and a network device for transmitting data.
  • LTE Long Term Evolution
  • the embodiment of the present application provides a method for transmitting data, a terminal device, and a network device, which can improve system transmission performance.
  • the first aspect provides a method for transmitting data, where the method includes: the terminal device sends the first control signaling to the network device, where the first control signaling is used to indicate that the network device is the cached first uplink. Allocating an uplink resource and allocating a backup uplink resource to the terminal device; the terminal device receiving the second control signaling sent by the network device, where the second control signaling is used to indicate that the first uplink data is allocated The uplink resource and the standby uplink resource; the terminal device transmits the first uplink data on an uplink resource allocated for the first uplink data; if the terminal device has a cached second uplink data, The second uplink data is sent to the network device on the standby uplink resource, where the second uplink data is uplink data other than the first uplink data.
  • the cached unreported data of the terminal device can be transmitted in time, thereby improving system transmission performance.
  • the terminal device may also need no separate information in the first control signaling to indicate whether the standby uplink resource is needed, that is, the network device actively needs to see that the first control signaling sent by the terminal device has an uplink resource requirement.
  • the terminal device allocates the backup uplink resource, and the terminal device may separately send a request for the standby resource to the network device, that is, the data cache does not have to be applied. Please reserve resources, but apply for backup resources first, and then determine whether there is cached data, if any, use alternate resources for transmission.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is in the And transmitting, by the terminal device, the uplink data buffered before the first control signaling to the network device.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, The second information is used to instruct the network device to allocate the standby uplink resource to the terminal device.
  • the first control signaling includes first information, where the first information is used to indicate that the network device allocates an uplink resource to the first uplink data, where the first control information is The transmission format of the command is used to instruct the network device to allocate the standby uplink resource to the terminal device.
  • the transmission format may be the number of bits included in the first control signaling, or may be the content included in the first control signaling.
  • the first control signaling may be a scheduling request (SR) or a buffer status report (BSR).
  • the SR may include a plurality of bits, wherein a certain bit may be used to indicate that the network device has a need for alternate upstream data.
  • the first control signaling includes size information of the standby resource that is required by the terminal device.
  • the location of the backup resource may also be suggested by the terminal device, and the network device may allocate the backup resource to the terminal device according to the size and/or location suggested by the terminal device, or may not be based on the size and/or recommended by the terminal device.
  • the location to allocate the alternate resource for the terminal device is determined by the network device.
  • the method further includes: if the terminal device does not buffer uplink data other than the first uplink data, the terminal device sends third information to the network device, The third information is used to indicate that the standby uplink resource of the network device does not have uplink data transmission.
  • the terminal device may also send the third information to the network device, and the network device needs to prepare Use resources to monitor whether there is uplink data transmission, if there is any reception, if it is not received.
  • the third information is carried in Medium Access Control (MAC) layer signaling or physical layer signaling.
  • MAC Medium Access Control
  • the third information may be that the MAC signaling is sent to the network device by using the data channel, or the physical layer signaling is sent to the network device by using the physical control channel.
  • a method for transmitting data includes: receiving, by a network device, first control signaling sent by a terminal device, where the first control signaling is used to indicate that the network device is a cached first And the uplink data is allocated to the terminal device, and the second uplink control signaling is sent to the terminal device, where the second control signaling is used to indicate that the first uplink is And the uplink resource that is allocated by the data; the network device receives the first uplink data on the uplink resource allocated for the first uplink data.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, The second information is used to indicate that the network device allocates the backup uplink resource to the terminal device, and the method further includes: determining, by the network device, the uplink resource for the first uplink data according to the first information. The network device determines, according to the second information, that the standby uplink resource is allocated to the terminal device.
  • the first control signaling includes a first information, where the first information is used to indicate that the network device allocates an uplink resource to the first uplink data
  • the method further includes: The network device determines, according to the first information, that an uplink resource is allocated for the first uplink data, and the network device determines, according to the transmission format of the first control signaling, that the standby uplink is allocated to the terminal device. Resources.
  • the first control signaling is a scheduling request SR or a buffer status reporting BSR.
  • the method further includes: the network device allocates the standby uplink resource to the terminal device.
  • the first control signaling includes size information of the standby resource that is required by the terminal device, and the network device allocates the standby uplink resource to the terminal device, including: The network device allocates the standby uplink resource to the terminal device according to the size information.
  • the method further includes: the network device is in the standby Monitoring, by the uplink resource, whether the terminal device has an uplink data transmission; if the uplink data transmission is detected, the network device receives the second uplink data by using the standby uplink resource, where the second uplink data is the first Upstream data other than uplink data.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is in the And transmitting, by the terminal device, the uplink data buffered before the first control signaling to the network device.
  • the method further includes: the network device receiving the third information sent by the terminal device, where the third information is used to indicate that the standby uplink resource has no uplink data transmission.
  • the third information is carried in the medium access control MAC layer signaling or the physical layer signaling.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of the second aspect or any possible implementation of the first aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention which comprise a program designed to perform the above aspects.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 2 shows a schematic diagram of a scheduling based uplink data transmission.
  • FIG. 3 shows a schematic block diagram of a method of transmitting data in an embodiment of the present application.
  • FIG. 4 shows another schematic block diagram of a method of transmitting data in an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device for transmitting data according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device for transmitting data according to an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a terminal device for transmitting data according to an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a network device for transmitting data according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the technical solution of the embodiment of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SRAMSE) system, and low.
  • the SCMA system and the LDS system may also be referred to as other names in the field of communication;
  • the technical solution of the embodiment of the present application may be applied to adopt non-orthogonal Multi-carrier transmission system with multiple access technology, for example, Orthogonal Frequency Division Multiplexing (OFDM), filter bank multi-carrier (Filter) Bank Multi-Carrier (abbreviated as "FBMC”), Generalized Frequency Division Multiplexing (GFDM), Filtered-OFDM (Filtered-OFDM, abbreviated as "F-OFDM”) System, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filtered-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the scheduling-based uplink data transmission method 100 includes:
  • the terminal device initiates a scheduling request (SR), and is used to notify the network terminal that data is to be transmitted.
  • SR scheduling request
  • the network device sends downlink control information on a corresponding physical downlink control channel (Physical Downlink Control Channel, PDCCH) according to the scheduling request of the terminal device.
  • PDCCH Physical Downlink Control Channel
  • DCI DownlinkControlInformation
  • the terminal device transmits uplink data to the corresponding uplink resource according to the uplink resource authorization sent by the network device. If there is still data remaining in the buffer of the terminal device, the buffer status information (buffer status report, BSR) is continuously transmitted on the data channel. );
  • the network device further sends an uplink resource authorization according to the BSR, and so on, until the terminal does not initiate the request.
  • the uplink has data transmission, and has been placed in the buffer, then it needs to apply uplink resources for the data for transmission. It can send a scheduling request through the SR control channel, or through a Physical Random Access Channel (PRACH), in which a scheduling request is sent in a competitive manner; the network device follows a certain scheduling principle, if possible Some resources are allocated for sending BSR information, and the terminal device is notified by the uplink resource authorization; the terminal device sends a BSR to tell the network device that the logical channel group corresponding to the network device has how much data to send, and the uplink scheduling is for the logical channel group instead of one radio bearer; The network device allocates corresponding resources to the resources requested by the terminal device, and then notifies the terminal device by using the uplink resource authorization; the terminal device sends the uplink data according to a certain priority principle on the logical channel of the terminal device.
  • PRACH Physical Random Access Channel
  • the resource size applied by the terminal device is only enough for the transmission terminal device to inform the network device of the amount of data.
  • a part of the data is cached in the terminal device but the network device does not know. Therefore, the amount of data usually needs to be reported next time.
