WO2023010243A1 - 小区测量方法、装置、设备及介质 - Google Patents

小区测量方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023010243A1
WO2023010243A1 PCT/CN2021/110061 CN2021110061W WO2023010243A1 WO 2023010243 A1 WO2023010243 A1 WO 2023010243A1 CN 2021110061 W CN2021110061 W CN 2021110061W WO 2023010243 A1 WO2023010243 A1 WO 2023010243A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration information
time parameter
measurement window
cell
Prior art date
Application number
PCT/CN2021/110061
Other languages
English (en)
French (fr)
Inventor
熊艺
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to BR112024002138A priority Critical patent/BR112024002138A2/pt
Priority to KR1020247006184A priority patent/KR20240036087A/ko
Priority to PCT/CN2021/110061 priority patent/WO2023010243A1/zh
Priority to CN202180002403.8A priority patent/CN115943694A/zh
Publication of WO2023010243A1 publication Critical patent/WO2023010243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present disclosure relates to the communication field, and in particular to a cell measurement method, device, equipment and medium.
  • 5G NR introduces non-terrestrial networks (NTN, Non-Terrestrial Networks), that is, 5G satellite communication network. Considering the high altitude of satellites from the earth, the transmission delay of NTN network is relatively large.
  • UE may also be in the coverage area of satellite 2/satellite 3 .
  • the UE needs to perform the measurement of the neighboring cells covered by the satellite 2/satellite 3, and the influence of the transmission delay difference needs to be considered.
  • Embodiments of the present disclosure provide a cell measurement method, device, equipment and medium.
  • the technical scheme is as follows.
  • a cell measurement method performed by a terminal, the method includes:
  • configuration information where the configuration information is used to indicate dynamic adjustment rules of time parameters when the terminal performs cell measurement
  • a measurement window is determined based on the dynamic adjustment rule.
  • a cell measurement method performed by a network device, the method includes:
  • the configuration information is sent to the terminal according to the location information of the terminal and the ephemeris information of the satellite, and the configuration information is used to indicate the dynamic adjustment rule of the time parameter when the terminal performs cell measurement.
  • a cell measurement device comprising:
  • a receiving module configured to receive configuration information, where the configuration information is used to indicate dynamic adjustment rules for time parameters when the terminal performs cell measurement;
  • a processing module configured to determine a measurement window based on the dynamic adjustment rule.
  • a cell measurement device comprising:
  • the sending module is configured to send configuration information to the terminal according to the location information of the terminal and the ephemeris information of the satellite, and the configuration information is used to indicate the dynamic adjustment rule of the time parameter when the terminal performs cell measurement.
  • a terminal in another aspect, includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the cell measurement method as described in any one of the above embodiments.
  • a network device in another aspect, includes:
  • transceiver connected to the processor
  • the processor is configured to load and execute the executable instructions to implement the cell measurement method as described in any one of the above embodiments.
  • a computer-readable storage medium wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor so as to implement any one of the above-mentioned embodiments.
  • the UE can obtain the time parameter information of the subsequent SMTC/measurement gap according to the configuration information, such as the offset/duration value, etc., effectively reducing the SMTC/measurement gap update frequency.
  • FIG. 1 is a network architecture diagram of a transparent transmission load NTN provided by an exemplary embodiment of the present disclosure
  • FIG. 2 is a network architecture diagram of a regenerative load NTN provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of satellite transmission delay provided by an exemplary embodiment of the present disclosure
  • FIG. 4 is a flowchart of a cell measurement method provided by an exemplary embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of determining a measurement window according to an offset change rate provided by an exemplary embodiment of the present disclosure
  • Fig. 6 is a schematic diagram of determining the measurement window according to the rate of change of the length of the time window provided by an exemplary embodiment of the present disclosure
  • Fig. 7 is a schematic diagram of determining a measurement window according to a period change rate provided by an exemplary embodiment of the present disclosure
  • FIG. 8 is a flowchart of a cell measurement method provided by another exemplary embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a cell measurement method provided by another exemplary embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a cell measurement device provided by an exemplary embodiment of the present disclosure.
  • Fig. 11 is a block diagram of a cell measurement device provided by another exemplary embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • Satellite communication is not restricted by the user's region. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. that cannot be equipped with communication equipment or are not covered by communication due to sparse population. For satellite communication, due to a Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas.
  • the distance of satellite communication is long, and the cost of communication does not increase significantly with the increase of communication distance; finally, the stability of satellite communication is high, and it is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite visible time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirements for the transmission power of the user terminal are not high.
  • Satellites in geosynchronous orbit have an orbital altitude of 35786km and a period of 24 hours around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multi-beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 shows a scenario of transparently transmitting a payload NTN; which includes a UE 12 , a satellite 14 , a gateway device 16 and a data network 18 .
  • a feeder link is included between the satellite 14 and the gateway device 16 .
  • FIG. 2 shows a scenario of regenerative payload NTN; including UE 12 , satellite 14 , gateway device 16 and data network 18 .
  • a feeder link is included between the satellite 14 and the gateway device 16
  • an inter-satellite link is included between the satellites 14 and the satellites 14.
  • the NTN network consists of the following network elements:
  • ⁇ 1 or more gateways used to connect satellites and terrestrial public networks.
  • Feeder link The link used for communication between the gateway and the satellite.
  • Service link a link used for communication between the terminal and the satellite.
  • ⁇ Satellite From the functions it provides, it can be divided into two types: transparent transmission load and regenerative load.
  • ⁇ Transparent transmission load only provide wireless frequency filtering, frequency conversion and amplification functions, only provide transparent forwarding of signals, and will not change the waveform signal it forwards.
  • Regenerative load In addition to providing radio frequency filtering, frequency conversion and amplification functions, it can also provide demodulation/decoding, routing/conversion, encoding/modulation functions. It has part or all of the functions of the base station.
  • Inter-Satellite Links Exists in regenerative load scenarios.
  • the cell radius is small, and the transmission delay gap between UE and different cells is very small, which is much smaller than the length of SSB-Measurement Timing Configuration (SMTC)/Measurement Gap .
  • SMTC SSB-Measurement Timing Configuration
  • the UE may also be in the coverage area of the satellite 2/satellite 3. Considering the mobility of the UE, the UE needs to perform the measurement of the neighboring cells covered by the satellite 2/satellite 3, and the influence of the transmission delay difference needs to be considered.
  • the satellite (SA1) is the satellite of the serving cell
  • the satellite (SA2) is the satellite of the neighboring cell.
  • the transmission delay for the UE to receive signals from the serving cell can be expressed as T1g (feeder link transmission delay) + T1u (service link transmission delay), and the transmission delay for the UE to receive signals from neighboring cells is T2u + T2g.
  • the transmission delay difference is T1g+T1u-(T2g+T2u).
  • the transmission delay between the UE receiving the signal of the serving cell and the signal of the neighboring cell will have a large gap, that is, T1g+T1u-(T2g+T2u ) will not approach 0 and may be larger than the length of the SMTC/measurement interval.
  • the UE may miss the SSB/CSI-RS measurement window and thus will not be able to perform measurements on the configured reference signal.
  • the difference in propagation delay is also large, so the traditional SMTC/Gap configuration scheme cannot be applied to the NTN network environment, so the network needs to consider different UEs and different UEs when configuring SMTC/Gap measurement.
  • the difference in transmission delay between satellites In the SMTC configuration, different frequencies are configured with different SMTCs, and cells with the same frequency used for measurement use the same SMTC configuration, which is not suitable for NTN networks with huge transmission delay differences.
  • Fig. 4 shows a flowchart of a cell measurement method provided by an exemplary embodiment of the present disclosure.
  • the method is executed by a terminal as an example.
  • the method includes:
  • Step 401 receiving configuration information
  • the configuration information is used to instruct the terminal to dynamically adjust the time parameter rules when performing cell measurement.
  • the configuration information is information that the network device configures the measurement window for the UE according to the location information of the UE and the ephemeris information of the satellite, wherein the configuration information includes a dynamic configuration rule of the time parameter of the measurement window.
  • the type of satellite includes at least one of the following types: LEO satellite; MEO satellite; GEO satellite; unmanned aerial vehicle platform (UAS Platform) satellite; HEO satellite.
  • the measurement window includes at least one of SMTC and measurement Gap.
  • the time parameter includes at least one of offset (SMTC-offset; measurement Gap-gapoffset), period (SMTC-periodicity; measurement Gap-mgrp), and duration (SMTC-duration; measurement Gap-mgl).
  • the time parameter further includes measuring Gap timing advance (measurement gap timing advance, mgta).
  • the dynamic adjustment rule includes: at least one of a time parameter change rate and a time parameter configuration function.
  • the rate of change of the time parameter is used to represent the periodic change rule of the time parameter;
  • the time parameter configuration function is used to represent the functional relationship between the time window serial number and the time parameter.
  • the configuration information may be sent to the UE through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the configuration information of multiple sets of measurement windows can be included in the measurement window configuration table, and the maximum number of measurement window configurations that can be included in each measurement window configuration table can be determined by the network or according to the provisions of the protocol.
  • the network may include an SMTC configuration table in the measurement configuration, for example: include an SMTC configuration table (smtc-ntn-list) in the measurement configuration, whose type is SSB-MTC-ntn-List, defined As follows: where SSB-MTC-ntn is a group of SMTC configurations, smtc-ntn-list contains multiple groups of SMTC configurations, and maxNrofSSBMTCntn is the maximum number of configurable SMTC groups.
  • SSB-MTC-ntn is a group of SMTC configurations
  • smtc-ntn-list contains multiple groups of SMTC configurations
  • maxNrofSSBMTCntn is the maximum number of configurable SMTC groups.
  • the network may include a measurement Gap configuration table in the measurement configuration, for example, the measurement configuration includes a measurement Gap configuration table (meagap-ntn-list), whose type is MeasGap-ntn-List, defined As follows: where MeasGap-ntn is a set of Gap measurement configurations, meagap-ntn-list contains multiple sets of Gap measurement configurations, where maxNrofMeasGapntn is the maximum configurable number of Gap measurement groups.
  • MeasGap-ntn is a set of Gap measurement configurations
  • meagap-ntn-list contains multiple sets of Gap measurement configurations
  • maxNrofMeasGapntn is the maximum configurable number of Gap measurement groups.
  • Step 402 determining a measurement window based on a dynamic adjustment rule.
  • the measurement window is directly determined based on the dynamic adjustment rule; or, the measurement window is determined based on the dynamic adjustment rule and the initial time parameter.
  • the configuration information includes the rate of change of the time parameter; based on the initial time parameter and the rate of change of the time parameter, the measurement window is determined.
  • the UE calculates and obtains the value of the time parameter of the current measurement window according to the change rate configured by the network and the initial time parameter.
  • the offset is taken as an example for illustration.
  • the initial offset is 4ms, and the change rate of the network configuration is 1ms.
  • the offset of the first measurement window is 4ms.
  • the offset of the second measurement window is 5ms; the offset of the third measurement window is 6ms.
