WO2022027344A1 - 小区选择方法、装置、设备及介质 - Google Patents

小区选择方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022027344A1
WO2022027344A1 PCT/CN2020/107178 CN2020107178W WO2022027344A1 WO 2022027344 A1 WO2022027344 A1 WO 2022027344A1 CN 2020107178 W CN2020107178 W CN 2020107178W WO 2022027344 A1 WO2022027344 A1 WO 2022027344A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
satellite
terminal
information
candidate
Prior art date
Application number
PCT/CN2020/107178
Other languages
English (en)
French (fr)
Inventor
尤心
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080104624.1A priority Critical patent/CN116210273A/zh
Priority to PCT/CN2020/107178 priority patent/WO2022027344A1/zh
Priority to EP20948329.6A priority patent/EP4195764A4/en
Publication of WO2022027344A1 publication Critical patent/WO2022027344A1/zh
Priority to US18/105,647 priority patent/US20230189136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a cell selection method, apparatus, device, and medium.
  • Cell selection refers to a process in which a user equipment (User Equipment, UE) in an idle state selects a cell with better signal quality to provide it with a serving signal.
  • UE User Equipment
  • the UE selects a cell with better channel quality to provide a service signal by monitoring the channel quality of the current cell and neighboring cells.
  • Non-terrestrial communication network Non Terrestrial Network, NTN
  • the difference in channel quality between the cell center and the cell edge of a satellite-covered cell is small, and it is difficult to select a cell based on the channel quality.
  • Embodiments of the present application provide a cell selection method, apparatus, device, and storage medium.
  • the technical solution is as follows.
  • a cell selection method comprising:
  • Cell selection is performed according to first information, where the first information includes at least one of the following information:
  • the cell type of the satellite is the cell type of the satellite.
  • a cell selection apparatus comprising:
  • a selection module configured to perform cell selection according to first information, where the first information includes at least one of the following information:
  • the cell type of the satellite is the cell type of the satellite.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing The processor is configured to load and execute the executable instructions to implement the cell selection method as described in the above aspects.
  • a computer-readable storage medium is provided, and executable instructions are stored in the readable storage medium, and the executable instructions are loaded and executed by the processor to implement the above-mentioned aspects. method of cell selection.
  • the readable storage medium stores executable instructions, the executable instructions are loaded and executed by the processor to implement the cell according to the above aspect Method of choosing.
  • a chip for executing to implement the cell selection method described in the above aspect.
  • terminal location information By using terminal location information, satellite type, satellite deployment scenario, satellite cell type and other non-channel quality information for cell selection, it can solve the problem that a reasonable cell cannot be selected only based on channel quality in an NTN scenario.
  • FIG. 1 is a network architecture diagram of a transparent transmission payload NTN provided by an exemplary embodiment of the present application
  • FIG. 2 is a network architecture diagram of a regeneration load NTN provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 6 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of a cell of a mobile cell type provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram of a cell of a mobile cell type provided by an exemplary embodiment of the present application.
  • FIG. 9 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 11 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 12 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 13 is a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • FIG. 14 is a block diagram of an apparatus for cell selection provided by an exemplary embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 shows a scenario of transparently transmitting the payload NTN
  • FIG. 2 shows a scenario of regenerating the payload NTN.
  • An NTN network consists of the following network elements:
  • Feeder link the link used for communication between the gateway and the satellite
  • Service Link The link used for communication between the terminal and the satellite
  • ⁇ Satellite From the functions it provides, it can be divided into two types: transparent transmission load and regenerative load.
  • ⁇ Transparent load It only provides the functions of radio frequency filtering, frequency conversion and amplification. It only provides transparent forwarding of the signal, and will not change the waveform signal it forwards.
  • ⁇ Regeneration load In addition to providing the functions of radio frequency filtering, frequency conversion and amplification, it can also provide functions of demodulation/decoding, routing/conversion, encoding/modulation. It has part or all of the functions of a base station.
  • Inter-satellite links exist in the regenerative load scenario.
  • FIG. 3 shows a flowchart of a cell selection method provided by an exemplary embodiment of the present application.
  • the method is performed by a terminal as an example.
  • the method includes:
  • Step 320 Perform cell selection according to the first information.
  • the terminal selects a cell according to first information, where the first information includes but is not limited to: at least one type of information different from the channel quality of the cell.
  • the channel quality of the cell can also be understood as the signal quality of the cell.
  • the cell selection includes at least one of cell primary selection and cell reselection.
  • cell reselection is used as an example to illustrate, but this is not limited.
  • the first information includes at least one of the following information:
  • the location information of the terminal is determined according to at least one of the following second information: the distance between the terminal and the satellite; the distance between the terminal and the cell reference point; the (Global Positioning System, GPS) location information of the terminal; Timing Advance (TA); round-trip delay (Round-TripTime, RTT) between the terminal and the satellite; propagation delay (propagation delay) between the terminal and the satellite; the cell that the terminal currently resides in (CELL ID) ; The synchronization signal block index (SSB index) corresponding to the terminal; the satellite beam index (satellite beam index) where the terminal resides; the bandwidth part identifier (BWP ID) activated by the terminal.
  • SSB index synchronization signal block index
  • BWP ID bandwidth part identifier
  • RTT and transmission delay can be calculated by using the distance between the terminal and the satellite.
  • the real-time position of the satellite can be calculated using the ephemeris information of the satellite.
  • the location information of the terminal may be relatively precise location information, or may be relatively rough location information.
  • the types of satellites include at least one of the following types: LEO satellites; MEO satellites; GEO satellites; Unmanned Aerial Vehicle Platform (UAS Platform) satellites; HEO satellites.
  • the deployment scenarios of the satellites include at least one of the following: a transparent transmission load scenario and a regeneration load scenario.
  • the cell type of the satellite is the cell type of the satellite
  • the cell of the satellite includes at least one of the following: a fixed cell (fixed cell); and a moving cell (moving cell).
  • the first information further includes: the channel quality of the cell.
  • the channel quality of the cell includes: the first channel quality of the current cell, and/or the second channel quality of the neighboring cell.
  • the channel quality is represented by reference signal received power (Reference Signal Received Power, RSRP), and cell selection is performed based on the S criterion of cell selection/reselection.
  • RSRP Reference Signal Received Power
  • all or part of the above-mentioned first information is broadcast by the network device through system information (System Information, SI).
  • SI System Information
  • the method provided in this embodiment can perform cell selection by using non-channel quality information such as the location information of the terminal, the type of satellite, the deployment scenario of the satellite, the cell type of the satellite, etc.
  • Reasonable cell selection based on channel quality.
  • the terminal preferentially performs cell selection according to the high-priority first information.
  • the high-priority first information fails to successfully select the target cell, the cell selection is continued using the next-highest priority first information.
  • This embodiment of the present application does not limit the priority order between different types of first information.
  • the priority of the channel quality of the cell >the type of the satellite>the cell type of the satellite; in another example, the priority of the channel quality of the cell>the location information of the terminal>the type of the satellite; in another example , the deployment scenario of the satellite > the cell type of the satellite > the priority of the channel quality of the cell.
  • Step 320 can optionally include the following steps, as shown in Figure 4:
  • Step 322 Perform cell selection according to the first information with the i-th priority to obtain the i-th candidate cell list
  • the first information including: information A, information B and information C as an example.
  • the information A, the information B, and the information C are each one of the above-mentioned multiple types of first information. It is assumed that information A corresponds to the first priority, information B corresponds to the second priority, and information C corresponds to the third priority.
  • the terminal performs cell selection according to the information A with the first priority, and obtains the first candidate cell list.
  • the initial value of i is 1 or 0, and the present embodiment uses the initial value of i as 1 for illustration.
  • Step 324 When the i-th candidate cell list does not meet the termination condition, perform cell selection according to the first information with the i+1-th priority to obtain the i+1-th candidate cell list;
  • the ending condition includes: the number of cells in the current candidate cell list is 1.
  • the terminal When the first candidate cell list does not meet the ending condition, the terminal performs cell selection according to the information B with the second priority to obtain the second candidate cell list;
  • the priority information B performs cell selection to obtain a second candidate cell list.
  • the i-th priority is higher than the i+1-th priority
  • the i+1-th candidate cell list is a subset of the i-th candidate cell list.
  • the i+1 th candidate cell list is a list selected from the i th candidate cell list according to the first information of the i+1 th priority.
  • Step 326 Obtain the target cell when the i+1 th candidate cell list satisfies the ending condition
  • the target cell is obtained.
  • multiple types of first information are used for cell selection in combination with priorities, thereby ensuring the reliability of cell selection and avoiding useless ping-pong effects.
