WO2023123269A1 - Ntn网络中的通信方法、装置、设备及存储介质 - Google Patents

Ntn网络中的通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023123269A1
WO2023123269A1 PCT/CN2021/143312 CN2021143312W WO2023123269A1 WO 2023123269 A1 WO2023123269 A1 WO 2023123269A1 CN 2021143312 W CN2021143312 W CN 2021143312W WO 2023123269 A1 WO2023123269 A1 WO 2023123269A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
access network
network device
terminal device
tai
Prior art date
Application number
PCT/CN2021/143312
Other languages
English (en)
French (fr)
Inventor
陈景然
卢飞
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/143312 priority Critical patent/WO2023123269A1/zh
Priority to CN202180102997.XA priority patent/CN118077307A/zh
Publication of WO2023123269A1 publication Critical patent/WO2023123269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Definitions

  • the embodiments of the present application relate to the technical field of communication, and in particular to a communication method, device, device and storage medium in an NTN network.
  • the non-terrestrial geostationary satellite is moving relative to the ground, and the beam emitted by the satellite is also moving relative to the ground.
  • the TA Track Area, tracking area
  • the satellite will experience multiple The situation in some areas of TA.
  • the Soft TAC Track Area Code
  • the satellite will broadcast multiple TACs at the same time, causing the UE to receive multiple TACs at the same time.
  • the terminal device will measure the signal of the adjacent cell, and report the identification of the cell that meets the conditions and the measurement result to the source access network device.
  • the source access network device Determine the target access network device and the target TAI (Tracking Area Identity) based on the measurement results reported by the terminal device, and send them to the core network device as the Target ID (Target ID).
  • the target access network device may broadcast multiple TACs. In this case, the source access network device cannot determine the target TAI that the terminal device needs to switch to.
  • the embodiment of the present application provides a communication method, device, device, and storage medium in an NTN network, which can determine the target TAI to be switched by the terminal equipment when the target access network equipment broadcasts multiple TACs, among the Target ID About the processing method of TAI parameters. Described technical scheme is as follows:
  • a communication method in an NTN network is provided, the method is performed by a core network device, and the method includes:
  • the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the target access At least two tracking area codes TAC broadcast by the network equipment through satellite;
  • a target TAI from the at least two TAIs based on the first assistance information, the target TAI indicating a target tracking area TA to which the terminal is to be handed over;
  • a second target identifier is generated based on the target TAI, where the second target identifier includes the target TAI.
  • a communication method in an NTN network is provided, the method is performed by a source access network device, and the method includes:
  • the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the target access network device passing At least two Tracking Area Codes TAC broadcast by satellite.
  • the method is performed by a source access network device, and the method includes:
  • the target TAC Based on the second auxiliary information, determine the target TAC from the at least two TACs to generate a target tracking area identifier TAI, where the target TAI indicates the target tracking area TA to which the terminal device is to be switched;
  • a communication device in an NTN network is provided, the device is used to implement core network equipment, and the device includes:
  • the first receiving module is configured to receive the first target identifier sent by the source access network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs At least two tracking area codes TAC respectively corresponding to the target access network equipment broadcast by satellite;
  • a first determining module configured to determine a target TAI from the at least two TAIs based on the first auxiliary information, where the target TAI indicates a target tracking area TA to which the terminal is to be switched;
  • a first generating module configured to generate a second target identifier based on the target TAI, where the second target identifier includes the target TAI.
  • a communication device in an NTN network is provided, the device is used to implement source access network equipment, and the device includes:
  • the second sending module is configured to send a first target identifier to a core network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the At least two tracking area codes TAC broadcast by the target access network device through satellite.
  • a communication device in an NTN network is provided, the device is used to implement source access network equipment, and the device includes:
  • the third receiving module is configured to receive at least two tracking area codes TAC broadcast by the target access network device via satellite sent by the terminal device;
  • a third determining module configured to determine a target TAC from the at least two TACs based on the second auxiliary information to generate a target tracking area identifier TAI, where the target TAI indicates the target tracking area TA to which the terminal device is to be switched; as well as
  • a third generating module configured to generate a third target identifier based on the target TAI, where the third target identifier includes the target TAI.
  • a core network device includes a processor, and a transceiver connected to the processor;
  • the transceiver is configured to receive a first target identifier sent by a source access network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs At least two tracking area codes TAC respectively corresponding to the target access network equipment broadcast by satellite;
  • the processor is configured to determine a target TAI from the at least two TAIs based on the first assistance information, where the target TAI indicates a target tracking area TA to which the terminal is to be handed over;
  • the processor is configured to generate a second target identifier based on the target TAI, where the second target identifier includes the target TAI.
  • an access network device where the access network device includes a transceiver;
  • the transceiver is configured to send a first target identifier to a core network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the At least two tracking area codes TAC broadcast by the target access network device through satellite.
  • an access network device includes a processor, and a transceiver connected to the processor;
  • the transceiver is configured to receive at least two tracking area codes TAC broadcast by the target access network device via satellite sent by the terminal device;
  • the processor is configured to determine a target TAC from the at least two TACs based on the second auxiliary information to generate a target tracking area identifier TAI, where the target TAI indicates a target tracking area TA to which the terminal device is to switch; as well as
  • the processor is configured to generate a third target identifier based on the target TAI, where the third target identifier includes the target TAI.
  • a computer-readable storage medium is provided, and a computer program is stored in the storage medium, and the computer program is used for execution by a processor, so as to implement the above-mentioned communication method in the NTN network.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned communication method in the NTN network.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and a processor reads from the The computer-readable storage medium reads and executes the computer instructions, so as to realize the above-mentioned communication method in the NTN network.
  • the target access network device When the target access network device broadcasts at least two TACs, all the TACs broadcast by the target access network device are sent to the core network device as the target identifier, and the core network device selects the TAC from the target identifier according to the auxiliary information.
  • the target TAI is selected from at least two TAIs.
  • the source access network device selects one TAC from the at least two TACs as the target TAI, generates a target identifier and sends it to the core network device.
  • a method for selecting a target TAI from multiple TAIs when a target access network device broadcasts multiple TACs in Soft TAC mode is provided.
  • Fig. 1 is the schematic diagram of the Soft TAC mode that an exemplary embodiment of the present application provides
  • FIG. 2 is a flowchart of an access network device switching process provided by an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • Fig. 4 is a schematic diagram of a communication system provided by an exemplary embodiment of the present application.
  • FIG. 5 is a schematic diagram of a network architecture provided by an exemplary embodiment of the present application.
  • Fig. 6 is the flowchart of the communication method in the NTN network provided by an exemplary embodiment of the present application.
  • Fig. 7 is a schematic diagram of TA distribution provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a communication method in an NTN network provided by an exemplary embodiment of the present application.
  • FIG. 9 is a flowchart of a communication method in an NTN network provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a communication method in an NTN network provided by an exemplary embodiment of the present application.
  • FIG. 11 is a flowchart of a communication method in an NTN network provided by an exemplary embodiment of the present application.
  • FIG. 12 is a flowchart of a communication method in an NTN network provided by an exemplary embodiment of the present application.
  • Fig. 13 is a block diagram of a communication device in an NTN network provided by an exemplary embodiment of the present application.
  • FIG. 14 is a block diagram of a communication device in an NTN network provided by an exemplary embodiment of the present application.
  • Fig. 15 is a block diagram of a communication device in an NTN network provided by an exemplary embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • NTN Non-terrestrial Network
  • Satellite communication is not restricted by the user's region. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. that cannot be equipped with communication equipment or are not covered by communication due to sparse population. For satellite communication, due to a Satellites can cover a large area of the ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed regions and promoting development of these areas.
  • the distance of satellite communication is long, and the cost of communication does not increase significantly with the increase of communication distance; finally, the stability of satellite communication is high, and it is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite visible time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirements for the transmission power of the user terminal equipment are not high.
  • Satellites in geosynchronous orbit have an orbital altitude of 35786km and a period of 24 hours around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • a satellite communication scenario such as LEO
  • the satellite moves relative to the ground, and the beams emitted by the satellite also move relative to the ground.
  • the TA is geographically fixed
  • the satellite will cover only TA1, cover part of TA1 and TA2 at the same time, and only cover TA2. Therefore, in Soft TAC mode, when the satellite covers TA1 and TA2 at the same time, it will broadcast two TACs at the same time, causing the UE to receive two TACs at the same time.
  • Fig. 1 only takes 2 TAs as an example, based on factors such as satellite beam coverage size and TA deployment size, the satellite can broadcast more than two TAs at the same time.
  • the handover process based on N2 is shown in Figure 2, and the method includes the following steps:
  • Step 101 S-RAN (Source-Radio Access Network, source access network equipment) sends Handover Required (handover request) to S-AMF (Source-Access and Mobility Management Function, source access and mobility management function) network element .
  • S-RAN Source-Radio Access Network, source access network equipment
  • S-AMF Source-Access and Mobility Management Function, source access and mobility management function
  • the switching request includes Target ID (target identification), PDU (Protocol Data Unit, protocol data unit) session information to be switched, etc.
  • Target ID includes Global RAN Node ID (global access network device node identifier) and selected TAI (selected TAI/target TAI) .
  • Target ID is shown in Table 1.
  • Step 102 If the S-AMF network element can no longer serve UE (User Equipment, user equipment/terminal equipment), then S-AMF selects a T-AMF (Target-Access and Mobility Management Function, target access and mobility management function ) network element.
  • UE User Equipment
  • T-AMF Target-Access and Mobility Management Function
  • Step 103 The S-AMF network element passes the Namf_Communication_CreateUEContext Request N2 information (Target ID, etc.) and UE context information (SUPI (Subscription Permanent Identifier, subscription permanent identifier), PDU session identifier, SMF (Session Management Function, session management function) associated information, etc.) to the T-AMF network element.
  • SUPI Subscribescription Permanent Identifier, subscription permanent identifier
  • PDU session identifier PDU session identifier
  • SMF Session Management Function, session management function
  • Step 104 The T-AMF network element sends a PDU session update request to the corresponding SMF network element to update the corresponding PDU session information according to the PDU session information that needs to be switched, combined with the slice that it can serve.
  • the Target ID is included in the PDU session update request.
  • Step 105 The SMF network element confirms whether the corresponding PDU session can be switched, and at the same time, the SMF network element judges whether to insert an I-UPF (Intermediate-User Plane Function, relay user plane function) according to the position of the UE reflected by the Target ID network element.
  • I-UPF Intermediate-User Plane Function, relay user plane function
  • Step 106 SMF network element and PSA (PDU Session Anchor, PDU session anchor point) UPF and T-UPF (Target-User Plane Function, target user plane function) network element (ie I-UPF network element) interact to establish UPF uplink.
  • PSA PDU Session Anchor, PDU session anchor point
  • T-UPF Target-User Plane Function, target user plane function
  • Step 107 The SMF network element sends a PDU session update response to the T-AMF network element according to whether the PDU session is successfully established, and the PDU session update response includes relevant N2SM (Session Management, session management) information or a failure reason value.
  • N2SM Session Management, session management
  • Step 108 The T-AMF network element sends the message sent by the S-RAN and the N2MM (Mobility Management, mobility management)/SM message to the T-RAN (Target-Radio Access Network, target access network device) through the handover request.
  • the T-AMF network element determines the T-RAN through the Target ID.
  • Step 109 T-RAN judges the PDU sessions that can be handed over and rejects the handover according to the slices and QoS Flows (quality of service flows) it can support, and sends the result and N2 information to the T-AMF network element through the handover request confirmation message .
  • Step 110a The T-AMF network element forwards the information received from the T-RAN to the SMF network element through the PDU session update request, and for the QoS Flows that T-RAN fails to establish, the SMF network element will initiate a PDU session modification after the handover is completed process. For the PDU session that refuses to switch, the SMF network element chooses to release the session or deactivate the session.
  • Step 110b The SMF network element establishes an uplink transmission path between T-RAN and UPF for the PDU session that can receive handover, and if an indirect forwarding path needs to be established, establish an indirect forwarding path from S-UPF to T-RAN.
  • Step 110c The SMF network element feeds back a PDU session update response to the T-AMF network element.
  • Step 111 The T-AMF network element sends Namf_Communication_CreateUEContext Respons to the S-AMF network element, which will require the S-AMF network element to initiate the N2 information related to the handover command, the PDU session that failed to be established, and the S for forwarding when the indirect forwarding path exists.
  • the information of the UPF is sent to the S-AMF network element.
  • Step 112 The S-AMF network element sends a Handover Command (handover command) to the S-RAN. After the S-RAN receives the handover instruction, the S-RAN instructs the UE to perform handover. UE sends Handover Confirm (handover confirmation) to T-RAN. The T-RAN informs the T-AMF that the network element handover is successful.
  • Handover command handover command
  • the S-RAN instructs the UE to perform handover.
  • UE sends Handover Confirm (handover confirmation) to T-RAN.
  • the T-RAN informs the T-AMF that the network element handover is successful.
  • Step 113 If the T-AMF network element cannot support some PDU sessions due to some slicing reasons, the T-AMF network element triggers a PDU session release process. For other PDU sessions, the T-AMF network element updates the information of the PDU session at the SMF network element.
  • Step 114 The SMF network element interacts with the UPF network element to establish a downlink data transmission path.
  • Step 115 The SMF network element deletes the corresponding indirect forwarding path.
  • the embodiment of the present application can be applied in the NTN system, as shown in FIG. 3 and FIG. 4 .
  • FIG. 3 shows a schematic diagram of an NTN system
  • the communication satellites in the NTN system are transparent payload satellites.
  • the NTN system includes: terminal equipment 10 , satellite 20 , NTN gateway 30 , access network equipment 40 and core network equipment 50 .
  • Communication between the terminal device 10 and the access network device 40 can be performed through an air interface (such as a Uu interface).
  • the access network device 40 can be deployed on the ground, and the uplink and downlink communication between the terminal device 10 and the access network device 40 can be relayed and transmitted through the satellite 20 and the NTN gateway 30 (usually located on the ground).
  • the terminal device 10 sends the uplink signal to the satellite 20, and the satellite 20 forwards the above uplink signal to the NTN gateway 30, and then the NTN gateway 30 forwards the above uplink signal to the access network device 40, followed by the access
  • the network device 40 sends the above-mentioned uplink signal to the core network device 50 .
  • the downlink signal from the core network equipment 50 is sent to the access network equipment 40, and the access network equipment 40 sends the downlink signal to the NTN gateway 30, and the NTN gateway 30 forwards the above downlink signal to the satellite 20, and then the The satellite 20 forwards the above-mentioned downlink signal to the terminal device 10 .
  • the uplink and downlink communication between the terminal device 10 and the access network device 40 may not be relayed through the satellite 20 and the NTN gateway 30 .
  • the terminal device 10 sends an uplink signal to the access network device 40 , and the access network device 40 then sends the above uplink signal to the core network device 50 .
  • the downlink signal from the core network device 50 is sent to the access network device 40 , and the access network device 40 sends the downlink signal to the terminal device 10 .
  • FIG. 4 shows a schematic diagram of another NTN system, in which the communication satellite is a regenerative forwarding (regenerative payload) satellite.
  • the NTN system includes: a terminal device 10 , a satellite 20 , an NTN gateway 30 and a core network device 50 .
  • the functions of the access network device 40 are integrated on the satellite 20 , that is, the satellite 20 has the functions of the access network device 40 .
  • Communication between the terminal device 10 and the satellite 20 can be performed through an air interface (such as a Uu interface).
  • the satellite 20 and the NTN gateway 30 (usually located on the ground) can communicate through a satellite radio interface (Satellite Radio Interface, SRI).
  • SRI Satellite Radio Interface
  • the terminal device 10 sends the uplink signal to the satellite 20, and the satellite 20 forwards the above uplink signal to the NTN gateway 30, and then the NTN gateway 30 sends the above uplink signal to the core network device 50.
  • the downlink signal from the core network device 50 is sent to the NTN gateway 30 , the NTN gateway 30 forwards the downlink signal to the satellite 20 , and then the satellite 20 forwards the downlink signal to the terminal device 10 .
  • the access network device 40 is a device for providing wireless communication services for the terminal device 10 .
  • a connection may be established between the access network device 40 and the terminal device 10, so as to perform communication through the connection, including signaling and data interaction.
  • the number of access network devices 40 may be multiple, and two adjacent access network devices 40 may also communicate in a wired or wireless manner.