  • the network device then allocates resources for this part of the data, and in this case, the data is not transmitted in time, which increases the delay, especially for low-latency services, resulting in low transmission performance.
  • FIG. 3 shows a schematic block diagram of a method 200 of transmitting data in an embodiment of the present application. As shown in FIG. 3, the method 200 includes:
  • the terminal device sends a first control signaling to the network device, where the first control signaling is used to request the network device to allocate an uplink resource for the cached first uplink data and allocate a standby uplink resource for the terminal device.
  • the terminal device receives the second control signaling sent by the network device, where the second control signaling is used to indicate an uplink resource and the standby uplink resource allocated for the first uplink data.
  • the terminal device transmits the first uplink data on an uplink resource allocated for the first uplink data.
  • the terminal device If the terminal device has the cached second uplink data, send the uplink uplink resource to the terminal device.
  • the network device sends the second uplink data, where the second uplink data is uplink data other than the first uplink data.
  • the terminal device when the terminal device has data to be transmitted, the terminal device usually needs to apply for an uplink resource to the network device.
  • the terminal device may send the SR to the network device by using a physical uplink control channel (PUCCH), and the network device It is possible to monitor whether there is an SR report of the terminal device on the PUCCH.
  • the terminal device not only needs to allocate resources for the uplink data reported by the network device, but also allocates resources for the unreported uplink data, that is, the standby uplink resource in the embodiment of the present application, and the network device not only needs to indicate to the terminal device that the uplink is reported.
  • the uplink resource to which the data is allocated needs to be allocated to the terminal device as the backup uplink resource allocated for the unreported uplink data, so that the terminal device can use the uplink resource allocated for the reported data to transmit the reported data, and if the terminal device further caches the report, In addition to the uplink data, the uplink uplink resource is used to send unreported uplink data to the network device.
  • the method for transmitting data in the embodiment of the present application can improve system transmission performance.
  • the information for indicating that the terminal device is allocated an alternate uplink resource may also be separately sent to the network device. For example, although the terminal device has no data to send temporarily, the terminal device can apply for the backup uplink resource to the network device according to the state of the terminal device, and then, after the uplink data arrives, the data can be transmitted by using the applied standby uplink resource. It is not limited to scenarios where data must be transmitted.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is in the terminal device The network device sends the uplink data buffered before the first control signaling.
  • the standby uplink resource may be used to transmit data that is not reported before the terminal device sends the first control signaling to the network device, and may also be used to transmit data that is sent after the terminal device sends the first control signaling to the network device. .
  • the terminal device can transmit the data 2 on the standby uplink resource allocated by the network device. If the terminal device only has the data 1 coming, the terminal device reports the existence of the data 1 to the network device, and after the data 3 arrives at the terminal device, the terminal device can also use the standby uplink resource to transmit the data 3.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource, the second information, to the first uplink data. And is used to indicate that the network device allocates the standby uplink resource to the terminal device.
  • the first letter The information can be 1 bit, 0 means no uplink resources, 1 means uplink resources are needed.
  • the second information may also be 1 bit, where 0 indicates that the standby uplink resource is not allocated, and 1 indicates that the standby uplink resource is allocated to the terminal device.
  • the network device can also negotiate with the terminal device in advance, which bits of the first control signaling are used as the first information, and which bits are used as the second information. For example, if the first control signaling is 5 bits, then the first three bits are the first information, and the last two bits are the second information.
  • the first control signaling includes first information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, and the first control signaling is transmitted.
  • the format is used to indicate that the network device allocates the standby uplink resource to the terminal device.
  • the transmission format of the first control signaling may also be used to indicate whether the terminal device needs the network device to allocate the standby uplink resource.
  • the transmission format may refer to the number of bits included in the control signaling, and may also refer to content included in the control signaling.
  • the first control signaling including a certain fixed number of bits can be regarded as the standby uplink resource required by the terminal device.
  • the network device and the terminal device can agree in advance. If the network device receives the first control signaling, including 5 bits, it can be considered that the terminal device needs the network device to allocate the standby uplink resource.
  • the first control signaling may have multiple transmission formats, and may also be 3 bits or the like.
  • the first control signaling is a scheduling request SR or a buffer status report BSR.
  • the network device allocates a dedicated SR resource to each terminal device to send an SR, and the SR resource is periodic, and occurs every n subframes.
  • the terminal device needs to notify the network device whether the uplink resource is needed for transmitting the uplink data by using the SR, and after receiving the SR, the network device allocates at least the resource for sending the BSR to the terminal device.
  • the terminal device when the terminal device requests an uplink resource from the network device through the SR, it usually only indicates whether there is uplink data to be sent, and does not indicate how much uplink data needs to be sent.
  • the terminal device needs to tell the network device through the BSR how much data needs to be sent in the uplink buffer, so that the network device determines how many uplink resources are allocated to the terminal device. That is to say, the terminal device needs to tell the network device the buffer status of at least part of the logical channel.
  • the BSR report is triggered: 1.
  • the uplink data buffer of the terminal device is empty and new data arrives. For example, the terminal device sends the uplink data for the first time.
  • the BSR is called "Regular BSR"; high priority data arrives if the terminal device has sent a BSR and is positive While waiting for the uplink authorization, the higher priority data needs to be transmitted, and the terminal device triggers the BSR report.
  • the BSR is called a "Regular BSR”; the terminal device periodically updates its own buffer status to the network device, and the network device configures a timer for the terminal device. If the timer expires, the terminal device triggers the BSR report.
  • the BSR is called a “Periodic BSR”. 4.
  • the network device configures a timer for the terminal device. When the timer expires and data is available in any logical channel of the UE, the BSR is triggered. This BSR is called "Regular BSR". As long as any of the above trigger events occur, the terminal device needs to send a BSR to the network device.
  • the SR or BSR here is different from the existing SR or BSR.
  • the SR here may no longer be only 1 bit, and may include multiple bits. For example, 2 bits may be used in the SR to indicate at least part of the logic.
  • the BSR herein may also include at least one bit to indicate whether the network device is required to allocate the standby uplink resource to the terminal device.
  • the first control signaling may further include size information of the standby uplink resource suggested by the terminal device.
  • the network device may allocate the standby uplink resource according to the size suggested by the terminal device, or may not allocate the uplink resource according to the size recommended by the terminal device, and the location of the uplink resource.
  • the terminal device if the terminal device does not buffer uplink data except the first uplink data, the terminal device sends third information to the network device, where the third information is used to indicate the network device.
  • the standby uplink resource has no uplink data transmission.
  • the network device can use the standby uplink resource to transmit the uplink data. Similarly, if the terminal device does not have uplink data that is not reported to the network device, the standby uplink resource may not be used. At the same time, the terminal device can also notify the terminal device that there is no data transmission on the standby uplink resource, and no monitoring is needed. The network device can also monitor whether there is data transmission without using the terminal device notification. Specifically, the terminal device may notify the network device that no data is transmitted on the standby uplink resource by using a physical channel or a data channel of a Medium Access Control (MAC) layer.
  • MAC Medium Access Control
  • the method for transmitting data in the embodiment of the present application allocates an uplink resource to the unreported uplink data while allocating the uplink resource for the uplink data that is reported, so that if there is unreported data, the data can be obtained in time. Transmission, so as not to cause delays in this part of the data, improve system transmission performance.
  • FIG. 4 shows a schematic block diagram of a method 300 of transmitting data in an embodiment of the present application. As shown in FIG. 4, the method 300 includes:
  • the network device receives the first control signaling sent by the terminal device, where the first control signaling is used to indicate that the network device allocates an uplink resource for the cached first uplink data, and allocates a standby uplink resource to the terminal device.
