WO2021022430A1 - 随机接入的方法和通信设备 - Google Patents

随机接入的方法和通信设备 Download PDF

Info

Publication number
WO2021022430A1
WO2021022430A1 PCT/CN2019/099141 CN2019099141W WO2021022430A1 WO 2021022430 A1 WO2021022430 A1 WO 2021022430A1 CN 2019099141 W CN2019099141 W CN 2019099141W WO 2021022430 A1 WO2021022430 A1 WO 2021022430A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
distance
information
time
time parameter
Prior art date
Application number
PCT/CN2019/099141
Other languages
English (en)
French (fr)
Inventor
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980095045.2A priority Critical patent/CN113711680B/zh
Priority to PCT/CN2019/099141 priority patent/WO2021022430A1/zh
Priority to EP19940494.8A priority patent/EP3979749A4/en
Publication of WO2021022430A1 publication Critical patent/WO2021022430A1/zh
Priority to US17/562,394 priority patent/US20220124824A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a method and communication device for random access.
  • a terminal device when a terminal device initiates random access, after sending the first message (Msg 1), it will monitor the random access to the wireless network in the Random Access Response (RAR) window (RAR Window)
  • RAR Random Access Response
  • the PDCCH scrambled by the temporary identifier (RA-Radio Network Temporary Identifier, RA-RNTI) to receive the corresponding RAR message. If the terminal device does not receive the RAR message within the RAR window, it is considered that this random access has failed, and the terminal device can resend Msg 1.
  • RAR Random Access Response
  • NTN Non-Terrestrial Network
  • the signal transmission delay between the terminal equipment and the satellite has increased significantly, and due to the location of the terminal equipment Different, the signal transmission time delay between different terminal equipment and satellite also has big difference, the above-mentioned RAR window is no longer applicable. Therefore, how to implement effective random access for terminal equipment in the NTN system has become an urgent problem to be solved.
  • This application provides a random access method and communication equipment, which can realize effective random access in the NTN system.
  • a random access method which includes: determining, according to first information, and/or second information that characterizes the distance between the terminal device and the network device, for the terminal device to receive the random access process The time window of the downstream message in the.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • a communication device in a second aspect, can execute the foregoing first aspect or any optional implementation method of the first aspect.
  • the communication device may include a functional module for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • an apparatus for random access including a processor.
  • the processor is configured to call and run a computer program from the memory, so that the device installed with the device executes the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • the device is, for example, a chip.
  • a computer-readable storage medium is used to store a computer program that enables a computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a computer program product including computer program instructions that cause a computer to execute the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a computer program which when running on a computer, causes the computer to execute the above-mentioned first aspect or the method in any possible implementation of the first aspect.
  • a communication system including terminal equipment and network equipment.
  • the network device is used to send the first information to the terminal device.
  • the terminal device is configured to: receive the first information; according to the first information and/or the second information that characterizes the distance between the terminal device and the network device, determine to be used for the terminal device to receive a random access process The time window of the downstream message in the.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • a communication system including terminal equipment and network equipment.
  • the network device is used to determine a time parameter of a time window for the terminal device to receive a downlink message in a random access process; and send the time parameter to the terminal device.
  • the terminal device is configured to: receive the time parameter; and according to the time parameter, send the downlink message within the time window.
  • a nominal value is configured for the time window used to transmit downlink messages in the random access process, and the nominal value is adjusted according to the adjustment parameters and the distance between the terminal device and the network device, thereby obtaining the The time parameter of the time window used. Therefore, terminal devices in different locations can flexibly adjust the time window used by themselves, avoid invalid monitoring of downlink messages, and implement effective random access.
  • Fig. 1 is a schematic diagram of a possible wireless communication system applied by an embodiment of the present application.
  • Figure 2 is a schematic diagram of 4-step random access.
  • Figure 3 is a schematic diagram of 2-step random access.
  • Fig. 4 is a flow interaction diagram of a random access method according to an embodiment of the present application.
  • Fig. 5 is a flow interaction diagram of a random access method according to another embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for random access according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a communication system according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a communication system according to another embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A advanced Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE-based access to unlicensed spectrum LTE-U System
  • NR-based access to unlicensed spectrum NR-U system on unlicensed spectrum
  • Universal Mobile Telecommunication System UMTS
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • future 5G systems or other communication systems etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station ( Evolutional Node B, eNB or eNodeB), or the wireless controller in Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, a relay station, an access point, a vehicle Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment may be a mobile switching center, a relay station, an access point, a vehicle Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the terminal device 120 may be mobile or fixed.
  • the terminal device 120 may refer to a user equipment, an access terminal, a user unit, a user station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • D2D direct terminal
  • the network device 110 may provide services for a cell, and the terminal device 120 communicates with the network device 110 through transmission resources used by the cell, such as frequency domain resources, or spectrum resources.
  • the cell may be a cell corresponding to the network device 110.
  • the cell may belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here may include: Metro cell, Micro cell , Pico cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the wireless communication system 100 may include a plurality of network devices, and the coverage area of each network device may include other numbers of terminal devices.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity.
  • NTN non-terrestrial communication network
  • NTN generally uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user's area.
  • general terrestrial communication cannot cover areas where communication equipment cannot be installed, such as oceans, mountains, and deserts, or areas where communication is not covered due to sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so in theory every corner of the earth can be covered by satellite communications.
  • satellite communications have greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases.
  • the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO Highly elliptical orbits according to their orbital heights.
  • HEO High Elliptical Orbit
  • the main research is LEO satellite and GEO satellite.
  • the altitude range of LEO satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes, the signal propagation distance is short, the link loss is small, and the transmission power requirement of the user terminal is not high.
  • the orbital height of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure satellite coverage and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • the terminal equipment In the NTN system, the terminal equipment still needs to perform random access. Among them, the random access process can mainly be triggered by the following events: (1) The terminal device establishes a wireless connection when it initially accesses. At this time, the terminal device goes from the Radio Resource Control (RRC) idle (RRC_IDLE) state to the RRC connection (RRC_CONNECTED) state; (2) RRC connection re-establishment process, so that terminal equipment can re-establish wireless connection after radio link failure; (3) Terminal equipment needs to establish uplink synchronization with the new cell; (4) In RRC_CONNECTED state, downlink (Download , DL) When the data arrives, the uplink (Uplink, UL) is in the out-of-synchronization state; (5) In the RRC_CONNECTED state, the UL data arrives, and the UL is in the out-of-synchronization state or is not used to send a scheduling request (Scheduling Request, SR) Physical Uplink Control Channel (PUCCH
  • the method in the embodiment of this application is applicable to a 2-step random access process and a 4-step random access process.
  • FIG. 2 is a flow chart of 4-step random access. As shown in Figure 2, the 4-step random access process can include the following four steps:
  • Step 1 The terminal device sends a message (Message, Msg) 1 to the network device.
  • the terminal device selects a physical random access channel (Physical Random Access Channel, PRACH) resource, and sends its selected preamble on the selected PRACH. If it is based on non-competition random access, the PRACH resource and preamble can be specified by the network device. Based on the preamble, the network equipment can estimate the uplink time (Timing) and the size of the uplink grant (UL grant) resource required for the terminal to transmit Msg3.
  • PRACH Physical Random Access Channel
  • Step 2 The network device sends Msg 2, which is a random access response (Random access response, RAR) message to the terminal device.
  • Msg 2 is a random access response (Random access response, RAR) message to the terminal device.
  • the terminal After the terminal sends Msg 1, it opens the random access response time window (ra-ResponseWindow), and monitors the random access radio network temporary identity (Random Access Radio Network Temporary Identity, RA-RNTI) scrambling physical downlink control within this time window Channel (Physical Downlink Control Channel, PDCCH).
  • RA-RNTI Random Access Radio Network Temporary Identity
  • the RA-RNTI is associated with the time-frequency resource of the PRACH used by the terminal device to send the Msg1.
  • the terminal device After the terminal device successfully receives the PDCCH scrambled by RA-RNTI, it can obtain the physical downlink shared channel (Physical Downlink Shared Dhannel, PDSCH) scheduled by the PDCCH, including RAR, where RAR may include the following information:
  • PDSCH Physical Downlink Shared Dhannel
  • Random Access Preamble Identifier (RAP ID) in RAR the preamble index (preamble index) received by the network device in response;
  • the payload of RAR includes a timing advance command (Timing Advance Gommand, TAG): used to adjust the uplink timing;
  • TAG Timing Advance Gommand
  • Uplink grant (UL grant): an uplink resource indication for scheduling Msg 3;
  • Temporary Cell Radio Network Temporary Identity Temporary Cell-Radio Network Temporary Identifie, Temporary C-RNTI: PDCCH used to scramble Msg 4 during initial access.
  • the terminal device receives the PDCCH scrambled by the RAR-RNTI, and the RAR includes the preamble index sent by the terminal device itself, the terminal device considers that the random access response is successfully received.
  • Step 3 The terminal device sends Msg 3 on the resource scheduled by the network device.
  • Msg 3 is mainly used to inform the network equipment of what event triggered the random access process. For example, if it is a random process of initial access, the terminal device carries the equipment identification (UE ID) and establishment cause in the Msg 3; if it is RRC reestablishment, the terminal device carries the connection status identification and the establishment reason (establishment cause). cause).
  • UE ID equipment identification
  • RRC reestablishment the terminal device carries the connection status identification and the establishment reason (establishment cause). cause).
  • Step 4 The network device sends Msg 4, which is a random access contention resolution message, to the terminal device.
  • Msg 4 is used for contention conflict resolution on the one hand, and on the other hand for network equipment to transmit RRC configuration messages to terminal equipment.
  • the conflict resolution is that the terminal device receives the Msg 4 PDSCH and matches the common control channel (CCCH) in the PDSCH.
  • Service Data Unit (SDU) Service Data Unit
  • FIG. 3 is a flow chart of 2-step random access. Compared with the 4-step random access process, the 2-step random access process can reduce delay and signaling overhead.