  • the rate of change of the time parameter includes two numerical values of the rate of change, which are used to indicate the rate of change in alternate periods.
  • the offset is taken as an example for illustration.
  • the initial offset is 4ms
  • the change rate of the network configuration is 1ms and 2ms.
  • the offset of the first measurement window is 5ms (4ms+1ms);
  • the offset of the third measurement window is 7ms (5ms+2ms);
  • the offset of the fourth measurement window is 8ms (7ms +1ms), and so on.
  • the above initial time parameter is configured in the configuration information; or, the initial time parameter is predefined; or, the initial time parameter is preconfigured.
  • the initial time parameter configured in the configuration information is preferred; if the initial time parameter is not included in the configuration information, the default initial time parameter is used, and the default initial time parameter The time parameter is the above-mentioned preconfigured or predefined initial time parameter.
  • the configuration information includes a time parameter configuration function; the measurement window is determined based on the time parameter configuration function.
  • the time parameter configuration function includes but is not limited to any one of the following functions: a first-order function; or, a second-order function; or, other higher-order functions; or, other arbitrary forms of functions.
  • the time parameter configuration function is a function related to the time parameter of the measurement window and the serial number of the measurement window.
  • the UE calculates the value of the time parameter of the current measurement window according to the time parameter configuration function issued by the network.
  • the first-order function is used to determine the offset as an example.
  • the measurement window sequence number represents the sequence number of the measurement window that the UE can use to perform measurement since the UE receives the configuration information of the network.
  • the position of the measuring window is determined as follows:
  • the position of the first measurement window is the position of the latest time window that satisfies the corresponding time parameters configured by the network from the moment when the UE receives the configuration information of the network; Starting from the moment when one measurement window ends, the position of the latest time window that satisfies the corresponding time parameter configured by the network, where n ⁇ 2, and n is an integer.
  • FIG. 5 shows a schematic diagram of determining the measurement window according to the offset change rate provided by an exemplary embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of determining the measurement window according to the change rate of the time window length provided by an exemplary embodiment of the present disclosure.
  • FIG. 7 shows a schematic diagram of determining a measurement window according to a period change rate provided by an exemplary embodiment of the present disclosure.
  • the time window 703 of time window) is used as the third measurement window satisfying the time parameter, and so on.
  • the above configuration information further includes a cell list and/or a satellite list.
  • the cell list is used to indicate the cell to which the dynamic adjustment rule configured in the configuration information applies
  • the dynamic adjustment rule is a time parameter used to adjust the measurement window of the cell in the cell list.
  • the satellite list is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement window of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the corresponding satellites in the satellite list.
  • the time parameter of the measurement window of the cell is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement window of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the corresponding satellites in the satellite list.
  • the time parameter of the measurement window of the cell is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the network may indicate to the UE the method of determining the measurement window through the shared mode indication information, or the UE may also adopt the default method of determining the measurement window in the overlapping measurement window Determine the measurement window for measurement.
  • the default measurement window determination manner includes at least one of a random determination manner, a priority determination manner, and an extended measurement manner.
  • the cell measurement method provided by the embodiment of the present disclosure configures the dynamic adjustment rule of the time parameter of the measurement window through the configuration information, and the UE can obtain the time parameter information of the subsequent SMTC/measurement Gap according to the configuration information, such as offset The value of amount/duration, etc., can effectively reduce the update frequency of SMTC/measurement Gap.
  • the configuration information sent by the network device to the terminal device includes sharing mode indication information.
  • FIG. 8 is a flow chart of a cell measurement method provided by another exemplary embodiment of the present disclosure. The method is applied to a UE as an example for illustration. As shown in FIG. 8 , the method includes:
  • step 801 configuration information is received, and the configuration information includes sharing mode indication information.
  • the shared mode indication information is used to indicate a window determination manner when the measurement windows calculated by at least two sets of configuration information overlap.
  • the sharing mode indication information is used to indicate the behavior of the UE when the measurement windows calculated according to multiple sets of measurement window configuration information overlap.
  • the measurement window determination manner indicated by the sharing mode indication information includes at least one of a random determination manner, a priority determination manner, and an extended measurement manner.
  • Step 802 determine a measurement window based on the sharing mode indication information.
  • the shared mode indication information indicates a random determination method, randomly determine a measurement window from the measurement windows calculated from at least two sets of configuration information for measurement.
  • the UE randomly performs corresponding measurement according to one measurement window.
  • the sharing mode indication information indicates a priority determination method
  • the UE selects the measurement window calculated from the measurement window configuration information with the highest priority to perform corresponding measurements.
  • a measurement window is randomly selected from the multiple measurement window configuration information with the highest priority to perform corresponding measurement.
  • the default is the highest or lowest priority.
  • the priority of the configuration information of the measurement window may be determined according to at least one of the following methods:
  • the priority of the measurement window configuration information may be included in the measurement window configuration information, or configured separately.
  • the configuration information includes a priority indication resource, which is used to indicate the priority corresponding to the measurement window configured in the current configuration information.
  • a priority indication resource which is used to indicate the priority corresponding to the measurement window configured in the current configuration information.
  • the measurement window configured by the configuration information is the highest priority or the lowest priority by default.
  • selecting the highest priority in the applicable cell list corresponding to the measurement window configuration information is used as the priority of the measurement window configured by the current measurement window configuration information
  • the average priority in the applicable cell list corresponding to the measurement window configuration information is selected as the priority of the measurement window configured by the current measurement window configuration information.
  • the highest priority in the applicable satellite list corresponding to the measurement window configuration information is selected as the priority of the measurement window configured by the current measurement window configuration information
  • the average priority in the applicable satellite list corresponding to the measurement window configuration information is selected as the priority of the measurement window configured by the current measurement window configuration information.
  • the sharing mode indication information indicates an extended measurement mode
  • use the extended measurement window for measurement and the extended measurement window includes the range of the measurement window calculated by at least two sets of configuration information.
  • the measurement window is extended to a range that can include two overlapping measurement windows, and then corresponding measurements are performed simultaneously.
  • frequency points and/or subcarrier spacings of reference signals measured by measurement windows obtained through calculation of at least two sets of configuration information are the same.
  • the measurement window may be extended to a range that can include the two overlapping measurement windows, and then corresponding measurements are performed simultaneously.
  • the frequency points or subcarrier spacings of the reference signals that need to be measured by the overlapping measurement windows are different, then select the shared mode configuration. other methods.
  • the embodiment shown in FIG. 8 can be combined with the embodiment shown in FIG. 4 to implement an overall embodiment, that is, the configuration information provided in FIG. 4 and the configuration information provided in FIG. 8 are the same
  • the configuration information may also be implemented as independent embodiments, that is, the configuration information provided in FIG. 4 and the configuration information provided in FIG. 8 are different configuration information, which is not limited in the present disclosure.
  • the method provided by the embodiments of the present disclosure specifies a processing scheme in the case of SMTC/measurement Gap sending overlapping measurement windows. According to the selected scheme, the UE can efficiently determine the cell that needs to be measured; or priority measurement is more necessary The measured area.
  • FIG. 9 is a flow chart of a method for measuring a cell provided by another exemplary embodiment of the present disclosure. This method is applied to a communication system as an example, as shown in Figure 9, the method includes:
  • step 901 the network device sends configuration information to the terminal according to the location information of the terminal and the ephemeris information of the satellite.
  • the location information of the terminal includes the precise location information of the terminal or the rough location information of the terminal;
  • the ephemeris information of the satellite includes the ephemeris information of the serving satellite and the ephemeris information of the neighboring satellite to be measured.
  • the precise location information refers to the relatively fine positioning information reported by the terminal, such as: the distance information and direction information between the network equipment;
  • the rough location information refers to the relatively rough positioning information reported by the terminal, such as: the location where the terminal is located district.
  • the network when the UE reports relatively rough location information, the network needs to configure a measurement window applicable to UEs within the range of the rough location information.
  • the network can appropriately expand the duration of the measurement window when configuring it.
  • the network when the network detects that the location of the UE changes and the original measurement window configuration is not applicable to the current location of the UE, the network can update the configuration information of the UE's measurement window; or, the network can periodically Updating the configuration information of the measurement window; or, the network may specify the valid time of the configuration information of the measurement window, and update the configuration information of the measurement window when it detects that the configuration of the measurement window is invalid.
  • the configuration information includes dynamic adjustment rules for indicating time parameters; and/or, the configuration information includes sharing mode indication information.
  • the configuration information is used to indicate the dynamic adjustment rule of the time parameter when the terminal performs cell measurement.
  • the configuration information includes at least one of a time parameter change rate and a time parameter configuration function as a dynamic adjustment rule.
  • the time parameter change rate is used to determine the measurement window with the initial time parameter; the time parameter configuration function is used to determine the time parameter of the measurement window according to the measurement window serial number and the functional relationship.
  • the time parameter configuration function includes but is not limited to at least one of a first-order function and a second-order function.
  • the initial time parameter is configured in the configuration information; or, the initial time parameter is predefined; or, the initial time parameter is preconfigured.
  • the measurement window includes at least one of a synchronization signal block measurement timing configuration SSB-MTC and a measurement interval Gap.
  • the time parameter includes at least one of offset, period, and duration.
  • the time parameter further includes measuring Gap timing advance.
  • the above configuration information further includes a cell list and/or a satellite list.
  • the cell list is used to indicate the cell to which the dynamic adjustment rule configured in the configuration information applies
  • the dynamic adjustment rule is a time parameter used to adjust the measurement window of the cell in the cell list.
  • the satellite list is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement window of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the corresponding satellites in the satellite list.
  • the time parameter of the measurement window of the cell is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement window of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the corresponding satellites in the satellite list.
  • the time parameter of the measurement window of the cell is used to indicate the satellites to which the dynamic adjustment rules configured in the configuration information are applicable.
  • the configuration information further includes sharing mode indication information
  • the sharing mode indication information is used to indicate a window determination manner when measurement windows calculated by at least two sets of configuration information overlap. That is, when the measurement windows calculated by at least two sets of configuration information overlap, the network may indicate to the UE the manner of determining the measurement window through the sharing mode indication information.
  • the UE may also use a default measurement window determination method to determine a measurement window in overlapping measurement windows for measurement.
  • the default measurement window determination manner includes at least one of a random determination manner, a priority determination manner, and an extended measurement manner.
  • the UE uses a default measurement window determination method to determine a measurement window among overlapping measurement windows for measurement.
  • the data transmission with the terminal is performed on an unselected measurement window among the measurement windows calculated by at least two sets of configuration information.
  • the UE reports to the network device the measurement window selected by the UE in the case of overlap, so that the network device performs data transmission with the terminal on an unselected measurement window among the measurement windows calculated by at least two sets of configuration information.
  • the UE can select only the measurement window according to the configuration, and the network device can also determine the measurement window selected by the UE according to the delivered configuration information, and the unselected measurement windows in the measurement windows calculated by at least two sets of configuration information Data transmission with the terminal is carried out on the measurement window.
  • Step 902 the terminal receives configuration information.
  • the configuration information is information that the network device configures the measurement window for the UE according to the location information of the UE and the ephemeris information of the satellite, wherein the configuration information includes a dynamic configuration rule of the time parameter of the measurement window.
  • the type of satellite includes at least one of the following types: LEO satellite; MEO satellite; GEO satellite; unmanned aerial vehicle platform (UAS Platform) satellite; HEO satellite.
  • the measurement window includes at least one of SMTC and measurement Gap.
  • the dynamic adjustment rule includes: at least one of a time parameter change rate and a time parameter configuration function.
  • the rate of change of the time parameter is used to represent the periodic change rule of the time parameter;
  • the time parameter configuration function is used to represent the functional relationship between the time window serial number and the time parameter.
  • the configuration information may be sent to the UE through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the configuration information includes sharing mode indication information.
  • the shared mode indication information is used to indicate a window determination manner when the measurement windows calculated by at least two sets of configuration information overlap.
  • the sharing mode indication information is used to indicate the behavior of the UE when the measurement windows calculated according to multiple sets of measurement window configuration information overlap.
  • the measurement window determination manner indicated by the sharing mode indication information includes at least one of a random determination manner, a priority determination manner, and an extended measurement manner.
  • Step 903 the terminal dynamically determines the measurement window according to the configuration information.
  • the measurement window is directly determined based on the dynamic adjustment rule; or, the measurement window is determined based on the dynamic adjustment rule and the initial time parameter.
  • the measurement window is determined according to the sharing mode indication information for measurement.
  • the method provided by the embodiment of the present disclosure configures the dynamic adjustment rule of the time parameter of the measurement window through the configuration information, and the UE can obtain the time parameter information of the subsequent SMTC/measurement Gap according to the configuration information, such as offset/ The value of the duration, etc., can effectively reduce the update frequency of SMTC/measurement Gap.
  • the processing scheme is specified in the case of SMTC/measurement Gap sending overlapping measurement windows. According to the selected scheme, the UE can efficiently determine the cell that needs to be measured; or preferentially measure the cell that needs to be measured more.
  • Fig. 10 is a structural block diagram of a cell measurement device provided by an exemplary embodiment of the present disclosure. As shown in Fig. 10 , the device includes:
  • a receiving module 1010 configured to receive configuration information, where the configuration information is used to indicate a dynamic adjustment rule of a time parameter when the terminal performs cell measurement;
  • a processing module 1020 configured to determine a measurement window based on the dynamic adjustment rule.
  • the processing module 1020 is configured to determine the measurement window based on the dynamic adjustment rule and an initial time parameter.
  • the configuration information includes a time parameter change rate
  • the processing module 1020 is configured to determine the measurement window based on the initial time parameter and the rate of change of the time parameter.
  • the configuration information includes a time parameter configuration function
  • the processing module 1020 is configured to determine the measurement window based on the time parameter configuration function.
  • the time parameter configuration function includes but is not limited to at least one of a first-order function and a second-order function.
  • the initial time parameter is configured in the configuration information; or, the initial time parameter is predefined; or,
  • the initial time parameter is preconfigured.
  • the measurement window includes at least one of a synchronization signal block measurement timing configuration SSB-MTC and a measurement interval Gap.
  • the time parameter includes at least one of offset, period, and duration.
  • the time parameter when the measurement window includes the measurement Gap, the time parameter further includes a timing advance.
  • the configuration information further includes a cell list and/or a satellite list
  • the cell list is used to indicate the cell to which the dynamic adjustment rule configured in the configuration information is applicable, and the dynamic adjustment rule is applicable to adjust the time parameter of the measurement window of the cell in the cell list;
  • the satellite list is used to indicate The satellites to which the dynamic adjustment rules configured in the configuration information are applicable, the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement windows of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the satellites in the satellite list
  • the satellite corresponds to the time parameter of the measurement window of the cell.
  • the configuration information further includes sharing mode indication information
  • the shared mode indication information is used to indicate a window determination manner when the measurement windows calculated by at least two sets of configuration information overlap.
  • the processing module 1020 is further configured to randomly determine a measurement window from measurement windows calculated from at least two sets of configuration information to perform measurement when the sharing mode indication information indicates a random determination manner.
  • the processing module 1020 is further configured to adopt the measurement window with the highest priority among the measurement windows calculated from at least two groups of configuration information when the sharing mode indication information indicates a priority determination method Perform measurement, wherein the measurement window with the highest priority includes a measurement window calculated according to the configuration information with the highest priority.
  • the processing module 1020 is further configured to use the extended measurement window to perform measurement based on the measurement window calculated based on at least two sets of configuration information when the sharing mode indication information indicates an extended measurement mode, the The extended measurement window includes the range of the measurement window calculated by at least two sets of configuration information.
  • frequency points and/or subcarrier spacings of reference signals measured by measurement windows obtained through calculation of at least two sets of configuration information are the same.
  • Fig. 11 is a structural block diagram of a cell measurement device provided by another exemplary embodiment of the present disclosure. As shown in Fig. 11 , the device includes:
  • the sending module 1110 is configured to send configuration information to the terminal according to the location information of the terminal and the ephemeris information of the satellite, the configuration information is used to indicate the dynamic adjustment rule of the time parameter when the terminal performs cell measurement.
  • the configuration information includes at least one of a time parameter change rate and a time parameter configuration function.
  • the time parameter configuration function includes but is not limited to at least one of a first-order function and a second-order function.
  • the configuration information also includes an initial time parameter.
  • the measurement window includes at least one of a synchronization signal block measurement timing configuration SSB-MTC and a measurement interval Gap.
  • the time parameter includes at least one of offset, period, and duration.
  • the time parameter when the measurement window includes the measurement Gap, the time parameter further includes a timing advance.
  • the configuration information further includes a cell list and/or a satellite list
  • the cell list is used to indicate the cell to which the dynamic adjustment rule configured in the configuration information is applicable, and the dynamic adjustment rule is applicable to adjust the time parameter of the measurement window of the cell in the cell list;
  • the satellite list is used to indicate The satellites to which the dynamic adjustment rules configured in the configuration information are applicable, the dynamic adjustment rules are applicable to adjusting the time parameters of the measurement windows of the satellites in the satellite list, or the dynamic adjustment rules are applicable to adjusting the satellites in the satellite list
  • the satellite corresponds to the time parameter of the measurement window of the cell.
  • the configuration information further includes sharing mode indication information
  • the shared mode indication information is used to indicate a window determination manner when the measurement windows calculated by at least two sets of configuration information overlap.
  • the sending module 1110/receiving module 1120 is configured to, based on the window determination manner, perform a comparison with the unselected measurement windows among the measurement windows calculated from the at least two sets of configuration information. The data transmission of the terminal.
  • the location information of the terminal includes precise location information of the terminal or rough location information of the terminal.
  • the ephemeris information of the satellite includes the ephemeris information of the serving satellite and the ephemeris information of the neighboring satellite to be measured.
  • the device provided by the embodiment of the present disclosure configures the dynamic adjustment rule of the time parameter of the measurement window through the configuration information, and the UE can obtain the time parameter information of the subsequent SMTC/measurement Gap according to the configuration information, such as offset/ The value of the duration, etc., can effectively reduce the update frequency of SMTC/measurement Gap. It specifies the processing scheme in the case of SMTC/measurement Gap sending overlapping measurement windows. According to the selected scheme, the UE can efficiently determine the cell that needs to be measured; or preferentially measure the cell that needs to be measured more.
  • FIG. 12 shows a schematic structural diagram of a communication device (network device or terminal) provided by an exemplary embodiment of the present disclosure.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 can be implemented as a communication component, which can be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or their combination.
  • the volatile or non-volatile storage device includes but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the cell measurement method performed by the terminal device or the network device provided in the above method embodiments.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开公开了一种小区测量方法、装置、设备及介质,涉及通信领域。所述方法包括:终端接收配置信息,配置信息用于指示终端进行小区测量时,时间参数的动态调整规则;基于动态调整规则确定测量窗。通过配置信息对测量窗的时间参数的动态调整规则进行配置,UE可以根据配置信息获取后续SMTC/测量Gap的时间参数信息,例如偏移量/持续时间的值等,有效的降低SMTC/测量Gap的更新频次。

Description

小区测量方法、装置、设备及介质 技术领域
本公开涉及通信领域,特别涉及一种小区测量方法、装置、设备及介质。
背景技术
5G NR引入了非陆地网络(NTN,Non-Terrestrial Networks),即5G卫星通信网,考虑到卫星离地球的高度较高,使得NTN网络的传输时延较大。
在NTN系统中,由于小区半径大,不同卫星覆盖区域的重叠范围也较大,当卫星1为用户设备(UserEquipment,UE)提供服务时,UE也可能正处于卫星2/卫星3的覆盖范围内。考虑到UE的移动性,UE需要执行卫星2/卫星3的覆盖的邻区的测量,需要考虑传输时延差的影响。
发明内容
本公开实施例提供了一种小区测量方法、装置、设备及介质。所述技术方案如下。
根据本公开的一个方面,提供了一种小区测量方法,由终端执行,所述方法包括:
接收配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则;
基于所述动态调整规则确定测量窗。
另一方面,提供了一种小区测量方法,由网络设备执行,所述方法包括:
根据终端的位置信息和卫星的星历信息向终端发送配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则。
另一方面,提供了一种小区测量装置,所述装置包括:
接收模块,用于接收配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则;
处理模块,用于基于所述动态调整规则确定测量窗。
另一方面,提供了一种小区测量装置,所述装置包括:
发送模块,用于根据终端的位置信息和卫星的星历信息向终端发送配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则。
另一方面,提供了一种终端,所述终端包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述实施例中任一所述的小区测量方法。
另一方面,提供了一种网络设备,所述网络设备包括:
处理器;
与所述处理器相连的收发器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述实施例中任一所述的小区测量方法。
另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述实施例中任一所述的小区测量方法。
本公开实施例提供的技术方案至少包括如下有益效果:
通过配置信息对测量窗的时间参数的动态调整规则进行配置,UE可以根据配置信息获取后续SMTC/测量Gap的时间参数信息,例如偏移量/持续时间的值等,有效的降低SMTC/测量Gap的更新频次。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的透传载荷NTN的网络架构图;
图2是本公开一个示例性实施例提供的再生载荷NTN的网络架构图;
图3是本公开一个示例性实施例提供的卫星传输时延的示意图;
图4是本公开一个示例性实施例提供的小区测量方法的流程图;
图5是本公开一个示例性实施例提供的根据偏移量变化率确定测量窗的示意图;
图6是本公开一个示例性实施例提供的根据时间窗长度变化率确定测量窗的示意图;
图7是本公开一个示例性实施例提供的根据周期变化率确定测量窗的示意图;
图8是本公开另一个示例性实施例提供的小区测量方法的流程图;
图9是本公开另一个示例性实施例提供的小区测量方法的流程图;
图10是本公开一个示例性实施例提供的小区测量装置的框图;
图11是本公开另一个示例性实施例提供的小区测量装置的框图;
图12是本公开一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
目前第三代合作伙伴项目(Third Generation Partnership Project,3GPP)正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
存在至少两种NTN场景:透传载荷NTN和再生载荷NTN。图1示出了透传载荷NTN的场景;其中包括UE12、卫星14、网关设备16以及数据网络18。卫星14和网关设备16之间包括馈线链路。
图2示出了再生载荷NTN的场景;其中包括UE12、卫星14、网关设备16以及数据网络18。卫星14和网关设备16之间包括馈线链路,而卫星14余卫星14之间包括星间链路。
NTN网络由以下网元组成:
·1个或者多个网关:用于连接卫星和地面公共网络。
·馈线链路:用于网关和卫星之间通信的链路。
·服务链路:用于终端和卫星之间通信的链路。
·卫星:从其提供的功能上可以分为透传载荷和再生载荷这两种。
·透传载荷:只提供无线频率滤波,频率转换和放大的功能,只提供信号的透 明转发,不会改变其转发的波形信号。
·再生载荷:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
·星间链路(Inter-Satellite Links,ISL):存在于再生载荷场景下。
在TN系统中,小区半径小,UE与不同的小区之间的传输时延差距很小,远小于同步信号块测量定时配置(SSB-Measurement Timing Configuration,SMTC)/测量间隔(Measurement Gap)的长度。但是在NTN系统中,由于小区半径大,不同卫星覆盖区域的重叠范围也较大,当卫星1为UE提供服务时,UE也可能正处于卫星2/卫星3的覆盖范围内。考虑到UE的移动性,UE需要执行卫星2/卫星3的覆盖的邻区的测量,需要考虑传输时延差的影响。如图3所示:其中卫星(SA1)为服务小区卫星,卫星(SA2)为邻小区卫星。UE接收服务小区信号的传输时延可以表示为T1g(feeder link传输时延)+T1u(service link传输时延),UE接收邻区信号的传输时延为T2u+T2g。传输时延差为T1g+T1u-(T2g+T2u)。
考虑到不同的卫星与UE和地面站之间的距离不同,UE接收服务小区的信号与接收邻区信号之间的传输时延将会有很大的差距,即T1g+T1u-(T2g+T2u)将不会趋近于0,可能会大于SMTC/测量间隔的长度。
如果SMTC/测量间隙配置不考虑传输延迟差异,UE可能会错过SSB/CSI-RS测量窗口,因此将无法在配置的参考信号上执行测量。考虑到不同卫星的位置不同,传播时延的差距也较大,所以传统的SMTC/Gap配置方案无法适用于NTN网络的环境、所以网络在配置SMTC/测量GAP时需要考虑不同的UE与不同的卫星之间的传输时延的差异。在SMTC配置中,不同的频率配置不同的SMTC,测量相同的频率的小区使用相同的SMTC配置,这并不适用于存在巨大传输时延差的NTN网络。
图4示出了本公开一个示例性实施例提供的小区测量方法的流程图。本实施例以该方法由终端来执行来举例。该方法包括:
步骤401,接收配置信息,配置信息用于指示终端进行小区测量时,时间参数的动态调整规则。
该配置信息为网络设备根据UE的位置信息和卫星的星历信息向UE配置测量窗的信息,其中,配置信息中包含测量窗时间参数的动态配置规则。
卫星的类型包括如下类型中的至少一种:LEO卫星;MEO卫星;GEO卫星;无人机平台(UAS Platform)卫星;HEO卫星。
其中,测量窗包括SMTC和测量Gap中的至少一种。时间参数包括偏移量(SMTC-offset;测量Gap-gapoffset)、周期(SMTC-periodicity;测量Gap-mgrp)、持续时长(SMTC-duration;测量Gap-mgl)中的至少一种。可选地,当测量窗包括测量Gap时,时间参数还包括测量Gap定时提前量(measurement gap timing advance,mgta)。
在一些实施例中,动态调整规则包括:时间参数变化率和时间参数配置函数中的至少一种。
其中时间参数变化率用于表示时间参数的周期性变化规律;时间参数配置函数用于表示时间窗序号与时间参数之间的函数关系。
可选地,该配置信息可以通过无线资源控制(Radio Resource Control,RRC)信令发送至UE。其中,多组测量窗的配置信息可以包含于测量窗配置表中,每个测量窗配置表中可包括的最大的测量窗配置的数目可以由网络确定,也可以根据协议的规定确定。
在一个可选的实施例中,网络可以在测量配置中包含SMTC配置表,例如:在测量配置中包括SMTC配置表(smtc-ntn-list),其类型为SSB-MTC-ntn-List,定义如下:其中SSB-MTC-ntn是一组SMTC的配置,smtc-ntn-list中包含多组SMTC的配置,其中maxNrofSSBMTCntn为最大可配置的SMTC的组数。
在一个可选的实施例中,网络可以在测量配置中包含测量Gap配置表,例如,在测量配置中包括测量Gap配置表(meagap-ntn-list),其类型为MeasGap-ntn-List,定义如下:其中MeasGap-ntn是一组测量Gap的配置,meagap-ntn-list中包含多组测量Gap的配置,其中maxNrofMeasGapntn为最大可配置的测量Gap的组数。
步骤402,基于动态调整规则确定测量窗。
在一些实施例中,基于动态调整规则直接确定测量窗;或者,基于动态调整规则和初始时间参数,确定测量窗。
对基于动态调整规则确定测量窗的方式进行介绍:
第一,配置信息中包括时间参数变化率;基于初始时间参数和时间参数变化率,确定测量窗。
也即,若网络配置了测量窗时间参数的变化量,UE根据网络配置的变化率和初始时间参数计算获得当前测量窗的时间参数的值。
示意性的,以偏移量为例进行说明,初始偏移量为4ms,网络配置的变化率为1ms,则从UE接收到测量窗配置信息开始,第一个测量窗的偏移量为4ms;第二个测量窗的偏移量为5ms;第三个测量窗的偏移量为6ms。
值得注意的是,上述周期仅为示意性的举例,在一些实施例中,时间参数变化率中包括两个变化率数值,用于指示交替周期下的变化率。示意性的,以偏移量为例进行说明,初始偏移量为4ms,网络配置的变化率为1ms和2ms,则从UE接收到测量窗配置信息开始,第一个测量窗的偏移量为4ms;第二个测量窗的偏移量为5ms(4ms+1ms);第三个测量窗的偏移量为7ms(5ms+2ms);第四个测量窗的偏移量为8ms(7ms+1ms),以此类推。
值得注意的是,上述初始时间参数为配置信息中配置的;或者,初始时间参数为预定义的;或者,初始时间参数为预配置的。在一些实施例中,当配置信息中包括该初始时间参数则优先采用配置信息中配置的初始时间参数;若配置信息中为包括该初始时间参数,则采用默认的初始时间参数,该默认的初始时间参数即为上述预配置或者预定义的初始时间参数。
第二,配置信息中包括时间参数配置函数;基于时间参数配置函数确定测量 窗。
其中,时间参数配置函数包括但不限于如下函数中的任意一种:一阶函数;或者,二阶函数;或者,其他高阶函数;或者,其他任意形式的函数。
其中,时间参数配置函数为测量窗的时间参数与测量窗序号相关的函数。UE根据网络下发的时间参数配置函数计算得到当前测量窗的时间参数的值。
示意性的,以一阶函数对偏移量进行确定为例进行说明,偏移量变化函数为n+3,单位为ms,则UE接收到配置信息起第一个测量窗的偏移量为1+3=4ms,第二个测量窗的偏移量为2+3=5ms,第三个测量窗的偏移量为3+3=6ms。
示意性的,以二阶函数对偏移量进行确定为例进行说明,偏移量变化函数为n 2+3,单位为ms,则UE接收到配置信息起第一个测量窗的偏移量为1+3=4ms,第二个测量窗的偏移量为4+3=7ms,第三个测量窗的偏移量为9+3=12ms。
在一些实施例中,测量窗序号表示UE从接收到网络的配置信息起,UE可以用来执行测量的测量窗口的序号。
测量窗的位置通过如下方式进行确定:
首先,第一个测量窗的位置为从UE接收到网络的配置信息的时刻开始,最近一个满足网络配置的相应的时间参数的时间窗的位置;第n个测量窗的位置为从第n-1个测量窗结束的时刻开始,最近一个满足网络配置的相应的时间参数的时间窗的位置,其中,n≥2,且n为整数。
以初始时间参数和时间参数变化率确定测量窗为例。
示意性的,如图5所示,其示出了本公开一个示例性实施例提供的根据偏移量变化率确定测量窗的示意图,如图5所示,UE在t0时刻接收到网络的配置信息,配置信息指示初始偏移量offset=0,偏移量变化率为1,周期为4,时间窗长度为1,则以t0时刻为起始时刻的第一个时间窗501作为第一个满足时间参数的测量窗,在周期为4的第二个周期中,以偏移量为1的第二个时间窗502作为第二个满足时间参数的测量窗,并继续依次得到第三个周期中的第三个时间窗503作为满足时间参数的测量窗,依次类推。
示意性的,如图6所示,其示出了本公开一个示例性实施例提供的根据时间窗长度变化率确定测量窗的示意图,如图6所示,UE在t0时刻接收到网络的配置信息,配置信息指示偏移量offset=0,周期为4,初始时间窗长度为1,时间窗变化率为1,则以t0时刻为起始时刻,长度为1的第一个时间窗601作为第一个满足时间参数的测量窗,在周期为4的第二个周期中,以偏移量为0,长度为2的第二个时间窗602作为第二个满足时间参数的测量窗,并继续依次得到第三个周期中长度为3的第三个时间窗603作为满足时间参数的测量窗,依次类推。
示意性的,如图7所示,其示出了本公开一个示例性实施例提供的根据周期变化率确定测量窗的示意图,如图7所示,UE在t0时刻接收到网络的配置信息,配置信息指示偏移量offset=0,初始周期为3,周期变化率为1,时间窗长度为1,则以t0时刻为起始时刻,长度为1的第一个时间窗701作为第一个满足时间参数的测量窗,经过第一个周期(3个时间窗)后,将第四个时间窗702作为第二 个满足时间参数的测量窗,并继续依次得到经过第二个周期(4个时间窗)的时间窗703作为第三个满足时间参数的测量窗,依次类推。
在一些实施例中,上述配置信息中还包括小区列表和/或卫星列表。
其中,小区列表用于指示配置信息所配置的动态调整规则适用的小区,动态调整规则是用于调整小区列表中的小区的测量窗的时间参数。
卫星列表用于指示配置信息所配置的动态调整规则所适用的卫星,动态调整规则适用于调整卫星列表中的卫星的测量窗的时间参数,或者,动态调整规则适用于调整卫星列表中的卫星对应小区的测量窗的时间参数。
可选地,当至少两组配置信息计算得到的测量窗重叠时,网络可以通过共享模式指示信息指示UE测量窗的确定方式,或者UE也可以采用默认的测量窗确定方式在重叠的测量窗中确定测量窗进行测量。其中,默认的测量窗确定方式包括随机确定方式、优先级确定方式、扩展测量方式中的至少一种。
综上所述,本公开实施例提供的小区测量方法,通过配置信息对测量窗的时间参数的动态调整规则进行配置,UE可以根据配置信息获取后续SMTC/测量Gap的时间参数信息,例如偏移量/持续时间的值等,有效的降低SMTC/测量Gap的更新频次。
在一些实施例中,网络设备向终端设备发送的配置信息中包括共享模式指示信息。图8是本公开另一个示例性实施例提供的小区测量方法的流程图,以该方法应用于UE中为例进行说明,如图8所示,该方法包括:
步骤801,接收配置信息,配置信息中包括共享模式指示信息。
共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
也即,共享模式指示信息用于指示根据多组测量窗配置信息计算获得的测量窗发生重叠时UE的行为。
其中,共享模式指示信息所指示的测量窗确定方式包括随机确定方式、优先级确定方式、扩展测量方式中的至少一种。
步骤802,基于共享模式指示信息确定测量窗。
1、当共享模式指示信息指示随机确定方式时,从至少两组配置信息计算得到的测量窗中随机确定测量窗进行测量。
也即,当根据多组测量窗配置信息计算得到的测量窗发生重叠时,UE随机根据一个测量窗执行相应的测量。
2、当共享模式指示信息指示优先级确定方式时,从至少两组配置信息计算得到的测量窗中,采用优先级最高的测量窗进行测量,其中,优先级最高的测量窗包括根据优先级最高的配置信息计算得到的测量窗。
也即,当根据多组测量窗配置信息计算得到的测量窗发生重叠时,UE选择优先级最高的测量窗配置信息计算得到的测量窗执行相应的测量。
可选地,若存在多个优先级最高的测量窗配置信息,则从多个优先级最高的测量窗配置信息中随机选择一个测量窗执行相应的测量。
可选地,当测量窗的配置信息中不包含优先级指示信息时,则默认为最高或者最低优先级。
在一些实施例中,测量窗的配置信息的优先级可以根据如下方式中的至少一种确定:
2.1测量窗配置信息的优先级可以包含在测量窗配置信息中,也可以单独配置。
也即,配置信息中包括优先级指示资源,用于指示当前配置信息所配置的测量窗对应的优先级。可选地,当配置信息中不包含该优先级指示信息时,默认该配置信息配置的测量窗为最高优先级或者最低优先级。
2.2通过RRC信令、MACCE信令或者系统消息广播等方式向UE指示待测小区的优先级。
其中,选择测量窗配置信息对应适用的小区列表中的最高优先级,作为当前测量窗配置信息所配置的测量窗的优先级;
或者,选择测量窗配置信息对应适用的小区列表中的最低优先级,作为当前测量窗配置信息所配置的测量窗的优先级;
或者,选择测量窗配置信息对应适用的小区列表中的平均优先级,作为当前测量窗配置信息所配置的测量窗的优先级。
2.3通过RRC信令、MACCE信令或者系统消息广播等方式向UE指示待测卫星的优先级。
其中,选择测量窗配置信息对应适用的卫星列表中的最高优先级,作为当前测量窗配置信息所配置的测量窗的优先级;
或者,选择测量窗配置信息对应适用的卫星列表中的最低优先级,作为当前测量窗配置信息所配置的测量窗的优先级;
或者,选择测量窗配置信息对应适用的卫星列表中的平均优先级,作为当前测量窗配置信息所配置的测量窗的优先级。
3、当共享模式指示信息指示扩展测量方式时,基于至少两组配置信息计算得到的测量窗,采用扩展测量窗进行测量,扩展测量窗包含至少两组配置信息计算得到的测量窗的范围。
也即,当根据多组测量窗的配置信息计算获得的测量窗发生重叠时,将测量窗扩展到能够包含两个重叠的测量窗的范围,然后同时执行相应的测量。
在一些实施例中,至少两组配置信息计算得到的测量窗测量的参考信号的频点和/或子载波间隔相同。
即,若重叠的测量窗需要测量的参考信号的频点和/或子载波间隔相同,则可以将测量窗扩展到能够包含两个重叠的测量窗的范围,然后同时执行相应的测量。
在一个实施例中,当根据多组测量窗配置信息计算获得的测量窗发生重叠时,若重叠的测量窗需要测量的参考信号的频点或子载波间隔不相同,则选择共享模式配置中的其他方式。
值得注意的是,如图8所示出的实施例可以与图4示出的实施例结合实现为 一个整体实施例,也即,图4提供的配置信息与图8提供的配置信息为同一条配置信息,也可以各自实现为独立的实施例,也即,图4提供的配置信息与图8提供的配置信息为不同的配置信息,本公开对此不加以限定。
综上所述,本公开实施例提供的方法,规定了在SMTC/测量Gap发送重叠的测量窗的情况下的处理方案,根据所选方案UE能够高效确定需要测量的小区;或者优先测量更需要测量的小区。
在一些实施例中,结合上述网络设备和终端设备的实施环境,对本公开实施例提供的小区测量方法进行说明,图9是本公开另一个示例性实施例提供的小区测量方法的流程图,以该方法应用于通信系统中为例,如图9所示,该方法包括:
步骤901,网络设备根据终端的位置信息和卫星的星历信息向终端发送配置信息。
其中,终端的位置信息包括终端的精确位置信息或者终端的粗略位置信息;卫星的星历信息包括服务卫星的星历信息和待测邻区卫星的星历信息。其中,精确位置信息是指终端上报的较为精细的定位信息,如:与网络设备之间的距离信息、方向信息;粗略位置信息是指终端上报的较为粗略的定位信息,如:终端所处的小区。
在一种实施例中,当UE上报了较为粗略的位置信息,网络需要配置能够适用于此粗略位置信息范围内的UE的测量窗口。
在一种实施例中,考虑UE位置信息不准确性,以及UE的移动,网络在配置测量窗的持续时长时可以适当的扩展。
在一种实施例中,当网络检测到UE的位置发生变化,原有的测量窗配置不适用于现在UE的位置,网络可以更新此UE的测量窗的配置信息;或者,网络可以周期性的更新测量窗的配置信息;或者,网络可以规定测量窗配置信息的有效时间,当检测到测量窗配置失效时,更新测量窗的配置信息。
可选地,配置信息中包括用于指示时间参数的动态调整规则;和/或,配置信息中包括共享模式指示信息。
在一些实施例中,配置信息用于指示终端进行小区测量时,时间参数的动态调整规则。
其中,配置信息中包括时间参数变化率和时间参数配置函数中的至少一种作为动态调整规则。
时间参数变化率用于搭配初始时间参数进行测量窗的确定;时间参数配置函数用于根据测量窗序号以及函数关系确定测量窗的时间参数。
时间参数配置函数包括但不限于一阶函数和二阶函数中的至少一种。
其中,初始时间参数为配置信息中配置的;或者,初始时间参数为预定义的;或者,初始时间参数为预配置的。
测量窗包括同步信号块测量定时配置SSB-MTC和测量间隔Gap中的至少一种。
时间参数包括偏移量、周期、持续时长中的至少一种。可选地,当测量窗包括测量Gap时,时间参数还包括测量Gap定时提前量。
在一些实施例中,上述配置信息中还包括小区列表和/或卫星列表。
其中,小区列表用于指示配置信息所配置的动态调整规则适用的小区,动态调整规则是用于调整小区列表中的小区的测量窗的时间参数。
卫星列表用于指示配置信息所配置的动态调整规则所适用的卫星,动态调整规则适用于调整卫星列表中的卫星的测量窗的时间参数,或者,动态调整规则适用于调整卫星列表中的卫星对应小区的测量窗的时间参数。
可选地,配置信息中还包括共享模式指示信息,该共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。也即,当至少两组配置信息计算得到的测量窗重叠时,网络可以通过共享模式指示信息指示UE测量窗的确定方式。
或者UE也可以采用默认的测量窗确定方式在重叠的测量窗中确定测量窗进行测量。其中,默认的测量窗确定方式包括随机确定方式、优先级确定方式、扩展测量方式中的至少一种。
如:当配置信息中不包括共享模式指示信息时,UE采用默认的测量窗确定方式在重叠的测量窗中确定测量窗进行测量。
在一些实施例中,基于窗口确定方式,在至少两组配置信息计算得到的测量窗中未被选择的测量窗上进行与终端的数据传输。
可选地,UE向网络设备上报在重叠情况下UE所选择的测量窗,从而网络设备在至少两组配置信息计算得到的测量窗中未被选择的测量窗上进行与终端的数据传输。或者,UE按照配置可选择的测量窗是唯一的,则网络设备按照下发的配置信息也可以确定UE所选择的测量窗,并在至少两组配置信息计算得到的测量窗中未被选择的测量窗上进行与终端的数据传输。
步骤902,终端接收配置信息。
该配置信息为网络设备根据UE的位置信息和卫星的星历信息向UE配置测量窗的信息,其中,配置信息中包含测量窗时间参数的动态配置规则。
卫星的类型包括如下类型中的至少一种:LEO卫星;MEO卫星;GEO卫星;无人机平台(UAS Platform)卫星;HEO卫星。
其中,测量窗包括SMTC和测量Gap中的至少一种。
在一些实施例中,动态调整规则包括:时间参数变化率和时间参数配置函数中的至少一种。
其中时间参数变化率用于表示时间参数的周期性变化规律;时间参数配置函数用于表示时间窗序号与时间参数之间的函数关系。
可选地,该配置信息可以通过无线资源控制(Radio Resource Control,RRC)信令发送至UE。
可选地,配置信息中包括共享模式指示信息。
共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
也即,共享模式指示信息用于指示根据多组测量窗配置信息计算获得的测量窗发生重叠时UE的行为。
其中,共享模式指示信息所指示的测量窗确定方式包括随机确定方式、优先级确定方式、扩展测量方式中的至少一种。
步骤903,终端根据配置信息动态确定测量窗。
在一些实施例中,基于动态调整规则直接确定测量窗;或者,基于动态调整规则和初始时间参数,确定测量窗。
当配置信息中包括共享模式指示信息,且至少两组配置信息计算得到的测量窗重叠时,根据共享模式指示信息确定测量窗进行测量。
综上所述,本公开实施例提供的方法,通过配置信息对测量窗的时间参数的动态调整规则进行配置,UE可以根据配置信息获取后续SMTC/测量Gap的时间参数信息,例如偏移量/持续时间的值等,有效的降低SMTC/测量Gap的更新频次。规定了在SMTC/测量Gap发送重叠的测量窗的情况下的处理方案,根据所选方案UE能够高效确定需要测量的小区;或者优先测量更需要测量的小区。
图10是本公开一个示例性实施例提供的小区测量装置的结构框图,如图10所示,该装置包括:
接收模块1010,用于接收配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则;
处理模块1020,用于基于所述动态调整规则确定测量窗。
在一个可选的实施例中,所述处理模块1020,用于基于所述动态调整规则和初始时间参数,确定所述测量窗。
在一个可选的实施例中,所述配置信息中包括时间参数变化率;
所述处理模块1020,用于基于初始时间参数和所述时间参数变化率,确定所述测量窗。
在一个可选的实施例中,所述配置信息中包括时间参数配置函数;
所述处理模块1020,用于基于所述时间参数配置函数,确定所述测量窗。
在一个可选的实施例中,所述时间参数配置函数包括但不限于一阶函数和二阶函数中的至少一种。
在一个可选的实施例中,所述初始时间参数为所述配置信息中配置的;或者,所述初始时间参数为预定义的;或者,
所述初始时间参数为预配置的。
在一个可选的实施例中,所述测量窗包括同步信号块测量定时配置SSB-MTC和测量间隔Gap中的至少一种。
在一个可选的实施例中,所述时间参数包括偏移量、周期、持续时长中的至少一种。
在一个可选的实施例中,当所述测量窗包括所述测量Gap时,所述时间参数还包括定时提前量。
在一个可选的实施例中,所述配置信息中还包括小区列表和/或卫星列表;
所述小区列表用于指示所述配置信息所配置的动态调整规则适用的小区,所述动态调整规则适用于调整所述小区列表中的小区的测量窗的时间参数;所述卫星列表用于指示所述配置信息所配置的动态调整规则适用的卫星,所述动态调整规则适用于调整所述卫星列表中的卫星的测量窗的时间参数,或者所述动态调整规则适用于调整所述卫星列表中的卫星对应小区的测量窗的时间参数。
在一个可选的实施例中,所述配置信息中还包括共享模式指示信息;
所述共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
在一个可选的实施例中,处理模块1020,还用于当所述共享模式指示信息指示随机确定方式时,从至少两组配置信息计算得到的测量窗中随机确定测量窗进行测量。
在一个可选的实施例中,处理模块1020,还用于当所述共享模式指示信息指示优先级确定方式时,从至少两组配置信息计算得到的测量窗中,采用优先级最高的测量窗进行测量,其中,优先级最高的测量窗包括根据优先级最高的配置信息计算得到的测量窗。
在一个可选的实施例中,处理模块1020,还用于当所述共享模式指示信息指示扩展测量方式时,基于至少两组配置信息计算得到的测量窗,采用扩展测量窗进行测量,所述扩展测量窗包含至少两组配置信息计算得到的测量窗的范围。
在一个可选的实施例中,至少两组配置信息计算得到的测量窗测量的参考信号的频点和/或子载波间隔相同。
图11是本公开另一个示例性实施例提供的小区测量装置的结构框图,如图11所示,该装置包括:
发送模块1110,用于根据终端的位置信息和卫星的星历信息向终端发送配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则。
在一个可选的实施例中,所述配置信息中包括时间参数变化率和时间参数配置函数中的至少一种。
在一个可选的实施例中,所述时间参数配置函数包括但不限于一阶函数和二阶函数中的至少一种。
在一个可选的实施例中,所述配置信息中还包括初始时间参数。
在一个可选的实施例中,所述测量窗包括同步信号块测量定时配置SSB-MTC和测量间隔Gap中的至少一种。
在一个可选的实施例中,所述时间参数包括偏移量、周期、持续时长中的至少一种。
在一个可选的实施例中,当所述测量窗包括所述测量Gap时,所述时间参数还包括定时提前量。
在一个可选的实施例中,所述配置信息中还包括小区列表和/或卫星列表;
所述小区列表用于指示所述配置信息所配置的动态调整规则适用的小区,所 述动态调整规则适用于调整所述小区列表中的小区的测量窗的时间参数;所述卫星列表用于指示所述配置信息所配置的动态调整规则适用的卫星,所述动态调整规则适用于调整所述卫星列表中的卫星的测量窗的时间参数,或者所述动态调整规则适用于调整所述卫星列表中的卫星对应小区的测量窗的时间参数。
在一个可选的实施例中,所述配置信息中还包括共享模式指示信息;
所述共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
在一个可选的实施例中,发送模块1110/接收模块1120,用于基于所述窗口确定方式,在所述至少两组配置信息计算得到的测量窗中未被选择的测量窗上进行与所述终端的数据传输。
在一个可选的实施例中,所述终端的位置信息包括终端的精确位置信息或者终端的粗略位置信息。
在一个可选的实施例中,所述卫星的星历信息包括服务卫星的星历信息和待测邻区卫星的星历信息。
综上所述,本公开实施例提供的装置,通过配置信息对测量窗的时间参数的动态调整规则进行配置,UE可以根据配置信息获取后续SMTC/测量Gap的时间参数信息,例如偏移量/持续时间的值等,有效的降低SMTC/测量Gap的更新频次。规定了在SMTC/测量Gap发送重叠的测量窗的情况下的处理方案,根据所选方案UE能够高效确定需要测量的小区;或者优先测量更需要测量的小区。
图12示出了本公开一个示例性实施例提供的通信设备(网络设备或终端)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一 条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端设备或网络设备执行的小区测量方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (32)

  1. 一种小区测量方法,其特征在于,由终端执行,所述方法包括:
    接收配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则;
    基于所述动态调整规则确定测量窗。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述动态调整规则确定测量窗,包括:
    基于所述动态调整规则和初始时间参数,确定所述测量窗。
  3. 根据权利要求2所述的方法,其特征在于,所述配置信息中包括时间参数变化率;
    所述基于所述动态调整规则和初始时间参数,确定所述测量窗,包括:
    基于初始时间参数和所述时间参数变化率,确定所述测量窗。
  4. 根据权利要求1所述的方法,其特征在于,所述配置信息中包括时间参数配置函数;
    所述基于所述动态调整规则确定所述测量窗,包括:
    基于所述时间参数配置函数,确定所述测量窗。
  5. 根据权利要求4所述的方法,其特征在于,所述时间参数配置函数包括一阶函数和二阶函数中的至少一种。
  6. 根据权利要求2所述的方法,其特征在于,
    所述初始时间参数为所述配置信息中配置的;或者,
    所述初始时间参数为预定义的;或者,
    所述初始时间参数为预配置的。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述测量窗包括同步信号块测量定时配置SSB-MTC和测量间隔中的至少一种。
  8. 根据权利要求1至6任一所述的方法,其特征在于,所述时间参数包括偏移量、周期、持续时长中的至少一种。
  9. 根据权利要求8所述的方法,其特征在于,当所述测量窗包括所述测量间隔时,所述时间参数还包括定时提前量。
  10. 根据权利要求1至6任一所述的方法,其特征在于,
    所述配置信息中还包括小区列表和/或卫星列表;
    所述小区列表用于指示所述配置信息所配置的动态调整规则适用的小区,所述动态调整规则适用于调整所述小区列表中的小区的测量窗的时间参数;所述卫星列表用于指示所述配置信息所配置的动态调整规则适用的卫星,所述动态调整规则适用于调整所述卫星列表中的卫星的测量窗的时间参数,或者所述动态调整规则适用于调整所述卫星列表中的卫星对应小区的测量窗的时间参数。
  11. 根据权利要求1至6任一所述的方法,其特征在于,
    所述配置信息中还包括共享模式指示信息;
    所述共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述共享模式指示信息指示随机确定方式时,从至少两组配置信息计算得到的测量窗中随机确定测量窗进行测量。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述共享模式指示信息指示优先级确定方式时,从至少两组配置信息计算得到的测量窗中,采用优先级最高的测量窗进行测量,其中,优先级最高的测量窗包括根据优先级最高的配置信息计算得到的测量窗。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    当所述共享模式指示信息指示扩展测量方式时,基于至少两组配置信息计算得到的测量窗,采用扩展测量窗进行测量,所述扩展测量窗包含至少两组配置信息计算得到的测量窗的范围。
  15. 根据权利要求14所述的方法,其特征在于,
    至少两组配置信息计算得到的测量窗测量的参考信号的频点和/或子载波间隔相同。
  16. 一种小区测量方法,其特征在于,由网络设备执行,所述方法包括:
    根据终端的位置信息和卫星的星历信息向终端发送配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则。
  17. 根据权利要求16所述的方法,其特征在于,所述配置信息中包括时间参数变化率和时间参数配置函数中的至少一种。
  18. 根据权利要求17所述的方法,其特征在于,所述时间参数配置函数包括一阶函数和二阶函数中的至少一种。
  19. 根据权利要求16所述的方法,其特征在于,所述配置信息中还包括初始时间参数。
  20. 根据权利要求16至19任一所述的方法,其特征在于,所述测量窗包括同步信号块测量定时配置SSB-MTC和测量间隔中的至少一种。
  21. 根据权利要求16至19任一所述的方法,其特征在于,所述时间参数包括偏移量、周期、持续时长中的至少一种。
  22. 根据权利要求21所述的方法,其特征在于,当所述测量窗包括所述测量间隔时,所述时间参数还包括定时提前量。
  23. 根据权利要求16至19任一所述的方法,其特征在于,
    所述配置信息中还包括小区列表和/或卫星列表;
    所述小区列表用于指示所述配置信息所配置的动态调整规则适用的小区,所述动态调整规则适用于调整所述小区列表中的小区的测量窗的时间参数;所述卫星列表用于指示所述配置信息所配置的动态调整规则适用的卫星,所述动态调整规则适用于调整所述卫星列表中的卫星的测量窗的时间参数,或者所述动态调整规则适用于调整所述卫星列表中的卫星对应小区的测量窗的时间参数。
  24. 根据权利要求16至19任一所述的方法,其特征在于,
    所述配置信息中还包括共享模式指示信息;
    所述共享模式指示信息用于指示当至少两组配置信息计算得到的测量窗重叠时的窗口确定方式。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    基于所述窗口确定方式,在所述至少两组配置信息计算得到的测量窗中未被选择的测量窗上进行与所述终端的数据传输。
  26. 根据权利要求16至19任一所述的方法,其特征在于,所述终端的位置信息包括终端的精确位置信息或者终端的粗略位置信息。
  27. 根据权利要求16至19任一所述的方法,其特征在于,所述卫星的星历信息包括服务卫星的星历信息和待测邻区卫星的星历信息。
  28. 一种小区测量装置,其特征在于,所述装置包括:
    接收模块,用于接收配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则;
    处理模块,用于基于所述动态调整规则确定测量窗。
  29. 一种小区测量装置,其特征在于,所述装置包括:
    发送模块,用于根据终端的位置信息和卫星的星历信息向终端发送配置信息,所述配置信息用于指示所述终端进行小区测量时,时间参数的动态调整规则。
  30. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至15中任一所述的小区测量方法。
  31. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求16至27中任一所述的小区测量方法。
  32. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至27中任一所述的小区测量方法。
PCT/CN2021/110061 2021-08-02 2021-08-02 小区测量方法、装置、设备及介质 WO2023010243A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112024002138A BR112024002138A2 (pt) 2021-08-02 2021-08-02 Método e aparelho de medição de células, terminal, dispositivo de rede, e, meio de armazenamento legível por computador
KR1020247006184A KR20240036087A (ko) 2021-08-02 2021-08-02 셀 측정 방법, 장치, 기기 및 매체
PCT/CN2021/110061 WO2023010243A1 (zh) 2021-08-02 2021-08-02 小区测量方法、装置、设备及介质
CN202180002403.8A CN115943694A (zh) 2021-08-02 2021-08-02 小区测量方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110061 WO2023010243A1 (zh) 2021-08-02 2021-08-02 小区测量方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023010243A1 true WO2023010243A1 (zh) 2023-02-09

Family

ID=85154908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110061 WO2023010243A1 (zh) 2021-08-02 2021-08-02 小区测量方法、装置、设备及介质

Country Status (4)

Country Link
KR (1) KR20240036087A (zh)
CN (1) CN115943694A (zh)
BR (1) BR112024002138A2 (zh)
WO (1) WO2023010243A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043713A (zh) * 2006-03-22 2007-09-26 华为技术有限公司 基于用户终端测量的调度方法及其系统
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
EP3226032A1 (en) * 2016-03-31 2017-10-04 Sequans Communications S.A. New messaging scheme for positioning
CN109391960A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 测量配置方法、基站及计算机可读存储介质
CN109788497A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 测量间隔的指示方法、接收方法、终端及网络设备
CN110475309A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种信号传输方法和装置
CN110831042A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 测量配置方法与装置
CN110859000A (zh) * 2018-08-24 2020-03-03 中国移动通信有限公司研究院 一种测量配置方法及装置、设备、存储介质
CN111371486A (zh) * 2020-03-02 2020-07-03 北京紫光展锐通信技术有限公司 基于低轨卫星的波束切换的方法、系统、设备及存储介质
CN111836313A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 一种小区切换测量的指示方法、网络设备及终端
CN112243198A (zh) * 2019-07-16 2021-01-19 大唐移动通信设备有限公司 一种终端位置信息上报方法、装置、终端及网络侧设备
CN112312451A (zh) * 2019-07-29 2021-02-02 大唐移动通信设备有限公司 一种测量同步的方法、网络设备及终端设备
WO2021022430A1 (zh) * 2019-08-02 2021-02-11 Oppo广东移动通信有限公司 随机接入的方法和通信设备
CN112399496A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种卫星小区切换方法及其装置
CN112771908A (zh) * 2018-09-30 2021-05-07 Oppo广东移动通信有限公司 一种配置方法、通信设备及计算机可读存储介质
CN113115431A (zh) * 2021-04-01 2021-07-13 之江实验室 一种非陆地网络时间参数配置方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043713A (zh) * 2006-03-22 2007-09-26 华为技术有限公司 基于用户终端测量的调度方法及其系统
CN101969694A (zh) * 2009-07-27 2011-02-09 华为技术有限公司 测量参考信号时间频率资源配置的方法和装置
EP3226032A1 (en) * 2016-03-31 2017-10-04 Sequans Communications S.A. New messaging scheme for positioning
CN109391960A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 测量配置方法、基站及计算机可读存储介质
CN109788497A (zh) * 2017-11-10 2019-05-21 维沃移动通信有限公司 测量间隔的指示方法、接收方法、终端及网络设备
CN110475309A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种信号传输方法和装置
CN110831042A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 测量配置方法与装置
CN110859000A (zh) * 2018-08-24 2020-03-03 中国移动通信有限公司研究院 一种测量配置方法及装置、设备、存储介质
CN112771908A (zh) * 2018-09-30 2021-05-07 Oppo广东移动通信有限公司 一种配置方法、通信设备及计算机可读存储介质
CN111836313A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 一种小区切换测量的指示方法、网络设备及终端
CN112243198A (zh) * 2019-07-16 2021-01-19 大唐移动通信设备有限公司 一种终端位置信息上报方法、装置、终端及网络侧设备
CN112312451A (zh) * 2019-07-29 2021-02-02 大唐移动通信设备有限公司 一种测量同步的方法、网络设备及终端设备
WO2021022430A1 (zh) * 2019-08-02 2021-02-11 Oppo广东移动通信有限公司 随机接入的方法和通信设备
CN112399496A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种卫星小区切换方法及其装置
CN111371486A (zh) * 2020-03-02 2020-07-03 北京紫光展锐通信技术有限公司 基于低轨卫星的波束切换的方法、系统、设备及存储介质
CN113115431A (zh) * 2021-04-01 2021-07-13 之江实验室 一种非陆地网络时间参数配置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on RACH procedure for NTN", 3GPP DRAFT; R2-1905581 - DISCUSSION ON RACH PROCEDURE FOR NTN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, US; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051709940 *

Also Published As

Publication number Publication date
BR112024002138A2 (pt) 2024-04-30
KR20240036087A (ko) 2024-03-19
CN115943694A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
US20240031886A1 (en) Information reporting method and apparatus, equipment and storage medium
US20230189136A1 (en) Cell selection method and apparatus, device and medium
CN115802476A (zh) 一种ta确定方法及装置、终端设备
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
US20230224749A1 (en) Measurement reporting method and apparatus in ntn, receiving method and apparatus, and device and medium
WO2023010243A1 (zh) 小区测量方法、装置、设备及介质
WO2022077141A1 (zh) 随机接入响应接收窗的确定方法、装置、设备及介质
WO2021163913A9 (zh) 一种数据传输方法、终端设备、网络设备
WO2023035276A1 (zh) 上行传输方法、装置、设备及存储介质
US20230269686A1 (en) Method and apparatus for reporting timing advance in ntn, method and apparatus for receiving timing advance in ntn, and device
WO2023221099A1 (zh) 请求终端定位的方法、装置、设备及存储介质
WO2023230844A1 (zh) 小区参数的配置方法、装置、设备及存储介质
WO2023077531A1 (zh) 无线通信方法、终端设备和网络设备
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2024065748A1 (zh) 能力信息的上报方法、装置、设备及存储介质
US11894930B1 (en) Wireless communication method and terminal device
WO2023010586A1 (zh) 无线通信方法、终端设备和网络设备
WO2022266882A1 (zh) 有效期确定方法、装置、设备及存储介质
WO2021077422A1 (zh) 信息传输方法、装置、设备及存储介质
CN116132907A (zh) 一种信息上报方法及装置、终端、网络设备
CN115250532A (zh) 一种系统消息接收及发送方法、终端设备、网络设备
CN116326132A (zh) 无线通信的方法及装置
CN117751637A (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18293210

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002138

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247006184

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006184

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2024104748

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952153

Country of ref document: EP

Effective date: 20240304

ENP Entry into the national phase

Ref document number: 112024002138

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240201