WO2022077141A1 - 随机接入响应接收窗的确定方法、装置、设备及介质 - Google Patents

随机接入响应接收窗的确定方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022077141A1
WO2022077141A1 PCT/CN2020/120298 CN2020120298W WO2022077141A1 WO 2022077141 A1 WO2022077141 A1 WO 2022077141A1 CN 2020120298 W CN2020120298 W CN 2020120298W WO 2022077141 A1 WO2022077141 A1 WO 2022077141A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
time
equal
random access
terminal
Prior art date
Application number
PCT/CN2020/120298
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/120298 priority Critical patent/WO2022077141A1/zh
Priority to CN202080103161.7A priority patent/CN115843463A/zh
Publication of WO2022077141A1 publication Critical patent/WO2022077141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a method, apparatus, device and medium for determining a random access response receiving window.
  • the random access procedure is a very important procedure in mobile communication.
  • a typical random access procedure is a four-step random access procedure.
  • the terminal sends a random access preamble, referred to as message 1, to the network device; the network device sends a random access response (Random Access Response, RAR) to the terminal, referred to as message 2.
  • RAR Random Access Response
  • the terminal opens a RAR receiving window, and monitors the Physical Downlink Control Channel (PDCCH) in the RAR receiving window.
  • the PDCCH is a PDCCH scrambled with a random access wireless network temporary identifier (Random Access RNTI, RA-RNTI for short).
  • RA-RNTI random access wireless network temporary identifier
  • the terminal can obtain the PDSCH scheduled by the PDCCH, which includes the RAR.
  • the terminal sends message 3 on the resource scheduled by the RAR, and the network device sends message 4 to the terminal.
  • the signal propagation delay between the terminal and network equipment in NTN is greatly increased, and the round trip transmission time (RTT) of NTN can even be much larger than the terminal processing time considered in traditional standards. Therefore, it is necessary to redefine the offset value of the start time of the RAR receiving window for NTN.
  • the embodiments of the present application provide a method, apparatus, device, and medium for determining a random access response receiving window, and redefine the offset value of the start time of the RAR receiving window for a terminal in an NTN.
  • a method for determining a random access response receiving window is provided, which is applied in a terminal, and the method includes:
  • the random access preamble is sent n times by means of repeated transmission;
  • the start time of the random access response receiving window is determined, where the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • a device for determining a random access response receiving window comprising:
  • the random access preamble is sent n times by means of repeated transmission;
  • the start time of the random access response receiving window is determined, where the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • a terminal comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the processing
  • the processor is configured to load and execute the executable instructions to implement the method for determining a random access response receiving window as described in the above aspects.
  • a network device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the The processor is configured to load and execute the executable instructions to implement the method for determining a random access response receiving window according to the above aspect.
  • a computer-readable storage medium in which executable instructions are stored, the executable instructions are loaded and executed by the processor to achieve the above-mentioned aspects The method for determining the random access response receiving window described above.
  • a computer program product or computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium, the processor of the computer device being readable from the computer
  • the storage medium reads the computer instruction, and the processor executes the computer instruction, so that the computer device executes the method for determining a random access response receiving window described in the above aspects.
  • a chip includes a programmable logic circuit or a program, and the chip is configured to implement the method for determining a random access response receiving window as described in the above aspect.
  • the start time of the random access response receiving window is the time of the subframe where the last sent random access preamble is located plus Z subframes.
  • FIG. 1 is a network architecture diagram of a transparent transmission payload NTN provided by an exemplary embodiment of the present application
  • FIG. 2 is a network architecture diagram of a regeneration load NTN provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for determining a random access response receiving window provided by an exemplary embodiment of the present application
  • FIG. 4 is a flowchart of a method for determining a random access response receiving window provided by an exemplary embodiment of the present application
  • FIG. 5 is a time-frequency schematic diagram of a method for determining a random access response receiving window provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of a method for determining a random access response receiving window provided by an exemplary embodiment of the present application
  • FIG. 7 is a time-frequency schematic diagram of a method for determining a random access response receiving window provided by an exemplary embodiment of the present application
  • FIG. 8 is a block diagram of an apparatus for determining a random access response receiving window according to an exemplary embodiment of the present application
  • FIG. 9 is a block diagram of a communication device shown in an exemplary embodiment of the present application.
  • Satellite communication is not limited by the user's geographical area. For example, general land communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 shows a scenario of transparently transmitting the payload NTN
  • FIG. 2 shows a scenario of regenerating the payload NTN.
  • An NTN network consists of the following network elements:
  • Feeder link the link used for communication between the gateway and the satellite
  • Service Link The link used for communication between the terminal and the satellite
  • ⁇ Satellite From the functions it provides, it can be divided into two types: transparent transmission load and regenerative load.
  • ⁇ Transparent load It only provides the functions of radio frequency filtering, frequency conversion and amplification. It only provides transparent forwarding of the signal, and will not change the waveform signal it forwards.
  • ⁇ Regeneration load In addition to providing the functions of radio frequency filtering, frequency conversion and amplification, it can also provide functions of demodulation/decoding, routing/conversion, encoding/modulation. It has part or all of the functions of a base station.
  • Inter-satellite links exist in the regenerative load scenario.
  • FIG. 3 shows a flowchart of a method for determining an RAR receiving window provided by an exemplary embodiment of the present application.
  • the method for determining the RAR receiving window is applied to the terminal as an example for illustration.
