WO2022217613A1 - 数据传输方法、设备及存储介质 - Google Patents

数据传输方法、设备及存储介质 Download PDF

Info

Publication number
WO2022217613A1
WO2022217613A1 PCT/CN2021/087923 CN2021087923W WO2022217613A1 WO 2022217613 A1 WO2022217613 A1 WO 2022217613A1 CN 2021087923 W CN2021087923 W CN 2021087923W WO 2022217613 A1 WO2022217613 A1 WO 2022217613A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
relay device
indication information
relay
rsc
Prior art date
Application number
PCT/CN2021/087923
Other languages
English (en)
French (fr)
Inventor
陈景然
卢飞
郭雅莉
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180093740.2A priority Critical patent/CN116897575A/zh
Priority to PCT/CN2021/087923 priority patent/WO2022217613A1/zh
Publication of WO2022217613A1 publication Critical patent/WO2022217613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data transmission method, device, and storage medium.
  • Satellite communication systems use satellites as relay stations to forward microwave signals to communicate between multiple ground stations.
  • devices outside the coverage of the ground base station can establish a connection with the network through devices within the coverage of the ground base station.
  • the equipment outside the coverage of the ground base station is called the remote equipment, and the equipment within the coverage of the ground base station is called the relay equipment.
  • the remote device can also establish a connection with the network through the device within the satellite coverage, and the device within the satellite coverage can access the network through the satellite.
  • the relay device selected by the remote device When the relay device selected by the remote device establishes a connection with the network through satellite, and the satellite network does not support the data service of the remote device, the PDU session request of the remote device will fail.
  • the embodiments of the present application provide a data transmission method, device, and storage medium, which can save signaling interaction between terminals and realize fast access of remote devices to the network.
  • an embodiment of the present application provides a data transmission method, including: a remote device receiving first indication information from a relay device, where the first indication information is used to indicate a network access mode of the relay device .
  • an embodiment of the present application provides a data transmission method, including: a relay device sending first indication information to a remote device, where the first indication information is used to indicate a network access mode of the relay device.
  • an embodiment of the present application provides a data transmission method, including: a network device sending configuration information to a terminal device, where the configuration information includes a correspondence between a relay service code RSC and a network access mode of the relay device, so At least one item of the correspondence between the RSC and the time delay information of the satellite access network used by the relay device, and the RSC.
  • an embodiment of the present application provides a remote device, including: a receiving module configured to receive first indication information from a relay device, where the first indication information is used to indicate a network connection of the relay device entry method.
  • an embodiment of the present application provides a relay device, including: a sending module configured to send first indication information to a remote device, where the first indication information is used to indicate network access of the relay device Way.
  • an embodiment of the present application provides a network device, including: a sending module configured to send configuration information to a terminal device, where the configuration information includes a correspondence between a relay service code RSC and a network access mode of the relay device , the RSC and the relay device adopt at least one item of the correspondence between the delay information of the satellite access network, and the RSC.
  • a sending module configured to send configuration information to a terminal device, where the configuration information includes a correspondence between a relay service code RSC and a network access mode of the relay device , the RSC and the relay device adopt at least one item of the correspondence between the delay information of the satellite access network, and the RSC.
  • an embodiment of the present application provides a remote device, including: a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that The processor runs the computer program to perform the method of the first aspect.
  • an embodiment of the present application provides a relay device, including: a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that The processor runs the computer program to perform the method of the second aspect.
  • an embodiment of the present application provides a network device, including: a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that all The processor executes the computer program to perform the method according to the third aspect.
  • an embodiment of the present application provides a storage medium, where the storage medium includes a computer program, and the computer program is used to implement the method according to the first aspect.
  • an embodiment of the present application provides a storage medium, where the storage medium includes a computer program, and the computer program is used to implement the method according to the second aspect.
  • an embodiment of the present application provides a storage medium, where the storage medium includes a computer program, and the computer program is used to implement the method according to the third aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method according to the first aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method described in the second aspect.
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method according to the third aspect.
  • Embodiments of the present application provide a data transmission method, device, and storage medium.
  • the method includes: a remote device receives first indication information from a relay device, where the first indication information is used to indicate a network access mode of the relay device , the remote device determines whether to establish a network connection through the relay device according to the first indication information, which can avoid the problem of serious data delay caused by the remote device connecting to the network through the relay device connected to the satellite network, and can also avoid the problem of serious data delay caused by the relay device
  • the connected network does not support the services of the remote device, resulting in the failure of the network connection.
  • the above-mentioned transmission scheme can save unnecessary signaling interaction and realize fast access of remote devices to the network.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 3 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 4 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 6 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 8 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a remote device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a relay device according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a hardware structure of a remote device provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a hardware structure of a relay device according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the 5G network architecture released by the 3rd Generation Partnership Project (3GPP) standards group includes:
  • Terminal including user equipment, UE), access network supporting 3GPP technology (including radio access network, RAN or access network, AN), user plane function (UPF) network element, access and mobility management functions (access and mobility management function, AMF) network element, session management function (session management function, SMF) network element, policy control function (policy control function, PCF) network element, application function (application function, AF), data network ( data network, DN), network slice selection function (NSSF), authentication service function (Authentication Server Function, AUSF), unified data management function (Unified Data Management, UDM).
  • the 5G network architecture shown in FIG. 1 does not constitute a limitation of the 5G network architecture.
  • the 5G network architecture may include more or less network elements than the one shown in the figure, or Combine certain network elements, etc.
  • the AN or RAN is represented in FIG. 1 in terms of (R)AN.
  • the terminal can be a user equipment (UE), a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant , PDA) computer, tablet computer, wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, Machine type communication (MTC) terminals, handheld devices with wireless communication capabilities, computing devices, processing devices connected to wireless modems, drones, in-vehicle devices, wearable devices, terminals in the Internet of Things, virtual reality equipment, terminal equipment in the future 5G network, terminals in the future evolved public land mobile network (PLMN), etc.
  • UE user equipment
  • PDA personal digital assistant
  • MTC Machine type communication
  • An access network device is an access device that a terminal wirelessly accesses into the network architecture, and is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • base station NodeB evolved base station eNodeB, base station in 5G mobile communication system or new generation wireless (new radio, NR) communication system, base station in future mobile communication system, etc.
  • the UPF network element, the AMF network element, the SMF network element, and the PCF network element are network elements of the 3GPP core network (abbreviation: core network network element).
  • UPF network elements can be called user plane function network elements, which are mainly responsible for the transmission of user data.
  • Other network elements can be called control plane function network elements, which are mainly responsible for authentication, authentication, registration management, session management, mobility management and policy control. etc. to ensure reliable and stable transmission of user data.
  • UPF network elements can be used to forward and receive terminal data.
  • the UPF network element can receive service data from the data network and transmit it to the terminal through the access network device; the UPF network element can also receive user data from the terminal through the access network device and forward it to the data network.
  • the transmission resources allocated and scheduled by the UPF network element for the terminal are managed and controlled by the SMF network element.
  • the bearer between the terminal and the UPF network element may include: a user plane connection between the UPF network element and the access network device, and establishing a channel between the access network device and the terminal.
  • the user plane connection is a quality of service (quality of service, QoS) flow (flow) that can establish transmission data between the UPF network element and the access network device.
  • QoS quality of service
  • the AMF network element can be used to manage terminal access to the core network, such as: terminal location update, network registration, access control, terminal mobility management, terminal attachment and detachment, and so on.
  • the AMF network element may also provide storage resources of the control plane for the session in the case of providing services for the session of the terminal, so as to store the session identifier, the SMF network element identifier associated with the session identifier, and the like.
  • the SMF network element can be used to select a user plane network element for the terminal, redirect the user plane network element for the terminal, assign an Internet Protocol (IP) address to the terminal, and establish a bearer between the terminal and the UPF network element (also called session), session modification, release, and QoS control.
  • IP Internet Protocol
  • the PCF network element is used to provide policies, such as QoS policies and slice selection policies, to the AMF network elements and the SMF network elements.
  • the AF network element is used to interact with the 3GPP core network element to support the routing of applications affecting data, to access the network exposure function, and to interact with the PCF network element for policy control.
  • the DN can provide data services for users such as IP multi-media service (IMS) networks and the Internet.
  • IMS IP multi-media service
  • AS application servers
  • the AS can implement the function of AF.
  • NSSF is used for the selection of network slices, and the supported functions include: selecting the set of network slice instances serving the UE; determining the allowed network slice selection assistance information (NSSAI), and determining a single contract to sign when needed.
  • NSSAI network slice selection assistance information
  • S-NSSAI Mapping of Network Slice Selection Assistance Information (S-NSSAI); determine the configured NSSAI, and if needed, the mapping to the subscribed S-NSSAI; determine the AMF set that may be used to query the UE , or determine a list of candidate AMFs based on the configuration.
  • the AUSF is used to receive the AMF's request for authentication of the terminal, by requesting the key from the UDM, and then forwarding the issued key to the AMF for authentication processing.
  • UDM includes functions such as generation and storage of user subscription data, management of authentication data, and supports interaction with external third-party servers.
  • Each network element in FIG. 1 can be either a network element in a hardware device, a software function running on dedicated hardware, or a virtualized function instantiated on a platform (eg, a cloud platform). It should be noted that, in the network architecture shown in the above figures, the network elements included in the entire network architecture are merely illustrated. In the embodiments of the present application, the network elements included in the entire network architecture are not limited.
  • NTN non-terrestrial network
  • Satellite communication refers to the use of artificial earth satellites as relay stations to forward or reflect radio waves. Communication between one or more earth stations.
  • satellite network communication Compared with terrestrial network communication, satellite network communication has the following advantages:
  • satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a A single satellite can cover a large ground, and the satellite can orbit around the earth. Therefore, in theory, every corner of the earth can be covered by satellite communication;
  • satellite communication has great social value, and satellite communication is in remote areas. Mountainous areas, poor and backward countries or regions can be covered at a lower cost, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital gap with developed regions and promoting the development of these regions. ;
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not restricted by natural disasters.