  • the terminal device 10 can switch between different access network devices 40 , that is, establish connections with different access network devices 40 .
  • the access network device 40 in the cellular communication network may be a base station.
  • a base station is a device deployed in an access network to provide wireless communication functions for terminal equipment 10 .
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with base station functions may be different. For example, in 5G NR systems, they are called gNodeB or gNB.
  • the name "base station" may change as communication technology evolves.
  • the above-mentioned devices that provide the wireless communication function for the terminal device 10 are collectively referred to as base stations or access network devices.
  • the terminal device 10 involved in the embodiment of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user Equipment (User Equipment, UE), mobile station (Mobile Station, MS), terminal device (terminal device) and so on.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the above-mentioned devices are collectively referred to as terminal devices.
  • UE is used in some places to represent “terminal equipment”.
  • the "network device” may be an access network device (such as a base station) or a satellite.
  • the NTN system may include multiple satellites 20 .
  • One satellite 20 may cover a certain ground area, and provide wireless communication services for the terminal devices 10 on the ground area.
  • the satellite 20 can orbit the earth, and by arranging a plurality of satellites 20, communication coverage of different areas on the earth's surface can be achieved.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • 5G 5th Generation
  • 5G 5th Generation
  • 5G 5th Generation
  • FIG. 5 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the 5G network architecture released by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) standard group includes:
  • Access Network supporting 3GPP technology (including Radio Access Network, RAN or Access Network, AN), user plane function (User Plane Function, UPF) network element, access and mobility management function (Access and Mobility Management Function, AMF) network element, session management function (Session Management Function, SMF) network element, policy control function (Policy Control Function, PCF) network element, application function (Application Function, AF) network element, data network (Data Network, DN) Network element, network slice selection function (Network Slice Selection Function, NSSF) network element, authentication server function (Authentication Server Function, AUSF) network element, unified data management function (Unified Data Management, UDM) network element.
  • 3GPP technology including Radio Access Network, RAN or Access Network, AN
  • User Plane Function User Plane Function
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • application Function Application Function
  • AF Application Function
  • AF Application Function
  • AF Application Function
  • the 5G network architecture shown in FIG. 5 does not constitute a limitation on the 5G network architecture.
  • the 5G network architecture may include more or fewer network elements than shown in the figure, or Combine certain network elements, etc.
  • AN or RAN is represented in the form of (R)AN in FIG. 5 .
  • the terminal can be user equipment (User Equipment, UE), handheld terminal, notebook computer, subscriber unit (Subscriber Unit), cellular phone (Cellular Phone), smart phone (Smart Phone), wireless data card, personal digital assistant (Personal Digital Assistant) , PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer (Laptop Computer), cordless phone (Cordless Phone) or wireless local loop (Wireless Local Loop, WLL) station, Machine Type Communication (MTC) terminals, handheld devices with wireless communication capabilities, computing devices, processing devices connected to wireless modems, drones, in-vehicle devices, wearable devices, terminals in the Internet of Things, virtual reality Equipment, terminal equipment in the future 5G network, terminals in the future evolved Public Land Mobile Network (PLMN), etc.
  • PDA Personal Digital Assistant
  • MTC Machine Type Communication
  • the access network device is the access device for the terminal to access the network architecture through wireless means, and is mainly responsible for wireless resource management, quality of service (Quality of Service, QoS) management, data compression and encryption, etc. on the air interface side.
  • QoS Quality of Service
  • base station NodeB evolved base station eNodeB
  • base station in 5G mobile communication system or new generation wireless (New Radio, NR) communication system base station in future mobile communication system, etc.
  • the UPF network element, the AMF network element, the SMF network element, and the PCF network element are network elements of the 3GPP core network (referred to as core network elements).
  • UPF network elements can be called user plane functional network elements, which are mainly responsible for the transmission of user data, and other network elements can be called control plane functional network elements, which are mainly responsible for authentication, authentication, registration management, session management, mobility management and policy control etc. to ensure reliable and stable transmission of user data.
  • the UPF network element can be used to forward and receive terminal data.
  • the UPF network element can receive service data from the data network and transmit it to the terminal through the access network device; the UPF network element can also receive user data from the terminal through the access network device and forward it to the data network.
  • the transmission resource allocated and scheduled by the UPF network element for the terminal is managed and controlled by the SMF network element.
  • the bearer between the terminal and the UPF network element may include: the user plane connection between the UPF network element and the access network device, and the establishment of a channel between the access network device and the terminal.
  • the user plane connection is a quality of service (Quality of Service, QoS) flow (flow) that can establish transmission data between the UPF network element and the access network device.
  • QoS Quality of Service
  • the AMF network element can be used to manage the terminal's access to the core network, such as: terminal location update, network registration, access control, terminal mobility management, terminal attachment and detachment, etc.
  • the AMF network element may also provide storage resources on the control plane for the session of the terminal when providing services for the session, so as to store the session identifier, the SMF network element identifier associated with the session identifier, and the like.
  • the SMF network element can be used to select a user plane network element for the terminal, redirect the user plane network element for the terminal, assign an Internet Protocol (Internet Protocol, IP) address to the terminal, and establish a bearer between the terminal and the UPF network element (also called session), session modification, release, and QoS control.
  • IP Internet Protocol
  • PCF network elements are used to provide policies to AMF network elements and SMF network elements, such as QoS policies and slice selection policies.
  • the AF network element is used to interact with the 3GPP core network element to support the routing of application-affected data, access the network exposure function, and interact with the PCF network element for policy control, etc.
  • the DN can provide users with data services such as the IP Multi-Media Service (IP Multi-Media Service, IMS) network and the Internet.
  • IP Multi-Media Service IP Multi-Media Service
  • IMS IP Multi-Media Service
  • AS Application Server
  • NSSF is used for the selection of network slices.
  • the supported functions are: select the network slice instance set serving the UE; determine the allowed network slice selection assistance information (Network Slice Selection Assistance Information, NSSAI), and determine the contracted single Mapping of network slice selection assistance information (Single-Network Slice Selection Assistance Information, S-NSSAI); determine the configured NSSAI, and determine the mapping to the contracted S-NSSAI if necessary; determine the AMF set that may be used to query the UE , or determine a list of candidate AMFs based on configuration.
  • NSSAI Network Slice Selection Assistance Information
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • the AUSF is used to receive the request from the AMF to authenticate the terminal, request a key from the UDM, and then forward the issued key to the AMF for authentication processing.
  • UDM includes functions such as generation and storage of user subscription data, management of authentication data, and supports interaction with external third-party servers.
  • Each network element in FIG. 5 may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform). It should be noted that, in the network architecture shown in the above figure, the network elements included in the entire network architecture are only illustrated as examples. In this embodiment of the present application, the network elements included in the entire network architecture are not limited.
  • FIG. 6 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to a core network device in the communication system shown in FIG. 3 or FIG. 4 as an example.
  • the method may include the steps of:
  • Step 210 Receive the first target identifier sent by the source access network device, the first target identifier includes at least two TAIs corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the TAI broadcast by the target access network device through satellite At least two TACs.
  • the source access network device sends the first target identifier to the AMF network element/S-AMF network element.
  • the S-RAN sends a handover request (Handover required) to the core network device/AMF network element/S-AMF network element, and the handover request includes the first target identifier.
  • the AMF network element/S-AMF network element receives the first target identifier sent by the S-RAN.
  • the core network device/AMF network element/S-AMF network element receives the handover request sent by the S-RAN, and the handover request includes the first target identifier.
  • the first target identifier includes at least two TAIs respectively corresponding to at least two TACs broadcast by the T-RAN.
  • the first target identifier includes at least two TAIs respectively corresponding to at least two TACs broadcast by satellites connected to the T-RAN.
  • the S-RAN may be an access network device in any of the communication systems shown in Fig. 3 and Fig. 4 . That is, S-RAN can be the access network device in the NTN system; S-RAN can be the access network device that accesses the satellite for transparent forwarding; S-RAN can be the access network device integrated on the regenerative and forwarding satellite ; S-RAN can also be an access network device in a TN system.
  • the S-RAN is the access network device that the terminal device accesses before handover.
  • T-RAN is an access network device in the communication system shown in FIG. 3 . That is, the T-RAN is an access network device that accesses transparently forwarded satellites. T-RAN works in Soft TAC mode.
  • T-RAN is the access network equipment that the terminal equipment needs to switch over.
  • the T-RAN in the embodiment of this application may refer to the access network equipment (base station, macro base station, micro base station, relay station, access point, etc.) deployed on the ground, or it may refer to the A satellite may also refer to an NTN gateway, or may refer to a system composed of ground access network equipment, satellites, and an NTN gateway.
  • base station base station
  • micro base station micro base station
  • relay station access point
  • a satellite may also refer to an NTN gateway, or may refer to a system composed of ground access network equipment, satellites, and an NTN gateway.
  • the S-RAN and T-RAN in this embodiment of the present application refer to base stations deployed on the ground.
  • TAI is composed of PLMN (Public Land Mobile Network, public land mobile network) and TAC.
  • the first target identity includes at least two TAIs means: the first target identity includes at least one PLMN and at least two TACs, or, the first target identity includes at least two PLMNs and at least two TACs, or, the first target identity includes at least two PLMNs and at least two TACs, or, the first A target identity includes at least two PLMNs and at least one TAC. That is, 1 PLMN+2 TACs is 2 TAIs, 2 PLMNs+2 TACs is 2 TAIs, and 2 PLMNs+1 TAC is 2 TAIs.
  • the TAIs of at least two tracking areas broadcast by the T-RAN are: TAIs respectively corresponding to all TACs broadcast by the T-RAN.
  • the S-RAN adds all the TACs broadcast by the T-RAN as TAIs to the first Target ID (first target identifier), and sends the first Target ID to the AMF.
  • the format of the first Target ID is shown in Table 2.
  • the first target identifier is used to indicate the target access network device to be handed over by the terminal device.
  • the first target identifier includes a global access network device node identifier (Global RAN Node ID) of the target access network device and at least two ATIs corresponding to the target access network device.
  • Global RAN Node ID global access network device node identifier
  • S in S-RAN, S-AMF, and S-UPF means “Source (source)”.
  • T in T-RAN, T-AMF, and T-UPF means "Target”.
  • Step 220 Based on the first auxiliary information, determine a target TAI from at least two TAIs, where the target TAI indicates a target TA to which the terminal is to switch.
  • the second target identifier is used to indicate the target access network device to be handed over by the terminal device.
  • the second target identifier includes the global access network device node identifier of the target access network device and the selected target ATI.
  • the AMF network element/S-AMF network element/T-AMF network element of the core network device selects a target TAI to be handed over by the terminal device from at least two TAIs based on the first auxiliary information.
  • the first auxiliary information includes location information of the terminal device and first local configuration information of the core network device, where the first local configuration information is used to indicate the location distribution of the at least two tracking areas.
  • the location information of the terminal device includes at least one of the following information: ULI of the terminal device, and actual location information of the terminal device.
  • the actual location information of the terminal device may be GPS (Global Positioning System, Global Positioning System) information and longitude and latitude information of the terminal device.
  • the ULI includes the cell ID (cell ID) of the terminal device and the TAI where the terminal device is currently located.
  • the core network device stores location information historically reported by the terminal device. Or, the core network device receives the latest location information of the terminal device sent by the source access network device.
  • the first local configuration information is local configuration information of the core network device.
  • the first local configuration information includes at least one of the following information: the geographical location distribution of the tracking area corresponding to the satellite connected to the target access network device, the geographical location distribution of the tracking area corresponding to the satellite connected to the source access network device, the The ephemeris information of the satellite connected to the network access device, and the ephemeris information of the satellite connected to the source access network device.
  • the ephemeris information includes the satellite ephemeris of the satellite connected to the access network equipment.
  • Satellite ephemeris also known as Two-Line Orbital Element (TLE, Two-Line Orbital Element) is an expression used to describe the position and velocity of a spaceflight object—a two-line orbital data system.
  • TLE Two-Line Orbital Element
  • different satellites correspond to different TA distributions.
  • the target access network device corresponds to the GEO satellite
  • the source access network device corresponds to the LEO satellite.
  • the GEO satellites correspond to GEO TA1 and GEO TA2 in Figure 7.
  • LEO satellites correspond to LEO TA1, LEO TA2, LEO TA3, and LEO TA4 in Figure 7.
  • the satellite currently connected to the access network device can be known, and according to the satellite currently connected to the access network device, the geographic location distribution of the TA corresponding to the satellite can be known. Then, according to the location information of the terminal device, it can be determined which TA of the satellite the terminal device is located in to which the target access network device is connected.
  • the first local configuration information needs to include: the ephemeris information of the satellite connected to the source access network device, the geographical location distribution of the tracking area corresponding to the satellite connected to the source access network device , the ephemeris information of the satellite connected to the target access network device, and the geographic location distribution of the tracking area corresponding to the satellite connected to the target access network device.
  • ULIs in terminal equipment include LEO TAI1.
  • determine the LEO satellite connected to the source access network device According to the geographical distribution of the TA corresponding to the LEO satellite, the actual location of the LEO TA1 where the terminal device is located can be determined.
  • the GEO satellite connected to the target access network device is determined.
  • GEO TA1 is the terminal device The target TA to switch to.
  • the first local configuration information needs to include the ephemeris information of the satellite connected to the target access network device, and the geographical location distribution of the tracking area corresponding to the satellite connected to the target access network device.
  • the GEO satellite to which the target access network device is connected is determined according to the ephemeris information of the satellite connected to the target access network device.
  • the TA geographic location distribution corresponding to the GEO satellite and the actual location of the terminal device it can be known that the actual location of the terminal device is in GEO TA1 in the TA geographic location distribution of the GEO satellite, then GEO TA1 is the target to be switched by the terminal device T.A.
  • Step 230 Generate a second target identifier based on the target TAI, where the second target identifier includes the target TAI.
  • the second target identifier includes the global access network device node identifier of the target access network device and the target TAI corresponding to the target access network device.
  • the format of the second target identifier is shown in Table 1.
  • the core network device sends the second target identifier to the target network element.
  • the second target identifier is used to indicate the target access network device and the target TA that the terminal device is to handover to.
  • the method provided by the embodiment of the present application is applied to a handover process based on the N2 interface.
  • the core network device selects a target TAI from at least two TAIs in the target identifier according to the auxiliary information.
  • a method for selecting a target TAI from multiple TAIs when a target access network device broadcasts multiple TACs in Soft TAC mode is provided.
  • FIG. 8 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to the source access network device in the communication system shown in FIG. 3 and FIG. 4 as an example.
  • the method may include the steps of:
  • Step 201 Send the first target identifier to the core network device, the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs correspond to the target access network device broadcast by satellite At least two Tracking Area Codes TAC.
  • the first target identifier includes at least two TAIs generated in one-to-one correspondence based on at least two TACs broadcast by the target access network device via satellite.
  • the source access network device receives the cell monitoring result sent by the terminal device.
  • the cell monitoring result includes the identity of the target access network device and at least two TACs broadcast by the target access network device through satellites.
  • the source access network device receives at least two TACs sent by the terminal device and broadcast by the target access network device via satellite.
  • the source access network device determines the target access network device to be handed over by the terminal device according to the cell monitoring result.
  • the source access network device generates at least two TAIs based on at least two TACs corresponding to the target access network device, and generates a first target identifier based on the at least two TAIs.
  • the source access network device will also send the location information of the terminal device to the core network device, and the location information of the terminal device is used to assist the core network device in selecting a target TAI for the terminal device to switch from at least two TAIs.
  • the core network device selects a target TAI from at least two TAIs in the target identifier according to the auxiliary information.
  • a method for selecting a target TAI from multiple TAIs when a target access network device broadcasts multiple TACs in Soft TAC mode is provided.
  • the T-AMF network element may select a target TAI from at least two TAIs identified by the first target.
  • FIG. 9 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to at least one communication system shown in FIG. 3 and FIG. 4 as an example.
  • the method may include the steps of:
  • Step 301 S-RAN sends a handover request to S-AMF, and the handover request includes a first target identifier and location information of UE.
  • the S-RAN receives the cell monitoring result sent by the terminal device, and determines the T-RAN to be switched by the terminal device based on the cell monitoring result; receives at least two TACs broadcast by the T-RAN through satellites sent by the terminal device, and based on at least two A TAC generates a first target identifier, and the first target identifier includes at least two TAIs corresponding to at least two TACs.
  • the S-RAN sends a handover request to the S-AMF, and the handover request includes the first target identifier.