  • the terminal is an NTN capable terminal. The method includes:
  • Step 302 The terminal sends n random access preambles in a repeated transmission manner
  • the repeated transmission mode is a transmission mode in which the same random access preamble is repeated n times on different transmission resources.
  • n is a positive integer.
  • the random access preamble is also called message 1.
  • Step 304 The terminal determines the start time of the RAR receiving window, and the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • Z is equal to a larger value among a preset value and a first value, and the first value is determined according to the sending compensation time when the terminal sends the random access preamble.
  • Z is equal to the larger value of the preset value and the first value.
  • Z is equal to the larger value of a preset value and a second value
  • the second value is determined according to a common offset value
  • the common offset value is based on the minimum transmission time between the terminal and the network device
  • the delay is determined by the start time of the RAR receiving window. For example, in the case that the terminal has the time-frequency pre-compensation capability and cannot obtain the positioning position, Z is equal to the larger value of the preset value and the second value.
  • the preset value is an offset value of the start time of the RAR receiving window determined based on the method in the terrestrial cellular network.
  • the terminal of redefines the offset value of the start time of the RAR receiving window, which can improve the random access success rate of the terminal in NTN.
  • the terminal can be an NB-IoT (Narrow Band Internet of Things) terminal or an eMTC (Enhanced Machine Type Communication, enhanced machine type communication) terminal.
  • NB-IoT Near Band Internet of Things
  • eMTC Enhanced Machine Type Communication, enhanced machine type communication
  • the terminal is an NB-IoT terminal
  • the following embodiments are provided:
  • FIG. 4 shows a flowchart of a method for determining an RAR receiving window provided by another exemplary embodiment of the present application.
  • the method for determining the RAR receiving window is applied to an NB-IoT terminal as an example for illustration.
  • the terminal is an NTN capable terminal.
  • the method includes:
  • Step 402 The NB-IoT terminal sends n random access preambles in a repeated transmission manner
  • the repeated transmission mode is a transmission mode in which the same random access preamble is repeated n times on different transmission resources.
  • n is a positive integer.
  • the RTT duration is the RTT duration of the service link between the terminal and the satellite.
  • the NB-IoT terminal uses the sum of the estimated RTT corresponding to the service link and the public TA corresponding to the feeder link broadcast by the network device as the compensation time for sending message 1.
  • the rounded value of the sum of the RTT and the common TA is used as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • the NB-IoT terminal uses the estimated RTT duration corresponding to the service link as the compensation time for sending message 1. Or, use the rounded value of RTT as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • a common timing advance (Common TA)
  • the terminal uses the common timing advance broadcast by the network device as the compensation for sending message 1 time.
  • the public timing advance broadcast by the network device may also be used as the compensation time for sending message 1.
  • the rounded value of the common timing advance is used as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • the terminal sends n random access preambles in a repeated transmission manner.
  • Step 404 The NB-IoT terminal determines the start time of the RAR receiving window, and the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • the first value is equal to the transmission compensation time RTT1 or the rounded value of the transmission compensation time RTT1. In an example, regardless of whether the transmission compensation time RTT1 is an integer multiple of milliseconds, the first value is equal to the transmission compensation time RTT1. In another example, when the sending compensation time RTT1 is an integer multiple of milliseconds, the first value is equal to the sending compensation time; when the sending compensation time RTT1 is not an integer multiple of milliseconds, the first value is equal to the rounding of the sending compensation time value. Illustratively, the first value is an integer value in milliseconds, as shown in Figure 5;
  • the transmission compensation time RTT1 is equal to the sum of the RTT and the common TA, or, the transmission compensation time RTT1 is equal to the rounded value of the sum of the RTT and the common TA.
  • the transmission backoff time RTT1 is equal to the RTT, or the transmission backoff time RTT1 is equal to the rounded value of the RTT.
  • the RTT is estimated by the terminal according to the positioning position and the satellite position, the RTT duration is the RTT duration of the service link between the terminal and the satellite, and the public TA is broadcast by the network device.
  • the second value is determined according to a common offset value (Common Offset), and the common offset value is determined based on the minimum transmission delay between the terminal and the network device as the starting moment of the RAR receiving window.
  • a common offset value Common Offset
  • the second value is equal to the common offset value.
  • the common offset value is an integer multiple of milliseconds
  • the second value is equal to the common offset value; when the common offset value is not an integer multiple of milliseconds, the second value is equal to the common offset value Round value.
  • the second value is an integer value in milliseconds.
  • the common offset value is equal to the common TA; or, the common offset value is configured by the network device.
  • the preset value X is the number of subframes determined according to the duplex mode, the format of the random access preamble and n. As shown in Table 1:
  • the value of X mainly considers the terminal processing delay after sending the random access preamble (for example, for NB-IoT, the terminal needs to switch from uplink transmission to downlink reception, and the synchronization operation time required for subsequent PDCCH reception), and the terminal The fastest round-trip delay RTT from sending the random access preamble to receiving the RAR.
  • the method provided in this embodiment realizes the NB-
  • the IoT terminal redefines the offset value of the start time of the RAR receiving window, which can improve the random access success rate of the NB-IoT terminal in the NTN.
  • the terminal is an eMTC terminal.
  • FIG. 6 shows a flowchart of a method for determining an RAR receiving window provided by another exemplary embodiment of the present application.
  • the method for determining the RAR receiving window is applied to an eMTC terminal as an example for illustration.
  • the terminal is an NTN capable terminal.
  • the method includes:
  • Step 602 the eMTC terminal sends n random access preambles in a repeated transmission manner
  • the repeated transmission mode is a transmission mode in which the same random access preamble is repeated n times on different transmission resources.
  • the eMTC terminal For the eMTC terminal with the ability to perform time-frequency pre-compensation through the positioning capability, estimate the RTT duration according to the positioning position and the satellite position.
  • the RTT duration is the RTT duration of the service link between the terminal and the satellite.
  • the eMTC terminal uses the sum of the estimated RTT corresponding to the service link and the public TA corresponding to the feeder link broadcast by the network device as the compensation time for sending message 1;
  • the rounded value is used as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • the eMTC terminal uses the estimated RTT duration corresponding to the service link as the compensation time for sending message 1. Or, use the rounded value of RTT as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • the terminal uses the common timing advance broadcast by the network device as the compensation time for sending message 1.
  • the public timing advance broadcast by the network device may also be used as the compensation time for sending message 1.
  • the rounded value of the common timing advance is used as the sending compensation time of message 1.
  • the rounded value is a rounded value in milliseconds.
  • the terminal sends n random access preambles in a repeated transmission manner.
  • Step 604 The eMTC terminal determines the start time of the RAR receiving window, and the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • the first value is equal to the transmission compensation time RTT1 or the rounded value of the transmission compensation time RTT1. In one example, regardless of whether the transmission compensation time RTT1 is an integer multiple of milliseconds, the first value is equal to the transmission compensation time RTT1. In another example, when the sending compensation time RTT1 is an integer multiple of milliseconds, the first value is equal to the sending compensation time; when the sending compensation time RTT1 is not an integer multiple of milliseconds, the first value is equal to the rounding of the sending compensation time value. Illustratively, the first value is an integer value in milliseconds, as shown in Figure 7;
  • the transmit backoff time RTT1 is equal to the sum of the RTT and the common TA, or, the transmit backoff time RTT1 is equal to the rounded value of the sum of the RTT and the common TA.
  • the transmission backoff time RTT1 is equal to the RTT, or the transmission backoff time RTT1 is equal to the rounded value of the RTT.
  • the RTT is estimated by the terminal according to the positioning position and the satellite position, the RTT duration is the RTT duration of the service link between the terminal and the satellite, and the public TA is broadcast by the network device.
  • the second value is determined according to the common offset value (Common Offset), and the common offset value is determined based on the minimum transmission delay between the terminal and the network device as the starting moment of the RAR receiving window.
  • the common offset value regardless of whether the common offset value is an integer multiple of milliseconds, the second value is equal to the common offset value.
  • the common offset value when the common offset value is an integer multiple of milliseconds, the second value is equal to the common offset value; when the common offset value is not an integer multiple of milliseconds, the second value is equal to the common offset value Round value.
  • the second value is an integer value in milliseconds.
  • the default value is 3 subframes or 3 ms.
  • the common offset value is equal to the common TA; or, the common offset value is configured by the network device.
  • the eMTC terminal of the invention redefines the offset value of the start time of the RAR receiving window, which can improve the random access success rate of the terminal in the NTN, and can improve the random access success rate of the eMTC terminal in the NTN.
  • FIG. 8 shows a block diagram of an apparatus for determining an RAR receiving window provided by an exemplary embodiment of the present application.
  • the apparatus for determining the RAR receiving window can be implemented as all or a part of the terminal. Or, the apparatus for determining the RAR receiving window may be applied in the terminal.
  • the terminal may be an NTN capable terminal.
  • the device includes:
  • the sending module 820 is configured to send n random access preambles in a repeated transmission manner, where n is a positive integer.
  • the receiving module 840 is configured to determine the start time of the random access response receiving window, where the start time is equal to the time of the subframe where the last sent random access preamble is located plus the time of Z subframes.
  • the Z is equal to:
  • the larger value among the preset value and the first value, the first value is determined according to the sending compensation time when the device sends the random access preamble;
  • the larger value of the preset value and the second value, the second value is determined according to the common offset value, and the common offset value is based on the minimum transmission delay between the device and the network device It is determined for the start time of the random access response receiving window.
  • the Z is equal to the larger value of the preset value and the first value; In the case that the device has the time-frequency pre-compensation capability and cannot obtain the positioning position, the Z is equal to the larger value of the preset value and the second value.
  • the common offset value is equal to the common timing advance; or, the common offset value is configured by the network device.
  • the device is an NB-IoT device
  • the preset value is the number of subframes determined according to the duplex mode, the format of the random access preamble and the n.
  • the device is an eMTC device
  • the preset value is 3 subframes or 3 milliseconds.
  • the device has the capability of performing time-frequency pre-compensation through positioning
  • the sending compensation time is equal to the sum of the RTT and the common TA; or, the sending compensation time is equal to the rounded value of the sum of the RTT and the common TA.
  • the sending compensation time is equal to the RTT; or, the sending compensation time is equal to the rounded value of the RTT.
  • the RTT is estimated by the apparatus according to the positioning position and the satellite position, and the public TA is broadcast by the network device.
  • the device has the time-frequency pre-compensation capability and cannot obtain the positioning position
  • the sending compensation time is equal to the common TA; or, the sending compensation time is equal to the rounded value of the common TA.
  • the public TA is broadcast by the network device.
  • the first value is a rounded value in milliseconds
  • the second value is a rounded value in milliseconds
  • FIG. 9 shows a schematic structural diagram of a communication device (terminal or network device) provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 can be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction, so as to implement each step of the method for determining the RAR receiving window mentioned in the above method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining the RAR receiving window executed by the terminal or the network device provided by the above method embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium from which a processor of a communication device is readable by a computer
  • the computer instruction is read by reading the storage medium, and the processor executes the computer instruction, so that the communication device executes the method for determining the RAR receiving window described in the above aspects.

Abstract

本申请公开了一种RAR接收窗的确定方法、装置、设备及存储介质,涉及通信领域,所述方法包括:终端采用重复传输方式发送n次随机接入前导,n为正整数;确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。

Description

随机接入响应接收窗的确定方法、装置、设备及介质 技术领域
本申请涉及移动通信领域,特别涉及一种随机接入响应接收窗的确定方法、装置、设备及介质。
背景技术
随机接入过程是移动通信中非常重要的一个过程。典型的随机接入过程是四步随机接入过程。
在四步随机接入过程中的,终端向网络设备发送随机接入前导,简称消息1;网络设备向终端发送随机接入响应(Random Access Response,RAR),简称消息2。终端在发送消息1后,开启一个RAR接收窗,在该RAR接收窗内监测物理下行控制信道(Physical Downlink Control Channel,PDCCH)。该PDCCH是用随机接入无线网络临时标识(Random Access RNTI,简称:RA-RNTI)加扰的PDCCH。成功监测到RA-RNTI加扰的PDCCH之后,终端能够获得该PDCCH调度的PDSCH,其中包含了RAR。终端在RAR调度的资源上发送消息3,网络设备向终端发送消息4。
与传统地面蜂窝网络相比,NTN中的终端与网络设备之间的信号传播时延大幅增加,NTN的往返传输时间(Round Trip Time,RTT)甚至可以远大于传统标准中考虑的终端处理时间,因此针对NTN需要重新定义RAR接收窗的起始时刻的偏移值。
发明内容
本申请实施例提供了一种随机接入响应接收窗的确定方法、装置、设备及介质,对NTN中的终端重新定义了RAR接收窗的起始时刻的偏移值。
根据本申请的一个方面,提供了一种随机接入响应接收窗的确定方法,应用于终端中,所述方法包括:
采用重复传输方式发送n次随机接入前导;
确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。
根据本申请的一个方面,提供了一种随机接入响应接收窗的确定装置,所述装置包括:
采用重复传输方式发送n次随机接入前导;
确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。
根据本申请的一个方面,提供了一种终端,所述终端包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的随机接入响应接收窗的确定方法。
根据本申请的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的随机接入响应接收窗的确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的随机接入响应接收窗的确定方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面所述的随机接入响应接收窗的确定方法。
根据本申请的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如上述方面所述的随机接入响应接收窗的确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
通过确定随机接入响应接收窗的起始时刻是最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻,实现了对NTN中的终端重新定义了RAR接收窗的起始时刻的偏移值。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的透传载荷NTN的网络架构图;
图2是本申请一个示例性实施例提供的再生载荷NTN的网络架构图;
图3是本申请一个示例性实施例提供的随机接入响应接收窗的确定方法的流程图;
图4是本申请一个示例性实施例提供的随机接入响应接收窗的确定方法的流程图;
图5是本申请一个示例性实施例提供的随机接入响应接收窗的确定方法的时频示意图;
图6是本申请一个示例性实施例提供的随机接入响应接收窗的确定方法的流程图;
图7是本申请一个示例性实施例提供的随机接入响应接收窗的确定方法的时频示意图;
图8是本申请一个示例性实施例示出的随机接入响应接收窗的确定装置的框图;
图9是本申请一个示例性实施例示出的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
目前第三代合作伙伴项目(Third Generation Partnership Project,3GPP)正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
1.LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
2.GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星 波束可以覆盖直径几十至上百公里的地面区域。
存在至少两种NTN场景:透传载荷NTN和再生载荷NTN。图1示出了透传载荷NTN的场景,图2示出了再生载荷NTN的场景。
NTN网络由以下网元组成:
·1个或者多个网关,用于连接卫星和地面公共网络。
·馈线链路:用于网关和卫星之间通信的链路
·服务链路:用于终端和卫星之间通信的链路
·卫星:从其提供的功能上可以分为透传载荷和再生载荷这两种。
·透传载荷:只提供无线频率滤波,频率转换和放大的功能.只提供信号的透明转发,不会改变其转发的波形信号。
·再生载荷:除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能。其具有基站的部分或者全部功能。
·星间链路(Inter-satellite links,ISL):存在于再生载荷场景下。
图3示出了本申请一个示例性实施例提供的RAR接收窗的确定方法的流程图。本实施例以该RAR接收窗的确定方法应用于终端中来举例说明。可选地,终端是支持NTN的终端。该方法包括:
步骤302:终端采用重复传输方式发送n次随机接入前导;
重复传输方式是将相同的随机接入前导在不同的传输资源上重复方式n次的发送方式。其中,n为正整数。
随机接入前导也称消息1。
步骤304:终端确定RAR接收窗的起始时刻,起始时刻等于最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻。
在一个示例中,Z等于预设值和第一取值中的较大值,第一取值是根据终端发送随机接入前导时的发送补偿时间确定的。比如,在终端具有通过定位进行时频预补偿能力的情况下,Z等于预设值和第一取值中的较大值。
在一个示例中,Z等于预设值和第二取值中的较大值,第二取值是根据公共偏移值确定的,公共偏移值是基于终端和网络设备之间的最小传输时延为RAR接收窗的起始时刻确定的。比如,在终端具有时频预补偿能力且无法获取定位位置的情况下,Z等于预设值和第二取值中的较大值。
其中,预设值是基于地面蜂窝网络中的方式确定的RAR接收窗的起始时刻的偏移值。
综上所述,本实施例提供的方法,通过确定随机接入响应接收窗的起始时刻是最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻,实现了对NTN中的终端重新定义了RAR接收窗的起始时刻的偏移值,能够提高NTN中 的终端的随机接入成功率。
在NTN场景下,终端可以是NB-IoT(Narrow Band Internet of Things,窄带物联网)终端或eMTC(Enhanced Machine Type Communication,增强机器类型通信)终端。
针对终端是NB-IoT终端的情况,提供有如下实施例:
图4示出了本申请另一个示例性实施例提供的RAR接收窗的确定方法的流程图。本实施例以该RAR接收窗的确定方法应用于是NB-IoT终端中来举例说明。可选地,终端是支持NTN的终端。该方法包括:
步骤402:NB-IoT终端采用重复传输方式发送n次随机接入前导;
重复传输方式是将相同的随机接入前导在不同的传输资源上重复方式n次的发送方式。其中,n为正整数。
a)对于具有通过定位能力进行时频预补偿能力的NB-IoT终端,根据定位位置和卫星位置估计RTT时长。示意性的,该RTT时长是终端和卫星之间的服务链路的RTT时长。
对于透明转发网络架构,NB-IoT终端使用该估算的服务链路对应的RTT和网络设备广播的馈线链路对应的公共TA之和作为消息1的发送补偿时间。或者,将RTT和公共TA之和的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
对于再生转发网络架构,NB-IoT终端使用该估算的服务链路对应的RTT时长作为消息1的发送补偿时间。或者,将RTT的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
b)对于具有时频预补偿能力但无法获取定位位置的NB-IoT终端,如果网络设备向配置了公共定时提前(Common TA),那么终端使用网络设备广播的公共定时提前作为消息1的发送补偿时间。
可选地,对于不具有时频预补偿能力的NB-IoT终端,也可以使用网络设备广播的公共定时提前作为消息1的发送补偿时间。或者,将公共定时提前的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
终端根据发送补偿时间,采用重复传输方式发送n次随机接入前导。
步骤404:NB-IoT终端确定RAR接收窗的起始时刻,起始时刻等于最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻。
a)在NB-IoT终端具有通过定位进行时频预补偿能力的情况下,Z等于预设值和第一取值中的较大值,Z=max(X,ceil(RTT1)),第一取值是根据终端发送随机接入前导时的发送补偿时间RTT1确定的。
第一取值等于发送补偿时间RTT1或发送补偿时间RTT1的取整值。在一个示例中,不论发送补偿时间RTT1是否为毫秒的整数倍,第一取值均等于发送补偿时间RTT1。在另一个示例中,当发送补偿时间RTT1是毫秒的整数倍时,第 一取值等于发送补偿时间;当发送补偿时间RTT1不是毫秒的整数倍时,第一取值等于发送补偿时间的取整值。示意性的,第一取值是以毫秒为单位的取整值,如图5所示;
对于透明转发网络架构,发送补偿时间RTT1等于RTT和公共TA之和,或,发送补偿时间RTT1等于RTT和公共TA之和的取整值。
对于再生转发网络架构,发送补偿时间RTT1等于RTT,或,发送补偿时间RTT1等于RTT的取整值。
其中,RTT是终端根据定位位置和卫星位置估计得到的,该RTT时长是终端和卫星之间的服务链路的RTT时长,公共TA是网络设备广播的。
b)在NB-IoT终端具有时频预补偿能力且无法获取定位位置的情况下,Z等于预设值和第二取值中的较大值,比如Z=max(X,ceil(common Offset));
第二取值是根据公共偏移值(Common Offset)确定的,公共偏移值是基于终端和网络设备之间的最小传输时延为RAR接收窗的起始时刻确定的。在一个示例中,不论公共偏移值是否为毫秒的整数倍,第二取值均等于公共偏移值。在另一个示例中,当公共偏移值是毫秒的整数倍时,第二取值等于公共偏移值;当公共偏移值不是毫秒的整数倍时,第二取值等于公共偏移值的取整值。示意性的,第二取值是以毫秒为单位的取整值。
其中,公共偏移值等于公共TA;或,公共偏移值是网络设备配置的。
对于a)情况和b)情况,预设值X是根据双工方式、随机接入前导的格式和n确定的子帧数。如表一所示:
表一
TDD/FDD模式 随机接入前导格式 PRACH重复次数n X
FDD 0或1 >=64 41
FDD 0或1 <64 4
FDD 2 >=16 41
FDD 2 <16 4
TDD 任意 任意 4
对于X的取值主要考虑发送随机接入前导之后的终端处理时延(比如对于NB-IoT,终端需要从上行发送转换为下行接收,以及为后续PDCCH接收所需要的同步操作时间),以及终端发送完随机接入前导到接收RAR的最快往返时延RTT。
综上所述,本实施例提供的方法,通过确定随机接入响应接收窗的起始时刻是最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻,实现了对NB-IoT终端重新定义了RAR接收窗的起始时刻的偏移值,能够提高NTN中的NB-IoT终端的随机接入成功率。
针对终端是eMTC终端的情况,提供有如下实施例:
图6示出了本申请另一个示例性实施例提供的RAR接收窗的确定方法的流程图。本实施例以该RAR接收窗的确定方法应用于是eMTC终端中来举例说明。可选地,终端是支持NTN的终端。该方法包括:
步骤602:eMTC终端采用重复传输方式发送n次随机接入前导;
重复传输方式是将相同的随机接入前导在不同的传输资源上重复方式n次的发送方式。
a)对于具有通过定位能力进行时频预补偿能力的eMTC终端,根据定位位置和卫星位置估计RTT时长。示意性的,该RTT时长是终端和卫星之间的服务链路的RTT时长。
对于透明转发网络架构,eMTC终端使用该估算的服务链路对应的RTT和网络设备广播的馈线链路对应的公共TA之和作为消息1的发送补偿时间;或者,将RTT和公共TA之和的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
对于再生转发网络架构,eMTC终端使用该估算的服务链路对应的RTT时长作为消息1的发送补偿时间。或者,将RTT的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
b)对于具有时频预补偿能力但无法获取定位位置的eMTC终端,如果网络设备向配置了公共定时提前(Common TA),那么终端使用网络设备广播的公共定时提前作为消息1的发送补偿时间。
可选地,对于不具有时频预补偿能力的eMTC终端,也可以使用网络设备广播的公共定时提前作为消息1的发送补偿时间。或者,将公共定时提前的取整值作为消息1的发送补偿时间。该取整值是以毫秒为单位的取整值。
终端根据发送补偿时间,采用重复传输方式发送n次随机接入前导。
步骤604:eMTC终端确定RAR接收窗的起始时刻,起始时刻等于最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻。
a)在eMTC终端具有通过定位进行时频预补偿能力的情况下,Z等于预设值和第一取值中的较大值,Z=max(X,ceil(RTT1)),第一取值是根据终端发送随机接入前导时的发送补偿时间RTT1确定的。
第一取值等于发送补偿时间RTT1或发送补偿时间RTT1的取整值。在一个示例中,不论发送补偿时间RTT1是否为毫秒的整数倍,第一取值均等于发送补偿时间RTT1。在另一个示例中,当发送补偿时间RTT1是毫秒的整数倍时,第一取值等于发送补偿时间;当发送补偿时间RTT1不是毫秒的整数倍时,第一取值等于发送补偿时间的取整值。示意性的,第一取值是以毫秒为单位的取整值,如图7所示;
对于透明转发网络架构,发送补偿时间RTT1等于RTT和公共TA之和,或, 发送补偿时间RTT1等于RTT和公共TA之和的取整值。
对于再生转发网络架构,发送补偿时间RTT1等于RTT,或,发送补偿时间RTT1等于RTT的取整值。
其中,RTT是终端根据定位位置和卫星位置估计得到的,该RTT时长是终端和卫星之间的服务链路的RTT时长,公共TA是网络设备广播的。
b)在eMTC终端具有时频预补偿能力且无法获取定位位置的情况下,Z等于预设值和第二取值中的较大值,比如Z=max(X,ceil(common Offset));
第二取值是根据公共偏移值(Common Offset)确定的,公共偏移值是基于终端和网络设备之间的最小传输时延为RAR接收窗的起始时刻确定的。在一个示例中,不论公共偏移值是否为毫秒的整数倍,第二取值均等于公共偏移值。在另一个示例中,当公共偏移值是毫秒的整数倍时,第二取值等于公共偏移值;当公共偏移值不是毫秒的整数倍时,第二取值等于公共偏移值的取整值。示意性的,第二取值是以毫秒为单位的取整值。
对于a)情况和b)情况,预设值是3个子帧或3毫秒。
其中,公共偏移值等于公共TA;或,公共偏移值是网络设备配置的。
综上所述,本实施例提供的方法,通过确定随机接入响应接收窗的起始时刻是最后一次发送的随机接入前导所在的子帧加上Z个子帧的时刻,实现了对NTN中的eMTC终端重新定义了RAR接收窗的起始时刻的偏移值,能够提高NTN中的终端的随机接入成功率,能够提高NTN中的eMTC终端的随机接入成功率。
图8示出了本申请一个示例性实施例提供的RAR接收窗的确定装置的框图。该RAR接收窗的确定装置可以实现成为终端的全部或一部分。或,该RAR接收窗的确定装置可以应用在终端中。该终端可以是支持NTN的终端。所述装置包括:
发送模块820,用于采用重复传输方式发送n次随机接入前导;其中,n为正整数。
接收模块840,用于确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。
在本申请的一个可选的设计中,所述Z等于:
预设值和第一取值中的较大值,所述第一取值是根据所述装置发送所述随机接入前导时的发送补偿时间确定的;
或,
预设值和第二取值中的较大值,所述第二取值是根据公共偏移值确定的,所述公共偏移值是基于所述装置和网络设备之间的最小传输时延为所述随机接入响应接收窗的起始时刻确定的。
在本申请的一个可选的设计中,在所述装置具有通过定位进行时频预补偿能力的情况下,所述Z等于所述预设值和所述第一取值中的较大值;在所述装置具有所述时频预补偿能力且无法获取定位位置的情况下,所述Z等于所述预设值和所述第二取值中的较大值。
在本申请的一个可选的设计中,所述公共偏移值等于公共定时提前;或,所述公共偏移值是所述网络设备配置的。
在本申请的一个可选的设计中,所述装置是NB-IoT装置,
所述预设值是根据双工方式、所述随机接入前导的格式和所述n确定的子帧数。
在本申请的一个可选的设计中,所述装置是eMTC装置,
所述预设值是3子帧或3毫秒。
在本申请的一个可选的设计中,所述装置具有通过定位进行时频预补偿能力;
对于透明转发网络架构,所述发送补偿时间等于RTT和公共TA之和;或,所述发送补偿时间等于RTT和公共TA之和的取整值。
对于再生转发网络架构,所述发送补偿时间等于RTT;或,所述发送补偿时间等于RTT的取整值。
其中,所述RTT是所述装置根据定位位置和卫星位置估计得到的,所述公共TA是所述网络设备广播的。
在本申请的一个可选的设计中,所述装置具有所述时频预补偿能力且无法获取定位位置;
所述发送补偿时间等于公共TA;或者,所述发送补偿时间等于公共TA的取整值。
其中,所述公共TA是所述网络设备广播的。
在本申请的一个可选的设计中,所述第一取值是以毫秒为单位的取整值,所述第二取值是以毫秒为单位的取整值。
图9示出了本申请一个示例性实施例提供的通信设备(终端或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指 令,以实现上述方法实施例中提到的RAR接收窗的确定方法的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由终端或网络设备执行的RAR接收窗的确定方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,通信设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该通信设备执行上述方面所述的RAR接收窗的确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种随机接入响应接收窗的确定方法,其特征在于,应用于终端中,所述方法包括:
    采用重复传输方式发送n次随机接入前导;其中,n为正整数;
    确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。
  2. 根据权利要求1所述的方法,其特征在于,所述Z等于:
    预设值和第一取值中的较大值,所述第一取值是根据所述终端发送所述随机接入前导时的发送补偿时间确定的;
    或,
    所述预设值和第二取值中的较大值,所述第二取值是根据公共偏移值确定的,所述公共偏移值是基于所述终端和网络设备之间的最小传输时延为所述随机接入响应接收窗的起始时刻确定的。
  3. 根据权利要求2所述的方法,其特征在于,
    在所述终端具有通过定位进行时频预补偿能力的情况下,所述Z等于所述预设值和所述第一取值中的较大值;
    在所述终端具有所述时频预补偿能力且无法获取定位位置的情况下,所述Z等于所述预设值和所述第二取值中的较大值。
  4. 根据权利要求2所述的方法,其特征在于,
    所述公共偏移值等于公共定时提前;
    或,
    所述公共偏移值是所述网络设备配置的。
  5. 根据权利要求2所述的方法,其特征在于,所述终端是窄带物联网NB-IoT终端;
    所述预设值是根据双工方式、所述随机接入前导的格式和所述n确定的子帧数。
  6. 根据权利要求2所述的方法,其特征在于,所述终端是增强机器类通信eMTC终端;
    所述预设值是3毫秒。
  7. 根据权利要求2至6任一所述的方法,其特征在于,所述第一取值是以毫秒为单位的取整值。
  8. 根据权利要求2至6任一所述的方法,其特征在于,所述第二取值是以毫秒为单位的取整值。
  9. 根据权利要求2至6任一所述的方法,其特征在于,所述终端具有通过定位进行时频预补偿能力;
    对于透明转发网络架构,所述发送补偿时间等于往返传输时延RTT和公共TA之和,或,所述发送补偿时间等于所述RTT和所述公共TA之和的取整值;
    对于再生转发网络架构,所述发送补偿时间等于所述RTT,或,所述发送补偿时间等于所述RTT的取整值;
    其中,所述RTT是所述终端根据定位位置和卫星位置估计得到的,所述公共TA是所述网络设备广播的。
  10. 根据权利要求2至6任一所述的方法,其特征在于,所述终端具有所述时频预补偿能力且无法获取定位位置;
    所述发送补偿时间等于公共定时提前TA,或,所述发送补偿时间等于所述公共TA的取整值;
    其中,所述公共TA是所述网络设备广播的。
  11. 一种随机接入响应接收窗的确定装置,其特征在于,所述装置包括:
    发送模块,用于采用重复传输方式发送n次随机接入前导;
    接收模块,用于确定随机接入响应接收窗的起始时刻,所述起始时刻等于最后一次发送的所述随机接入前导所在的子帧加上Z个子帧的时刻。
  12. 根据权利要求11所述的装置,其特征在于,所述Z等于:
    预设值和第一取值中的较大值,所述第一取值是根据所述装置发送所述随机接入前导时的发送补偿时间确定的;
    或,
    所述预设值和第二取值中的较大值,所述第二取值是根据公共偏移值确定的,所述公共偏移值是基于所述装置和网络设备之间的最小传输时延为所述随机接入响应接收窗的起始时刻确定的。
  13. 根据权利要求12所述的装置,其特征在于,
    在所述装置具有通过定位进行时频预补偿能力的情况下,所述Z等于所述预设值和所述第一取值中的较大值;
    在所述装置具有所述时频预补偿能力且无法获取定位位置的情况下,所述Z等于所述预设值和所述第二取值中的较大值。
  14. 根据权利要求12所述的装置,其特征在于,
    所述公共偏移值等于公共定时提前;
    或,
    所述公共偏移值是所述网络设备配置的。
  15. 根据权利要求12所述的装置,其特征在于,所述装置是窄带物联网NB-IoT装置;
    所述预设值是根据双工方式、所述随机接入前导的格式和所述n确定的子帧数。
  16. 根据权利要求12所述的装置,其特征在于,所述装置是增强机器类通信eMTC装置;
    所述预设值是3毫秒。
  17. 根据权利要求12至16任一所述的装置,其特征在于,所述第一取值是以毫秒为单位的取整值。
  18. 根据权利要求12至16任一所述的方法,其特征在于,所述第二取值是以毫秒为单位的取整值。
  19. 根据权利要求12至16任一所述的装置,其特征在于,所述装置具有通过定位进行时频预补偿能力;
    对于透明转发网络架构,所述发送补偿时间等于往返传输时延RTT和公共TA之和,或,所述发送补偿时间等于所述RTT和所述公共TA之和的取整值;
    对于再生转发网络架构,所述发送补偿时间等于所述RTT,或,所述发送补偿时间等于所述RTT的取整值;
    其中,所述RTT是所述装置根据定位位置和卫星位置估计得到的,所述公共TA是所述网络设备广播的。
  20. 根据权利要求12至16任一所述的装置,其特征在于,所述装置具有所述时频预补偿能力且无法获取定位位置;
    所述发送补偿时间等于公共定时提前TA,或,所述发送补偿时间等于所述公共TA的取整值;
    其中,所述公共TA是所述网络设备广播的。
  21. 一种终端,其特征在于,所述终端包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至10中任一所述的随机接入响应接收窗的确定方法。
  22. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如权利要求1至10中任一所述的随机接入响应接收窗的确定方法。
PCT/CN2020/120298 2020-10-12 2020-10-12 随机接入响应接收窗的确定方法、装置、设备及介质 WO2022077141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/120298 WO2022077141A1 (zh) 2020-10-12 2020-10-12 随机接入响应接收窗的确定方法、装置、设备及介质
CN202080103161.7A CN115843463A (zh) 2020-10-12 2020-10-12 随机接入响应接收窗的确定方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120298 WO2022077141A1 (zh) 2020-10-12 2020-10-12 随机接入响应接收窗的确定方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022077141A1 true WO2022077141A1 (zh) 2022-04-21

Family

ID=81207505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120298 WO2022077141A1 (zh) 2020-10-12 2020-10-12 随机接入响应接收窗的确定方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115843463A (zh)
WO (1) WO2022077141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4270818A1 (en) * 2022-04-29 2023-11-01 Nokia Technologies Oy Frequency pre-compensation for random access preamble transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228053A (zh) * 2012-01-29 2013-07-31 中兴通讯股份有限公司 一种多载波系统随机接入方法及基站及移动终端及系统
EP3048851A1 (en) * 2015-01-26 2016-07-27 ASUSTeK Computer Inc. Method and apparatus for beam detection in a wireless communication system
CN108476480A (zh) * 2017-08-16 2018-08-31 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站
CN108521889A (zh) * 2017-08-10 2018-09-11 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228053A (zh) * 2012-01-29 2013-07-31 中兴通讯股份有限公司 一种多载波系统随机接入方法及基站及移动终端及系统
EP3048851A1 (en) * 2015-01-26 2016-07-27 ASUSTeK Computer Inc. Method and apparatus for beam detection in a wireless communication system
CN108521889A (zh) * 2017-08-10 2018-09-11 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站
CN108476480A (zh) * 2017-08-16 2018-08-31 北京小米移动软件有限公司 随机接入方法及装置、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Further details on NR 4-step RA Procedure", 3GPP DRAFT; R1-1707464, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051272672 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4270818A1 (en) * 2022-04-29 2023-11-01 Nokia Technologies Oy Frequency pre-compensation for random access preamble transmission

Also Published As

Publication number Publication date
CN115843463A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023123514A1 (zh) Gnss有效性的处理方法、装置、设备及存储介质
US20230208508A1 (en) Transmission control method and apparatus, device, and storage medium
US20240031886A1 (en) Information reporting method and apparatus, equipment and storage medium
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022077141A1 (zh) 随机接入响应接收窗的确定方法、装置、设备及介质
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
WO2022087792A1 (zh) Ntn中的测量上报方法、接收方法、装置、设备及介质
CN117044324A (zh) 一种随机接入方法、电子设备及存储介质
US20230269686A1 (en) Method and apparatus for reporting timing advance in ntn, method and apparatus for receiving timing advance in ntn, and device
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2024065750A1 (zh) 能力信息的上报方法、装置、设备及存储介质
WO2023035276A1 (zh) 上行传输方法、装置、设备及存储介质
US20230337165A1 (en) Timer starting method and apparatus, and terminal and storage medium
WO2023010243A1 (zh) 小区测量方法、装置、设备及介质
CN113647040B (zh) 数据传输方法、装置及系统
WO2022266882A1 (zh) 有效期确定方法、装置、设备及存储介质
WO2023184286A1 (zh) 终端行为的确定方法、装置、设备及存储介质
US11894930B1 (en) Wireless communication method and terminal device
WO2023230844A1 (zh) 小区参数的配置方法、装置、设备及存储介质
US20230422147A1 (en) Cell access control method, terminal device, and network device
WO2023108349A1 (zh) 优化切换过程的控制方法、装置、设备及存储介质
WO2023279295A1 (zh) 信息处理方法、装置、终端设备及存储介质
US20240121762A1 (en) Wireless communication method, terminal device, and network device
WO2022232991A1 (zh) Pdcch监听方法及drx上行重传定时器的控制方法
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956923

Country of ref document: EP

Kind code of ref document: A1