  • the terminal device sends Msg A to the network device, where Msg A includes part or all of Msg 1 and Msg 3 in the 4-step random access process; in step 2, the network The device sends Msg B to the terminal device, where Msg B includes part or all of Msg 2 and Msg 4 in the 4-step random access process.
  • the terminal device opens the receiving window of Msg B, detects and receives Msg B in this window.
  • the terminal device After sending Msg 1, the terminal device will monitor the RA-RNTI scrambled PDCCH in the random access response time window (ra-ResponseWindow) to receive the corresponding RAR message. If the terminal device does not receive the RAR message within this time window, it is considered that this random access has failed, and the terminal device will resend Msg 1. When the number of times the terminal device sends Msg 1 reaches a certain threshold, the terminal device will indicate to the higher layer that a random access problem has occurred.
  • the random access response time window starts from the first PDCCH opportunity (PDCCH occasion) after the terminal device sends Msg 1, and the window length (ra-ResponseWindow) is configured by the network device. Based on the current standard, the maximum value that ra-ResponseWindow can support is 10ms.
  • the terminal device will also start a time window for receiving Msg B after sending Msg A, and the terminal device will monitor Msg B from the network device in this time window. If the terminal device does not receive Msg B within this time window, the terminal device considers that this random access fails.
  • Satellites have a large coverage area. For different terminal devices within the coverage area of the same satellite, due to their different locations, there may also be large differences in signal transmission delays with satellites.
  • the terminal device needs to wait at least one round trip time (Round Trip Time, RTT) from sending Msg 1 to receiving Msg 2. Since the coverage of the network equipment under the cellular network is small, and the signal transmission time between the terminal equipment and the network equipment is short, the first PDCCH occasion after the UE sends the Msg 1 opens the time window (ra-ResponseWindow).
  • RTT Round Trip Time
  • the signal transmission time between the terminal device and the satellite is relatively long, the RTT can be as long as 541.46ms, and the time interval from the terminal device sending Msg 1 to the first PDCCH occasion is likely to be less than 1 RTT, if the terminal device is still sending the first PDCCH occurrence after Msg 1, the time window will be opened. In this way, the terminal device may start the time window prematurely due to the RTT being too large, and the terminal device ineffectively listening to the RAR will undoubtedly increase The power consumption of the terminal device.
  • the difference in signal transmission time from different terminal devices to the network device within the coverage of the same network device under the cellular network is relatively small.
  • the time when the sent Msg 1 arrives at the network device is also the same. Therefore, the current configuration of this time window mainly considers the network device processing Msg1 and The time required to schedule Msg 2.
  • the satellite coverage area is large, and different terminal devices within the same satellite coverage area are located at different locations, and the signal transmission time between them and the satellite may be quite different.
  • the time window is not configured long enough, it may cause the terminal equipment far away from the satellite to be unable to receive RAR within this time window due to the too large RTT. If the time window is configured too long, terminal equipment will be added. Monitor the RAR time, thereby increasing the power consumption of the terminal device.
  • contention resolution timer contention resolution timer
  • the embodiment of the present application provides a random access method, which can realize flexible adjustment of the time window and realize effective random access.
  • Fig. 4 is a schematic flowchart of random access in an embodiment of the present application.
  • the method 400 shown in FIG. 4 may be executed by a network device and a terminal device.
  • the network device may be, for example, the network device 110 shown in FIG. 1
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the terminal device may or may not have positioning capability.
  • the method 400 can be applied to an NTN system. Wherein, as shown in FIG. 4, the method 400 includes:
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information.
  • the terminal device determines a time window for the terminal device to receive the downlink message in the random access process according to the first information and/or the second information that characterizes the distance between the terminal device and the network device.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • a nominal value is configured for the time window used to transmit downlink messages in the random access process, and the terminal device adjusts the nominal value according to the adjustment parameters and the distance between the terminal device and the network device, thereby obtaining
  • the time parameter of the time window to be used allows terminal devices in different locations to flexibly adjust the time window used by themselves, avoid invalid monitoring of downlink messages, and realize effective random access.
  • the downlink message may be, for example, an RAR message in a 4-step random access process, a random access contention resolution message in a 4-step random access process, that is, Msg 4, and a Msg B in a 2-step random access process.
  • Msg 4 a random access contention resolution message in a 4-step random access process
  • Msg B a Msg B in a 2-step random access process.
  • the time window for the terminal device to receive Msg 4 may be implemented by a contention resolution timer, that is, the time window is the timing duration of the timer.
  • the time parameter includes the length and/or offset of the time window, and the offset of the time window is the time offset of the start position of the time window, for example, the time window of the time window for receiving the RAR message.
  • the offset is TA
  • the terminal device starts the time window after sending the TA duration after Msg1.
  • the terminal device starts the contention resolution timer after the TB duration after sending Msg 3.
  • the distance between the terminal device and the network device may be:
  • the distance between the terminal device and the satellite or,
  • the network equipment described in the embodiment of the present application may be a satellite; it may also be a ground station, such as the various types of network equipment shown in FIG. 1 above.
  • the network equipment in the case of transparent GEO/LEO, satellites can implement the functions of base stations. Therefore, the network equipment is the satellite, and the distance between the terminal equipment and the network equipment is the distance between the terminal equipment and the satellite.
  • the uplink data from the terminal equipment is sent to the ground station through satellite, and the downlink data from the ground station is sent to the terminal equipment through the satellite. Therefore, the network equipment is the ground station.
  • the distance between the equipment and the network equipment is the sum of the distance between the terminal equipment and the satellite and the distance between the satellite and the ground station.
  • the satellite In the case of LEO, the satellite is moving and the distance between the satellite and the ground station is also changing; in the case of GEO, the satellite is not moving, and the distance between the satellite and the ground station is fixed.
  • the adjustment parameter includes, for example, at least one of the following:
  • the terminal device compares the nominal value with the difference The sum is determined as the time parameter of the time window.
  • the adjustment parameter is an adjustment step used to periodically adjust the nominal value
  • the time parameter is the sum of the nominal value and N adjustment steps
  • N is the terminal The number of adjustment cycles the device has gone through.
  • the adjustment step length is 10 ms and the nominal value of the length of the time window is 100 ms
  • the length of the time window is 100+N ⁇ 10 ms, where N is the number of time periods passed by the terminal device.
  • the time period is 80 ms
  • the length of the time window is 110 ms
  • the length of the time window is 120 ms.
  • the adjustment step length can be positive or negative. Due to the movement of the satellite and the terminal device, the distance between the terminal device and the network device may change. If the distance becomes shorter and shorter, the adjustment step length can be If it is negative, when the distance becomes larger and larger, the adjustment step can be positive.
  • the terminal device can adjust the nominal value in a positive or negative direction according to the change trend of the distance.
  • the time window is started to detect the RAR message after 60 ms, for example, the time window may be started in the first PDCCH subframe 60 ms after Msg 1 is sent.
  • the above adjustment period is a time period such as 80ms, but the embodiment of the application does not limit this.
  • the adjustment period may also be the movement distance period of the terminal device, that is, every time the terminal device moves a certain distance, the time period is adjusted by adjusting the step length.
  • the time parameter of the window is adjusted once.
  • the adjustment parameter is an adjustment factor used to periodically adjust the nominal value
  • the time parameter is the product of N ⁇ M and the nominal value
  • N is the adjustment period passed by the terminal device M is the adjustment factor
  • the length of the time window is 100+N ⁇ 1.2 ⁇ 10ms, where N is the number of time periods passed by the terminal device .
  • the time period is 120ms
  • the length of the time window is 112ms
  • the length of the time window is 124ms.
  • the adjustment parameter is the preset distance corresponding to the nominal value
  • the time parameter is the product of the nominal value and the distance ratio
  • the distance ratio is the distance between the terminal device and the network device The ratio to the preset distance.
  • the nominal value of the offset (offset) of the time window is 50ms, and the corresponding preset distance is 100km
  • the current distance between the terminal device and the network device is 150km
  • the terminal device starts the time after 75ms of sending Msg 1
  • the window is used to detect the RAR message, for example, the time window may be started in the first PDCCH subframe 75 ms after the transmission of Msg 1 is completed.
  • the adjustment parameter is a mapping relationship between a distance and a time parameter
  • the time parameter is a time parameter in the mapping relationship that corresponds to the distance between the terminal device and the network device.
  • the mapping relationship may be embodied in a table form, for example, the mapping relationship between the window length and the distance shown in Table 1.
  • the terminal device determines the length of the time window for receiving downlink messages according to the distance between it and the network device. For example, when the distance between the terminal device and the network device is in the distance range 1, a time window of T1 is used, and the terminal device When the distance to the network device is in the distance range N, a time window with a duration of T N is used.
  • Table 1 may also include the mapping relationship between distance and offset.
  • Table 1 includes the mapping relationship between distance and duration and offset at the same time, so that the terminal device can determine the length of the time window used and the start offset at the same time according to the current distance from the network device.
  • the first information may be carried in system messages, RRC signaling, downlink control information (Download Control Information, DCI), or RAR messages.
  • the network device broadcasts the first information in a system message.
  • the network device may configure the first information for the terminal device through RRC signaling.
  • the network device may configure the first information for the terminal device through the DCI.
  • PDCCH ordered RACH a random access process
  • the network device may also configure the first information in the RAR.
  • the first information may be sent by the network device to the terminal device, or may be agreed upon in an agreement, which is not limited in this application.
  • the nominal value of the time parameter may be carried in the first information, or sent to the terminal device through another message, or may be agreed upon by a protocol.
  • the aforementioned distance between the terminal device and the network device may be characterized by second information.
  • the second information includes, for example, at least one of the following information:
  • RTT Round-trip Time
  • the distance between the terminal device and the network device is the distance between the terminal device and the network device
  • the running track of the terminal device relative to the network device is the running track of the terminal device relative to the network device.
  • the distance between the terminal device and the network device can be determined according to the location of the terminal device and the location of the satellite. Further, information such as TA, RTT, or transmission delay can also be determined based on the distance, and these information can all be used to characterize the distance. Therefore, if the distance is characterized by TA, RTT, or transmission delay, etc., the “distance” in the above example can be replaced with TA, RTT, or transmission delay, etc.