  • communication satellites can be divided into geostationary earth orbit (GEO) satellites and non-geostationary orbit (Non-GEO) satellites according to the orbital altitude of the communication satellites that provide services.
  • non-geosynchronous orbit satellites can be divided into low earth orbit (low earth orbit, LEO) satellites, medium earth orbit (medium-earth orbit, MEO) satellites and high elliptical orbit (high elliptical orbit, HEO) satellites and so on.
  • LEO low earth orbit
  • MEO medium earth orbit
  • HEO high elliptical orbit
  • the orbital altitudes of LEO satellites range from 500km to 1500km
  • the orbital altitudes of MEO satellites range from 2000km to 20000km
  • the closest point of HEO satellites to the earth's surface is 1000km to 21000km
  • the farthest point is 39500km to 50600km. It is 35786km.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover several diameters. Ten to hundreds of kilometers of ground area.
  • a proximity service (Proximity Services, ProSe) technology can be used to enable UEs outside the cell coverage to communicate with the base station through the UEs within the cell coverage to improve data transmission efficiency.
  • ProSe Proximity Services
  • the UE outside the coverage of the cell is called the remote UE
  • the UE within the coverage of the cell is called the relay UE (relay UE), as shown in FIG. 1 .
  • the remote UE uses the discovery process in the ProSe technology to determine the relay UE, and establishes connection and communication with the relay UE.
  • the remote UE accesses the network through the relay UE, and the relay UE is used to transmit the information between the remote UE and the network.
  • the data is used to transmit the information between the remote UE and the network.
  • FIG. 2 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • a remote UE with ProSe capability can establish direct communication with a relay UE with ProSe capability through a PC5 interface.
  • the satellite network is connected to the 5G core network CN. That is to say, the remote UE in FIG. 2 can establish a PDU session with the 5G network through the relay UE using the satellite network access mode, so as to realize the interaction between the remote UE and the external data network.
  • the network access modes of the relay UE can be divided into: NR-LEO access, NR-MEO access, NR-GEO access and NR-OTHERSAT (other satellites) ) access, etc.
  • the distance between the UE and the satellite and between the satellite and the ground station is too large, resulting in a large delay between the UE and the data network.
  • some services such as the Internet of Vehicles V2X (vehicle to everything) service, it is not suitable for use in satellite networks.
  • the remote UE connects to the network through the relay device, there may be the following problems: if the remote UE does not know that the relay device is currently under the satellite network (that is, the relay device currently uses the satellite access network), and selects this When the relay device establishes a PDU session with the core network, some PDU sessions related to services not supported by the NTN will be rejected by the core network, which wastes signaling and causes session request failure.
  • an embodiment of the present application proposes a data transmission method.
  • the network side can pre-configure the way (access type) for terminal equipment to access the network, and the terminal equipment can generate indication information according to the pre-configured information to notify other equipment. its network access method.
  • the surrounding devices can learn the allowed network access method by sending the indication information.
  • the remote device can also know the network access situation of the surrounding relay devices in advance by sending the indication information, so as to select an appropriate relay device to establish a network connection.
  • FIG. 3 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in Figure 3, the method provided by this embodiment includes the following steps:
  • Step 101 The relay device sends first indication information to the remote device, where the first indication information is used to indicate the network access mode of the relay device.
  • the network access mode of the relay device includes terrestrial network (terrestrial network, TN) access or satellite network (non-terrestrial network, NTN) access.
  • the access modes of NTN include NR-LEO access, NR-MEO access, NR-GEO access and NR-OTHERSAT access.
  • the first indication information may directly indicate the network access mode of the relay device.
  • the first indication information includes a relay service code (relay service code, RSC).
  • RSC relay service code
  • the RSC corresponds to the network access mode of the relay device, and/or the RSC corresponds to the delay information of the satellite access network.
  • Step 102 The remote device determines whether to establish a network connection through the relay device according to the first indication information.
  • the remote device determines whether to establish a network connection through the relay device according to the network access mode of the relay device indicated by the first indication information and the service type of the data transmitted by the remote device.
  • the remote device determines to establish a network connection through the relay device. If the network access mode of the relay device indicated by the first indication information does not support the service type of the remote device to transmit data, the remote device determines not to establish a network connection through the relay device, and selects other relay devices to establish a network connection .
  • the relay device indicated by the first indication information uses the geostationary orbit satellite GEO to access the network
  • the data service that the remote device wants to establish such as the V2X service of the Internet of Vehicles, is not suitable for use in the satellite network, the remote The device does not select the relay device.
  • the remote device receives the first indication information from the relay device, the first indication information is used to indicate the network access mode of the relay device, and the remote device determines whether to Establishing a network connection through the relay device can avoid the problem of serious data delay caused by the remote device connecting to the network through the relay device connected to the satellite network, and also avoid the problem that the network connected by the relay device does not support the services of the remote device. The problem that caused the network connection to fail. Through the above solution, unnecessary signaling interaction can be saved, and the remote device can quickly access the network.
  • the remote device determines whether it can access the network through the relay device according to the first indication information of the relay device. network access method. Specifically, the remote device can learn the current network access mode of the relay device according to the pre-stored relevant configuration information of the relay device and the RSC in the first indication information.
  • the related configuration of the relay device on the network side will be introduced below with reference to FIG. 4 .
  • FIG. 4 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in Figure 4, the method provided by this embodiment includes the following steps:
  • Step 201 The relay device sends relay capability information to the network device. (optional)
  • Step 202 The network device generates configuration information according to the relay capability information. (optional)
  • Step 203 The network device sends configuration information to the remote device.
  • Step 204 The network device sends configuration information to the relay device.
  • the network device may be a PCF network element.
  • the configuration information sent by the network device includes the correspondence between the relay service code RSC and the network access mode of the relay device, and at least one of the correspondence between the RSC and the relay device uses the delay information of the satellite access network. item, and RSC. specific,
  • an RSC corresponding to each network access mode may be configured in the configuration information, and different RSCs correspond to different network access modes.
  • the configuration information may configure RSCs corresponding to the delay information of each type of satellite (low-orbit satellite, medium-orbit satellite, geosynchronous orbit satellite or other satellite) to access the network, and different RSCs correspond to different delay information.
  • the terminal device can obtain information on the delay of accessing a certain relay device through the RSC, and if the delay is relatively large, it is not considered to access the network through the relay device.
  • the configuration information can configure the RSC corresponding to each network access mode and the RSC corresponding to the delay information of each satellite access network at the same time, and each RSC corresponds to a network Access mode or delay information.
  • the remote device and the relay device respectively receive the configuration information from the network device and save the configuration information locally.
  • the remote device can learn the network access mode of any relay device according to the locally stored configuration information and the first indication information. Therefore, it is a condition for the remote device to select the relay device.
  • step 203 and step 204 are only an example, and step 204 may be executed first and then step 203, or both steps may be executed simultaneously.
  • the network device may receive relay capability information sent by the relay device.
  • the relay capability information is used to indicate the network access mode supported by the relay device.
  • the relay capability information indicates that the relay device supports TN and NTN access, or that the relay device only supports NTN access, or that the relay device only supports NTN access. Support TN access.
  • the network device generates configuration information according to the received relay capability information of the relay device.
  • the network device learns the network access modes of the relay device according to the received relay capability information of multiple relay devices, for example, including TN and NTN access, and NTN access is further divided into NR -LEO, NR-GEO, NR-MEO and NR-OTHERSAT.
  • the network device configures the corresponding relay service code RSC for the above-mentioned network access mode of the relay device, and sends the configured RSC and the corresponding relationship between the RSC and the network access mode of the relay device to the relay device and the remote device.
  • the network device learns, according to the received relay capability information of multiple relay devices, the delay information of accessing the network through the relay device, and the delay information of the relay device accessing the network indirectly indicates that the middle The network access method of the relay device. It should be understood that the delay information of using NTN to access the network is relatively large, and the delay information of using satellites in different orbits to access the network is different.
  • the network device configures the corresponding RSC for the above delay information of the relay device, and sends the configured RSC and the correspondence between the RSC and the delay information of the relay device using the satellite access network to the relay device and the remote device.
  • the relay device may generate first indication information according to the configuration information, which is used to indicate the current network access mode and/or network access mode of the relay device. incoming delay information.
  • the remote device can determine whether to access the network through the relay device according to the configuration information and the first indication information sent by the relay device. If the relay device adopts the satellite access network, and the satellite network does not currently support the service type of the data to be transmitted by the remote device, the remote device can consider other relay devices to avoid unnecessary signaling interaction.
  • FIG. 5 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in Figure 5, the method provided by this embodiment includes the following steps:
  • Step 301 The relay device sends a discovery announcement message to the remote device, where the discovery announcement message includes first indication information.
  • Step 302 The remote device determines whether to establish a network connection through the relay device according to the discovery announcement message.
  • the relay device adopts the mode A of ProSe Direct Discovery, and sends a discovery announcement message (Announcement message) to the remote device by broadcasting, and the discovery announcement message includes the first indication information, indicating the current network access mode of the relay device (that is, the access type currently connected to the core network by the relay device).
  • the network access mode indicated by the first indication information is the same as that in the above-mentioned embodiment. For details, reference may be made to the above-mentioned, which will not be repeated here.
  • the remote device learns the current network access mode of the relay device through the discovery announcement message broadcast by the relay device, and determines whether the relay device can be selected to establish a network connection. Through the above solution, unnecessary signaling interaction can be saved, and the remote device can quickly access the network.
  • FIG. 6 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in Figure 6, the method provided by this embodiment includes the following steps:
  • Step 401 The remote device broadcasts a discovery request to the relay device, where the discovery request includes second indication information, and the second indication information is used to indicate the network access mode of the relay device allowed by the remote device.
  • the remote device first determines whether the service of data to be transmitted is applicable to NTN. If it is determined that the service of data to be transmitted is applicable to NTN, the remote device carries the second indication information (or discovery request) in the discovery request.