  • the handover request further includes location information of the terminal device.
  • S-RAN will add the T-RAN ID that determines UE handover and all the TACs currently broadcast by T-RAN through satellites to the Target ID as TAI, and report it to the AMF network element.
  • S-RAN sends the Target ID (first Target ID) including multiple TAIs to the S-AMF network element in Handover required (handover request), which optionally also includes ULI (User Location Information, user location information),
  • the ULI includes the TAI and Cell ID (cell identifier) corresponding to the current location of the UE.
  • the first target identifier is carried in the Handover required signaling.
  • the S-RAN receives the cell measurement result sent by the UE, selects the T-RAN that the UE will switch to according to the cell measurement result, generates a first target identifier according to at least two TACs broadcast by the T-RAN through the satellite, and sends the S-RAN
  • the AMF sends the first target identifier. That is, the S-RAN determines the target access network device (T-RAN) to be handed over by the terminal device; generates a first target identifier based on at least two tracking area codes TAC broadcast by the target access network device through satellites, and the first target identifier
  • the at least two TAIs in are generated in one-to-one correspondence based on the at least two TACs.
  • the S-RAN sends the location information of the terminal device to the core network device, and the location information of the terminal device is used to assist the core network device to select a target TAI for the terminal device to switch from at least two TAIs.
  • the S-RAN sends a handover request to the S-AMF, and the handover request includes the first target identifier and location information of the terminal equipment.
  • the location information of the terminal device includes at least one of the following information: ULI of the terminal device, and actual location information of the terminal device.
  • the actual location information of the terminal device may be GPS (Global Positioning System, Global Positioning System) information and longitude and latitude information of the terminal device.
  • the S-RAN network element may synchronize the location information of the terminal device to the S-AMF network element while sending the first target identifier, or may only send the first target identifier to the S-AMF network element without sending the terminal device location information.
  • the reason is that the AMF network element already has UE location information (ULI).
  • ULI UE location information
  • the S-RAN will send the ULI to the AMF network element.
  • the location of the UE may change, causing the ULI stored in the AMF network element to indicate that the TAI of the UE's location does not match the actual location of the UE. Therefore, the S-RAN can also send the latest ULI to the AMF network element.
  • Step 302 If the S-AMF network element can no longer serve the UE, the S-AMF network element selects a T-AMF network element.
  • this embodiment is described by taking the S-AMF network element no longer serving the UE as an example. If the S-AMF network element can continue to serve the UE, all the steps performed by the T-AMF network element in this embodiment are performed by the S-AMF network element, that is, the S-AMF network element and the T-AMF network element in this embodiment Network elements can be merged into AMF network elements.
  • Step 303 The S-AMF network element sends the first Target ID and ULI to the T-AMF network element through the Namf_Communication_CreateUEContext Request signaling.
  • the S-AMF network element locally stores the first local configuration information related to the active access network device and the target access network device.
  • the S-AMF network element sends the location information of the terminal device and the first local configuration information to the T-AMF network element.
  • the T-AMF network element receives the location information of the terminal device and the first local configuration information sent by the S-AMF network element.
  • Step 304 The T-AMF network element according to the first Target ID and ULI, and some optional local configuration information, such as the geographic location distribution of TAs corresponding to the satellites connected to the S-RAN and T-RAN, and the ephemeris information of the satellites, etc. , select a TAI from the first Target ID, the TAI is the TAI for UE target handover, and the T-AMF network element generates a second Target ID (second target identifier).
  • some optional local configuration information such as the geographic location distribution of TAs corresponding to the satellites connected to the S-RAN and T-RAN, and the ephemeris information of the satellites, etc.
  • the core network device/AMF network element/T-AMF network element determines a target TAI from at least two TAIs based on the first auxiliary information, and generates a second target identifier based on the target TAI.
  • the core network device/AMF network element/T-AMF network element sends the second target identifier to the SMF network element.
  • the second target identifier includes a target TAI, and the target TAI is a TAI to be switched by the terminal device selected from at least two TAIs.
  • the core network device/AMF network element/T-AMF network element selects a target TAI from at least two TAIs based on the first auxiliary information (location information of the terminal device and first local configuration information).
  • the first local configuration information is information locally stored by the core network device/AMF network element.
  • the target TAI (selected TAI) to be handed over by the terminal device can be selected from the tracking area broadcast by the T-RAN according to the location information of the terminal device and the geographic location distribution of the tracking area of the satellite connected to the T-RAN.
  • the ULI includes which tracking area of the S-RAN the terminal device is currently located in.
  • the geographic location distribution of the tracking area of the satellite connected to the S-RAN, and the geographic location distribution of the tracking area of the satellite connected to the T-RAN, the terminal equipment to be switched can be selected from the tracking area broadcast by the T-RAN.
  • the target TAI selected TAI.
  • Step 305 The T-AMF network element sends a PDU session update request to the corresponding SMF network element according to the PDU session message to be switched and combined with the slice it can serve.
  • the PDU session update request is used to update the corresponding PDU session information.
  • the PDU session update request includes the second Target ID.
  • the T-AMF network element sends the second target identifier to the SMF network element.
  • the second target identifier is carried in Nsmf_PDUSession_UpdateSMContext Request signaling.
  • Step 306 The SMF network element confirms whether the corresponding PDU session can be switched, and at the same time, the SMF network element judges whether the I-UPF network element needs to be inserted according to the position of the UE reflected by the second Target ID.
  • the SMF network element determines the T-UPF according to the location of the terminal equipment represented by the target TAI in the second target identifier.
  • Step 307 The SMF network element interacts with the PSA UPF network element and the T-UPF network element to establish an uplink between UPFs.
  • Step 308 The SMF network element sends a PDU session update response to the T-AMF network element according to whether the PDU session is successfully established, and the PDU session update response includes relevant N2SM information or failure cause value.
  • the PDU session update response is carried in the Nsmf_PDUSession_UpdateSMContext Response signaling.
  • Step 309 The T-AMF network element sends the message sent by the S-RAN and the N2MM/SM message to the T-RAN through a handover request. Wherein, the T-AMF network element determines the T-RAN through the second Target ID.
  • Step 310 T-RAN judges the PDU sessions that can be handed over and rejects the handover according to the slices and QoS Flows it can support, and sends the result and N2 information to the T-AMF network element through the handover request confirmation message.
  • Step 311a The T-AMF network element forwards the information received from the T-RAN to the SMF network element through the PDU session update request, and for the QoS Flows that T-RAN fails to establish, the SMF network element will initiate a PDU session modification after the handover is completed process. For the PDU session that refuses to switch, the SMF network element chooses to release the session or deactivate the session.
  • Step 311b The SMF network element establishes an uplink transmission path between T-RAN and UPF for the PDU session that can receive handover, and if an indirect forwarding path needs to be established, establish an indirect forwarding path from S-UPF to T-RAN.
  • Step 311c The SMF network element feeds back a PDU session update response to the T-AMF network element.
  • Step 312 The T-AMF network element sends Namf_Communication_CreateUEContext Respons to the S-AMF network element, which will require the S-AMF network element to initiate the N2 information related to the handover command, the PDU session that failed to be established, and the S for forwarding when the indirect forwarding path exists. - Send the UPF information to the S-AMF network element.
  • Step 313 The S-AMF network element sends a Handover Command (handover command) to the S-RAN. After the S-RAN receives the handover instruction, the S-RAN instructs the UE to perform handover. UE sends Handover Confirm (handover confirmation) to T-RAN. The T-RAN informs the T-AMF that the network element handover is successful.
  • Handover command handover command
  • the S-RAN instructs the UE to perform handover.
  • UE sends Handover Confirm (handover confirmation) to T-RAN.
  • the T-RAN informs the T-AMF that the network element handover is successful.
  • Step 314 If the T-AMF network element cannot support some PDU sessions due to some slicing reasons, the T-AMF network element triggers a PDU session release process. For other PDU sessions, the T-AMF network element updates the information of the PDU session at the SMF network element.
  • Step 315 The SMF network element interacts with the UPF network element to establish a downlink data transmission path.
  • Step 316 The SMF network element deletes the corresponding indirect forwarding path.
  • the T-AMF selects the target TAI from at least two TAIs based on the location information of the terminal, the geographic location distribution of the satellites connected to the T-RAN, etc., generates a second target identifier according to the target TAI, and uses the second target The identification continues to execute the subsequent switching process.
  • the S-AMF network element may select a target TAI from at least two TAIs identified by the first target.
  • FIG. 10 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to at least one communication system shown in FIG. 3 and FIG. 4 as an example.
  • the method may include the steps of:
  • Step 401 S-RAN sends a handover request to S-AMF, and the handover request includes a first target identifier and location information of UE.
  • Step 402 If the original AMF network element can no longer serve the UE, the S-AMF network element selects a T-AMF network element.
  • Step 401 and step 402 may refer to the explanation of step 301 and step 302 .
  • Step 403 The S-AMF network element is based on the first Target ID, ULI, and some optional local configuration information, such as the geographical distribution of TAs corresponding to the satellites connected to the S-RAN and T-RAN, and the ephemeris information of the satellites, etc., To select a TAI from the first Target ID, the TAI is the TAI for UE target switching. The T-AMF network element generates the second Target ID.
  • the core network device/AMF network element/S-AMF network element determines a target TAI from at least two TAIs based on the first auxiliary information, and generates a second target identifier based on the target TAI.
  • the core network device/AMF network element/S-AMF network element sends the second target identifier to the T-AMF network element.
  • the second target identifier includes a target TAI, and the target TAI is a TAI to be switched by the terminal device selected from at least two TAIs.
  • the core network device/AMF network element/S-AMF network element selects a target TAI from at least two TAIs based on the first auxiliary information (location information of the terminal device and first local configuration information).
  • the first local configuration information is information locally stored by the core network device/AMF network element/S-AMF network element.
  • the core network device/AMF network element/S-AMF network element locally stores the location information previously reported by the terminal device, or the core network device/AMF network element/S-AMF network element receives the terminal device sent by the terminal device location information.
  • Step 404 The S-AMF network element sends the second Target ID to the T-AMF network element through Namf_Communication_CreateUEContext Request signaling.
  • Step 405 The T-AMF network element sends a PDU session update request to the corresponding SMF network element according to the PDU session message that needs to be switched, combined with the slice that it can serve, for updating the corresponding PDU session information.
  • the PDU session update request includes the second Target ID.
  • the T-AMF network element sends the second target identifier to the SMF network element.
  • the second target identifier is carried in Nsmf_PDUSession_UpdateSMContext Request signaling.
  • Step 406 The SMF network element confirms whether the corresponding PDU session can be switched, and at the same time, the SMF network element judges whether to insert the I-UPF network element according to the position of the UE reflected by the second Target ID.
  • Step 407 The SMF network element interacts with the PSA UPF network element and the T-UPF network element to establish an uplink between UPFs.
  • Step 408 The SMF network element sends relevant N2SM information or failure cause value to the T-AMF network element according to whether the PDU session is successfully established.
  • Step 409 The T-AMF network element sends the message sent by the S-RAN and the N2MM/SM message to the T-RAN through a handover request.
  • the T-AMF network element determines the T-RAN through the second Target ID.
  • Step 410 T-RAN judges the PDU sessions that can be handed over and rejects the handover according to the slices and QoS Flows it can support, and sends the result and N2 information to the T-AMF network element through the handover request confirmation message.
  • Step 411a The T-AMF network element forwards the information received from the T-RAN to the SMF network element through the PDU session update request, and for the QoS Flows that T-RAN fails to establish, the SMF network element will initiate a PDU session modification after the handover is completed process. For the PDU session that refuses to switch, the SMF network element chooses to release the session or deactivate the session.
  • Step 411b The SMF network element establishes an uplink transmission path between T-RAN and UPF for the PDU session that can receive handover, and if an indirect forwarding path needs to be established, establish an indirect forwarding path from S-UPF to T-RAN.
  • Step 411c The SMF network element feeds back a PDU session update response to the T-AMF network element.
  • Step 412 The T-AMF network element sends Namf_Communication_CreateUEContext Respons to the S-AMF network element, which will require the S-AMF network element to initiate the N2 information related to the handover command, the PDU session that failed to be established, and the S for forwarding when the indirect forwarding path exists. - Send the UPF information to the S-AMF network element.
  • Step 413 The S-AMF network element sends a Handover Command (handover command) to the S-RAN. After the S-RAN receives the handover instruction, the S-RAN instructs the UE to perform handover. UE sends Handover Confirm (handover confirmation) to T-RAN. The T-RAN informs the T-AMF that the network element handover is successful.
  • Handover command handover command
  • the S-RAN instructs the UE to perform handover.
  • UE sends Handover Confirm (handover confirmation) to T-RAN.
  • the T-RAN informs the T-AMF that the network element handover is successful.
  • Step 414 If the T-AMF network element cannot support some PDU sessions due to some slicing reasons, the T-AMF network element triggers a PDU session release process. For other PDU sessions, the T-AMF network element updates the information of the PDU session at the SMF network element.
  • Step 415 The SMF network element interacts with the UPF network element to establish a downlink data transmission path.
  • Step 416 The SMF network element deletes the corresponding indirect forwarding path.
  • the S-AMF selects the target TAI from at least two TAIs based on the location information of the terminal, the geographic location distribution of the satellites connected to the T-RAN, etc., and generates a second target identifier according to the target TAI, using The second target identifier continues to execute the subsequent handover procedure.
  • FIG. 11 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to the source access network device in the communication system shown in FIG. 3 and FIG. 4 as an example.
  • the method may include the steps of:
  • Step 501 Receive at least two TACs broadcast by the target access network device via satellite and sent by the terminal device.
  • the terminal device sends a cell monitoring result to the source access network device, and the cell monitoring result includes at least two TACs broadcast by the target access network device through satellite. Or, the terminal device separately reports at least two TACs broadcast by the target access network device through satellite to the source access network device.
  • the terminal device also sends the location information of the terminal device to the source access network device, and the source access network device receives the location information sent by the terminal device.
  • Step 502 Based on the second auxiliary information, determine a target TAC from at least two TACs to generate a target TAI, where the target TAI indicates a target TA to which the terminal device is to switch.
  • the second auxiliary information includes location information of the terminal device and second local configuration information.
  • the second local configuration information is information locally stored by the source access network device.
  • the location information of the terminal device includes at least one of the following information: user location information ULI of the terminal device, and actual location information of the terminal device.
  • the second local configuration information includes at least one of the following information: the geographical location distribution of the tracking area corresponding to the satellite connected to the target access network device, the geographical location distribution of the tracking area corresponding to the satellite connected to the source access network device, the The ephemeris information of the satellite connected to the network access device, and the ephemeris information of the satellite connected to the source access network device.
  • the first local configuration information and the second local configuration information are only used to distinguish the local configuration information of the core network device from the local configuration information of the source access network device.
  • the first local configuration information and the second local configuration information may be the same, that is, both may be called local configuration information; of course, the first local configuration information and the second local configuration information may also be different.
  • For the method of selecting a target TAC from at least two TACs based on the second auxiliary information refer to the method of selecting a target TAI from at least two TAIs based on the first auxiliary information in the embodiment shown in FIG. 6 .
  • Step 503 Generate a third target identifier based on the target TAI, where the third target identifier includes the target TAI.
  • the source access network device sends the third target identifier to the AMF network element/S-AMF network element.
  • the S-RAN sends a handover request (Handover required) to the core network device/AMF network element/S-AMF network element, and the handover request includes the third target identifier.
  • the third target identifier includes the target TAI.
  • the target TAI is the TAI corresponding to the target TAC selected from at least two TACs broadcast by the target access network device (T-RAN) via satellite.
  • the S-RAN selects the target TAC from all the TACs broadcast by the T-RAN through the satellite, adds the target TAC as the target TAI to the third Target ID (third target identification), and sends the third Target ID to the AMF.
  • the format of the third Target ID is shown in Table 1.
  • the target TAI is generated based on the target TAC.
  • the target TAC is selected from at least two TAIs broadcast by the target access network device based on the location information of the terminal device and second local configuration information.
  • the second local configuration information is Information stored locally on network-connected devices.
  • the core network device can continue to execute the handover process of the access network device shown in FIG. 2 according to the third target identifier.
  • the source access network device selects one TAC from the at least two TACs as the target TAI, and generates The target identifier is sent to the core network device.
  • a method for selecting a target TAI from multiple TAIs when a target access network device broadcasts multiple TACs in Soft TAC mode is provided.