  • the terminal device starts the time window to detect RAR messages after 75ms of Msg 1 is sent. For example, the first PDCCH sub-frame after 75ms of Msg 1 can be sent. The frame starts the time window.
  • the terminal device can adjust the corresponding nominal value according to the adjustment parameters, such as adjustment step size, adjustment factor, etc., to obtain the time parameter of the time window.
  • the adjustment parameters such as adjustment step size, adjustment factor, etc.
  • the method further includes: the terminal device reporting the time parameter.
  • the network device receives the time parameter sent by the terminal device.
  • the network device can send a corresponding downlink message to the terminal device within the time window of the time parameter.
  • Fig. 5 is a flow interaction diagram of a random access method according to another embodiment of the present application.
  • the method 500 shown in FIG. 4 may be executed by a network device and a terminal device.
  • the network device may be, for example, the network device 110 shown in FIG. 1
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the terminal device may or may not have positioning capability.
  • the method 500 can be applied to the NTN system. Wherein, as shown in FIG. 5, the method 500 includes:
  • the network device determines the time parameter of the time window for the terminal device to receive the downlink message in the random access process.
  • the network device sends the time parameter to the terminal device.
  • the terminal device receives the time parameter.
  • the terminal device sends the downlink message within the time window according to the time parameter.
  • a nominal value is configured for the time window used to transmit downlink messages in the random access process, and the network device can adjust the nominal value according to the adjustment parameters and the distance between the terminal device and the network device.
  • the network device can adjust the nominal value according to the adjustment parameters and the distance between the terminal device and the network device.
  • the network device may determine the time parameter of the time window according to the first information and/or the second information that characterizes the distance between the terminal device and the network device.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • the adjustment parameter includes at least one of the following:
  • the adjustment parameter is the difference between the time parameter and the nominal value of the time parameter, and after receiving the difference, the terminal device determines the sum of the nominal value and the difference Is the time parameter of the time window.
  • the adjustment parameter is an adjustment step used to periodically adjust the nominal value
  • the time parameter is the sum of the nominal value and N adjustment steps
  • N is the terminal The number of adjustment cycles the device has gone through.
  • the adjustment parameter is an adjustment factor used to periodically adjust the nominal value
  • the time parameter is the product of N ⁇ M and the nominal value
  • N is the adjustment period passed by the terminal device M is the adjustment factor
  • the adjustment parameter is the preset distance corresponding to the nominal value
  • the time parameter is the product of the nominal value and the distance ratio
  • the distance ratio is the distance between the terminal device and the network device The ratio to the preset distance.
  • the time parameter is a time parameter in the mapping relationship that corresponds to the distance between the terminal device and the network device.
  • the first information may be carried in system messages, RRC signaling, DCI or RAR messages.
  • the aforementioned distance between the terminal device and the network device may be characterized by second information.
  • the second information includes, for example, at least one of the following information:
  • TA Time advance
  • RTT Round trip time
  • the distance between the terminal device and the network device is the distance between the terminal device and the network device
  • the running track of the terminal device relative to the network device is the running track of the terminal device relative to the network device.
  • the process for the network device to determine the time parameter of the time window based on the first information and/or the second information may refer to the aforementioned process for the terminal device to determine the time parameter of the time window based on the first information and/or the second information.
  • I won’t repeat it here.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application. As shown in FIG. 6, the communication device 600 includes a processing unit 610.
  • the processing unit 610 is configured to determine a time window for the terminal device to receive the downlink message in the random access process according to the first information and/or the second information that characterizes the distance between the terminal device and the network device.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • the downlink message includes a random access response RAR message and/or a random access contention resolution message.
  • the adjustment parameter includes at least one of the following:
  • the time parameter is the sum of the nominal value and the difference value.
  • the time parameter is the sum of the nominal value and the N adjustment step lengths, and N is the number of adjustment cycles passed by the terminal device.
  • the time parameter is a product of N ⁇ M and the nominal value, N is the number of adjustment cycles passed by the terminal device, and M is an adjustment factor.
  • the adjustment period includes a time period elapsed by the terminal device and/or a movement distance period of the terminal device.
  • the time parameter is a time parameter corresponding to the distance between the terminal device and the network device in the mapping relationship.
  • the time parameter is a product of the nominal value and a distance ratio
  • the distance ratio is a ratio between the distance between the terminal device and the network device and the preset distance
  • the second information includes at least one of the following information: time advance TA; round trip time RTT; transmission delay; satellite ephemeris; the distance between the terminal device and the network device; the terminal The trajectory of the device relative to the network device.
  • the communication device 600 is a terminal device, and the terminal device includes: a receiving unit 620, configured to receive the first information sent by a network device.
  • the first information further includes the nominal value.
  • the first information is carried in system messages, radio resource control RRC signaling, downlink control information DCI, or RAR messages.
  • the communication device 600 is a terminal device, and the terminal device includes a sending unit 630 configured to report the time parameter.
  • the communication device 600 is a network device, and the network device includes a sending unit 630 configured to send the time parameter to the terminal device.
  • the terminal device determines the time window according to the first information and/or the second information; or, when the terminal device does not have the positioning capability, The terminal device determines the time window according to the first information.
  • the distance between the terminal device and the network device includes: the distance between the terminal device and the satellite; or, the distance between the terminal device and the satellite, and the distance between the satellite and the ground station The sum of the distances between.
  • the method is applied to an NTN system.
  • the communication device 600 may perform the corresponding operations performed by the terminal device or the network device in the method shown in FIG. 4 or FIG. 5, which is not repeated here for brevity.
  • FIG. 7 is a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the communication device 700 may further include a transceiver 730, and the processor 710 may control the transceiver 730 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 700 may specifically be a terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 700 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • details are not described herein again.
  • the communication device 700 may specifically be a network device in an embodiment of the present application, and the communication device 700 may implement corresponding processes implemented by the network device in each method in the embodiments of the present application. For brevity, details are not described herein again.
  • FIG. 8 is a schematic structural diagram of an apparatus for random access according to an embodiment of the present application.
  • the apparatus 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the device 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the device 800 may further include an input interface 830.
  • the processor 810 can control the input interface 830 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 800 may further include an output interface 840.
  • the processor 810 can control the output interface 840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus 800 may be applied to the network equipment in the embodiments of the present application, and the communication apparatus may implement the corresponding procedures implemented by the network equipment in the various methods of the embodiments of the present application.
  • the communication apparatus may implement the corresponding procedures implemented by the network equipment in the various methods of the embodiments of the present application. For brevity, details are not described herein again.
  • the apparatus 800 may be applied to the terminal equipment in the embodiments of the present application, and the communication apparatus may implement the corresponding procedures implemented by the terminal equipment in the various methods of the embodiments of the present application.
  • the communication apparatus may implement the corresponding procedures implemented by the terminal equipment in the various methods of the embodiments of the present application. For brevity, details are not described herein again.
  • the device 800 may be a chip.
  • the chip may also be a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous Dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic Random access memory (Synch Link DRAM, SLDRAM) and Direct Rambus RAM (DR RAM) and so on. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 9 is a schematic block diagram of a communication system 900 according to an embodiment of the present application.
  • the communication system 900 includes a network device 910 and a terminal device 920.
  • the network device 910 is configured to: send the first information to the terminal device.
  • the terminal device 920 is configured to: receive the first information; according to the first information and/or the second information that characterizes the distance between the terminal device and the network device, determine to be used in the process of receiving the random access by the terminal device The time window of the downstream message.
  • the first information includes an adjustment parameter used to adjust a nominal value of a time parameter of the time window, and the time parameter includes a duration and/or offset of the time window.
  • the network device 910 may be used for the corresponding functions implemented by the network device in the method shown in FIG. 4, and the composition of the network device 910 may be as shown in the communication device 600 in FIG. 6, which will not be repeated here for brevity.
  • the terminal device 920 may be used to implement the corresponding functions implemented by the terminal device in the method shown in FIG. 4, and the composition of the terminal device 920 may be as shown in the communication device 600 in FIG. 6. For brevity, it will not be repeated here. .
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 10, the communication system 1000 includes a network device 1010 and a terminal device 1020.
  • the network device 1010 is configured to: determine a time parameter of a time window for the terminal device to receive a downlink message in the random access process; and send the time parameter to the terminal device.
  • the terminal device 1020 is configured to: receive the time parameter; and according to the time parameter, send the downlink message within the time window.
  • the network device 1010 may be used for the corresponding functions implemented by the network device in the method shown in FIG. 5, and the composition of the network device 1010 may be as shown in the network device 600 in FIG. 6, which is not repeated here for brevity.
  • the terminal device 1020 may be used to implement the corresponding functions implemented by the terminal device in the method shown in FIG. 5, and the composition of the terminal device 1020 may be as shown in the terminal device 600 in FIG. 6. For brevity, it will not be repeated here. .
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. , I won’t repeat it here.
  • system and “network” in the embodiments of the present invention are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding (corresponding) to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种随机接入的方法和通信设备,能够在NTN系统中实现有效的随机接入。该方法包括:根据第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口,其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。