  • the request includes second indication information), that is, the solocatation message in mode B carries the second indication information, and the second indication information is used to indicate the network access mode of the relay device allowed by the remote device (or to indicate the relay device). the network access method that can be satisfied).
  • the network access mode indicated in the second indication information is the same as that in the above-mentioned embodiment. For details, reference may be made to the above-mentioned, which will not be repeated here.
  • the remote device determines that the service of the data to be transmitted is only applicable to the TN, the remote device carries second indication information in the discovery request, and the second indication information is used to indicate the network of the relay device allowed by the remote device.
  • the access mode is TN access.
  • the second indication information includes a relay service code RSC, where the RSC corresponds to a network access mode of the relay device allowed by the remote device.
  • RSC relay service code
  • the second indication information includes an RSC, and the RSC corresponds to the delay information that the relay device allowed by the remote device uses the satellite to access the network.
  • Step 402 The relay device sends a discovery response to the remote device, where the discovery response includes the first indication information.
  • Step 403 The remote device determines whether to establish a network connection through the relay device according to the discovery response.
  • the relay device sending the discovery response to the remote device includes: the relay device that satisfies the network access mode indicated by the second indication information sends the discovery response to the remote device.
  • the remote device establishes a corresponding network connection according to the discovery response, that is, accesses the network through the relay device.
  • the remote device if the remote device only receives a discovery response returned by a relay device, it can determine whether to establish a network connection through the relay device according to the first indication information of the discovery response.
  • the remote device if it receives discovery responses returned by multiple relay devices, it can determine which relay device to use to establish the network connection according to the multiple received discovery responses.
  • a relay device that satisfies the network access mode indicated by the second indication information may carry first indication information in the sent discovery response, where the first indication information is used to indicate that the relay device is currently network access method.
  • the remote device carries second indication information in the discovery request broadcast to the relay device, indicating the network access mode of the relay device allowed by the remote device.
  • the relay device returns a discovery response to the remote device, where the discovery response carries first indication information indicating the current network access mode of the relay device.
  • the remote device determines whether to access the network through the relay device according to the discovery response.
  • FIG. 7 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in FIG. 7 , the method provided by this embodiment includes the following steps:
  • Step 501 the remote device broadcasts a discovery request to the relay device.
  • the discovery request (that is, the solicitation message) broadcasted by the remote device does not carry the second indication information, that is, the discovery request does not carry the indication of the network access mode of the relay device to be requested.
  • Step 502 The relay device sends a discovery response to the remote device, where the discovery response includes the first indication information.
  • the first indication information is used to indicate the current network access mode of the relay device, and the network access mode is the same as that in the above embodiment.
  • Step 503 The remote device determines whether to establish a network connection through the relay device according to the discovery response.
  • the relay device after receiving the discovery request broadcast by the remote device, the relay device indicates the current network access mode of the relay device when returning a discovery response to the remote device, so that the remote device can According to the instruction, it is decided whether to select the relay device to establish a network connection.
  • FIG. 8 is an interactive schematic diagram of a data transmission method provided by an embodiment of the present application. As shown in FIG. 8 , the method provided by this embodiment includes the following steps:
  • Step 601 The remote device sends a connection establishment request to the relay device.
  • the connection establishment request includes the service type of the data to be transmitted by the remote device, that is, the service type that the remote device wants to establish.
  • connection establishment request further includes second indication information, where the second indication information is used to indicate a network access mode of the relay device allowed by the remote device. That is, the connection establishment request carries a network access mode that indicates that the relay device can satisfy.
  • Step 602 The relay device sends a connection establishment response to the remote device.
  • the connection establishment response includes third indication information, where the third indication information is used to indicate whether the remote device accesses the network through the relay device.
  • the connection establishment response includes first indication information, where the first indication information is used to indicate the current network access mode of the relay device.
  • the network access mode indicated by the first indication information is the same as that in the above-mentioned embodiment. For details, reference may be made to the above-mentioned, which will not be repeated here.
  • the relay device may determine whether it can support the service type of the remote device according to the connection establishment request. Specifically, the relay device can determine whether its network access mode supports the service type of the remote device according to its own network access mode and the service type in the connection establishment request:
  • the relay device determines that its network access mode can support the service type of the remote device, the relay device sends a response message that the connection is established successfully to the remote device.
  • the current network access mode of the relay device is indicated in the response message.
  • the relay device may send a response message of connection establishment failure to the remote device.
  • the current network access mode of the relay device is indicated in the response message.
  • the relay device can carry the first indication information in the connection establishment response, which is used to indicate the current network access mode of the relay device to the remote device.
  • Step 603 The remote device determines whether to establish a network connection through the relay device according to the connection establishment response.
  • the remote device directly determines whether to establish a network connection through a relay device according to the third indication information in the connection establishment response.
  • the remote device may determine whether to establish a network connection through a relay device according to the first indication information in the connection establishment response. Different from the above embodiment, the remote device in this embodiment also needs to determine whether to establish a network connection through the relay device through its own judgment.
  • the remote device does not perform the discovery process, and directly carries the service it wants to establish in the connection establishment request.
  • the relay device determines whether the service can be supported, and returns a connection establishment response to the remote device according to the judgment result.
  • the connection establishment response carries the first indication information, which is used to indicate the current status of the relay device. network access method.
  • FIG. 9 is a schematic structural diagram of a remote device according to an embodiment of the present application.
  • the remote device 700 provided in this embodiment of the present application includes: a receiving module 701 .
  • the receiving module 701 is configured to receive first indication information from a relay device, where the first indication information is used to indicate a network access mode of the relay device.
  • the device further includes: a processing module 702 .
  • a processing module 702 configured to determine whether to establish a network connection through the relay device according to the first indication information.
  • the first indication information includes a relay service code RSC, where the RSC corresponds to a network access mode of the relay device.
  • the network access mode of the relay device includes at least one of terrestrial network TN access and satellite network NTN access.
  • the receiving module 701 is specifically configured to receive a discovery announcement message from the relay device, where the discovery announcement message includes the first indication information.
  • the device further includes: a sending module 703 .
  • the sending module 703 is configured to broadcast a discovery request
  • the receiving module 701 is specifically configured to receive a discovery response from the relay device, where the discovery response includes the first indication information.
  • the discovery request includes second indication information, where the second indication information is used to indicate a network access mode of the relay device allowed by the remote device.
  • the second indication information includes an RSC, and the RSC corresponds to a network access mode of the relay device allowed by the remote device.
  • the sending module 703 before the receiving module 701 receives the first indication information from the relay device, the sending module 703 is configured to send a connection establishment request to the relay device;
  • the receiving module 701 is specifically configured to receive a connection establishment response from the relay device, where the connection establishment response includes the first indication information.
  • the processing module 702 is specifically configured to determine whether to establish a network connection through the relay device according to the first indication information and the service type of the data transmitted by the remote device.
  • processing module 702 is specifically configured to:
  • the network access mode of the relay device indicated by the first indication information supports the service type of the data transmitted by the remote device, it is determined to establish a network connection through the relay device.
  • the receiving module 701 is further configured to:
  • Receive configuration information from the network device where the configuration information includes the correspondence between the RSC and the network access mode of the relay device, and the RSC and the relay device use at least one of the correspondence between the delay information of the satellite access network , and RSC.
  • the remote device provided in this embodiment of the present application is configured to perform the technical solutions performed by the remote device in the method embodiments shown in FIG. 3 to FIG. 8 , and the implementation principle and technical effect thereof are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a relay device according to an embodiment of the present application.
  • the relay device 800 provided in this embodiment of the present application includes: a sending module 801 .
  • the sending module 801 is configured to send first indication information to a remote device, where the first indication information is used to indicate a network access mode of the relay device.
  • the first indication information includes a relay service code RSC, where the RSC corresponds to a network access mode of the relay device.
  • the network access mode of the relay device includes at least one of terrestrial network TN access and satellite network NTN access.
  • the sending module 801 is specifically configured to send a discovery announcement message, where the discovery announcement message includes the first indication information.
  • the device further includes: a receiving module 802 .
  • the receiving module 802 is configured to receive a discovery request from the remote device
  • the sending module 801 is specifically configured to send a discovery response to the remote device, where the discovery response includes the first indication information.
  • the discovery request includes second indication information, where the second indication information is used to indicate a network access mode of the relay device allowed by the remote device.
  • the second indication information includes an RSC, and the RSC corresponds to a network access mode of the relay device allowed by the remote device.
  • the receiving module 802 is configured to receive a connection establishment request from the remote device
  • the sending module 801 is specifically configured to send a connection establishment response to the remote device, where the connection establishment response includes the first indication information.
  • the receiving module 802 is configured to receive configuration information from a network device, where the configuration information includes a correspondence between the RSC and the network access mode of the relay device, the RSC and the relay The device adopts at least one item of the corresponding relationship of the delay information of the satellite access network, and the RSC.
  • the relay device provided in this embodiment of the present application is used to implement the technical solutions performed by the relay device in the method embodiments shown in FIG. 3 to FIG. 8 .
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the application.
  • the network device 900 provided in this embodiment of the present application includes: a sending module 901 .
  • the sending module 901 is configured to send configuration information to the terminal device, where the configuration information includes the correspondence between the relay service code RSC and the network access mode of the relay device, and the RSC and the relay device use the satellite access network time. At least one item of the corresponding relationship of extension information, and RSC.
  • the device further includes: a receiving module 902 and a processing module 903;
  • the receiving module 902 is configured to receive relay capability information from a relay device, where the relay capability information is used to indicate a network access mode supported by the relay device;
  • the processing module 903 is configured to generate the configuration information according to the relay capability information.
  • the network device provided in this embodiment of the present application is configured to execute the technical solutions performed by the network device in the method embodiments shown in FIG. 3 to FIG. 8 , and the implementation principles and technical effects thereof are similar, and details are not repeated here.
