WO2023004552A1 - 随机接入方法、装置、设备及存储介质 - Google Patents

随机接入方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023004552A1
WO2023004552A1 PCT/CN2021/108496 CN2021108496W WO2023004552A1 WO 2023004552 A1 WO2023004552 A1 WO 2023004552A1 CN 2021108496 W CN2021108496 W CN 2021108496W WO 2023004552 A1 WO2023004552 A1 WO 2023004552A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
terminal device
carrier
uplink carrier
reference points
Prior art date
Application number
PCT/CN2021/108496
Other languages
English (en)
French (fr)
Inventor
于新磊
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180097458.1A priority Critical patent/CN117256196A/zh
Priority to PCT/CN2021/108496 priority patent/WO2023004552A1/zh
Publication of WO2023004552A1 publication Critical patent/WO2023004552A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a random access method, device, device, and storage medium.
  • NR New Radio, new air interface
  • SUL Supplemental Uplink, supplementary uplink
  • SUL indicates that a traditional carrier pair including UL (Uplink, uplink) and DL (Downlink, downlink) will have an associated or supplementary uplink carrier.
  • NUL Normal Uplink, normal uplink
  • SUL carrier there are two types of uplink carriers: NUL (Normal Uplink, normal uplink) carrier and SUL carrier.
  • the SUL carrier can expand the uplink coverage and increase the uplink rate in power-constrained areas by using low-frequency carriers.
  • the carrier bandwidth of the NUL carrier is usually much larger than that of the SUL carrier. In this way, when the quality of the air interface is relatively good (such as the terminal device is closer to the network device), the terminal device can use the NUL carrier to obtain higher uplink In the case of poor air interface quality (for example, the terminal device is far away from the network device), the terminal device can use the SUL carrier to obtain a higher uplink rate than the NUL carrier because the path loss of the low-frequency carrier is small.
  • the uplink transmission and downlink transmission of the TDD (Time Division Duplex, time division duplex) system are divided through the time domain, and there will be a clear time limit for when the uplink transmission can be performed.
  • TDD Time Division Duplex, time division duplex
  • some delay-sensitive data can be sent immediately through the SUL carrier regardless of the time limit of uplink transmission, so as to reduce the transmission delay.
  • Embodiments of the present application provide a random access method, device, equipment, and storage medium. Described technical scheme is as follows:
  • the embodiment of the present application provides a random access method, which is applied to a terminal device of NTN (Non-Terrestrial Network, non-terrestrial communication network), and the method includes:
  • the uplink carrier includes a NUL carrier or a SUL carrier
  • the embodiment of the present application provides a random access method, which is applied to the network equipment of NTN, and the method includes:
  • the terminal device Sending first configuration information to the terminal device, where the first configuration information is used by the terminal device to determine an uplink carrier used in a random access process, where the uplink carrier includes a NUL carrier or a SUL carrier;
  • the embodiment of the present application provides a random access device, which is set in an NTN terminal device, and the device includes:
  • An information receiving module configured to receive the first configuration information from the network device
  • a carrier determining module configured to determine an uplink carrier used in a random access process based on the first configuration information, where the uplink carrier includes a NUL carrier or a SUL carrier;
  • a random access module configured to send a random access request to the network device based on the uplink carrier.
  • the embodiment of the present application provides a random access device, which is set in the network equipment of NTN, and the device includes:
  • An information sending module configured to send first configuration information to a terminal device, where the first configuration information is used by the terminal device to determine an uplink carrier used in a random access process, where the uplink carrier includes a NUL carrier or a SUL carrier;
  • a random access module configured to receive a random access request sent by the terminal device through the uplink carrier.
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to receive first configuration information from a network device
  • the processor is configured to determine an uplink carrier used in a random access process based on the first configuration information, where the uplink carrier includes a NUL carrier or a SUL carrier;
  • the transceiver is configured to send a random access request to the network device based on the uplink carrier.
  • an embodiment of the present application provides a network device, where the network device includes: a processor, and a transceiver connected to the processor; wherein:
  • the transceiver is configured to send first configuration information to the terminal device, the first configuration information is used by the terminal device to determine an uplink carrier used in a random access process, and the uplink carrier includes a NUL carrier or a SUL carrier ;
  • the transceiver is further configured to receive a random access request sent by the terminal device through the uplink carrier.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of the terminal device, so as to implement the above-mentioned terminal device side random access method.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to implement the above-mentioned network device side random access method.
  • the embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the terminal device, it is used to realize the above-mentioned random access on the terminal device side. input method.
  • an embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a network device, it is used to realize the above-mentioned random access on the network device side. input method.
  • the embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the terminal device, it is used to realize the above-mentioned random access on the terminal device side. input method.
  • an embodiment of the present application provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on a network device, it is used to realize the above-mentioned random access on the network device side. input method.
  • the terminal device selects an uplink carrier based on the configuration information sent by the network device, and initiates a random access process based on the selected uplink carrier to ensure that the terminal device uses an appropriate uplink carrier to initiate a random access process and improve the success rate of random access.
  • the uplink carrier used by the terminal device in the random access process includes a NUL carrier or a SUL carrier, and the effect of extending the uplink coverage is achieved by associating the NUL carrier with the SUL carrier.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the network architecture of the NTN system provided by one embodiment of the present application.
  • FIG. 3 is a schematic diagram of a regenerative and forwarding satellite network architecture provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a transparent forwarding satellite network architecture provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a network architecture of a terrestrial cellular network provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a SUL carrier configuration provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of selection of a SUL carrier and a NUL carrier provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a four-step random access process provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a two-step random access process provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a two-step random access process falling back to a four-step random access process provided by an embodiment of the present application;
  • Fig. 11 is a schematic diagram of the near-far effect provided by an embodiment of the present application.
  • FIG. 12 is a flowchart of a random access method provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of selection of an uplink carrier provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of selection of an uplink carrier provided by another embodiment of the present application.
  • FIG. 15 is a block diagram of a random access device provided by an embodiment of the present application.
  • FIG. 16 is a block diagram of a random access device provided by another embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include: a network device 10 and a terminal device 20 .
  • the network device 10 is a device for providing wireless communication services for the terminal device 20 .
  • a connection can be established between the network device 10 and the terminal device 20 through an air interface, so as to perform communication through the connection, including signaling and data interaction.
  • the number of network devices 10 may be multiple, and communication between two adjacent network devices 10 may also be performed in a wired or wireless manner.
  • the terminal device 20 can switch between different network devices 10 , that is, establish connections with different network devices 10 .
  • the network device 10 in the NTN system may be a satellite 11 .
  • One satellite 11 can cover a certain ground area, and provide wireless communication services for terminal devices 20 on the ground area.
  • the satellite 11 can orbit the earth, and by arranging a plurality of satellites 11, communication coverage of different areas on the earth's surface can be achieved.
  • Satellite communication Compared with terrestrial cellular network communication, satellite communication has many unique advantages.
  • satellite communication is not restricted by user's geography. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or communication coverage is not possible due to sparse population.
  • satellite communication since a satellite can cover a larger ground, and Satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value. Satellite communication can be covered at low cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the gap with developed regions and promoting the development of these regions. development of.
  • the satellite communication distance is long, and the communication cost does not increase significantly while the communication distance increases.
  • satellite communication has high stability and is not limited by natural disasters.
  • satellites are divided into LEO (Low-Earth Orbit, Low Earth Orbit) satellites, MEO (Medium-Earth Orbit, Medium Earth Orbit) satellites, GEO (Geostationary Earth Orbit, geosynchronous orbit) satellites, HEO (High Elliptical Orbit, high elliptical orbit) satellites, etc.
  • LEO Low-Earth Orbit, Low Earth Orbit
  • MEO Medium-Earth Orbit, Medium Earth Orbit
  • GEO Globalstar Satellite Orbit, geosynchronous orbit
  • HEO High Elliptical Orbit, high elliptical orbit
  • the altitude range of low-orbit satellites is 500km (kilometre, kilometer) to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms (millisecond, millisecond).
  • the maximum satellite visible time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirements for the transmission power of the user terminal are not high.
  • the orbital altitude of geosynchronous orbit satellites is 35786km, and the orbital period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • the satellite uses multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens of beams in diameter. to hundreds of kilometers of ground area.
  • Fig. 3 shows a schematic diagram of a satellite network architecture of regenerative forwarding; the other is transparent forwarding (Transparent Payload) satellite,
  • Fig. 4 shows a schematic diagram of a transparent forwarding satellite network architecture.
  • the wireless link between the satellite and the NTN gateway (gateway) (the NTN gateway is usually located on the ground) is usually called a feeder link.
  • the network device 10 in the terrestrial cellular network system may be a base station 12 .
  • the base station 12 is a device deployed in an access network to provide a wireless communication function for the terminal equipment 20 .
  • the base station 12 may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the name of the device having the network device function may be different, for example, in the NR system, it is called gNodeB or gNB.
  • the name "base station" may change as communication technology evolves.
  • the above-mentioned devices that provide the wireless communication function for the terminal device 20 are collectively referred to as network devices.
  • the terminal device 20 involved in the embodiment of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user Equipment (User Equipment, UE), mobile station (Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the technical solutions provided by the embodiments of the present application can be applied to the NTN system, and can also be applied to the terrestrial cellular network system.
  • the NR protocol supports SUL technology.
  • SUL indicates that a traditional carrier pair including UL and DL will have an associated or supplementary uplink carrier, as shown in Figure 6.
  • NUL carrier there are two types of uplink carriers: NUL carrier and SUL carrier.
  • the SUL carrier and the associated serving cell carrier belong to the same TAG (Timing Advance Group, timing advance group).
  • the SUL carrier can expand the uplink coverage and increase the uplink rate in power-constrained areas by using low-frequency carriers.
  • the carrier bandwidth of the NUL carrier is usually much larger than that of the SUL carrier.
  • the terminal device can use the NUL carrier to obtain higher uplink
  • the terminal device can use the SUL carrier to obtain a higher uplink rate than the NUL carrier because the path loss of the low-frequency carrier is small. Therefore, the purpose of SUL includes obtaining the envelope of uplink rates of two carriers.
  • a terminal device can only use one uplink carrier, and the NR protocol does not allow the terminal device to send data on both the SUL carrier and the NUL carrier at the same time, which is conducive to simplifying the design of the protocol, especially the difficulty of radio frequency implementation.
  • a typical application scenario of SUL technology is to configure SUL carriers in LTE (Long Term Evolution, long-term evolution) spectrum resources, make full use of LTE uplink spectrum with less traffic, and significantly improve NR user experience without affecting Existing LTE has too much impact.
  • the SUL carrier can also reduce the delay.
  • the uplink transmission and downlink transmission of the TDD system are divided in the time domain. There will be a clear time limit for when the uplink transmission can be performed. On the SUL carrier, some delay-sensitive data can be sent immediately through the SUL carrier, regardless of the time limit of uplink transmission, so as to reduce the transmission delay.
  • the terminal device specifies that the transmission of PUCCH is based on the SUL
  • the carrier is also based on the NUL carrier.
  • the network device can configure the terminal device to send PUSCH on the carrier where the PUCCH is located, or configure the terminal device to dynamically switch between the SUL carrier and the NUL carrier .
  • the UL grant (scheduling grant) issued by the network device contains indication information (such as SUL/non-SUL indicator, SUL/non-SUL indication information), which is used to indicate which sent on the carrier.
  • the terminal equipment will not send PUSCH on the SUL carrier and the NUL carrier at the same time.
  • the terminal device selects the NUL carrier or the SUL carrier based on the RSRP (Reference Signal Receiving Power, reference signal receiving power) threshold (rsrp-ThresholdSSB-SUL) configured by the network device.
  • the MAC Media Access Control, Media Access Control
  • the MAC entity should ignore the UL grant.
  • the four-step random access process is triggered by any of the following events: a wireless connection is established when the UE initially accesses: the UE changes from the RRC_IDLE (RRC idle) state to the RRC_CONNECTED (RRC connection) state; the RRC connection reestablishment process: so that the UE Reestablish the wireless connection after the wireless link fails; cell handover: UE needs to establish uplink synchronization with the new serving cell; in the RRC_CONNECTED state, DL (Downlink, downlink) data arrives, and the UL is out of synchronization at this time; in the RRC_CONNECTED state, the UL When the data arrives, the UL is in an out-of-sync state or there is no PUCCH resource for sending SR (Scheduling Request, scheduling request); SR fails; synchronous reconfiguration request from RRC; UE transitions from RRC_INACTIVE (RRC activation) state to RRC_CONNECTED state ;
  • Rel 15 (Release 15, version 15)
  • the four-step random access process mainly supports the following two random access methods: contention-based random access and non-contention-based random access, as shown in Figure 8 .
  • the introduction is as follows:
  • Step 1 the terminal device sends Msg1 (Message 1, message 1) to the network device.
  • the terminal device selects a PRACH (Physical Random Access Channel, physical random access channel) resource, and sends a selected random access preamble (Random Access Preamble) on the selected PRACH.
  • PRACH Physical Random Access Channel, physical random access channel
  • the PRACH resource and preamble can be specified by the network device (step 0). Based on the preamble, the network device can estimate the uplink Timing (timing), and the grant size required for the terminal device to transmit Msg3 (Message 3, message 3).
  • Step 2 the network device sends Msg2 (Message 2, message 2) to the terminal device.
  • the terminal device After the terminal device sends Msg1, it opens a random access response time window (ra-ResponseWindow), and monitors RA-RNTI (Random Access-Radio Network Temporary Identifier, Random Access-Radio Network Temporary Identifier) within the random access response time window ) scrambled PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • RA-RNTI Random Access-Radio Network Temporary Identifier, Random Access-Radio Network Temporary Identifier
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the terminal device After successfully receiving the PDCCH scrambled by the RA-RNTI, the terminal device can obtain the PDSCH (Physical Downlink Shared Channel) scheduled by the PDCCH, which includes the RAR (Random Access Response, random access response). If the terminal device receives the PDCCH scrambled by the RA-RNTI, and the RAR contains the preamble index (indication) sent by itself, the terminal device considers that it has successfully received the random access response.
  • PDSCH Physical Downlink Shared Channel
  • RAR Random Access Response, random access response
  • the random access process ends.