  • the network device sends a second control signaling to the terminal device, where the second control signaling is used to indicate the uplink resource and the standby uplink resource allocated for the first uplink data.
  • the network device receives the first uplink data on the uplink resource allocated for the first uplink data.
  • the network device may allocate an uplink uplink resource to the terminal device, in addition to allocating the uplink resource according to the currently reported data. And indicating to the terminal device together with the normally allocated uplink resource, the terminal device can use the standby uplink resource to transmit the unreported data.
  • the first control signaling for example, the BSR
  • the method for transmitting data in the embodiment of the present application can improve system transmission performance.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource, the second information, to the first uplink data.
  • the method for the network device to allocate the uplink uplink resource to the terminal device the method further includes: determining, by the network device, the uplink resource according to the first information, where the network device is configured according to the second information, It is determined that the standby uplink resource is allocated to the terminal device.
  • the first information may be 1 bit, where 0 indicates that no uplink resource is needed, and 1 indicates that an uplink resource is required.
  • the second information may also be 1 bit, where 0 indicates that the standby uplink resource is not allocated, and 1 indicates that the standby uplink resource is allocated to the terminal device. If the first information in the first control signaling is 1 and the second information is 1, the network device determines that the terminal device needs to allocate both normal resources and spare resources.
  • the first control signaling includes first information, where the first information is used to indicate that the network device allocates uplink resources for the first uplink data
  • the method further includes: the network device And determining, according to the first information, the uplink resource to be allocated to the first uplink data; the network device determining, according to the transmission format of the first control signaling, that the standby uplink resource is allocated to the terminal device.
  • the transmission format may refer to the number of bits included in the control signaling, and may also refer to content included in the control signaling. Similarly, if the terminal device and the network device agree in advance that if the number of bits included in the first control signaling is 5, it is considered that the standby uplink resource is required, so the first control signaling sent by the network device to the terminal device is included. 5 bits, the network device can determine the allocation for the terminal device Alternate uplink resources.
  • the first control signaling is a scheduling request SR or a buffer status report BSR.
  • the SR or BSR here is different from the existing SR or BSR.
  • the SR here may no longer be only 1 bit, and may include multiple bits. For example, 2 bits may be used in the SR to indicate at least part of the logic.
  • the BSR herein may also include at least one bit to indicate whether the network device is required to allocate the standby uplink resource to the terminal device.
  • the method further includes: the network device allocates the standby uplink resource to the terminal device.
  • the first control signaling includes the size information of the standby resource that is required by the terminal device, and the network device allocates the standby uplink resource to the terminal device, where the network device allocates the terminal device according to the size information.
  • the alternate uplink resource includes the size information of the standby resource that is required by the terminal device, and the network device allocates the standby uplink resource to the terminal device, where the network device allocates the terminal device according to the size information.
  • the network device monitors, on the standby uplink resource, whether the terminal device has uplink data transmission; if the uplink data transmission is detected, the network device receives the second uplink by using the standby uplink resource.
  • Data, the second uplink data is uplink data other than the first uplink data.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is sent to the network device by the terminal device. Control the upstream data buffered before signaling.
  • the method further includes: the network device receiving the third information sent by the terminal device, where the third information is used to indicate that the standby uplink resource has no uplink data transmission.
  • the third information is carried in the medium access control MAC layer signaling or the physical layer signaling.
  • the method for transmitting data in the embodiment of the present application allocates an uplink resource to the unreported uplink data while allocating the uplink resource for the uplink data that is reported, so that if there is unreported data, the data can be obtained in time. Transmission, so as not to cause delays in this part of the data, improve system transmission performance.
  • FIG. 5 shows a schematic block diagram of a terminal device 400 that transmits data according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the first sending unit 410 is configured to send, by the network device, the first control signaling, where the first control signaling is used to indicate that the network device allocates an uplink resource for the cached first uplink data, and allocates a backup for the terminal device.
  • Uplink resources ;
  • the receiving unit 420 is configured to receive the second control signaling that is sent by the network device, where the second control signaling is used to indicate an uplink resource and the standby uplink resource that are allocated to the first uplink data.
  • the second sending unit 430 is configured to transmit the first uplink data on an uplink resource allocated for the first uplink data; and if the terminal device has the buffered second uplink data, on the standby uplink resource. Sending the second uplink data to the network device, where the second uplink data is uplink data other than the first uplink data.
  • the terminal device for transmitting data provided by the embodiment of the present application can improve system transmission performance.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is Uplink data buffered before the first control signaling is sent by the terminal device to the network device.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, The second information is used to instruct the network device to allocate the standby uplink resource to the terminal device.
  • the first control signaling includes first information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, where the first The transmission format of the control signaling is used to instruct the network device to allocate the standby uplink resource to the terminal device.
  • the first control signaling is a scheduling request SR or a buffer status report BSR.
  • the first control signaling includes the terminal device expectation Size information of the spare resource.
  • the first sending unit 410 is further configured to: if the terminal device does not buffer uplink data except the first uplink data, send the third information to the network device.
  • the third information is used to indicate that the backup uplink resource of the network device does not have uplink data transmission.
  • the third information is carried in the medium access control MAC layer signaling or the physical layer signaling.
  • terminal device 400 for transmitting data may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement FIG. 3
  • the corresponding process of the terminal device in the method 200 is not described here for brevity.
  • FIG. 6 shows a schematic block diagram of a network device 500 for transmitting data in accordance with an embodiment of the present application.
  • the network device 500 includes:
  • the first receiving unit 510 is configured to receive the first control signaling that is sent by the terminal device, where the first control signaling is used to indicate that the network device allocates an uplink resource to the cached first uplink data, and is the terminal device. Allocate alternate uplink resources;
  • the sending unit 520 is configured to send the second control signaling to the terminal device, where the second control signaling is used to indicate the uplink resource and the standby uplink resource that are allocated to the first uplink data.
  • the second receiving unit 530 is configured to receive the first uplink data on the uplink resource allocated for the first uplink data.
  • the network device for transmitting data provided by the embodiment of the present application can improve system transmission performance.
  • the first control signaling includes a first information and a second information, where the first information is used to indicate that the network device allocates an uplink resource for the first uplink data, The second information is used to indicate that the network device allocates the backup uplink resource to the terminal device, and the network device further includes: a first determining unit 540, configured to determine, according to the first information, the The first uplink data is allocated to the uplink resource, and the second determining unit 550 is configured to determine, according to the second information, the spare uplink resource to be allocated to the terminal device.
  • the first control signaling includes first information, where the first information is used to indicate that the network device allocates an uplink resource to the first uplink data
  • the network The device further includes: a third determining unit 560, configured to determine, according to the first information, an uplink resource for the first uplink data; a fourth determining unit 570, configured to use, according to the transmission format of the first control signaling And determining to allocate the standby uplink resource to the terminal device.
  • the first control signaling is a scheduling request SR or a buffer status report BSR.
  • the network device further includes: an allocating unit 580, configured to allocate the standby uplink resource to the terminal device.
  • the first control signaling includes size information of the standby resource that is required by the terminal device, and the allocating unit 580 is specifically configured to: according to the size information, The terminal device allocates the standby uplink resource.
  • the network device further includes: a monitoring unit 590, configured to monitor, on the standby uplink resource, whether the terminal device has uplink data transmission; the sending unit 520 is further configured to: If the uplink data transmission is detected, the second uplink data is received by the standby uplink resource, where the second uplink data is uplink data other than the first uplink data.
  • a monitoring unit 590 configured to monitor, on the standby uplink resource, whether the terminal device has uplink data transmission
  • the sending unit 520 is further configured to: If the uplink data transmission is detected, the second uplink data is received by the standby uplink resource, where the second uplink data is uplink data other than the first uplink data.
  • the second uplink data is uplink data buffered after the terminal device sends the first control signaling to the network device, or the second uplink data is Uplink data buffered before the first control signaling is sent by the terminal device to the network device.
  • the first receiving unit 510 is further configured to: receive third information sent by the terminal device, where the third information is used to indicate that the standby uplink resource has no uplink data transmission. .
  • the third information is carried in the medium access control MAC layer signaling or the physical layer signaling.
  • the network device 500 for transmitting data may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 500 respectively implement FIG. 4
  • the corresponding process of the terminal device in the method 300 is not repeated here for brevity.
  • the embodiment of the present application further provides a terminal device 600 for transmitting data, which may be the terminal device 400 in FIG. 5, which can be used to execute a terminal corresponding to the method 100 in FIG.
  • the content of the device includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, and the processing can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the terminal device that transmits data in the embodiment of the present application can improve system transmission performance.
  • the processor 630 may be a central processing unit ("CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the receiving unit 420 in the terminal device 400 can be implemented by the input interface 610 in FIG. 7, and the first sending unit 410 and the second sending unit 430 in the terminal device 400 can be output interface 620 of FIG. achieve.
  • the embodiment of the present application further provides a network device 700 for transmitting data, which may be the network device 500 in FIG. 6, which can be used to execute a network corresponding to the method 300 in FIG.
  • the content of the device includes an input interface 710, an output interface 720, a processor 730, and a memory 740.
  • the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
  • the network device that transmits data in the embodiment of the present application can improve system transmission performance.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and combines its hardware to perform the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the first determining unit 540, the second determining unit 550, the third determining unit 560, the fourth determining unit 570, the allocating unit 580, and the monitoring unit 590 in the network device 500 may use the processor of FIG. 730 is implemented, the transmitting unit 520 can be implemented by the output interface 720 in FIG. 8, and the first receiving unit 510 and the second receiving unit 530 can be implemented by the input interface 710 of FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored. Or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请实施例公开了一种传输数据的方法、终端设备和网络设备,该方法包括:终端设备向网络设备发送第一控制信令,该第一控制信令用于指示该网络设备为已缓存的第一上行数据分配上行资源以及为该终端设备分配备用上行资源;该终端设备接收该网络设备发送的第二控制信令,该第二控制信令用于指示为该第一上行数据分配的上行资源和该备用上行资源;若该终端设备有缓存的第二上行数据,该终端设备在该备用上行资源上向该网络设备发送该第二上行数据,该第二上行数据为除该第一上行数据以外的上行数据。本申请实施例的方法、终端设备和网络设备,能够提高系统传输性能。

Description

一种传输数据的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种传输数据的方法、终端设备和网络设备。
背景技术
长期演进(Long Term Evolution,LTE)系统中的大部分数据信道采用的都是基于调度的数据传输方式。若终端设备向网络设备申请资源之后又有新的上行数据到来或终端设备上报的数据量仅仅只是待传输的部分,导致未上报的数据不能得到及时传输,从而增加了这部分数据的传输时延,系统传输性能较差。
发明内容
有鉴于此,本申请实施例提供了一种传输数据的方法、终端设备和网络设备,能够提高系统传输性能。
第一方面,提供了一种传输数据的方法,该方法包括:终端设备向网络设备发送第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;所述终端设备接收所述网络设备发送的第二控制信令,所述第二控制信令用于指示为所述第一上行数据分配的上行资源和所述备用上行资源;所述终端设备在为所述第一上行数据分配的上行资源上传输所述第一上行数据;若所述终端设备有缓存的第二上行数据,在所述备用上行资源上向所述网络设备发送所述第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
通过为终端设备分配额外的上行资源,使得终端设备的缓存的未上报的数据能够得到及时的传输,从而提高了系统传输性能。
终端设备也可以在第一控制信令中不需要单独的信息来指示是否需要备用上行资源,也就是说网络设备看到终端设备发送的第一控制信令有上行资源的需求,就会主动为终端设备分配备用上行资源,终端设备也可以单独向网络设备发一个请求备用资源的信息,也就是说不一定要有数据缓存才申 请备用资源,而是先申请备用资源,再确定是否有缓存的数据,若有,就采用备用资源进行传输。
在一种可能的实现方式中,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
在一种可能的实现方式中,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源。
在一种可能的实现方式中,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第一控制信令的传输格式用于指示所述网络设备为所述终端设备分配所述备用上行资源。
传输格式可以第一控制信令包括的比特数,也可以是第一控制信令包括的内容等。
在一种可能的实现方式中,该第一控制信令可以是调度请求(scheduling request,SR)或者缓存状态报告(buffer status report,BSR)。该SR可以包括多个比特位,其中某个比特位可以用于指示网络设备有备用上行数据的需求。
在一种可能的实现方式中,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息。
可选地,备用资源的位置也可以由终端设备去建议,网络设备可以根据终端设备建议的大小和/或位置去为终端设备分配该备用资源,也可以不根据终端设备建议的大小和/或位置去为终端设备分配该备用资源,由网络设备自行决定。
在一种可能的实现方式中,所述方法还包括:若所述终端设备没有缓存除所述第一上行数据以外的上行数据,所述终端设备向所述网络设备发送第三信息,所述第三信息用于指示所述网络设备所述备用上行资源没有上行数据传输。
可选地,终端设备也可以不向网络设备发送第三信息,由网络设备去备 用资源上去监测是否有上行数据传输,有就接收,没有就不接收。
在一种可能的实现方式中,所述第三信息承载于媒体接入控制(Medium Access Control,MAC)层信令或物理层信令中。
可选地,该第三信息可以是通过数据信道向网络设备发送MAC信令,也可以是通过物理控制信道向网络设备发送物理层信令。
第二方面,提供了一种传输数据的方法,该方法包括:网络设备接收终端设备发送的第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;所述网络设备向所述终端设备发送第二控制信令,所述第二控制信令用于指示所述为所述第一上行数据分配的上行资源和所述备用上行资源;所述网络设备在所述为所述第一上行数据分配的上行资源上接收所述第一上行数据。
在一种可能的实现方式中,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源,所述方法还包括:所述网络设备根据所述第一信息,确定为所述第一上行数据分配上行资源;所述网络设备根据所述第二信息,确定为所述终端设备分配所述备用上行资源。
在一种可能的实现方式中,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述方法还包括:所述网络设备根据所述第一信息,确定为所述第一上行数据分配上行资源;所述网络设备根据所述第一控制信令的传输格式,确定为所述终端设备分配所述备用上行资源。
在一种可能的实现方式中,所述第一控制信令为调度请求SR或缓存状态报告BSR。
在一种可能的实现方式中,所述方法还包括:所述网络设备为所述终端设备分配所述备用上行资源。
在一种可能的实现方式中,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息,所述网络设备为所述终端设备分配所述备用上行资源,包括:所述网络设备根据所述大小信息,为所述终端设备分配所述备用上行资源。
在一种可能的实现方式中,所述方法还包括:所述网络设备在所述备用 上行资源上监测所述终端设备是否有上行数据传输;若监测到有上行数据传输,所述网络设备通过所述备用上行资源接收第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
在一种可能的实现方式中,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
在一种可能的实现方式中,所述方法还包括:所述网络设备接收所述终端设备发送的第三信息,所述第三信息用于指示所述备用上行资源没有上行数据传输。
在一种可能的实现方式中,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第一方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了基于调度的上行数据传输方式的示意图。
图3示出了本申请实施例的传输数据的方法的示意性框图。
图4示出了本申请实施例的传输数据的方法的另一示意性框图。
图5示出了本申请实施例的传输数据的终端设备的示意性框图。
图6示出了本申请实施例的传输数据的网络设备的示意性框图。
图7示出了本申请实施例的传输数据的终端设备的另一示意性框图。
图8示出了本申请实施例的传输数据的网络设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)系统、低密度签名(Low Density Signature,简称为“LDS”)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,简称为“OFDM”)、滤波器组多载波(Filter  Bank Multi-Carrier,简称为“FBMC”)、通用频分复用(Generalized Frequency Division Multiplexing,简称为“GFDM”)、滤波正交频分复用(Filtered-OFDM,简称为“F-OFDM”)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
为了便于理解,下面将结合图2简单描述基于调度的上行数据传输方式100。如图2所述,该方法100包括:
S110,终端设备发起调度请求(scheduling request,SR),用来通知网络终端有数据待传;
S120,网络设备根据终端设备的调度请求在相应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送下行控制信息 (DownlinkControlInformation,DCI),其中包含上行资源授权;
S130,终端设备根据网络设备发送的上行资源授权,在相应的上行资源传输上行数据,其中如果终端设备缓冲中还有剩余数据,则继续在该数据信道上传输缓存状态信息(buffer status report,BSR);
S140,网络设备根据BSR进一步下发上行资源授权,以此类推,直到终端不再发起请求。
具体地,在终端设备端有一个事件产生,通常是上行有数据发送,已经放在了缓冲区里了,那么它需要为这些数据申请上行资源用于发送。它可以通过SR控制信道来发送调度请求,或者通过物理随机接入信道(Physical Random Access Channel,PRACH),此时是采用竞争的方式发送调度请求;网络设备按照一定的调度原则,如果可以的话就会分配一些资源用于发送BSR信息,通过上行资源授权告诉终端设备;终端设备发送BSR告诉网络设备对应的逻辑信道组有多少数据要发送,上行调度是针对逻辑信道组而不是一个无线承载;然后网络设备对终端设备请求的资源情况,分配相应的资源,然后通过上行资源授权通知终端设备;终端设备在自己的逻辑信道根据一定的优先级原则,发送上行数据。
通常终端设备申请的资源大小只够用于传输终端设备告知网络设备的数据量,实际上还有一部分的数据缓存在终端设备但网络设备并不知道,因此,这部分数据量通常需要在下一次上报,网络设备然后再为这一部分数据分配资源,而这种情况下会导致这部分数据得不到及时的传输,增大了时延,尤其对于低延时业务来说,导致传输性能较低。
图3示出了本申请实施例的传输数据的方法200的示意性框图。如图3所示,该方法200包括:
S210,终端设备向网络设备发送第一控制信令,该第一控制信令用于请求该网络设备为已缓存的第一上行数据分配上行资源以及为该终端设备分配备用上行资源;
S220,该终端设备接收该网络设备发送的第二控制信令,该第二控制信令用于指示为该第一上行数据分配的上行资源和该备用上行资源;
S230,该终端设备在为该第一上行数据分配的上行资源上传输该第一上行数据;
S240,若该终端设备有缓存的第二上行数据,在该备用上行资源上向该 网络设备发送该第二上行数据,该第二上行数据为除该第一上行数据以外的上行数据。
具体地,在终端设备有数据需要发送时,终端设备通常需要向网络设备申请上行资源,例如,终端设备可以通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)向网络设备上发送SR,网络设备可以在PUCCH上监测是否有终端设备的SR上报。终端设备不仅需要为网络设备上报的上行数据分配资源,还要为未上报的上行数据分配资源,也就是本申请实施例中的备用上行资源,进而网络设备不仅需要向终端设备指示为上报的上行数据分配的上行资源,还需要向终端设备指示为未上报的上行数据分配的备用上行资源,从而终端设备可以采用为上报的数据分配的上行资源传输上报的数据,若终端设备还缓存有除了上报的上行数据之外,采用该备用上行资源向网络设备发送未上报的上行数据。
因此,本申请实施例的传输数据的方法,能够提高系统传输性能。
用于指示为终端设备分配备用上行资源的信息也可以单独向网络设备发送。例如,虽然终端设备暂时没有数据需要发送,终端设备可以结合自身的状态向网络设备申请该备用上行资源,那么一旦有上行数据到来之后,即可采用申请的备用上行资源传输数据,本申请实施例并不限于必须有待传输的数据的场景。
可选地,在本申请实施例中,该第二上行数据为在该终端设备向该网络设备发送该第一控制信令之后缓存的上行数据,或该第二上行数据为在该终端设备向该网络设备发送该第一控制信令之前缓存的上行数据。
应理解,该备用上行资源可以用于传输在终端设备向网络设备发送第一控制信令之前未上报的数据,也可以用于传输在终端设备向网络设备发送第一控制信令之后到来的数据。举例来说,若终端设备有数据1和数据2到来,终端设备只向网络设备上报了数据1的存在,那么终端设备可以在网络设备分配的备用上行资源上传输数据2。若终端设备只有数据1到来,终端设备在向网络设备上报了数据1的存在之后,又有数据3到达终端设备,那么终端设备同样可以用该备用上行资源传输数据3。
可选地,在本申请实施例中,该第一控制信令包括第一信息和第二信息,该第一信息用于指示该网络设备为该第一上行数据分配上行资源,该第二信息用于指示该网络设备为该终端设备分配该备用上行资源。例如,该第一信 息可以是1bit,0表示不需要上行资源,1表示需要上行资源。该第二信息也可以是1bit,0表示不用分配该备用上行资源,1表示为终端设备分配该备用上行资源。本领域技术人员理解,采用几个比特位来指示是否分配该备用上行资源或是否需要上行资源可以提前约定好。网络设备还可以和终端设备提前协商好,采用第一控制信令的哪几个比特位作为第一信息,哪几个比特位作为第二信息。例如,假若第一控制信令是5bit,那么可以约定前3个bit是第一信息,后两个bit是第二信息。
可选地,在本申请实施例中,该第一控制信令包括第一信息,该第一信息用于指示该网络设备为该第一上行数据分配上行资源,该第一控制信令的传输格式用于指示该网络设备为该终端设备分配该备用上行资源。还可以采用第一控制信令的传输格式来指示终端设备是否需要网络设备为其分配该备用上行资源。该传输格式可以是指控制信令包括的比特数,也可以是指控制信令包括的内容等。例如,可以将包括某一固定比特数的第一控制信令看作是终端设备需要该备用上行资源。具体地,网络设备和终端设备可以提前约定好,若网络设备接收到该第一控制信令包括5比特,那么可以认为是该终端设备是需要网络设备分配该备用上行资源的。应理解,第一控制信令可以有多种传输格式,还可以是3比特或者其他。
可选地,在本申请实施例中,该第一控制信令为调度请求SR或缓存状态报告BSR。
通常,网络设备为每个终端设备分配一个专用的SR资源发送SR,该SR资源是周期性的,每n个子帧出现一次。终端设备需要通过SR告知网络设备是否需要上行资源以用于传输上行数据,网络设备接收到SR之后,给终端设备分配至少用于发送BSR的资源。
本领域技术人员理解,终端设备通过SR向网络设备请求上行资源时,通常只指明了其是否有上行数据需要发送,而没有指明自己需要发送多少上行数据。终端设备需要通过BSR告诉网络设备,其上行buffer里有多少数据需要发送,以便网络设备决定给该终端设备分配多少上行资源。也就是说,终端设备需要告诉网络设备至少部分逻辑信道的缓存状态。具体地,当如下事件发生时,将会触发BSR上报:1、终端设备的上行数据buffer为空且有新数据到达,例如:终端设备第一次发送上行数据。该BSR被称为“Regular BSR”;高优先级的数据到达,如果终端设备已经发送了一个BSR,并且正 在等待上行授权,此时有更高优先级的数据需要传输,则终端设备会触发BSR上报。该BSR被称为“Regular BSR”;终端设备周期性地向网络设备更新自己的buffer状态,网络设备为终端设备配置了一个timer,如果该timer超时,终端设备会触发BSR上报。该BSR被称为“Periodic BSR”;4、网络设备为终端设备配置了一个timer,当该timer超时且UE的任意一个逻辑信道里有数据可以发送时,将会触发BSR。该BSR被称为“Regular BSR”。只要上述任一触发事件发生,终端设备则需要向网络设备发送BSR。