  • the processing module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the function of the above determined module.
  • the processing module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device Call and execute the function of the above determined module.
  • the implementation of other modules is similar.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital) signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • FIG. 12 is a schematic diagram of a hardware structure of a remote device according to an embodiment of the present application.
  • the remote device 1000 in this embodiment may include: a processor 1001 , a memory 1002 and a communication interface 1003 .
  • the memory 1002 is used to store computer programs; the processor 1001 is used to execute the computer programs stored in the memory 1002 to implement the method performed by the remote device in any of the above method embodiments.
  • the communication interface 1003 is used for data communication or signal communication with other devices.
  • the memory 1002 may be independent or integrated with the processor 1001 .
  • the remote device 1000 may further include: a bus 1004 for connecting the memory 1002 and the processor 1001 .
  • the processing module 702 in FIG. 9 may be integrated in the processor 1001 and implemented, and the receiving module 701 and the transmitting module 703 may be integrated in the communication interface 1003 and implemented.
  • the processor 1001 may be used to implement the signal processing operation of the remote device in the above method embodiment, and the communication interface 1003 may be used to implement the signal transceiving operation of the remote device in the above method embodiment.
  • the remote device provided in this embodiment can be used to execute the method performed by the remote device in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not described herein again.
  • FIG. 13 is a schematic diagram of a hardware structure of a relay device according to an embodiment of the application.
  • the relay device 1100 in this embodiment may include: a processor 1101 , a memory 1102 and a communication interface 1103 .
  • the memory 1102 is used to store computer programs; the processor 1101 is used to execute the computer programs stored in the memory 1102 to implement the method performed by the relay device in any of the above method embodiments.
  • the communication interface 1103 is used for data communication or signal communication with other devices.
  • the memory 1102 may be independent or integrated with the processor 1101 .
  • the relay device 1100 may further include: a bus 1104 for connecting the memory 1102 and the processor 1101 .
  • the sending module 801 and the receiving module 802 in FIG. 10 may be integrated in the communication interface 1103 and implemented.
  • the processor 1101 may be used to implement the signal processing operation of the relay device in the above method embodiment
  • the communication interface 1103 may be used to implement the signal transceiving operation of the relay device in the above method embodiment.
  • the relay device provided in this embodiment can be used to execute the method performed by the relay device in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not repeated here.
  • FIG. 14 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • the network device 1200 in this embodiment may include: a processor 1201 , a memory 1202 and a communication interface 1203 .
  • the memory 1202 is used to store computer programs; the processor 1201 is used to execute the computer programs stored in the memory 1202 to implement the method executed by the network device in any of the above method embodiments.
  • the communication interface 1203 is used for data communication or signal communication with other devices.
  • the memory 1202 may be independent or integrated with the processor 1201 .
  • the network device 1200 may further include: a bus 1204 for connecting the memory 1202 and the processor 1201 .
  • the processing module 903 in FIG. 11 can be integrated in the processor 1201 and implemented, and the sending module 901 and the receiving module 902 can be integrated in the communication interface 1203 and implemented.
  • the processor 1201 may be used to implement the signal processing operation of the network device in the above method embodiment
  • the communication interface 1203 may be used to implement the signal transceiving operation of the network device in the above method embodiment.
  • the network device provided in this embodiment can be used to execute the method performed by the network device in any of the above method embodiments, and its implementation principle and technical effect are similar, and details are not repeated here.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the remote control in any of the foregoing method embodiments.
  • technical solutions for end devices are provided.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement any of the foregoing method embodiments.
  • a computer-readable storage medium where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the network in any of the foregoing method embodiments The technical solution of the equipment.
  • the embodiments of the present application further provide a program, which, when the program is executed by the processor, is used to execute the technical solution of the remote device in any of the foregoing method embodiments.
  • the embodiments of the present application further provide a program, which, when the program is executed by the processor, is used to execute the technical solution of the relay device in any of the foregoing method embodiments.
  • the embodiments of the present application further provide a program, which, when the program is executed by the processor, is used to execute the technical solution of the network device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the remote device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the remote device in the foregoing method embodiments.
  • this chip also includes a storage module (such as memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module execute the remote device. technical solution.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the relay device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the relay device in the foregoing method embodiments.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module makes the processing module execute the relay device.
  • a storage module eg, memory
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solution of the network device in any of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the network device in the foregoing method embodiments.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the network device.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the network device.
  • At least two means two or more, and "a plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula, the character “/” indicates that the related objects are a “division” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple indivual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法、设备及存储介质,该方法包括:远端设备通过接收来自中继设备的第一指示信息,第一指示信息用于指示中继设备的网络接入方式,远端设备根据第一指示信息确定是否通过该中继设备建立网络连接,可以避免远端设备通过接入卫星网络的中继设备连接网络而导致数据延迟严重的问题,还可以避免由于中继设备接入的网络不支持远端设备的业务而导致网络连接失败的问题,可节省不必要的信令交互,实现远端设备快速接入网络。

Description

数据传输方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据传输方法、设备及存储介质。
背景技术
卫星通信系统与5G通信系统相互融合,共同构成全球无缝覆盖的海、陆、空、天一体化综合通信网,可满足用户的多种业务需求,是未来通信发展的重要方向。卫星通信系统以卫星作为中继站转发微波信号,在多个地面站之间通信。
在中继场景中,地面基站覆盖范围外的设备可通过地面基站覆盖范围内的设备与网络建立连接。其中,地面基站覆盖范围外的设备称为远端设备,地面基站覆盖范围内的设备称为中继设备。远端设备还可通过卫星覆盖范围内的设备与网络建立连接,卫星覆盖范围内的设备可通过卫星接入网络。
当远端设备选择的中继设备是通过卫星与网络建立连接,而卫星网络不支持远端设备的数据业务时,将导致远端设备的协议数据单元PDU会话请求失败。
发明内容
本申请实施例提供一种数据传输方法、设备及存储介质,可节省终端之间的信令交互,实现远端设备快速接入网络。
第一方面,本申请实施例提供一种数据传输方法,包括:远端设备接收来自中继设备的第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
第二方面,本申请实施例提供一种数据传输方法,包括:中继设备向远端设备发送第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
第三方面,本申请实施例提供一种数据传输方法,包括:网络设备向终端设备发送配置信息,所述配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
第四方面,本申请实施例提供一种远端设备,包括:接收模块,用于接收来自中继设备的第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
第五方面,本申请实施例提供一种中继设备,包括:发送模块,用于向远端设备发送第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
第六方面,本申请实施例提供一种网络设备,包括:发送模块,用于向终端设备发送配置信息,所述配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
第七方面,本申请实施例提供一种远端设备,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如第一方面所述的方法。
第八方面,本申请实施例提供一种中继设备,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如第二方面所述的方法。
第九方面,本申请实施例提供一种网络设备,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如第三方面所述的方法。
第十方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如第一方面所述的方法。
第十一方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如第二方面所述的方法。
第十二方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如第三方面所述的方法。
第十三方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
第十四方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第二方面所述的方法。
第十五方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第三方面所述的方法。
本申请实施例提供一种数据传输方法、设备及存储介质,该方法包括:远端设备通过接收来自中继设备的第一指示信息,第一指示信息用于指示中继设备的网络接入方式,远端设备根据第一指示信息确定是否通过中继设备建立网络连接,可以避免远端设备通过接入卫星网络的中继设备连接网络而导致数据延迟严重的问题,还可以避免由于中继设备接入的网络不支持远端设备的业务而导致网络连接失败的问题。上述传输方案可节省不必要的信令交互,实现远端设备快速接入网络。
附图说明
图1为本申请实施例提供的一种网络架构示意图;
图2为本申请实施例提供的一种场景示意图;
图3为本申请实施例提供的一种数据传输方法的交互示意图;
图4为本申请实施例提供的一种数据传输方法的交互示意图;
图5为本申请实施例提供的一种数据传输方法的交互示意图;
图6为本申请实施例提供的一种数据传输方法的交互示意图;
图7为本申请实施例提供的一种数据传输方法的交互示意图;
图8为本申请实施例提供的一种数据传输方法的交互示意图;
图9为本申请实施例提供的一种远端设备的结构示意图;
图10为本申请实施例提供的一种中继设备的结构示意图;
图11为本申请实施例提供的一种网络设备的结构示意图;
图12为本申请实施例提供的一种远端设备的硬件结构示意图;
图13为本申请实施例提供的一种中继设备的硬件结构示意图;
图14为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了更好地理解本申请实施例提供的一种数据传输方法,下面对本申请实施例涉及的网络架构进行描述。
图1为本申请实施例提供的一种网络架构示意图。如图1所示,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准组发布的5G网络架构,包括:
终端(包括user equipment,UE)、支持3GPP技术的接入网(包括radio access network,RAN或access network,AN)、用户面功能(user plane function,UPF)网元、接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)、数据网络(data network,DN)、网络切片选择功能(Network Slice Selection Function,NSSF)、鉴权服务功能(Authentication Server Function,AUSF)、统一数据管理功能(Unified Data Management,UDM)。
本领域技术人员可以理解,图1中示出的5G网络架构并不构成对该5G网络架构的限定,具体实现时,该5G网络架构可以包括比图示更多或更少的网元,或者组合某些网元等。应理解,图1中以(R)AN的方式表征AN或RAN。
终端可以是用户设备(user equipment,UE)、手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的处理设备、无人机、车载设备、可穿戴设备、物联网中的终端、虚拟现实设备、未来5G网络中的终端设备、未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端等。
接入网设备是终端通过无线方式接入到该网络架构中的接入设备,主要负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等。例如:基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站、未来移动通信系统中的基站等。
UPF网元、AMF网元、SMF网元、PCF网元为3GPP核心网络的网元(简称:核心网网元)。UPF网元可以称为用户面功能网元,主要负责用户数据的传输,其他网元可以称为控制面功能网元,主要负责认证、鉴权、注册管理、会话管理、移动性管理以及策略控制等,以保障用户数据可靠稳定的传输。
UPF网元可以用于转发和接收终端的数据。例如,UPF网元可以从数据网络接收业务的数据,通过接入网设备传输给终端;UPF网元还可以通过接入网设备从终端接收用户数据,转发到数据网络。其中,UPF网元为终端分配和调度的传输资源是由SMF网元管理控制的。终端与UPF网元之间的承载可以包括:UPF网元和接入网设备之间的用户面连接,以及在接入网设备和终端之间建立信道。其中,用户面连接为可以在UPF网元和接入网设备之间建立传输数据的服务质量(quality of service,QoS)流(flow)。
AMF网元可以用于对终端接入核心网络进行管理,例如:终端的位置更新、注册网络、接入控制、终端的移动性管理、终端的附着与去附着等。AMF网元还可以在为终端的会话提供服务的情况下,为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。
SMF网元可以用于为终端选择用户面网元、为终端重定向用户面网元、为终端分配因特网协议(internet protocol,IP)地址,建立终端与UPF网元之间的承载(也可以称为会话)、会话的修改、释放以及QoS控制。
PCF网元用于向AMF网元、SMF网元提供策略,如QoS策略、切片选择策略等。
AF网元用于与3GPP核心网网元交互支持应用影响数据的路由,访问网络暴露功能,与PCF网元之间交互以进行策略控制等。
DN可以为如IP多媒体服务(IP multi-media service,IMS)网络、互联网等为用户提供数据服务。在DN中可以有多种应用服务器(application server,AS),提供不同的应用业务,比如运营商业务,互联网接入或者第三方业务等,AS可以实现AF的功能。
NSSF用于网络切片的选择,支持的功能有:选择为UE服务的网络切片实例集;确定允许的网络切片选择辅助信息(Network Slice Selection Assistance Information,NSSAI),以及在需要时确定到签约的单一网络切片选择辅助信息(Single-Network Slice Selection Assistance Information,S-NSSAI)的映射;确定已配置的NSSAI,以及在需要时确定到签约的S-NSSAI的映射;确定可能用于查询UE的AMF集,或基于配置确定候选AMF的列表。
AUSF用于接收AMF对终端进行身份验证的请求,通过向UDM请求密钥,再将下发的密钥转发给AMF进行鉴权处理。
UDM包括用户签约数据的产生和存储、鉴权数据的管理等功能,支持与外部第三方服务器交互。
图1中的各网元既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。需要说明的是,在上述图所示的网络架构中,仅仅是示例性说明整个网络架构中所包括的网元。在本申请实施例中,并不限定整个网络架构中所包括的网元。
目前,3GPP正在研究非地面网络(non terrestrial network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务,卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。
与地面网络通信相比,卫星网络通信具有如下优点:
首先,卫星通信不受用户地域的限制,例如,一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此,理论上地球上每一个角落都可以被卫星通信覆盖;其次,卫星通信有较大的社会价值,卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展;再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
因而,在NTN中,通过将基站或者部分基站功能部署在高空平台或者卫星上为终端设备提供无缝覆盖,并且高空平台或者卫星受自然灾害影响较小,能提升5G系统的可靠性。
在卫星的应用中,根据提供服务的通信卫星所在的轨道高度,通信卫星可分为地球同步轨道(geostationary earth orbit,GEO)卫星和非地球同步轨道(Non-GEO)卫星。其中,非地球同步轨道卫星又可以分为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium-earth orbit,MEO)卫星和高椭圆轨道(high elliptical orbit,HEO)卫星等。其中,LEO卫星的轨道高度范围为500km~1500km,MEO卫星的轨道高度范围为2000~20000km,HEO卫星距离地球表面的最近点为1000~21000km,最远点为39500~50600km,GEO卫星的轨道高度为35786km。
通常情况下,为了保证卫星的覆盖范围以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在无线通信中,可采用邻近业务(proximity services,ProSe)技术使小区覆盖范围外的用户设备UE通过小区覆盖范围内的UE与基站进行通信,提高数据的传输效率。其中,小区覆盖范围外的UE被称为远端UE,小区覆盖范围内的UE被称为中继UE(relay UE),如图1所示。远端UE利用ProSe技术中的发现过程,确定中继UE,并与中继UE建立连接与通信,远端UE通过中继UE接入网络,中继UE用于传输远端UE与网络之间的数据。
图2为本申请实施例提供的一种场景示意图,如图2所示,具有ProSe能力的远端UE可以通过PC5接口与具有ProSe能力的中继UE建立直接通信,其中,中继UE可采用卫星网络接入5G核心网CN。也就是说,图2中的远端UE可通过采用卫星网络接入方式的中继UE与5G网络建立PDU会话,实现远端UE与外部数据网络的交互。
本申请实施例中,根据卫星所处轨道的不同,中继UE的网络接入方式可分为:NR-LEO接入,NR-MEO接入,NR-GEO接入以及NR-OTHERSAT(其他卫星)接入等。
在卫星网络中,尤其在GEO卫星网络中,UE与卫星之间以及卫星与地面站之间的距离过大,导致了UE与数据网络之间的延迟较大。在一些业务中,例如车联网V2X(vehicle to everything)业务不适合在卫星网络中使用。因此,远端UE在通过中继设备连接网络时,可能存在如下问题:如果远端UE不知道中继设备当前正处于卫星网络下(即中继设备当前采用卫星接入网络),而选择该中继设备与核心网建立PDU会话,会导致一些与NTN不支持的业务相关的PDU会话被核心网拒绝,既浪费信令又导致会话请求的失败。
针对上述问题,本申请实施例提出一种数据传输方法,网络侧可为终端设备接入网络的方式(接入类型)进行预配置,终端设备可根据预配置信息生成指示信息,以告知其他设备其网络接入方式。对于需要建立网络连接的远端设备,可通过发送指示信息,使得周围设备获知其允许的网络接入方式。对于中继设备,也可通过发送指示信息,使得远端设备提前获知其周围的中继设备的网络接入情况,从而选择合适的中继设备建立网络连接。通过上述数据传输方案,可避免远端设备通过接入卫星网络的中继设备连接网络而导致数据延迟严重的问题,以及由于中继设备接入的网络不支持远端设备的业务而导致网络连接失败的问题。
本申请提出的上述数据传输方案包括如下两种具体实现:
1、通过远端设备的发现过程,进行终端设备之间网络接入方式的指示。
2、通过远端设备的连接建立过程,进行终端设备之间网络接入方式的指示。
下面,通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的是,下面几个实施例可以单独存在也可以相互结合。对于相同或相似的内容,例如,术语或名词的解释说明,及步骤的解释说明等,在不同的实施例中可以相互参考,不再重复说明。
结合图3至图8实施例所示的数据传输方法,对通信系统中位于网络覆盖范围之外的远端设备如何通过中继设备接入网络的技术方案进行详细描述。
图3为本申请实施例提供的一种数据传输方法的交互示意图。如图3所示,本实施例提供的方法包括如下步骤:
步骤101、中继设备向远端设备发送第一指示信息,第一指示信息用于指示中继设备的网络接入方式。
本实施例中,中继设备的网络接入方式包括地面网络(terrestrial network,TN)接入或者卫星网络(non-terrestrial network,NTN)接入。其中,NTN的接入方式包括NR-LEO接入,NR-MEO接入,NR-GEO接入以及NR-OTHERSAT接入。
在本申请的一个实施例中,第一指示信息可直接指示中继设备的网络接入方式。
在本申请的一个实施例中,第一指示信息包括中继业务代码(relay service code,RSC)。其中,RSC与中继设备的网络接入方式相对应,和/或,RSC与采用卫星接入网络的时延信息相对应。
步骤102、远端设备根据第一指示信息确定是否通过中继设备建立网络连接。
在本申请的一个实施例中,远端设备根据第一指示信息指示的中继设备的网络接入方式以及远端设备传输数据的业务类型,确定是否通过中继设备建立网络连接。
具体的,若第一指示信息指示的中继设备的网络接入方式支持远端设备传输数据的业务类型,则远端设备确定通过该中继设备建立网络连接。若第一指示信息指示的中继设备的网络接入方式不支持远端设备传输数据的业务类型,则远端设备确定不通过该中继设备建立网络连接,可选择其他中继设备建立网络连接。
示例性的,假设第一指示信息指示的中继设备采用同步轨道卫星GEO接入网络,如果远端设备想要建立的数据业务,例如车联网V2X业务,不适合在卫星网络中使用,远端设备不选择该中继设备。
本实施例提供的数据传输方法,远端设备通过接收来自中继设备的第一指示信息,第一指示信息用于指示中继设备的网络接入方式,远端设备根据第一指示信息确定是否通过中继设备建立网络连接,可以避免远端设备通过接入卫星网络的中继设备连接网络而导致数据延迟严重的问题,还可以避免由于中继设备接入的网络不支持远端设备的业务而导致网络连接失败的问题。通过上述方案可节省不必要的信令交互,实现远端设备快速接入网络。
上述实施例中,远端设备根据中继设备的第一指示信息,确定是否可以通过该中继设备接入网络,其中第一指示信息可以包括RSC,远端设备可通过RSC确定中继设备的网络接入方式。具体的,远端设备可根据预存的中继设备的相关配置信息以及第一指示信息中的RSC,获知中继设备当前的网络接入方式。下面结合附图4对网络侧针对中继设备的相关配置进行介绍。
图4为本申请实施例提供的一种数据传输方法的交互示意图。如图4所示,本实施例提供的方法包括如下步骤:
步骤201、中继设备向网络设备发送中继能力信息。(可选)
步骤202、网络设备根据中继能力信息,生成配置信息。(可选)
步骤203、网络设备向远端设备发送配置信息。
步骤204、网络设备向中继设备发送配置信息。
在本申请的一个实施例中,网络设备可以是PCF网元。
本实施例中,网络设备发送的配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。具体的,
在本申请的一个实施例中,配置信息中可以配置每一种网络接入方式对应的RSC,不同的RSC对应不同的网络接入方式。
在本申请的一个实施例中,配置信息中可以配置采用每一种卫星(低轨卫星、中轨道卫星、同步轨道卫星或其他卫星)接入网络的时延信息对应的RSC,不同的RSC对应不同的时延信息。应理解,终端设备可以通过RSC获知接入某一中继设备的时延信息,如果时延较大,则不考虑通过该中继设备接入网络。
在本申请的一个实施例中,配置信息中可以同时配置每一种网络接入方式对应的RSC,以及采用每一种卫星接入网络的时延信息对应的RSC,每一个RSC对应一种网络接入方式或者时延信息。
远端设备和中继设备分别接收来自网络设备的配置信息,将配置信息保存于本地。对于远端设备而言,只要中继设备向远端设备发送上述第一指示信息,远端设备可根据保存 于本地的配置信息以及第一指示信息,获知任意中继设备的网络接入方式,从而作为远端设备选择中继设备的一个条件。
步骤203和步骤204的执行顺序仅作为一种示例,还可以先执行步骤204再执行步骤203,或者两个步骤同时执行。
可选的,在一些实施例中,网络设备向中继设备和远端设备发送配置信息之前,可接收中继设备发送的中继能力信息。中继能力信息用于指示中继设备支持的网络接入方式,例如中继能力信息指示中继设备支持TN以及NTN接入,或者指示中继设备仅支持NTN接入,或者指示中继设备仅支持TN接入。网络设备根据接收到的中继设备的中继能力信息,生成配置信息。
在一些实施例中,网络设备根据接收到的多个中继设备的中继能力信息,获知中继设备的网络接入方式有哪些,例如包括TN以及NTN接入,NTN接入又分为NR-LEO,NR-GEO,NR-MEO以及NR-OTHERSAT。网络设备对中继设备的上述网络接入方式配置相应的中继业务代码RSC,将配置的RSC以及RSC与中继设备的网络接入方式的对应关系发送给中继设备和远端设备。
在一些实施例中,网络设备根据接收到的多个中继设备的中继能力信息,获知通过中继设备接入网络的时延信息,中继设备接入网络的时延信息间接指示了中继设备的网络接入方式。应理解,采用NTN接入网络的时延信息较大,采用不同轨道卫星接入网络的时延信息存在差异。网络设备对中继设备的上述时延信息配置相应的RSC,将配置的RSC以及RSC与中继设备采用卫星接入网络的时延信息的对应关系发送给中继设备和远端设备。
基于上述实施例公开的网络侧的配置信息,对于中继设备来说,中继设备可根据该配置信息生成第一指示信息,用于指示中继设备当前的网络接入方式和/或网络接入的时延信息。对于远端设备来说,远端设备可根据该配置信息以及中继设备发送的第一指示信息,确定是否可以通过该中继设备接入网络。如果该中继设备采用卫星接入网络,而卫星网络暂不支持远端设备待传输数据的业务类型,那么远端设备可以考虑其他中继设备,从而避免不必要的信令交互。
图5为本申请实施例提供的一种数据传输方法的交互示意图。如图5所示,本实施例提供的方法包括如下步骤:
步骤301、中继设备向远端设备发送发现公告消息,发现公告消息包括第一指示信息。
步骤302、远端设备根据发现公告消息确定是否通过中继设备建立网络连接。
在本申请的一个实施例中,中继设备采用邻近业务直接发现(ProSe Direct Discovery)的模式A,通过广播的方式向远端设备发送发现公告消息(Announcement message),发现公告消息包括第一指示信息,指示中继设备当前的网络接入方式(即中继设备当前与核心网进行连接的接入类型)。其中,第一指示信息指示的网络接入方式同上文实施例,具体可参见上文,此处不再赘述。
本实施例提供的数据传输方法,远端设备通过中继设备广播的发现公告消息中,获知中继设备当前的网络接入方式,决定能否选择该中继设备建立网络连接。通过上述方案可节省不必要的信令交互,实现远端设备快速接入网络。
图6为本申请实施例提供的一种数据传输方法的交互示意图。如图6所示,本实施例提供的方法包括如下步骤:
步骤401、远端设备向中继设备广播发现请求,发现请求包括第二指示信息,第二指示信息用于指示远端设备允许的中继设备的网络接入方式。
在本实施例中,远端设备首先确定待传输数据的业务能否适用于NTN,如果确定待传输数据的业务适用于NTN,则远端设备在发现请求中携带第二指示信息(或者说发现请求包括第二指示信息),即在模式B下的solicatation message中携带第二指示信息,第二指 示信息用于指示远端设备允许的中继设备的网络接入方式(或者说指示中继设备可以满足的网络接入方式)。其中,第二指示信息中指示的网络接入方式同上文实施例,具体可参见上文,此处不再赘述。
示例性的,如果远端设备确定待传输数据的业务只适用于TN,则远端设备在发现请求中携带第二指示信息,第二指示信息用于指示远端设备允许的中继设备的网络接入方式为TN接入。
可选的,第二指示信息包括中继业务代码RSC,RSC与远端设备允许的中继设备的网络接入方式相对应。
可选的,第二指示信息包括RSC,RSC与远端设备允许的中继设备采用卫星接入网络的时延信息相对应。
步骤402、中继设备向远端设备发送发现响应,发现响应包括第一指示信息。
步骤403、远端设备根据发现响应确定是否通过中继设备建立网络连接。
在本实施例中,中继设备向远端设备发送发现响应,包括:满足第二指示信息指示的网络接入方式的中继设备,向远端设备发送发现响应。远端设备根据该发现响应建立相应的网络连接,即通过该中继设备接入网络。
在本申请的一个实施例中,如果远端设备仅接收到一个中继设备返回的发现响应,可根据该发现响应的第一指示信息确定是否通过该中继设备建立网络连接。
在本申请的一个实施例中,如果远端设备接收到多个中继设备返回的发现响应,可根据接收到的多个发现响应,确定通过哪一个中继设备建立网络连接。
可选的,在一些实施例中,满足第二指示信息指示的网络接入方式的中继设备,可以在发送的发现响应中携带第一指示信息,第一指示信息用于指示中继设备当前的网络接入方式。
本实施例提供的数据传输方法,远端设备在向中继设备广播的发现请求中携带第二指示信息,指示远端设备允许的中继设备的网络接入方式。中继设备向远端设备返回发现响应,发现响应中携带第一指示信息,指示中继设备当前的网络接入方式。远端设备根据发现响应确定是否通过该中继设备接入网络。通过上述方案可节省不必要的信令交互,实现远端设备快速接入网络。
图7为本申请实施例提供的一种数据传输方法的交互示意图。如图7所示,本实施例提供的方法包括如下步骤:
步骤501、远端设备向中继设备广播发现请求。
在本实施例中,远端设备广播的发现请求(即solicitation message)中没有携带第二指示信息,即发现请求中没有携带想要请求的中继设备的网络接入方式的指示。
步骤502、中继设备向远端设备发送发现响应,发现响应包括第一指示信息。
第一指示信息用于指示中继设备当前的网络接入方式,网络接入方式同上文实施例,具体可参见上文,此处不再赘述。
步骤503、远端设备根据发现响应确定是否通过中继设备建立网络连接。
本实施例提供的数据传输方法,中继设备在接收到远端设备广播的发现请求后,在向远端设备返回发现响应时,指示中继设备当前的网络接入方式,以使远端设备根据该指示决定能否选择该中继设备建立网络连接。通过上述方案可节省不必要的信令交互,实现远端设备快速接入网络。
图8为本申请实施例提供的一种数据传输方法的交互示意图。如图8所示,本实施例提供的方法包括如下步骤:
步骤601、远端设备向中继设备发送连接建立请求。
在本申请的一个实施例中,连接建立请求包括远端设备待传输数据的业务类型,即远端设备想要建立的业务类型。
可选的,在一些实施例中,连接建立请求还包括第二指示信息,第二指示信息用于指示远端设备允许的中继设备的网络接入方式。即连接建立请求中携带指示中继设备可以满足的网络接入方式。
步骤602、中继设备向远端设备发送连接建立响应。
在本申请的一个实施例中,连接建立响应包括第三指示信息,第三指示信息用于指示远端设备是否通过中继设备接入网络。
在本申请的一个实施例中,连接建立响应包括第一指示信息,第一指示信息用于指示中继设备当前的网络接入方式。其中,第一指示信息指示的网络接入方式同上文实施例,具体可参见上文,此处不再赘述。
在本申请的一个实施例中,中继设备在接收到连接建立请求后,可根据连接建立请求确定其是否可以支持远端设备的业务类型。具体的,中继设备可根据自身的网络接入方式以及连接建立请求中的业务类型,确定其网络接入方式是否支持远端设备的业务类型:
在一种可能的实施方式中,如果中继设备确定其网络接入方式可支持远端设备的业务类型,中继设备向远端设备发送连接建立成功的响应消息。可选的,在该响应消息中指示中继设备当前的网络接入方式。
在另一种可能的实施方式中,如果中继设备确定其网络接入方式不支持远端设备的业务类型,中继设备可以向远端设备发送连接建立失败的响应消息。可选的,在该响应消息中指示中继设备当前的网络接入方式。
从上文可知,无论连接建立是否成功,中继设备均可以在连接建立响应中携带第一指示信息,用于向远端设备指示中继设备当前的网络接入方式。
步骤603、远端设备根据连接建立响应确定是否通过中继设备建立网络连接。
在本申请的一个实施例中,远端设备直接根据连接建立响应中的第三指示信息,确定是否通过中继设备建立网络连接。
在本申请的一个实施例中,远端设备可根据连接建立响应中的第一指示信息,确定是否通过中继设备建立网络连接。与上述实施例不同的是,本实施例的远端设备还需要通过自身判断,确定是否通过中继设备建立网络连接。
本实施例提供的数据传输方法,远端设备没有执行发现流程,直接在连接建立请求中携带自身想要建立的业务。中继设备在接收到连接建立请求后,判断是否可以支持该业务,并根据判断结果向远端设备返回连接建立响应,在连接建立响应中携带第一指示信息,用于指示中继设备当前的网络接入方式。通过上述方案,使得远端设备获知中继设备的网络接入方式,避免远端设备通过接入卫星网络的中继设备连接网络而导致数据延迟严重的问题,以及由于中继设备接入的网络不支持远端设备的业务而导致网络连接失败的问题。
上文中详细描述了本申请实施例提供的数据传输方法,下面将描述本申请实施例提供的远端设备、中继设备以及网络设备。
图9为本申请实施例提供的一种远端设备的结构示意图。如图9所示,本申请实施例提供的远端设备700,包括:接收模块701。
接收模块701,用于接收来自中继设备的第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
在本申请的一个实施例中,所述设备还包括:处理模块702。
处理模块702,用于根据所述第一指示信息确定是否通过所述中继设备建立网络连接。
在本申请的一个实施例中,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
在本申请的一个实施例中,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
在本申请的一个实施例中,所述接收模块701,具体用于接收来自所述中继设备的发现公告消息,所述发现公告消息包括所述第一指示信息。
在本申请的一个实施例中,所述设备还包括:发送模块703。
所述接收模块701接收来自所述中继设备的第一指示信息之前,所述发送模块703,用于广播发现请求;
所述接收模块701,具体用于接收来自所述中继设备的发现响应,所述发现响应包括所述第一指示信息。
在本申请的一个实施例中,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
在本申请的一个实施例中,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
在本申请的一个实施例中,所述接收模块701接收来自所述中继设备的第一指示信息之前,所述发送模块703,用于向所述中继设备发送连接建立请求;
所述接收模块701,具体用于接收来自所述中继设备的连接建立响应,所述连接建立响应包括所述第一指示信息。
在本申请的一个实施例中,所述处理模块702,具体用于根据所述第一指示信息以及所述远端设备传输数据的业务类型,确定是否通过所述中继设备建立网络连接。
在本申请的一个实施例中,所述处理模块702,具体用于:
若所述第一指示信息指示的所述中继设备的网络接入方式支持所述远端设备传输数据的业务类型,确定通过所述中继设备建立网络连接。
在本申请的一个实施例中,所述接收模块701,还用于:
接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
本申请实施例提供的远端设备,用于执行前述图3至图8所示方法实施例中的远端设备执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本申请实施例提供的一种中继设备的结构示意图。如图10所示,本申请实施例提供的中继设备800,包括:发送模块801。
发送模块801,用于向远端设备发送第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
在本申请的一个实施例中,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
在本申请的一个实施例中,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
在本申请的一个实施例中,所述发送模块801,具体用于发送发现公告消息,所述发现公告消息包括所述第一指示信息。
在本申请的一个实施例中,所述设备还包括:接收模块802。
所述接收模块802,用于接收来自所述远端设备的发现请求;
所述发送模块801,具体用于向所述远端设备发送发现响应,所述发现响应包括所述第一指示信息。
在本申请的一个实施例中,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
在本申请的一个实施例中,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
在本申请的一个实施例中,所述接收模块802,用于接收来自所述远端设备的连 接建立请求;
所述发送模块801,具体用于向所述远端设备发送连接建立响应,所述连接建立响应包括所述第一指示信息。
在本申请的一个实施例中,所述接收模块802,用于接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
本申请实施例提供的中继设备,用于执行前述图3至图8所示方法实施例中的中继设备执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请实施例提供的一种网络设备的结构示意图。如图11所示,本申请实施例提供的网络设备900,包括:发送模块901。
发送模块901,用于向终端设备发送配置信息,所述配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
在本申请的一个实施例中,所述设备还包括:接收模块902以及处理模块903;
所述接收模块902,用于接收来自中继设备的中继能力信息,所述中继能力信息用于指示所述中继设备支持的网络接入方式;
所述处理模块903,用于根据所述中继能力信息,生成所述配置信息。
本申请实施例提供的网络设备,用于执行前述图3至图8所示方法实施例中的网络设备执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,应理解以上远端设备、中继设备或者网络设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机 可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图12为本申请实施例提供的一种远端设备的硬件结构示意图。如图12所示,本实施例的远端设备1000,可以包括:处理器1001、存储器1002和通信接口1003。其中,存储器1002,用于存储计算机程序;处理器1001,用于执行存储器1002存储的计算机程序,以实现上述任一方法实施例中远端设备所执行的方法。通信接口1003,用于与其他设备进行数据通信或者信号通信。
可选的,存储器1002既可以是独立的,也可以跟处理器1001集成在一起。当所述存储器1002是独立于处理器1001之外的器件时,所述远端设备1000还可以包括:总线1004,用于连接所述存储器1002和处理器1001。
在一种可能的实施方式中,图9中的处理模块702可以集成在处理器1001中实现,接收模块701和发送模块703可以集成在通信接口1003中实现。在一种可能的实施方式中,处理器1001可用于实现上述方法实施例中远端设备的信号处理操作,通信接口1003可用于实现上述方法实施例中远端设备的信号收发操作。
本实施例提供的远端设备,可用于执行上述任一方法实施例中远端设备所执行的方法,其实现原理和技术效果类似,此处不再赘述。
图13为本申请实施例提供的一种中继设备的硬件结构示意图。如图13所示,本实施例的中继设备1100,可以包括:处理器1101、存储器1102和通信接口1103。其中,存储器1102,用于存储计算机程序;处理器1101,用于执行存储器1102存储的计算机程序,以实现上述任一方法实施例中中继设备所执行的方法。通信接口1103,用于与其他设备进行数据通信或者信号通信。
可选的,存储器1102既可以是独立的,也可以跟处理器1101集成在一起。当所述存储器1102是独立于处理器1101之外的器件时,所述中继设备1100还可以包括:总线1104,用于连接所述存储器1102和处理器1101。
在一种可能的实施方式中,图10中的发送模块801和接收模块802可以集成在通信接口1103中实现。在一种可能的实施方式中,处理器1101可用于实现上述方法实施例中中继设备的信号处理操作,通信接口1103可用于实现上述方法实施例中中继设备的信号收发操作。
本实施例提供的中继设备,可用于执行上述任一方法实施例中中继设备所执行的方法,其实现原理和技术效果类似,此处不再赘述。
图14为本申请实施例提供的一种网络设备的硬件结构示意图。如图14所示,本实施例的网络设备1200,可以包括:处理器1201、存储器1202和通信接口1203。其中,存储器1202,用于存储计算机程序;处理器1201,用于执行存储器1202存储的计算机程序,以实现上述任一方法实施例中网络设备所执行的方法。通信接口1203,用于与其他设备进行数据通信或者信号通信。
可选的,存储器1202既可以是独立的,也可以跟处理器1201集成在一起。当所述存储器1202是独立于处理器1201之外的器件时,所述网络设备1200还可以包括:总线1204,用于连接所述存储器1202和处理器1201。
在一种可能的实施方式中,图11中的处理模块903可以集成在处理器1201中实现,发送模块901和接收模块902可以集成在通信接口1203中实现。在一种可能的实施方式中,处理器1201可用于实现上述方法实施例中网络设备的信号处理操作,通信接口1203可用于实现上述方法实施例中网络设备的信号收发操作。
本实施例提供的网络设备,可用于执行上述任一方法实施例中网络设备所执行的 方法,其实现原理和技术效果类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中远端设备的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中中继设备的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中网络设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中远端设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中中继设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中网络设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中远端设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中远端设备的技术方案。进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行远端设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中中继设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中中继设备的技术方案。进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行中继设备的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中网络设备的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中网络设备的技术方案。进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行网络设备的技术方案。
本申请中,“至少两个”是指两个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行 顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (55)

  1. 一种数据传输方法,其特征在于,包括:
    远端设备接收来自中继设备的第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述远端设备根据所述第一指示信息确定是否通过所述中继设备建立网络连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述远端设备接收来自所述中继设备的第一指示信息,包括:
    所述远端设备接收来自所述中继设备的发现公告消息,所述发现公告消息包括所述第一指示信息。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述远端设备接收来自所述中继设备的第一指示信息之前,所述方法还包括:
    所述远端设备广播发现请求;
    所述远端设备接收来自所述中继设备的第一指示信息,包括:
    所述远端设备接收来自所述中继设备的发现响应,所述发现响应包括所述第一指示信息。
  7. 根据权利要求6所述的方法,其特征在于,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
  9. 根据权利要求1至4中任一项所述的方法,其特征在于,所述远端设备接收来自所述中继设备的第一指示信息之前,所述方法还包括:
    所述远端设备向所述中继设备发送连接建立请求;
    所述远端设备接收来自所述中继设备的第一指示信息,包括:
    所述远端设备接收来自所述中继设备的连接建立响应,所述连接建立响应包括所述第一指示信息。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述远端设备根据所述第一指示信息确定是否通过所述中继设备建立网络连接,包括:
    所述远端设备根据所述第一指示信息以及所述远端设备传输数据的业务类型,确定是否通过所述中继设备建立网络连接。
  11. 根据权利要求10所述的方法,其特征在于,所述远端设备根据所述第一指示信息以及所述远端设备的业务类型,确定是否通过所述中继设备建立网络连接,包括:
    若所述第一指示信息指示的所述中继设备的网络接入方式支持所述远端设备传输数据的业务类型,确定通过所述中继设备建立网络连接。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,
    所述方法还包括:
    所述远端设备接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  13. 一种数据传输方法,其特征在于,包括:
    中继设备向远端设备发送第一指示信息,所述第一指示信息用于指示所述中继设 备的网络接入方式。
  14. 根据权利要求13所述的方法,其特征在于,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
  15. 根据权利要求13或14所述的方法,其特征在于,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述中继设备向所述远端设备发送所述第一指示信息,包括:
    所述中继设备发送发现公告消息,所述发现公告消息包括所述第一指示信息。
  17. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述远端设备的发现请求;
    所述中继设备向所述远端设备发送所述第一指示信息,包括:
    所述中继设备向所述远端设备发送发现响应,所述发现响应包括所述第一指示信息。
  18. 根据权利要求17所述的方法,其特征在于,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
  19. 根据权利要求18所述的方法,其特征在于,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
  20. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述中继设备接收来自所述远端设备的连接建立请求;
    所述中继设备向所述远端设备发送所述第一指示信息,包括:
    所述中继设备向所述远端设备发送连接建立响应,所述连接建立响应包括所述第一指示信息。
  21. 根据权利要求13至20中任一项所述的方法,其特征在于,
    所述方法还包括:
    所述中继设备接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  22. 一种数据传输方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,所述配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自中继设备的中继能力信息,所述中继能力信息用于指示所述中继设备支持的网络接入方式;
    所述网络设备根据所述中继能力信息,生成所述配置信息。
  24. 一种远端设备,其特征在于,包括:
    接收模块,用于接收来自中继设备的第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
  25. 根据权利要求24所述的设备,其特征在于,所述设备还包括:
    处理模块,用于根据所述第一指示信息确定是否通过所述中继设备建立网络连接。
  26. 根据权利要求24或25所述的设备,其特征在于,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
  27. 根据权利要求24至26中任一项所述的设备,其特征在于,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
  28. 根据权利要求24至27中任一项所述的设备,其特征在于,
    所述接收模块,具体用于接收来自所述中继设备的发现公告消息,所述发现公告消息包括所述第一指示信息。
  29. 根据权利要求24至27中任一项所述的设备,其特征在于,所述设备还包括:发送模块;所述接收模块接收来自所述中继设备的第一指示信息之前,所述发送模块,用于广播发现请求;
    所述接收模块,具体用于接收来自所述中继设备的发现响应,所述发现响应包括所述第一指示信息。
  30. 根据权利要求29所述的设备,其特征在于,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
  31. 根据权利要求30所述的设备,其特征在于,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
  32. 根据权利要求24至27中任一项所述的设备,其特征在于,所述设备还包括:发送模块;所述接收模块接收来自所述中继设备的第一指示信息之前,所述发送模块,用于向所述中继设备发送连接建立请求;
    所述接收模块,具体用于接收来自所述中继设备的连接建立响应,所述连接建立响应包括所述第一指示信息。
  33. 根据权利要求25至32中任一项所述的设备,其特征在于,所述处理模块,具体用于根据所述第一指示信息以及所述远端设备传输数据的业务类型,确定是否通过所述中继设备建立网络连接。
  34. 根据权利要求33所述的设备,其特征在于,所述处理模块,具体用于:
    若所述第一指示信息指示的所述中继设备的网络接入方式支持所述远端设备传输数据的业务类型,确定通过所述中继设备建立网络连接。
  35. 根据权利要求24至34中任一项所述的设备,其特征在于,
    所述接收模块,还用于:
    接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  36. 一种中继设备,其特征在于,包括:
    发送模块,用于向远端设备发送第一指示信息,所述第一指示信息用于指示所述中继设备的网络接入方式。
  37. 根据权利要求36所述的设备,其特征在于,所述第一指示信息包括中继业务代码RSC,所述RSC与所述中继设备的网络接入方式相对应。
  38. 根据权利要求36或37所述的设备,其特征在于,所述中继设备的网络接入方式包括地面网络TN接入、卫星网络NTN接入的至少一项。
  39. 根据权利要求36至38中任一项所述的设备,其特征在于,所述发送模块,具体用于发送发现公告消息,所述发现公告消息包括所述第一指示信息。
  40. 根据权利要求36至38中任一项所述的设备,其特征在于,所述设备还包括:接收模块;所述接收模块,用于接收来自所述远端设备的发现请求;
    所述发送模块,具体用于向所述远端设备发送发现响应,所述发现响应包括所述第一指示信息。
  41. 根据权利要求40所述的设备,其特征在于,所述发现请求包括第二指示信息,所述第二指示信息用于指示所述远端设备允许的中继设备的网络接入方式。
  42. 根据权利要求41所述的设备,其特征在于,所述第二指示信息包括RSC,所述RSC与所述远端设备允许的中继设备的网络接入方式相对应。
  43. 根据权利要求36至38中任一项所述的设备,其特征在于,所述设备还包括: 接收模块;所述接收模块,用于接收来自所述远端设备的连接建立请求;
    所述发送模块,具体用于向所述远端设备发送连接建立响应,所述连接建立响应包括所述第一指示信息。
  44. 根据权利要求36至43中任一项所述的设备,其特征在于,所述设备还包括:接收模块,所述接收模块,用于接收来自网络设备的配置信息,所述配置信息包括RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  45. 一种网络设备,其特征在于,包括:
    发送模块,用于向终端设备发送配置信息,所述配置信息包括中继业务代码RSC与中继设备的网络接入方式的对应关系,所述RSC与中继设备采用卫星接入网络的时延信息的对应关系的至少一项,以及RSC。
  46. 根据权利要求45所述的设备,其特征在于,所述设备还包括:接收模块以及处理模块;
    所述接收模块,用于接收来自中继设备的中继能力信息,所述中继能力信息用于指示所述中继设备支持的网络接入方式;
    所述处理模块,用于根据所述中继能力信息,生成所述配置信息。
  47. 一种远端设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求1至12中任一项所述的方法。
  48. 一种中继设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求13至21中任一项所述的方法。
  49. 一种网络设备,其特征在于,包括:存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器运行所述计算机程序执行如权利要求22或23所述的方法。
  50. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求1至12中任一项所述的方法。
  51. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求13至21中任一项所述的方法。
  52. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求22或23所述的方法。
  53. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求13至21中任一项所述的方法。
  55. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求22或23所述的方法。
PCT/CN2021/087923 2021-04-16 2021-04-16 数据传输方法、设备及存储介质 WO2022217613A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180093740.2A CN116897575A (zh) 2021-04-16 2021-04-16 数据传输方法、设备及存储介质
PCT/CN2021/087923 WO2022217613A1 (zh) 2021-04-16 2021-04-16 数据传输方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087923 WO2022217613A1 (zh) 2021-04-16 2021-04-16 数据传输方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022217613A1 true WO2022217613A1 (zh) 2022-10-20

Family

ID=83639449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087923 WO2022217613A1 (zh) 2021-04-16 2021-04-16 数据传输方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116897575A (zh)
WO (1) WO2022217613A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600283A (zh) * 2023-07-19 2023-08-15 中国电信股份有限公司 网络接入方式识别方法、装置、通信设备、介质及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888494A (zh) * 2015-12-15 2017-06-23 上海贝尔股份有限公司 一种用于选择中继ue的方法、装置和系统
CN109246688A (zh) * 2017-07-11 2019-01-18 华为技术有限公司 设备接入方法、设备及系统
WO2019205027A1 (zh) * 2018-04-25 2019-10-31 华为技术有限公司 会话建立方法、中继设备的选择方法和注册方法及设备
US20200100088A1 (en) * 2017-01-06 2020-03-26 Lg Electronics Inc. Method for transmitting and receiving data through relay in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106888494A (zh) * 2015-12-15 2017-06-23 上海贝尔股份有限公司 一种用于选择中继ue的方法、装置和系统
US20200100088A1 (en) * 2017-01-06 2020-03-26 Lg Electronics Inc. Method for transmitting and receiving data through relay in wireless communication system and apparatus therefor
CN109246688A (zh) * 2017-07-11 2019-01-18 华为技术有限公司 设备接入方法、设备及系统
WO2019205027A1 (zh) * 2018-04-25 2019-10-31 华为技术有限公司 会话建立方法、中继设备的选择方法和注册方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600283A (zh) * 2023-07-19 2023-08-15 中国电信股份有限公司 网络接入方式识别方法、装置、通信设备、介质及产品
CN116600283B (zh) * 2023-07-19 2023-10-03 中国电信股份有限公司 网络接入方式识别方法、装置、通信设备、介质及产品

Also Published As

Publication number Publication date
CN116897575A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
US11997725B2 (en) Satellite communication method, apparatus, and system
CN112994775B (zh) 一种融合geo卫星接入网与5g核心网的方法
US11895578B2 (en) User equipment dual connectivity with a terrestrial base station and a satellite or a high-altitude platform
CN106817763B (zh) 分层网络的注册方法、装置和系统
WO2022073247A1 (zh) 网络选择方法、装置、设备及存储介质
US20240137108A1 (en) Wireless communication system, wireless communication method, apparatus, device, and storage medium
CN114286354B (zh) 一种面向6g的空天地一体化网络架构及实现方法
US20230156489A1 (en) Wireless communication method and apparatus
WO2022217613A1 (zh) 数据传输方法、设备及存储介质
WO2022027344A1 (zh) 小区选择方法、装置、设备及介质
US20240031892A1 (en) Low latency schedule-driven handovers
US20230163836A1 (en) Beam information indication method and apparatus
CN113904712A (zh) 一种低轨卫星移动通信系统的双连接通信方法
WO2023185383A1 (zh) 一种通信方法及装置
WO2023108662A1 (zh) 数据发送方法、装置、设备及存储介质
RU2787012C2 (ru) Система, устройство и способ спутниковой связи
WO2023221099A1 (zh) 请求终端定位的方法、装置、设备及存储介质
WO2023123269A1 (zh) Ntn网络中的通信方法、装置、设备及存储介质
WO2022021308A1 (zh) 带宽检查方法、装置、计算机设备及存储介质
CN116867024A (zh) 基于卫星通信的数据发送方法、装置、系统、介质及设备
WO2024037371A1 (en) Apparatus, method, and computer program
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
US20240188116A1 (en) Wireless communication systems for dynamically connecting to radio access network resources of multiple service providers
WO2023004757A1 (en) Method for satellite selection
WO2023102717A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093740.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936488

Country of ref document: EP

Kind code of ref document: A1