  • the channel quality of the cell For the case of the first information including: the channel quality of the cell:
  • the first information includes the channel quality of the cell
  • the terminal selects the cell according to the channel quality of the cell, and obtains a list of candidate cells, including:
  • Step 520 Obtain multiple candidate cells based on the channel quality of the cells and the S criterion
  • the RRC layer calculates the Srxlev (S criterion) according to the RSRP measurement result, and compares it with Sintrasearch (same-frequency measurement start threshold) and Snonintrasearch (inter-frequency/different system measurement start threshold), as the decision condition for whether to start the measurement of adjacent cells.
  • Sintrasearch short-frequency measurement start threshold
  • Snonintrasearch inter-frequency/different system measurement start threshold
  • Step 540 Determine a list of candidate cells among all candidate cells according to the best channel quality.
  • the quality difference between the channel quality of each candidate cell in the candidate cell list and the best channel quality is less than the threshold rangeToBestCell.
  • the first information includes channel quality
  • the terminal performs cell selection according to the channel quality with the i-th priority, and obtains the i-th candidate cell list, including:
  • the terminal obtains multiple candidate cells based on the channel quality and the S criterion.
  • the first candidate cell list is determined among all the candidate cells.
  • the quality difference between the channel quality of each candidate cell in the first candidate cell list and the best channel quality is smaller than the threshold rangeToBestCell (ie, the R criterion).
  • the terminal obtains multiple candidate cells based on the channel quality of the cells and the S criterion.
  • the first candidate cell list is determined according to the top n candidate cells sorted from high to low channel quality.
  • the first candidate cell list is determined according to the candidate cells whose channel quality is greater than the quality threshold.
  • the number n is predefined or preconfigured and the quality threshold is predefined or preconfigured.
  • Predefined means that the communication protocol is predefined, and preconfigured means that the network device is pre-configured to the terminal through system broadcast or proprietary signaling or other signaling.
  • the first information includes: the location information of the terminal:
  • the first information includes the location information of the terminal, and the terminal selects a cell according to the location information of the terminal to obtain a list of candidate cells; Cell selection is performed based on the location information of the terminal with priority i, and the i-th candidate cell list is obtained, including:
  • Step 620 According to the location information of the terminal, determine the cell of the satellite (base station) with the nearest or farthest distance from the terminal as a candidate cell;
  • the distance of the satellite is calculated according to the ephemeris information of the satellite.
  • a cell of at least one satellite that is closest to the terminal is determined as a candidate cell.
  • the at least one nearest satellite includes: one nearest satellite, a plurality of nearest satellites with equal distances, and at least one of the n satellites whose distances are sorted from nearest to farthest.
  • a cell of at least one satellite that is farthest from the terminal is determined as a candidate cell.
  • the UE tends to select GEO satellites.
  • the farthest at least one satellite includes: the farthest satellite, a plurality of satellites with the farthest and equal distances, and at least one of the n satellites whose distances are sorted from farthest to nearer.
  • Step 640 Select a candidate cell whose ground reference point is closest to the location information of the terminal to obtain a candidate cell list.
  • the ground reference point is a reference point in the candidate cell, and n is a positive integer.
  • the UE selecting the cell closest to the ground reference point means that the UE is located in the center of the cell, and the time that the cell can provide services for the UE is relatively longer, thus avoiding additional mobility (handover/BWP handover/beam handover, etc.).
  • the first information it includes: the situation of the satellite type:
  • the first information includes a satellite type
  • the terminal selects a cell according to the satellite type to obtain a list of candidate cells; or, the terminal selects a cell according to the satellite type with the i-th priority, Get the i-th candidate cell list, including:
  • the UE preferentially selects satellites of the LEO type.
  • LEO satellites are relatively close to the ground, with short transmission delay and less path loss.
  • LEO satellites are not synchronized with the earth's rotation, and the satellites are always moving/changing, which will bring additional mobility.
  • the UE preferentially selects GEO type satellites.
  • GEO satellites are synchronized with the earth's rotation. Although they are far from the ground, they can guarantee a long service time and have less mobility.
  • the UE preferably selects a certain type of satellite according to its own requirements for at least one factor such as transmission delay, path loss, and mobility, so as to obtain communication services that better meet its own requirements.
  • For the first information include: the situation of the satellite deployment scenario:
  • the first information includes a satellite deployment scenario
  • the terminal selects a cell according to the satellite deployment scenario to obtain a list of candidate cells; or, the terminal performs a satellite deployment scenario according to the i-th priority.
  • Cell selection get the i-th candidate cell list, including:
  • the UE preferentially selects the satellites that transparently transmit the payload deployment.
  • Satellites deployed with transparent transmission payloads only provide the functions of radio frequency filtering, frequency conversion and amplification. They only provide transparent transmission of signals, and will not change the waveform signals transmitted by them. That is to say, the satellite deployed by the UE through the transparent transmission load is connected to the base station on the ground. Although the UE chooses the satellite deployed by the transparent transmission load, the transmission time is longer (transmission delay between the UE and the satellite + transmission delay between the satellite and the base station). ), but when the satellite (such as LEO) moves, the ground base station does not change, and the configuration of the UE does not change.
  • the satellite such as LEO
  • the UE preferentially selects the satellites on which the regeneration payload is deployed.
  • Satellites deployed with regenerative payloads can provide demodulation/decoding, routing/conversion, encoding/modulation functions in addition to radio frequency filtering, frequency conversion and amplification functions. Satellites deployed with regenerative payloads have some or all of the functions of a base station. The UE selects satellites deployed with regenerative payloads to reduce the transmission delay.
  • the UE preferably selects a satellite in a certain satellite deployment scenario, so as to obtain a satellite that better meets its own requirements. Communication service.
  • the cell type For the case of the first information including: the cell type:
  • the first information includes a cell type, and the terminal performs cell selection according to the cell type to obtain a list of candidate cells; or, the terminal performs cell selection according to the cell type with the i-th priority, Get the i-th candidate cell list, including:
  • the UE preferentially selects satellites of a fixed cell type.
  • the cell coverage of the fixed cell type satellite on the ground is fixed and does not change with the movement of the satellite.
  • the terrestrial cell of satellite #1 at time T1 the terrestrial cell at time T1+00:10, and the terrestrial cell at time T1+00:20 are all fixed.
  • the UE preferentially selects satellites of the mobile cell type.
  • the cell coverage on the ground of a mobile cell type satellite is variable, changing as the satellite moves.
  • the satellite #1 is located directly above the cell coverage, and during the movement of the satellite (for example, time T1, T2, T3), the location of the cell also changes all the time.
  • the UE can avoid frequent mobility according to the satellite of the fixed cell type; the UE can obtain a shorter transmission delay according to the satellite of the mobile cell type.
  • the network device configures the terminal with the following cell selection criteria and priorities:
  • First priority determine candidate cells (list) based on UE's location information
  • Second priority determine candidate cells (list) based on satellite type
  • Third priority Determine candidate cells (list) based on cell type. As shown in Figure 9, the terminal performs the following steps:
  • Step 701 Determine a first candidate cell list according to UE location information with a first priority
  • the UE determines at least one candidate cell based on the location information of the UE of the first priority. Further, the network device uses the system information to broadcast the location of the cell reference point of each cell, that is, the location information of the center of the cell, which may specifically be coordinates, which is not limited in this embodiment.
  • the UE determines the first distance between the UE and the cell reference point of each candidate cell based on its own location information and the location of the cell reference point.
  • the network device broadcasts the cell radius or the first threshold of each cell by using the system information. Based on the first distance and the first threshold/cell radius, the UE determines whether it is currently within the coverage of the candidate cell, thereby determining the first candidate cell list.
  • the first candidate cell list includes cell 1, cell 3, and cell 4. Cell 5.
  • Step 702 Determine whether the number of candidate cells in the first candidate cell list is 1; if so, go to Step 703; if not, go to Step 704.
  • Step 703 Obtain the target cell.
  • Step 704 Perform cell selection according to the satellite type information with the second priority to obtain a second candidate cell list
  • the UE determines the satellite types corresponding to the four cells in the first candidate cell list based on the system broadcast. For example, the UE currently wants to select the satellite type of LEO (which can be implemented based on the UE or explicitly configured by the network), cell 1 and cell 4. All belong to the cells deployed by LEO, then the UE may further determine a second candidate cell list, where the second candidate cell list includes cell 1 and cell 4.
  • LEO satellite type of LEO
  • Step 705 Determine whether the number of candidate cells in the second candidate cell list is 1; if so, go to Step 703; if not, go to Step 706.
  • Step 706 Perform cell selection according to the cell type information with the third priority to obtain a third candidate cell list
  • the UE selects the preferred cell type in the second candidate cell list.
  • the cell type currently selected by the UE (which can be implemented based on the UE implementation or network display configuration) is a fixed cell type, and the UE can select cell 1 as the third candidate cell. List, cell 1 is the last target cell.
  • the UE will not continue screening, because there is only one remaining number of candidate cells in the third candidate cell list.
  • Step 707 Determine whether the number of candidate cells in the third candidate cell list is 1; if so, go to Step 703; if not, go to Step 708.
  • Step 708 Perform cell selection according to the first information with the fourth priority
  • the UE can ignore the cell selection of the third priority and directly perform the cell selection of the fourth priority.
  • the fourth priority is based on the cell If the channel quality is higher, the UE selects cell 1 with better channel quality as the target cell.
  • the network device configures the terminal with the following cell selection criteria and priorities:
  • First priority determine candidate cells (list) based on satellite type
  • Second priority determine candidate cells (list) based on cell type
  • Third priority Determine candidate cells (list) based on the channel quality of the cells. As shown in Figure 10, the terminal performs the following steps:
  • Step 801 Determine a first candidate cell list according to the satellite type with the first priority
  • the UE determines at least one candidate cell based on the satellite type of the first priority.
  • the UE determines the satellite types corresponding to the four cells in the first candidate cell list based on the system broadcast. For example, the UE currently wants to select the satellite type of LEO (which can be implemented based on the UE or explicitly configured by the network), cell 1, cell 3, and cell 4. and cell 5 both belong to the cells deployed by LEO, then the UE determines that the first candidate cell list includes cell 1, cell 3, cell 4, and cell 5.
  • LEO satellite type of LEO
  • Step 802 Determine whether the number of candidate cells in the first candidate cell list is 1; if yes, go to Step 803; if not, go to Step 804.
  • Step 803 Obtain the target cell.
  • Step 804 Perform cell selection according to the cell type with the second priority to obtain a second candidate cell list
  • the UE selects the preferred cell type in the second candidate cell list.
  • cell 1 and cell 3 are fixed cell types
  • cell 4 and cell 5 are mobile cell types
  • the cell type currently selected by the UE (which can be based on UE implementation or network display configuration) is a fixed cell type, and the UE can select cell 1 and cell type.
  • Cell 3 is the second candidate cell list.
  • Step 805 determine whether the number of candidate cells in the second candidate cell list is 1; if yes, go to Step 803 ; if not, go to Step 806 .
  • Step 806 Perform cell selection according to the channel quality of the cell with the third priority to obtain a third candidate cell list
  • the UE measures the channel quality of cell 1 and cell 3 respectively, and selects cell 1 with better channel quality as the target cell.
  • the UE will not continue screening, because there is only one remaining number of candidate cells in the third candidate cell list.
  • Step 807 determine whether the number of candidate cells in the third candidate cell list is 1; if so, go to Step 803 ; if not, go to Step 808 .
  • Step 808 Perform cell selection according to the first information with the fourth priority
  • the UE may ignore the cell selection of the third priority and directly perform the cell selection of the fourth priority.
  • the network device configures the terminal with the following cell selection criteria and priorities:
  • First priority determine candidate cells (list) based on UE's location information
  • Second priority determine candidate cells (list) based on satellite type
  • Third priority determine candidate cells (list) based on satellite deployment scenarios
  • Step 901 Determine a first candidate cell list according to UE location information with a first priority
  • the UE determines at least one candidate cell based on the location information of the UE of the first priority. Further, the network device uses the system information to broadcast the location of the cell reference point of each cell, that is, the location information of the center of the cell, which may specifically be coordinates, which is not limited in this embodiment.
  • the UE determines the first distance between the UE and the cell reference point of each candidate cell based on its own location information and the location of the cell reference point.
  • the network device broadcasts the cell radius or the first threshold of each cell by using the system information. Based on the first distance and the first threshold/cell radius, the UE determines whether it is currently within the coverage of the candidate cell, thereby determining the first candidate cell list.
  • the first candidate cell list includes cell 1, cell 3, and cell 4. Cell 5, Cell 7.
  • Step 902 Determine whether the number of candidate cells in the first candidate cell list is 1; if so, go to Step 903; if not, go to Step 904.
  • Step 903 Obtain the target cell.
  • Step 904 Perform cell selection according to the satellite type information with the second priority to obtain a second candidate cell list
  • the UE determines the satellite types corresponding to the four cells in the first candidate cell list based on the system broadcast. For example, the UE currently wants to select the satellite type of LEO (which can be implemented based on the UE or explicitly configured by the network), cell 1 and cell 4. and cell 7 both belong to LEO-deployed cells, the UE may further determine a second candidate cell list, where the second candidate cell list includes cell 1 , cell 4 and cell 7 .
  • LEO which can be implemented based on the UE or explicitly configured by the network
  • Step 905 determine whether the number of candidate cells in the second candidate cell list is 1; if so, go to Step 903 ; if not, go to Step 906 .
  • Step 906 Perform cell selection according to the deployment scenario of the satellite with the third priority to obtain a third candidate cell list
  • the UE selects a preferred satellite deployment scenario in the second candidate cell list.
  • the satellite deployment type currently selected by the UE is a regenerative load type, and the UE can select cell 1 and cell 7 as the third candidate cell list.
  • Step 907 determine whether the number of candidate cells in the third candidate cell list is 1; if so, go to Step 903 ; if not, go to Step 908 .
  • Step 908 Perform cell selection according to the cell type with the fourth priority to obtain a fourth candidate cell list
  • the UE selects a preferred cell type in the third candidate cell list, for example, the cell type currently to be selected by the UE is a fixed type, and the UE may select cell 7 as the fourth candidate cell.
  • Cell 7 is the target cell.
  • Step 909 determine whether the number of candidate cells in the fourth candidate cell list is 1; if so, go to Step 903 ; if not, go to Step 910 .
  • Step 910 Wait for retry.
  • step 901 After waiting for a period of time, the execution starts from step 901 again.
  • a cell with better channel quality is selected as the target cell.
  • FIG. 12 a flowchart of a cell selection method provided by an exemplary embodiment of the present application is shown. This embodiment can be executed by a terminal. The method includes:
  • Step 1001 Perform cell selection according to the channel quality of the cell to obtain a first candidate cell list
  • the UE obtains multiple candidate cells, that is, a first candidate cell list, based on the channel quality of the cell and the S criterion. After the UE successfully camps on the current cell, it will continue to measure the current cell.
  • the RRC layer calculates the Srxlev (S criterion) according to the RSRP measurement result, and compares it with Sintrasearch (same-frequency measurement start threshold) and Snonintrasearch (inter-frequency/different system measurement start threshold), as the decision condition for whether to start the measurement of adjacent cells.
  • Step 1002 When there are multiple candidate cells in the first candidate cell list, perform cell selection according to first information different from the channel quality of the cells to obtain a target cell.
  • the candidate cell is determined as the target cell.
  • the terminal continues to perform cell selection according to at least one of terminal location information, satellite type, satellite deployment scenario, and satellite cell type to obtain the target cell.
  • the UE performs cell selection in the first candidate cell list according to the location information of the terminal to obtain the target cell. For example, a candidate cell whose ground reference point is closest to the location information of the terminal is selected and determined as the target cell.
  • the UE performs cell selection in the first candidate cell list according to the type of the satellite to obtain the target cell. For example, a candidate cell whose satellite type is LEO is selected and determined as the target cell. For another example, a candidate cell whose satellite type is GEO is selected and determined as the target cell.
  • the UE performs cell selection in the first candidate cell list according to the type of the satellite to obtain a second candidate cell list, and when the second candidate cell list corresponds to a satellite of the LEO type, performs cell selection according to the cell type of the satellite, Get the target cell.
  • a candidate cell whose cell type is a fixed cell is selected and determined as the target cell.
  • a candidate cell whose cell type is a mobile cell is selected and determined as a target cell.
  • the UE performs cell selection in the first candidate cell list according to the satellite type to obtain the second candidate cell list; and performs cell selection in the second candidate cell list according to the satellite deployment scenario to obtain the target cell. For example, a candidate cell whose deployment scenario is the transparent transmission load is selected and determined as the target cell. For another example, a candidate cell whose deployment scenario is the regeneration load is selected and determined as the target cell.
  • the method provided in this embodiment selects by preferentially using the channel quality of the cell.
  • the cell selection is further performed according to other information other than the channel quality.
  • a reasonable cell can be selected for the terminal in the NTN scenario.
  • FIG. 13 a flowchart of a cell selection method provided by an exemplary embodiment of the present application is shown. This embodiment can be executed by a terminal. The method includes:
  • Step 1101 Perform cell selection according to first information that is different from the channel quality of the cell to obtain a first candidate cell list
  • the UE performs cell selection based on at least one of terminal location information, satellite type, satellite deployment scenario, and satellite cell type to obtain a first candidate cell list.
  • the UE performs cell selection according to the location information of the terminal to obtain the first candidate cell list. For example, a candidate cell whose ground reference point is closest to the location information of the terminal is selected and determined as the first candidate cell list.
  • the UE performs cell selection according to the type of satellites to obtain the first candidate cell list. For example, a candidate cell whose satellite type is LEO is selected and determined as the first candidate cell list. For another example, a candidate cell whose satellite type is GEO is selected and determined as the first candidate cell list.
  • the UE performs cell selection according to the satellite type to obtain an initial candidate cell list.
  • the initial candidate cell list corresponds to a satellite of the LEO type
  • the UE performs cell selection according to the satellite cell type to obtain the first candidate cell list. For example, a candidate cell whose cell type is a fixed cell is selected and determined as the first candidate cell list. For another example, a candidate cell whose cell type is a mobile cell is selected and determined as the first candidate cell list.
  • the UE performs cell selection according to the type of satellite to obtain an initial candidate cell list; and performs cell selection in the initial candidate cell list according to the satellite deployment scenario to obtain a first candidate cell list. For example, a candidate cell whose deployment scenario is the transparent transmission load is selected as the first candidate cell list. For another example, a candidate cell whose deployment scenario is the regeneration load is selected and determined as the first candidate cell list.
  • Step 1102 When there are multiple candidate cells in the first candidate cell list, perform cell selection according to the channel quality of the cells to obtain a target cell.
  • the candidate cell is determined as the target cell.
  • the terminal determines the cell with the best channel quality as the target cell.
  • the cell selection is performed by preferentially using the first information different from the channel quality of the cell, and when there are multiple candidate cells in the first candidate cell list, the cell selection is continued based on the channel quality of the cell
  • a reasonable cell can be selected for a terminal in an NTN scenario under the premise of being compatible with relevant communication protocols.
  • FIG. 14 shows a block diagram of an apparatus for cell selection in an exemplary embodiment of the present application, and the apparatus includes:
  • the selection module 1420 is configured to perform cell selection according to the first information, where the first information includes at least one kind of information different from the channel quality of the cell.
  • the first information includes at least one of the following information:
  • the cell type of the satellite is the cell type of the satellite.
  • the location information of the terminal is determined according to at least one of the following second information:
  • the identifier of the bandwidth part activated by the terminal is the identifier of the bandwidth part activated by the terminal.
  • the type of the satellite includes at least one of the following types:
  • the first information further includes: channel quality of the cell.
  • the selection module 1420 is configured to perform cell selection according to the channel quality of the cell to obtain a first candidate cell list; the candidate cells in the first candidate cell list are: When there are more than one, cell selection is performed according to at least one of the location information of the terminal, the type of the satellite, the deployment scenario of the satellite, and the cell type of the satellite to obtain the target cell.
  • the device further includes:
  • the receiving module 1440 is configured to receive a system broadcast, where the system broadcast carries the first information.
  • different types of the first information have respective priorities
  • the selection module 1420 is configured to preferentially perform cell selection according to the first information with high priority. When the high-priority first information fails to successfully select the target cell, the cell selection is continued using the next-highest priority first information.
  • the selection module 1420 is configured to perform cell selection according to the first information with the i-th priority to obtain the i-th candidate cell list; if the i-th candidate cell list does not satisfy the When the ending condition is used, the cell selection is performed according to the first information with the i+1 th priority to obtain the i+1 th candidate cell list; when the i+1 th candidate cell list satisfies the ending condition, the target cell is obtained;
  • the i-th priority is higher than the i+1-th priority, and the i+1-th candidate cell list is a subset of the i-th candidate cell list.
  • the end condition includes:
  • the number of cells in the current candidate cell list is 1.
  • FIG. 15 shows a schematic structural diagram of a communication device (network device or terminal) provided by an exemplary embodiment of the present application.
  • the communication device includes a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the cell selection method performed by the terminal device or the network device provided by the above-mentioned respective method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种小区选择方法、装置、设备及存储介质,涉及通信领域,所述方法包括:终端在NTN场景下,根据第一信息进行小区选择,第一信息包括如下至少一种:终端的位置信息;卫星的类型;卫星的部署场景;卫星的小区类型。

Description

小区选择方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种小区选择方法、装置、设备及介质。
背景技术
小区选择是指空闲态的用户设备(User Equipment,UE)在选择信号质量较好的小区为其提供服务信号的过程。
在蜂窝通信系统中,由于小区中心和小区边缘的信道质量存在较大差异。UE通过监测当前小区和相邻小区的信道质量,以选择信道质量较好的小区提供服务信号的过程。
但是在非地面通信网络(Non Terrestrial Network,NTN)中,卫星覆盖小区的小区中心和小区边缘的信道质量差异较小,较难根据信道质量进行小区选择。
发明内容
本申请实施例提供了一种小区选择方法、装置、设备及存储介质。所述技术方案如下。
根据本申请的一个方面,提供了一种小区选择方法,所述方法包括:
根据第一信息进行小区选择,所述第一信息包括如下信息中的至少一种:
所述终端的位置信息;
卫星的类型;
所述卫星的部署场景;
所述卫星的小区类型。
根据本申请的一个方面,提供了一种小区选择装置,所述装置包括:
选择模块,用于根据第一信息进行小区选择,所述第一信息包括如下信息中的至少一种:
所述终端的位置信息;
卫星的类型;
所述卫星的部署场景;
所述卫星的小区类型。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的小区选择方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的小区选择方法。
根据本申请的一个方面,提供了一种计算机程序产品,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的小区选择方法。
根据本申请的一个方面,提供了一种芯片,所述芯片用于执行以实现如上述方面所述的小区选择方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过采用终端的位置信息、卫星的类型、卫星的部署场景、卫星的小区类型等非信道质量信息来进行小区选择,能够解决在NTN场景下只根据信道质量无法选择出合理的小区的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的透传载荷NTN的网络架构图;
图2是本申请一个示例性实施例提供的再生载荷NTN的网络架构图;
图3是本申请一个示例性实施例提供的小区选择方法的流程图;
图4是本申请一个示例性实施例提供的小区选择方法的流程图;
图5是本申请一个示例性实施例提供的小区选择方法的流程图;
图6是本申请一个示例性实施例提供的小区选择方法的流程图;
图7是本申请一个示例性实施例提供的移动小区类型的小区示意图;
图8是本申请一个示例性实施例提供的移动小区类型的小区示意图;
图9是本申请一个示例性实施例提供的小区选择方法的流程图;
图10是本申请一个示例性实施例提供的小区选择方法的流程图;
图11是本申请一个示例性实施例提供的小区选择方法的流程图;
图12是本申请一个示例性实施例提供的小区选择方法的流程图;
图13是本申请一个示例性实施例提供的小区选择方法的流程图;
图14是本申请一个示例性实施例提供的小区选择装置的框图;
图15是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前第三代合作伙伴项目(Third Generation Partnership Project,3GPP)正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary  Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
存在至少两种NTN场景:透传载荷NTN和再生载荷NTN。图1示出了透传载荷NTN的场景,图2示出了再生载荷NTN的场景。
NTN网络由以下网元组成:
·1个或者多个网关,用于连接卫星和地面公共网络。
·馈线链路:用于网关和卫星之间通信的链路
·服务链路:用于终端和卫星之间通信的链路
·卫星:从其提供的功能上可以分为透传载荷和再生载荷这两种。
·透传载荷:只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。
·再生载荷:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
·星间链路(Inter-satellite links,ISL):存在于再生载荷场景下。
图3示出了本申请一个示例性实施例提供的小区选择方法的流程图。本实施例以该方法由终端来执行来举例。该方法包括:
步骤320:根据第一信息进行小区选择。
示意性的,在NTN场景下,终端根据第一信息进行小区选择,第一信息包括但不限于:与小区的信道质量不同的至少一种信息。小区的信道质量,也可以理解为小区的信号质量。
在一个示例中,小区选择包括:小区初选和小区重选中的至少一种。本申请以小区重选来举例说明,但对此不加以限定。
在一个示例中,第一信息包括如下信息中的至少一项:
·终端的位置信息;
终端的位置信息是根据如下第二信息中的至少一种确定的:终端与卫星之间的距离;终端与小区参考点之间的距离;终端的(Global Positioning System,GPS)位置信息;终端的定时提前量(Timing Advance,TA);终端与卫星之间的往返时延(Round-TripTime,RTT);终端与卫星之间的传输时延(propagation delay);终端当前驻留小区(CELL ID);终端对应的同步信号块索引(SSB index);终端驻留的卫星波束索引(satellite beam index);终端激活的带宽部分标识(BWP ID)。
其中,RTT和传输时延可采用终端和卫星之间的距离计算得到。卫星的实 时位置可采用卫星的星历信息计算得到。终端的位置信息可以是较为精确的位置信息,也可以是相对粗略的位置信息。
·卫星的类型;
卫星的类型包括如下类型中的至少一种:LEO卫星;MEO卫星;GEO卫星;无人机平台(UAS Platform)卫星;HEO卫星。
·卫星的部署场景;
卫星的部署场景包括如下至少一种:透传载荷场景和再生载荷场景。
·卫星的小区类型;
卫星的小区包括如下至少一种:固定小区(fixedcell);移动小区(movingcell)。
在一个示例中,在上述第一信息的基础上,第一信息还包括:小区的信道质量。小区的信道质量包括:当前小区的第一信道质量,和/或,相邻小区的第二信道质量。可选地,信道质量采用参考信号接收功率(Reference Signal Received Power,RSRP)表示,基于小区选择/重选的S准则来进行小区选择。
在一个示例中,上述第一信息中的全部或部分是由网络设备通过系统信息(SystemInformation,SI)广播的。
综上所述,本实施例提供的方法,通过采用终端的位置信息、卫星的类型、卫星的部署场景、卫星的小区类型等非信道质量信息来进行小区选择,能够解决在NTN场景下无法只根据信道质量进行合理的小区选择的问题。
在基于图3的可选实施例中,在第一信息包括两种信息的情况下,不同类型的第一信息具有各自的优先级。终端优先根据高优先级的第一信息进行小区选择。在高优先级的第一信息未能成功选择出目标小区时,继续使用次高优先级的第一信息进行小区选择。本申请实施例对不同类型的第一信息之间的优先级顺序不加以限定。在一个示例中,小区的信道质量的优先级>卫星的类型>卫星的小区类型;在另一个示例中,小区的信道质量的优先级>终端的位置信息>卫星的类型;在另一个示例中,卫星的部署场景>卫星的小区类型>小区的信道质量的优先级。
步骤320可选包括如下步骤,如图4所示:
步骤322:根据具有第i优先级的第一信息进行小区选择,得到第i候选小区列表;
以第一信息包括:信息A、信息B和信息C为例。信息A、信息B和信息C分别是上述多种第一信息中的一种。假设信息A对应第一优先级,信息B对应第二优先级,信息C对应第三优先级。
终端根据具有第一优先级的信息A进行小区选择,得到第一候选小区列表。其中,i的初始值为1或0,本实施例以i的初始值为1来举例说明。
步骤324:在第i候选小区列表不满足结束条件时,根据具有第i+1优先级的第一信息进行小区选择,得到第i+1候选小区列表;
示意性的,结束条件包括:当前候选小区列表中的小区数量为1。
在第一候选小区列表不满足结束条件时,终端根据具有第二优先级的信息B进行小区选择,得到第二候选小区列表;在第二候选小区列表不满足结束条件 时,终端根据具有第三优先级的信息B进行小区选择,得到第二候选小区列表。
其中,第i优先级高于第i+1优先级,第i+1候选小区列表是第i候选小区列表的子集。或者,第i+1候选小区列表是根据第i+1优先级的第一信息从第i候选小区列表中选择出的列表。
步骤326:在第i+1候选小区列表满足结束条件时,得到目标小区;
在第i+1候选小区列表中的小区数量为1时,得到目标小区。
在第i+1候选小区列表中的小区数量大于1时,等待预定时长后重新执行上述流程,或者,选择第i+1候选小区列表中具有最好信道质量的候选小区,作为目标小区。
综上所述,本实施例提供的方法,通过结合优先级来使用多种第一信息进行小区选择,从而保证小区选择的可靠性,避免无用的乒乓效应。
针对第一信息包括:小区的信道质量的情形:
在基于图3所示的实施例中,如图5所示,第一信息包括小区的信道质量,终端根据小区的信道质量进行小区选择,得到候选小区列表,包括:
步骤520:基于小区的信道质量以及S准则得到多个候选小区;
UE成功驻留后,将持续进行当前小区测量。RRC层根据RSRP测量结果计算Srxlev(S准则),并将其与Sintrasearch(同频测量启动门限)和Snonintrasearch(异频/异系统测量启动门限)比较,作为是否启动相邻小区测量的判决条件。
步骤540:根据最好的信道质量,在所有候选小区中确定出候选小区列表。
其中,候选小区列表中的各个候选小区的信道质量与最好的信道质量之间的质量差小于阈值rangeToBestCell。
在基于图4所示的实施例中,第一信息包括信道质量,终端根据具有第i优先级的信道质量进行小区选择,得到第i候选小区列表,包括:
在i=1时,终端基于信道质量以及S准则得到多个候选小区。根据最好的信道质量,在所有候选小区中确定出第一候选小区列表。第一候选小区列表中的各个候选小区的信道质量与最好的信道质量之间的质量差小于阈值rangeToBestCell(也即R准则)。
在i大于1时,终端基于小区的信道质量以及S准则得到多个候选小区。根据信道质量由高到低排序在前n位的候选小区,确定出第一候选小区列表。或者,根据信道质量大于质量阈值的候选小区,确定出第一候选小区列表。
可选地,数量n是预定义或预配置的,质量阈值是预定义或预配置的。预定义是指通信协议预定义,预配置是指网络设备预先通过系统广播或专有信令或其他信令向终端进行配置。
针对第一信息包括:终端的位置信息的情形:
在基于图3或图4所示的实施例中,如图6所述,第一信息包括终端的位置信息,终端根据终端的位置信息进行小区选择,得到候选小区列表;或者,终端根据具有第i优先级的终端的位置信息进行小区选择,得到第i候选小区列表,包括:
步骤620:根据终端的位置信息,将与终端距离最近或最远的卫星(基站)的小区,确定为候选小区;
可选地,卫星的距离根据卫星的星历信息计算得到。
在一个示例中,根据终端的位置信息,将与终端距离最近的至少一个卫星的小区,确定为候选小区。
最近的至少一个卫星包括:最近的一个卫星、最近且距离相等的多个卫星、距离排序由近到远的n个卫星中的至少之一。
在一个示例中,根据终端的位置信息,将与终端距离最远的至少一个卫星的小区,确定为候选小区。比如UE倾向于选择GEO卫星的情况下。
最远的至少一个卫星包括:最远的一个卫星、最远且距离相等的多个卫星、距离排序由远到近的n个卫星中的至少之一。
步骤640:选择地面参考点与终端的位置信息最近的候选小区,得到候选小区列表。其中,地面参考点是候选小区中的参考点,n为正整数。
综上所述,在本实施例中,若地面参考点是小区中心的位置,UE选择与地面参考点最近的小区意味着:UE位于该小区的中心,该小区能够为UE提供服务的时间相对较长,从而避免了额外的移动性(切换/BWP切换/波束切换等)。
针对第一信息包括:卫星类型的情形:
在基于图3或图4所示的实施例中,第一信息包括卫星类型,终端根据卫星类型进行小区选择,得到候选小区列表;或者,终端根据具有第i优先级的卫星类型进行小区选择,得到第i候选小区列表,包括:
在一种实现可能中:UE优先选择LEO类型的卫星。
LEO卫星的特点是与地面的距离较近,传输时延短,路径损耗少,但LEO卫星与地球自转不同步,卫星一直在移动/变化,会带来额外的移动性。
在一种实现可能中:UE优先选择GEO类型的卫星。
GEO卫星与地球自转同步,虽然距离地面较远,但是可以保障较长的服务时间,移动性较少。
综上所述,在本实施例中,UE根据自身对传输时延、路径损耗、移动性等至少一种因素的需求,优选选择某一种类型的卫星,能够获得更加满足自身需求的通信服务。
针对第一信息包括:卫星部署场景的情形:
在基于图3或图4所示的实施例中,第一信息包括卫星部署场景,终端根据卫星部署场景进行小区选择,得到候选小区列表;或者,终端根据具有第i优先级的卫星部署场景进行小区选择,得到第i候选小区列表,包括:
在一种实现可能中:UE优先选择透传载荷部署的卫星。
采用透传载荷部署的卫星只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。也就是说,UE通过透传载荷部署的卫星连接的是地面的基站,UE选择透传载荷部署的卫星虽然传输时间较长(UE与卫星的传输时延+卫星与基站之间的传输时延),但是当卫星(比如LEO)移动时,地面基站是没有改变的,UE的配置是不变的。
在一种实现可能中:UE优先选择再生载荷部署的卫星。
再生载荷部署的卫星除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。再生载荷部署的卫星具有基站的部分或者全部功能。UE选择再生载荷部署的卫星可以减少传输时延。
综上所述,在本实施例中,UE根据自身对传输时延、路径损耗、移动性等至少一种因素的需求,优选选择某一种卫星部署场景的卫星,能够获得更加满足自身需求的通信服务。
针对第一信息包括:小区类型的情形:
在基于图3或图4所示的实施例中,第一信息包括小区类型,终端根据小区类型进行小区选择,得到候选小区列表;或者,终端根据具有第i优先级的小区类型进行小区选择,得到第i候选小区列表,包括:
在一种实现可能中:UE优先选择固定小区类型的卫星。
固定小区类型的卫星在地面上的小区覆盖是固定的,不会随着卫星的移动而变化。如图7所示,卫星#1在时刻T1的地面小区、在时刻T1+00:10的地面小区、在时刻T1+00:20的地面小区都是固定不变的。
在一种实现可能中:UE优先选择移动小区类型的卫星。
移动小区类型的卫星在地面上的小区覆盖是变化的,随着卫星的移动而变化。如图8所示,卫星#1位于小区覆盖的正上方,在卫星的移动过程(比如时刻T1、T2、T3)中,小区的位置也一直在变化。
综上所述,在本实施例中,UE根据固定小区类型的卫星,能够避免频繁的移动性;UE根据移动小区类型的卫星,能够得到较短的传输时延。
在基于图4的一个示例中,网络设备向终端配置了如下小区选择的准则以及优先级:
第一优先级:基于UE的位置信息确定候选小区(列表);
第二优先级:基于卫星类型确定候选小区(列表);
第三优先级:基于小区类型确定候选小区(列表)。如图9所示,终端执行如下步骤:
步骤701:根据具有第一优先级的UE位置信息确定第一候选小区列表;
UE基于第一优先级的UE的位置信息确定至少一个候选小区。进一步的,网络设备采用系统信息广播各个小区的小区参考点位置,也就是小区中心的位置信息,具体可以是坐标,本实施例此处不限制。
UE基于自己的位置信息以及小区参考点位置,判断UE距离各个候选小区的小区参考点的第一距离。同时网络设备采用系统信息广播各个小区的小区半径或者第一阈值。UE基于第一距离以及第一阈值/小区半径,判断当前是否处于候选小区的覆盖范围内,从而确定出第一候选小区列表,比如第一候选小区列表包括了小区1,小区3,小区4,小区5。
步骤702:判断第一候选小区列表中的候选小区个数是否为1;如果是,则进入步骤703;如果不是,则进入步骤704。
步骤703:得到目标小区。
步骤704:根据具有第二优先级的卫星类型信息进行小区选择,得到第二候选小区列表;
进一步的,UE基于系统广播来判断第一候选小区列表中的四个小区对应的卫星类型,比如UE当前要选择LEO的卫星类型(可以基于UE实现或者网络显式配置),小区1和小区4都属于LEO部署的小区,那么UE可以进一步确定第二候选小区列表,第二候选小区列表包括小区1和小区4。
步骤705:判断第二候选小区列表中的候选小区个数是否为1;如果是,则进入步骤703;如果不是,则进入步骤706。
步骤706:根据具有第三优先级的小区类型信息进行小区选择,得到第三候选小区列表;
进一步的,UE在第二候选小区列表中选择倾向的小区类型,比如UE当前 要选择的小区类型(可以基于UE实现或者网络显示配置)是固定小区类型,UE可以选择小区1为第三候选小区列表,小区1为最后的目标小区。
若网络设备还配置了第四优先级,此时UE也不会再继续进行筛选,因为第三候选小区列表中的候选小区的剩余个数只剩一个。
步骤707:判断第三候选小区列表中的候选小区个数是否为1;如果是,则进入步骤703;如果不是,则进入步骤708。
步骤708:根据具有第四优先级的第一信息进行小区选择;
若UE在执行第三优先级筛选的时候两个小区都是移动小区类型,UE可以忽略第三优先级的小区选择,而直接执行第四优先级的小区选择,比如第四优先级是基于小区的信道质量,那么UE选择信道质量较好的小区1作为目标小区。
在基于图4的一个示例中,网络设备向终端配置了如下小区选择的准则以及优先级:
第一优先级:基于卫星类型确定候选小区(列表);
第二优先级:基于小区类型确定候选小区(列表);
第三优先级:基于小区的信道质量确定候选小区(列表)。如图10所示,终端执行如下步骤:
步骤801:根据具有第一优先级的卫星类型确定第一候选小区列表;
UE基于第一优先级的卫星类型确定至少一个候选小区。
UE基于系统广播来判断第一候选小区列表中的四个小区对应的卫星类型,比如UE当前要选择LEO的卫星类型(可以基于UE实现或者网络显式配置),小区1、小区3、小区4和小区5都属于LEO部署的小区,那么UE确定第一候选小区列表包括了小区1,小区3,小区4,小区5。
步骤802:判断第一候选小区列表中的候选小区个数是否为1;如果是,则进入步骤803;如果不是,则进入步骤804。
步骤803:得到目标小区。
步骤804:根据具有第二优先级的小区类型进行小区选择,得到第二候选小区列表;
UE在第二候选小区列表中选择倾向的小区类型。比如,小区1和小区3是固定小区类型,小区4和小区5是移动小区类型,UE当前要选择的小区类型(可以基于UE实现或者网络显示配置)是固定小区类型,UE可以选择小区1和小区3为第二候选小区列表。
步骤805:判断第二候选小区列表中的候选小区个数是否为1;如果是,则进入步骤803;如果不是,则进入步骤806。
步骤806:根据具有第三优先级的小区的信道质量进行小区选择,得到第三候选小区列表;
UE对小区1和小区3的信道质量分别进行测量,选择信道质量较好的小区1为目标小区。
若网络设备还配置了第四优先级,此时UE也不会再继续进行筛选,因为第三候选小区列表中的候选小区的剩余个数只剩一个。
步骤807:判断第三候选小区列表中的候选小区个数是否为1;如果是,则进入步骤803;如果不是,则进入步骤808。
步骤808:根据具有第四优先级的第一信息进行小区选择;
若UE在执行第三优先级筛选的时候两个小区的信道质量比较接近,UE可以忽略第三优先级的小区选择,而直接执行第四优先级的小区选择。
在基于图4的一个示例中,网络设备向终端配置了如下小区选择的准则以及优先级:
第一优先级:基于UE的位置信息确定候选小区(列表);
第二优先级:基于卫星类型确定候选小区(列表);
第三优先级:基于卫星的部署场景确定候选小区(列表);
第四优先级:基于卫星的小区类型确定候选小区(列表)。如图11所示,终端执行如下步骤:
步骤901:根据具有第一优先级的UE位置信息确定第一候选小区列表;
UE基于第一优先级的UE的位置信息确定至少一个候选小区。进一步的,网络设备采用系统信息广播各个小区的小区参考点位置,也就是小区中心的位置信息,具体可以是坐标,本实施例此处不限制。
UE基于自己的位置信息以及小区参考点位置,判断UE距离各个候选小区的小区参考点的第一距离。同时网络设备采用系统信息广播各个小区的小区半径或者第一阈值。UE基于第一距离以及第一阈值/小区半径,判断当前是否处于候选小区的覆盖范围内,从而确定出第一候选小区列表,比如第一候选小区列表包括了小区1,小区3,小区4,小区5,小区7。
步骤902:判断第一候选小区列表中的候选小区个数是否为1;如果是,则进入步骤903;如果不是,则进入步骤904。
步骤903:得到目标小区。
步骤904:根据具有第二优先级的卫星类型信息进行小区选择,得到第二候选小区列表;
进一步的,UE基于系统广播来判断第一候选小区列表中的四个小区对应的卫星类型,比如UE当前要选择LEO的卫星类型(可以基于UE实现或者网络显式配置),小区1、小区4和小区7都属于LEO部署的小区,那么UE可以进一步确定第二候选小区列表,第二候选小区列表包括小区1、小区4和小区7。
步骤905:判断第二候选小区列表中的候选小区个数是否为1;如果是,则进入步骤903;如果不是,则进入步骤906。
步骤906:根据具有第三优先级的卫星的部署场景进行小区选择,得到第三候选小区列表;
进一步的,UE在第二候选小区列表中选择倾向的卫星的部署场景,比如UE当前要选择的卫星部署类型是再生载荷类型,UE可以选择小区1和小区7为第三候选小区列表。
步骤907:判断第三候选小区列表中的候选小区个数是否为1;如果是,则进入步骤903;如果不是,则进入步骤908。
步骤908:根据具有第四优先级的小区类型进行小区选择,得到第四候选小区列表;
进一步的,UE在第三候选小区列表中选择倾向的小区类型,比如UE当前要选择的小区类型是固定类型,UE可以选择小区7为第四候选小区。小区7为目标小区。
步骤909:判断第四候选小区列表中的候选小区个数是否为1;如果是,则进入步骤903;如果不是,则进入步骤910。
步骤910:等待重试。
等待一段时间后,重新从步骤901开始执行。或者,选择信道质量较好的小区作为目标小区。
如图12所示,示出了本申请一个示例性实施例提供的小区选择方法的流程图。本实施例可以由终端来执行。该方法包括:
步骤1001:根据小区的信道质量进行小区选择,得到第一候选小区列表;
以小区重选场景为例,UE基于小区的信道质量以及S准则得到多个候选小区,也即第一候选小区列表。UE成功驻留当前小区后,将持续进行当前小区测量。RRC层根据RSRP测量结果计算Srxlev(S准则),并将其与Sintrasearch(同频测量启动门限)和Snonintrasearch(异频/异系统测量启动门限)比较,作为是否启动相邻小区测量的判决条件。
步骤1002:在第一候选小区列表中的候选小区为多个时,根据与小区的信道质量不同的第一信息进行小区选择,得到目标小区。
在第一候选小区列表中的候选小区为1个时,将该候选小区确定为目标小区。在第一候选小区列表中的候选小区为多个时,终端继续根据终端的位置信息、卫星的类型、卫星的部署场景、卫星的小区类型中的至少一种进行小区选择,得到目标小区。
在一个示例中,UE根据终端的位置信息在第一候选小区列表中进行小区选择,得到目标小区。比如,选择地面参考点与终端的位置信息最近的候选小区,确定为目标小区。
在一个示例中,UE根据卫星的类型在第一候选小区列表中进行小区选择,得到目标小区。比如,选择卫星类型为LEO的候选小区,确定为目标小区。又比如,选择卫星类型为GEO的候选小区,确定为目标小区。
在一个示例中,UE根据卫星的类型在第一候选小区列表中进行小区选择,得到第二候选小区列表,在第二候选小区列表对应LEO类型的卫星时,根据卫星的小区类型进行小区选择,得到目标小区。比如,选择小区类型为固定小区的候选小区,确定为目标小区。又比如,选择小区类型为移动小区的候选小区,确定为目标小区。
在一个示例中,UE根据卫星的类型在第一候选小区列表中进行小区选择,得到第二候选小区列表;根据卫星的部署场景在第二候选小区列表中进行小区选择,得到目标小区。比如,选择部署场景为透传载荷的候选小区,确定为目标小区。又比如,选择部署场景为再生载荷的候选小区,确定为目标小区。
综上所述,本实施例提供的方法,通过优先采用小区的信道质量来进行选择,在无法根据小区的信道质量选择出合理的服务小区时,进一步根据非信道质量的其它信息进行小区选择,能够在兼容相关通信协议的前提下,为NTN场景下的终端选择出合理的小区。
如图13所示,示出了本申请一个示例性实施例提供的小区选择方法的流程图。本实施例可以由终端来执行。该方法包括:
步骤1101:根据与小区的信道质量不同的第一信息进行小区选择,得到第一候选小区列表;
以小区重选场景为例,UE基于终端的位置信息、卫星的类型、卫星的部署场景、卫星的小区类型中的至少一种来进行小区选择,得到第一候选小区列表。
在一个示例中,UE根据终端的位置信息进行小区选择,得到第一候选小区列表。比如,选择地面参考点与终端的位置信息最近的候选小区,确定为第一候选小区列表。
在一个示例中,UE根据卫星的类型进行小区选择,得到第一候选小区列表。 比如,选择卫星类型为LEO的候选小区,确定为第一候选小区列表。又比如,选择卫星类型为GEO的候选小区,确定为第一候选小区列表。
在一个示例中,UE根据卫星的类型进行小区选择,得到初始的候选小区列表,在初始的候选小区列表对应LEO类型的卫星时,根据卫星的小区类型进行小区选择,得到第一候选小区列表。比如,选择小区类型为固定小区的候选小区,确定为第一候选小区列表。又比如,选择小区类型为移动小区的候选小区,确定为第一候选小区列表。
在一个示例中,UE根据卫星的类型进行小区选择,得到初始的候选小区列表;根据卫星的部署场景在初始的候选小区列表中进行小区选择,得到第一候选小区列表。比如,选择部署场景为透传载荷的候选小区,确定为第一候选小区列表。又比如,选择部署场景为再生载荷的候选小区,确定为第一候选小区列表。
步骤1102:在第一候选小区列表中的候选小区为多个时,根据小区的信道质量进行小区选择,得到目标小区。
在第一候选小区列表中的候选小区为1个时,将该候选小区确定为目标小区。在第一候选小区列表中的候选小区为多个时,终端将信道质量最好的小区,确定为目标小区。
综上所述,本实施例提供的方法,通过优先采用与小区的信道质量不同的第一信息进行小区选择,在第一候选小区列表中的候选小区为多个时,继续根据小区的信道质量来进行选择目标小区,能够在兼容相关通信协议的前提下,为NTN场景下的终端选择出合理的小区。
图14示出了本申请一个示例性实施例中的小区选择装置的框图,所述装置包括:
选择模块1420,用于根据第一信息进行小区选择,所述第一信息包括与小区的信道质量不同的至少一种信息。
在本实施例的一个可选设计中,所述第一信息包括如下信息中的至少一种:
所述终端的位置信息;
卫星的类型;
所述卫星的部署场景;
所述卫星的小区类型。
在本实施例的一个可选设计中,所述终端的位置信息是根据如下第二信息中的至少一种确定的:
所述终端与所述卫星之间的距离;
所述终端与小区参考点之间的距离;
所述终端的GPS位置信息;
所述终端的定时提前量;
所述终端与所述卫星之间的往返时延;
所述终端与所述卫星之间的传播时延;
所述终端的当前驻留小区;
所述终端对应的同步信号块索引;
所述终端驻留的卫星波束索引;
所述终端激活的带宽部分标识。
在本实施例的一个可选设计中,所述卫星的类型包括如下类型中的至少一种:
LEO卫星;
MEO卫星;
GEO卫星;
UAS Platform卫星;
HEO卫星。
在本实施例的一个可选设计中,所述第一信息还包括:所述小区的信道质量。
在本实施例的一个可选设计中,所述选择模块1420,用于根据所述小区的信道质量进行小区选择,得到第一候选小区列表;在所述第一候选小区列表中的候选小区为多个时,根据所述终端的位置信息、所述卫星的类型、所述卫星的部署场景、所述卫星的小区类型中的至少一种进行小区选择,得到目标小区。
在本实施例的一个可选设计中,所述装置还包括:
接收模块1440,用于接收系统广播,所述系统广播携带有所述第一信息。
在本实施例的一个可选设计中,不同类型的所述第一信息具有各自的优先级;
所述选择模块1420,用于优先按照高优先级的第一信息进行小区选择。在高优先级的第一信息未能成功选择出目标小区时,继续使用次高优先级的第一信息进行小区选择。
在本实施例的一个可选设计中,所述选择模块1420,用于根据具有第i优先级的第一信息进行小区选择,得到第i候选小区列表;在所述第i候选小区列表不满足结束条件时,根据具有第i+1优先级的第一信息进行小区选择,得到第i+1候选小区列表;在所述第i+1候选小区列表满足所述结束条件时,得到目标小区;
其中,所述第i优先级高于所述第i+1优先级,所述第i+1候选小区列表是所述第i候选小区列表的子集。
在本实施例的一个可选设计中,所述结束条件包括:
当前候选小区列表中的小区数量为1。
图15示出了本申请一个示例性实施例提供的通信设备(网络设备或终端)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端设备或网络设备执行的小区选择方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种小区选择方法,其特征在于,应用于终端中,所述方法包括:
    根据第一信息进行小区选择,所述第一信息包括如下信息中的至少一种:
    所述终端的位置信息;
    卫星的类型;
    所述卫星的部署场景;
    所述卫星的小区类型。
  2. 根据权利要求1所述的方法,其特征在于,所述终端的位置信息是根据如下第二信息中的至少一种确定的:
    所述终端与所述卫星之间的距离;
    所述终端与小区参考点之间的距离;
    所述终端的GPS位置信息;
    所述终端的定时提前量TA;
    所述终端与所述卫星之间的往返时延RTT;
    所述终端与所述卫星之间的传播时延propagation delay;
    所述终端的当前驻留小区CELL ID;
    所述终端对应的同步信号块索引SSB index;
    所述终端驻留的卫星波束索引satellite beam index;
    所述终端激活的带宽部分标识BWP ID。
  3. 根据权利要求1所述的方法,其特征在于,所述卫星的类型包括如下类型中的至少一种:
    低地球轨道LEO卫星;
    中地球轨道MEO卫星;
    地球同步轨道GEO卫星;
    无人机系统UAS Platform卫星;
    高椭圆轨道HEO卫星。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信息还包括:所述小区的信道质量。
  5. 根据权利要求4所述的方法,其特征在于,所述根据第一信息进行小区选择,包括:
    根据所述小区的信道质量进行小区选择,得到第一候选小区列表;
    在所述第一候选小区列表中的候选小区为多个时,根据所述终端的位置信息、所述卫星的类型、所述卫星的部署场景、所述卫星的小区类型中的至少一种进行小区选择,得到目标小区。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述根据第一信息进行小区选择之前,还包括:
    接收系统广播,所述系统广播携带有所述第一信息。
  7. 根据权利要求1至5任一所述的方法,其特征在于,不同类型的所述第一信息具有各自的优先级;
    所述根据第一信息进行小区选择,包括:
    优先按照高优先级的第一信息进行小区选择。
  8. 根据权利要求7所述的方法,其特征在于,所述优先按照高优先级的第一信息进行小区选择,包括:
    根据具有第i优先级的第一信息进行小区选择,得到第i候选小区列表;
    在所述第i候选小区列表不满足结束条件时,根据具有第i+1优先级的第一信息进行小区选择,得到第i+1候选小区列表;
    在所述第i+1候选小区列表满足所述结束条件时,得到目标小区;
    其中,所述第i优先级高于所述第i+1优先级,所述第i+1候选小区列表是所述第i候选小区列表的子集。
  9. 根据权利要求8所述的方法,其特征在于,所述结束条件包括:
    当前候选小区列表中的小区数量为1。
  10. 一种小区选择装置,其特征在于,应用于终端中,所述装置包括:
    选择模块,用于根据第一信息进行小区选择,所述第一信息包括如下信息中的至少一种:
    所述终端的位置信息;
    卫星的类型;
    所述卫星的部署场景;
    所述卫星的小区类型。
  11. 根据权利要求10所述的装置,其特征在于,所述终端的位置信息是根据如下第二信息中的至少一种确定的:
    所述终端与所述卫星之间的距离;
    所述终端与小区参考点之间的距离;
    所述终端的GPS位置信息;
    所述终端的定时提前量TA;
    所述终端与所述卫星之间的往返时延RTT;
    所述终端与所述卫星之间的传播时延propagation delay;
    所述终端的当前驻留小区CELL ID;
    所述终端对应的同步信号块索引SSB index;
    所述终端驻留的卫星波束索引satellite beam index;
    所述终端激活的带宽部分标识BWP ID。
  12. 根据权利要求10所述的装置,其特征在于,所述卫星的类型包括如下类型中的至少一种:
    低地球轨道LEO卫星;
    中地球轨道MEO卫星;
    地球同步轨道GEO卫星;
    无人机系统UAS Platform卫星;
    高椭圆轨道HEO卫星。
  13. 根据权利要求10所述的装置,其特征在于,所述第一信息还包括:所述小区的信道质量。
  14. 根据权利要求13所述的装置,其特征在于,所述选择模块,用于根据所述小区的信道质量进行小区选择,得到第一候选小区列表;在所述第一候选小区列表中的候选小区为多个时,根据所述终端的位置信息、所述卫星的类型、所述卫星的部署场景、所述卫星的小区类型中的至少一种进行小区选择,得到目标小区。
  15. 根据权利要求10至14任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收系统广播,所述系统广播携带有所述第一信息。
  16. 根据权利要求10至14任一所述的装置,其特征在于,不同类型的所述第一信息具有各自的优先级;
    所述选择模块,用于优选按照高优先级的所述第一信息进行小区选择。
  17. 根据权利要求16所述的装置,其特征在于,
    所述选择模块,用于根据具有第i优先级的第一信息进行小区选择,得到第i候选小区列表;在所述第i候选小区列表不满足结束条件时,根据具有第i+1优先级的第一信息进行小区选择,得到第i+1候选小区列表;在所述第i+1候选小区列表满足所述结束条件时,得到目标小区;
    其中,所述第i优先级高于所述第i+1优先级,所述第i+1候选小区列表是所述第i候选小区列表的子集。
  18. 根据权利要求17所述的装置,其特征在于,所述结束条件包括:
    当前候选小区列表中的小区数量为1。
  19. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至9中任一所述的小区选择方法。
  20. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至9中任一所述的小区选择方法。
PCT/CN2020/107178 2020-08-05 2020-08-05 小区选择方法、装置、设备及介质 WO2022027344A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080104624.1A CN116210273A (zh) 2020-08-05 2020-08-05 小区选择方法、装置、设备及介质
PCT/CN2020/107178 WO2022027344A1 (zh) 2020-08-05 2020-08-05 小区选择方法、装置、设备及介质
EP20948329.6A EP4195764A4 (en) 2020-08-05 2020-08-05 METHOD AND DEVICE FOR CELL SELECTION, APPARATUS AND MEDIUM
US18/105,647 US20230189136A1 (en) 2020-08-05 2023-02-03 Cell selection method and apparatus, device and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107178 WO2022027344A1 (zh) 2020-08-05 2020-08-05 小区选择方法、装置、设备及介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/105,647 Continuation US20230189136A1 (en) 2020-08-05 2023-02-03 Cell selection method and apparatus, device and medium

Publications (1)

Publication Number Publication Date
WO2022027344A1 true WO2022027344A1 (zh) 2022-02-10

Family

ID=80118750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107178 WO2022027344A1 (zh) 2020-08-05 2020-08-05 小区选择方法、装置、设备及介质

Country Status (4)

Country Link
US (1) US20230189136A1 (zh)
EP (1) EP4195764A4 (zh)
CN (1) CN116210273A (zh)
WO (1) WO2022027344A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209546A1 (en) * 2022-04-25 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection in non-terrestrial networks
WO2023214750A1 (en) * 2022-05-02 2023-11-09 Lg Electronics Inc. Method and apparatus for height-based cell selection or reselection in a wireless communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005932A (zh) * 2014-10-01 2017-08-01 英特尔Ip公司 宏小区辅助的小小区网络中的移动通信
CN107666697A (zh) * 2016-07-28 2018-02-06 中兴通讯股份有限公司 一种基于云服务的搜网方法、终端及云服务器
WO2019137949A1 (en) * 2018-01-11 2019-07-18 Sony Corporation Improved cell reselection for an aerial ue
WO2020144572A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for facilitating index-based positioning in a non-terrestrial network
CN111565428A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 小区重选方法以及装置
CN112566193A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 一种小区切换方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4044677A4 (en) * 2019-10-10 2022-09-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR SERVING CELL RESELECTION BASED ON EPHEMERIDES INFORMATION, AND STORAGE MEDIA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107005932A (zh) * 2014-10-01 2017-08-01 英特尔Ip公司 宏小区辅助的小小区网络中的移动通信
CN107666697A (zh) * 2016-07-28 2018-02-06 中兴通讯股份有限公司 一种基于云服务的搜网方法、终端及云服务器
WO2019137949A1 (en) * 2018-01-11 2019-07-18 Sony Corporation Improved cell reselection for an aerial ue
WO2020144572A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for facilitating index-based positioning in a non-terrestrial network
CN111565428A (zh) * 2019-02-14 2020-08-21 华为技术有限公司 小区重选方法以及装置
CN112566193A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 一种小区切换方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THALES: "Solutions for NR to Support Non-terrestrial Networks (NTN)", 3GPP TSG RAN MEETING #88E RP-201256, 30 June 2020 (2020-06-30), XP051910199 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209546A1 (en) * 2022-04-25 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection in non-terrestrial networks
WO2023214750A1 (en) * 2022-05-02 2023-11-09 Lg Electronics Inc. Method and apparatus for height-based cell selection or reselection in a wireless communication system

Also Published As

Publication number Publication date
CN116210273A (zh) 2023-06-02
EP4195764A4 (en) 2023-09-20
EP4195764A1 (en) 2023-06-14
US20230189136A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN111182658B (zh) 一种卫星通信的方法、装置及系统
US20230189136A1 (en) Cell selection method and apparatus, device and medium
WO2022027181A1 (zh) 信息上报方法、装置、设备及存储介质
WO2022073247A1 (zh) 网络选择方法、装置、设备及存储介质
WO2021159535A1 (zh) 小区重选方法及装置
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
US20240088993A1 (en) Relay determination method and apparatus, remote device and storage medium
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
CN111836315A (zh) 联合切换方法、装置、设备和存储介质
WO2022027330A1 (zh) 一种小区选择方法及相关设备
US20230224749A1 (en) Measurement reporting method and apparatus in ntn, receiving method and apparatus, and device and medium
WO2022217613A1 (zh) 数据传输方法、设备及存储介质
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
WO2023230844A1 (zh) 小区参数的配置方法、装置、设备及存储介质
WO2023221099A1 (zh) 请求终端定位的方法、装置、设备及存储介质
WO2023206517A1 (zh) Ntn中的邻小区测量方法、装置、设备及存储介质
WO2022227079A1 (zh) 无线通信方法、终端设备、网络设备及存储介质
WO2023010243A1 (zh) 小区测量方法、装置、设备及介质
RU2787012C2 (ru) Система, устройство и способ спутниковой связи
WO2024011566A1 (zh) 邻区测量启动方法、装置、设备及存储介质
WO2024065748A1 (zh) 能力信息的上报方法、装置、设备及存储介质
WO2023240413A1 (zh) 随机接入方法、装置、设备及存储介质
WO2023070449A1 (zh) 信息传输方法、相关设备及介质
WO2023102728A1 (zh) Ntn中调整门限的方法、装置、设备及存储介质
WO2023123269A1 (zh) Ntn网络中的通信方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020948329

Country of ref document: EP

Effective date: 20230306