Description

随机接入的方法和通信设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及随机接入的方法和通信设备。
背景技术
在蜂窝网络中,终端设备发起随机接入时,在发送第一条消息(Msg 1)之后,将在随机接入响应(Random Access Response,RAR)窗口(RAR Window)内监听随机接入无线网络临时标识(RA-Radio Network Temporary Identifier,RA-RNTI)加扰的PDCCH,以接收对应的RAR消息。如果终端设备在该RAR窗口内没有接收到RAR消息,则认为本次随机接入失败,终端设备可以重新发送Msg 1。
对于非地面通信网络(Non Terrestrial Network,NTN)技术,由于其采用卫星通信的方式向地面用户提供通信服务,终端设备与卫星之间的信号传输时延大幅增加,并且由于终端设备所处的位置不同,不同终端设备与卫星之间的信号传输时延也存在较大差异,上述RAR窗口则不再适用。因此,NTN系统中终端设备如何实现有效的随机接入成为亟待解决的问题。
发明内容
本申请提供一种随机接入的方法和通信设备,能够在NTN系统中实现有效的随机接入。
第一方面,提供了一种随机接入的方法,包括:根据第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口。其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
第二方面,提供了一种通信设备,所述通信设备可以执行上述第一方面或第一方面的任意可选的实现方式中的方法。具体地,所述通信设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第三方面,提供了一种通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种用于随机接入的装置,包括处理器。所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。所述装置例如是芯片。
第五方面,一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机 执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信系统,包括终端设备和网络设备。
所述网络设备用于:向终端设备发送第一信息。
所述终端设备用于:接收所述第一信息;根据所述第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口。
其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
第九方面,提供了一种通信系统,包括终端设备和网络设备。
所述网络设备用于:确定用于终端设备接收随机接入过程中的下行消息的时间窗口的时间参数;向终端设备发送所述时间参数。
所述终端设备用于:接收所述时间参数;根据所述时间参数,在所述时间窗口内发送所述下行消息。
基于上述技术方案,为随机接入过程中用于传输下行消息的时间窗口配置一个标称值,并根据调整参数和终端设备与网络设备之间的距离对该标称值进行调整,从而得到待使用的时间窗口的时间参数。因此,不同位置的终端设备可以对自己使用的该时间窗口进行灵活调整,避免下行消息的无效监听,实现有效的随机接入。
附图说明
图1是本申请实施例应用的一种可能的无线通信系统的示意图。
图2是4步随机接入的示意图。
图3是2步随机接入的示意图。
图4是本申请实施例的随机接入的方法的流程交互图。
图5是本申请另一实施例的随机接入的方法的流程交互图。
图6是本申请实施例的通信设备的示意性框图。
图7是本申请实施例的通信设备的示意性结构图。
图8是本申请实施例的用于随机接入的装置的示意性结构图。
图9是本申请实施例的通信系统的示意图。
图10是本申请另一实施例的通信系统的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U) 系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、未来的5G系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如设备到设备(Device to Device,D2D)通信、机器到机器(Machine to Machine,M2M)通信、机器类型通信(Machine Type Communication,MTC)、以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可应用于这些通信系统。
本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景、双连接(Dual Connectivity,DC)场景、独立(Standalone,SA)布网场景等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
可选地,网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指用户设备、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。其中,可选地,终端设备120之间也可以进行终端直连(Device to Device,D2D)通信。
网络设备110可以为小区提供服务,终端设备120通过该小区使用的传输资源,例如频域资源,或者说频谱资源,与网络设备110进行通信。该小区可以是网络设备110对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一个网络设备和两个终端设备,但本申请并不限于此。该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备。此外,该无线通信系统100还可以包括网络控制器、移动性管理实体等其他网络实体。
目前,第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)正在研究非地面通信网络(Non Terrestrial Network,NTN)技术。NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大时通讯成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。目前阶段主要研究的是LEO卫星和GEO卫星。其中,LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟,信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时,用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在NTN系统中,终端设备仍需要进行随机接入。其中,随机接入过程主要可以由以下事件触发:(1)终端设备初始接入时建立无线连接,这时,终端设备从无线资源控制(Radio Resource Control,RRC)空闲(RRC_IDLE)态到RRC连接(RRC_CONNECTED)态;(2)RRC连接重建过程,以便终端设备在无线链路失败后重建无线连接;(3)终端设备需要与新的小区建立上行同步;(4)RRC_CONNECTED态下,下行(Download,DL)数据到达,此时上行(Uplink,UL)处于失步状态;(5)RRC_CONNECTED态下,UL数据到达,此时UL处于失步状态或者没有用于发送调度请求(Scheduling Request,SR)的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源;(6)SR失败;(7)来自RRC的同步重配置请求;(8)终端设备从RRC非激活态(RRC_INACTIVE)态转换为RRC_CONNECTED态;(9)在辅小区(Secondary Cell,SCell)添加过程中建立时间校准;(10)请求其他系统信息(System Information,SI);(11)波束失败恢复。
本申请实施例的方法适用于2步随机接入过程和4步随机接入过程。
图2是4步随机接入的流程交互图。如图2所示,4步随机接入的流程可以包括以下四个步骤:
步骤1,终端设备向网络设备发送消息(Message,Msg)1。
终端设备选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,并在所选择的PRACH上发送其选择的前导码(preamble)。如果是基于非竞争的随机接入,PRACH资源和前导码可以由网络设备指定。网络设备基于前导码可以估计上行时间(Timing)以及终端传输Msg3所需要的上行授权(UL grant)资源的大小。
步骤2,网络设备向终端设备发送Msg 2,即随机接入响应(Random access response,RAR)消息。
终端发送Msg 1之后,开启随机接入响应时间窗口(ra-ResponseWindow),在该时间窗口内监测随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI)加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。其中,RA-RNTI与终端设备发送Msg 1所使用的PRACH的时频资源相关联。
终端设备成功接收到RA-RNTI加扰的PDCCH后,能够获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared DHannel,PDSCH),其中包括RAR,其中,RAR可以包括以下信息:
RAR的子包头(subheader)中包括的回退指示(Backoff Indicator,BI):用于指示重传Msg 1的回退时间;
RAR中的随机接入前导码标识(Random Access Preamble Identifier,RAP ID):网络设备响应收到的前导码索引(preamble index);
RAR的有效载荷(payload)中包括时间提前量命令(Timing Advance Gommand,TAG):用于调整上行定时;
上行授权(UL grant):用于调度Msg 3的上行资源指示;
临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identifie,Temporary C-RNTI):初始接入时用于加扰Msg 4的PDCCH。
如果终端设备接收到RAR-RNTI加扰的PDCCH,并且RAR中包括终端设备自己发送的前导码索引,则终端设备认为成功接收了随机接入响应。
对于基于非竞争的随机接入,终端设备成功接收Msg 2后,随机接入过程结束。对于基于竞争的随机接入,终端设备成功接收Msg 2后,还需要继续传输Msg 3以及接收Msg 4。
步骤3,终端设备在网络设备调度的资源上发送Msg 3。
Msg 3主要用于通知网络设备随机接入过程是由什么事件触发的。例如,如果是初始接入的随机过程,则终端设备在Msg 3中携带设备标识(UE ID)和建立原因(establishment cause);如果是RRC重建,则终端设备携带连接态标识和建立原因(establishment cause)。
步骤4,网络设备向终端设备发送Msg 4,即随机接入竞争解决消息。
Msg 4一方面用于竞争冲突解决,另一方面用于网络设备向终端设备传输RRC配置消息。竞争冲突解决有以下两种方式:一种是,如果终端设备在Msg3中携带了C-RNTI,则Msg 4使用C-RNTI加扰的PDCCH调度;另一种是,如果终端设备在Msg 3中没有携带C-RNTI,比如是初始接入,则Msg 4使用 TC-RNTI加扰的PDCCH调度,冲突的解决是终端设备接收Msg 4的PDSCH,匹配PDSCH中的公用控制信道(Common Control Channel,CCCH)服务数据单元(Service Data Unit,SDU)。
图3是2步随机接入的流程交互图。相比于4步随机接入过程,2步随机接入过程可以减小时延,降低信令开销。如图3所示,在步骤1中,终端设备向网络设备发送Msg A,其中,Msg A包括4步随机接入过程中的Msg 1和Msg 3中的部分或全部;在步骤2中,网络设备向终端设备发送Msg B,其中,Msg B包括4步随机接入过程中的Msg 2和Msg 4中的部分或全部。终端设备在发送Mag A后,开启Msg B的接收窗口,在该窗口内检测并接收Msg B。
对于4步随机接入过程,终端设备在发送Msg 1之后,将在随机接入响应时间窗口(ra-ResponseWindow)内监听RA-RNTI加扰的PDCCH,以接收对应的RAR消息。如果在该时间窗口内终端设备没有接收到RAR消息,则认为本次随机接入失败,终端设备会重新发送Msg 1。当终端设备发送Msg 1的次数达到一定门限后,终端设备会向高层指示出现了随机接入的问题。随机接入响应时间窗口起始于终端设备发送Msg 1之后的第一个PDCCH机会(PDCCH occasion),窗口长度(ra-ResponseWindow)由网络设备配置。基于目前标准规定,ra-ResponseWindow可支持的最大值为10ms。
类似地,对于2步随机接入过程,终端设备在发送Msg A之后也会开始启动一个用于接收Msg B的时间窗口,终端设备在该时间窗口内监听来自网络设备的Msg B。如果终端设备在该时间窗口内没有接收到Msg B,则终端设备认为本次随机接入失败。
与蜂窝网络相比,NTN网络中的终端设备与卫星之间的信号传播时延大幅增加。卫星的覆盖范围很大,对于同一个卫星覆盖范围内的不同终端设备,由于其所处的位置不同,因此与卫星之间的信号传输时延也可能存在较大差异。
一方面,终端设备从发送Msg 1开始至接收Msg 2至少需要等待1个往返时间(Round Trip Time,RTT)。由于蜂窝网络下网络设备的覆盖范围较小,终端设备与网络设备之间的信号传输时间较短,因此UE在发送Msg 1后的第一个PDCCH occasion就开启时间窗口(ra-ResponseWindow)。而NTN系统中,终端设备与卫星之间的信号传输时间相对较大,RTT最长可达541.46ms,而从终端设备发送Msg 1至第一个PDCCH occasion之间的时间间隔很可能小于1个RTT,如果终端设备仍在发送Msg 1后的第一个PDCCH occasion就开启该时间窗口,这样则可能由于RTT太大导致终端设备过早启动该时间窗口,终端设备无效地监听RAR无疑会增大终端设备的功耗。
另一方面,蜂窝网络下同一个网络设备覆盖范围内的不同终端设备至网络设备之间的信号传输时间差异较小。对于使用相同的随机接入机会(RACH occasion)资源发送Msg 1的不同终端设备,其发送的Msg 1到达网络设备的时刻也差不多,因此目前对于该时间窗口的配置主要是考虑网络设备处理Msg1和调度Msg 2所需要的时间。而在NTN中,卫星覆盖范围大,同一个卫星覆盖范围内的不同终端设备所处的位置不同,他们与卫星之间通信的信号传输时间可能存在较大差异。因此,如果该时间窗口配置的不够长,则可能导致距离卫星较远的终端设备由于RTT太大而在该时间窗口内无法接收到RAR, 如果该时间窗口配置的太长,又会增加终端设备监听RAR的时间,从而增大终端设备的功耗。
类似地,对于终端设备接收Msg 4时使用的竞争解决定时器(contention resolution timer),同样存在类似问题。终端设备在该定时器的计时时长内,检测网络设备发送的Msg 4。
本申请实施例提供一种随机接入的方法,能够实现对该时间窗口的灵活调整,实现有效的随机接入。
图4是本申请实施例的随机接入的示意性流程图。图4所示的方法400可以由网络设备和终端设备执行,该网络设备例如可以是图1中所示的网络设备110,该终端设备例如是图1中所示的终端设备120。所述终端设备可以具备定位能力或者不具备定位能力。所述方法400可以应用于NTN系统。其中,如图4所示,该方法400包括:
在410中,网络设备向终端设备发送第一信息。
在420中,终端设备接收所述第一信息。
在430中,终端设备根据所述第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口。
其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
该实施例中,为随机接入过程中用于传输下行消息的时间窗口配置一个标称值,终端设备根据调整参数和终端设备与网络设备之间的距离对该标称值进行调整,从而得到待使用的时间窗口的时间参数,使得不同位置的终端设备可以对自己使用的该时间窗口进行灵活调整,避免下行消息的无效监听,实现了有效的随机接入。
其中,该下行消息例如可以是4步随机接入过程中的RAR消息、4步随机接入过程中的随机接入竞争解决消息即Msg 4、2步随机接入过程中的Msg B。应理解,终端设备接收Msg 4的该时间窗口可以通过竞争解决定时器来实现,也即,该时间窗口为该定时器的计时时长。
所述时间参数包括所述时间窗口的时长和/或偏移量,所述时间窗口的偏移量为所述时间窗口的起始位置的时间偏移量,例如,接收RAR消息的时间窗口的偏移量为TA,则终端设备发送完Msg 1之后的TA时长后启动该时间窗口。又例如,用于接收Msg 4的时间窗口的偏移量为TB,则终端设备发送完Msg 3之后的TB时长后启动竞争解决定时器。
本申请实施例中,所述终端设备与所述网络设备之间的距离可以是:
所述终端设备与卫星之间的距离;或者,
所述终端设备与卫星之间的距离,以及所述卫星与地面站之间的距离之和。
具体而言,本申请实施例中所述的网络设备可以是卫星;也可以是地面站,例如前述图1中所示的各类网络设备。举例来说,对于透明(transparent)GEO/LEO的情况,卫星可以实现基站的功能,因此网络设备即为卫星,终端设备与网络设备之间的即为终端设备与卫星之间的距离。又例如,对于再生 (regenerative)GEO/LEO的情况,来自终端设备的上行数据通过卫星发送给地面站,而来自地面站的下行数据通过卫星发送给终端设备,因此网络设备即为地面站,终端设备与网络设备之间的距离即为终端设备与卫星之间的距离以及卫星与地面站之间的距离之和。
对于LEO的情况,卫星是在移动的,卫星与地面站之间的距离也在变化;而对于GEO的情况,卫星是不动的,卫星与地面站之间的距离是固定的。
所述调整参数例如包括以下中的至少一种:
所述时间参数与所述时间参数的标称值之间的差值;
用于对所述标称值进行周期性调整的调整步长;
用于对所述标称值进行周期性调整的调整因子;
距离与时间参数之间的映射关系;
所述标称值对应的预设距离。
举例来说,该调整参数为所述时间参数与所述时间参数的标称值之间的差值时,所述终端设备接收到该差值后,将所述标称值与所述差值之和确定为所述时间窗口的时间参数。
又例如,该调整参数为用于对所述标称值进行周期性调整的调整步长,所述时间参数为所述标称值与N个所述调整步长之和,N为所述终端设备经过的调整周期的数量。
假设调整步长为10ms,该时间窗口的长度的标称值为100ms,则该时间窗口的长度为100+N×10ms,其中N为终端设备经过的时间周期的数量。假设时间周期为80ms,则经过一个时间周期80ms后,该时间窗口的长度为110ms,经过两个时间周期160ms后,该时间窗口的长度为120ms。应理解,该调整步长可以为正或者为负,由于卫星和终端设备的移动,都可能导致终端设备与网络设备之间的距离变化,如果该距离越来越短,则该调整步长可以为负,当该距离越来越大,则该调整步长可以为正。终端设备可以根据该距离的变化趋势,对标称值进行正向或者负向的调整。
类似地,对于该时间窗口的偏移值,也可以配置一个标准值,并通过调整步长对偏移值对应的标称值进行调整。假设该时间窗口的偏移量的标称值为50ms,调整步长为10ms,那么一个时间周期后,该时间窗口的偏移量为50ms+1×10ms=60ms,终端设备在发送完Msg 1的60ms后才启动该时间窗口以检测RAR消息,例如可以在发送完Msg 1的60ms之后的第一个PDCCH子帧启动该时间窗口。
上述的调整周期为时间周期例如80ms,但本申请实施例对此不做限定,该调整周期也可以为终端设备的移动距离周期,即终端设备每移动一定距离,就通过调整步长对该时间窗口的时间参数进行一次调整。
又例如,该调整参数为用于对所述标称值进行周期性调整的调整因子,所述时间参数为N×M与所述标称值的乘积,N为所述终端设备经过的调整周期的数量,M为调整因子。
假设调整步长为10ms,该时间窗口的长度的标称值为100ms,调整因子为1.2,则该时间窗口的长度为100+N×1.2×10ms,其中N为终端设备经过的时间周期的数量。假设时间周期为120ms,则经过一个时间周期120ms后,该时间窗口的长度为112ms,经过两个时间周期160ms后,该时间窗口的长 度为124ms。
又例如,该调整参数为所述标称值对应的预设距离,所述时间参数为所述标称值与距离比的乘积,所述距离比为所述终端设备与网络设备之间的距离与所述预设距离之间的比值。
假设该时间窗口的长度的标称值为100ms,其对应的所述预设距离为100km,如果终端设备当前与网络设备之间的距离为150km,则终端设备与网络设备之间的距离与所述预设距离之间的距离比为150km/100km=1.5,则该时间窗口的长度为100ms×1.5=150ms。
假设该时间窗口的偏移量(offset)的标称值为50ms,其对应的所述预设距离为100km,如果终端设备当前与网络设备之间的距离为150km,则终端设备与网络设备之间的距离与所述预设距离之间的距离比为150km/100km=1.5,则该时间窗口的偏移量为50ms×1.5=75ms,终端设备在发送完Msg 1的75ms后才启动该时间窗口以检测RAR消息,例如可以在发送完Msg 1的75ms之后的第一个PDCCH子帧启动该时间窗口。
又例如,该调整参数为距离与时间参数之间的映射关系,所述时间参数为所述映射关系中与所述终端设备与网络设备之间的距离对应的时间参数。
该映射关系例如可以是表格形式体现,例如表一所示的窗口长度和距离之间的映射关系。终端设备根据其与网络设备之间的距离,确定用于接收下行消息的时间窗口的长度,比如终端设备与网络设备之间的距离位于距离范围1时,采用时长为T1的时间窗口,终端设备与网络设备之间的距离位于距离范围N时,采用时长为T N的时间窗口。其中,表一中也可以包括距离与偏移量的映射关系。或者,表一中同时包括距离与时长和偏移量之间的映射关系,从而终端设备可以根据当前与网络设备之间的距离,同时确定其使用的时间窗口的长度和起始偏移量。
表一
距离 时间窗口的时长
距离范围1 T 1
距离范围2 T 2
…… ……
距离范围N T N
该第一信息可以承载于系统消息、RRC信令、下行控制信息(Download Control Information,DCI)、或者RAR消息中。
例如,对于空闲态的终端设备,网络设备在系统消息中广播所述第一信息。
又例如,对于连接态的终端设备,比如切换或者需要获得上行同步的随机接入过程中,网络设备可以通过RRC信令为终端设备配置所述第一信息。
又例如,对于PDCCH触发的随机接入过程(PDCCH ordered RACH),网络设备可以通过DCI为终端设备配置所述第一信息。
又例如,网络设备还可以在RAR中配置所述第一信息。
应理解,所述第一信息可以是网络设备发送给终端设备的,也可以是协议约定的,本申请对此不做限定。
所述时间参数的标称值可以携带于所述第一信息中,或者通过另外的消 息发送给终端设备,或者可以是协议约定的。
上述的所述终端设备与网络设备之间的距离可以通过第二信息表征。该第二信息例如包括以下信息中的至少一种:
时间提前量(Timing Advance,TA);
往返时间(Round-Trip Time,RTT);
传输时延(propagation delay);
卫星星历;
所述终端设备与网络设备之间的距离;
所述终端设备相对于网络设备的运行轨迹。