  • the terminal device After successfully receiving Msg2, the terminal device needs to continue to transmit Msg3 and receive Msg4 (Message 4, message 4).
  • Step 3 the terminal device sends Msg3 to the network device.
  • the terminal device transmits Msg3 on the resource scheduled by the network device.
  • Msg3 is mainly used to notify the network equipment of what event triggers the random access process. For example, if it is an initial access random process, Msg3 will carry UE ID (Identifier, identification) and establishment cause (establishment cause); if it is RRC reestablishment, Msg3 will carry the connected state UE identifier and establishment cause.
  • Step 4 the network device sends Msg4 to the terminal device.
  • Msg4 has two functions, one is to resolve contention conflicts, and the other is to transmit RRC configuration messages from network equipment to terminal equipment.
  • contention conflicts there are two ways to resolve contention conflicts: one is that if the terminal device carries C-RNTI (Cell Radio Network Temporary Identifier, cell radio network temporary identifier) in Msg3, then Msg4 is scrambled with C-RNTI PDCCH scheduling; the other is that if the terminal equipment does not carry C-RNTI in Msg3, such as initial access, Msg4 is scrambled with TC-RNTI (Temporary Cell Radio Network Temporary Identifier, temporary cell radio network temporary identifier) PDCCH scheduling.
  • C-RNTI Cell Radio Network Temporary Identifier, cell radio network temporary identifier
  • TC-RNTI Temporary Cell Radio Network Temporary Identifier, temporary cell radio network temporary identifier
  • the MsgA (Message A, message A) in the two-step random access includes the Preamble transmitted on the PRACH and the load information transmitted on the PUSCH; after the MsgA is transmitted, the terminal device monitors the The response of the network device; if the MsgB (Message B, message B) sent by the network device is received, and MsgB contains an indication that the contention conflict is successfully resolved, the terminal device ends the random access process.
  • MsgA Message A, message A
  • message B message B
  • MsgB contains an indication that the contention conflict is successfully resolved
  • the terminal device executes the transmission of Msg3 and monitors the contention conflict resolution result. In one example, if the contention conflict resolution is unsuccessful after the transmission of Msg3, the terminal device continues the transmission of MsgA.
  • the RSRP of the terminal equipment at the center of the cell is significantly higher than that at the edge of the cell, this phenomenon is called the “near-far effect”.
  • the terminal device can judge whether the channel state is good enough through RSRP measurement, so as to select the SUL carrier or NUL carrier to initiate random access.
  • NTN as shown in Figure 11(b), since the spatial path loss between the terminal equipment and the network equipment does not change significantly with the distance, that is, the RSRP when the terminal equipment is at the center of the cell and the RSRP when it is at the edge of the cell The difference is not obvious.
  • an embodiment of the present application provides a random access method, which can be used for a terminal device in an NTN system to determine an uplink carrier used in a random access process.
  • a random access method which can be used for a terminal device in an NTN system to determine an uplink carrier used in a random access process.
  • FIG. 12 shows a flow chart of a random access method provided by an embodiment of the present application. This method can be applied to the network architecture shown in FIGS. 1 to 5.
  • the method may include the following steps (step 1210 ⁇ 1230) at least some of the steps.
  • Step 1210 the network device sends the first configuration information to the terminal device.
  • the network device can configure parameters related to RACH (Random Access Channel, Random Access Channel) for the terminal device, so that the terminal device can initiate a random access process.
  • the network device sends the first configuration information to the terminal device, the first configuration information is used for the terminal device to select an uplink carrier used in a random access process, and the uplink carrier includes a NUL carrier or a SUL carrier.
  • the uplink carrier includes a NUL carrier or a SUL carrier.
  • the first configuration information includes the conditions for using NUL carriers and/or the conditions for using SUL carriers.
  • the conditions for using SUL carriers include the service The cell is configured with a SUL carrier; or, the first configuration information includes the threshold value of the selection parameter, for example, the terminal device measures the selection parameter (such as round-trip transmission delay, distance, etc.), and then compares the measurement result with the threshold value , if it is higher than the threshold value, a NUL carrier is selected, and if it is lower than the threshold value, a SUL carrier is selected.
  • the selection parameter such as round-trip transmission delay, distance, etc.
  • the embodiment of the present application does not limit the sending method of the first configuration information.
  • the first configuration information is the public configuration of the cell
  • the network device carries the first configuration information in the system information sent to the terminal device, such as the first configuration
  • the information is carried in SIBx (System Information Block x, system information block x); and/or, the network device carries the first configuration information in a broadcast message broadcast to the terminal device.
  • Step 1220 the terminal device determines the uplink carrier used in the random access process based on the first configuration information, where the uplink carrier includes a NUL carrier or a SUL carrier.
  • the terminal device After receiving the first configuration information, the terminal device determines the uplink carrier used in the random access process based on the first configuration information, that is, selects a NUL carrier or a SUL carrier based on the first configuration information to initiate a random access process.
  • the above step 1220 includes: when the serving cell where the terminal device is located is configured with a SUL carrier, the terminal device determines based on the first configuration information uplink carrier.
  • step 1220 By performing step 1220 when the serving cell where the terminal device is located is configured with a SUL carrier, it is effectively avoided that the serving cell where the terminal device is located is not configured with a SUL carrier, but the terminal device selects a SUL carrier to initiate a random access procedure. Random access procedure failed.
  • the network device in addition to configuring RACH-related parameters for the terminal device through the first configuration information, may also send second configuration information to the terminal device.
  • the second configuration information includes The used uplink carrier, so as to achieve the effect of explicitly configuring the uplink carrier for the terminal device.
  • the network device may only send the second configuration information to the terminal device or only the first configuration information to the terminal device.
  • the priority between the first configuration information and the second configuration information can be set, for example, the priority of the second configuration information is set higher than the priority of the first configuration information, so that if the terminal device receives both If the first configuration information also receives the second configuration information, the uplink carrier indicated by the second configuration information is preferentially used to initiate a random access procedure.
  • the above step 1220 includes: when the second configuration information from the network device is not received, and the serving cell where the terminal device is located is configured with a SUL carrier, the terminal device configures the SUL carrier based on the first configuration information Determine the uplink carrier. That is, the terminal device executes the above step 1220 when the network device does not explicitly configure an uplink carrier and the serving cell where the terminal device is located is configured with a SUL carrier.
  • the embodiment of the present application does not limit the way in which the network device explicitly configures the uplink carrier (that is, does not limit the sending method of the second configuration information).
  • the second configuration information is a public configuration of the cell
  • the network device sends
  • the system information of the terminal device carries the second configuration information, such as the second configuration information is carried in SIBx (System Information Block x, system information block x); and/or, the network device carries the second configuration information in the broadcast message broadcast to the terminal device 2.
  • SIBx System Information Block x, system information block x
  • the network device carries the second configuration information in the broadcast message broadcast to the terminal device 2.
  • Step 1230 the terminal device sends a random access request to the network device based on the uplink carrier.
  • the terminal device After selecting an uplink carrier based on the first configuration information, the terminal device initiates a random access request to the network device based on the selected uplink carrier. It can be seen from the above embodiments that the network device may also explicitly configure the uplink carrier for the terminal device. Based on this, in an example, the above method further includes: when receiving the second configuration information from the network device, the terminal device Sending a random access request to the network device based on the uplink carrier included in the second configuration information. Optionally, after determining the uplink carrier used in the random access procedure, the terminal device selects an RACH resource on the uplink carrier, and sends a random access request to the network device on the selected RACH resource.
  • the embodiment of the present application does not limit the type of the random access process initiated by the terminal device.
  • the random access process initiated by the terminal device is a four-step random access process, and the random access request sent by the terminal device to the network device Include Msg1; or, the random access process initiated by the terminal device is a two-step random access process, then the random access request sent by the terminal device to the network device includes MsgA.
  • the random access process initiated by the terminal device is a contention-based random access process, or a non-contention-based random access process.
  • the terminal device selects an uplink carrier based on the configuration information sent by the network device, and initiates a random access process based on the selected uplink carrier, so as to ensure that the terminal device uses an appropriate uplink carrier to initiate The random access process improves the success rate of random access.
  • the uplink carrier used by the terminal device in the random access process includes a NUL carrier or a SUL carrier, and the effect of extending the uplink coverage is achieved by associating the NUL carrier with the SUL carrier.
  • the content of the first configuration information, the process for the terminal device to select an uplink carrier based on the first configuration information, etc. will be introduced and described.
  • the first configuration information includes a first threshold value; the above step 1220 includes: the terminal device measures the transmission parameters between the terminal device and the network device to obtain a first measurement value; based on the first measurement value and The first threshold value determines the uplink carrier.
  • the transmission parameters between the terminal device and the network device include round-trip transmission time (such as RTT (Round Trip Time, round-trip transmission time) or RTD (Round Trip Delay, round-trip transmission delay)) and/or transmission distance.
  • the network device configures the first threshold value corresponding to the transmission parameter for the terminal device; on the other hand, the terminal device obtains the first measurement value corresponding to the transmission parameter based on measurement. Then, the terminal device determines the uplink carrier based on the comparison between the first threshold value and the first measurement value.
  • the smaller the round-trip transmission delay and/or the transmission distance between the terminal device and the network device it means that the terminal device is closer to the network device, and thus the air interface quality is generally better. Therefore, when the first measured value is smaller than the first threshold value, it usually indicates that the air interface quality is good; when the first measured value is greater than the first threshold value, it usually indicates that the air interface quality is poor.
  • determining the uplink carrier based on the first measurement value and the first threshold value includes: determining that the uplink carrier includes a NUL carrier when the first measurement value is less than the first threshold value; If a measured value is greater than the first threshold, it is determined that the uplink carrier includes the SUL carrier.
  • the technical solution of "selecting a SUL carrier when the first measured value is smaller than the first threshold value; selecting a NUL carrier when the first measured value is greater than the first threshold value" should also fall within the scope of protection of this application. It should be understood that, for the case where the first measurement value is equal to the first threshold value, the terminal device may select either a NUL carrier or a SUL carrier, which is not limited in this embodiment of the present application.
  • FIG. 13 shows a schematic diagram of selecting an uplink carrier provided by an embodiment of the present application.
  • the coverage area of the network device (that is, the satellite 132 ) is divided into two parts: a coverage area 134 with better air interface quality and a coverage area 136 with poor air interface quality.
  • the first measured value obtained by the terminal device by measuring the transmission parameters between the terminal device and the network device is smaller than the set first threshold value; in the coverage area with poor air interface quality Within the range 136, the first measurement value obtained by the terminal device measuring the transmission parameter between the terminal device and the network device is greater than the set first threshold value.
  • the terminal device 131 uses the NUL carrier to initiate a random access process; if the terminal device 133 is located in the coverage area 136 , it uses the SUL carrier to initiate the random access process.
  • the first configuration information includes a transmission parameter reference value and a second threshold value; the above step 1220 includes: the terminal device measures the transmission parameter between the terminal device and the network device to obtain the first measurement value; Measure the RSRP to obtain a second measurement value; determine a first mixed measurement value based on the transmission parameter reference value, the first measurement value, and the second measurement value; determine the uplink carrier based on the first mixed measurement value and the second threshold value .
  • the transmission parameters between the terminal device and the network device include round-trip transmission time (such as RTT or RTD) and/or transmission distance.
  • the terminal device obtains the first measurement value corresponding to the transmission parameter based on the measurement, and obtains the second measurement value based on the RSRP measurement;
  • the network device configures the transmission parameter reference corresponding to the transmission parameter for the terminal device value, the terminal device determines the first mixed measurement value based on the transmission parameter reference value, the first measured value, and the second measured value, and the network device configures the terminal device with a second threshold corresponding to the first mixed measured value. Then, the terminal device determines the uplink carrier based on the comparison between the first mixed measurement value and the second threshold value.
  • the terminal device determines the first mixed measurement value based on the transmission parameter reference value, the first measurement value, and the second measurement value, including: calculating the difference between the transmission parameter reference value and the first measurement value, and the second The two measurements are multiplied to obtain a first composite measurement.
  • the transmission parameter is expressed as RTT
  • the transmission parameter reference value is expressed as the maximum value of RTT (that is, RTT_max)
  • the first measurement value is expressed as RTT_measure
  • the second measurement value is expressed as RSRP
  • the first mixed measurement value is expressed as ( RTT_max-RTT_measure)*RSRP.
  • the transmission parameter reference value can also be the minimum value of the transmission parameter
  • the transmission parameter can also be the round-trip distance
  • the first mixed measurement value can also be calculated in other ways, for example, the difference between the first measurement value and the transmission parameter reference value The difference between them (the difference obtained by subtracting the transmission parameter reference value from the first measurement value) is divided by the second measurement value to obtain the first mixed measurement value, which is not limited in the embodiment of the present application.
  • determining the uplink carrier based on the first mixed measurement value and the second threshold value includes: determining that the uplink carrier includes a NUL carrier when the first mixed measurement value is greater than the second threshold value; If the mixed measurement value is less than the second threshold, it is determined that the uplink carrier includes the SUL carrier.
  • the technical solution of "selecting a NUL carrier when the first mixed measurement value is less than the second threshold value; selecting a SUL carrier when the first mixed measurement value is greater than the second threshold value” should also fall within the scope of protection of this application . It should be understood that, for the case where the first mixed measurement value is equal to the second threshold value, the terminal device may select either a NUL carrier or a SUL carrier, which is not limited in this embodiment of the present application.
  • the terminal device needs to measure the transmission parameters between the terminal device and the network device to obtain the first measurement value.
  • the terminal device measures a transmission parameter between the terminal device and the network device to obtain the first measurement value, including: the terminal device measures the transmission parameter based on the measurement reference information to obtain the first measurement value; wherein,
  • the measurement reference information includes at least one of the following: location information of the terminal device, satellite ephemeris information, and transmission parameters corresponding to the feeder link.
  • satellite ephemeris information and/or transmission parameters corresponding to feeder links are carried in system information; and/or satellite ephemeris information and/or transmission parameters corresponding to feeder links are carried in broadcast messages.
  • the location information of the terminal device is obtained by measuring the terminal device through GNSS (Global Navigation Satellite System, global satellite navigation system).