应理解,这里的SR或BSR不同于现有的SR或BSR,这里的SR可能不再是只有1个比特了,可以包括多个比特位,例如,可以在SR中用2bit来指示至少部分逻辑信道的缓存状态。这里的BSR也可以包括至少一个bit,来指示是否需要网络设备为终端设备分配备用上行资源。
可选地,在本申请实施例中,该第一控制信令还可以包括终端设备建议的该备用上行资源的大小信息。网络设备可以直接根据终端设备建议的大小,分配该备用上行资源,也可以不按照终端设备建议的大小,由网络设备自己分配该上行资源多大,位置在哪。
可选地,在本申请实施例中,若该终端设备没有缓存除该第一上行数据以外的上行数据,该终端设备向该网络设备发送第三信息,该第三信息用于指示该网络设备该备用上行资源没有上行数据传输。
上述提到,若终端设备有未向网络设备上报的上行数据,那么网络设备就可以采用该备用上行资源去传输这部分上行数据。同样地,若终端设备没有未向网络设备上报的上行数据,该备用上行资源就可以不用。同时,终端设备还可以向终端设备通知该备用上行资源上没有数据传输,可以不用监测。网络设备也可以不用终端设备通知,自己监测是否有数据传输。具体地,终端设备可以采用物理信道或者媒体接入控制(Medium Access Control,MAC)层的数据信道向网络设备通知没有数据在备用上行资源上传输。
因此,本申请实施例的传输数据的方法,通过在为上报的上行数据分配上行资源的同时还为未上报的上行数据分配备用的上行资源,使得一旦有未上报的数据存在,就可以及时得到传输,从而不会造成这部分数据的延时,提高了系统传输性能。
图4示出了本申请实施例的传输数据的方法300的示意性框图。如图4所示,该方法300包括:
S310,网络设备接收终端设备发送的第一控制信令,该第一控制信令用于指示该网络设备为已缓存的第一上行数据分配上行资源以及为该终端设备分配备用上行资源;
S320,该网络设备向该终端设备发送第二控制信令,该第二控制信令用于指示该为该第一上行数据分配的上行资源和该备用上行资源;
S330,该网络设备在该为该第一上行数据分配的上行资源上接收该第一上行数据。
具体而言,若网络设备接收到第一控制信令,例如BSR,网络设备除了可以按照现有为上报的数据分配上行资源以外,还可以为终端设备分配一块备用上行资源。并可以与正常分配的上行资源一起指示给终端设备,终端设备即可以用该备用上行资源传输未上报的数据。
因此,本申请实施例的传输数据的方法,能够提高系统传输性能。
可选地,在本申请实施例中,该第一控制信令包括第一信息和第二信息,该第一信息用于指示该网络设备为该第一上行数据分配上行资源,该第二信息用于指示该网络设备为该终端设备分配该备用上行资源,该方法还包括:该网络设备根据该第一信息,确定为该第一上行数据分配上行资源;该网络设备根据该第二信息,确定为该终端设备分配该备用上行资源。
例如,该第一信息可以是1bit,0表示不需要上行资源,1表示需要上行资源。该第二信息也可以是1bit,0表示不用分配该备用上行资源,1表示为终端设备分配该备用上行资源。网络设备若解析到该第一控制信令中的第一信息为1,第二信息为1,则网络设备确定需要为终端设备既要分配正常的资源,又要分配备用资源。
可选地,在本申请实施例中,该第一控制信令包括第一信息,该第一信息用于指示该网络设备为该第一上行数据分配上行资源,该方法还包括:该网络设备根据该第一信息,确定为该第一上行数据分配上行资源;该网络设备根据该第一控制信令的传输格式,确定为该终端设备分配该备用上行资源。
该传输格式可以是指控制信令包括的比特数,也可以是指控制信令包括的内容等。同样地,若终端设备和网络设备提前约定好若第一控制信令的包括的比特数是5则认为是需要备用上行资源的,所以在网络设备解析到终端设备发送的第一控制信令包括5个比特,网络设备可以确定为终端设备分配 备用上行资源。
可选地,在本申请实施例中,该第一控制信令为调度请求SR或缓存状态报告BSR。
应理解,这里的SR或BSR不同于现有的SR或BSR,这里的SR可能不再是只有1个比特了,可以包括多个比特位,例如,可以在SR中用2bit来指示至少部分逻辑信道的缓存状态。这里的BSR也可以包括至少一个bit,来指示是否需要网络设备为终端设备分配备用上行资源。
可选地,在本申请实施例中,该方法还包括:该网络设备为该终端设备分配该备用上行资源。进一步地,该第一控制信令包括该终端设备期望的该备用资源的大小信息,该网络设备为该终端设备分配该备用上行资源,包括:该网络设备根据该大小信息,为该终端设备分配该备用上行资源。
可选地,在本申请实施例中,该网络设备在该备用上行资源上监测该终端设备是否有上行数据传输;若监测到有上行数据传输,该网络设备通过该备用上行资源接收第二上行数据,该第二上行数据为除该第一上行数据以外的上行数据。
上述提到,该第二上行数据为在该终端设备向该网络设备发送该第一控制信令之后缓存的上行数据,或该第二上行数据为在该终端设备向该网络设备发送该第一控制信令之前缓存的上行数据。
可选地,在本申请实施例中,该方法还包括:该网络设备接收该终端设备发送的第三信息,该第三信息用于指示该备用上行资源没有上行数据传输。
可选地,在本申请实施例中,该第三信息承载于媒体接入控制MAC层信令或物理层信令中。
因此,本申请实施例的传输数据的方法,通过在为上报的上行数据分配上行资源的同时还为未上报的上行数据分配备用的上行资源,使得一旦有未上报的数据存在,就可以及时得到传输,从而不会造成这部分数据的延时,提高了系统传输性能。
应理解,网络设备描述的网络设备与终端设备的交互及相关特性、功能等与终端设备的相关特性、功能相应。也就是说,终端设备向网络设备发送什么信息,网络设备相应地就会接收什么信息。为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意 味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图5示出了根据本申请实施例的传输数据的终端设备400的示意性框图。如图5所示,该终端设备400包括:
第一发送单元410,用于网络设备发送第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
接收单元420,用于接收所述网络设备发送的第二控制信令,所述第二控制信令用于指示为所述第一上行数据分配的上行资源和所述备用上行资源;
第二发送单元430,用于在为所述第一上行数据分配的上行资源上传输所述第一上行数据;以及若所述终端设备有缓存的第二上行数据,在所述备用上行资源上向所述网络设备发送所述第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
因此,本申请实施例提供的传输数据的终端设备,能够提高系统传输性能。
可选地,在本申请实施例中,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
可选地,在本申请实施例中,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第一控制信令的传输格式用于指示所述网络设备为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述第一控制信令为调度请求SR或缓存状态报告BSR。
可选地,在本申请实施例中,所述第一控制信令包括所述终端设备期望 的所述备用资源的大小信息。
可选地,在本申请实施例中,所述第一发送单元410还用于:若所述终端设备没有缓存除所述第一上行数据以外的上行数据,向所述网络设备发送第三信息,所述第三信息用于指示所述网络设备所述备用上行资源没有上行数据传输。
可选地,在本申请实施例中,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
应理解,根据本申请实施例的传输数据的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图6示出了根据本申请实施例的传输数据的网络设备500的示意性框图。如图6所示,该网络设备500包括:
第一接收单元510,用于接收终端设备发送的第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
发送单元520,用于向所述终端设备发送第二控制信令,所述第二控制信令用于指示所述为所述第一上行数据分配的上行资源和所述备用上行资源;
第二接收单元530,用于在所述为所述第一上行数据分配的上行资源上接收所述第一上行数据。
因此,本申请实施例提供的传输数据的网络设备,能够提高系统传输性能。
可选地,在本申请实施例中,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源,所述网络设备还包括:第一确定单元540,用于根据所述第一信息,确定为所述第一上行数据分配上行资源;第二确定单元550,用于根据所述第二信息,确定为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述网络 设备还包括:第三确定单元560,用于根据所述第一信息,确定为所述第一上行数据分配上行资源;第四确定单元570,用于根据所述第一控制信令的传输格式,确定为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述第一控制信令为调度请求SR或缓存状态报告BSR。
可选地,在本申请实施例中,所述网络设备还包括:分配单元580,用于为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息,所述分配单元580具体用于:根据所述大小信息,为所述终端设备分配所述备用上行资源。
可选地,在本申请实施例中,所述网络设备还包括:监测单元590,用于在所述备用上行资源上监测所述终端设备是否有上行数据传输;所述发送单元520还用于:若监测到有上行数据传输,通过所述备用上行资源接收第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
可选地,在本申请实施例中,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
可选地,在本申请实施例中,所述第一接收单元510还用于:接收所述终端设备发送的第三信息,所述第三信息用于指示所述备用上行资源没有上行数据传输。
可选地,在本申请实施例中,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
应理解,根据本申请实施例的传输数据的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
如图7所示,本申请实施例还提供了一种传输数据的终端设备600,该终端设备600可以是图5中的终端设备400,其能够用于执行与图3中方法100对应的终端设备的内容。该终端设备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理 器630和存储器640可以通过总线系统相连。所述存储器640用于存储包括程序、指令或代码。所述处理器630,用于执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的传输数据的终端设备,能够提高系统传输性能。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备400中的接收单元420可以由图7中的输入接口610实现,终端设备400中的第一发送单元410和第二发送单元430可以由图7的输出接口620实现。
如图8所示,本申请实施例还提供了一种传输数据的网络设备700,该网络设备700可以是图6中的网络设备500,其能够用于执行与图4中方法300对应的网络设备的内容。该网络设备700包括:输入接口710、输出接口720、处理器730以及存储器740,该输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的传输数据的网络设备,能够提高系统传输性能。
应理解,在本申请实施例中,该处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,网络设备500中的第一确定单元540、第二确定单元550、第三确定单元560、第四确定单元570、分配单元580和监测单元590可以用图8的处理器730实现,发送单元520可以由图8中的输出接口720实现,第一接收单元510和第二接收单元530可以由图8的输入接口710实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (36)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备向网络设备发送第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
    所述终端设备接收所述网络设备发送的第二控制信令,所述第二控制信令用于指示为所述第一上行数据分配的上行资源和所述备用上行资源;
    所述终端设备在为所述第一上行数据分配的上行资源上传输所述第一上行数据;
    若所述终端设备有缓存的第二上行数据,所述终端设备在所述备用上行资源上向所述网络设备发送所述第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源。
  4. 根据权利要求1或2所述的方法,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第一控制信令的传输格式用于指示所述网络设备为所述终端设备分配所述备用上行资源。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一控制信令为调度请求SR或缓存状态报告BSR。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    若所述终端设备没有缓存除所述第一上行数据以外的上行数据,所述终 端设备向所述网络设备发送第三信息,所述第三信息用于指示所述网络设备所述备用上行资源没有上行数据传输。
  8. 根据权利要求7所述的方法,其特征在于,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
  9. 一种传输数据的方法,其特征在于,包括:
    网络设备接收终端设备发送的第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
    所述网络设备向所述终端设备发送第二控制信令,所述第二控制信令用于指示所述为所述第一上行数据分配的上行资源和所述备用上行资源;
    所述网络设备在所述为所述第一上行数据分配的上行资源上接收所述第一上行数据。
  10. 根据权利要求9所述的方法,其特征在于,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源,所述方法还包括:
    所述网络设备根据所述第一信息,确定为所述第一上行数据分配上行资源;
    所述网络设备根据所述第二信息,确定为所述终端设备分配所述备用上行资源。
  11. 根据权利要求9所述的方法,其特征在于,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述方法还包括:
    所述网络设备根据所述第一信息,确定为所述第一上行数据分配上行资源;
    所述网络设备根据所述第一控制信令的传输格式,确定为所述终端设备分配所述备用上行资源。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一控制信令为调度请求SR或缓存状态报告BSR。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备为所述终端设备分配所述备用上行资源。
  14. 根据权利要求13所述的方法,其特征在于,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息,所述网络设备为所述终端设备分配所述备用上行资源,包括:
    所述网络设备根据所述大小信息,为所述终端设备分配所述备用上行资源。
  15. 根据权利要求9至14中任一项所述的方法,所述方法还包括:
    所述网络设备在所述备用上行资源上监测所述终端设备是否有上行数据传输;
    若监测到有上行数据传输,所述网络设备通过所述备用上行资源接收第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
  16. 根据权利要求15所述的方法,其特征在于,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
  17. 根据权利要求9至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第三信息,所述第三信息用于指示所述备用上行资源没有上行数据传输。
  18. 根据权利要求17所述的方法,其特征在于,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
  19. 一种传输数据的终端设备,其特征在于,所述终端设备包括:
    第一发送单元,用于网络设备发送第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
    接收单元,用于接收所述网络设备发送的第二控制信令,所述第二控制信令用于指示为所述第一上行数据分配的上行资源和所述备用上行资源;
    第二发送单元,用于在为所述第一上行数据分配的上行资源上传输所述第一上行数据;以及若所述终端设备有缓存的第二上行数据,在所述备用上行资源上向所述网络设备发送所述第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源。
  22. 根据权利要求19或20所述的终端设备,其特征在于,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第一控制信令的传输格式用于指示所述网络设备为所述终端设备分配所述备用上行资源。
  23. 根据权利要求19至22中任一项所述的终端设备,其特征在于,所述第一控制信令为调度请求SR或缓存状态报告BSR。
  24. 根据权利要求19至23中任一项所述的终端设备,其特征在于,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息。
  25. 根据权利要求19至24中任一项所述的终端设备,其特征在于,所述第一发送单元还用于:
    若所述终端设备没有缓存除所述第一上行数据以外的上行数据,向所述网络设备发送第三信息,所述第三信息用于指示所述网络设备所述备用上行资源没有上行数据传输。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
  27. 一种传输数据的网络设备,其特征在于,所述网络设备包括:
    第一接收单元,用于接收终端设备发送的第一控制信令,所述第一控制信令用于指示所述网络设备为已缓存的第一上行数据分配上行资源以及为所述终端设备分配备用上行资源;
    发送单元,用于向所述终端设备发送第二控制信令,所述第二控制信令用于指示所述为所述第一上行数据分配的上行资源和所述备用上行资源;
    第二接收单元,用于在所述为所述第一上行数据分配的上行资源上接收所述第一上行数据。
  28. 根据权利要求27所述的网络设备,其特征在于,所述第一控制信令包括第一信息和第二信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述第二信息用于指示所述网络设备为所述终端设备分配所述备用上行资源,所述网络设备还包括:
    第一确定单元,用于根据所述第一信息,确定为所述第一上行数据分配上行资源;
    第二确定单元,用于根据所述第二信息,确定为所述终端设备分配所述备用上行资源。
  29. 根据权利要求27所述的网络设备,其特征在于,所述第一控制信令包括第一信息,所述第一信息用于指示所述网络设备为所述第一上行数据分配上行资源,所述网络设备还包括:
    第三确定单元,用于根据所述第一信息,确定为所述第一上行数据分配上行资源;
    第四确定单元,用于根据所述第一控制信令的传输格式,确定为所述终端设备分配所述备用上行资源。
  30. 根据权利要求27至29中任一项所述的网络设备,其特征在于,所述第一控制信令为调度请求SR或缓存状态报告BSR。
  31. 根据权利要求27至30中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    分配单元,用于为所述终端设备分配所述备用上行资源。
  32. 根据权利要求31所述的网络设备,其特征在于,所述第一控制信令包括所述终端设备期望的所述备用资源的大小信息,所述分配单元具体用于:
    根据所述大小信息,为所述终端设备分配所述备用上行资源。
  33. 根据权利要求27至32中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    监测单元,用于在所述备用上行资源上监测所述终端设备是否有上行数据传输;
    所述发送单元还用于:
    若监测到有上行数据传输,通过所述备用上行资源接收第二上行数据,所述第二上行数据为除所述第一上行数据以外的上行数据。
  34. 根据权利要求33所述的网络设备,其特征在于,所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之后缓存的上行数据,或所述第二上行数据为在所述终端设备向所述网络设备发送所述第一控制信令之前缓存的上行数据。
  35. 根据权利要求27至32中任一项所述的网络设备,其特征在于,所述第一接收单元还用于:
    接收所述终端设备发送的第三信息,所述第三信息用于指示所述备用上行资源没有上行数据传输。
  36. 根据权利要求35所述的网络设备,其特征在于,所述第三信息承载于媒体接入控制MAC层信令或物理层信令中。
PCT/CN2017/074830 2017-02-24 2017-02-24 一种传输数据的方法、终端设备和网络设备 WO2018152788A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020197027771A KR20190118639A (ko) 2017-02-24 2017-02-24 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스
PCT/CN2017/074830 WO2018152788A1 (zh) 2017-02-24 2017-02-24 一种传输数据的方法、终端设备和网络设备
JP2019546230A JP6882502B2 (ja) 2017-02-24 2017-02-24 データ伝送方法、端末デバイス及びネットワークデバイス
US16/486,426 US11252746B2 (en) 2017-02-24 2017-02-24 Method for data transmission, terminal device and network device
CN201780086207.7A CN110291825B (zh) 2017-02-24 2017-02-24 一种传输数据的方法、设备和计算机存储介质
EP17898183.3A EP3589043B1 (en) 2017-02-24 2017-02-24 Data transmission method, terminal device and network device
TW107105089A TW201832589A (zh) 2017-02-24 2018-02-12 一種傳輸資料的方法、終端設備和網路設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074830 WO2018152788A1 (zh) 2017-02-24 2017-02-24 一种传输数据的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2018152788A1 true WO2018152788A1 (zh) 2018-08-30

Family

ID=63253065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074830 WO2018152788A1 (zh) 2017-02-24 2017-02-24 一种传输数据的方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US11252746B2 (zh)
EP (1) EP3589043B1 (zh)
JP (1) JP6882502B2 (zh)
KR (1) KR20190118639A (zh)
CN (1) CN110291825B (zh)
TW (1) TW201832589A (zh)
WO (1) WO2018152788A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213845A1 (zh) * 2021-04-06 2022-10-13 华为技术有限公司 传输上行数据的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246753B (zh) * 2017-06-15 2023-09-12 华为技术有限公司 一种传输数据的方法、网络设备和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099335A (zh) * 2004-11-09 2008-01-02 Lg电子株式会社 发送/接收用于增强上行链路数据传输的数据信道的控制信息的方法
CN103796320A (zh) * 2010-01-08 2014-05-14 华为技术有限公司 调度请求的方法及装置
CN104170309A (zh) * 2014-02-27 2014-11-26 华为技术有限公司 一种资源管理方法及装置
CN104579547A (zh) * 2013-10-28 2015-04-29 普天信息技术研究院有限公司 一种数据传输的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8155067B2 (en) * 2008-03-24 2012-04-10 Interdigital Patent Holdings, Inc. Method and apparatus for signaling the release of a persistent resource
US10251191B2 (en) 2014-08-25 2019-04-02 Lg Electronics Inc. Method and apparatus for scheduling request in a wireless communication system
WO2016185895A1 (ja) 2015-05-15 2016-11-24 京セラ株式会社 無線端末、基地局、及びプロセッサ
CN108347784B (zh) * 2017-01-23 2023-10-13 华为技术有限公司 一种资源调度方法以及无线接入网设备和终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099335A (zh) * 2004-11-09 2008-01-02 Lg电子株式会社 发送/接收用于增强上行链路数据传输的数据信道的控制信息的方法
CN103796320A (zh) * 2010-01-08 2014-05-14 华为技术有限公司 调度请求的方法及装置
CN104579547A (zh) * 2013-10-28 2015-04-29 普天信息技术研究院有限公司 一种数据传输的方法
CN104170309A (zh) * 2014-02-27 2014-11-26 华为技术有限公司 一种资源管理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3589043A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213845A1 (zh) * 2021-04-06 2022-10-13 华为技术有限公司 传输上行数据的方法和装置

Also Published As

Publication number Publication date
EP3589043B1 (en) 2021-04-07
JP2020511066A (ja) 2020-04-09
EP3589043A1 (en) 2020-01-01
JP6882502B2 (ja) 2021-06-02
CN110291825B (zh) 2023-05-05
US20200236695A1 (en) 2020-07-23
KR20190118639A (ko) 2019-10-18
TW201832589A (zh) 2018-09-01
EP3589043A4 (en) 2020-03-18
US11252746B2 (en) 2022-02-15
CN110291825A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2019191929A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
US10952207B2 (en) Method for transmitting data, terminal device and network device
WO2019051806A1 (zh) 传输数据的方法、终端设备和网络设备
WO2018170655A1 (zh) 传输数据的方法、终端设备和网络设备
US10554794B2 (en) Information transmission method and apparatus in TDD system
EP3451560B1 (en) Data transmission method and apparatus
WO2018202178A1 (zh) 波束恢复方法及装置
US11071135B2 (en) Uplink transmission method based on uplink reference signal, terminal, and network device
US20200267594A1 (en) Scheduling request processing method and terminal device
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2019191982A1 (zh) 传输信息的方法、终端设备和网络设备
US20200322942A1 (en) Method for use in transmitting signal, terminal device, and network device
US20210345307A1 (en) Terminal device scheduling method, network device, and terminal device
US11228933B2 (en) Method for transmitting information and terminal device
TWI741018B (zh) 發送或接收通道狀態資訊的方法和裝置
WO2022077410A1 (zh) 信息反馈方法以及装置
WO2018152788A1 (zh) 一种传输数据的方法、终端设备和网络设备
WO2018072062A1 (zh) 信息传输方法和装置
CN114342535A (zh) 上行信号的发送和接收方法以及装置
WO2022077309A1 (zh) 无线通信方法、装置和系统
WO2018058602A1 (zh) 发送信息的方法及其终端设备、接收信息的方法及其网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027771

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017898183

Country of ref document: EP

Effective date: 20190923