  • the S-RAN may select the target TAI from at least two TACs.
  • FIG. 12 shows a flowchart of a communication method in an NTN network provided by an embodiment of the present application. This embodiment is described by taking the method applied to at least one communication system shown in FIG. 3 and FIG. 4 as an example.
  • the method may include the steps of:
  • Step 601 When the S-RAN knows the multiple TACs broadcast by the cell measured by the UE, the source S-RAN selects a TAC as the target TAI, and the S-RAN and the T-RAN access the corresponding TAI according to the location of the UE. Parameters such as satellite TA geographic location distribution map and ephemeris information, select a target TAI where the UE's current location is located, as the parameters in the third Target ID (third target identifier).
  • the third Target ID third target identifier
  • the target TAI is selected from at least two TACs broadcast by the target access network device via satellite based on the location information of the terminal device and second local configuration information, the second local configuration information being information locally stored by the source access network device .
  • the S-RAN locally stores the second local configuration information related to the active access network device and the target access network device.
  • the S-RAN receives the cell monitoring result sent by the terminal device, the S-RAN receives at least two TACs broadcast by the target access network device through satellites sent by the terminal device, and the S-RAN receives the location of the terminal device sent by the terminal device information. Based on the cell monitoring results, the S-RAN determines the T-RAN to be switched by the terminal device; determines the target TAC from at least two TACs based on the location information of the terminal device and the second local configuration information, generates the target TAI based on the target TAC, and generates the target TAI based on the target TAC. Third target logo.
  • the S-RAN sends a handover request to the S-AMF, and the handover request includes the third target identifier.
  • Step 602 S-RAN sends a Handover Required (handover request) to the S-AMF network element, and the handover request includes the third Target ID.
  • the third target identifier is carried in the Handover Required signaling.
  • Step 603 If the S-AMF network element can no longer serve the UE, the S-AMF selects a T-AMF network element.
  • this embodiment is described by taking the S-AMF network element no longer serving the UE as an example. If the S-AMF network element can continue to serve the UE, all the steps performed by the T-AMF network element in this embodiment are performed by the S-AMF network element, that is, the S-AMF network element and the T-AMF network element in this embodiment Network elements can be merged into AMF network elements.
  • Step 604 S-AMF network element sends N2 information (third Target ID, etc.) and UE context information (SUPI, PDU session identifier, SMF association information, etc.) to T-AMF network element through Namf_Communication_CreateUEContext Request.
  • N2 information third Target ID, etc.
  • UE context information SUPI, PDU session identifier, SMF association information, etc.
  • Step 605 The T-AMF network element sends a PDU session update request to the corresponding SMF network element to update the corresponding PDU session information according to the PDU session information that needs to be switched, combined with the slice that it can serve.
  • the third Target ID is included in the PDU session update request.
  • Step 606 The SMF network element confirms whether the corresponding PDU session can be switched, and at the same time, the SMF network element judges whether the I-UPF network element needs to be inserted according to the position of the UE reflected by the third Target ID.
  • Step 607 The SMF network element interacts with the PSAUPF and T-UPF network elements (that is, the I-UPF network element) to establish an uplink between UPFs.
  • Step 608 The SMF network element sends a PDU session update response to the T-AMF network element according to whether the PDU session is successfully established, and the PDU session update response includes relevant N2SM information or failure cause value.
  • Step 609 The T-AMF network element sends the message sent by the S-RAN and the N2MM/SM message to the T-RAN through a handover request.
  • the T-AMF network element determines the T-RAN through the third Target ID.
  • Step 610 T-RAN judges the PDU sessions that can be handed over and rejects the handover according to the slices and QoS Flows it can support, and sends the result and N2 information to the T-AMF network element through the handover request confirmation message.
  • Step 611a The T-AMF network element forwards the information received from the T-RAN to the SMF network element through the PDU session update request, and for the QoS Flows that T-RAN fails to establish, the SMF network element will initiate a PDU session modification after the handover is completed process. For the PDU session that refuses to switch, the SMF network element chooses to release the session or deactivate the session.
  • Step 611b The SMF network element establishes an uplink transmission path between T-RAN and UPF for the PDU session that can receive handover, and establishes an indirect forwarding path from S-UPF to T-RAN if an indirect forwarding path needs to be established.
  • Step 611c The SMF network element feeds back a PDU session update response to the T-AMF network element.
  • Step 612 The T-AMF network element sends Namf_Communication_CreateUEContext Respons to the S-AMF network element, which will require the S-AMF network element to initiate the N2 information related to the handover command, the PDU session that failed to be established, and the S for forwarding when the indirect forwarding path exists. - Send the UPF information to the S-AMF network element.
  • Step 613 The S-AMF network element sends a Handover Command (handover command) to the S-RAN. After the S-RAN receives the handover instruction, the S-RAN instructs the UE to perform handover. UE sends Handover Confirm (handover confirmation) to T-RAN. The T-RAN informs the T-AMF that the network element handover is successful.
  • Handover command handover command
  • the S-RAN instructs the UE to perform handover.
  • UE sends Handover Confirm (handover confirmation) to T-RAN.
  • the T-RAN informs the T-AMF that the network element handover is successful.
  • Step 614 If the T-AMF network element cannot support some PDU sessions due to some slicing reasons, the T-AMF network element triggers a PDU session release process. For other PDU sessions, the T-AMF network element updates the information of the PDU session at the SMF network element.
  • Step 615 The SMF network element interacts with the UPF network element to establish a downlink data transmission path.
  • Step 616 The SMF network element deletes the corresponding indirect forwarding path.
  • the target access network device when the target access network device broadcasts at least two TACs, one TAC among all the TACs broadcast by the target access network device is sent as a target identifier to For the core network equipment, the S-RAN selects the target TAI from at least two TACs based on the location information of the terminal, the geographical distribution of the TAs of the satellites connected to the T-RAN, and generates a third target identifier according to the target TAI, using The third target identifier continues to execute the subsequent handover procedure. Provides the processing method of TAI parameters in Target ID when the target access network device broadcasts multiple TACs in Soft TAC mode.
  • FIG. 13 shows a block diagram of a communication device in an NTN network provided by an embodiment of the present application.
  • the apparatus has the function of realizing the above-mentioned method example on the core network device side, and the function may be realized by hardware, or may be realized by executing corresponding software on the hardware.
  • the device may be the core network equipment introduced above, or may be set in the core network equipment. As shown in Figure 13, the device may include:
  • the first receiving module 701 is configured to receive the first target identifier sent by the source access network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two The TAIs respectively correspond to at least two tracking area codes TAC broadcast by the target access network device through satellite;
  • the first determining module 702 is configured to determine a target TAI from the at least two TAIs based on the first auxiliary information, where the target TAI indicates a target tracking area TA to which the terminal is to be handed over;
  • the first generating module 703 is configured to generate a second target identifier based on the target TAI, where the second target identifier includes the target TAI.
  • the first auxiliary information includes location information of the terminal device and first local configuration information.
  • the location information of the terminal device includes at least one of the following information:
  • User location information ULI of the terminal device actual location information of the terminal device.
  • the first local configuration information includes at least one of the following information:
  • the geographic location distribution of the tracking area corresponding to the satellite connected to the target access network device ephemeris information, ephemeris information of satellites connected to the source access network equipment.
  • the core network equipment includes an access and mobility management function AMF network element; the device further includes:
  • the first sending module 704 is configured to send the second target identifier to the session management SMF network element.
  • the first auxiliary information includes location information of the terminal device
  • the first receiving module 701 is configured to receive the location information of the terminal device sent by the source access network device.
  • the core network equipment includes a target access and mobility management function T-AMF network element
  • the first receiving module 701 is configured to receive the first target identifier forwarded by the S-AMF network element, and the first target identifier is sent to the S-AMF network by the source access network device Yuan.
  • the device also includes:
  • the first sending module 704 is configured to send the second target identifier to the session management SMF network element.
  • the first auxiliary information includes location information of the terminal device and first local configuration information
  • the first receiving module 701 is configured to receive the location information of the terminal device and the first local configuration information sent by the S-AMF network element.
  • the core network equipment includes a source access and mobility management function S-AMF network element; the device further includes: a network element determination module 705, configured to determine the target access and mobility Management function T-AMF network element;
  • the first sending module 704 is configured to send the second target identifier to the T-AMF network element.
  • the first auxiliary information includes location information of the terminal device
  • the first receiving module 701 is configured to receive the location information of the terminal device sent by the source access network device.
  • the first target identifier includes a global access network device node identifier of the target access network device and the at least two ATIs corresponding to the target access network device.
  • FIG. 13 shows a block diagram of an apparatus for sending a tracking area provided by an embodiment of the present application.
  • the apparatus has the function of realizing the method example on the source access network device side in the embodiments shown in FIG. 7, FIG. 8 and FIG.
  • the device may be the source access network device described above, or may be set in the source access network device. As shown in Figure 13, the device may include:
  • the second sending module 801 is configured to send a first target identifier to a core network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs correspond to At least two tracking area codes TAC broadcast by the target access network device through satellite.
  • the device also includes:
  • the second generating module 802 is configured to generate the first target identifier, where the first target identifier includes the at least two tracking area codes TAC generated based on the one-to-one correspondence of at least two tracking area codes TAC broadcast by the target access network device through satellite. Two TAIs.
  • the device also includes:
  • the second receiving module 803 is configured to receive the at least two TACs sent by the terminal device and broadcast by the target access network device through satellite.
  • the second sending module 801 is configured to send the location information of the terminal device to the core network device, and the location information of the terminal device is used to assist the core network device from the at least two Select the target TAI to be switched by the terminal device from the TAIs.
  • the location information of the terminal device includes at least one of the following information:
  • User location information ULI of the terminal device actual location information of the terminal device.
  • the first target identifier includes a global access network device node identifier of the target access network device and the at least two ATIs corresponding to the target access network device.
  • FIG. 15 shows a block diagram of a communication device in an NTN network provided by an embodiment of the present application.
  • the apparatus has the function of implementing the method example on the source access network device side in the embodiment shown in FIG. 10 and FIG. 11 above, and the function may be implemented by hardware, or by executing corresponding software on the hardware.
  • the device may be the source access network device described above, or may be set in the source access network device. As shown in Figure 15, the device may include:
  • the third receiving module 901 is configured to receive at least two tracking area codes TAC broadcast by the target access network device via satellite sent by the terminal device;
  • the third determining module 902 is configured to determine the target TAC from the at least two TACs based on the second auxiliary information to generate a target tracking area identifier TAI, where the target TAI indicates the target tracking area TA to which the terminal device is to switch. ;as well as
  • the third generating module 903 is configured to generate a third target identifier based on the target TAI, where the third target identifier includes the target TAI.
  • the second auxiliary information includes location information of the terminal device and second local configuration information.
  • the location information of the terminal device includes at least one of the following information:
  • User location information ULI of the terminal device actual location information of the terminal device.
  • the second local configuration information includes at least one of the following information:
  • the geographic location distribution of the tracking area corresponding to the satellite connected to the target access network device ephemeris information, ephemeris information of satellites connected to the source access network equipment.
  • the device provided by the above embodiment realizes its functions, it only uses the division of the above-mentioned functional modules as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 16 shows a schematic structural diagram of a communication device (core network device or source access network device) provided by an embodiment of the present application.
  • the communication device may include: a processor 1201 , a receiver 1202 , a transmitter 1203 , a memory 1204 and a bus 1205 .
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1202 and the transmitter 1203 can be realized as a transceiver 1206, and the transceiver 1206 can be a communication chip.
  • the memory 1204 is connected to the processor 1201 through the bus 1205 .
  • the memory 1204 may be used to store a computer program, and the processor 1201 is used to execute the computer program, so as to implement various steps performed by the communication device in the foregoing method embodiments.
  • the memory 1204 can be realized by any type of volatile or non-volatile storage device or their combination, and the volatile or non-volatile storage device includes but not limited to: random access memory (Random-Access Memory, RAM) And read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable Read-Only Memory, EPROM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), flash memory or other solid-state storage technologies, compact disc read-only memory (CD-ROM), high-density digital video disc (Digital Video Disc, DVD) or other optical storage, tape cartridges, tapes, disks storage or other magnetic storage devices.
  • RAM Random-Access Memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • EPROM erasable programmable Read-Only Memory
  • EEPROM Electrically erasable programmable read-only memory
  • the processor 1201 involved in the embodiment of the present application may execute the steps performed by the core network device in any of the methods shown in FIG. 6 , FIG. 8 to FIG. 12 , which will not be repeated here.
  • the communication device when the communication device is implemented as a core network device,
  • the transceiver is configured to receive a first target identifier sent by a source access network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs At least two tracking area codes TAC respectively corresponding to the target access network equipment broadcast by satellite;
  • the processor is configured to determine a target TAI from the at least two TAIs based on the first assistance information, where the target TAI indicates a target tracking area TA to which the terminal is to be handed over;
  • the processor is configured to generate a second target identifier based on the target TAI, where the second target identifier includes the target TAI.
  • the processor 1201 involved in the embodiment of the present application may execute any of the methods shown in FIG. 6 , FIG. 8 to FIG. 12 , and the source access network The steps performed by the device will not be repeated here.
  • the communication device when the communication device is implemented as a source access network device,
  • the transceiver is configured to send a first target identifier to a core network device, where the first target identifier includes at least two tracking area identifiers TAI corresponding to the target access network device, wherein the at least two TAIs respectively correspond to the At least two tracking area codes TAC broadcast by the target access network device through satellite.
  • the communication device when the communication device is implemented as a source access network device,
  • the transceiver is configured to receive at least two tracking area codes TAC broadcast by the target access network device via satellite sent by the terminal device;
  • the processor is configured to determine a target TAC from the at least two TACs based on the second auxiliary information to generate a target tracking area identifier TAI, where the target TAI indicates a target tracking area TA to which the terminal device is to switch; as well as
  • the processor is configured to generate a third target identifier based on the target TAI, where the third target identifier includes the target TAI.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is used to be executed by a processor of a core network device, so as to realize the above-mentioned NTN network on the side of the core network device or, the computer program is used to be executed by a processor of an access network device, so as to implement the above-mentioned communication method in the NTN network on the access network device side.
  • the computer-readable storage medium may include: a read-only memory (Read-Only Memory, ROM), a random-access memory (Random-Access Memory, RAM), a solid-state hard drive (Solid State Drives, SSD) or an optical disc.
  • the random access memory may include resistive random access memory (Resistance Random Access Memory, ReRAM) and dynamic random access memory (Dynamic Random Access Memory, DRAM).
  • the embodiment of the present application also provides a chip, the chip includes a programmable logic circuit and/or program instructions, and when the chip runs on the core network device, it is used to realize the above-mentioned NTN network on the core network device side.
  • a communication method or, when the chip runs on the access network device, it is used to implement the communication method in the NTN network on the access network device side.
  • the embodiment of the present application also provides a computer program product or computer program, the computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and the processor of the terminal device reads from the computer
  • the readable storage medium reads and executes the computer instructions to implement the above-mentioned communication method in the NTN network on the core network device side, or the processor of the access network device reads and executes the computer-readable storage medium
  • the above-mentioned computer instructions are used to realize the above-mentioned communication method in the NTN network on the access network equipment side.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • the numbering of the steps described herein only exemplarily shows a possible sequence of execution among the steps.
  • the above-mentioned steps may not be executed according to the order of the numbers, such as two different numbers
  • the steps are executed at the same time, or two steps with different numbers are executed in the reverse order as shown in the illustration, which is not limited in this embodiment of the present application.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种NTN网络中的通信方法、装置、设备及存储介质,涉及通信技术领域。所述方法由核心网设备执行,所述方法包括:接收源接入网设备发送的第一目标标识,所述第一目标标识中包括目标接入网设备所广播的至少两个跟踪区的跟踪区标识TAI;其中,所述第一目标标识用于切换到所述目标接入网设备。该方法可以在目标接入网设备广播多个TAC的情况下确定出终端设备所需要切换的目标TAI。

Description

NTN网络中的通信方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,特别涉及一种NTN网络中的通信方法、装置、设备及存储介质。
背景技术
在卫星通信场景中,非地面同步卫星相对于地面是移动的,卫星发射的波束相对于地面也是移动的,当TA(Tracking Area,跟踪区)为地理位置固定时,卫星会经历同时覆盖多个TA的部分区域的情况。在Soft TAC(Tracking Area Code,跟踪区码)模式下,卫星在同时覆盖多个TA时,会同时广播多个TAC,导致UE会同时接收到多个TAC。
在接入网设备切换流程中,终端设备会测量邻小区的信号,并将满足条件的小区标识以及测量结果上报给源接入网设备,在基于N2接口的切换流程中,源接入网设备基于终端设备上报的测量结果确定目标接入网设备和目标TAI(Tracking Area Identity,跟踪区标识),作为Target ID(目标标识)发送给核心网设备。
而在Soft TAC模式下,目标接入网设备可能广播多个TAC,在这种情况下源接入网设备无法确定终端设备所需要切换的目标TAI。
发明内容
本申请实施例提供了一种NTN网络中的通信方法、装置、设备及存储介质,可以在目标接入网设备广播多个TAC的情况下确定出终端设备所需要切换的目标TAI,Target ID中关于TAI的参数的处理方式。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种NTN网络中的通信方法,所述方法由核心网设备执行,所述方法包括:
接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。根据本申请实施例的一个方面,提供了一种NTN网络中的通信方法,所述方法由源接入网设备执行,所述方法包括:
向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
根据本申请实施例的一个方面,所述方法由源接入网设备执行,所述方法包括:
接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
根据本申请实施例的一个方面,提供了一种NTN网络中的通信装置,所述装置用于实现核心网设备,所述装置包括:
第一接收模块,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
第一确定模块,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
第一生成模块,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
根据本申请实施例的一个方面,提供了一种NTN网络中的通信装置,所述装置用于实现源接入网设备,所述装置包括:
第二发送模块,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
根据本申请实施例的一个方面,提供了一种NTN网络中的通信装置,所述装置用于实现源接入网设备,所述装置包括:
第三接收模块,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
第三确定模块,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
第三生成模块,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
根据本申请实施例的一个方面,提供了一种核心网设备,所述核心网设备包括处理器,以及与所述处理器相连的收发器;
所述收发器,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
所述处理器,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
所述处理器,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
根据本申请实施例的一个方面,提供了一种接入网设备,所述接入网设备包括收发器;
所述收发器,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
根据本申请实施例的一个方面,提供了一种接入网设备,所述接入网设备包括处理器,以及与所述处理器相连的收发器;
所述收发器,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
所述处理器,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
所述处理器,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于处理器执行,以实现上述NTN网络中的通信方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述NTN网络中的通信方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述NTN网络中的通信方法。
本申请实施例提供的技术方案可以带来如下有益效果:
通过在目标接入网设备广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC都作为目标标识发送给核心网设备,由核心网设备根据辅助信息从目标标识中的至少两个TAI中选出目标TAI。或,在目标接入网设备广播了至少两个TAC的情况下,由源接入网设备从至少两个TAC中选出一个TAC作为目标TAI,生成目标标识发送给核心网设备。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,从多个TAI中选出目标TAI的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的Soft TAC模式的示意图;
图2是本申请一个示例性实施例提供的接入网设备切换流程的流程图;
图3是本申请一个示例性实施例提供的通信系统的示意图;
图4是本申请一个示例性实施例提供的通信系统的示意图;
图5是本申请一个示例性实施例提供的网络架构的示意图;
图6是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图7是本申请一个示例性实施例提供的TA分布示意图;
图8是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图9是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图10是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图11是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图12是本申请一个示例性实施例提供的NTN网络中的通信方法的流程图;
图13是本申请一个示例性实施例提供的NTN网络中的通信装置的框图;
图14是本申请一个示例性实施例提供的NTN网络中的通信装置的框图;
图15是本申请一个示例性实施例提供的NTN网络中的通信装置的框图;
图16是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在介绍本申请技术方案之前,先对本申请涉及的一些技术知识进行介绍说明。
非地面网络(Non-Terrestrial Network,NTN)技术
目前,相关标准组织正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比于地面的蜂窝通信网络,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1、LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端设备的发射功率要求不高。
2、GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
Soft TAC
如图1所示,在卫星通信场景中,例如LEO,卫星相对于地面是移动的,卫星发射的波束相对于地面也是移动的。当TA为地理位置固定时,卫星会经历只覆盖TA1,同时覆盖TA1和TA2的部分区域,以及只覆盖TA2。因此,在Soft TAC的模式下,卫星在同时覆盖TA1和TA2时,会同时广播两个TAC,导致UE会同时接收到两个TAC。示例性的,图1仅以2个TA为例,基于卫星波束覆盖大小和TA部署的大小等因素,卫星可同时广播不止两个TA。
基于N2的切换流程
基于N2的切换流程如图2所示,该方法包括以下步骤:
准备阶段:
步骤101:S-RAN(Source-Radio Access Network,源接入网设备)向S-AMF(Source-Access and Mobility Management Function,源接入与移动性管理功能)网元发送Handover Required(切换请求)。
切换请求包括Target ID(目标标识)、需要切换的PDU(Protocol Data Unit,协议数据单元)会话信息等。以NG-RAN(Next Generation-Radio Access Network,下一代无线接入网)为例,Target ID中包括Global RAN Node ID(全球接入网设备节点标识)和selected TAI(选中的TAI/目标TAI)。
Target ID的结构如表1所示。
表1
IE/Group Name(信息元素/组名) Presence(存在)
CHOICE Target ID(选择目标标识) M(Mandatory,强制性的)
>NG-RAN  
>>Global RAN Node ID M
>>Selected TAI M
步骤102:若S-AMF网元不能再服务UE(User Equipment,用户设备/终端设备),则S-AMF选择一个T-AMF(Target-Access and Mobility Management Function,目标接入与移动性管理功能)网元。
步骤103:S-AMF网元通过Namf_Communication_CreateUEContext Request将N2信息(Target ID等)和UE上下文信息(SUPI(Subscription Permanent Identifier,订阅永久标识符)、PDU会话标识、SMF(Session Management Function,会话管理功能)关联信息等)发送给T-AMF网元。
步骤104:T-AMF网元根据需要切换的PDU会话消息,结合自身能够服务的切片,向对应的SMF网元发送PDU会话更新请求更新对应的PDU会话信息。PDU会话更新请求中包括Target ID。
步骤105:SMF网元确认对应的PDU会话能否切换,同时SMF网元根据基于Target ID所体现的UE的位置,判断是否需要插入I-UPF(Intermediate-User Plane Function,中继用户面功能)网元。
步骤106:SMF网元和PSA(PDU Session Anchor,PDU会话锚点)UPF以及T-UPF(Target-User Plane Function,目标用户面功能)网元(也即I-UPF网元)交互建立UPF间的上行链路。
步骤107:SMF网元根据PDU会话建立成功与否,向T-AMF网元发送PDU会话更新响应,PDU会话更新响应包括相关的N2SM(Session Management,会话管理)信息或者失败原因值。
步骤108:T-AMF网元将S-RAN发送的消息以及N2MM(Mobility Management,移动性管理)/SM消息通过切换请求发送给T-RAN(Target-Radio Access Network,目标接入网设备)。T-AMF网元通过Target ID确定T-RAN。
步骤109:T-RAN根据自身所能支持的切片和QoS Flows(服务质量流),判断可以切换以及拒绝切换的PDU会话,并将结果及N2信息通过切换请求确认消息发送给T-AMF网元。
步骤110a:T-AMF网元将从T-RAN收到的信息通过PDU会话更新请求转发给SMF网元,针对T-RAN建立失败的QoS Flows,SMF网元将在切换完成后发起PDU会话修改流程。针对拒绝切换的PDU会话,SMF网元选择释放会话或者去激活会话。
步骤110b:SMF网元针对可接收切换的PDU会话,建立T-RAN和UPF间的上行传输路径,若需要建立间接转发路径,则建立S-UPF到T-RAN的间接转发路径。
步骤110c:SMF网元向T-AMF网元反馈PDU会话更新响应。
步骤111:T-AMF网元向S-AMF网元发送Namf_Communication_CreateUEContext Respons,将需要S-AMF网元发起切换命令相关的N2信息、建立失败的PDU会话、当间接转发路径存在时用于转发的S-UPF的信息发送给S-AMF网元。
执行阶段:
步骤112:S-AMF网元向S-RAN发送Handover Command(切换指令)。S-RAN接收切换指令后,S-RAN指示UE进行切换。UE向T-RAN发送Handover Confirm(切换确认)。T-RAN告知T-AMF网元切换成功。
步骤113:若T-AMF网元由于某些切片原因,无法支持某些PDU会话,T-AMF网元触发PDU会话释放流程。针对其他PDU会话,T-AMF网元更新PDU会话在SMF网元处的信息。
步骤114:SMF网元与UPF网元交互,建立下行数据发送通路。
步骤115:SMF网元删除对应的间接转发路径。
本申请实施例可以应用于NTN系统中,如图3和图4所示。
请参考图3,其示出了一种NTN系统的示意图,该NTN系统中的通信卫星是透明转发(transparent payload)的卫星。如图3所示,该NTN系统包括:终端设备10、卫星20、NTN网关30、接入网设备40和核心网设备50。
终端设备10和接入网设备40之间可通过空口(如Uu接口)进行通信。在图3所示架构中,接入网设备40可以部署在地面,终端设备10和接入网设备40之间的上下行通信,可以通过卫星20和NTN网关30(通常位于地面)进行中转传输。以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号转发给接入网设备40,后续由接入网设备40将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给接入网设备40,接入网设备40将下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
示例性的,终端设备10和接入网设备40之间的上下行通信,也可以不通过卫星20和NTN网关30进行中转传输。以上行传输为例,终端设备10将上行信号发送给接入网设备40,后续由接入网设备40将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给接入网设备40,接入网设备40将下行信号发送给终端设备10。
请参考图4,其示出了另一种NTN系统的示意图,该NTN系统中的通信卫星是再生转发(regenerative payload)的卫星。如图4所示,该NTN系统包括:终端设备10、卫星20、NTN网关30和核心网设备50。
在图4所示架构中,接入网设备40的功能集成在卫星20上,也即卫星20具备接入网设备40的功能。终端设备10和卫星20之间可通过空口(如Uu接口)进行通信。卫星20和NTN网关30(通常位于地面)之间可通过卫星无线接口(Satellite Radio Interface,SRI)进行通信。
在图4所示架构中,以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
在上述图3和图4所示的网络架构中,接入网设备40是用于为终端设备10提供无线通信服务的设备。接入网设备40与终端设备10之间可以建立连接,从而通过该连接进行通信,包括信令和数据的交互。接入网设备40的数量可以有多个,两个邻近的接入网设备40之间也可以通过有线或者无线的方式进行通信。终端设备10可以在不同的接入网设备40之间进行切换,也即与不同的接入网设备40建立连接。
以蜂窝通信网络为例,蜂窝通信网络中的接入网设备40可以是基站。基站是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为基站或接入网设备。
另外,本申请实施例中涉及的终端设备10,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。在本申请实施例中,有些地方使用“UE”代表“终端设备”。在本申请实施例中,“网络设备”可以是接入网设备(如基站)或者卫星。
另外,以5G NTN系统为例,NTN系统中可以包括多颗卫星20。一颗卫星20可以覆盖一定范围的地面区域,为该地面区域上的终端设备10提供无线通信服务。另外,卫星20可以围绕地球做轨道运动,通过布设多个卫星20,可以实现对地球表面的不同区域的通信覆盖。
另外,在本申请实施例中,名词“网络”和“系统”通常混用,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于长期演进(Long Term Evolution,LTE)系统,也可以适用于5G系统,也可以适用于5G NR系统后续的演进系统或者其他通信系统,本申请对此不作限定。
图5为本申请实施例提供的一种网络架构示意图。如图5所示,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准组发布的5G网络架构,包括:
终端、支持3GPP技术的接入网(包括Radio Access Network,RAN或Access Network,AN)、用户面功能(User Plane Function,UPF)网元、接入和移动性管理功能(Access and Mobility Management Function,AMF)网元、会话管理功能(Session Management Function,SMF)网元、策略控制功能(Policy Control Function,PCF)网元、应用功能(Application Function,AF)网元、数据网络(Data Network,DN)网元、网络切片选择功能(Network Slice Selection Function,NSSF)网元、鉴权服务功能(Authentication Server Function,AUSF)网元、统一数据管理功能(Unified Data Management,UDM)网元。
本领域技术人员可以理解,图5中示出的5G网络架构并不构成对该5G网络架构的限定,具体实现时,该5G网络架构可以包括比图示更多或更少的网元,或者组合某些网元等。应理解,图5中以(R)AN的方式表征AN或RAN。
终端可以是用户设备(User Equipment,UE)、手持终端、笔记本电脑、用户单元(Subscriber Unit)、蜂窝电话(Cellular Phone)、智能电话(Smart Phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(Laptop Computer)、无绳电话(Cordless Phone)或者无线本地环路(Wireless Local Loop,WLL)台、机器类型通信(Machine Type Communication,MTC)终端、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的处理设备、无人机、车载设备、可穿戴设备、物联网中的终端、虚拟现实设备、未来5G网络中的终端设备、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的终端等。
接入网设备是终端通过无线方式接入到该网络架构中的接入设备,主要负责空口侧的无线资源管理、 服务质量(Quality of Service,QoS)管理、数据压缩和加密等。例如:基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(New Radio,NR)通信系统中的基站、未来移动通信系统中的基站等。
UPF网元、AMF网元、SMF网元、PCF网元为3GPP核心网络的网元(简称:核心网网元)。UPF网元可以称为用户面功能网元,主要负责用户数据的传输,其他网元可以称为控制面功能网元,主要负责认证、鉴权、注册管理、会话管理、移动性管理以及策略控制等,以保障用户数据可靠稳定的传输。
UPF网元可以用于转发和接收终端的数据。例如,UPF网元可以从数据网络接收业务的数据,通过接入网设备传输给终端;UPF网元还可以通过接入网设备从终端接收用户数据,转发到数据网络。其中,UPF网元为终端分配和调度的传输资源是由SMF网元管理控制的。终端与UPF网元之间的承载可以包括:UPF网元和接入网设备之间的用户面连接,以及在接入网设备和终端之间建立信道。其中,用户面连接为可以在UPF网元和接入网设备之间建立传输数据的服务质量(Quality of Service,QoS)流(flow)。
AMF网元可以用于对终端接入核心网络进行管理,例如:终端的位置更新、注册网络、接入控制、终端的移动性管理、终端的附着与去附着等。AMF网元还可以在为终端的会话提供服务的情况下,为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。
SMF网元可以用于为终端选择用户面网元、为终端重定向用户面网元、为终端分配因特网协议(Internet Protocol,IP)地址,建立终端与UPF网元之间的承载(也可以称为会话)、会话的修改、释放以及QoS控制。
PCF网元用于向AMF网元、SMF网元提供策略,如QoS策略、切片选择策略等。
AF网元用于与3GPP核心网网元交互支持应用影响数据的路由,访问网络暴露功能,与PCF网元之间交互以进行策略控制等。
DN可以为如IP多媒体服务(IP Multi-Media Service,IMS)网络、互联网等为用户提供数据服务。在DN中可以有多种应用服务器(Application Server,AS),提供不同的应用业务,比如运营商业务,互联网接入或者第三方业务等,AS可以实现AF的功能。
NSSF用于网络切片的选择,支持的功能有:选择为UE服务的网络切片实例集;确定允许的网络切片选择辅助信息(Network Slice Selection Assistance Information,NSSAI),以及在需要时确定到签约的单一网络切片选择辅助信息(Single-Network Slice Selection Assistance Information,S-NSSAI)的映射;确定已配置的NSSAI,以及在需要时确定到签约的S-NSSAI的映射;确定可能用于查询UE的AMF集,或基于配置确定候选AMF的列表。
AUSF用于接收AMF对终端进行身份验证的请求,通过向UDM请求密钥,再将下发的密钥转发给AMF进行鉴权处理。
UDM包括用户签约数据的产生和存储、鉴权数据的管理等功能,支持与外部第三方服务器交互。
图5中的各网元既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。需要说明的是,在上述图所示的网络架构中,仅仅是示例性说明整个网络架构中所包括的网元。在本申请实施例中,并不限定整个网络架构中所包括的网元。
请参考图6,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3或图4所示通信系统中的核心网设备来举例说明。该方法可以包括如下步骤:
步骤210:接收源接入网设备发送的第一目标标识,第一目标标识包括与目标接入网设备对应的至少两个TAI,其中至少两个TAI分别对应目标接入网设备通过卫星广播的至少两个TAC。
源接入网设备(S-RAN)向AMF网元/S-AMF网元发送第一目标标识。示例性的,S-RAN向核心网设备/AMF网元/S-AMF网元发送切换请求(Handover required),切换请求中包括第一目标标识。
示例性的,AMF网元/S-AMF网元接收S-RAN发送的第一目标标识。或,核心网设备/AMF网元/S-AMF网元接收S-RAN发送的切换请求,切换请求中包括第一目标标识。
第一目标标识包括T-RAN所广播的至少两个TAC分别对应的至少两个TAI。或称,第一目标标识包括T-RAN所接卫星所广播的至少两个TAC分别对应的至少两个TAI。
S-RAN可以为图3、图4任一通信系统中的接入网设备。即,S-RAN可以是NTN系统中的接入网设备;S-RAN可以是接入透明转发的卫星的接入网设备;S-RAN可以是集成在再生转发的卫星上的接入网设备;S-RAN还可以是TN系统中的接入网设备。
S-RAN是终端设备在进行切换前所接入的接入网设备。
T-RAN是图3所示的通信系统中的接入网设备。即,T-RAN是接入透明转发的卫星的接入网设备。T-RAN工作在Soft TAC模式下。
T-RAN是终端设备所要切换的接入网设备。
本申请实施例中的T-RAN可以是指部署在地面的接入网设备(基站、宏基站、微基站、中继站、接入点等),也可以是指地面的接入网设备所接的卫星,也可以是指NTN网关,还可以是指由地面接入网设 备、卫星、NTN网关组成的系统。
示例性的,本申请实施例中的S-RAN、T-RAN是指部署在地面的基站。
TAI由PLMN(Public Land Mobile Network,公共陆地移动网)和TAC组成。示例性的,第一目标标识包括至少两个TAI是指:第一目标标识包括至少一个PLMN以及至少两个TAC,或,第一目标标识包括至少两个PLMN以及至少两个TAC,或,第一目标标识包括至少两个PLMN以及至少一个TAC。即,1个PLMN+2个TAC为2个TAI,2个PLMN+2个TAC为2个TAI,2个PLMN+1个TAC为2个TAI。
示例性的,T-RAN所广播的至少两个跟踪区的TAI为:T-RAN所广播的全部TAC分别对应的TAI。
S-RAN将T-RAN所广播的全部的TAC作为TAI加入第一Target ID(第一目标标识),将第一Target ID发送给AMF。第一Target ID的格式如表2所示。
表2
IE/Group Name Presence
CHOICE Target ID M
>NG-RAN  
>>Global RAN Node ID M
>>TA 1 M
>>TA 2 M
 
示例性的,第一目标标识用于指示终端设备所要切换的目标接入网设备。第一目标标识包括目标接入网设备的全球接入网设备节点标识(Global RAN Node ID)、目标接入网设备对应的至少两个ATI。
本申请实施例中的,S-RAN、S-AMF、S-UPF中的“S”其含义为“Source(源)”。T-RAN、T-AMF、T-UPF中的“T”其含义为“Target(目标)”。
步骤220:基于第一辅助信息,从至少两个TAI中确定目标TAI,目标TAI指示终端要切换到的目标TA。
第二目标标识用于指示终端设备所要切换的目标接入网设备。
示例性的,第二目标标识包括目标接入网设备的全球接入网设备节点标识以及选中的目标ATI。
示例性的,核心网设备的AMF网元/S-AMF网元/T-AMF网元基于第一辅助信息从至少两个TAI中选择出终端设备所要切换的目标TAI。
示例性的,第一辅助信息包括终端设备的位置信息和核心网设备的第一本地配置信息,其中,第一本地配置信息用于指示该至少两个跟踪区的位置分布。
终端设备的位置信息包括如下信息中的至少一种:终端设备的ULI、终端设备的实际位置信息。其中,终端设备的实际位置信息可以是终端设备的GPS(Global Positioning System,全球定位系统)信息、经纬度信息。ULI包括终端设备的小区标识(cell ID)和终端设备当前所处的TAI。
示例性的,核心网设备中存储有终端设备历史上报的位置信息。或,核心网设备接收源接入网设备发送的终端设备最新的位置信息。
第一本地配置信息为核心网设备的本地配置信息。第一本地配置信息包括如下信息中的至少一种:目标接入网设备所接卫星对应的跟踪区的地理位置分布、源接入网设备所接卫星对应的跟踪区的地理位置分布、目标接入网设备所接卫星的星历信息、源接入网设备所接卫星的星历信息。
星历信息包括接入网设备所接卫星的卫星星历。卫星星历,又称为两行轨道数据(TLE,Two-Line Orbital Element),是用于描述太空飞行体位置和速度的表达式——两行式轨道数据系统。
示例性的,不同卫星对应不同的TA分布。例如,如图7所示,目标接入网设备对应GEO卫星,源接入网设备对应LEO卫星。则GEO卫星对应图7中的GEO TA1和GEO TA2。LEO卫星对应图7中的LEO TA1、LEO TA2、LEO TA3、LEO TA4。
根据接入网设备所接卫星的星历信息,可以获知接入网设备当前接入的卫星,根据接入网设备当前接入的卫星可以获知该卫星对应的TA的地理位置分布。则,根据终端设备的位置信息,可以确定出终端设备位于目标接入网设备所接卫星的哪个TA中。
则,当终端设备的位置信息为ULI时,第一本地配置信息中需要包含:源接入网设备所接卫星的星历信息、源接入网设备所接卫星对应的跟踪区的地理位置分布,目标接入网设备所接卫星的星历信息、目标接入网设备所接卫星对应的跟踪区的地理位置分布。
例如,终端设备中的ULI包括LEO TAI1。根据源接入网设备所接卫星的星历信息,确定源接入网设备所接入的LEO卫星。则根据LEO卫星对应的TA地理位置分布,可以确定终端设备所在的LEO TA1的实际位置。根据目标接入网设备所接卫星的星历信息,确定目标接入网设备所接入的GEO卫星。根据GEO卫星对应的TA地理位置分布,以及,终端设备所在的LEO TA1的实际位置,可以获知LEO TA1的实际 位置在GEO卫星的TA地理位置分布中处于GEO TA1中,则GEO TA1即为终端设备所要切换的目标TA。
当终端设备的位置信息为实际位置信息时,第一本地配置信息中需要包含目标接入网设备所接卫星的星历信息、目标接入网设备所接卫星对应的跟踪区的地理位置分布。
例如,根据目标接入网设备所接卫星的星历信息,确定目标接入网设备所接入的GEO卫星。根据GEO卫星对应的TA地理位置分布,以及,终端设备的实际位置,可以获知终端设备的实际位置在GEO卫星的TA地理位置分布中处于GEO TA1中,则GEO TA1即为终端设备所要切换的目标TA。
步骤230:基于目标TAI生成第二目标标识,第二目标标识包括目标TAI。
第二目标标识中包括目标接入网设备的全球接入网设备节点标识、目标接入网设备对应的目标TAI。第二目标标识的格式如表1所示。
示例性的,核心网设备向目标网元发送第二目标标识。第二目标标识用于指示终端设备所要切换的目标接入网设备和目标TA。
示例性的,本申请实施例提供的方法应用于基于N2接口的切换流程中。
综上所述,本实施例提供的技术方案,通过在目标接入网设备广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC都作为目标标识发送给核心网设备,由核心网设备根据辅助信息从目标标识中的至少两个TAI中选出目标TAI。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,从多个TAI中选出目标TAI的方法。
请参考图8,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3、图4所示的通信系统中的源接入网设备来举例说明。该方法可以包括如下步骤:
步骤201:向核心网设备发送第一目标标识,第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中至少两个TAI分别对应目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
示例性的,第一目标标识包括基于目标接入网设备通过卫星广播的至少两个TAC一一对应生成的至少两个TAI。
源接入网设备接收终端设备发送的小区监测结果。示例性的,小区监测结果中包括目标接入网设备的标识和目标接入网设备通过卫星广播的至少两个TAC。或,源接入网设备接收终端设备发送的目标接入网设备通过卫星广播的至少两个TAC。
源接入网设备根据小区监测结果确定终端设备所要切换的目标接入网设备。
源接入网设备基于目标接入网设备所对应的至少两个TAC生成至少两个TAI,基于该至少两个TAI生成第一目标标识。
示例性的,源接入网设备还会向核心网设备发送终端设备的位置信息,终端设备的位置信息用于辅助核心网设备从至少两个TAI中选出终端设备所要切换的目标TAI。
综上所述,本实施例提供的技术方案,通过在目标接入网设备广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC都作为目标标识发送给核心网设备,由核心网设备根据辅助信息从目标标识中的至少两个TAI中选出目标TAI。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,从多个TAI中选出目标TAI的方法。
示例性的,可以由T-AMF网元从第一目标标识的至少两个TAI中选择目标TAI。
请参考图9,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3、图4所示的至少一个通信系统中来举例说明。该方法可以包括如下步骤:
步骤301:S-RAN向S-AMF发送切换请求,切换请求中包括第一目标标识和UE的位置信息。
示例性的,S-RAN接收终端设备发送的小区监测结果,基于小区监测结果确定终端设备所要切换的T-RAN;接收终端设备发送的T-RAN通过卫星广播的至少两个TAC,基于至少两个TAC生成第一目标标识,第一目标标识包括至少两个TAC一一对应的至少两个TAI。S-RAN向S-AMF发送切换请求,切换请求中包括第一目标标识。示例性的,切换请求中还包括终端设备的位置信息。
S-RAN会将确定UE切换的T-RAN ID和T-RAN当前通过卫星所广播的所有TAC均作为TAI加入Target ID,并上报给AMF网元。S-RAN将包括多个TAI的Target ID(第一Target ID)在Handover required(切换请求)中发送给S-AMF网元,其中可选的也包括ULI(User Location Information,用户位置信息),ULI中包括UE目前所处的位置对应的TAI和Cell ID(小区标识)。
示例性的,第一目标标识承载于Handover required信令。
示例性的,S-RAN接收UE发送的小区测量结果,根据小区测量结果选择UE所要切换的T-RAN,根据T-RAN通过卫星所广播的至少两个TAC生成第一目标标识,向S-AMF发送第一目标标识。即,S-RAN确定终端设备所要切换的目标接入网设备(T-RAN);基于目标接入网设备通过卫星所广播的至少两个跟踪区码TAC生成第一目标标识,第一目标标识中的至少两个TAI是基于至少两个TAC一一对应生成的。
示例性的,S-RAN向核心网设备发送终端设备的位置信息,终端设备的位置信息用于辅助核心网设备 从至少两个TAI中选择出终端设备所要切换的目标TAI。
示例性的,S-RAN向S-AMF发送切换请求,切换请求中包括第一目标标识和终端设备的位置信息。
终端设备的位置信息包括如下信息中的至少一种:终端设备的ULI、终端设备的实际位置信息。其中,终端设备的实际位置信息可以是终端设备的GPS(Global Positioning System,全球定位系统)信息、经纬度信息。
示例性的,S-RAN网元可以在发送第一目标标识的同时向S-AMF网元同步终端设备的位置信息,也可以只向S-AMF网元发送第一目标标识,不发送终端设备的位置信息。原因在于,AMF网元上已经有UE的位置信息(ULI)。例如在UE的注册流程中,S-RAN会将ULI发送给AMF网元。但是,UE位置可能会存在变化,导致AMF网元所存储的ULI指示UE所在位置的TAI与UE实际位置不符,因此,S-RAN也可以将最新的ULI发送给AMF网元。
步骤302:若S-AMF网元不能再服务UE,则S-AMF网元选择一个T-AMF网元。
示例性的,本实施例以S-AMF网元不能再服务UE为例进行说明。若S-AMF网元能够继续服务UE,则本实施例中由T-AMF网元执行的步骤全部由S-AMF网元执行,即,本实施例中的S-AMF网元和T-AMF网元可以合并为AMF网元。
步骤303:S-AMF网元通过Namf_Communication_CreateUEContext Request信令将第一Target ID和ULI发送给T-AMF网元。
示例性的,S-AMF网元本地存储有源接入网设备、目标接入网设备相关的第一本地配置信息。S-AMF网元向T-AMF网元发送终端设备的位置信息和第一本地配置信息。T-AMF网元接收S-AMF网元发送的终端设备的位置信息和第一本地配置信息。
步骤304:T-AMF网元根据第一Target ID和ULI,以及可选的一些本地配置信息,例如S-RAN和T-RAN所接卫星对应的TA的地理位置分布、卫星的星历信息等,从第一Target ID中选择一个TAI,该TAI为UE目标切换的TAI,T-AMF网元生成第二Target ID(第二目标标识)。
核心网设备/AMF网元/T-AMF网元基于第一辅助信息从至少两个TAI中确定目标TAI,基于目标TAI生成第二目标标识。
核心网设备/AMF网元/T-AMF网元向SMF网元发送第二目标标识。第二目标标识包括目标TAI,目标TAI是从至少两个TAI中选择出的终端设备所要切换的TAI。
核心网设备/AMF网元/T-AMF网元基于第一辅助信息(终端设备的位置信息和第一本地配置信息)从至少两个TAI中选择出目标TAI。其中,第一本地配置信息为核心网设备/AMF网元本地存储的信息。从至少两个TAI中选择出目标TAI的方法可以参照图6所示实施例中的相关描述。
示例性的,根据终端设备的位置信息、T-RAN所接卫星的跟踪区的地理位置分布可以从T-RAN所广播的跟踪区中选择出终端设备所要切换的目标TAI(selected TAI)。
示例性的,ULI中包括终端设备当前位于S-RAN的哪个跟踪区。根据终端设备的ULI、S-RAN所接卫星的跟踪区的地理位置分布、T-RAN所接卫星的跟踪区的地理位置分布可以从T-RAN所广播的跟踪区中选择出终端设备所要切换的目标TAI(selected TAI)。
步骤305:T-AMF网元根据需要切换的PDU会话消息,结合自身能够服务的切片,向对应的SMF网元发送PDU会话更新请求,PDU会话更新请求用于更新对应的PDU会话信息。PDU会话更新请求中包括第二Target ID。
T-AMF网元向SMF网元发送第二目标标识。
示例性的,第二目标标识承载于Nsmf_PDUSession_UpdateSMContext Request信令。
步骤306:SMF网元确认对应的PDU会话能否切换,同时SMF网元根据基于第二Target ID所体现的UE的位置,判断是否需要插入I-UPF网元。
SMF网元根据第二目标标识中目标TAI所体现的终端设备的位置,确定T-UPF。
步骤307:SMF网元和PSA UPF网元以及T-UPF网元交互建立UPF间的上行链路。
步骤308:SMF网元根据PDU会话建立成功与否,向T-AMF网元发送PDU会话更新响应,PDU会话更新响应包括相关的N2SM信息或者失败原因值。
示例性的,PDU会话更新响应承载于Nsmf_PDUSession_UpdateSMContext Response信令。
步骤309:T-AMF网元将S-RAN发送的消息以及N2MM/SM消息通过切换请求发送给T-RAN。其中,T-AMF网元通过第二Target ID确定T-RAN。
步骤310:T-RAN根据自身所能支持的切片和QoS Flows,判断可以切换以及拒绝切换的PDU会话,并将结果及N2信息通过切换请求确认消息发送给T-AMF网元。
步骤311a:T-AMF网元将从T-RAN收到的信息通过PDU会话更新请求转发给SMF网元,针对T-RAN建立失败的QoS Flows,SMF网元将在切换完成后发起PDU会话修改流程。针对拒绝切换的PDU会话, SMF网元选择释放会话或者去激活会话。
步骤311b:SMF网元针对可接收切换的PDU会话,建立T-RAN和UPF间的上行传输路径,若需要建立间接转发路径,则建立S-UPF到T-RAN的间接转发路径。
步骤311c:SMF网元向T-AMF网元反馈PDU会话更新响应。
步骤312:T-AMF网元向S-AMF网元发送Namf_Communication_CreateUEContext Respons,将需要S-AMF网元发起切换命令相关的N2信息、建立失败的PDU会话、当间接转发路径存在时用于转发的S-UPF的信息发送给S-AMF网元。
步骤313:S-AMF网元向S-RAN发送Handover Command(切换指令)。S-RAN接收切换指令后,S-RAN指示UE进行切换。UE向T-RAN发送Handover Confirm(切换确认)。T-RAN告知T-AMF网元切换成功。
步骤314:若T-AMF网元由于某些切片原因,无法支持某些PDU会话,T-AMF网元触发PDU会话释放流程。针对其他PDU会话,T-AMF网元更新PDU会话在SMF网元处的信息。
步骤315:SMF网元与UPF网元交互,建立下行数据发送通路。
步骤316:SMF网元删除对应的间接转发路径。
综上所述,本实施例提供的技术方案,通过在目标接入网设备广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC都作为目标标识发送给核心网设备,由T-AMF基于终端的位置信息、T-RAN所接卫星的TA的地理位置分布等信息,从至少两个TAI中选择出目标TAI,根据目标TAI生成第二目标标识,使用第二目标标识继续执行后续的切换流程。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,Target ID中关于TAI的参数的处理方式。
示例性的,可以由S-AMF网元从第一目标标识的至少两个TAI中选择目标TAI。
请参考图10,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3、图4所示的至少一个通信系统中来举例说明。该方法可以包括如下步骤:
步骤401:S-RAN向S-AMF发送切换请求,切换请求中包括第一目标标识和UE的位置信息。
步骤402:若原AMF网元不能再服务UE,则S-AMF网元选择一个T-AMF网元。
步骤401和步骤402可以参照步骤301和步骤302的解释。
步骤403:S-AMF网元根据第一Target ID,ULI,以及可选的一些本地配置信息,例如S-RAN和T-RAN所接卫星对应的TA的地理分布,卫星的星历信息等,来从第一Target ID中选择一个TAI,该TAI为UE目标切换的TAI。T-AMF网元生成第二Target ID。
核心网设备/AMF网元/S-AMF网元基于第一辅助信息从至少两个TAI中确定目标TAI,基于目标TAI生成第二目标标识。
核心网设备/AMF网元/S-AMF网元向T-AMF网元发送第二目标标识。第二目标标识包括目标TAI,目标TAI是从至少两个TAI中选择出的终端设备所要切换的TAI。
核心网设备/AMF网元/S-AMF网元基于第一辅助信息(终端设备的位置信息和第一本地配置信息)从至少两个TAI中选择出目标TAI。其中,第一本地配置信息为核心网设备/AMF网元/S-AMF网元本地存储的信息。
示例性的,核心网设备/AMF网元/S-AMF网元本地存储有终端设备历史上报的位置信息,或,核心网设备/AMF网元/S-AMF网元接收终端设备发送的终端设备的位置信息。
从至少两个TAI中选择出目标TAI的方法可以参照图6所示实施例中的相关描述。
步骤404:S-AMF网元通过Namf_Communication_CreateUEContext Request信令将第二Target ID发送给T-AMF网元。
步骤405:T-AMF网元根据需要切换的PDU会话消息,结合自身能够服务的切片,向对应的SMF网元发送PDU会话更新请求,用于更新对应的PDU会话信息。PDU会话更新请求中包括第二Target ID。
T-AMF网元向SMF网元发送第二目标标识。示例性的,第二目标标识承载于Nsmf_PDUSession_UpdateSMContext Request信令。
步骤406:SMF网元确认对应的PDU会话能否切换,同时SMF网元会根据基于第二Target ID所体现的UE的位置,判断是否需要插入I-UPF网元。
步骤407:SMF网元和PSA UPF网元以及T-UPF网元交互建立UPF间的上行链路。
步骤408:SMF网元根据PDU会话建立成功与否,向T-AMF网元发送相关的N2SM信息或者失败原因值。
步骤409:T-AMF网元将S-RAN发送的消息以及N2MM/SM消息通过切换请求发送给T-RAN。T-AMF网元通过第二Target ID确定T-RAN。
步骤410:T-RAN根据自身所能支持的切片和QoS Flows,判断可以切换以及拒绝切换的PDU会话,并将结果及N2信息通过切换请求确认消息发送给T-AMF网元。
步骤411a:T-AMF网元将从T-RAN收到的信息通过PDU会话更新请求转发给SMF网元,针对T-RAN建立失败的QoS Flows,SMF网元将在切换完成后发起PDU会话修改流程。针对拒绝切换的PDU会话,SMF网元选择释放会话或者去激活会话。
步骤411b:SMF网元针对可接收切换的PDU会话,建立T-RAN和UPF间的上行传输路径,若需要建立间接转发路径,则建立S-UPF到T-RAN的间接转发路径。
步骤411c:SMF网元向T-AMF网元反馈PDU会话更新响应。
步骤412:T-AMF网元向S-AMF网元发送Namf_Communication_CreateUEContext Respons,将需要S-AMF网元发起切换命令相关的N2信息、建立失败的PDU会话、当间接转发路径存在时用于转发的S-UPF的信息发送给S-AMF网元。
步骤413:S-AMF网元向S-RAN发送Handover Command(切换指令)。S-RAN接收切换指令后,S-RAN指示UE进行切换。UE向T-RAN发送Handover Confirm(切换确认)。T-RAN告知T-AMF网元切换成功。
步骤414:若T-AMF网元由于某些切片原因,无法支持某些PDU会话,T-AMF网元触发PDU会话释放流程。针对其他PDU会话,T-AMF网元更新PDU会话在SMF网元处的信息。
步骤415:SMF网元与UPF网元交互,建立下行数据发送通路。
步骤416:SMF网元删除对应的间接转发路径。
综上所述,本实施例提供的技术方案,通过在目标接入网设备所接卫星广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC都作为目标标识发送给核心网设备,由S-AMF基于终端的位置信息、T-RAN所接卫星的TA的地理位置分布等信息,从至少两个TAI中选择出目标TAI,根据目标TAI生成第二目标标识,使用第二目标标识继续执行后续的切换流程。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,Target ID中关于TAI的参数的处理方式。
请参考图11,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3、图4所示的通信系统中的源接入网设备来举例说明。该方法可以包括如下步骤:
步骤501:接收终端设备发送的目标接入网设备通过卫星广播的至少两个TAC。
示例性的,终端设备向源接入网设备发送小区监测结果,小区监测结果包括目标接入网设备通过卫星广播的至少两个TAC。或,终端设备单独向源接入网设备上报目标接入网设备通过卫星广播的至少两个TAC。
示例性的,终端设备还会向源接入网设备发送终端设备的位置信息,源接入网设备接收终端设备发送的位置信息。
步骤502:基于第二辅助信息,从至少两个TAC中确定出目标TAC生成目标TAI,目标TAI指示终端设备要切换到的目标TA。
示例性的,第二辅助信息包括终端设备的位置信息和第二本地配置信息。第二本地配置信息是源接入网设备本地存储的信息。
终端设备的位置信息包括如下信息中的至少一种:终端设备的用户位置信息ULI、终端设备的实际位置信息。
第二本地配置信息包括如下信息中的至少一种:目标接入网设备所接卫星对应的跟踪区的地理位置分布、源接入网设备所接卫星对应的跟踪区的地理位置分布、目标接入网设备所接卫星的星历信息、源接入网设备所接卫星的星历信息。
示例性的,第一本地配置信息和第二本地配置信息仅用于区分核心网设备的本地配置信息,以及,源接入网设备的本地配置信息。第一本地配置信息和第二本地配置信息可以相同,也即,二者可以同称为本地配置信息;当然第一本地配置信息和第二本地配置信息也可以不同。
基于第二辅助信息从至少两个TAC中选出目标TAC的方法,可以参照图6所示实施例中基于第一辅助信息从至少两个TAI中选出目标TAI的方法。
步骤503:基于目标TAI生成第三目标标识,第三目标标识包括目标TAI。
源接入网设备(S-RAN)向AMF网元/S-AMF网元发送第三目标标识。示例性的,S-RAN向核心网设备/AMF网元/S-AMF网元发送切换请求(Handover required),切换请求中包括第三目标标识。
第三目标标识中包括目标TAI。目标TAI是从目标接入网设备(T-RAN)通过卫星广播的至少两个TAC中选出的目标TAC对应的TAI。
S-RAN从T-RAN通过卫星所广播的全部的TAC中选出目标TAC,将目标TAC作为目标TAI加入第三Target ID(第三目标标识),将第三Target ID发送给AMF。第三Target ID的格式如表1所示。
目标TAI是基于目标TAC生成的,目标TAC是基于终端设备的位置信息和第二本地配置信息从目标接入网设备所广播的至少两个TAI中选择出的,第二本地配置信息为源接入网设备本地存储的信息。
由于第三目标标识与图2所示的实施例中的目标标识的结构相同,则核心网设备可以根据第三目标标 识继续执行图2所示的接入网设备的切换流程。
综上所述,本实施例提供的技术方案,在目标接入网设备广播了至少两个TAC的情况下,由源接入网设备从至少两个TAC中选出一个TAC作为目标TAI,生成目标标识发送给核心网设备。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,从多个TAI中选出目标TAI的方法。
示例性的,可以由S-RAN从至少两个TAC中选择目标TAI。
请参考图12,其示出了本申请一个实施例提供的NTN网络中的通信方法的流程图。本实施例以该方法应用于图3、图4所示的至少一个通信系统中来举例说明。该方法可以包括如下步骤:
步骤601:当S-RAN得知UE所测量的小区广播的多个TAC后,源S-RAN选择一个TAC作为目标TAI,S-RAN根据UE所在位置,S-RAN和T-RAN对应接入卫星的TA地理位置分布图、星历信息等参数,选择一个UE当前位置所在的目标TAI,作为第三Target ID(第三目标标识)里的参数。
目标TAI是基于终端设备的位置信息和第二本地配置信息从目标接入网设备通过卫星所广播的至少两个TAC中选择出的,第二本地配置信息为源接入网设备本地存储的信息。
示例性的,S-RAN本地存储有源接入网设备、目标接入网设备相关的第二本地配置信息。
示例性的,S-RAN接收终端设备发送的小区监测结果,S-RAN接收终端设备发送的目标接入网设备通过卫星广播的至少两个TAC,S-RAN接收终端设备发送的终端设备的位置信息。S-RAN基于小区监测结果确定终端设备所要切换的T-RAN;基于终端设备的位置信息、第二本地配置信息从至少两个TAC中确定目标TAC,基于目标TAC生成目标TAI,基于目标TAI生成第三目标标识。S-RAN向S-AMF发送切换请求,切换请求中包括第三目标标识。
步骤602:S-RAN向S-AMF网元发送Handover Required(切换请求),切换请求中包括第三Target ID。
示例性的,第三目标标识承载于Handover Required信令。
步骤603:若S-AMF网元不能再服务UE,则S-AMF选择一个T-AMF网元。
示例性的,本实施例以S-AMF网元不能再服务UE为例进行说明。若S-AMF网元能够继续服务UE,则本实施例中由T-AMF网元执行的步骤全部由S-AMF网元执行,即,本实施例中的S-AMF网元和T-AMF网元可以合并为AMF网元。
步骤604:S-AMF网元通过Namf_Communication_CreateUEContext Request将N2信息(第三Target ID等)和UE上下文信息(SUPI、PDU会话标识、SMF关联信息等)发送给T-AMF网元。
步骤605:T-AMF网元根据需要切换的PDU会话消息,结合自身能够服务的切片,向对应的SMF网元发送PDU会话更新请求更新对应的PDU会话信息。PDU会话更新请求中包括第三Target ID。
步骤606:SMF网元确认对应的PDU会话能否切换,同时SMF网元根据基于第三Target ID所体现的UE的位置,判断是否需要插入I-UPF网元。
步骤607:SMF网元和PSAUPF以及T-UPF网元(也即I-UPF网元)交互建立UPF间的上行链路。
步骤608:SMF网元根据PDU会话建立成功与否,向T-AMF网元发送PDU会话更新响应,PDU会话更新响应包括相关的N2SM信息或者失败原因值。
步骤609:T-AMF网元将S-RAN发送的消息以及N2MM/SM消息通过切换请求发送给T-RAN。T-AMF网元通过第三Target ID确定T-RAN。
步骤610:T-RAN根据自身所能支持的切片和QoS Flows,判断可以切换以及拒绝切换的PDU会话,并将结果及N2信息通过切换请求确认消息发送给T-AMF网元。
步骤611a:T-AMF网元将从T-RAN收到的信息通过PDU会话更新请求转发给SMF网元,针对T-RAN建立失败的QoS Flows,SMF网元将在切换完成后发起PDU会话修改流程。针对拒绝切换的PDU会话,SMF网元选择释放会话或者去激活会话。
步骤611b:SMF网元针对可接收切换的PDU会话,建立T-RAN和UPF间的上行传输路径,若需要建立间接转发路径,则建立S-UPF到T-RAN的间接转发路径。
步骤611c:SMF网元向T-AMF网元反馈PDU会话更新响应。
步骤612:T-AMF网元向S-AMF网元发送Namf_Communication_CreateUEContext Respons,将需要S-AMF网元发起切换命令相关的N2信息、建立失败的PDU会话、当间接转发路径存在时用于转发的S-UPF的信息发送给S-AMF网元。
步骤613:S-AMF网元向S-RAN发送Handover Command(切换指令)。S-RAN接收切换指令后,S-RAN指示UE进行切换。UE向T-RAN发送Handover Confirm(切换确认)。T-RAN告知T-AMF网元切换成功。
步骤614:若T-AMF网元由于某些切片原因,无法支持某些PDU会话,T-AMF网元触发PDU会话释放流程。针对其他PDU会话,T-AMF网元更新PDU会话在SMF网元处的信息。
步骤615:SMF网元与UPF网元交互,建立下行数据发送通路。
步骤616:SMF网元删除对应的间接转发路径。
综上所述,本实施例提供的技术方案,通过在目标接入网设备广播了至少两个TAC的情况下,将目标接入网设备所广播的全部TAC中的一个TAC作为目标标识发送给核心网设备,由S-RAN基于终端的位置信息、T-RAN所接卫星的TA的地理位置分布等信息,从至少两个TAC中选择出目标TAI,根据目标TAI生成第三目标标识,使用第三目标标识继续执行后续的切换流程。提供了在Soft TAC模式中目标接入网设备广播多个TAC的情况下,Target ID中关于TAI的参数的处理方式。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图13,其示出了本申请一个实施例提供的NTN网络中的通信装置的框图。该装置具有实现上述核心网设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的核心网设备,也可以设置在核心网设备中。如图13所示,该装置可以包括:
第一接收模块701,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
第一确定模块702,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
第一生成模块703,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
在一个可选的实施例中,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息。
在一个可选的实施例中,所述终端设备的位置信息包括如下信息中的至少一种:
所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
在一个可选的实施例中,所述第一本地配置信息包括如下信息中的至少一种:
所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
在一个可选的实施例中,所述核心网设备包括接入与移动性管理功能AMF网元;所述装置还包括:
第一发送模块704,用于向会话管理SMF网元发送所述第二目标标识。
在一个可选的实施例中,所述第一辅助信息包括所述终端设备的位置信息;
第一接收模块701,用于接收所述源接入网设备发送的所述终端设备的位置信息。
在一个可选的实施例中,所述核心网设备包括目标接入与移动性管理功能T-AMF网元;
所述第一接收模块701,用于接收由所述S-AMF网元转发的所述第一目标标识,所述第一目标标识由所述源接入网设备发送给所述S-AMF网元。
在一个可选的实施例中,所述装置还包括:
第一发送模块704,用于向会话管理SMF网元发送所述第二目标标识。
在一个可选的实施例中,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息;
第一接收模块701,用于接收所述S-AMF网元发送的所述终端设备的位置信息和所述第一本地配置信息。
在一个可选的实施例中,所述核心网设备包括源接入与移动性管理功能S-AMF网元;所述装置还包括:网元确定模块705,用于确定目标接入与移动性管理功能T-AMF网元;
第一发送模块704,用于向所述T-AMF网元发送所述第二目标标识。
在一个可选的实施例中,所述第一辅助信息包括所述终端设备的位置信息;
第一接收模块701,用于接收所述源接入网设备发送的所述终端设备的位置信息。
在一个可选的实施例中,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
请参考图13,其示出了本申请一个实施例提供的跟踪区的发送装置的框图。该装置具有实现上述图7、图8、图9所示实施例中源接入网设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的源接入网设备,也可以设置在源接入网设备中。如图13所示,该装置可以包括:
第二发送模块801,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
在一个可选的实施例中,所述装置还包括:
第二生成模块802,用于生成所述第一目标标识,所述第一目标标识包括基于所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC一一对应生成的所述至少两个TAI。
在一个可选的实施例中,所述装置还包括:
第二接收模块803,用于接收所述终端设备发送的所述目标接入网设备通过卫星广播的所述至少两个TAC。
在一个可选的实施例中,第二发送模块801,用于向所述核心网设备发送终端设备的位置信息,所述终端设备的位置信息用于辅助所述核心网设备从所述至少两个TAI中选择出所述终端设备所要切换的目标TAI。
在一个可选的实施例中,所述终端设备的位置信息包括如下信息中的至少一种:
所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
在一个可选的实施例中,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
请参考图15,其示出了本申请一个实施例提供的NTN网络中的通信装置的框图。该装置具有实现上述图10、图11所示实施例中源接入网设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的源接入网设备,也可以设置在源接入网设备中。如图15所示,该装置可以包括:
第三接收模块901,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
第三确定模块902,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
第三生成模块903,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
在一个可选的实施例中,所述第二辅助信息包括所述终端设备的位置信息和第二本地配置信息。
在一个可选的实施例中,所述终端设备的位置信息包括如下信息中的至少一种:
所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
在一个可选的实施例中,所述第二本地配置信息包括如下信息中的至少一种:
所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图16,其示出了本申请一个实施例提供的通信设备(核心网设备或源接入网设备)的结构示意图。该通信设备可以包括:处理器1201、接收器1202、发送器1203、存储器1204和总线1205。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及进行信息处理。
接收器1202和发送器1203可以实现为一个收发器1206,该收发器1206可以是一块通信芯片。
存储器1204通过总线1205与处理器1201相连。
存储器1204可用于存储计算机程序,处理器1201用于执行该计算机程序,以实现上述方法实施例中通信设备执行的各个步骤。
此外,存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:随机存储器(Random-Access Memory,RAM)和只读存储器(Read-Only Memory,ROM)、可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦写可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他固态存储其技术,只读光盘(Compact Disc Read-Only Memory,CD-ROM)、高密度数字视频光盘(Digital Video Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
其中,当通信设备实现为核心网设备时,本申请实施例涉及的中的处理器1201,可以执行上述图6、图8至图12任一所示的方法中,由核心网设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当通信设备实现为核心网设备时,
所述收发器,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
所述处理器,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
所述处理器,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
其中,当通信设备实现为源接入网设备时,本申请实施例涉及的中的处理器1201,可以执行上述图6、图8至图12任一所示的方法中,由源接入网设备执行的步骤,此处不再赘述。
在一种可能的实现方式中,当通信设备实现为源接入网设备时,
所述收发器,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
在一种可能的实现方式中,当通信设备实现为源接入网设备时,
所述收发器,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
所述处理器,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
所述处理器,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被核心网设备的处理器执行,以实现上述核心网设备侧的NTN网络中的通信方法,或,所述计算机程序用于被接入网设备的处理器执行,以实现上述接入网设备侧的NTN网络中的通信方法。
可选地,该计算机可读存储介质可以包括:只读存储器(Read-Only Memory,ROM)、随机存储器(Random-Access Memory,RAM)、固态硬盘(Solid State Drives,SSD)或光盘等。其中,随机存取记忆体可以包括电阻式随机存取记忆体(Resistance Random Access Memory,ReRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在核心网设备上运行时,用于实现上述核心网设备侧的NTN网络中的通信方法,或,当所述芯片在接入网设备上运行时,用于实现上述接入网设备侧的NTN网络中的通信方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,终端设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述核心网设备侧的NTN网络中的通信方法,或,接入网设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述接入网设备侧的NTN网络中的通信方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (50)

  1. 一种NTN网络中的通信方法,其特征在于,所述方法由核心网设备执行,所述方法包括:
    接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
    基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
  2. 根据权利要求1所述的方法,其特征在于,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  4. 根据权利要求2所述的方法,其特征在于,所述第一本地配置信息包括如下信息中的至少一种:
    所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述核心网设备包括接入与移动性管理功能AMF网元;所述方法还包括:
    向会话管理SMF网元发送所述第二目标标识。
  6. 根据权利要求5所述的方法,其特征在于,所述第一辅助信息包括所述终端设备的位置信息;所述方法还包括:
    接收所述源接入网设备发送的所述终端设备的位置信息。
  7. 根据权利要求1至4任一所述的方法,其特征在于,所述核心网设备包括目标接入与移动性管理功能T-AMF网元;
    所述接收源接入网设备发送的第一目标标识,包括:
    接收由所述S-AMF网元转发的所述第一目标标识,所述第一目标标识由所述源接入网设备发送给所述S-AMF网元。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    向会话管理SMF网元发送所述第二目标标识。
  9. 根据权利要求7所述的方法,其特征在于,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息;所述方法还包括:
    接收所述S-AMF网元发送的所述终端设备的位置信息和所述第一本地配置信息。
  10. 根据权利要求1至4任一所述的方法,其特征在于,所述核心网设备包括源接入与移动性管理功能S-AMF网元;所述方法还包括:
    确定目标接入与移动性管理功能T-AMF网元;
    向所述T-AMF网元发送所述第二目标标识。
  11. 根据权利要求10所述的方法,其特征在于,所述第一辅助信息包括所述终端设备的位置信息;所述方法还包括:
    接收所述源接入网设备发送的所述终端设备的位置信息。
  12. 根据权利要求1至11任一所述的方法,其特征在于,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
  13. 一种跟踪区的发送方法,其特征在于,所述方法由源接入网设备执行,所述方法包括:
    向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    生成所述第一目标标识,所述第一目标标识包括基于所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC一一对应生成的所述至少两个TAI。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的所述目标接入网设备通过卫星广播的所述至少两个TAC。
  16. 根据权利要求13至15任一所述的方法,其特征在于,所述方法还包括:
    向所述核心网设备发送终端设备的位置信息,所述终端设备的位置信息用于辅助所述核心网设备从所述至少两个TAI中选择出所述终端设备所要切换的目标TAI。
  17. 根据权利要求16所述的方法,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  18. 根据权利要求13至17任一所述的方法,其特征在于,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
  19. 一种跟踪区的发送方法,其特征在于,所述方法由源接入网设备执行,所述方法包括:
    接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
    基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
  20. 根据权利要求19所述的方法,其特征在于,所述第二辅助信息包括所述终端设备的位置信息和第二本地配置信息。
  21. 根据权利要求20所述的方法,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  22. 根据权利要求20所述的方法,其特征在于,所述第二本地配置信息包括如下信息中的至少一种:
    所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
  23. 一种NTN网络中的通信装置,其特征在于,所述装置用于实现核心网设备,所述装置包括:
    第一接收模块,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    第一确定模块,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
    第一生成模块,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
  24. 根据权利要求23所述的装置,其特征在于,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息。
  25. 根据权利要求24所述的装置,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  26. 根据权利要求24所述的装置,其特征在于,所述第一本地配置信息包括如下信息中的至少一种:
    所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
  27. 根据权利要求23至26任一所述的装置,其特征在于,所述核心网设备包括接入与移动性管理功能AMF网元;所述装置还包括:
    第一发送模块,用于向会话管理SMF网元发送所述第二目标标识。
  28. 根据权利要求27所述的装置,其特征在于,所述第一辅助信息包括所述终端设备的位置信息;
    第一接收模块,用于接收所述源接入网设备发送的所述终端设备的位置信息。
  29. 根据权利要求23至26任一所述的装置,其特征在于,所述核心网设备包括目标接入与移动性管理功能T-AMF网元;
    所述第一接收模块,用于接收由所述S-AMF网元转发的所述第一目标标识,所述第一目标标识由所述源接入网设备发送给所述S-AMF网元。
  30. 根据权利要求29所述的装置,其特征在于,所述装置还包括:
    第一发送模块,用于向会话管理SMF网元发送所述第二目标标识。
  31. 根据权利要求29所述的装置,其特征在于,所述第一辅助信息包括所述终端设备的位置信息和第一本地配置信息;
    第一接收模块,用于接收所述S-AMF网元发送的所述终端设备的位置信息和所述第一本地配置信息。
  32. 根据权利要求23至26任一所述的装置,其特征在于,所述核心网设备包括源接入与移动性管理功能S-AMF网元;所述装置还包括:
    网元确定模块,用于确定目标接入与移动性管理功能T-AMF网元;
    第一发送模块,用于向所述T-AMF网元发送所述第二目标标识。
  33. 根据权利要求32所述的装置,其特征在于,所述第一辅助信息包括所述终端设备的位置信息;
    第一接收模块,用于接收所述源接入网设备发送的所述终端设备的位置信息。
  34. 根据权利要求23至33任一所述的装置,其特征在于,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
  35. 一种跟踪区的发送装置,其特征在于,所述装置用于实现源接入网设备,所述装置包括:
    第二发送模块,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
  36. 根据权利要求35所述的装置,其特征在于,所述装置还包括:
    第二生成模块,用于生成所述第一目标标识,所述第一目标标识包括基于所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC一一对应生成的所述至少两个TAI。
  37. 根据权利要求36所述的装置,其特征在于,所述装置还包括:
    第二接收模块,用于接收所述终端设备发送的所述目标接入网设备通过卫星广播的所述至少两个TAC。
  38. 根据权利要求35至37任一所述的装置,其特征在于,
    第二发送模块,用于向所述核心网设备发送终端设备的位置信息,所述终端设备的位置信息用于辅助所述核心网设备从所述至少两个TAI中选择出所述终端设备所要切换的目标TAI。
  39. 根据权利要求38所述的装置,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  40. 根据权利要求35至39任一所述的装置,其特征在于,所述第一目标标识包括所述目标接入网设备的全球接入网设备节点标识、与所述目标接入网设备对应的所述至少两个ATI。
  41. 一种跟踪区的发送装置,其特征在于,所述装置用于实现源接入网设备,所述装置包括:
    第三接收模块,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    第三确定模块,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
    第三生成模块,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
  42. 根据权利要求41所述的装置,其特征在于,所述第二辅助信息包括所述终端设备的位置信息和第二本地配置信息。
  43. 根据权利要求42所述的装置,其特征在于,所述终端设备的位置信息包括如下信息中的至少一种:
    所述终端设备的用户位置信息ULI、所述终端设备的实际位置信息。
  44. 根据权利要求42所述的装置,其特征在于,所述第二本地配置信息包括如下信息中的至少一种:
    所述目标接入网设备所接卫星对应的跟踪区的地理位置分布、所述源接入网设备所接卫星对应的跟踪区的地理位置分布、所述目标接入网设备所接卫星的星历信息、所述源接入网设备所接卫星的星历信息。
  45. 一种核心网设备,其特征在于,所述核心网设备包括处理器,以及与所述处理器相连的收发器;
    所述收发器,用于接收源接入网设备发送的第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    所述处理器,用于基于第一辅助信息,从所述至少两个TAI中确定目标TAI,所述目标TAI指示所述终端要切换到的目标跟踪区TA;以及
    所述处理器,用于基于所述目标TAI生成第二目标标识,所述第二目标标识包括所述目标TAI。
  46. 一种接入网设备,其特征在于,所述接入网设备包括收发器;
    所述收发器,用于向核心网设备发送第一目标标识,所述第一目标标识包括与目标接入网设备对应的至少两个跟踪区标识TAI,其中所述至少两个TAI分别对应所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC。
  47. 一种接入网设备,其特征在于,所述接入网设备包括处理器,以及与所述处理器相连的收发器;
    所述收发器,用于接收终端设备发送的所述目标接入网设备通过卫星广播的至少两个跟踪区码TAC;
    所述处理器,用于基于第二辅助信息,从所述至少两个TAC中确定出目标TAC生成目标跟踪区标识TAI,所述目标TAI指示所述终端设备要切换到的目标跟踪区TA;以及
    所述处理器,用于基于所述目标TAI生成第三目标标识,所述第三目标标识包括所述目标TAI。
  48. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至22任一项所述的NTN网络中的通信方法。
  49. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至22任一项所述的NTN网络中的通信方法。
  50. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至22任一项所述的NTN网络中的通信方法。
PCT/CN2021/143312 2021-12-30 2021-12-30 Ntn网络中的通信方法、装置、设备及存储介质 WO2023123269A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/143312 WO2023123269A1 (zh) 2021-12-30 2021-12-30 Ntn网络中的通信方法、装置、设备及存储介质
CN202180102997.XA CN118077307A (zh) 2021-12-30 2021-12-30 Ntn网络中的通信方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143312 WO2023123269A1 (zh) 2021-12-30 2021-12-30 Ntn网络中的通信方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023123269A1 true WO2023123269A1 (zh) 2023-07-06

Family

ID=86997111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143312 WO2023123269A1 (zh) 2021-12-30 2021-12-30 Ntn网络中的通信方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN118077307A (zh)
WO (1) WO2023123269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2628080A (en) * 2023-02-16 2024-09-18 Samsung Electronics Co Ltd Mobile access node

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210037496A1 (en) * 2019-08-02 2021-02-04 Jinsook Ryu Geographical Zone-based Registration Area Tracking
US20210105693A1 (en) * 2019-10-04 2021-04-08 Samsung Electronics Co., Ltd. Virtual tracking or registration areas for non terrestrial networks
CN112789913A (zh) * 2018-09-28 2021-05-11 中兴通讯股份有限公司 非地面卫星网络的跟踪区域更新和寻呼方法
CN112806095A (zh) * 2018-09-27 2021-05-14 中兴通讯股份有限公司 基于地理位置的跟踪区域管理
WO2021092503A1 (en) * 2019-11-07 2021-05-14 Qualcomm Incorporated Systems and methods for supporting fixed tracking areas and fixed cells for mobile satellite wireless access
CN113301643A (zh) * 2020-02-24 2021-08-24 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806095A (zh) * 2018-09-27 2021-05-14 中兴通讯股份有限公司 基于地理位置的跟踪区域管理
CN112789913A (zh) * 2018-09-28 2021-05-11 中兴通讯股份有限公司 非地面卫星网络的跟踪区域更新和寻呼方法
US20210037496A1 (en) * 2019-08-02 2021-02-04 Jinsook Ryu Geographical Zone-based Registration Area Tracking
US20210105693A1 (en) * 2019-10-04 2021-04-08 Samsung Electronics Co., Ltd. Virtual tracking or registration areas for non terrestrial networks
WO2021092503A1 (en) * 2019-11-07 2021-05-14 Qualcomm Incorporated Systems and methods for supporting fixed tracking areas and fixed cells for mobile satellite wireless access
CN113301643A (zh) * 2020-02-24 2021-08-24 上海朗帛通信技术有限公司 一种被用于无线通信的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2628080A (en) * 2023-02-16 2024-09-18 Samsung Electronics Co Ltd Mobile access node

Also Published As

Publication number Publication date
CN118077307A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US11284241B2 (en) Method and apparatus for performing cell specification procedure for network slice-based NR in wireless communication system
US10652809B2 (en) Method and apparatus for supporting network slicing selection and authorization for new radio access technology
US20200358657A1 (en) Method and apparatus for performing cell specific procedure or mobility procedure for network slice-based nr in wireless communication system
US11889452B2 (en) Geographical zone-based registration area tracking
WO2020098627A1 (zh) 一种卫星通信的方法、装置及系统
CN111586771B (zh) 网络节点选择方法及装置
EP3934324A1 (en) Data forwarding method performed by smf and smf device
CN113170387B (zh) 管理接入和移动性功能
US20230189136A1 (en) Cell selection method and apparatus, device and medium
WO2023108662A1 (zh) 数据发送方法、装置、设备及存储介质
CN116158136A (zh) 用于确定用户设备是否位于注册区域中的装置和方法
WO2023087328A1 (zh) 切换方法、装置、设备及存储介质
WO2023123269A1 (zh) Ntn网络中的通信方法、装置、设备及存储介质
US20240106530A1 (en) Method for satellite selection
CN109246767B (zh) 一种数据中转方法、装置、网络功能实体及smf实体
US20230239776A1 (en) Apparatus and method for managing user equipment in wireless communication system
WO2022217613A1 (zh) 数据传输方法、设备及存储介质
WO2024108502A1 (zh) 通信方法及通信装置
RU2787012C2 (ru) Система, устройство и способ спутниковой связи
WO2023221099A1 (zh) 请求终端定位的方法、装置、设备及存储介质
US20240056807A1 (en) Network equipment and user equipment
WO2023230844A1 (zh) 小区参数的配置方法、装置、设备及存储介质
US20230292275A1 (en) Transceiver device, network entity and base station
RU2777403C1 (ru) Способ и устройство определения и установления соединения, система передачи и система спутниковой связи
WO2023050361A1 (zh) 辅目标的配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180102997.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE