WO2022011710A1 - 上行定时提前的更新方法、装置、设备及介质 - Google Patents

上行定时提前的更新方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022011710A1
WO2022011710A1 PCT/CN2020/102804 CN2020102804W WO2022011710A1 WO 2022011710 A1 WO2022011710 A1 WO 2022011710A1 CN 2020102804 W CN2020102804 W CN 2020102804W WO 2022011710 A1 WO2022011710 A1 WO 2022011710A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
terminal
indication
uplink
updating
Prior art date
Application number
PCT/CN2020/102804
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
卢前溪
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102725.5A priority Critical patent/CN115804165A/zh
Priority to PCT/CN2020/102804 priority patent/WO2022011710A1/zh
Publication of WO2022011710A1 publication Critical patent/WO2022011710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a method, apparatus, device, and medium for updating uplink timing advance (TA).
  • TA uplink timing advance
  • An important feature of uplink transmission is the orthogonal multiple access of different user equipments (Use Equipment, UE) on time-frequency resources, that is, the uplink transmissions of different UEs from the same cell do not interfere with each other.
  • UE User Equipment
  • the base station requires that the arrival times of signals from different UEs with different frequency domain resources at the same moment to the base station are basically aligned.
  • the New Radio system (New Radio, NR) supports the mechanism of uplink timing advance.
  • Non-terrestrial communication network Non Terrestrial Network, NTN
  • NTN Non Terrestrial Network
  • Embodiments of the present application provide a method, apparatus, device, and storage medium for updating an uplink TA.
  • the technical solution is as follows.
  • a method for updating uplink timing advance TA is provided, which is applied to network equipment in a transparent transmission NTN scenario, and the method includes:
  • TA adjustment information is sent to the terminal, where the TA adjustment information is used to instruct the terminal to update the uplink TA.
  • a method for updating an uplink TA is provided, which is applied to a terminal in a transparent transmission NTN scenario, and the method includes:
  • Receive TA adjustment information where the TA adjustment information is sent by the network device when the feeder link switch occurs and the serving base station is not changed;
  • a device for updating an uplink TA comprising:
  • the sending module is configured to send TA adjustment information to the terminal when the feeder link switch occurs and the serving base station is not changed, where the TA adjustment information is used to instruct the terminal to update the uplink TA.
  • a device for updating an uplink TA comprising:
  • a receiving module configured to receive TA adjustment information, where the TA adjustment information is sent by the network device when the feeder link switching occurs and the serving base station is not changed;
  • An update module configured to update the uplink TA according to the TA adjustment information.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The processor is configured to load and execute the executable instructions to implement the method for updating the uplink TA as described in the above aspects.
  • a network device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the The processor is configured to load and execute the executable instructions to implement the method for updating the uplink TA as described in the above aspects.
  • a computer-readable storage medium is provided, and executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned aspects.
  • the update method of the upstream TA is provided, and executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned aspects.
  • a computer program product wherein executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the uplink according to the above aspect TA update method.
  • a chip is provided, and the chip is configured to implement the method for updating an uplink TA as described in the above aspect.
  • the network device sends TA adjustment information to the terminal using system information or dedicated signaling, and the terminal updates the uplink TA according to the TA adjustment information, thereby avoiding the terminal's uplink out-of-synchronization
  • the network device sends TA adjustment information to the terminal using system information or dedicated signaling, and the terminal updates the uplink TA according to the TA adjustment information, thereby avoiding the terminal's uplink out-of-synchronization
  • FIG. 1 is a network architecture diagram of a transparent transmission payload NTN provided by an exemplary embodiment of the present application
  • FIG. 2 is a network architecture diagram of a regeneration load NTN provided by an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of the configuration of a public TA provided by an exemplary embodiment of the present application.
  • FIG. 4 is a schematic diagram of switching of a feeder link provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application
  • FIG. 7 is a time-frequency schematic diagram of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 9 is a time-frequency schematic diagram of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application
  • FIG. 11 is a flowchart of a method for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of an apparatus for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 13 is a block diagram of an apparatus for updating uplink timing advance TA provided by an exemplary embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Satellite communication is not limited by the user's geographical area. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 shows a scenario of transparently transmitting the payload NTN
  • FIG. 2 shows a scenario of regenerating the payload NTN.
  • An NTN network consists of the following network elements:
  • Feeder link the link used for communication between the gateway and the satellite
  • Service Link The link used for communication between the terminal and the satellite
  • ⁇ Satellite From the functions it provides, it can be divided into two types: transparent transmission load and regenerative load.
  • ⁇ Transparent load It only provides the functions of radio frequency filtering, frequency conversion and amplification. It only provides transparent forwarding of the signal, and will not change the waveform signal it forwards.
  • ⁇ Regeneration load In addition to providing the functions of radio frequency filtering, frequency conversion and amplification, it can also provide functions of demodulation/decoding, routing/conversion, encoding/modulation. It has part or all of the functions of a base station.
  • Inter-satellite links exist in the regenerative load scenario.
  • An important feature of uplink transmission is that different UEs have orthogonal multiple access in time-frequency, that is, uplink transmissions of different UEs from the same cell do not interfere with each other.
  • the base station In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the base station (gNB) requires that signals from different UEs with different frequency domain resources at the same time arrive at the gNB basically at the same time. In order to ensure the time synchronization on the gNB side, NR supports the mechanism of uplink timing advance.
  • the uplink clock and downlink clock on the gNB side are the same, but there is an offset between the uplink clock and the downlink clock on the UE side, and different UEs have their own different uplink timing advance.
  • the gNB can control the time when the uplink signals from different UEs arrive at the gNB. For UEs farther from the gNB, due to larger transmission delay, it is necessary to send uplink data earlier than UEs closer to the gNB.
  • the gNB determines the TA value for each UE based on measuring the UE's uplink transmission.
  • the gNB sends the TA command to the UE in two ways.
  • Initial TA acquisition In the random access process, the gNB determines the TA value by measuring the received preamble, and sends it to the UE through the Timing Advance Command (Timing Advance Command) field of the Random Access Response (RAR). .
  • Timing Advance Command Timing Advance Command
  • RAR Random Access Response
  • Radio Resource Control RRC connected state
  • the timing of the uplink signal arriving at the gNB may change with time. Therefore, The UE needs to continuously update its uplink timing advance to maintain uplink synchronization. If the TA of a certain UE needs to be corrected, the gNB will send a timing advance command to the UE, asking it to adjust the uplink timing.
  • the timing advance command is sent to the UE through a timing advance command medium access control control element (Medium Access Control Control Element, MAC CE).
  • Medium Access Control Control Element Medium Access Control Element
  • the network will broadcast a common TA based on the signal transmission delay between the perigee and the base station, as shown in Figure 3 below.
  • common TA 2*D0/c
  • the cumulative result of the two TA is the broadcast public TA and the UE-specific indicated in the random access response.
  • Feeder link switching will affect the UE.
  • the satellite can provide the base station function, it can be considered that the handover of the feeder link is transparent to the UE.
  • the UE needs to perform the handover; if the serving base station does not change before and after the feeder link switch, and during the feeder link switch, the satellite is allowed to communicate with two If the connections FL1 and FL2 of the gateway device exist at the same time, it is considered that the feeder link switching is transparent to the UE.
  • the feeder The switching of the link will cause all UEs in the cell to need to update the uplink TA, so as to avoid the UE's uplink desynchronization.
  • the UE sends a timing advance command MAC CE to all UEs to instruct each UE to update the uplink TA; another idea is that the network instructs all UEs to initiate random access to obtain uplink synchronization.
  • the disadvantage of these two ideas is that, on the one hand, it brings a lot of resource overhead.
  • some UEs may have to interrupt communication with the network due to uplink desynchronization.
  • FIG. 5 shows a flowchart of a method for updating an uplink TA provided by an exemplary embodiment of the present application.
  • the method is performed by the network device and the terminal in the transparent transmission NTN scenario.
  • the method includes:
  • Step 202 the network device sends TA adjustment information to the terminal when the feeder link switch occurs and the serving base station is not changed, and the TA adjustment information is used to instruct the terminal to update the uplink TA;
  • the TA adjustment information includes at least one of the following information:
  • the identity of the terrestrial gateway is changed (or the identity of the terrestrial gateway is updated).
  • Step 204 the terminal receives the TA adjustment information, and the TA adjustment information is sent by the network equipment when the feeder link switching occurs and the serving base station is not changed;
  • Step 206 The terminal updates the uplink TA according to the TA adjustment information.
  • the network device uses system information or dedicated signaling to send TA adjustment information to the terminal, and the terminal adjusts the information according to the TA. Updating the upstream TA, thereby avoiding the problem that the terminal has to interrupt the communication with the network device due to the uplink desynchronization.
  • FIG. 6 shows a flowchart of a method for updating an uplink TA provided by another exemplary embodiment of the present application.
  • the method is performed by the network device and the terminal in the transparent transmission NTN scenario.
  • the method includes:
  • Step 302 when a feeder link switch occurs and the serving base station is not changed, the network device sends a first TA adjustment instruction to the terminal in a broadcast form, and the first TA adjustment instruction carries a TA adjustment amount;
  • the feeder link is switched from FL1 to FL2 due to the movement of the satellite, and the feeder link corresponds to the same ground service base station before and after the switch. It is assumed that the network equipment completes the handover of the feeder link at time t1.
  • the transmission system update prompt message 7 in the network device system message update period T n before the time t1 the system messages and update period T n + 1 TA adjustment instruction transmitted in a first broadcast mode (including TA adjustment amount delta_TA).
  • the TA adjustment amount is determined according to the difference between the second RTT and the first RTT, the second RTT is the signal transmission RTT between the second ground gateway corresponding to the switched feeder link FL2 and the satellite, the first The RTT is the signal transmission RTT between the first terrestrial gateway corresponding to the feeder link FL1 before the handover and the satellite.
  • Step 304 the terminal receives the first TA adjustment instruction sent in the form of broadcast;
  • the terminal receives the first TA adjustment instruction sent in the form of broadcast within the system message update period T n+1.
  • Step 306 The terminal updates the uplink TA based on the received first TA adjustment instruction within the system information update period.
  • the terminal updates the uplink TA based on the received first TA adjustment instruction within T n+1 in the system information update period. Since the first TA adjustment instruction carries the TA adjustment amount, the terminal updates the uplink TA according to the TA adjustment amount.
  • the network device sends the first TA adjustment instruction to one or more terminals in the form of system information, and the terminal updates the uplink TA according to the first TA adjustment instruction.
  • This form can save more communication resources. Therefore, when the change of the feeder link affects a large number of terminals, it can save valuable communication resources compared to sending a TA adjustment instruction for each terminal separately.
  • FIG. 8 shows a flowchart of a method for updating an uplink TA provided by another exemplary embodiment of the present application.
  • the method is performed by the network device and the terminal in the transparent transmission NTN scenario.
  • the method includes:
  • Step 402 the network device sends a second TA adjustment instruction to the terminal when the feeder link switching occurs and the serving base station is not changed, and the second TA adjustment instruction includes the TA adjustment amount and the effective time of the TA adjustment;
  • the feeder link is switched from FL1 to FL2 due to the movement of the satellite, and the feeder link corresponds to the same ground service base station before and after the switch. It is assumed that the network equipment completes the handover of the feeder link at time t1.
  • the TA adjustment amount is determined according to the difference between the second RTT and the first RTT, where the second RTT is the signal transmission RTT between the second ground gateway corresponding to the switched feeder link FL2 and the satellite , the first RTT is the signal transmission RTT between the first ground gateway corresponding to the feeder link FL1 before the handover and the satellite.
  • the effective time of the TA adjustment is determined according to the estimated completion time of the feeder link switching by the network device.
  • the notification manner of the above-mentioned second TA adjustment instruction includes at least one of the following manners:
  • Mode 1 The second TA adjustment instruction is carried in the system information (System Information, SI);
  • the network device carries the second TA adjustment indication in a system information block (System Information Block, SIB).
  • SIB System Information Block
  • Mode 2 The second TA adjustment indication is carried in the multicast message
  • the network device groups the terminals based on the geographic locations where the terminals are located. For example, the geographically close terminals are divided into the same multicast group. For each multicast group, at least one of the following steps needs to be performed in advance:
  • RNTI Radio-Network Temporary Identifier
  • PDCCH Physical Downlink Control Channel
  • the first PDCCH search space is configured for the terminals belonging to the first multicast group
  • the second PDCCH search space is configured for the terminals belonging to the second multicast group.
  • Resources corresponding to multiple PDCCH search spaces do not overlap each other in the time domain.
  • the first control resource set is configured for the terminal belonging to the first multicast group
  • the control resource set is configured for the terminal belonging to the second multicast group.
  • the resources corresponding to the multiple control resource sets do not overlap each other in the frequency domain.
  • At least one of the above-mentioned RNTI, PDCCH search space and control resource set is configured by using system information or UE-specific signaling.
  • Manner 3 The second TA adjustment indication is carried in UE-specific signaling.
  • the second TA adjustment indication is carried in a UE-specific timing advance command MAC CE.
  • Step 404 the terminal receives the second TA adjustment instruction
  • This step includes but is not limited to at least one of the following ways:
  • Mode 1 The second TA adjustment indication is carried in the system information
  • the terminal receives the SIB broadcast by the network device, and reads the second TA adjustment instruction from the SIB.
  • Mode 2 The second TA adjustment indication is carried in the multicast message
  • the way in which the terminal receives the multicast message includes at least one of the following ways:
  • the terminal receives the first RNTI configured for the group where the terminal is located. Wherein, the terminals belonging to different groups are configured with different RNTIs.
  • the terminal monitors the multicast PDCCH according to the first RNTI, and receives the second TA adjustment instruction from the multicast PDCCH.
  • the terminal receives the first PDCCH search space configured for the group where the terminal is located; wherein, terminals belonging to different groups are configured with different PDCCH search spaces.
  • the terminal monitors the multicast PDCCH on the first PDCCH search space, and receives the second TA adjustment instruction from the multicast PDCCH.
  • the terminal receives the first control resource set configured for the group where the terminal is located; wherein, terminals belonging to different groups are configured with different control resource sets;
  • the second TA adjustment indication is received in the PDCCH.
  • Manner 3 The second TA adjustment indication is carried in UE-specific signaling.
  • the terminal receives the timing advance command MAC CE sent by the network device, and reads the second TA adjustment instruction from the timing advance command MAC CE.
  • Step 406 The terminal updates the uplink TA based on the TA adjustment amount at the effective time of the TA adjustment.
  • the terminal updates the uplink TA based on the TA adjustment amount at the effective time t2 of the TA adjustment.
  • the network device sends a second TA adjustment instruction to one or more terminals, and the terminal updates the uplink TA according to the effective time in the second TA adjustment instruction. It is determined according to the estimated feeder link handover completion time, so that the terminal can update the uplink TA at a relatively precise time.
  • FIG. 10 shows a flowchart of a method for updating an uplink TA provided by another exemplary embodiment of the present application.
  • the method is performed by network devices and terminals in a transparent NTN scenario, and the method includes:
  • Step 502 The network device sends a third TA adjustment instruction to the terminal in a broadcast form, where the third TA adjustment instruction includes: the identity of the serving satellite changes;
  • the third TA adjustment instruction carries: the first identifier of the first serving satellite before the handover and the second identifier of the second serving satellite after the handover. Or, the third TA adjustment instruction carries: the second identifier of the second serving satellite after the handover.
  • the terminal stores the first identifier of the serving satellite before the handover.
  • the third TA adjustment instruction carries the second identifier of the second serving satellite after the handover, which can reduce the signaling overhead of the third TA adjustment instruction.
  • Step 504 the terminal receives the third TA adjustment instruction sent in the form of broadcast, where the third TA adjustment instruction includes: the identity of the serving satellite changes;
  • Step 506 the terminal determines the first satellite position before the handover and the second satellite position after the handover according to the change of the identifier; calculates the TA adjustment amount according to the first satellite position and the second satellite position, and updates the uplink TA according to the TA adjustment amount;
  • Ephemeris information is stored in the terminal, and the ephemeris information includes the identifier of the satellite, and the related information of the movement track of the satellite (such as the movement direction, movement speed, etc. of the satellite).
  • the terminal determines the first satellite position before the handover in the ephemeris information according to the first identifier, and determines the second satellite position after the handover in the ephemeris information according to the second identifier.
  • the terminal calculates the TA1 corresponding to the feeder link FL1 before the handover according to the first satellite position and the ground gateway position before the handover; the terminal calculates the corresponding feeder link FL2 after the handover according to the second satellite position and the ground gateway position after the handover.
  • TA2; the terminal determines the TA adjustment amount delta TA TA2-TA1, and adjusts its own TA based on the delta TA.
  • the calculation amount of the network device can be reduced, the computing capability of the terminal itself can be fully utilized, and the network device can be saved. computing resources.
  • FIG. 11 shows a flowchart of a method for updating an uplink TA provided by another exemplary embodiment of the present application.
  • the method is performed by network devices and terminals in a transparent NTN scenario, and the method includes:
  • Step 602 The network device sends a third TA adjustment instruction to the terminal in the form of broadcasting, and the third TA adjustment instruction includes: the identity of the terrestrial gateway changes;
  • the third TA adjustment instruction carries: the third identifier of the first terrestrial gateway before the handover and the fourth identifier of the second terrestrial gateway after the handover. Or, the third TA adjustment instruction carries: the fourth identifier of the second terrestrial gateway after the handover.
  • the terminal stores the third identifier of the first ground gateway before the handover.
  • the third TA adjustment instruction carries the fourth identifier of the second terrestrial gateway after the handover, which can reduce the signaling overhead of the third TA adjustment instruction.
  • Step 604 the terminal receives the third TA adjustment instruction sent in the form of broadcast, and the third TA adjustment instruction includes: the identity change of the ground gateway;
  • the terminal stores the identity of the terrestrial gateway and the corresponding relationship between the location of the terrestrial gateway of the terrestrial gateway.
  • the terminal determines the position of the first gateway before the switch in the corresponding relationship according to the third identifier, and determines the position of the second gateway after the switch in the corresponding relationship according to the fourth identifier.
  • Step 606 The terminal determines the position of the first gateway and the position of the second gateway before handover according to the identification change, calculates the TA adjustment amount according to the first gateway position and the second gateway position, and updates the uplink TA according to the TA adjustment amount.
  • the calculation amount of the network device can be reduced, the computing capability of the terminal itself can be fully utilized, and the network device can be saved. computing resources.
  • FIG. 12 shows a block diagram of an apparatus for updating an uplink timing advance TA provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 1220 is configured to send TA adjustment information to the terminal when a feeder link switch occurs and the serving base station is not changed, where the TA adjustment information is used to instruct the terminal to update the uplink TA.
  • the sending module 1220 is configured to send a first TA adjustment instruction to the terminal in a broadcast form, where the first TA adjustment instruction is used to instruct the terminal to update the system information During the period, the TA is updated based on the received first TA adjustment indication.
  • the sending module 1220 is configured to send a second TA adjustment instruction to the terminal, where the second TA adjustment instruction includes a TA adjustment amount and an effective time of the TA adjustment, the The second TA adjustment indication is used to instruct the terminal to update the TA based on the TA adjustment amount at the effective time of the TA adjustment.
  • the second TA adjustment indication is carried in system information.
  • the second TA adjustment indication is carried in a multicast message.
  • the device further includes:
  • the grouping module 1240 is configured to group the terminals based on the geographic locations where the terminals are located.
  • the device further includes:
  • the configuration module 1260 is configured to configure different wireless network temporary indication RNTIs for terminals belonging to different groups.
  • the configuration module 1260 is configured to configure different physical downlink control channel PDCCH search spaces for terminals belonging to different groups.
  • the configuration module 1260 is configured to configure different control resource sets for terminals belonging to different groups.
  • the second TA adjustment indication is carried in UE-specific signaling.
  • the sending module 1220 is configured to send the identification change of the serving satellite to the terminal in the form of broadcasting, where the identification change of the serving satellite is used to instruct the terminal according to the service
  • the satellite position of the satellite updates the TA; or, the sending module 1220 is configured to send the identification change of the terrestrial gateway to the terminal in the form of broadcasting, and the identification change of the ground gateway is used to instruct the terminal according to the terrestrial gateway.
  • the geographic location of the gateway updates the TA.
  • FIG. 13 shows a block diagram of an apparatus for updating uplink timing advance TA provided by an exemplary embodiment of the present application, where the apparatus includes:
  • a receiving module 1320 configured to receive TA adjustment information, where the TA adjustment information is sent by the network device when the feeder link switching occurs and the serving base station is not changed;
  • the updating module 1340 is configured to update the uplink TA according to the TA adjustment information.
  • the receiving module 1320 is configured to receive the first TA adjustment instruction sent in a broadcast form
  • the updating module 1340 is configured to update the TA based on the received first TA adjustment instruction within a system information update period.
  • the receiving module 1320 is configured to receive a second TA adjustment instruction, where the second TA adjustment instruction includes a TA adjustment amount and an effective time of the TA adjustment;
  • the updating module 1340 is configured to update the TA based on the TA adjustment amount at the effective time of the TA adjustment.
  • the second TA adjustment indication is carried in system information.
  • the second TA adjustment indication is carried in a multicast message.
  • the receiving module 1320 is configured to receive the first wireless network temporary indication RNTI configured for the group where the terminal is located; wherein, the terminals belonging to different groups are configured with different RNTIs ; monitor the multicast physical downlink control channel PDCCH according to the first RNTI, and receive the second TA adjustment instruction from the multicast PDCCH.
  • the receiving module 1320 is configured to receive the first physical downlink control channel PDCCH search space configured for the group where the terminal is located; wherein, the terminals belonging to different groups are configured with different The PDCCH search space of the first PDCCH is monitored; the multicast PDCCH is monitored on the first PDCCH search space, and the second TA adjustment indication is received from the multicast PDCCH.
  • the receiving module 1320 is configured to receive a first control resource set configured for the group where the terminal is located; wherein, terminals belonging to different groups are configured with different control resource sets;
  • the receiving module 1320 is configured to monitor a multicast physical downlink control channel PDCCH on a search space corresponding to the first control resource set, and receive the second TA adjustment indication from the multicast PDCCH.
  • the second TA adjustment indication is carried in UE-specific signaling.
  • the receiving module 1320 is configured to receive the identification change of the serving satellite sent in the form of broadcasting; the updating module 1340 is configured to determine the first before handover according to the identification change The satellite position and the switched second satellite position, the TA adjustment amount is calculated according to the first satellite position and the second satellite position, and the TA is updated according to the TA adjustment amount; or, the receiving module 1320, for receiving the identification change of the terrestrial gateway sent in the form of broadcast; the updating module 1340 is configured to determine the position of the first gateway before switching and the position of the second gateway after switching according to the identification change, and according to the first gateway The TA adjustment amount is obtained by calculating the location and the second gateway location, and the TA is updated according to the TA adjustment amount.
  • FIG. 14 shows a schematic structural diagram of a communication device (network device or terminal) provided by an exemplary embodiment of the present application.
  • the communication device includes a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one section of the program, the code set or the instruction set is loaded and executed by the processor to implement the method for updating the uplink timing advance TA provided by the terminal device or the network device provided by each of the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种上行定时提前TA的更新方法、装置、设备及存储介质,涉及通信领域,所述方法包括:网络设备在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。

Description

上行定时提前的更新方法、装置、设备及介质 技术领域
本申请涉及无线通信领域,特别涉及一种上行定时提前(Timing Advance,TA)的更新方法、装置、设备及介质。
背景技术
上行传输的一个重要特征是不同用户设备(Use Equipment,UE)在时频资源上的正交多址接入,即来自同一个小区的不同UE的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰。基站要求来自同一时刻但不同频域资源的不同UE的信号到达基站的时间基本上是对齐的。为了保证基站侧的时间同步,新空口系统(New Radio,NR)支持上行定时提前的机制。
但在非地面通信网络(Non Terrestrial Network,NTN)中,如何更新上行TA是亟待解决的问题。
发明内容
本申请实施例提供了一种上行TA的更新方法、装置、设备及存储介质。所述技术方案如下。
根据本申请的一个方面,提供了一种上行定时提前TA的更新方法,应用于透传NTN场景中的网络设备,所述方法包括:
在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。
根据本申请的一个方面,提供了一种上行TA的更新方法,应用于透传NTN场景中的终端,所述方法包括:
接收TA调整信息,所述TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
根据所述TA调整信息更新上行TA。
根据本申请的一个方面,提供了一种上行TA的更新装置,所述装置包括:
发送模块,用于在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。
根据本申请的一个方面,提供了一种上行TA的更新装置,所述装置包括:
接收模块,用于接收TA调整信息,所述TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
更新模块,用于根据所述TA调整信息更新上行TA。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的上行TA的更新方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的上行TA的更新方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储 介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的上行TA的更新方法。
根据本申请的一个方面,提供了一种计算机程序产品,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的上行TA的更新方法。
根据本申请的一个方面,提供了一种芯片,所述芯片用于执行以实现如上述方面所述的上行TA的更新方法。
本申请实施例提供的技术方案至少包括如下有益效果:
在发生馈线链路切换且不改变服务基站的情况下,由网络设备采用系统信息或专用信令向终端发送TA调整信息,由终端根据TA调整信息更新上行TA,从而避免了终端的上行失步不得不中断与网络设备的通信的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的透传载荷NTN的网络架构图;
图2是本申请一个示例性实施例提供的再生载荷NTN的网络架构图;
图3是本申请一个示例性实施例提供的公共TA的配置示意图;
图4是本申请一个示例性实施例提供的馈线链路的切换示意图;
图5是本申请一个示例性实施例提供的上行定时提前TA的更新方法的流程图;
图6是本申请一个示例性实施例提供的上行定时提前TA的更新方法的流程图;
图7是本申请一个示例性实施例提供的上行定时提前TA的更新方法的时频示意图;
图8是本申请一个示例性实施例提供的上行定时提前TA的更新方法的流程图;
图9是本申请一个示例性实施例提供的上行定时提前TA的更新方法的时频示意图;
图10是本申请一个示例性实施例提供的上行定时提前TA的更新方法的流程图;
图11是本申请一个示例性实施例提供的上行定时提前TA的更新方法的流程图;
图12是本申请一个示例性实施例提供的上行定时提前TA的更新装置的框图;
图13是本申请一个示例性实施例提供的上行定时提前TA的更新装置的框图;
图14是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前第三代合作伙伴项目(Third Generation Partnership Project,3GPP)正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
存在至少两种NTN场景:透传载荷NTN和再生载荷NTN。图1示出了透传载荷NTN的场景,图2示出了再生载荷NTN的场景。
NTN网络由以下网元组成:
·1个或者多个网关,用于连接卫星和地面公共网络。
·馈线链路:用于网关和卫星之间通信的链路
·服务链路:用于终端和卫星之间通信的链路
·卫星:从其提供的功能上可以分为透传载荷和再生载荷这两种。
·透传载荷:只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。
·再生载荷:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
·星间链路(Inter-satellite links,ISL):存在于再生载荷场景下。
上行定时提前
上行传输的一个重要特征是不同UE在时频上正交多址接入,即来自同一小区的不同UE的上行传输之间互不干扰。
为了保证上行传输的正交性,避免小区内(intra-cell)干扰,基站(gNB) 要求来自同一时刻但不同频域资源的不同UE的信号到达gNB的时间基本上是对齐的。为了保证gNB侧的时间同步,NR支持上行定时提前的机制。
gNB侧的上行时钟和下行时钟是相同的,而UE侧的上行时钟和下行时钟之间有偏移,并且不同UE有各自不同的上行定时提前量。gNB通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达gNB的时间。对于离gNB较远的UE,由于有较大的传输时延,就要比离gNB较近的UE提前发送上行数据。
gNB基于测量UE的上行传输来确定每个UE的TA值。gNB通过两种方式给UE发送TA命令。
初始TA的获取:在随机接入过程,gNB通过测量接收到的前导码来确定TA值,并通过随机接入响应(Random access Response,RAR)的定时提前命令(Timing Advance Command)字段发送给UE。
无线资源控制(Radio Resource Control,RRC)连接态下的TA调整:虽然在随机接入过程中,UE与gNB取得了上行同步,但上行信号到达gNB的定时可能会随着时间发生变化,因此,UE需要不断地更新其上行定时提前量,以保持上行同步。如果某个UE的TA需要校正,则gNB会发送一个定时提前命令给该UE,要求其调整上行定时。该定时提前命令是通过定时提前命令媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)发送给UE的。
针对NTN小区覆盖大,信号传输时延大的特点,为了便于UE完成初始随机接入,网络会基于近地点与基站之间的信号传输时延广播1个公共的TA,如下图3所示。对于再生载荷场景(a),公共TA=2*D0/c;对于透传载荷场景(b),TA=2*(D01+D02)/c。UE使用这个广播的公共TA发送前导码,然后网络在随机接入响应中向UE指示一个UE专属的TA值,这样UE的初始TA就是广播的公共TA与随机接入响应中指示的UE专属的TA两者累加的结果。
馈线链路切换会对UE带来影响。对于再生载荷LEO场景,由于卫星能提供基站功能,可认为馈线链路的切换对于UE而言是透明的。对于透传载荷场景,如果馈线链路的切换的同时,服务基站也改变了,UE需要执行切换;如果馈线链路切换前后,服务基站没有改变,并且馈线链路切换期间,允许卫星与两个网关设备的连接FL1和FL2同时存在,那么认为馈线链路切换对于UE是透明的,但这种场景下,如果FL1和FL2对应的往返时延(Round-Trip Time,RTT)相差较大,馈线链路的切换会导致小区内所有UE都有更新上行TA的需求,以避免UE上行失步。基于目前的标准框架,一种思路是,UE分别向所有UE发送定时提前命令MAC CE去指示各个UE更新上行TA;另一种思路是,网络分别指示所有UE发起随机接入从而获得上行同步。但这两种思路的缺点是,一方面带来大量的资源开销,另一方面,在UE数较大的情况下由于资源受限可能造成部分UE由于上行失步不得不中断与网络的通信。
图5示出了本申请一个示例性实施例提供的上行TA的更新方法的流程图。本实施例以该方法由透传NTN场景中的网络设备和终端来执行。该方法包括:
步骤202:网络设备在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,TA调整信息用于指示终端更新上行TA;
可选地,TA调整信息包括如下信息中的至少一种:
TA调整量;
TA生效时间;
服务卫星的标识变化(或更新后的服务卫星的标识);
地面网关的标识变化(或更新后的地面网关的标识)。
步骤204:终端接收TA调整信息,TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
步骤206:终端根据TA调整信息更新上行TA。
综上所述,本实施例提供的方法,在发生馈线链路切换且不改变服务基站的情况下,由网络设备采用系统信息或专用信令向终端发送TA调整信息,由终端根据TA调整信息更新上行TA,从而避免了终端的上行失步不得不中断与网络设备的通信的问题。
图6示出了本申请另一个示例性实施例提供的上行TA的更新方法的流程图。本实施例以该方法由透传NTN场景中的网络设备和终端来执行。该方法包括:
步骤302:网络设备在发生馈线链路切换且不改变服务基站的情况下,采用广播形式向终端发送第一TA调整指示,第一TA调整指示携带有TA调整量;
在透传载荷的非GEO场景下,由于卫星的移动导致馈线链路从FL1切换至FL2,并且馈线链路切换前后对应同一个地面服务基站。假设网络设备在时刻t1完成馈线链路的切换。
如图7所示,网络设备在时刻t1之前的系统消息更新周期T n内发送系统消息更新提示,并在系统消息更新周期T n+1内以广播形式发送第一TA调整指示(含TA调整量delta_TA)。
其中,TA调整量是根据第二RTT和第一RTT之间的差值确定的,第二RTT是切换后的馈线链路FL2对应的第二地面网关和卫星之间的信号传输RTT,第一RTT是切换前的馈线链路FL1对应的第一地面网关和卫星之间的信号传输RTT。
步骤304:终端接收采用广播形式发送的第一TA调整指示;
终端在系统消息更新周期T n+1内,接收采用广播形式发送的第一TA调整指示。
步骤306:终端在系统信息更新周期内,基于接收到的第一TA调整指示更新上行TA。
终端在系统信息更新周期内T n+1内,基于接收到的第一TA调整指示更新上行TA。由于第一TA调整指示中携带有TA调整量,终端根据TA调整量更新上行TA。
综上所述,本实施例提供的方法,网络设备采用系统信息的形式来向一个或多个终端发送第一TA调整指示,由终端根据第一TA调整指示来更新上行TA,由于系统信息的形式能够节省较多的通信资源,因此在馈线链路更改影响到终端数量较多时,相比于为每个终端单独发送TA调整指示,能够节省宝贵的通信资源。
图8示出了本申请另一个示例性实施例提供的上行TA的更新方法的流程图。本实施例以该方法由透传NTN场景中的网络设备和终端来执行。该方法包括:
步骤402:网络设备在发生馈线链路切换且不改变服务基站的情况下,向终端发送第二TA调整指示,第二TA调整指示包括TA调整量和TA调整的生效时间;
在透传载荷的非GEO场景下,由于卫星的移动导致馈线链路从FL1切换至FL2,并且馈线链路切换前后对应同一个地面服务基站。假设网络设备在时刻t1完成馈线链路的切换。
在一个示例中,TA调整量是根据第二RTT和第一RTT之间的差值确定的,第二RTT是切换后的馈线链路FL2对应的第二地面网关和卫星之间的信号传输RTT,第一RTT是切换前的馈线链路FL1对应的第一地面网关和卫星之间的信号传输RTT。
在一个示例中,TA调整的生效时间是根据网络设备预估的馈线链路切换完成时间确定的。
上述第二TA调整指示的通知方式包括如下方式中的至少一种:
方式1:第二TA调整指示承载在系统信息(System Information,SI);
比如,网络设备将第二TA调整指示承载在系统信息块(System Information Block,SIB)中。
方式2:第二TA调整指示承载在组播消息中;
网络设备基于终端所处的地理位置,将终端进行分组。比如,将地理位置相近的终端划分为同一个组播组。针对每个组播组,还需要预先执行如下步骤中的至少一种:
1、为属于不同分组的终端配置不同的无线网络临时指示(Radio-Network Temporary Identifier,RNTI)。比如为属于第一组播组的终端配置第一RNTI,为属于第二组播组的终端配置第二RNTI。
2、为属于不同分组的终端配置不同的物理下行控制信道(Physical Downlink Control Channel,PDCCH)搜索空间。
比如,为属于第一组播组的终端配置第一PDCCH搜索空间,为属于第二组播组的终端配置第二PDCCH搜索空间。多个PDCCH搜索空间对应的资源在时域上相互没有重叠。
3、为属于不同分组的终端配置不同的控制资源集(Control Resource Set)。
比如,为属于第一组播组的终端配置第一控制资源集,为属于第二组播组的终端配置控制资源集。多个控制资源集对应的资源在频域上相互没有重叠。
可选地,上述RNTI、PDCCH搜索空间和控制资源集中的至少一种,采用系统信息或UE专有信令进行配置。
方式3:第二TA调整指示承载在UE专有信令中。
比如,第二TA调整指示承载在UE专有的定时提前命令MAC CE中。
步骤404:终端接收第二TA调整指示;
本步骤包括但不限于如下方式中的至少一种:
方式1:第二TA调整指示承载在系统信息中;
比如,终端接收网络设备广播的SIB,从SIB中读取第二TA调整指示。
方式2:第二TA调整指示承载在组播消息中;
假设终端属于第一分组,该第一分组是网络设备根据终端的地理位置划分的。终端的接收组播消息的方式包括如下方式中的至少一种:
1、终端接收为终端所在分组配置的第一RNTI。其中,属于不同分组的所述终端配置有不同的RNTI。终端根据第一RNTI监听组播PDCCH,从组播PDCCH中接收第二TA调整指示。
2、终端接收为终端所在分组配置的第一PDCCH搜索空间;其中,属于不同分组的终端配置有不同的PDCCH搜索空间。终端在第一PDCCH搜索空间上监听组播PDCCH,从组播PDCCH中接收第二TA调整指示。
3、终端接收为终端所在分组配置的第一控制资源集;其中,属于不同分组的终端配置不同的控制资源集;终端在第一控制资源集对应的搜索空间上监听 组播PDCCH,从组播PDCCH中接收第二TA调整指示。
方式3:第二TA调整指示承载在UE专用信令中。
比如,终端接收网络设备发送的定时提前命令MAC CE,从定时提前命令MAC CE中读取第二TA调整指示。
步骤406:终端在TA调整的生效时间,基于TA调整量更新上行TA。
如图9所述,假设网络设备预估的馈线链路切换完成时间为t2,并配置生效时间为t2,终端在TA调整的生效时间t2,基于TA调整量更新上行TA
综上所述,本实施例提供的方法,网络设备向一个或多个终端发送第二TA调整指示,由终端根据第二TA调整指示中的生效时间来更新上行TA,由于生效时间是网络设备根据预估的馈线链路切换完成时间确定的,因此能够使得终端在较为精确的时间进行上行TA的更新。
图10示出了本申请另一个示例性实施例提供的上行TA的更新方法的流程图。本实施例以该方法由透传NTN场景中的网络设备和终端来执行,该方法包括:
步骤502:网络设备采用广播形式向终端发送第三TA调整指示,第三TA调整指示包括:服务卫星的标识变化;
第三TA调整指示携带有:切换前的第一服务卫星的第一标识和切换后的第二服务卫星的第二标识。或者,第三TA调整指示携带有:切换后的第二服务卫星的第二标识。
可选地,终端内存储有切换前的服务卫星的第一标识。第三TA调整指示携带切换后的第二服务卫星的第二标识,可减少第三TA调整指示的信令开销。
步骤504:终端接收采用广播形式发送的第三TA调整指示,第三TA调整指示包括:服务卫星的标识变化;
步骤506:终端根据标识变化确定切换前的第一卫星位置和切换后的第二卫星位置;根据第一卫星位置和第二卫星位置计算得到TA调整量,根据TA调整量更新上行TA;
终端中存储有星历信息,星历信息包括卫星的标识,和卫星的运动轨迹相关信息(如卫星的运动方向,运动速度等)。终端根据第一标识在星历信息中确定切换前的第一卫星位置,根据第二标识在星历信息中确定切换后的第二卫星位置。
终端根据切换前的第一卫星位置和地面网关位置,计算切换前的馈线链路FL1对应的TA1;终端根据切换后的第二卫星位置和地面网关位置,计算切换后的馈线链路FL2对应的TA2;终端确定TA调整量delta TA=TA2-TA1,并基于该delta TA调整自己的TA。
综上所述,本实施例提供的方法,通过由网络设备发送服务卫星的标识变化,由终端自行计算TA调整量,可以减少网络设备的计算量,充分利用终端自身的计算能力,节省网络设备的计算资源。
图11示出了本申请另一个示例性实施例提供的上行TA的更新方法的流程图。本实施例以该方法由透传NTN场景中的网络设备和终端来执行,该方法包括:
步骤602:网络设备采用广播形式向终端发送第三TA调整指示,第三TA调整指示包括:地面网关的标识变化;
第三TA调整指示携带有:切换前的第一地面网关的第三标识和切换后的第二地面网关的第四标识。或者,第三TA调整指示携带有:切换后的第二地面网关的第四标识。
可选地,终端内存储有切换前的第一地面网关的第三标识。第三TA调整指示携带切换后的第二地面网关的第四标识,可减少第三TA调整指示的信令开销。
步骤604:终端接收采用广播形式发送的第三TA调整指示,第三TA调整指示包括:地面网关的标识变化;
终端中存储有地面网关的标识,和地面网关的地面网关位置之间的对应关系。终端根据第三标识在对应关系中确定切换前的第一网关位置,根据第四标识在对应关系中确定切换后的第二网关位置。
步骤606:终端根据标识变化确定切换前的第一网关位置和第二网关位置,根据第一网关位置和第二网关位置计算得到TA调整量,根据TA调整量更新上行TA。
终端根据服务卫星位置和第一网关位置,计算切换前的馈线链路FL1对应的TA1;终端根据服务卫星位置和第二网关位置,计算切换后的馈线链路FL2对应的TA2;终端确定TA调整量delta TA=TA2-TA1,并基于该delta TA调整自己的TA。
综上所述,本实施例提供的方法,通过由网络设备发送地面网关的标识变化,由终端自行计算TA调整量,可以减少网络设备的计算量,充分利用终端自身的计算能力,节省网络设备的计算资源。
图12示出了本申请一个示例性实施例提供的上行定时提前TA的更新装置的框图。所述装置包括:
发送模块1220,用于在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。
在本实施例的一个可选设计中,所述发送模块1220,用于采用广播形式向所述终端发送第一TA调整指示,所述第一TA调整指示用于指示所述终端在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
在本实施例的一个可选设计中,所述发送模块1220,用于向所述终端发送第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间,所述第二TA调整指示用于指示终端在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
在本实施例的一个可选设计中,所述第二TA调整指示承载在系统信息中。
在本实施例的一个可选设计中,所述第二TA调整指示承载在组播消息中。
在本实施例的一个可选设计中,所述装置还包括:
分组模块1240,用于基于所述终端所处的地理位置,将所述终端进行分组。
在本实施例的一个可选设计中,所述装置还包括:
配置模块1260,用于为属于不同分组的终端配置不同的无线网络临时指示RNTI。
在本实施例的一个可选设计中,配置模块1260,用于为属于不同分组的终端配置不同的物理下行控制信道PDCCH搜索空间。
在本实施例的一个可选设计中,配置模块1260,用于为属于不同分组的终端配置不同的控制资源集。
在本实施例的一个可选设计中,所述第二TA调整指示承载在UE专用信令中。
在本实施例的一个可选设计中,所述发送模块1220,用于采用广播形式向所述终端发送服务卫星的标识变化,所述服务卫星的标识变化用于指示所述终端根据所述服务卫星的卫星位置更新所述TA;或,所述发送模块1220,用于采用广播形式向所述终端发送地面网关的标识变化,所述地面网关的标识变化用 于指示所述终端根据所述地面网关的地理位置更新所述TA。
图13示出了本申请一个示例性实施例提供的上行定时提前TA的更新装置的框图,所述装置包括:
接收模块1320,用于接收TA调整信息,所述TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
更新模块1340,用于根据所述TA调整信息更新上行TA。
在本实施例的一个可选设计中,所述接收模块1320,用于接收采用广播形式发送的第一TA调整指示;
所述更新模块1340,用于在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
在本实施例的一个可选设计中,所述接收模块1320,用于接收第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间;
所述更新模块1340,用于在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
在本实施例的一个可选设计中,所述第二TA调整指示承载在系统信息中。
在本实施例的一个可选设计中,所述第二TA调整指示承载在组播消息中。
在本实施例的一个可选设计中,所述接收模块1320,用于接收为所述终端所在分组配置的第一无线网络临时指示RNTI;其中,属于不同分组的所述终端配置有不同的RNTI;根据所述第一RNTI监听组播物理下行控制信道PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
在本实施例的一个可选设计中,所述接收模块1320,用于接收为所述终端所在分组配置的第一物理下行控制信道PDCCH搜索空间;其中,属于不同分组的所述终端配置有不同的PDCCH搜索空间;在所述第一PDCCH搜索空间上监听组播PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
在本实施例的一个可选设计中,所述接收模块1320,用于接收为所述终端所在分组配置的第一控制资源集;其中,属于不同分组的终端配置不同的控制资源集;
所述接收模块1320,用于在所述第一控制资源集对应的搜索空间上监听组播物理下行控制信道PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
在本实施例的一个可选设计中,所述第二TA调整指示承载在UE专用信令中。
在本实施例的一个可选设计中,所述接收模块1320,用于接收采用广播形式发送的服务卫星的标识变化;所述更新模块1340,用于根据所述标识变化确定切换前的第一卫星位置和切换后的第二卫星位置,根据所述第一卫星位置和所述第二卫星位置计算得到TA调整量,根据所述TA调整量更新所述TA;或,所述接收模块1320,用于接收采用广播形式发送的地面网关的标识变化;所述更新模块1340,用于根据所述标识变化确定切换前的第一网关位置和切换后的第二网关位置,根据所述第一网关位置和所述第二网关位置计算得到TA调整量,根据所述TA调整量更新所述TA。
图14示出了本申请一个示例性实施例提供的通信设备(网络设备或终端)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程 序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端设备或网络设备执行的上行定时提前TA的更新方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (45)

  1. 一种上行定时提前TA的更新方法,其特征在于,应用于透传载荷非地面通信网络NTN场景中的网络设备,所述方法包括:
    在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。
  2. 根据权利要求1所述的方法,其特征在于,所述向终端发送TA调整信息,包括:
    采用广播形式向所述终端发送第一TA调整指示,所述第一TA调整指示用于指示所述终端在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
  3. 根据权利要求1所述的方法,其特征在于,所述向终端发送TA调整信息,包括:
    向所述终端发送第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间,所述第二TA调整指示用于指示终端在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
  4. 根据权利要求3所述的方法,其特征在于,所述第二TA调整指示承载在系统信息中。
  5. 根据权利要求3所述的方法,其特征在于,所述第二TA调整指示承载在组播消息中。
  6. 根据权利要求3或5所述的方法,其特征在于,所述方法还包括:
    基于所述终端所处的地理位置,将所述终端进行分组。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    为属于不同分组的终端配置不同的无线网络临时指示RNTI。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    为属于不同分组的终端配置不同的物理下行控制信道PDCCH搜索空间。
  9. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    为属于不同分组的终端配置不同的控制资源集。
  10. 根据权利要求3所述的方法,其特征在于,所述第二TA调整指示承载在用户设备UE专用信令中。
  11. 根据权利要求1所述的方法,其特征在于,所述向终端发送TA调整信息,包括:
    采用广播形式向所述终端发送服务卫星的标识变化,所述服务卫星的标识变化用于指示所述终端根据所述服务卫星的卫星位置更新所述TA;
    或,
    采用广播形式向所述终端发送地面网关的标识变化,所述地面网关的标识 变化用于指示所述终端根据所述地面网关的地理位置更新所述TA。
  12. 一种上行定时提前TA的更新方法,其特征在于,应用于透传载荷非地面通信网络NTN场景中的终端,所述方法包括:
    接收TA调整信息,所述TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
    根据所述TA调整信息更新上行TA。
  13. 根据权利要求12所述的方法,其特征在于,所述接收TA调整信息,包括:
    接收采用广播形式发送的第一TA调整指示;
    所述根据所述TA调整信息更新上行TA,包括:
    在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
  14. 根据权利要求12所述的方法,其特征在于,所述接收TA调整信息,包括:
    接收第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间;
    所述根据所述TA调整信息更新上行TA,包括:
    在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
  15. 根据权利要求14所述的方法,其特征在于,所述第二TA调整指示承载在系统信息中。
  16. 根据权利要求14所述的方法,其特征在于,所述第二TA调整指示承载在组播消息中。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收为所述终端所在分组配置的第一无线网络临时指示RNTI;其中,属于不同分组的所述终端配置有不同的RNTI;
    所述接收第二TA调整指示,包括:
    根据所述第一RNTI监听组播物理下行控制信道PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  18. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收为所述终端所在分组配置的第一物理下行控制信道PDCCH搜索空间;其中,属于不同分组的所述终端配置有不同的PDCCH搜索空间;
    所述接收第二TA调整指示,包括:
    在所述第一PDCCH搜索空间上监听组播PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  19. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收为所述终端所在分组配置的第一控制资源集;其中,属于不同分组的终端配置不同的控制资源集;
    所述接收第二TA调整指示,包括:
    在所述第一控制资源集对应的搜索空间上监听组播物理下行控制信道 PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  20. 根据权利要求14所述的方法,其特征在于,所述第二TA调整指示承载在用户设备UE专用信令中。
  21. 根据权利要求12所述的方法,其特征在于,所述接收TA调整信息,根据所述TA调整信息更新上行TA,包括:
    接收采用广播形式发送的服务卫星的标识变化;根据所述标识变化确定切换前的第一卫星位置和切换后的第二卫星位置,根据所述第一卫星位置和所述第二卫星位置计算得到TA调整量,根据所述TA调整量更新所述TA;
    或,
    接收采用广播形式发送的地面网关的标识变化;根据所述标识变化确定切换前的第一网关位置和切换后的第二网关位置,根据所述第一网关位置和所述第二网关位置计算得到TA调整量,根据所述TA调整量更新所述TA。
  22. 一种上行定时提前TA的更新装置,其特征在于,所述装置应用于透传载荷非地面通信网络NTN中,所述装置包括:
    发送模块,用于在发生馈线链路切换且不改变服务基站的情况下,向终端发送TA调整信息,所述TA调整信息用于指示所述终端更新上行TA。
  23. 根据权利要求22所述的装置,其特征在于,所述发送模块,用于采用广播形式向所述终端发送第一TA调整指示,所述第一TA调整指示用于指示所述终端在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
  24. 根据权利要求22所述的装置,其特征在于,所述发送模块,用于向所述终端发送第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间,所述第二TA调整指示用于指示终端在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
  25. 根据权利要求24所述的装置,其特征在于,所述第二TA调整指示承载在系统信息中。
  26. 根据权利要求24所述的装置,其特征在于,所述第二TA调整指示承载在组播消息中。
  27. 根据权利要求24或26所述的装置,其特征在于,所述装置还包括:
    分组模块,用于基于所述终端所处的地理位置,将所述终端进行分组。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    配置模块,用于为属于不同分组的终端配置不同的无线网络临时指示RNTI。
  29. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    配置模块,用于为属于不同分组的终端配置不同的物理下行控制信道PDCCH搜索空间。
  30. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    配置模块,用于为属于不同分组的终端配置不同的控制资源集。
  31. 根据权利要求23所述的装置,其特征在于,所述第二TA调整指示承载在UE专用信令中。
  32. 根据权利要求22所述的装置,其特征在于,
    所述发送模块,用于采用广播形式向所述终端发送服务卫星的标识变化,所述服务卫星的标识变化用于指示所述终端根据所述服务卫星的卫星位置更新所述TA;
    或,
    所述发送模块,用于采用广播形式向所述终端发送地面网关的标识变化,所述地面网关的标识变化用于指示所述终端根据所述地面网关的地理位置更新所述TA。
  33. 一种上行定时提前TA的更新装置,其特征在于,所述装置应用于透传载荷非地面通信网络NTN中,所述装置包括:
    接收模块,用于接收TA调整信息,所述TA调整信息是网络设备在发生馈线链路切换且不改变服务基站的情况下发送的;
    更新模块,用于根据所述TA调整信息更新上行TA。
  34. 根据权利要求33所述的装置,其特征在于,
    所述接收模块,用于接收采用广播形式发送的第一TA调整指示;
    所述更新模块,用于在系统信息更新周期内,基于接收到的所述第一TA调整指示更新所述TA。
  35. 根据权利要求33所述的装置,其特征在于,
    所述接收模块,用于接收第二TA调整指示,所述第二TA调整指示包括TA调整量和TA调整的生效时间;
    所述更新模块,用于在所述TA调整的生效时间,基于所述TA调整量更新所述TA。
  36. 根据权利要求35所述的装置,其特征在于,所述第二TA调整指示承载在系统信息中。
  37. 根据权利要求35所述的装置,其特征在于,所述第二TA调整指示承载在组播消息中。
  38. 根据权利要求37所述的装置,其特征在于,
    所述接收模块,用于接收为所述终端所在分组配置的第一无线网络临时指示RNTI;其中,属于不同分组的所述终端配置有不同的RNTI;根据所述第一RNTI监听组播物理下行控制信道PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  39. 根据权利要求37所述的装置,其特征在于,
    所述接收模块,用于接收为所述终端所在分组配置的第一物理下行控制信 道PDCCH搜索空间;其中,属于不同分组的所述终端配置有不同的PDCCH搜索空间;在所述第一PDCCH搜索空间上监听组播PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  40. 根据权利要求37所述的装置,其特征在于,
    所述接收模块,用于接收为所述终端所在分组配置的第一控制资源集;其中,属于不同分组的终端配置不同的控制资源集;
    所述接收模块,用于在所述第一控制资源集对应的搜索空间上监听组播物理下行控制信道PDCCH,从所述组播PDCCH中接收所述第二TA调整指示。
  41. 根据权利要求35所述的装置,其特征在于,所述第二TA调整指示承载在UE专用信令中。
  42. 根据权利要求33所述的装置,其特征在于,
    所述接收模块,用于接收采用广播形式发送的服务卫星的标识变化;所述更新模块,用于根据所述标识变化确定切换前的第一卫星位置和切换后的第二卫星位置,根据所述第一卫星位置和所述第二卫星位置计算得到TA调整量,根据所述TA调整量更新所述TA;
    或,
    所述接收模块,用于接收采用广播形式发送的地面网关的标识变化;所述更新模块,用于根据所述标识变化确定切换前的第一网关位置和切换后的第二网关位置,根据所述第一网关位置和所述第二网关位置计算得到TA调整量,根据所述TA调整量更新所述TA。
  43. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至21中任一所述的上行定时提前TA的更新方法。
  44. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求22至42任一所述的上行定时提前TA的更新方法。
  45. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至42中任一所述的上行定时提前TA的更新方法。
PCT/CN2020/102804 2020-07-17 2020-07-17 上行定时提前的更新方法、装置、设备及介质 WO2022011710A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102725.5A CN115804165A (zh) 2020-07-17 2020-07-17 上行定时提前的更新方法、装置、设备及介质
PCT/CN2020/102804 WO2022011710A1 (zh) 2020-07-17 2020-07-17 上行定时提前的更新方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102804 WO2022011710A1 (zh) 2020-07-17 2020-07-17 上行定时提前的更新方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022011710A1 true WO2022011710A1 (zh) 2022-01-20

Family

ID=79556090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102804 WO2022011710A1 (zh) 2020-07-17 2020-07-17 上行定时提前的更新方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115804165A (zh)
WO (1) WO2022011710A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731603A (zh) * 2022-03-01 2022-07-08 北京小米移动软件有限公司 确定定时偏移量更新的方法和装置、通信装置及存储介质
WO2023184457A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 生效时间确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788548A (zh) * 2019-02-19 2019-05-21 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station
US20200178135A1 (en) * 2018-12-03 2020-06-04 Electronics And Telecommunications Research Institute Method for handover in non-terrestrial network, and apparatus for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095820A (zh) * 2017-08-22 2020-05-01 弗劳恩霍夫应用研究促进协会 无线通信系统、基站和用户侧设备
US20200153500A1 (en) * 2018-11-13 2020-05-14 Electronics And Telecommunications Research Institute Method and apparatus for signal configuration for mobile base station
US20200178135A1 (en) * 2018-12-03 2020-06-04 Electronics And Telecommunications Research Institute Method for handover in non-terrestrial network, and apparatus for the same
CN109788548A (zh) * 2019-02-19 2019-05-21 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PHY aspects of a moving RAN in non-terrestrial networks", 3GPP DRAFT; R1-1813370 PHY ASPECTS OF A MOVING RAN IN NON-TERRESTRIAL NETWORKS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051555402 *
THALES: "Considerations on satellite beam management, control loops and feeder", 3GPP DRAFT; R1-1913131, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820320 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731603A (zh) * 2022-03-01 2022-07-08 北京小米移动软件有限公司 确定定时偏移量更新的方法和装置、通信装置及存储介质
CN114731603B (zh) * 2022-03-01 2024-05-28 北京小米移动软件有限公司 确定定时偏移量更新的方法和装置、通信装置及存储介质
WO2023184457A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 生效时间确定方法及装置

Also Published As

Publication number Publication date
CN115804165A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2021081997A1 (zh) 小区测量方法、装置、设备及存储介质
US20240031886A1 (en) Information reporting method and apparatus, equipment and storage medium
US20230010343A1 (en) Ta determination method and apparatus, and terminal device
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
WO2022077141A1 (zh) 随机接入响应接收窗的确定方法、装置、设备及介质
WO2022027344A1 (zh) 小区选择方法、装置、设备及介质
WO2022027628A1 (zh) 上行提前定时的确定方法、装置、设备及存储介质
WO2023130272A1 (zh) 信息处理方法、装置、设备及存储介质
WO2022087792A1 (zh) Ntn中的测量上报方法、接收方法、装置、设备及介质
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
WO2023010243A1 (zh) 小区测量方法、装置、设备及介质
WO2021077422A1 (zh) 信息传输方法、装置、设备及存储介质
WO2023230844A1 (zh) 小区参数的配置方法、装置、设备及存储介质
WO2022104602A1 (zh) Ntn中定时提前的上报方法、接收方法、装置及设备
WO2023035276A1 (zh) 上行传输方法、装置、设备及存储介质
WO2022266882A1 (zh) 有效期确定方法、装置、设备及存储介质
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
US20230337165A1 (en) Timer starting method and apparatus, and terminal and storage medium
WO2023050361A1 (zh) 辅目标的配置方法、装置、设备及存储介质
US20240155704A1 (en) Communication method, terminal device, and network device
WO2023184286A1 (zh) 终端行为的确定方法、装置、设备及存储介质
WO2024092811A1 (zh) 通信方法及通信装置
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945313

Country of ref document: EP

Kind code of ref document: A1