例如,所述终端设备具备定位能力时,可以根据所述终端设备的位置以及卫星的位置,确定终端设备与网络设备之间的距离。进一步地,还可以基于该距离确定TA、RTT或传输时延等信息,这些信息均可以用来表征该距离。因此,如果通过TA、RTT或传输时延等表征该距离,则上述示例中的“距离”均可以替换为TA、RTT或传输时延等。
例如,假设该时间窗口的长度的标称值为200ms,其对应的预设距离由RTT表征且该RTT=100ms,如果终端设备测得其RTT当前为150ms,则该时间窗口的长度为200ms×150ms/100ms=300ms。
又例如,假设该时间窗口的偏移量(offset)的标称值为50ms,其对应的预设距离由RTT表征且该RTT=100ms,如果终端设备测得其RTT当前为150ms,则该时间窗口的偏移量为50ms×150ms/100ms=75ms,终端设备在发送完Msg 1的75ms后才启动该时间窗口以检测RAR消息,例如可以在发送完Msg 1的75ms之后的第一个PDCCH子帧启动该时间窗口。
如果终端设备不具备定位能力,终端设备可以根据调整参数例如调整步长、调整因子等对相应的标称值进行调整,从而得到该时间窗口的时间参数。
可选地,所述方法还包括:所述终端设备上报所述时间参数。相应地,网络设备接收终端设备发送的该时间参数。
这样,网络设备接收到该时间参数后,可以在该时间参数的时间窗口内向终端设备发送相应的下行消息。
图5是本申请另一实施例的随机接入的方法的流程交互图。图4所示的方法500可以由网络设备和终端设备执行,该网络设备例如可以是图1中所示的网络设备110,该终端设备例如是图1中所示的终端设备120。所述终端设备可以具备定位能力或者不具备定位能力。所述方法500可以应用于NTN系统。其中,如图5所示,该方法500包括:
在510中,网络设备确定用于终端设备接收随机接入过程中的下行消息的时间窗口的时间参数。
在520中,网络设备向终端设备发送所述时间参数。
在530中,终端设备接收所述时间参数。
在540中,终端设备根据所述时间参数,在所述时间窗口内发送所述下行消息。
该实施例中,为随机接入过程中用于传输下行消息的时间窗口配置一个标称值,网络设备可以根据调整参数和终端设备与网络设备之间的距离对该标称值进行调整,从而得到待使用的时间窗口的时间参数,并将该时间参数发 送给终端设备,使得不同位置的终端设备可以对自己使用的该时间窗口进行灵活调整,避免下行消息的无效监听,实现了有效的随机接入。
在一种实现方式中,在510中,网络设备可以根据第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定该时间窗口的时间参数。
其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
所述调整参数包括以下中的至少一种:
所述时间参数与所述时间参数的标称值之间的差值;
用于对所述标称值进行周期性调整的调整步长;
用于对所述标称值进行周期性调整的调整因子;
距离与时间参数之间的映射关系;
所述标称值对应的预设距离。
例如,该调整参数为所述时间参数与所述时间参数的标称值之间的差值,所述终端设备接收到该差值后,将所述标称值与所述差值之和确定为所述时间窗口的时间参数。
又例如,该调整参数为用于对所述标称值进行周期性调整的调整步长,所述时间参数为所述标称值与N个所述调整步长之和,N为所述终端设备经过的调整周期的数量。
又例如,该调整参数为用于对所述标称值进行周期性调整的调整因子,所述时间参数为N×M与所述标称值的乘积,N为所述终端设备经过的调整周期的数量,M为调整因子。
又例如,该调整参数为所述标称值对应的预设距离,所述时间参数为所述标称值与距离比的乘积,所述距离比为所述终端设备与网络设备之间的距离与所述预设距离之间的比值。
又例如,该调整参数为距离与时间参数之间的映射关系时,所述时间参数为所述映射关系中与所述终端设备与网络设备之间的距离对应的时间参数。
该第一信息可以承载于系统消息、RRC信令、DCI或者RAR消息中。
上述的所述终端设备与网络设备之间的距离可以通过第二信息表征。该第二信息例如包括以下信息中的至少一种:
时间提前量(TA);
往返时间(RTT);
传输时延;
卫星星历;
所述终端设备与网络设备之间的距离;
所述终端设备相对于网络设备的运行轨迹。
应理解,网络设备根据第一信息和/或第二信息确定该时间窗口的时间参数的过程,可以参考前述的终端设备根据第一信息和/或第二信息确定该时间窗口的时间参数的过程,为了简洁,这里不在赘述。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的下行信号传输的方法,下面将结合图6至图10,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图6是根据本申请实施例的通信设备600的示意性框图。如图6所示,该通信设备600包括处理单元610。
所述处理单元610用于根据第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口。
其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
因此,为随机接入过程中用于传输下行消息的时间窗口配置一个标称值,并根据调整参数和终端设备与网络设备之间的距离对该标称值进行调整,从而得到待使用的时间窗口的时间参数。因此,不同位置的终端设备可以对自己使用的该时间窗口进行灵活调整,避免下行消息的无效监听,实现有效的随机接入。
可选地,所述下行消息包括随机接入响应RAR消息和/或随机接入竞争解决消息。
可选地,所述调整参数包括以下中的至少一种:
所述时间参数与所述时间参数的标称值之间的差值;
用于对所述标称值进行周期性调整的调整步长;
用于对所述标称值进行周期性调整的调整因子;
距离与时间参数之间的映射关系;
所述标称值对应的预设距离。
可选地,所述时间参数为所述标称值与所述差值之和。
可选地,所述时间参数为所述标称值与N个所述调整步长之和,N为所述终端设备经过的调整周期的数量。
可选地,所述时间参数为N×M与所述标称值的乘积,N为所述终端设备经过的调整周期的数量,M为调整因子。
可选地,所述调整周期包括所述终端设备所经过的时间周期和/或所述终端设备的移动距离周期。
可选地,所述时间参数为所述映射关系中与所述终端设备与网络设备之间的距离对应的时间参数。
可选地,所述时间参数为所述标称值与距离比的乘积,所述距离比为所述终端设备与网络设备之间的距离与所述预设距离之间的比值。
可选地,所述第二信息包括以下信息中的至少一种:时间提前量TA;往返时间RTT;传输时延;卫星星历;所述终端设备与网络设备之间的距离;所述终端设备相对于网络设备的运行轨迹。
可选地,所述通信设备600为终端设备,所述终端设备包括:接收单元 620,用于接收网络设备发送的所述第一信息。
可选地,所述第一信息还包括所述标称值。
可选地,所述第一信息承载于系统消息、无线资源控制RRC信令、下行控制信息DCI或者RAR消息中。
可选地,所述通信设备600为终端设备,所述终端设备包括:发送单元630,用于上报所述时间参数。
可选地,所述通信设备600为网络设备,所述网络设备包括:发送单元630,用于向所述终端设备发送所述时间参数。
可选地,所述终端设备具备定位能力时,所述终端设备根据所述第一信息和/或所述第二信息确定所述时间窗口;或者,所述终端设备不具备定位能力时,所述终端设备根据所述第一信息确定所述时间窗口。
可选地,所述终端设备与所述网络设备之间的距离包括:所述终端设备与卫星之间的距离;或者,所述终端设备与卫星之间的距离,以及所述卫星与地面站之间的距离之和。
可选地,所述方法应用于NTN系统。
应理解,通信设备600可以执行图4或图5所示的方法中由终端设备或网络设备执行的相应操作,为了简洁,在此不再赘述。
图7是本申请实施例的一种通信设备700的示意性结构图。图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,通信设备700具体可为本申请实施例的终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的用于随机接入的装置的示意性结构图。图8所示的装置800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,装置800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以 集成在处理器810中。
可选地,装置800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,装置800还可以包括输出接口840。其中,处理器810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,装置800可应用于本申请实施例中的网络设备,并且该通信装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,装置800可应用于本申请实施例中的终端设备,并且该通信装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,装置800可以为芯片。该芯片还可为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例中的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
其中,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的 存储器还可以是静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图9是根据本申请实施例的通信系统900的示意性框图。如图9所示,该通信系统900包括网络设备910和终端设备920。
网络设备910用于:向终端设备发送第一信息。
终端设备920用于:接收所述第一信息;根据所述第一信息,和/或表征所述终端设备与网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口。
其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
网络设备910可以用于图4所示的方法中由网络设备实现的相应的功能,以及该网络设备910的组成可以如图6中的通信设备600所示,为了简洁,在此不再赘述。
终端设备920可以用于实现图4所示的方法中由终端设备实现的相应的功能,以及该终端设备920的组成可以如图6中的通信设备600所示,为了简洁,在此不再赘述。
图10是根据本申请实施例的通信系统1000的示意性框图。如图10所示,该通信系统1000包括网络设备1010和终端设备1020。
网络设备1010用于:确定用于终端设备接收随机接入过程中的下行消息的时间窗口的时间参数;向终端设备发送所述时间参数。
终端设备1020用于:接收所述时间参数;根据所述时间参数,在所述时间窗口内发送所述下行消息。
网络设备1010可以用于图5所示的方法中由网络设备实现的相应的功能,以及该网络设备1010的组成可以如图6中的网络设备600所示,为了简洁,在此不再赘述。
终端设备1020可以用于实现图5所示的方法中由终端设备实现的相应的功能,以及该终端设备1020的组成可以如图6中的终端设备600所示,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。可选 地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例中的术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明实施例中,“与A相应(对应)的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清除地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (46)

  1. 一种随机接入的方法,其特征在于,所述方法包括:
    根据第一信息,和/或表征终端设备与网络设备之间距离的第二信息,确定用于所述终端设备接收随机接入过程中的下行消息的时间窗口,
    其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
  2. 根据权利要求1所述的方法,其特征在于,所述下行消息包括随机接入响应RAR消息和/或随机接入竞争解决消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述调整参数包括以下中的至少一种:
    所述时间参数与所述时间参数的标称值之间的差值;
    用于对所述标称值进行周期性调整的调整步长;
    用于对所述标称值进行周期性调整的调整因子;
    距离与时间参数之间的映射关系;
    所述标称值对应的预设距离。
  4. 根据权利要求3所述的方法,其特征在于,所述时间参数为所述标称值与所述差值之和。
  5. 根据权利要求3所述的方法,其特征在于,所述时间参数为所述标称值与N个所述调整步长之和,N为所述终端设备经过的调整周期的数量。
  6. 根据权利要求3所述的方法,其特征在于,所述时间参数为N×M与所述标称值的乘积,N为所述终端设备经过的调整周期的数量,M为调整因子。
  7. 根据权利要求5或6所述的方法,其特征在于,所述调整周期包括所述终端设备所经过的时间周期和/或所述终端设备的移动距离周期。
  8. 根据权利要求3所述的方法,其特征在于,所述时间参数为所述映射关系中与所述终端设备与所述网络设备之间的距离对应的时间参数。
  9. 根据权利要求3所述的方法,其特征在于,所述时间参数为所述标称值与距离比的乘积,所述距离比为所述终端设备与所述网络设备之间的距离与所述预设距离之间的比值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二信息包括以下信息中的至少一种:
    时间提前量TA;
    往返时间RTT;
    传输时延;
    卫星星历;
    所述终端设备与所述网络设备之间的距离;
    所述终端设备相对于网络设备的运行轨迹。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法由终端设备执行,所述方法还包括:
    所述终端设备接收网络设备发送的所述第一信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息还包括所 述标称值。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一信息承载于系统消息、无线资源控制RRC信令、下行控制信息DCI或者RAR消息中。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法由终端设备执行,所述方法还包括:
    所述终端设备向所述网络设备上报所述时间参数。
  15. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法由网络设备执行,所述方法还包括:
    所述网络设备向所述终端设备发送所述时间参数。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,
    所述终端设备具备定位能力时,所述终端设备根据所述第一信息和/或所述第二信息确定所述时间窗口;或者,
    所述终端设备不具备定位能力时,所述终端设备根据所述第一信息确定所述时间窗口。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述终端设备与所述网络设备之间的距离包括:
    所述终端设备与卫星之间的距离;或者,
    所述终端设备与卫星之间的距离,以及所述卫星与地面站之间的距离之和。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN系统。
  19. 一种通信设备,其特征在于,包括:
    处理单元,用于根据第一信息,和/或表征所述终端设备与所述网络设备之间距离的第二信息,确定用于终端设备接收随机接入过程中的下行消息的时间窗口,
    其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
  20. 根据权利要求19所述的通信设备,其特征在于,所述下行消息包括随机接入响应RAR消息和/或随机接入竞争解决消息。
  21. 根据权利要求19或20所述的通信设备,其特征在于,所述调整参数包括以下中的至少一种:
    所述时间参数与所述时间参数的标称值之间的差值;
    用于对所述标称值进行周期性调整的调整步长;
    用于对所述标称值进行周期性调整的调整因子;
    距离与时间参数之间的映射关系;
    所述标称值对应的预设距离。
  22. 根据权利要求21所述的通信设备,其特征在于,所述时间参数为所述标称值与所述差值之和。
  23. 根据权利要求21所述的通信设备,其特征在于,所述时间参数为所述标称值与N个所述调整步长之和,N为所述终端设备经过的调整周期的数量。
  24. 根据权利要求21所述的通信设备,其特征在于,所述时间参数为N×M与所述标称值的乘积,N为所述终端设备经过的调整周期的数量,M为调整因子。
  25. 根据权利要求23或24所述的通信设备,其特征在于,所述调整周期包括所述终端设备所经过的时间周期和/或所述终端设备的移动距离周期。
  26. 根据权利要求21所述的通信设备,其特征在于,所述时间参数为所述映射关系中与所述终端设备与所述网络设备之间的距离对应的时间参数。
  27. 根据权利要求21所述的通信设备,其特征在于,所述时间参数为所述标称值与距离比的乘积,所述距离比为所述终端设备与所述网络设备之间的距离与所述预设距离之间的比值。
  28. 根据权利要求19至27中任一项所述的通信设备,其特征在于,所述第二信息包括以下信息中的至少一种:
    时间提前量TA;
    往返时间RTT;
    传输时延;
    卫星星历;
    所述终端设备与所述网络设备之间的距离;
    所述终端设备相对于网络设备的运行轨迹。
  29. 根据权利要求19至28中任一项所述的通信设备,其特征在于,所述通信设备为终端设备,所述终端设备包括:
    接收单元,用于接收网络设备发送的所述第一信息。
  30. 根据权利要求29所述的通信设备,其特征在于,所述第一信息还包括所述标称值。
  31. 根据权利要求29或30所述的通信设备,其特征在于,所述第一信息承载于系统消息、无线资源控制RRC信令、下行控制信息DCI或者RAR消息中。
  32. 根据权利要求19至31中任一项所述的通信设备,其特征在于,所述通信设备为终端设备,所述终端设备包括:
    发送单元,用于上报所述时间参数。
  33. 根据权利要求19至28中任一项所述的通信设备,其特征在于,所述通信设备为网络设备,所述网络设备包括:
    发送单元,用于向所述终端设备发送所述时间参数。
  34. 根据权利要求19至33中任一项所述的通信设备,其特征在于,
    所述终端设备具备定位能力时,所述终端设备根据所述第一信息和/或所述第二信息确定所述时间窗口;或者,
    所述终端设备不具备定位能力时,所述终端设备根据所述第一信息确定所述时间窗口。
  35. 根据权利要求19至34中任一项所述的通信设备,其特征在于,所述终端设备与所述网络设备之间的距离包括:
    所述终端设备与卫星之间的距离;或者,
    所述终端设备与卫星之间的距离,以及所述卫星与地面站之间的距离之和。
  36. 根据权利要求19至34中任一项所述的通信设备,其特征在于,所述通信设备应用于非地面通信网络NTN系统。
  37. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至18中任一项所述的方法。
  38. 一种用于随机接入的装置,其特征在于,所述装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行权利要求1至18中任一项所述的方法。
  39. 根据权利要求38所述的装置,其特征在于,所述装置为芯片。
  40. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至18中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至18中任一项所述的方法。
  42. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至18中任一项所述的方法。
  43. 一种通信系统,其特征在于,包括:
    网络设备,用于向终端设备发送第一信息;
    所述终端设备,用于接收所述第一信息,并根据所述第一信息,和/或表征所述终端设备与所述网络设备之间距离的第二信息,确定用于所述终端设备接收随机接入过程中的下行消息的时间窗口;
    其中,所述第一信息包括调整参数,所述调整参数用于对所述时间窗口的时间参数的标称值进行调整,所述时间参数包括所述时间窗口的时长和/或偏移量。
  44. 根据权利要求43所述的通信系统,其特征在于,所述通信系统为非地面通信网络NTN系统。
  45. 一种通信系统,其特征在于,包括:
    网络设备,用于确定用于终端设备接收随机接入过程中的下行消息的时间窗口的时间参数,并向所述终端设备发送所述时间参数;
    所述终端设备,用于接收所述时间参数,并根据所述时间参数,在所述时间窗口内发送所述下行消息。
  46. 根据权利要求45所述的通信系统,其特征在于,所述通信系统为非地面通信网络NTN系统。
PCT/CN2019/099141 2019-08-02 2019-08-02 随机接入的方法和通信设备 WO2021022430A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980095045.2A CN113711680B (zh) 2019-08-02 2019-08-02 随机接入的方法和通信设备
PCT/CN2019/099141 WO2021022430A1 (zh) 2019-08-02 2019-08-02 随机接入的方法和通信设备
EP19940494.8A EP3979749A4 (en) 2019-08-02 2019-08-02 RANDOM ACCESS METHOD AND COMMUNICATION MECHANISM
US17/562,394 US20220124824A1 (en) 2019-08-02 2021-12-27 Method for random access and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099141 WO2021022430A1 (zh) 2019-08-02 2019-08-02 随机接入的方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,394 Continuation US20220124824A1 (en) 2019-08-02 2021-12-27 Method for random access and communication device

Publications (1)

Publication Number Publication Date
WO2021022430A1 true WO2021022430A1 (zh) 2021-02-11

Family

ID=74502810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099141 WO2021022430A1 (zh) 2019-08-02 2019-08-02 随机接入的方法和通信设备

Country Status (4)

Country Link
US (1) US20220124824A1 (zh)
EP (1) EP3979749A4 (zh)
CN (1) CN113711680B (zh)
WO (1) WO2021022430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010243A1 (zh) * 2021-08-02 2023-02-09 北京小米移动软件有限公司 小区测量方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11979919B2 (en) * 2021-09-17 2024-05-07 Qualcomm Incorporated Flexible random access channel configurations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN102711273A (zh) * 2012-04-19 2012-10-03 北京创毅讯联科技股份有限公司 无线网络中的随机接入方法和用户设备
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
US10172162B2 (en) * 2016-01-26 2019-01-01 Lg Electronics Inc. Method for performing a random access procedure in wireless communication system and a device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152085B (zh) * 2017-06-16 2023-01-13 华为技术有限公司 随机接入方法、设备及系统
WO2019119411A1 (zh) * 2017-12-22 2019-06-27 南通朗恒通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
EP4304108A3 (en) * 2018-02-14 2024-04-10 InterDigital Patent Holdings, Inc. Random access in a non-terrestrial network
CN113647184B (zh) * 2019-03-28 2022-11-15 中兴通讯股份有限公司 用于执行增强型随机接入过程的方法、装置及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647783A (zh) * 2012-04-19 2012-08-22 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN102711273A (zh) * 2012-04-19 2012-10-03 北京创毅讯联科技股份有限公司 无线网络中的随机接入方法和用户设备
US10172162B2 (en) * 2016-01-26 2019-01-01 Lg Electronics Inc. Method for performing a random access procedure in wireless communication system and a device therefor
CN107623649A (zh) * 2016-07-15 2018-01-23 上海朗帛通信技术有限公司 一种无线传输中的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Considerations on Timing Advance and Random Access for NTN", 3GPP TSG RAN WG1 MEETING #93 R1-1806768, 11 May 2018 (2018-05-11), XP051461968 *
OPPO: "Discussion on RACH Procedure for NTN", 3GPP TSG-RAN WG2 MEETING #106 R2-1905581, 3 May 2019 (2019-05-03), XP051709940 *
See also references of EP3979749A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010243A1 (zh) * 2021-08-02 2023-02-09 北京小米移动软件有限公司 小区测量方法、装置、设备及介质

Also Published As

Publication number Publication date
EP3979749A1 (en) 2022-04-06
US20220124824A1 (en) 2022-04-21
EP3979749A4 (en) 2022-06-01
CN113711680A (zh) 2021-11-26
CN113711680B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
US20220159732A1 (en) Random access method and device
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20230119893A1 (en) Wireless communication method and terminal device
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
US20220330347A1 (en) Random access method and terminal device
US20220124824A1 (en) Method for random access and communication device
US20230337289A1 (en) Wireless communication method and terminal device
WO2021253431A1 (zh) 物理下行控制信道pdcch的监听方法及装置
WO2022067519A1 (zh) 随机接入方法和终端设备
WO2021179139A1 (zh) 一种释放上行资源的方法、终端设备、网络设备
US20230042104A1 (en) Wireless communication method, terminal device, and network device
US20230129426A1 (en) Wireless communication method and terminal device
US20220086921A1 (en) Method and device for random access
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2021184335A1 (zh) 一种小区切换方法、终端设备及存储介质
WO2023133839A1 (zh) 通信方法和设备
WO2023015406A1 (zh) 通信方法及装置
WO2024092456A1 (zh) 位置测量方法、定时器维护方法和设备
WO2022133675A1 (zh) 无线通信方法和终端设备
WO2021128291A1 (zh) 随机接入的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019940494

Country of ref document: EP

Effective date: 20211229

NENP Non-entry into the national phase

Ref country code: DE