  • GNSS Global Navigation Satellite System, global satellite navigation system
  • the transmission parameter between the terminal device and the network device may include the transmission parameter between the terminal device and the satellite.
  • the terminal device may determine the first measurement value based on the two measurement reference values of the terminal device's location information and satellite ephemeris information.
  • the transmission parameter between the terminal device and the network device may also include the transmission parameter between the terminal device and the ground network device (such as NTN gateway).
  • the terminal device may determine the first measurement value based on three measurement reference values, namely, location information of the terminal device, satellite ephemeris information, and a transmission parameter corresponding to the feeder link.
  • the terminal device determines the transmission parameters corresponding to the service link (service link) based on the location information of the terminal device and satellite ephemeris information; then, sums the transmission parameters corresponding to the service link and the transmission parameters corresponding to the feeder link processing to obtain the first measured value.
  • the first configuration information includes n reference points, and the third threshold values corresponding to the n reference points respectively, where n is equal to 1 or n is an integer greater than 1;
  • the above step 1220 includes: The distances between the terminal device and the n reference points are respectively measured to obtain the third measurement values corresponding to the n reference points respectively; based on the third measurement values corresponding to the n reference points respectively, and the third measurement values corresponding to the n reference points respectively Three thresholds to determine the uplink carrier.
  • the network device configures n reference points for the terminal device, where n is equal to 1 or n is greater than 1, that is, the network device configures one or more reference points for the terminal device.
  • the reference point is a ground reference point.
  • the embodiment of the present application does not limit the distribution of the n reference points.
  • the n reference points are evenly distributed around the coverage center point of the network device.
  • the terminal device measures the distances between the terminal device and n reference points respectively, and obtains the third measurement values respectively corresponding to the n reference points; on the other hand, the network device configures n reference points respectively for the terminal device corresponding to the third threshold. Then, the terminal device determines the uplink carrier based on the comparison between the third measurement values respectively corresponding to the n reference points and the third threshold value.
  • the determination of the uplink carrier based on the third measurement values corresponding to the n reference points and the third threshold values corresponding to the n reference points includes: any one of the n reference points corresponds to When the third measurement value is less than the third threshold value corresponding to the reference point, it is determined that the uplink carrier includes a NUL carrier; the third measurement value corresponding to each of the n reference points is greater than the third threshold value corresponding to the reference point In the case of , it is determined that the uplink carrier includes the SUL carrier.
  • the terminal device selects the SUL carrier; the third measurement value corresponding to each reference point is smaller than the third threshold value corresponding to the reference point value, the technical solution that the terminal device selects the NUL carrier" should also fall within the scope of protection of this application. It should be understood that for the case where the third measurement value corresponding to any reference point is equal to the third threshold value corresponding to the reference point, and for the case where the third measurement value corresponding to each reference point is equal to the third threshold value corresponding to the reference point , the terminal device may select either a NUL carrier or a SUL carrier, which is not limited in this embodiment of the present application.
  • the third thresholds corresponding to the n reference points configured by the network device for the terminal device may be the same, that is, the third thresholds corresponding to the n reference points are all the first values; or, the network device is a terminal device
  • the third threshold values corresponding to at least two reference points among the configured n reference points may be different.
  • the network device may configure the third threshold corresponding to the n reference points based on the distance between the n reference points and the center point of the coverage range of the network device.
  • the third threshold value corresponding to the reference point is configured to be larger; when the reference point is farther from the coverage center point of the network device In the case of , the third threshold corresponding to the reference point is configured to be smaller.
  • FIG. 14 shows a schematic diagram of selecting an uplink carrier provided by an embodiment of the present application.
  • the network device is configured with 6 reference points. Within the coverage areas 142 corresponding to these six reference points, the distance between the terminal device and the reference point corresponding to the coverage area is less than the third threshold value corresponding to the reference point; Outside the coverage range 142, the distance between the terminal device and any reference point is greater than the third threshold value corresponding to the reference point.
  • the terminal device 141 if the terminal device 141 is within the coverage area 142 corresponding to reference point 2, it uses the NUL carrier to initiate a random access procedure; if the terminal device 143 is within the coverage area 142 corresponding to reference point 5, it uses the NUL carrier to initiate a random access procedure. Access procedure: if the terminal device 145 and the terminal device 147 are out of the coverage corresponding to all reference points, the SUL carrier is used to initiate a random access procedure.
  • the first configuration information includes n reference points, distance reference values corresponding to the n reference points, and fourth threshold values corresponding to the n reference points, where n is equal to 1 or n is greater than 1 Integer;
  • the above step 1220 includes: the terminal device measures the distances between the terminal device and the n reference points respectively, and obtains the third measurement values respectively corresponding to the n reference points; measures the RSRP, and obtains the second measurement value; Based on the distance reference values corresponding to the n reference points, the third measured value and the second measured value respectively corresponding to the n reference points, determine the second mixed measured values corresponding to the n reference points respectively; The second mixed measurement value and the fourth threshold values respectively corresponding to the n reference points are used to determine the uplink carrier.
  • the network device configures n reference points for the terminal device, where n is equal to 1 or n is greater than 1, that is, the network device configures one or more reference points for the terminal device.
  • the reference point is a ground reference point.
  • the embodiment of the present application does not limit the distribution of the n reference points.
  • the n reference points are evenly distributed around the coverage center point of the network device.
  • the terminal device measures the distances between the terminal device and the n reference points respectively, obtains the third measurement values corresponding to the n reference points respectively, and obtains the second measurement value based on the RSRP measurement; on the other hand, the network device
  • the terminal device is configured with distance reference values corresponding to n reference points respectively, and the terminal device determines n distance reference values and second measurement values corresponding to the n reference points respectively based on the third measurement value
  • the network device further configures fourth threshold values corresponding to the n reference points for the terminal device. Then, the terminal device determines the uplink carrier based on the comparison of the second mixed measurement values respectively corresponding to the n reference points and the fourth threshold values respectively corresponding to the n reference points.
  • determining the second mixed measurement values corresponding to the n reference points respectively includes: For the i-th reference point among the n reference points, multiply the difference between the distance reference value corresponding to the i-th reference point and the third measurement value corresponding to the i-th reference point by the second measurement value to obtain the i-th reference point
  • the second mixed measurement value corresponding to the i reference points; i is a positive integer less than or equal to n.
  • the distance is represented as d
  • the distance reference value corresponding to the i-th reference point is represented as the maximum value of d (ie d_max)
  • the third measurement value corresponding to the i-th reference point is represented as d_measure
  • the second measurement value represents is RSRP
  • the second mixed measurement value corresponding to the i-th reference point is expressed as (d_max-d_measure)*RSRP.
  • the distance reference value corresponding to the i-th reference point can also be the minimum value of the distance
  • the second mixed measurement value corresponding to the i-th reference point can also be calculated in other ways, for example, the i-th reference point corresponds to The difference between the third measured value of and the distance reference value corresponding to the i-th reference point (the difference obtained by subtracting the distance reference value corresponding to the i-th reference point from the third measured value corresponding to the i-th reference point) , divided by the second measured value to obtain the second mixed measured value corresponding to the i-th reference point, which is not limited in this embodiment of the present application.
  • determining the uplink carrier based on the second mixed measurement values corresponding to the n reference points and the fourth threshold values corresponding to the n reference points respectively includes: the first mixed measurement value corresponding to any one of the n reference points When the second mixed measurement value is greater than the fourth threshold value corresponding to the reference point, it is determined that the uplink carrier includes a NUL carrier; the second mixed measurement value corresponding to each of the n reference points is smaller than the fourth threshold value corresponding to the reference point In the case of the value, it is determined that the uplink carrier includes the SUL carrier.
  • the terminal device selects the NUL carrier; the second mixed measurement value corresponding to any reference point is smaller than the fourth threshold value corresponding to the reference point
  • the technical solution that the terminal device selects the SUL carrier should also fall within the scope of protection of this application. It should be understood that for the case where the second mixed measurement value corresponding to any reference point is equal to the fourth threshold value corresponding to the reference point, and the second mixed measurement value corresponding to each reference point is equal to the fourth threshold value corresponding to the reference point
  • the terminal device may select either a NUL carrier or a SUL carrier, which is not limited in this embodiment of the present application.
  • the fourth threshold values corresponding to the n reference points configured by the network device for the terminal device may be the same, that is, the fourth threshold values corresponding to the n reference points are all third values; or, the network device is a terminal device
  • the fourth threshold values corresponding to at least two reference points among the configured n reference points may be different.
  • the network device may configure the fourth threshold corresponding to the n reference points based on the distance between the n reference points and the center point of the coverage range of the network device.
  • the fourth threshold value corresponding to the reference point is configured to be smaller; if the reference point is farther from the coverage center point of the network device In the case of , the third threshold corresponding to the reference point is configured to be larger.
  • the distance reference values corresponding to the n reference points configured by the network device for the terminal device may be the same, that is, the distance reference values corresponding to the n reference points are all the second value; or, the network device configures the n reference points for the terminal device Distance reference values corresponding to at least two of the reference points may be different.
  • the network device may configure distance reference values corresponding to the n reference points based on the distances between the n reference points and the center point of coverage of the network device.
  • the distance reference value corresponding to the reference point is configured to be larger; in the case where the reference point is farther away from the coverage center point of the network device
  • the technical solution provided by the embodiment of the present application selects a random
  • the uplink carrier used in the access process realizes the use of NUL carrier to initiate the random access process for the terminal equipment in the center of the serving cell, and uses the SUL carrier to initiate the random access process for the terminal equipment at the edge of the serving cell, which improves the uplink coverage and makes All terminal devices within the coverage of the network can select a suitable uplink carrier, which improves the success rate of random access.
  • the steps performed by the terminal device may be implemented separately as a random access method on the terminal device side; the steps performed by the network device may be implemented separately as a random access method on the network device side.
  • FIG. 15 shows a block diagram of a random access device provided by an embodiment of the present application.
  • the apparatus has the function of implementing the above example method on the terminal device side, and the function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the apparatus may be the terminal device described above, or may be set in the terminal device.
  • the device can be applied in NTN.
  • the apparatus 1500 may include: an information receiving module 1510 , a carrier determining module 1520 and a random access module 1530 .
  • the information receiving module 1510 is configured to receive the first configuration information from the network device.
  • the carrier determining module 1520 is configured to determine an uplink carrier used in a random access process based on the first configuration information, where the uplink carrier includes a NUL carrier or a SUL carrier.
  • the random access module 1530 is configured to send a random access request to the network device based on the uplink carrier.
  • the first configuration information includes a first threshold value
  • the carrier determination module 1520 is configured to: measure a transmission parameter between the terminal device and the network device to obtain the first measured value, the transmission parameter includes round-trip transmission time and/or transmission distance; based on the first measurement value and the first threshold value, determine the uplink carrier.
  • the determining the uplink carrier based on the first measurement value and the first threshold value includes: when the first measurement value is smaller than the first threshold value, determining that the uplink carrier includes the NUL carrier; and determining that the uplink carrier includes the SUL carrier in a case where the first measurement value is greater than the first threshold value.
  • the first configuration information includes a transmission parameter reference value and a second threshold value
  • the carrier determination module 1520 is configured to: measure a transmission parameter between the terminal device and the network device , to obtain a first measurement value, the transmission parameter includes round-trip transmission time and/or transmission distance; measure RSRP to obtain a second measurement value; based on the transmission parameter reference value, the first measurement value and the second The second measurement value is to determine a first mixed measurement value; and to determine the uplink carrier based on the first mixed measurement value and the second threshold value.
  • the determining the uplink carrier based on the first mixed measurement value and the second threshold value includes: when the first mixed measured value is greater than the second threshold value , determining that the uplink carrier includes the NUL carrier; and determining that the uplink carrier includes the SUL carrier when the first mixed measurement value is less than the second threshold value.
  • the determining a first mixed measurement value based on the transmission parameter reference value, the first measurement value, and the second measurement value includes: combining the transmission parameter reference value with the first The difference between the measured values is multiplied by the second measured value to obtain the first mixed measured value.
  • the measuring a transmission parameter between the terminal device and the network device to obtain a first measurement value includes: measuring the transmission parameter based on measurement reference information to obtain the first Measurement values; wherein, the measurement reference information includes at least one of the following: location information of the terminal device, satellite ephemeris information, and transmission parameters corresponding to feeder links.
  • the satellite ephemeris information and/or transmission parameters corresponding to the feeder link are carried in system information; and/or, the satellite ephemeris information and/or the transmission parameters corresponding to the feeder link Parameters are carried in broadcast messages.
  • the location information of the terminal device is obtained by the terminal device through GNSS measurement.
  • the first configuration information includes n reference points, and third threshold values respectively corresponding to the n reference points, the n is equal to 1 or the n is an integer greater than 1;
  • the The carrier determination module 1520 is configured to: respectively measure the distances between the terminal device and the n reference points to obtain third measurement values respectively corresponding to the n reference points; based on the n reference points The third measurement values respectively corresponding to, and the third threshold values respectively corresponding to the n reference points determine the uplink carrier.
  • the determining the uplink carrier based on the third measurement values respectively corresponding to the n reference points and the third threshold values corresponding to the n reference points includes: at the n When the third measurement value corresponding to any one of the n reference points is less than the third threshold value corresponding to the reference point, it is determined that the uplink carrier includes the NUL carrier; each of the n reference points If the third measurement value corresponding to the reference point is greater than the third threshold value corresponding to the reference point, it is determined that the uplink carrier includes the SUL carrier.
  • the third threshold values respectively corresponding to the n reference points are all the first values.
  • the first configuration information includes n reference points, distance reference values corresponding to the n reference points, and fourth threshold values corresponding to the n reference points, where n is equal to 1 or the n is an integer greater than 1;
  • the carrier determination module 1520 is configured to: measure the distances between the terminal device and the n reference points respectively, and obtain that the n reference points respectively correspond to The third measurement value;
  • RSRP is measured to obtain a second measurement value; based on the distance reference values corresponding to the n reference points, the third measurement values corresponding to the n reference points, and the second measurement value, determine the second mixed measurement values corresponding to the n reference points respectively; based on the second mixed measurement values corresponding to the n reference points respectively and the fourth threshold values corresponding to the n reference points respectively, determine The uplink carrier.
  • the determining the uplink carrier based on the second mixed measurement values corresponding to the n reference points and the fourth threshold values respectively corresponding to the n reference points includes: When the second mixed measurement value corresponding to any one of the n reference points is greater than the fourth threshold value corresponding to the reference point, it is determined that the uplink carrier includes the NUL carrier; among the n reference points When the second mixed measurement value corresponding to each reference point is smaller than the fourth threshold value corresponding to the reference point, it is determined that the uplink carrier includes the SUL carrier.
  • the determination of the n reference points respectively The corresponding second mixed measurement value includes: for the i-th reference point among the n reference points, the distance reference value corresponding to the i-th reference point and the i-th reference point correspond to a third measurement The difference between the values is multiplied by the second measured value to obtain the second mixed measured value corresponding to the ith reference point; the i is a positive integer less than or equal to the n.
  • the distance reference values corresponding to the n reference points are all the second value; and/or, the fourth threshold values respectively corresponding to the n reference points are all the third value.
  • the first configuration information is carried in system information; and/or, the first configuration information is carried in a broadcast message.
  • the carrier determining module 1520 is configured to: determine the uplink carrier based on the first configuration information when the SUL carrier is configured in the serving cell where the terminal device is located.
  • the carrier determination module 1520 is configured to: if the second configuration information from the network device is not received and the serving cell where the terminal device is located is configured with the SUL carrier, determining the uplink carrier based on the first configuration information; wherein the second configuration information includes the uplink carrier used by the terminal device in the random access process.
  • the random access module 1530 is further configured to: when receiving the second configuration information from the network device, based on the uplink carrier included in the second configuration information, send The network device sends the random access request.
  • the second configuration information is carried in system information; and/or, the second configuration information is carried in a broadcast message.
  • FIG. 16 shows a block diagram of a random access device provided by an embodiment of the present application.
  • the apparatus has the function of realizing the above-mentioned method example on the network device side, and the function may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the apparatus may be the above-mentioned network device, or may be set in the network device.
  • the device can be applied in NTN.
  • the apparatus 1600 may include: an information sending module 1610 and a random access module 1620 .
  • An information sending module 1610 configured to send first configuration information to a terminal device, where the first configuration information is used by the terminal device to determine an uplink carrier used in a random access process, where the uplink carrier includes a NUL carrier or a SUL carrier .
  • the random access module 1620 is configured to receive a random access request sent by the terminal device through the uplink carrier.
  • the first configuration information is carried in system information; and/or, the first configuration information is carried in a broadcast message.
  • the information sending module 1610 is further configured to send second configuration information to the terminal device, where the second configuration information includes the uplink carrier used by the terminal device in the random access process
  • the random access module 1620 is further configured to receive a random access request sent by the terminal device through the uplink carrier included in the second configuration information.
  • the second configuration information is carried in system information; and/or, the second configuration information is carried in a broadcast message.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 17 shows a schematic structural diagram of a terminal device 170 provided by an embodiment of the present application.
  • the terminal device may be used to implement the above random access method on the terminal device side.
  • the terminal device 170 may include: a processor 171, and a transceiver 172 connected to the processor 171; wherein:
  • the processor 171 includes one or more processing cores, and the processor 171 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 172 includes a receiver and a transmitter.
  • the transceiver 172 is a communication chip.
  • the terminal device 170 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory may be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the terminal device in the foregoing method embodiments.
  • the memory can be implemented by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, Random Access Memory) and ROM (Read-Only Memory, read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, electrically erasable programmable read-only memory ), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cartridges, tapes, disk storage or other magnetic storage devices.
  • RAM Random-Access Memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory, erasable programmable read-only memory
  • EEPROM Electrically Erasable Programmable Read-Only
  • the transceiver 172 is configured to receive first configuration information from a network device.
  • the processor 171 is configured to determine an uplink carrier used in a random access process based on the first configuration information, where the uplink carrier includes a NUL carrier or a SUL carrier.
  • the transceiver 172 is configured to send a random access request to the network device based on the uplink carrier.
  • the first configuration information includes a first threshold value
  • the processor 171 is configured to: measure a transmission parameter between the terminal device and the network device to obtain a first measurement value , the transmission parameters include round-trip transmission time and/or transmission distance; based on the first measurement value and the first threshold value, determine the uplink carrier.
  • the processor 171 is further configured to: determine that the uplink carrier includes the NUL carrier when the first measured value is less than the first threshold value; If the measured value is greater than the first threshold, it is determined that the uplink carrier includes the SUL carrier.
  • the first configuration information includes a transmission parameter reference value and a second threshold value
  • the processor 171 is configured to: measure a transmission parameter between the terminal device and the network device, Obtain a first measurement value, the transmission parameter includes round-trip transmission time and/or transmission distance; measure RSRP to obtain a second measurement value; based on the transmission parameter reference value, the first measurement value and the second The measurement value is to determine a first mixed measurement value; based on the first mixed measurement value and the second threshold value, determine the uplink carrier.
  • the processor 171 is further configured to: determine that the uplink carrier includes the NUL carrier when the first mixed measurement value is greater than the second threshold value; If a mixed measurement value is less than the second threshold, it is determined that the uplink carrier includes the SUL carrier.
  • the processor 171 is further configured to: multiply the difference between the transmission parameter reference value and the first measured value by the second measured value to obtain the first Mixed measurements.
  • the processor 171 is further configured to: measure the transmission parameter based on measurement reference information to obtain the first measurement value; wherein the measurement reference information includes at least one of the following: the The location information of the terminal equipment, the satellite ephemeris information, and the transmission parameters corresponding to the feeder link.
  • the satellite ephemeris information and/or transmission parameters corresponding to the feeder link are carried in system information; and/or, the satellite ephemeris information and/or the transmission parameters corresponding to the feeder link Parameters are carried in broadcast messages.
  • the location information of the terminal device is obtained by the terminal device through GNSS measurement.
  • the first configuration information includes n reference points, and third threshold values respectively corresponding to the n reference points, the n is equal to 1 or the n is an integer greater than 1;
  • the The processor 171 is configured to: respectively measure distances between the terminal device and the n reference points to obtain third measurement values respectively corresponding to the n reference points; The corresponding third measurement value and the third threshold values respectively corresponding to the n reference points determine the uplink carrier.
  • the processor 171 is further configured to: if the third measurement value corresponding to any one of the n reference points is smaller than the third threshold value corresponding to the reference point, determine The uplink carrier includes the NUL carrier; when a third measurement value corresponding to each of the n reference points is greater than a third threshold value corresponding to the reference point, determine that the uplink carrier includes the NUL carrier The SUL carrier described above.
  • the third threshold values respectively corresponding to the n reference points are all the first values.
  • the first configuration information includes n reference points, distance reference values corresponding to the n reference points, and fourth threshold values corresponding to the n reference points, where n is equal to 1 or the n is an integer greater than 1;
  • the processor 171 is configured to: respectively measure the distances between the terminal device and the n reference points, and obtain the respective distances corresponding to the n reference points The third measurement value; measure the RSRP to obtain a second measurement value; based on the distance reference values corresponding to the n reference points, the third measurement values corresponding to the n reference points, and the second measurement value , determine the second mixed measurement values corresponding to the n reference points respectively; based on the second mixed measured values corresponding to the n reference points and the fourth threshold values corresponding to the n reference points respectively, determine the the above-mentioned uplink carrier.
  • the processor 171 is configured to: if the second mixed measurement value corresponding to any one of the n reference points is greater than the fourth threshold value corresponding to the reference point, determine The uplink carrier includes the NUL carrier; when the second mixed measurement value corresponding to each of the n reference points is less than the fourth threshold value corresponding to the reference point, determine that the uplink carrier includes The SUL carrier.
  • the processor 171 is configured to: for the i-th reference point among the n reference points, compare the distance reference value corresponding to the i-th reference point with the i-th reference point The difference between the corresponding third measured values is multiplied by the second measured value to obtain the second mixed measured value corresponding to the ith reference point; the i is a positive integer less than or equal to the n .
  • the distance reference values corresponding to the n reference points are all the second value; and/or, the fourth threshold values respectively corresponding to the n reference points are all the third value.
  • the first configuration information is carried in system information; and/or, the first configuration information is carried in a broadcast message.
  • the processor 171 is configured to: determine the uplink carrier based on the first configuration information when the SUL carrier is configured in the serving cell where the terminal device is located.
  • the processor 171 is configured to: if the second configuration information from the network device is not received, and the serving cell where the terminal device is located configures the SUL carrier, based on The first configuration information determines the uplink carrier; wherein, the second configuration information includes the uplink carrier used by the terminal device in the random access procedure.
  • the transceiver 172 is further configured to: in the case of receiving the second configuration information from the network device, based on the uplink carrier included in the second configuration information, send to the network The device sends the random access request.
  • the second configuration information is carried in system information; and/or, the second configuration information is carried in a broadcast message.
  • FIG. 18 shows a schematic structural diagram of a network device 180 provided by an embodiment of the present application.
  • the network device may be used to implement the above random access method on the network device side.
  • the network device 180 may include: a processor 181, and a transceiver 182 connected to the processor 181; wherein:
  • the processor 181 includes one or more processing cores, and the processor 181 executes various functional applications and information processing by running software programs and modules.
  • Transceiver 182 includes a receiver and a transmitter.
  • the transceiver 182 is a communication chip.
  • the terminal device 180 further includes: a memory and a bus.
  • the memory is connected to the processor through a bus.
  • the memory may be used to store a computer program, and the processor is used to execute the computer program, so as to implement various steps performed by the network device in the foregoing method embodiments.
  • memory may be implemented by any type or combination of volatile or nonvolatile storage devices including, but not limited to, RAM and ROM, EPROM, EEPROM, flash memory, or other Solid state storage and its technologies, CD-ROM, DVD or other optical storage, tape cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • volatile or nonvolatile storage devices including, but not limited to, RAM and ROM, EPROM, EEPROM, flash memory, or other Solid state storage and its technologies, CD-ROM, DVD or other optical storage, tape cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices.
  • the transceiver 182 is configured to send first configuration information to the terminal device, the first configuration information is used by the terminal device to determine the uplink carrier used in the random access process, and the uplink carrier includes a NUL carrier or a SUL carrier carrier.
  • the transceiver 182 is configured to receive a random access request sent by the terminal device through the uplink carrier.
  • the first configuration information is carried in system information; and/or, the first configuration information is carried in a broadcast message.
  • the transceiver 182 is further configured to send second configuration information to the terminal device, where the second configuration information includes the uplink carrier used by the terminal device in the random access process; receiving a random access request sent by the terminal device through the uplink carrier included in the second configuration information.
  • the second configuration information is carried in system information; and/or, the second configuration information is carried in a broadcast message.
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a terminal device, so as to implement the above random access method on the terminal device side .
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a network device, so as to implement the above random access method on the network device side .
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on the terminal device, it is used to implement the above random access method on the terminal device side.
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the network device, it is used to implement the above random access method on the network device side.
  • the present application also provides a computer program product, which, when the computer program product is run on a terminal device side computer, causes the computer to execute the above random access method on the terminal device side.
  • the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer on the network device side, the computer is made to execute the random access method on the network device side.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本申请提供了一种随机接入方法、装置、设备及存储介质,涉及通信技术领域。所述方法包括:网络设备向终端设备发送第一配置信息;终端设备基于第一配置信息,确定随机接入过程中所使用的上行载波,上行载波包括NUL载波或SUL载波;终端设备基于上行载波,向网络设备发送随机接入请求。本申请实施例通过终端设备基于网络设备发送的配置信息选择上行载波,并基于所选择的上行载波发起随机接入过程,确保终端设备使用合适的上行载波发起随机接入过程,提升随机接入的成功率。

Description

随机接入方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种随机接入方法、装置、设备及存储介质。
背景技术
NR(New Radio,新空口)协议支持SUL(Supplementary Uplink,补充上行)技术。SUL表明一个传统的包含UL(Uplink,上行)和DL(Downlink,下行)的载波对,会有一个关联或者补充的上行载波。换句话说,支持SUL技术的通信系统中,存在两种类型的上行载波:NUL(Normal Uplink,正常上行)载波和SUL载波。
SUL载波能够扩展上行覆盖,通过使用低频载波,提高功率受限区域的上行速率。并且,NUL载波的载波带宽通常比SUL载波的载波带宽大很多,这样,在空口质量比较好(如终端设备距离网络设备较近)的情况下,终端设备可以使用NUL载波来获得较高的上行速率;而在空口质量比较差(如终端设备距离网络设备较远)的情况下,由于低频载波的路损较小,终端设备可以使用SUL载波来获得相对NUL载波更高的上行速率。此外,TDD(Time Division Duplex,时分双工)系统的上行传输和下行传输是通过时域进行划分的,何时能够进行上行传输会有明确的时间限制,但是如果绑定TDD载波和部署在对称频谱上的SUL载波,一些时延敏感的数据就可以通过SUL载波立即发送而无视上行传输的时间限制,达到降低传输时延的效果。
然而,针对终端设备如何选择合适的上行载波发起随机接入过程,还需要进一步地讨论和研究。
发明内容
本申请实施例提供了一种随机接入方法、装置、设备及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种随机接入方法,应用于NTN(Non-Terrestrial Network,非地面通信网络)的终端设备中,所述方法包括:
接收来自于网络设备的第一配置信息;
基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波;
基于所述上行载波,向所述网络设备发送随机接入请求。
另一方面,本申请实施例提供了一种随机接入方法,应用于NTN的网络设备中,所述方法包括:
向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波;
接收所述终端设备通过所述上行载波发送的随机接入请求。
再一方面,本申请实施例提供了一种随机接入装置,设置在NTN的终端设备中,所述装置包括:
信息接收模块,用于接收来自于网络设备的第一配置信息;
载波确定模块,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波;
随机接入模块,用于基于所述上行载波,向所述网络设备发送随机接入请求。
又一方面,本申请实施例提供了一种随机接入装置,设置在NTN的网络设备中,所述装置包括:
信息发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波;
随机接入模块,用于接收所述终端设备通过所述上行载波发送的随机接入请求。
还一方面,本申请实施例提供了一种终端设备,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于接收来自于网络设备的第一配置信息;
所述处理器,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包 括NUL载波或SUL载波;
所述收发器,用于基于所述上行载波,向所述网络设备发送随机接入请求。
还一方面,本申请实施例提供了一种网络设备,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
所述收发器,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波;
所述收发器,还用于接收所述终端设备通过所述上行载波发送的随机接入请求。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如上述终端设备侧的随机接入方法。
还一方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如上述网络设备侧的随机接入方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧的随机接入方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧的随机接入方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧的随机接入方法。
还一方面,本申请实施例提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧的随机接入方法。
本申请实施例提供的技术方案可以包括如下有益效果:
通过终端设备基于网络设备发送的配置信息选择上行载波,并基于所选择的上行载波发起随机接入过程,确保终端设备使用合适的上行载波发起随机接入过程,提升随机接入的成功率。并且,本申请实施例中,终端设备在随机接入过程中所使用的上行载波包括NUL载波或SUL载波,通过为NUL载波关联SUL载波,达到了扩展上行覆盖的效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的网络架构的示意图;
图2是本申请一个实施例提供的NTN系统的网络架构的示意图;
图3是本申请一个实施例提供的再生转发的卫星网络架构的示意图;
图4是本申请一个实施例提供的透明转发的卫星网络架构的示意图;
图5是本申请一个实施例提供的地面蜂窝网络的网络架构的示意图;
图6是本申请一个实施例提供的SUL载波配置的示意图;
图7是本申请一个实施例提供的SUL载波和NUL载波的选择示意图;
图8是本申请一个实施例提供的四步随机接入过程的示意图;
图9是本申请一个实施例提供的两步随机接入过程的示意图;
图10是本申请一个实施例提供的两步随机接入过程回退至四步随机接入过程的示意图;
图11是本申请一个实施例提供的远近效应的示意图;
图12是本申请一个实施例提供的随机接入方法的流程图;
图13是本申请一个实施例提供的上行载波的选择示意图;
图14是本申请另一个实施例提供的上行载波的选择示意图;
图15是本申请一个实施例提供的随机接入装置的框图;
图16是本申请另一个实施例提供的随机接入装置的框图;
图17是本申请一个实施例提供的终端设备的结构示意图;
图18是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描 述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的网络架构的示意图。该网络架构可以包括:网络设备10和终端设备20。
网络设备10是用于为终端设备20提供无线通信服务的设备。网络设备10与终端设备20之间可以通过空口建立连接,从而通过该连接进行通信,包括信令和数据的交互。网络设备10的数量可以有多个,两个邻近的网络设备10之间也可以通过有线或者无线的方式进行通信。终端设备20可以在不同的网络设备10之间进行切换,也即,与不同的网络设备10建立连接。
在一个示例中,如图2所示,以NTN系统为例,NTN系统中的网络设备10可以是卫星11。一颗卫星11可以覆盖一定范围的地面区域,为该地面区域上的终端设备20提供无线通信服务。另外,卫星11可以围绕地球做轨道运动,通过布设多个卫星11,可以实现对地球表面的不同区域的通信覆盖。
相比于地面蜂窝网络通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制。例如,一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,且卫星可以围绕地球做轨道运动,因此,理论上地球每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大的同时通讯成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
可选地,卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等。目前阶段主要研究的是LEO和GEO。
1、LEO。
低轨道卫星高度范围为500km(kilometre,千米)~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms(millisecond,毫秒)。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2、GEO。
地球同步轨道卫星的轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
可选地,为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
可选地,目前考虑的卫星有两种,一种是再生转发(Regenerative Payload)的卫星,图3示出了一种再生转发的卫星网络架构的示意图;另一种是透明转发(Transparent Payload)的卫星,图4示出了一种透明转发的卫星网络架构的示意图。其中,卫星与NTN gateway(网关)(NTN gateway通常位于地面)之间的无线链路通常称为馈线链路(feeder link)。
在另一个示例中,如图5所示,以地面蜂窝网络系统为例,地面蜂窝网络系统中的网络设备10可以是基站12。基站12是一种部署在接入网中用以为终端设备20提供无线通信功能的装置。基站12可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同,例如,在NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备20提供无线通信功能的装置统称为网络设备。
另外,本申请实施例中涉及的终端设备20,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、终端设备(terminal device)等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。
另外,在本申请实施例中,名词“网络”和“系统”通常混用,但本领域技术人员可以理解其含义。
本申请实施例提供的技术方案,可以适用于NTN系统,也可以适用于地面蜂窝网络系统。
NR协议支持SUL技术。SUL表明一个传统的包含UL和DL的载波对,会有一个关联或者补充的上行载波,如图6所示。换句话说,支持SUL技术的通信系统中,存在两种类型的上行载波:NUL载波和 SUL载波。在一个示例中,SUL载波和关联的服务小区载波属于同一个TAG(Timing Advance Group,定时提前组)。
在地面蜂窝网络中,如图7所示,SUL载波能够扩展上行覆盖,通过使用低频载波,提高功率受限区域的上行速率。并且,NUL载波的载波带宽通常比SUL载波的载波带宽大很多,这样,在空口质量比较好(如终端设备距离网络设备较近)的情况下,终端设备可以使用NUL载波来获得较高的上行速率;而在空口质量比较差(如终端设备距离网络设备较远)的情况下,由于低频载波的路损较小,终端设备可以使用SUL载波来获得相对NUL载波更高的上行速率。因此,SUL的目的包括获得两个载波上行速率的包络。在任意时刻,终端设备只能使用一个上行载波,NR协议不允许终端设备在SUL载波和NUL载波同时发送数据,这样有利于简化协议的设计,特别是射频实现的难度。示例性地,SUL技术的典型应用场景是在LTE(Long Term Evolution,长期演进)的频谱资源里面配置SUL载波,充分利用流量较少的LTE上行频谱,明显提高NR的用户体验,又不会对已有的LTE产生太大的影响。此外,SUL载波还能够降低时延,TDD系统的上行传输和下行传输是通过时域进行划分的,何时能够进行上行传输会有明确的时间限制,但是如果绑定TDD载波和部署在对称频谱上的SUL载波,一些时延敏感的数据就可以通过SUL载波立即发送而可以无视上行传输的时间限制,达到降低传输时延的效果。
在一个示例中,对于PUCCH(Physical Uplink Control Channel,物理上行控制信道)的传输,终端设备基于网络设备显式的RRC(Radio Resource Control,无线资源配置)信令配置,明确PUCCH的传输是基于SUL载波还是基于NUL载波。在一个示例中,对于PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的传输,网络设备可以配置终端设备在PUCCH所在的载波上发送PUSCH,也可以配置终端设备在SUL载波和NUL载波上动态切换。可选地,如果要支持动态切换,网络设备下发的UL grant(调度授权)中包含指示信息(如SUL/non-SUL indicator,SUL/非SUL指示信息),用来指示调度的PUSCH在哪个载波上发送。终端设备不会在SUL载波和NUL载波上同时发送PUSCH。在一个示例中,对于随机接入过程,终端设备基于网络设备配置的RSRP(Reference Signal Receiving Power,参考信号接收功率)门限(rsrp-ThresholdSSB-SUL)来选择NUL载波或SUL载波。在一个示例中,如果终端设备的MAC(Media Access Control,媒体访问控制)实体在随机接入过程正在进行的时候接收到指示载波切换的UL grant,MAC实体应当忽略该UL grant。
在一个示例中,四步随机接入过程由以下任意一个事件触发:UE初始接入时建立无线连接:UE从RRC_IDLE(RRC空闲)态到RRC_CONNECTED(RRC连接)态;RRC连接重建过程:以便UE在无线链路失败后重建无线连接;小区切换:UE需要与新的服务小区建立上行同步;RRC_CONNECTED态下,DL(Downlink,下行)数据到达,此时UL处于失步状态;RRC_CONNECTED态下,UL数据到达,此时UL处于失步状态或者没有用于发送SR(Scheduling Request,调度请求)的PUCCH资源;SR失败;来自RRC的同步重配置请求;UE从RRC_INACTIVE(RRC激活)态转换为RRC_CONNECTED态;在SCell(Secondary Cell,辅服务小区)添加过程中建立时间校准;请求其他SI(System Information,系统信息);波束失败恢复。
Rel 15(Release 15,第15版本)中,四步随机接入过程主要支持以下两种随机接入方式:基于竞争的随机接入方式和基于非竞争的随机接入方式,如图8所示。结合图8所示的随机接入过程,介绍如下:
步骤1,终端设备向网络设备发送Msg1(Message 1,消息1)。
终端设备选择PRACH(Physical Random Access Channel,物理随机接入信道)资源,并在选择的PRACH上发送选择的随机接入前导码(Random Access Preamble)。
如果是基于非竞争的随机接入方式,PRACH资源和preamble可以由网络设备指定(步骤0)。网络设备基于preamble可以估计上行Timing(定时),和终端设备传输Msg3(Message 3,消息3)所需要的grant大小。
步骤2,网络设备向终端设备发送Msg2(Message 2,消息2)。
终端设备发送Msg1之后,开启一个随机接入响应时间窗(ra-ResponseWindow),在该随机接入响应时间窗内监测RA-RNTI(Random Access-Radio Network Temporary Identifier,随机接入无线网络临时标识符)加扰的PDCCH(Physical Downlink Control Channel,物理下行控制信道)。RA-RNTI与终端设备发送Msg1所使用的PRACH时频资源有关。
终端设备在成功接收到RA-RNTI加扰的PDCCH之后,能够获得该PDCCH调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道),其中包含了RAR(Random Access Response,随机接入相应)。如果终端设备接收到RA-RNTI加扰的PDCCH,并且RAR中包含了自己发送的preamble index(指示),则终端设备认为成功接收了随机接入响应。
对于基于非竞争的随机接入方式,终端设备成功接收Msg2后,随机接入过程结束。
对于基于竞争的随机接入方式,终端设备终端成功接收Msg2后,还需要继续传输Msg3和接收Msg4 (Message 4,消息4)。
步骤3,终端设备向网络设备发送Msg3。
终端设备在网络设备调度的资源上传输Msg3。Msg3主要用于通知网络设备该随机接入过程是由什么事件触发。例如,如果是初始接入随机过程,Msg3中会携带UE ID(Identifier,标识)和establishment cause(建立原因);如果是RRC重建,Msg3中会携带连接态UE标识和establishment cause。
步骤4,网络设备向终端设备发送Msg4。
Msg4有两个作用,一是用于竞争冲突解决,二是网络设备向终端设备传输RRC配置消息。可选地,竞争冲突解决有两种方式:一种是如果终端设备在Msg3中携带了C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识符),则Msg4用C-RNTI加扰的PDCCH调度;另一种是如果终端设备在Msg3中没有携带C-RNTI,例如是初始接入,则Msg4用TC-RNTI(Temporary Cell Radio Network Temporary Identifier,临时小区无线网络临时标识符)加扰的PDCCH调度。
Rel 16(Release 16,第16版本)中,引入了两步随机接入过程。两步随机接入过程的引入可以在降低时延的同时减小信令开销。如图9所示,两步随机接入中的MsgA(Message A,消息A)包含在PRACH上传输的Preamble和在PUSCH上传输的负载信息;在MsgA传输后,终端设备在配置的窗口内监听网络设备的响应;如果收到网络设备下发的MsgB(Message B,消息B),且MsgB中包含竞争冲突解决成功的指示,则终端设备结束随机接入过程。可选地,如图10所示,如果在MsgB中收到回退指示,则终端设备执行Msg3的传输并监听竞争冲突解决结果。在一个示例中,如果在Msg3传输之后竞争冲突解决不成功,则终端设备继续MsgA的传输。
在地面蜂窝网络中,如图11(a)所示,终端设备处于小区中心时的RSRP要明显高于其处于小区边缘时的RSRP,这一现象称为“远近效应”。在地面蜂窝网络中,由于存在明显的“远近效应”,终端设备可以通过RSRP测量来判断信道状态是否足够好,从而来选择SUL载波或NUL载波发起随机接入。然而,在NTN中,如图11(b)所示,由于终端设备与网络设备之间的空间路损随距离变化不明显,即终端设备处于小区中心时的RSRP与其处于小区边缘时的RSRP的差异并不明显,如果仍然采用RSRP测量来选择SUL载波或NUL载波,一方面很难设置合适的RSRP门限,另一方面RSRP测量存在较大误差,很可能导致终端设备选择不合适的上行载波,从而无法达到扩展上行覆盖的目的,严重影响用户体验。
基于此,本申请实施例提供了一种随机接入方法,可用于NTN系统中的终端设备确定随机接入过程所使用的上行载波。下面,结合几个实施例对本申请的技术方案进行介绍说明。
请参考图12,其示出了本申请一个实施例提供的随机接入方法的流程图,该方法可应用于图1至图5所示的网络架构中,该方法可以包括如下步骤(步骤1210~1230)中的至少部分步骤。
步骤1210,网络设备向终端设备发送第一配置信息。
网络设备可以为终端设备配置RACH(Random Access Channel,随机接入信道)相关的参数,以便于终端设备发起随机接入过程。本申请实施例中,网络设备向终端设备发送第一配置信息,该第一配置信息用于终端设备选择随机接入过程所使用的上行载波,该上行载波包括NUL载波或SUL载波。可选地,该SUL载波与NUL载波之间存在关联关系,它们属于同一个TAG。
本申请实施例对第一配置信息的内容不作限定,可选地,第一配置信息包括使用NUL载波的条件和/或使用SUL载波的条件,例如,使用SUL载波的条件包括终端设备所在的服务小区配置了SUL载波;或者,第一配置信息包括选择参数的门限值,例如,终端设备对选择参数(如往返传输时延、距离等)进行测量,然后将测量的结果与门限值比较,若高于门限值则选择NUL载波,若低于门限值则选择SUL载波。有关第一配置信息的内容的其他介绍说明,请参见下述方法实施例,此处不多赘述。本申请实施例对第一配置信息的发送方式也不作限定,可选地,第一配置信息为小区公共配置,网络设备在发送给终端设备的系统信息中承载第一配置信息,如第一配置信息承载在SIBx(System Information Block x,系统信息块x)中;和/或,网络设备在广播给终端设备的广播消息中承载第一配置信息。
步骤1220,终端设备基于第一配置信息,确定随机接入过程中所使用的上行载波,上行载波包括NUL载波或SUL载波。
终端设备在接收到第一配置信息之后,基于第一配置信息确定随机接入过程中所使用的上行载波,也即,基于第一配置信息选择NUL载波或SUL载波发起随机接入过程。为确保终端设备所确定的上行载波能够成功发起随机接入过程,在一个示例中,上述步骤1220包括:在终端设备所在的服务小区配置了SUL载波的情况下,终端设备基于第一配置信息确定上行载波。通过在终端设备所在的服务小区配置了SUL载波的情况下执行步骤1220,有效避免了由于终端设备所在的服务小区并没有配置SUL载波,但终端设备却选择了SUL载波发起随机接入过程而导致随机接入过程失败。
本申请实施例中,网络设备除了通过第一配置信息为终端设备配置RACH相关的参数之外,还可以向 终端设备发送第二配置信息,该第二配置信息包括终端设备在随机接入过程中所使用的上行载波,从而达到为终端设备显式地配置上行载波的效果。为了避免终端设备基于第一配置信息所选择的上行载波,与第二配置信息所指示的上行载波之间出现冲突,网络设备可以仅向终端设备发送第二配置信息或者仅向终端设备发送第一配置信息;或者,可以设置第一配置信息和第二配置信息之间的优先级,例如,设置第二配置信息的优先级高于第一配置信息的优先级,从而,若终端设备既接收到第一配置信息也接收到第二配置信息,则优先使用第二配置信息所指示的上行载波发起随机接入过程。
基于此,在一个示例中,上述步骤1220,包括:在未接收到来自于网络设备的第二配置信息,且终端设备所在的服务小区配置了SUL载波的情况下,终端设备基于第一配置信息确定上行载波。也即,终端设备在网络设备未显式地配置上行载波,且终端设备所在的服务小区配置了SUL载波的情况下,执行上述步骤1220。本申请实施例对网络设备显式配置上行载波的方式不作限定(也即,对第二配置信息的发送方式不作限定),可选地,第二配置信息为小区公共配置,网络设备在发送给终端设备的系统信息中承载第二配置信息,如第二配置信息承载在SIBx(System Information Block x,系统信息块x)中;和/或,网络设备在广播给终端设备的广播消息中承载第二配置信息。
步骤1230,终端设备基于上行载波,向网络设备发送随机接入请求。
终端设备基于第一配置信息选择了上行载波之后,基于所选择的上行载波,向网络设备发起随机接入请求。由上述实施例可知,网络设备也可以为终端设备显式配置上行载波,基于此,在一个示例中,上述方法还包括:在接收到来自于网络设备的第二配置信息的情况下,终端设备基于第二配置信息所包括的上行载波,向网络设备发送随机接入请求。可选地,终端设备在确定随机接入过程所使用的上行载波后,在该上行载波上选择RACH资源,并在所选择的RACH资源上向网络设备发送随机接入请求。
本申请实施例对终端设备发起的随机接入过程的类型不作限定,可选地,终端设备发起的随机接入过程为四步随机接入过程,则终端设备向网络设备发送的随机接入请求包括Msg1;或者,终端设备发起的随机接入过程为两步随机接入过程,则终端设备向网络设备发送的随机接入请求包括MsgA。可选地,终端设备发起的随机接入过程为基于竞争的随机接入过程,或者为基于非竞争的随机接入过程。
综上所述,本申请实施例提供的技术方案,通过终端设备基于网络设备发送的配置信息选择上行载波,并基于所选择的上行载波发起随机接入过程,确保终端设备使用合适的上行载波发起随机接入过程,提升随机接入的成功率。并且,本申请实施例中,终端设备在随机接入过程中所使用的上行载波包括NUL载波或SUL载波,通过为NUL载波关联SUL载波,达到了扩展上行覆盖的效果。
下面,针对第一配置信息的内容、终端设备基于第一配置信息选择上行载波的过程等进行介绍说明。
在一个示例中,第一配置信息包括第一门限值;上述步骤1220,包括:终端设备对终端设备与网络设备之间的传输参数进行测量,得到第一测量值;基于第一测量值和第一门限值,确定上行载波。
终端设备与网络设备之间的传输参数包括往返传输时间(如RTT(Round Trip Time,往返传输时间)或RTD(Round Trip Delay,往返传输时延))和/或传输距离。一方面,网络设备为终端设备配置对应于该传输参数的第一门限值;另一方面,终端设备基于测量得到对应于该传输参数的第一测量值。然后,终端设备基于第一门限值和第一测量值的比较,以确定上行载波。有关终端设备对传输参数进行测量得到第一测量值的其它介绍说明,请参见下述实施例,此处不多赘述。
可选地,终端设备与网络设备之间的往返传输时延和/或传输距离越小,表示终端设备距离网络设备越近,从而空口质量通常也会越好。因此,在第一测量值小于第一门限值的情况下,通常表示空口质量较好;在第一测量值大于第一门限值的情况下,通常表示空口质量较差。基于此,可选地,上述基于第一测量值和第一门限值,确定上行载波,包括:在第一测量值小于第一门限值的情况下,确定上行载波包括NUL载波;在第一测量值大于第一门限值的情况下,确定上行载波包括SUL载波。当然,“在第一测量值小于第一门限值时选择SUL载波;在第一测量值大于第一门限值时选择NUL载波”的技术方案也应属于本申请的保护范围之内。应理解,针对第一测量值等于第一门限值的情况,终端设备既可以选择NUL载波,也可以选择SUL载波,本申请实施例对此不作限定。
请参考图13,其示出了本申请一个实施例提供的上行载波的选择示意图。如图13所示,网络设备(即卫星132)的覆盖范围被分为两个部分:空口质量较好的覆盖范围134和空口质量较差的覆盖范围136。在空口质量较好的覆盖范围134内,终端设备对终端设备与网络设备之间的传输参数进行测量得到的第一测量值,小于设定的第一门限值;在空口质量较差的覆盖范围136内,终端设备对终端设备与网络设备之间的传输参数进行测量得到的第一测量值,大于设定的第一门限值。如图13所示,终端设备131位于覆盖范围134内,则使用NUL载波发起随机接入过程;终端设备133位于覆盖范围136内,则使用SUL载波发起随机接入过程。
在另一个示例中,第一配置信息包括传输参数参考值和第二门限值;上述步骤1220,包括:终端设备 对终端设备与网络设备之间的传输参数进行测量,得到第一测量值;对RSRP进行测量,得到第二测量值;基于传输参数参考值、第一测量值和第二测量值,确定第一混合测量值;基于第一混合测量值和第二门限值,确定上行载波。
终端设备与网络设备之间的传输参数包括往返传输时间(如RTT或RTD)和/或传输距离。一方面,终端设备基于测量得到对应于该传输参数的第一测量值,并基于对RSRP的测量得到第二测量值;另一方面,网络设备为终端设备配置对应于该传输参数的传输参数参考值,终端设备基于传输参数参考值、第一测量值和第二测量值确定第一混合测量值,网络设备还为终端设备配置了对应于该第一混合测量值的第二门限值。然后,终端设备基于第一混合测量值和第二门限值的比较,以确定上行载波。有关终端设备对传输参数进行测量得到第一测量值的其它介绍说明,请参见下述实施例,此处不多赘述。
可选地,上述终端设备基于传输参数参考值、第一测量值和第二测量值,确定第一混合测量值,包括:将传输参数参考值与第一测量值之间的差值,和第二测量值相乘,得到第一混合测量值。示例性地,传输参数表示为RTT,传输参数参考值表示为RTT的最大值(即RTT_max),第一测量值表示为RTT_measure,第二测量值表示为RSRP,则第一混合测量值表示为(RTT_max-RTT_measure)*RSRP。当然,传输参数参考值也可以为传输参数的最小值、传输参数也可以为往返距离、第一混合测量值也可以采用其它的方式计算得到,例如,将第一测量值与传输参数参考值之间的差值(第一测量值减去传输参数参考值得到的差值),除以第二测量值,得到第一混合测量值,本申请实施例对这些均不作限定。
可选地,上述基于第一混合测量值和第二门限值,确定上行载波,包括:在第一混合测量值大于第二门限值的情况下,确定上行载波包括NUL载波;在第一混合测量值小于第二门限值的情况下,确定上行载波包括SUL载波。当然,“在第一混合测量值小于第二门限值时选择NUL载波;在第一混合测量值大于第二门限值时选择SUL载波”的技术方案也应属于本申请的保护范围之内。应理解,针对第一混合测量值等于第二门限值的情况,终端设备既可以选择NUL载波,也可以选择SUL载波,本申请实施例对此不作限定。
在上述两个示例中,终端设备均需对终端设备与网络设备之间的传输参数进行测量,得到第一测量值。在一个示例中,上述终端设备对终端设备与网络设备之间的传输参数进行测量,得到第一测量值,包括:终端设备基于测量参考信息对传输参数进行测量,得到第一测量值;其中,测量参考信息包括以下至少一项:终端设备的位置信息、卫星星历信息、馈线链路对应的传输参数。可选地,卫星星历信息和/或馈线链路对应的传输参数承载于系统信息中;和/或,卫星星历信息和/或馈线链路对应的传输参数承载于广播消息中。可选地,终端设备的位置信息由终端设备通过GNSS(Global Navigation Satellite System,全球卫星导航系统)测量得到。
示例性地,在NTN中,终端设备与网络设备之间的传输参数可以包括终端设备与卫星之间的传输参数。在这种情况下,终端设备可以基于终端设备的位置信息和卫星星历信息这两个测量参考值,确定第一测量值。
示例性地,在NTN中,终端设备与网络设备之间的传输参数还可以包括终端设备与地面网络设备(如NTN gateway)之间的传输参数。在这种情况下,终端设备可以基于终端设备的位置信息、卫星星历信息以及馈线链路对应的传输参数这三个测量参考值,确定第一测量值。例如,终端设备基于终端设备的位置信息和卫星星历信息,确定服务链路(service link)对应的传输参数;然后,对服务链路对应的传输参数与馈线链路对应的传输参数进行求和处理,得到第一测量值。
在再一个示例中,第一配置信息包括n个参考点,以及n个参考点分别对应的第三门限值,n等于1或n为大于1的整数;上述步骤1220,包括:终端设备对终端设备与n个参考点之间的距离分别进行测量,得到n个参考点分别对应的第三测量值;基于n个参考点分别对应的第三测量值,和n个参考点分别对应的第三门限值,确定上行载波。
本示例中,网络设备为终端设备配置了n个参考点,n等于1或n大于1,也即,网络设备为终端设备配置了一个或多个参考点。可选地,该参考点为地面参考点。本申请实施例对n个参考点的分布不作限定,可选地,n个参考点围绕网络设备的覆盖范围中心点均匀分布。一方面,终端设备对终端设备与n个参考点之间的距离分别进行测量,得到n个参考点分别对应的第三测量值;另一方面,网络设备为终端设备配置了n个参考点分别对应的第三门限值。然后,终端设备基于n个参考点分别对应的第三测量值和第三门限值的比较,以确定上行载波。
可选地,上述基于n个参考点分别对应的第三测量值,和n个参考点分别对应的第三门限值,确定上行载波,包括:在n个参考点中任一参考点对应的第三测量值小于参考点对应的第三门限值的情况下,确定上行载波包括NUL载波;在n个参考点中各个参考点对应的第三测量值大于参考点对应的第三门限值的情况下,确定上行载波包括SUL载波。当然,“在任一参考点对应的第三测量值大于参考点对应的第三门限值时,终端设备选择SUL载波;在各个参考点对应的第三测量值小于参考点对应的第三门限值时,终 端设备选择NUL载波”的技术方案也应属于本申请的保护范围之内。应理解,针对任一参考点对应的第三测量值等于参考点对应的第三门限值的情况,以及针对各个参考点对应的第三测量值等于参考点对应的第三门限值的情况,终端设备既可以选择NUL载波,也可以选择SUL载波,本申请实施例对此不作限定。
可选地,网络设备为终端设备配置的n个参考点对应的第三门限值可以相同,即n个参考点对应的第三门限值均为第一数值;或者,网络设备为终端设备配置的n个参考点中至少两个参考点对应的第三门限值可以不相同。可选地,网络设备可以基于n个参考点与网络设备的覆盖范围中心点之间的距离,来配置n个参考点对应的第三门限值。示例性地,在参考点距离网络设备的覆盖范围中心点较近的情况下,将该参考点对应的第三门限值配置的较大;在参考点距离网络设备的覆盖范围中心点较远的情况下,将该参考点对应的第三门限值配置的较小。
示例性地,请参考图14,其示出了本申请一个实施例提供的上行载波的选择示意图。如图14所示,网络设备配置了6个参考点。在这6个参考点分别对应的覆盖范围142内,终端设备与所在覆盖范围对应的参考点之间的距离,小于该参考点对应的第三门限值;在这6个参考点分别对应的覆盖范围142外,终端设备与任一参考点之间的距离,大于该参考点对应的第三门限值。如图14所示,终端设备141在参考点2对应的覆盖范围142内,则使用NUL载波发起随机接入过程;终端设备143在参考点5对应的覆盖范围142内,则使用NUL载波发起随机接入过程;终端设备145和终端设备147在所有参考点对应的覆盖范围之外,则使用SUL载波发起随机接入过程。
在又一个示例中,第一配置信息包括n个参考点、n个参考点分别对应的距离参考值,以及n个参考点分别对应的第四门限值,n等于1或n为大于1的整数;上述步骤1220,包括:终端设备对终端设备与n个参考点之间的距离分别进行测量,得到n个参考点分别对应的第三测量值;对RSRP进行测量,得到第二测量值;基于n个参考点分别对应的距离参考值、n个参考点分别对应的第三测量值和第二测量值,确定n个参考点分别对应的第二混合测量值;基于n个参考点分别对应的第二混合测量值和n个参考点分别对应的第四门限值,确定上行载波。
本示例中,网络设备为终端设备配置了n个参考点,n等于1或n大于1,也即,网络设备为终端设备配置了一个或多个参考点。可选地,该参考点为地面参考点。本申请实施例对n个参考点的分布不作限定,可选地,n个参考点围绕网络设备的覆盖范围中心点均匀分布。一方面,终端设备对终端设备与n个参考点之间的距离分别进行测量,得到n个参考点分别对应的第三测量值,并基于RSRP测量得到第二测量值;另一方面,网络设备为终端设备配置了n个参考点分别对应的距离参考值,终端设备基于n个参考点分别对应的第三测量值、n个参考点分别对应的距离参考值和第二测量值,确定n个参考点分别对应的第二混合测量值,网络设备还为终端设备配置了n个参考点分别对应的第四门限值。然后,终端设备基于n个参考点分别对应的第二混合测量值和n个参考点分别对应的第四门限值的比较,以确定上行载波。
可选地,基于n个参考点分别对应的距离参考值、n个参考点分别对应的第三测量值和第二测量值,确定n个参考点分别对应的第二混合测量值,包括:针对n个参考点中的第i个参考点,将第i个参考点对应的距离参考值与第i个参考点对应第三测量值之间的差值,和第二测量值相乘,得到第i个参考点对应的第二混合测量值;i为小于或等于n的正整数。示例性地,距离表示为d,第i个参考点对应的距离参考值表示为d的最大值(即d_max),第i个参考点对应的第三测量值表示为d_measure,第二测量值表示为RSRP,则第i个参考点对应的第二混合测量值表示为(d_max-d_measure)*RSRP。当然,第i个参考点对应的距离参考值也可以为距离的最小值、第i个参考点对应的第二混合测量值也可以采用其它的方式计算得到,例如,将第i个参考点对应的第三测量值与第i个参考点对应的距离参考值之间的差值(第i个参考点对应的第三测量值减去第i个参考点对应的距离参考值得到的差值),除以第二测量值,得到第i个参考点对应的第二混合测量值,本申请实施例对这些均不作限定。
可选地,基于n个参考点分别对应的第二混合测量值和n个参考点分别对应的第四门限值,确定上行载波,包括:在n个参考点中任一参考点对应的第二混合测量值大于参考点对应的第四门限值的情况下,确定上行载波包括NUL载波;在n个参考点中各个参考点对应的第二混合测量值小于参考点对应的第四门限值的情况下,确定上行载波包括SUL载波。当然,“在各个参考点对应的第二混合测量值大于参考点对应的第四门限值时,终端设备选择NUL载波;在任一参考点对应的第二混合测量值小于参考点对应的第四门限值时,终端设备选择SUL载波”的技术方案也应属于本申请的保护范围之内。应理解,针对任一参考点对应的第二混合测量值等于参考点对应的第四门限值的情况,以及针对各个参考点对应的第二混合测量值等于参考点对应的第四门限值的情况,终端设备既可以选择NUL载波,也可以选择SUL载波,本申请实施例对此不作限定。
可选地,网络设备为终端设备配置的n个参考点对应的第四门限值可以相同,即n个参考点对应的第四门限值均为第三数值;或者,网络设备为终端设备配置的n个参考点中至少两个参考点对应的第四门限值可以不相同。可选地,网络设备可以基于n个参考点与网络设备的覆盖范围中心点之间的距离,来配置 n个参考点对应的第四门限值。示例性地,在参考点距离网络设备的覆盖范围中心点较近的情况下,将该参考点对应的第四门限值配置的较小;在参考点距离网络设备的覆盖范围中心点较远的情况下,将该参考点对应的第三门限值配置的较大。可选地,网络设备为终端设备配置的n个参考点对应的距离参考值可以相同,即n个参考点对应的距离参考值均为第二数值;或者,网络设备为终端设备配置的n个参考点中至少两个参考点对应的距离参考值可以不相同。可选地,网络设备可以基于n个参考点与网络设备的覆盖范围中心点之间的距离,来配置n个参考点对应的距离参考值。示例性地,在参考点距离网络设备的覆盖范围中心点较近的情况下,将该参考点对应的距离参考值配置的较大;在参考点距离网络设备的覆盖范围中心点较远的情况下,将该参考点对应的距离参考值配置的较小。
综上所述,本申请实施例提供的技术方案,通过基于终端设备与网络设备之间的传输参数的测量,或者,通过基于终端设备与至少一个参考点之间的距离的测量,来选择随机接入过程中所使用的上行载波,实现了对于服务小区中心的终端设备使用NUL载波发起随机接入过程、对于服务小区边缘的终端设备使用SUL载波发起随机接入过程,提高了上行覆盖,使得网络覆盖范围内的终端设备均可以选择合适的上行载波,提升了随机接入的成功率。
需要说明的一点是,在上述实施例中,从终端设备与网络设备之间交互的角度,对本申请实施例提供的技术方案进行了介绍说明。上述实施例中,有关终端设备执行的步骤,可以单独实现为终端设备侧的随机接入方法;有关网络设备执行的步骤,可以单独实现为网络设备侧的随机接入方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图15,其示出了本申请一个实施例提供的随机接入装置的框图。该装置具有实现上述终端设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的终端设备,也可以设置在终端设备中。该装置可以应用于NTN中。如图15所示,该装置1500可以包括:信息接收模块1510、载波确定模块1520和随机接入模块1530。
信息接收模块1510,用于接收来自于网络设备的第一配置信息。
载波确定模块1520,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波。
随机接入模块1530,用于基于所述上行载波,向所述网络设备发送随机接入请求。
在一个示例中,所述第一配置信息包括第一门限值;所述载波确定模块1520,用于:对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;基于所述第一测量值和所述第一门限值,确定所述上行载波。
在一个示例中,所述基于所述第一测量值和所述第一门限值,确定所述上行载波,包括:在所述第一测量值小于所述第一门限值的情况下,确定所述上行载波包括所述NUL载波;在所述第一测量值大于所述第一门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述第一配置信息包括传输参数参考值和第二门限值;所述载波确定模块1520,用于:对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;对RSRP进行测量,得到第二测量值;基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值;基于所述第一混合测量值和所述第二门限值,确定所述上行载波。
在一个示例中,所述基于所述第一混合测量值和所述第二门限值,确定所述上行载波,包括:在所述第一混合测量值大于所述第二门限值的情况下,确定所述上行载波包括所述NUL载波;在所述第一混合测量值小于所述第二门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值,包括:将所述传输参数参考值与所述第一测量值之间的差值,和所述第二测量值相乘,得到所述第一混合测量值。
在一个示例中,所述对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,包括:基于测量参考信息对所述传输参数进行测量,得到所述第一测量值;其中,所述测量参考信息包括以下至少一项:所述终端设备的位置信息、卫星星历信息、馈线链路对应的传输参数。
在一个示例中,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于系统信息中;和/或,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于广播消息中。
在一个示例中,所述终端设备的位置信息由所述终端设备通过GNSS测量得到。
在一个示例中,所述第一配置信息包括n个参考点,以及所述n个参考点分别对应的第三门限值,所述n等于1或所述n为大于1的整数;所述载波确定模块1520,用于:对所述终端设备与所述n个参考点 之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波。
在一个示例中,所述基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波,包括:在所述n个参考点中任一参考点对应的第三测量值小于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述NUL载波;在所述n个参考点中各个参考点对应的第三测量值大于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述n个参考点分别对应的第三门限值均为第一数值。
在一个示例中,所述第一配置信息包括n个参考点、所述n个参考点分别对应的距离参考值,以及所述n个参考点分别对应的第四门限值,所述n等于1或所述n为大于1的整数;所述载波确定模块1520,用于:对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;对RSRP进行测量,得到第二测量值;基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值;基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波。
在一个示例中,所述基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波,包括:在所述n个参考点中任一参考点对应的第二混合测量值大于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述NUL载波;在所述n个参考点中各个参考点对应的第二混合测量值小于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值,包括:针对所述n个参考点中的第i个参考点,将所述第i个参考点对应的距离参考值与所述第i个参考点对应第三测量值之间的差值,和所述第二测量值相乘,得到所述第i个参考点对应的第二混合测量值;所述i为小于或等于所述n的正整数。
在一个示例中,所述n个参考点分别对应的距离参考值均为第二数值;和/或,所述n个参考点分别对应的第四门限值均为第三数值。
在一个示例中,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
在一个示例中,所述载波确定模块1520,用于:在所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波。
在一个示例中,所述载波确定模块1520,用于:在未接收到来自于所述网络设备的第二配置信息,且所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波;其中,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波。
在一个示例中,所述随机接入模块1530,还用于:在接收到来自于所述网络设备的第二配置信息的情况下,基于所述第二配置信息所包括的上行载波,向所述网络设备发送所述随机接入请求。
在一个示例中,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
请参考图16,其示出了本申请一个实施例提供的随机接入装置的框图。该装置具有实现上述网络设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文所述的网络设备,也可以设置在网络设备中。该装置可以应用于NTN中。如图16所示,该装置1600可以包括:信息发送模块1610和随机接入模块1620。
信息发送模块1610,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波。
随机接入模块1620,用于接收所述终端设备通过所述上行载波发送的随机接入请求。
在一个示例中,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
在一个示例中,所述信息发送模块1610,还用于向所述终端设备发送第二配置信息,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波;所述随机接入模块1620,还用于接收所述终端设备通过所述第二配置信息所包括的上行载波发送的随机接入请求。
在一个示例中,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详 细描述,此处将不做详细阐述说明。
请参考图17,其示出了本申请一个实施例提供的终端设备170的结构示意图,例如,该终端设备可以用于执行上述终端设备侧的随机接入方法。具体来讲,该终端设备170可以包括:处理器171,以及与所述处理器171相连的收发器172;其中:
处理器171包括一个或者一个以上处理核心,处理器171通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器172包括接收器和发射器。可选地,收发器172是一块通信芯片。
在一个示例中,终端设备170还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术、CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
所述收发器172,用于接收来自于网络设备的第一配置信息。
所述处理器171,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波。
所述收发器172,用于基于所述上行载波,向所述网络设备发送随机接入请求。
在一个示例中,所述第一配置信息包括第一门限值;所述处理器171,用于:对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;基于所述第一测量值和所述第一门限值,确定所述上行载波。
在一个示例中,所述处理器171,还用于:在所述第一测量值小于所述第一门限值的情况下,确定所述上行载波包括所述NUL载波;在所述第一测量值大于所述第一门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述第一配置信息包括传输参数参考值和第二门限值;所述处理器171,用于:对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;对RSRP进行测量,得到第二测量值;基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值;基于所述第一混合测量值和所述第二门限值,确定所述上行载波。
在一个示例中,所述处理器171,还用于:在所述第一混合测量值大于所述第二门限值的情况下,确定所述上行载波包括所述NUL载波;在所述第一混合测量值小于所述第二门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述处理器171,还用于:将所述传输参数参考值与所述第一测量值之间的差值,和所述第二测量值相乘,得到所述第一混合测量值。
在一个示例中,所述处理器171,还用于:基于测量参考信息对所述传输参数进行测量,得到所述第一测量值;其中,所述测量参考信息包括以下至少一项:所述终端设备的位置信息、卫星星历信息、馈线链路对应的传输参数。
在一个示例中,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于系统信息中;和/或,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于广播消息中。
在一个示例中,所述终端设备的位置信息由所述终端设备通过GNSS测量得到。
在一个示例中,所述第一配置信息包括n个参考点,以及所述n个参考点分别对应的第三门限值,所述n等于1或所述n为大于1的整数;所述处理器171,用于:对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波。
在一个示例中,所述处理器171,还用于:在所述n个参考点中任一参考点对应的第三测量值小于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述NUL载波;在所述n个参考点中各个参考点对应的第三测量值大于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述n个参考点分别对应的第三门限值均为第一数值。
在一个示例中,所述第一配置信息包括n个参考点、所述n个参考点分别对应的距离参考值,以及所述n个参考点分别对应的第四门限值,所述n等于1或所述n为大于1的整数;所述处理器171,用于: 对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;对RSRP进行测量,得到第二测量值;基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值;基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波。
在一个示例中,所述处理器171,用于:在所述n个参考点中任一参考点对应的第二混合测量值大于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述NUL载波;在所述n个参考点中各个参考点对应的第二混合测量值小于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述SUL载波。
在一个示例中,所述处理器171,用于:针对所述n个参考点中的第i个参考点,将所述第i个参考点对应的距离参考值与所述第i个参考点对应第三测量值之间的差值,和所述第二测量值相乘,得到所述第i个参考点对应的第二混合测量值;所述i为小于或等于所述n的正整数。
在一个示例中,所述n个参考点分别对应的距离参考值均为第二数值;和/或,所述n个参考点分别对应的第四门限值均为第三数值。
在一个示例中,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
在一个示例中,所述处理器171,用于:在所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波。
在一个示例中,所述处理器171,用于:在未接收到来自于所述网络设备的第二配置信息,且所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波;其中,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波。
在一个示例中,所述收发器172,还用于:在接收到来自于所述网络设备的第二配置信息的情况下,基于所述第二配置信息所包括的上行载波,向所述网络设备发送所述随机接入请求。
在一个示例中,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
请参考图18,其示出了本申请一个实施例提供的网络设备180的结构示意图,例如,该网络设备可以用于执行上述网络设备侧的随机接入方法。具体来讲,该网络设备180可以包括:处理器181,以及与所述处理器181相连的收发器182;其中:
处理器181包括一个或者一个以上处理核心,处理器181通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
收发器182包括接收器和发射器。可选地,收发器182是一块通信芯片。
在一个示例中,终端设备180还包括:存储器和总线。存储器通过总线与处理器相连。存储器可用于存储计算机程序,处理器用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的各个步骤。
此外,存储器可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM和ROM、EPROM、EEPROM、闪存或其他固态存储其技术、CD-ROM、DVD或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
所述收发器182,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括NUL载波或SUL载波。
所述收发器182,用于接收所述终端设备通过所述上行载波发送的随机接入请求。
在一个示例中,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
在一个示例中,所述收发器182,还用于向所述终端设备发送第二配置信息,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波;接收所述终端设备通过所述第二配置信息所包括的上行载波发送的随机接入请求。
在一个示例中,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现上述终端设备侧的随机接入方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现上述网络设备侧的随机接入方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现如上述终端设备侧的随机接入方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现如上述网络设备侧的随机接入方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在终端设备侧计算机上运行时,使得计算机 执行上述终端设备侧的随机接入方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在网络设备侧计算机上运行时,使得计算机执行上述网络设备侧的随机接入方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (54)

  1. 一种随机接入方法,其特征在于,应用于非地面通信网络NTN的终端设备中,所述方法包括:
    接收来自于网络设备的第一配置信息;
    基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    基于所述上行载波,向所述网络设备发送随机接入请求。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括第一门限值;所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;
    基于所述第一测量值和所述第一门限值,确定所述上行载波。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述第一测量值和所述第一门限值,确定所述上行载波,包括:
    在所述第一测量值小于所述第一门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述第一测量值大于所述第一门限值的情况下,确定所述上行载波包括所述SUL载波。
  4. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括传输参数参考值和第二门限值;所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;
    对参考信号接收功率RSRP进行测量,得到第二测量值;
    基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值;
    基于所述第一混合测量值和所述第二门限值,确定所述上行载波。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述第一混合测量值和所述第二门限值,确定所述上行载波,包括:
    在所述第一混合测量值大于所述第二门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述第一混合测量值小于所述第二门限值的情况下,确定所述上行载波包括所述SUL载波。
  6. 根据权利要求4或5所述的方法,其特征在于,所述基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值,包括:
    将所述传输参数参考值与所述第一测量值之间的差值,和所述第二测量值相乘,得到所述第一混合测量值。
  7. 根据权利要求2至6任一项所述的方法,其特征在于,所述对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,包括:
    基于测量参考信息对所述传输参数进行测量,得到所述第一测量值;
    其中,所述测量参考信息包括以下至少一项:所述终端设备的位置信息、卫星星历信息、馈线链路对应的传输参数。
  8. 根据权利要求7所述的方法,其特征在于,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于系统信息中;和/或,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于广播消息中。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端设备的位置信息由所述终端设备通过全球导航卫星系统GNSS测量得到。
  10. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括n个参考点,以及所述n个参考点分别对应的第三门限值,所述n等于1或所述n为大于1的整数;所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;
    基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波。
  11. 根据权利要求10所述的方法,其特征在于,基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波,包括:
    在所述n个参考点中任一参考点对应的第三测量值小于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述n个参考点中各个参考点对应的第三测量值大于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述SUL载波。
  12. 根据权利要求10或11所述的方法,其特征在于,所述n个参考点分别对应的第三门限值均为第一数值。
  13. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括n个参考点、所述n个参考点分别对应的距离参考值,以及所述n个参考点分别对应的第四门限值,所述n等于1或所述n为大于1的整数;所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;
    对RSRP进行测量,得到第二测量值;
    基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值;
    基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波。
  14. 根据权利要求13所述的方法,其特征在于,所述基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波,包括:
    在所述n个参考点中任一参考点对应的第二混合测量值大于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述n个参考点中各个参考点对应的第二混合测量值小于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述SUL载波。
  15. 根据权利要求13或14所述的方法,其特征在于,所述基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值,包括:
    针对所述n个参考点中的第i个参考点,将所述第i个参考点对应的距离参考值与所述第i个参考点对应第三测量值之间的差值,和所述第二测量值相乘,得到所述第i个参考点对应的第二混合测量值;所述i为小于或等于所述n的正整数。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述n个参考点分别对应的距离参考值均为第二数值;和/或,所述n个参考点分别对应的第四门限值均为第三数值。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
  18. 根据权利要求1至17任一项所述的方法,其特征在于,所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    在所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波。
  19. 根据权利要求1至18任一项所述的方法,其特征在于,所述基于所述第一配置信息,确定随机接入过程中所使用的上行载波,包括:
    在未接收到来自于所述网络设备的第二配置信息,且所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波;
    其中,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    在接收到来自于所述网络设备的第二配置信息的情况下,基于所述第二配置信息所包括的上行载波,向所述网络设备发送所述随机接入请求。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
  22. 一种随机接入方法,其特征在于,应用于非地面通信网络NTN的网络设备中,所述方法包括:
    向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    接收所述终端设备通过所述上行载波发送的随机接入请求。
  23. 根据权利要求22所述的方法,其特征在于,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
  24. 根据权利要求22或23所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波;
    接收所述终端设备通过所述第二配置信息所包括的上行载波发送的随机接入请求。
  25. 根据权利要求24所述的方法,其特征在于,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
  26. 一种随机接入装置,其特征在于,设置在非地面通信网络NTN的终端设备中,所述装置包括:
    信息接收模块,用于接收来自于网络设备的第一配置信息;
    载波确定模块,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    随机接入模块,用于基于所述上行载波,向所述网络设备发送随机接入请求。
  27. 根据权利要求26所述的装置,其特征在于,所述第一配置信息包括第一门限值;所述载波确定模块,用于:
    对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;
    基于所述第一测量值和所述第一门限值,确定所述上行载波。
  28. 根据权利要求27所述的装置,其特征在于,所述基于所述第一测量值和所述第一门限值,确定所述上行载波,包括:
    在所述第一测量值小于所述第一门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述第一测量值大于所述第一门限值的情况下,确定所述上行载波包括所述SUL载波。
  29. 根据权利要求26所述的装置,其特征在于,所述第一配置信息包括传输参数参考值和第二门限值;所述载波确定模块,用于:
    对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,所述传输参数包括往返传输时间和/或传输距离;
    对参考信号接收功率RSRP进行测量,得到第二测量值;
    基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值;
    基于所述第一混合测量值和所述第二门限值,确定所述上行载波。
  30. 根据权利要求29所述的装置,其特征在于,所述基于所述第一混合测量值和所述第二门限值,确 定所述上行载波,包括:
    在所述第一混合测量值大于所述第二门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述第一混合测量值小于所述第二门限值的情况下,确定所述上行载波包括所述SUL载波。
  31. 根据权利要求29或30所述的装置,其特征在于,所述基于所述传输参数参考值、所述第一测量值和所述第二测量值,确定第一混合测量值,包括:
    将所述传输参数参考值与所述第一测量值之间的差值,和所述第二测量值相乘,得到所述第一混合测量值。
  32. 根据权利要求27至31任一项所述的装置,其特征在于,所述对所述终端设备与所述网络设备之间的传输参数进行测量,得到第一测量值,包括:
    基于测量参考信息对所述传输参数进行测量,得到所述第一测量值;
    其中,所述测量参考信息包括以下至少一项:所述终端设备的位置信息、卫星星历信息、馈线链路对应的传输参数。
  33. 根据权利要求32所述的装置,其特征在于,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于系统信息中;和/或,所述卫星星历信息和/或所述馈线链路对应的传输参数承载于广播消息中。
  34. 根据权利要求32或33所述的装置,其特征在于,所述终端设备的位置信息由所述终端设备通过全球导航卫星系统GNSS测量得到。
  35. 根据权利要求26所述的装置,其特征在于,所述第一配置信息包括n个参考点,以及所述n个参考点分别对应的第三门限值,所述n等于1或所述n为大于1的整数;所述载波确定模块,用于:
    对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;
    基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波。
  36. 根据权利要求35所述的装置,其特征在于,基于所述n个参考点分别对应的第三测量值,和所述n个参考点分别对应的第三门限值,确定所述上行载波,包括:
    在所述n个参考点中任一参考点对应的第三测量值小于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述n个参考点中各个参考点对应的第三测量值大于所述参考点对应的第三门限值的情况下,确定所述上行载波包括所述SUL载波。
  37. 根据权利要求35或36所述的装置,其特征在于,所述n个参考点分别对应的第三门限值均为第一数值。
  38. 根据权利要求26所述的装置,其特征在于,所述第一配置信息包括n个参考点、所述n个参考点分别对应的距离参考值,以及所述n个参考点分别对应的第四门限值,所述n等于1或所述n为大于1的整数;所述载波确定模块,用于:
    对所述终端设备与所述n个参考点之间的距离分别进行测量,得到所述n个参考点分别对应的第三测量值;
    对RSRP进行测量,得到第二测量值;
    基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值;
    基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波。
  39. 根据权利要求38所述的装置,其特征在于,所述基于所述n个参考点分别对应的第二混合测量值和所述n个参考点分别对应的第四门限值,确定所述上行载波,包括:
    在所述n个参考点中任一参考点对应的第二混合测量值大于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述NUL载波;
    在所述n个参考点中各个参考点对应的第二混合测量值小于所述参考点对应的第四门限值的情况下,确定所述上行载波包括所述SUL载波。
  40. 根据权利要求38或39所述的装置,其特征在于,所述基于所述n个参考点分别对应的距离参考值、所述n个参考点分别对应的第三测量值和所述第二测量值,确定所述n个参考点分别对应的第二混合测量值,包括:
    针对所述n个参考点中的第i个参考点,将所述第i个参考点对应的距离参考值与所述第i个参考点对应第三测量值之间的差值,和所述第二测量值相乘,得到所述第i个参考点对应的第二混合测量值;所述i为小于或等于所述n的正整数。
  41. 根据权利要求38至40任一项所述的装置,其特征在于,所述n个参考点分别对应的距离参考值均为第二数值;和/或,所述n个参考点分别对应的第四门限值均为第三数值。
  42. 根据权利要求26至41任一项所述的装置,其特征在于,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
  43. 根据权利要求26至42任一项所述的装置,其特征在于,所述载波确定模块,用于:
    在所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波。
  44. 根据权利要求26至43任一项所述的装置,其特征在于,所述载波确定模块,用于:
    在未接收到来自于所述网络设备的第二配置信息,且所述终端设备所在的服务小区配置了所述SUL载波的情况下,基于所述第一配置信息确定所述上行载波;
    其中,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波。
  45. 根据权利要求44所述的装置,其特征在于,所述随机接入模块,还用于:
    在接收到来自于所述网络设备的第二配置信息的情况下,基于所述第二配置信息所包括的上行载波,向所述网络设备发送所述随机接入请求。
  46. 根据权利要求44或45所述的装置,其特征在于,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
  47. 一种随机接入装置,其特征在于,设置在非地面通信网络NTN的网络设备中,所述装置包括:
    信息发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    随机接入模块,用于接收所述终端设备通过所述上行载波发送的随机接入请求。
  48. 根据权利要求47所述的装置,其特征在于,所述第一配置信息承载于系统信息中;和/或,所述第一配置信息承载于广播消息中。
  49. 根据权利要求47或48所述的装置,其特征在于,
    所述信息发送模块,还用于向所述终端设备发送第二配置信息,所述第二配置信息包括所述终端设备在所述随机接入过程中所使用的上行载波;
    所述随机接入模块,还用于接收所述终端设备通过所述第二配置信息所包括的上行载波发送的随机接入请求。
  50. 根据权利要求49所述的装置,其特征在于,所述第二配置信息承载于系统信息中;和/或,所述第二配置信息承载于广播消息中。
  51. 一种终端设备,其特征在于,所述终端设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于接收来自于网络设备的第一配置信息;
    所述处理器,用于基于所述第一配置信息,确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    所述收发器,用于基于所述上行载波,向所述网络设备发送随机接入请求。
  52. 一种网络设备,其特征在于,所述网络设备包括:处理器,以及与所述处理器相连的收发器;其中:
    所述收发器,用于向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定随机接入过程中所使用的上行载波,所述上行载波包括正常上行NUL载波或补充上行SUL载波;
    所述收发器,还用于接收所述终端设备通过所述上行载波发送的随机接入请求。
  53. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现如权利要求1至21任一项所述的随机接入方法。
  54. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现如权利要求22至25任一项所述的随机接入方法。
PCT/CN2021/108496 2021-07-26 2021-07-26 随机接入方法、装置、设备及存储介质 WO2023004552A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097458.1A CN117256196A (zh) 2021-07-26 2021-07-26 随机接入方法、装置、设备及存储介质
PCT/CN2021/108496 WO2023004552A1 (zh) 2021-07-26 2021-07-26 随机接入方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108496 WO2023004552A1 (zh) 2021-07-26 2021-07-26 随机接入方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023004552A1 true WO2023004552A1 (zh) 2023-02-02

Family

ID=85086169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108496 WO2023004552A1 (zh) 2021-07-26 2021-07-26 随机接入方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117256196A (zh)
WO (1) WO2023004552A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
US20200053799A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Supplementary uplink for random access procedures
CN111278142A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 一种随机接入方法及终端
CN112738904A (zh) * 2019-10-28 2021-04-30 普天信息技术有限公司 随机接入方法、用户终端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557821A (zh) * 2018-06-04 2019-12-10 中国移动通信有限公司研究院 一种功率控制方法及装置、设备、存储介质
US20200053799A1 (en) * 2018-08-09 2020-02-13 Comcast Cable Communications, Llc Supplementary uplink for random access procedures
CN111278142A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 一种随机接入方法及终端
CN112738904A (zh) * 2019-10-28 2021-04-30 普天信息技术有限公司 随机接入方法、用户终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "Stage-3 running CR for TS 38.321 for Rel-17 NTN", 3GPP DRAFT; R2-2102052, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. eMeeting; 20210412 - 20210423, 2 March 2021 (2021-03-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051982416 *

Also Published As

Publication number Publication date
CN117256196A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
CN115052368B (zh) 随机接入方法、终端设备、网络设备及存储介质
US20220159732A1 (en) Random access method and device
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
WO2021142807A1 (zh) 两步随机接入msg a资源的配置方法及相关装置
US20220353855A1 (en) Random access resource configuration method and apparatus, device, and storage medium
US20220346154A1 (en) Random access method and apparatus
WO2022141070A1 (zh) 无线通信方法和终端设备
WO2022027628A1 (zh) 上行提前定时的确定方法、装置、设备及存储介质
WO2021022430A1 (zh) 随机接入的方法和通信设备
CN115804165A (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022116099A1 (zh) 随机接入的触发控制方法、装置、设备及存储介质
WO2023004552A1 (zh) 随机接入方法、装置、设备及存储介质
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
WO2021146836A1 (zh) 随机接入类型选择方法及装置
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2023015406A1 (zh) 通信方法及装置
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023082114A1 (zh) 通信方法及装置
WO2022126520A1 (zh) 无线通信方法、终端设备和网络设备
WO2022104602A1 (zh) Ntn中定时提前的上报方法、接收方法、装置及设备
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE