WO2022232991A1 - Pdcch监听方法及drx上行重传定时器的控制方法 - Google Patents

Pdcch监听方法及drx上行重传定时器的控制方法 Download PDF

Info

Publication number
WO2022232991A1
WO2022232991A1 PCT/CN2021/091905 CN2021091905W WO2022232991A1 WO 2022232991 A1 WO2022232991 A1 WO 2022232991A1 CN 2021091905 W CN2021091905 W CN 2021091905W WO 2022232991 A1 WO2022232991 A1 WO 2022232991A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time
drx
processing time
retransmission timer
Prior art date
Application number
PCT/CN2021/091905
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/091905 priority Critical patent/WO2022232991A1/zh
Priority to CN202180087391.3A priority patent/CN116671214A/zh
Priority to EP21939639.7A priority patent/EP4277397A4/en
Publication of WO2022232991A1 publication Critical patent/WO2022232991A1/zh
Priority to US18/450,390 priority patent/US20230389126A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • H04L1/1883Time-out mechanisms using multiple timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a PDCCH (Physical Downlink Control Channel, physical downlink control channel) monitoring method and a DRX (Discontinuous Reception, discontinuous reception) uplink retransmission timer control method.
  • PDCCH Physical Downlink Control Channel
  • DRX discontinuous Reception, discontinuous reception
  • the NTN (Non-Terrestrial Network, non-terrestrial network) technology is introduced into the 5G NR (New Radio, new air interface) system.
  • the NTN technology generally uses satellite communication to provide communication services to terrestrial users.
  • the signal transmission delay between the terminal equipment and the network side in the NTN system is greatly increased, and the RTT (Round Trip Time, round trip transmission time) is much larger than the terminal processing time considered in the existing standards. Therefore, it is necessary to make some technical improvements in combination with the characteristic that the signal transmission delay between the terminal equipment and the network side in the NTN system is relatively large.
  • the embodiments of the present application provide a PDCCH monitoring method and a method for controlling a DRX uplink retransmission timer.
  • the technical solution is as follows:
  • a PDCCH monitoring method is provided, the method is executed by a terminal device, and the method includes:
  • the first moment is the moment corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH (Physical Uplink Shared Channel), and the second moment is the moment in the bundle
  • the time corresponding to the last repeated transmission of N is a positive integer.
  • a method for controlling a DRX uplink retransmission timer is provided, the method is executed by a terminal device, and the method includes:
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the N is a positive integer.
  • a PDCCH monitoring apparatus includes:
  • a monitoring module configured to monitor the PDCCH during the DRX activation period from the first moment to the second moment;
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH
  • the second time is the time corresponding to the last repeated transmission in the bundle
  • the N is a positive integer
  • an apparatus for controlling a DRX uplink retransmission timer includes:
  • a startup module configured to start the DRX uplink retransmission timer at the first moment
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the N is a positive integer.
  • a terminal device includes a processor
  • the processor configured to monitor the PDCCH during the DRX activation period from the first moment to the second moment;
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH
  • the second time is the time corresponding to the last repeated transmission in the bundle
  • the N is a positive integer
  • a terminal device includes a processor
  • the processor configured to start the DRX uplink retransmission timer at the first moment
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the N is a positive integer.
  • a computer-readable storage medium where a computer program is stored in the storage medium, and the computer program is configured to be executed by a processor to implement the above-mentioned PDCCH monitoring method or the above-mentioned DRX The control method of the uplink retransmission timer.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned PDCCH monitoring method or the above-mentioned DRX uplink retransmission Timer control method.
  • a computer program product or computer program includes computer instructions, the computer instructions are stored in a computer-readable storage medium, and a processor loads from the computer program.
  • the computer-readable storage medium reads and executes the computer instructions to implement the above-mentioned PDCCH monitoring method or the above-mentioned control method of the DRX uplink retransmission timer.
  • the present application provides a PDCCH monitoring method.
  • the terminal device does not start monitoring the PDCCH from the time corresponding to the first repeated transmission in the bundle corresponding to the PUSCH, but from the time corresponding to the Nth or N+1th repeated transmission. It starts to monitor the PDCCH, the N is an integer greater than 1, and the value of N can be set according to values such as the RTT between the terminal device and the network device, so as to avoid the terminal device from performing some unnecessary PDCCH monitoring, which is beneficial to Terminal power saving.
  • the present application also provides a method for controlling the DRX uplink retransmission timer.
  • the terminal device does not start the DRX uplink retransmission timer from the moment corresponding to the last repeated transmission, but starts the DRX at a certain period of time after the first repeated transmission. Uplink retransmission timer. During this period, the RTT between the terminal device and the network device and the processing time of the network device can be considered, so as to start the DRX uplink retransmission timer at the right time, and not start too early or too late to ensure that The terminal device does not miss receiving the uplink HARQ-ACK feedback sent by the network device, which is also beneficial to the terminal power saving.
  • FIG. 1 is a schematic diagram of a satellite network architecture of transparent forwarding provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a satellite network architecture for regeneration and forwarding provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a PDCCH monitoring method provided by an embodiment of the present application.
  • FIG. 4 exemplarily shows a comparison diagram of the related art and the DRX activation period of the present application
  • FIG. 5 is a flowchart of a method for controlling a DRX uplink retransmission timer provided by an embodiment of the present application
  • 6 to 8 exemplarily show schematic diagrams of the start timing and running duration of the DRX uplink retransmission timer
  • FIG. 9 is a block diagram of a PDCCH monitoring apparatus provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of a control device for a DRX uplink retransmission timer provided by an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • Satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites are classified into LEO (Low-Earth Orbit, low earth orbit) satellites, MEO (Medium-Earth Orbit, medium earth orbit) satellites, GEO (Geostationary Earth Orbit, geosynchronous orbit) satellites, HEO (High Earth orbit) satellites according to the different orbital altitudes. Elliptical Orbit, high elliptical orbit) satellites, etc.
  • LEO Low-Earth Orbit, low earth orbit
  • MEO Medium-Earth Orbit, medium earth orbit
  • GEO Global-Earth Orbit, geosynchronous orbit
  • HEO High Earth orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal equipment are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 shows a schematic diagram of a satellite network architecture.
  • the communication satellites in the satellite network architecture are satellites with transparent payloads.
  • the satellite network architecture includes: a terminal device 10 , a satellite 20 , an NTN gateway 30 , an access network device 40 and a core network device 50 .
  • Communication between the terminal device 10 and the access network device 40 may be performed through an air interface (eg, a Uu interface).
  • the access network device 40 can be deployed on the ground, and the uplink and downlink communication between the terminal device 10 and the access network device 40 can be relayed and transmitted through the satellite 20 and the NTN gateway 30 (usually located on the ground).
  • the terminal device 10 sends the uplink signal to the satellite 20, the satellite 20 forwards the above-mentioned uplink signal to the NTN gateway 30, and then the NTN gateway 30 forwards the above-mentioned uplink signal to the access network device 40.
  • the network device 40 sends the above-mentioned uplink signal to the core network device 50 .
  • the downlink signal from the core network device 50 is sent to the access network device 40, the access network device 40 sends the downlink signal to the NTN gateway 30, the NTN gateway 30 forwards the above downlink signal to the satellite 20, and then the The satellite 20 forwards the above-mentioned downlink signal to the terminal device 10 .
  • FIG. 2 shows a schematic diagram of another satellite network architecture.
  • the communication satellites in the satellite network architecture are regenerative payload satellites.
  • the satellite network architecture includes: a terminal device 10 , a satellite 20 , an NTN gateway 30 and a core network device 50 .
  • the functions of the access network device 40 are integrated on the satellite 20 , that is, the satellite 20 has the functions of the access network device 40 .
  • Communication between the terminal device 10 and the satellite 20 can be performed through an air interface (such as a Uu interface).
  • Communication between the satellite 20 and the NTN gateway 30 (usually located on the ground) can be performed through SRI (Satellite Radio Interface, satellite radio interface).
  • the terminal device 10 sends the uplink signal to the satellite 20, the satellite 20 forwards the above-mentioned uplink signal to the NTN gateway 30, and then the NTN gateway 30 sends the above-mentioned uplink signal to the core network device 50.
  • the downlink signal from the core network device 50 is sent to the NTN gateway 30 , the NTN gateway 30 forwards the downlink signal to the satellite 20 , and the satellite 20 forwards the downlink signal to the terminal device 10 .
  • the access network device 40 is a device for providing wireless communication services for the terminal device 10 .
  • a connection can be established between the access network device 40 and the terminal device 10, so as to perform communication through the connection, including the interaction of signaling and data.
  • the number of access network devices 40 may be multiple, and communication between two adjacent access network devices 40 may also be performed in a wired or wireless manner.
  • the terminal device 10 can switch between different access network devices 40 , that is, establish connections with different access network devices 40 .
  • the access network device 40 in the cellular communication network may be a base station.
  • a base station is a device deployed in an access network to provide a wireless communication function for the terminal device 10 .
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different, for example, in 5G NR systems, they are called gNodeBs or gNBs.
  • the name "base station" may change.
  • the above-mentioned apparatuses for providing wireless communication functions for the terminal equipment 10 are collectively referred to as base stations or access network equipment.
  • the terminal device 10 involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to wireless modems, as well as various forms of users Equipment (User Equipment, UE), mobile station (Mobile Station, MS), terminal equipment (terminal device) and so on.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal equipment
  • the devices mentioned above are collectively referred to as terminal devices.
  • UE is used in some places to represent “terminal equipment”.
  • the "network device” may be an access network device (such as a base station) or a satellite.
  • the NTN network may include multiple satellites 20 .
  • a satellite 20 can cover a certain range of ground areas and provide wireless communication services for terminal devices 10 on the ground areas.
  • the satellites 20 can orbit around the earth, and by arranging a plurality of satellites 20, communication coverage of different areas on the earth's surface can be achieved.
  • the terms "network” and “system” are often used interchangeably, but those skilled in the art can understand their meanings.
  • the technical solutions described in the embodiments of this application may be applicable to LTE (Long Term Evolution) systems, 5G NR systems, and subsequent evolution systems of 5G NR systems or other communication systems. Not limited.
  • MPDCCH MTC Physical Downlink Control Channel, MTC Physical Downlink Control Channel
  • MPDCCH Enhanced Physical Downlink Control Channel, Enhanced Physical Downlink Control Channel
  • the terminal equipment is based on DMRS (Demodulation Reference Signal, demodulation reference signal) to receive control information, support functions such as control information precoding and beamforming
  • one EPDCCH transmits one or more ECCEs (Enhanced Control Channel Element, enhanced control channel resources), the aggregation level is ⁇ 1,2 ,4,8,16,32 ⁇ , each ECCE consists of multiple EREGs (Enhanced Resource Element Group, enhanced resource particle group).
  • the maximum number of repetitions Rmax of MPDCCH can be configured, and the value range is ⁇ 1, 2, 4, 8, 16, 32, 64, 128, 256 ⁇ .
  • the eMTC PDSCH Physical Downlink Shared Channel, Physical Downlink Shared Channel
  • eMTC terminal equipment can work in two modes, ModeA and ModeB: in Mode A mode, the maximum number of uplink and downlink HARQ (Hybrid Automatic Repeat Request, hybrid automatic repeat request) processes is 8. In this mode, the number of PDSCH repetitions is ⁇ 1,4,16,32 ⁇ ; In Mode B mode, the maximum number of uplink and downlink HARQ processes is 2, and in this mode, the number of PDSCH repetitions is ⁇ 4,16,64,128,256,512,1024,2048 ⁇ .
  • Mode A mode the maximum number of uplink and downlink HARQ (Hybrid Automatic Repeat Request, hybrid automatic repeat request) processes is 8. In this mode, the number of PDSCH repetitions is ⁇ 1,4,16,32 ⁇ ; In Mode B mode, the maximum number of uplink and downlink HARQ processes is 2, and in this mode, the number of PDSCH repetitions is ⁇ 4,16,64,128,256,512,102
  • the eMTC PUCCH (Physical Uplink Control Channel, Physical Uplink Control Channel) frequency domain resource format is the same as LTE, and supports frequency hopping and repeated transmission.
  • Mode A supports sending HARQ-ACK/NACK, SR (Scheduling Request, scheduling request), CSI (Channel State Information, channel state information) on PUCCH, that is, supports PUCCH format 1/1a/2/2a, and the supported number of repetitions is ⁇ 1, 2, 4, 8 ⁇ ;
  • Mode B does not support CSI feedback, that is, only PUCCH format 1/1a is supported, and the supported repetition times are ⁇ 4, 8, 16, 32 ⁇ .
  • the eMTC PUSCH Physical Uplink Shared Channel
  • LTE Long Term Evolution
  • schedulable RBs Resource Blocks
  • Support Mode A and Mode B Mode A repetition times can be ⁇ 8,16,32 ⁇ , supports up to 8 processes, and the rate is higher; Mode B covers a longer distance, and the repetition times can be ⁇ 192,256,384,512,768,1024, 1536,2048 ⁇ , supports up to 2 HARQ processes in the uplink.
  • the network can configure the DRX (Discontinuous Reception, discontinuous reception) function for the terminal device, so that the terminal device discontinuously monitors the PDCCH, so as to achieve the purpose of saving the power of the terminal device.
  • DRX discontinuous Reception, discontinuous reception
  • Each MAC (Medium Access Control, medium access control) entity has a DRX configuration, and the DRX configuration parameters include:
  • -drx cycle DRX cycle
  • -drx-onDurationTimer DRX duration timer
  • -drx-StartOffset the delay for UE to start drx-onDurationTimer
  • -drx-InactivityTimer DRX inactivity timer
  • DRX downlink retransmission timer each downlink HARQ process except the broadcast HARQ process corresponds to a drx-RetransmissionTimer (DRX downlink retransmission timer); it should be noted that in LTE, DRX downlink retransmission timer The name of the transmission timer does not contain the word "DL";
  • each uplink HARQ process corresponds to one drx-ULRetransmissionTimer.
  • the terminal device If the terminal device is configured with DRX, the terminal device needs to monitor the PDCCH during the DRX activation period.
  • the DRX activation period includes the following situations:
  • DRX duration timer drx-InactivityTimer
  • DRX inactivity timer drx-RetransmissionTimer
  • DRX downlink retransmission timer drx-RetransmissionTimerShortTTI
  • drx- Any one of the seven timers ULRetransmissionTimer DRX uplink retransmission timer
  • drx-ULRetransmissionTimerShortTTI DRX uplink short TTI retransmission timer
  • mac-ContentionResolutionTimer contention resolution timer
  • the terminal device has not received the C-RNTI (Cell-Radio Network Temporary Identifier, Cell-Radio Network Temporary Identifier) scrambled PDCCH indication after successfully receiving the random access response.
  • C-RNTI Cell-Radio Network Temporary Identifier, Cell-Radio Network Temporary Identifier
  • uplink grant can be received for a pending HARQ retransmission, and there is data in the HARQ buffer (buffer) of the asynchronous HARQ process.
  • - mpdcch-UL-HARQ-ACK-FeedbackConfig uplink HARQ-ACK feedback for MPDCCH
  • UL_REPETITION_NUMBER maximum number of repeated transmissions for PUSCH
  • HARQ RTT timer The conditions for the terminal device to start or restart the HARQ RTT Timer (HARQ RTT timer) are:
  • the terminal device receives a PDCCH indicating downlink transmission, or if the terminal has a configured downlink grant in the subframe, then:
  • the terminal device is an NB-IoT (Narrow Band Internet of Things) terminal device or an eMTC terminal device, then:
  • the terminal device If the physical layer indicates that multiple TB (Transport Block, transport block) transmissions are scheduled, the terminal device starts the transmission in the multiple TBs in the subframe where the last repeated transmission of the PDSCH of the last TB of the multiple TBs is received.
  • the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH of each TB.
  • the terminal device starts the HARQ RTT Timer corresponding to the downlink HARQ process used by the PDSCH in the subframe where the last repeated transmission of the PDSCH is received.
  • the terminal device starts the drx-RetransmissionTimer (DRX downlink retransmission timer) corresponding to the downlink HARQ process.
  • DRX downlink retransmission timer DRX downlink retransmission timer
  • the terminal device starts the drx-RetransmissionTimer (DRX downlink retransmission timer) corresponding to the downlink HARQ process.
  • the physical layer indicates that there are multiple TBs associated with the HARQ RTT Timer, start or restart the drx-InactivityTimer after the HARQ RTT Timers corresponding to all these HARQ processes have timed out; otherwise, directly start or restart drx - InactivityTimer.
  • the conditions for the terminal device to start or restart the UL HARQ RTT Timer are:
  • the terminal equipment receives a PDCCH indicating an uplink transmission using an asynchronous HARQ process, or if the terminal equipment has a configured uplink grant for an asynchronous HARQ process in this subframe, or if the terminal equipment receives a PDCCH indicating an uplink transmission using an automatic HARQ process transmission, then:
  • the terminal device If the physical layer indicates that multiple TB transmissions are scheduled, the terminal device starts the PUSCH of each of the multiple TBs in the subframe where the last repeated transmission of the PUSCH of the last TB of the multiple TBs is completed.
  • the UL HARQ RTT Timer corresponding to the uplink HARQ process.
  • the terminal device starts the UL HARQ RTT Timer corresponding to the uplink HARQ process used by the PUSCH in the subframe where the last repeated transmission of the PUSCH is completed.
  • the terminal device starts the drx-ULRetransmissionTimer corresponding to the uplink HARQ process.
  • the terminal device starts the drx-ULRetransmissionTimer corresponding to the uplink HARQ process.
  • start or restart the drx-InactivityTimer when all the UL HARQ RTT Timers corresponding to these HARQ processes have timed out; otherwise, start directly Or restart drx-InactivityTimer.
  • FIG. 3 shows a flowchart of a PDCCH monitoring method provided by an embodiment of the present application.
  • the method may be executed by a terminal device, and the method may include the following steps:
  • Step 310 monitor the PDCCH during the DRX activation period from the first moment to the second moment; wherein, the first moment is the moment corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the second Time is the time corresponding to the last repeated transmission in the bundle, and N is a positive integer.
  • the terminal device needs to monitor the PDCCH during the DRX activation period.
  • the DRX activation period includes a time period from the first time instant to the second time instant.
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH
  • the second time is the time corresponding to the last repeated transmission in the bundle
  • N is a positive integer.
  • the bundle corresponding to the PUSCH may include multiple repeated transmissions.
  • the number of repeated transmissions (or times) included in the bundle corresponding to the PUSCH may be any of ⁇ 192, 256, 384, 512, 768, 1024, 1536, 2048 ⁇ .
  • the terminal device starts to monitor the PDCCH from the moment corresponding to the first repeated transmission in the bundle corresponding to the PUSCH, but sends the PUSCH from the terminal device to the network device, and then sends the PUSCH to the terminal device after the network device receives the PUSCH.
  • Sending the PDCCH (such as sending uplink HARQ-ACK feedback on the PDCCH) requires at least one RTT between the terminal device and the network device. Therefore, it is unnecessary for the terminal device to start monitoring the PDCCH from the moment corresponding to the first repeated transmission. Not conducive to terminal power saving.
  • the terminal device does not start monitoring the PDCCH from the moment corresponding to the first repeated transmission, but starts monitoring the PDCCH from the moment corresponding to the Nth or N+1th repeated transmission, and the Nth
  • the number or the N+1th repeated transmission is not the first repeated transmission, for example, N is an integer greater than 1, and the value of N can be set according to values such as the RTT between the terminal device and the network device, so as to avoid the terminal
  • the device performs some unnecessary PDCCH monitoring, which is beneficial to the power saving of the terminal.
  • N is a value obtained by rounding one of the following parameters:
  • the network processing time includes the access network device processing time (or referred to as the base station processing time) and/or the satellite processing time.
  • the network processing time (including the processing time of the access network equipment and/or the satellite processing time) may be notified to the terminal equipment by the network side through a system message or RRC (Radio Resource Control, Radio Resource Control) dedicated signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the above rounding is rounding up or rounding down.
  • the above moment is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment (ie, RedCap terminal equipment). It should be noted that, for the eMTC terminal equipment, what it monitors is the MPDCCH.
  • the terminal device monitors the PDCCH during the DRX activation period, and the DRX activation period includes at least one of the following conditions:
  • drx-onDurationTimer (DRX duration timer), drx-InactivityTimer (DRX inactivity timer), drx-RetransmissionTimerDL (DRX downlink retransmission timer), drx-DLRetransmissionTimerShortTTI (DRX downlink short TTI retransmission timer), Any one of the seven timers drx-RetransmissionTimerUL (DRX uplink retransmission timer), drx-ULRetransmissionTimerShortTTI (DRX uplink short TTI retransmission timer) and mac-ContentionResolutionTimer (contention resolution timer) is running.
  • the SR is sent on the PUCCH/SPUCCH (Short PUCCH) and is in the pending (waiting) state.
  • the terminal device has not received an initial transmission indicated by the PDCCH scrambled by the C-RNTI after successfully receiving the random access response.
  • UL grant (uplink grant) can be received for a pending HARQ retransmission, and there is data in the HARQ buffer (buffer) of the asynchronous HARQ process.
  • mpdcch-UL-HARQ-ACK-FeedbackConfig uplink HARQ-ACK feedback for MPDCCH
  • UL_REPETITION_NUMBER the maximum number of repeated transmissions of PUSCH
  • N the number of repeated transmissions of PUSCH
  • the time period defined by the situation (5) is the time period from the first moment to the second moment described above.
  • part (a) of Figure 4 shows the solution provided by the related technology.
  • the terminal device starts to monitor the PDCCH from the moment corresponding to the first repeated transmission in the bundle corresponding to the PUSCH, that is, the entire bundle
  • the corresponding time periods are all DRX activation periods during which the terminal equipment performs PDCCH monitoring.
  • Part (b) of FIG. 4 shows that using the technical solution provided by the present application, the terminal device starts to monitor the PDCCH from the moment corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the DRX activation period includes from The time period from the first time t1 to the second time t2.
  • the terminal device does not start monitoring the PDCCH from the moment corresponding to the first repeated transmission in the bundle corresponding to the PUSCH, but starts monitoring from the moment corresponding to the Nth or N+1th repeated transmission PDCCH
  • the N is an integer greater than 1
  • the value of N can be set according to values such as the RTT between the terminal device and the network device, so as to avoid the terminal device from performing some unnecessary PDCCH monitoring, which is beneficial to the terminal power saving .
  • FIG. 5 shows a flowchart of a method for controlling a DRX uplink retransmission timer provided by an embodiment of the present application.
  • the method may be executed by a terminal device, and the method may include the following steps:
  • Step 510 Start the DRX uplink retransmission timer at the first moment; wherein, the first moment is the moment corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and N is a positive integer.
  • the terminal device if the terminal device is configured with a DRX uplink retransmission timer, the terminal device starts the DRX uplink retransmission timer at the first moment. During the running period of the DRX uplink retransmission timer, in the DRX activation period, the terminal device will monitor the PDCCH. Exemplarily, the terminal device receives RRC configuration information from the network side, where the RRC configuration information is used to configure DRX-related parameters, such as including a DRX uplink retransmission timer and the like.
  • a bundle corresponding to PUSCH may include multiple repeated transmissions, for example, the number (or times) of repeated transmissions included in a bundle corresponding to PUSCH may be ⁇ 192, 256, 384, 512, 768, 1024, 1536, 2048 ⁇ any of the .
  • N is a value obtained by rounding one of the following parameters:
  • the network processing time includes the access network device processing time (or referred to as the base station processing time) and/or the satellite processing time.
  • the network processing time (including the access network device processing time and/or the satellite processing time) may be notified to the terminal device by the network side through a system message or RRC dedicated signaling.
  • the above rounding is rounding up or rounding down.
  • the above moment is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment (ie, RedCap terminal equipment). It should be noted that, for the eMTC terminal equipment, what it monitors is the MPDCCH.
  • the running duration of the DRX uplink retransmission timer is the sum of the maximum retransmission duration corresponding to the above-mentioned bundling and the configured duration of the DRX uplink retransmission timer.
  • the maximum retransmission duration corresponding to the bundling refers to the duration occupied by completing all repeated transmissions in the bundling.
  • the configuration duration of the DRX uplink retransmission timer refers to the running duration configured by the network device for the DRX uplink retransmission timer through the RRC configuration information.
  • the terminal device if the terminal device receives a PDCCH indicating an uplink transmission using an asynchronous HARQ process, or if the terminal device has a configured uplink grant for an asynchronous HARQ process in the subframe, or if the terminal device receives a PDCCH indication Uplink transmission using an automatic HARQ process, if mpdcch-UL-HARQ-ACK-FeedbackConfig (uplink HARQ-ACK feedback for MPDCCH) is configured and no UL is received on PDCCH until the last repeated transmission of PUSCH HARQ-ACK feedback, the terminal device starts or restarts the DRX uplink retransmission timer corresponding to the used uplink HARQ process at the moment corresponding to the Nth or N+1th repeated transmission of the PUSCH.
  • the running duration of the DRX uplink retransmission timer is the sum of the maximum retransmission duration corresponding to the bundling of the PUSCH and the configured duration of the DRX uplink retrans
  • the terminal device when the terminal device receives the uplink HARQ-ACK feedback of the first asynchronous HARQ process, the terminal device stops the DRX uplink retransmission timer corresponding to the first asynchronous HARQ process, or stops the terminal device DRX uplink retransmission timers corresponding to all asynchronous HARQ processes.
  • the first asynchronous HARQ process may be any asynchronous HARQ process among all asynchronous HARQ processes corresponding to the PUSCH.
  • the terminal device stops the DRX uplink retransmission timer corresponding to the first asynchronous HARQ process. If the terminal device receives the uplink HARQ-ACK feedback of the first asynchronous HARQ process and the PUSCH transmission has been completed, the terminal device stops the DRX uplink retransmission timers corresponding to all asynchronous HARQ processes corresponding to the PUSCH.
  • the terminal device when the terminal device receives the uplink HARQ-ACK feedback of the first asynchronous HARQ process, the terminal device cancels the remaining repeated transmissions in the bundle corresponding to the PUSCH. After receiving the uplink HARQ-ACK feedback sent by the network device, the terminal device stops the subsequent repeated PUSCH transmission in time, so as to achieve the purpose of energy saving.
  • the earliest time when the terminal device can receive the uplink HARQ-ACK feedback is the first time t1, that is, the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH.
  • the uplink HARQ-ACK feedback is immediately sent to the terminal device. That is to say, the earliest start time of the DRX uplink retransmission timer is the first time t1.
  • the latest possible time point when the terminal equipment receives the uplink HARQ-ACK feedback is the third time t3, that is, the time corresponding to the last repeated transmission in the bundle corresponding to the PUSCH has passed N or N+1 times The corresponding duration of repeated transmission.
  • the network device sends uplink HARQ-ACK feedback to the terminal device after detecting the last repeated transmission of the PUSCH.
  • the latest start time of the DRX uplink retransmission timer is the third time t3.
  • the interval duration between the first time t1 and the third time t3 is the maximum retransmission duration corresponding to the bundling of the PUSCH.
  • the fourth time t4 is defined as the third time t3 plus the configured duration of the DRX uplink retransmission timer.
  • the running time of the DRX uplink retransmission timer needs to start from the first time t1, and continuously cover the corresponding The maximum retransmission duration and the configured duration of the DRX uplink retransmission timer. That is, the running time of the DRX uplink retransmission timer needs to start from the first time t1 to the fourth time t4.
  • the terminal device starts the DRX uplink retransmission timer at the time corresponding to the last repeated transmission in the bundle corresponding to the PUSCH, and the running duration of the DRX uplink retransmission timer is configured by the network device through the RRC configuration information (Denoted as the configuration duration of the DRX uplink retransmission timer).
  • the related art does not fully consider when the network device receives the repeated transmission of the PUSCH and performs uplink HARQ-ACK feedback, and when the terminal device can receive the uplink HARQ-ACK feedback from the network device, resulting in the DRX uplink retransmission timer.
  • the setting of the startup timing and the running duration of the network device is not accurate enough, which is not conducive to the terminal device receiving the uplink HARQ-ACK feedback from the network device in time.
  • the terminal device does not start the DRX uplink retransmission timer from the moment corresponding to the last repeated transmission (that is, the above-mentioned Nth or N+1th repeated transmission is not the last repeated transmission), but It is to start the DRX uplink retransmission timer for a period of time after the first repeated transmission.
  • the RTT between the terminal device and the network device and the processing time of the network device can be considered, so as to start the DRX uplink retransmission at the right time.
  • the timer is not started too early or too late to ensure that the terminal device does not miss receiving the uplink HARQ-ACK feedback sent by the network device.
  • the running duration of the DRX uplink retransmission timer is the sum of the maximum retransmission duration corresponding to the bundle and the configured duration of the DRX uplink retransmission timer, ensuring that the running duration of the DRX uplink retransmission timer can cover all possible transmissions of the network device.
  • the practice of uplink HARQ-ACK feedback ensures that the terminal device does not miss the uplink HARQ-ACK feedback sent by the network device, so that after receiving the uplink HARQ-ACK feedback sent by the network device, it can stop subsequent PUSCH repeated transmission in time to achieve The purpose of energy saving.
  • FIG. 9 shows a block diagram of a PDCCH monitoring apparatus provided by an embodiment of the present application.
  • the device has the function of realizing the above-mentioned PDCCH monitoring method, and the function can be realized by hardware or by executing corresponding software in hardware.
  • the apparatus may be the terminal equipment described above, or may be set in the terminal equipment.
  • the apparatus 900 may include: a monitoring module 910 .
  • a monitoring module 910 configured to monitor the PDCCH during the DRX activation period from the first moment to the second moment;
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH
  • the second time is the time corresponding to the last repeated transmission in the bundle
  • the N is a positive integer
  • the N is a value obtained by rounding one of the following parameters:
  • the network processing time includes access network device processing time and/or satellite processing time.
  • the rounding is rounding up or rounding down.
  • the network processing time is notified to the terminal device through a system message or RRC dedicated signaling.
  • the time instant is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment.
  • FIG. 10 shows a block diagram of an apparatus for controlling a DRX uplink retransmission timer provided by an embodiment of the present application.
  • the device has the function of implementing the above-mentioned control method of the DRX uplink retransmission timer, and the function can be implemented by hardware or by executing corresponding software in hardware.
  • the apparatus may be the terminal device described above, or may be set in the terminal device. As shown in FIG. 10 , the apparatus 1000 may include: a startup module 1010 .
  • the starting module 1010 is used to start the DRX uplink retransmission timer at the first moment
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the N is a positive integer.
  • the N is a value obtained by rounding one of the following parameters:
  • the network processing time includes access network device processing time and/or satellite processing time.
  • the rounding is rounding up or rounding down.
  • the network processing time is notified to the terminal device through a system message or RRC dedicated signaling.
  • the running duration of the DRX uplink retransmission timer is the sum of the maximum retransmission duration corresponding to the bundle and the configured duration of the DRX uplink retransmission timer.
  • the apparatus 1000 further includes: a stopping module 1020 .
  • a stopping module 1020 configured to stop the DRX uplink retransmission timer corresponding to the first asynchronous HARQ process in the case of receiving the uplink HARQ-ACK feedback of the first asynchronous HARQ process, or stop all asynchronous HARQs of the terminal device The DRX uplink retransmission timer corresponding to the process.
  • the apparatus 1000 further includes: a cancellation module 1030 .
  • the canceling module 1030 is configured to cancel the remaining repeated transmissions in the bundle in the case of receiving the uplink HARQ-ACK feedback of the first asynchronous HARQ process.
  • the time instant is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 11 shows a schematic structural diagram of a terminal device 110 provided by an embodiment of the present application.
  • the terminal device 110 may include: a processor 111 , a receiver 112 , a transmitter 113 , a memory 114 and a bus 115 .
  • the processor 111 includes one or more processing cores, and the processor 111 executes various functional applications and information processing by running software programs and modules.
  • the receiver 112 and the transmitter 113 may be implemented as a transceiver 116, which may be a communication chip.
  • the memory 114 is connected to the processor 111 through the bus 115 .
  • the memory 114 can be used to store a computer program, and the processor 111 is used to execute the computer program, so as to implement each step performed by the terminal device in the above method embodiments.
  • the memory 114 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and the volatile or non-volatile storage device includes but is not limited to: RAM (Random-Access Memory, random access memory) and ROM (Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory) memory), flash memory or other solid-state storage technology, CD-ROM (Compact Disc Read-Only Memory), DVD (Digital Video Disc, high-density digital video disc) or other optical storage, tape cassettes, magnetic tapes, magnetic disks storage or other magnetic storage devices.
  • RAM Random-Access Memory, random access memory
  • ROM Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory or other solid-
  • the processor 111 is configured to execute a computer program to implement the above-mentioned PDCCH monitoring method. Specifically:
  • the processor 111 is configured to monitor the PDCCH during the DRX activation period from the first moment to the second moment;
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH
  • the second time is the time corresponding to the last repeated transmission in the bundle
  • the N is a positive integer
  • the N is a value obtained by rounding one of the following parameters:
  • the network processing time includes access network device processing time and/or satellite processing time.
  • the rounding is rounding up or rounding down.
  • the network processing time is notified to the terminal device through a system message or RRC dedicated signaling.
  • the time instant is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment.
  • the processor 111 is configured to execute a computer program to implement the above-mentioned method for controlling the DRX uplink retransmission timer. Specifically:
  • the processor 111 is configured to start the DRX uplink retransmission timer at the first moment
  • the first time is the time corresponding to the Nth or N+1th repeated transmission in the bundle corresponding to the PUSCH, and the N is a positive integer.
  • the N is a value obtained by rounding one of the following parameters:
  • the network processing time includes access network device processing time and/or satellite processing time.
  • the rounding is rounding up or rounding down.
  • the network processing time is notified to the terminal device through a system message or RRC dedicated signaling.
  • the running duration of the DRX uplink retransmission timer is the sum of the maximum retransmission duration corresponding to the bundle and the configured duration of the DRX uplink retransmission timer.
  • the processor 111 is further configured to stop the DRX uplink retransmission timer corresponding to the first asynchronous HARQ process in the case of receiving the uplink HARQ-ACK feedback of the first asynchronous HARQ process, Or, stop the DRX uplink retransmission timers corresponding to all asynchronous HARQ processes of the terminal device.
  • the processor 111 is further configured to cancel the remaining repeated transmissions in the bundle in the case of receiving the uplink HARQ-ACK feedback of the first asynchronous HARQ process.
  • the time instant is in milliseconds or subframes.
  • the terminal equipment includes at least one of the following types: eMTC terminal equipment, NB-IoT terminal equipment, and low-capability terminal equipment.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is configured to be executed by a processor to implement the above-mentioned PDCCH monitoring method or the above-mentioned DRX uplink retransmission timing control method of the device.
  • the computer-readable storage medium may include: ROM (Read-Only Memory, read-only memory), RAM (Random-Access Memory, random access memory), SSD (Solid State Drives, solid-state hard disk), or an optical disk.
  • the random access memory may include ReRAM (Resistance Random Access Memory, resistive random access memory) and DRAM (Dynamic Random Access Memory, dynamic random access memory).
  • An embodiment of the present application further provides a chip, where the chip includes a programmable logic circuit and/or program instructions, and when the chip is running, it is used to implement the above-mentioned PDCCH monitoring method or the above-mentioned control of the DRX uplink retransmission timer method.
  • Embodiments of the present application further provide a computer program product or computer program, where the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium, and the processor stores the computer-readable storage medium from the computer.
  • the medium reads and executes the computer instructions to implement the above-mentioned PDCCH monitoring method or the above-mentioned control method of the DRX uplink retransmission timer.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • plural refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the numbering of the steps described in this document only exemplarily shows a possible execution sequence between the steps.
  • the above steps may also be executed in different order, such as two different numbers.
  • the steps are performed at the same time, or two steps with different numbers are performed in a reverse order to that shown in the figure, which is not limited in this embodiment of the present application.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Abstract

本申请公开了一种PDCCH监听方法及DRX上行重传定时器的控制方法,涉及通信技术领域。对于PDCCH监听方法,终端设备从PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻开始监听PDCCH,且N的值可以依据诸如终端设备与网络设备之间的RTT等值进行设定,从而避免终端设备进行一些无必要的PDCCH监听,这有利于终端省电。对于DRX上行重传定时器的控制方法,终端设备在恰当的时机启动DRX上行重传定时器,不至于过早或者过晚启动,保证终端设备不错过接收网络设备发送的上行HARQ-ACK反馈,这同样有利于终端省电。

Description

PDCCH监听方法及DRX上行重传定时器的控制方法 技术领域
本申请实施例涉及通信技术领域,特别涉及一种PDCCH(Physical Downlink Control Channel,物理下行控制信道)监听方法及DRX(Discontinuous Reception,非连续接收)上行重传定时器的控制方法。
背景技术
在5G NR(New Radio,新空口)系统中引入了NTN(Non-Terrestrial Network,非地面网络)技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。
与传统地面蜂窝网络相比,NTN系统中终端设备与网络侧之间的信号传输时延大幅增加,RTT(Round Trip Time,往返传输时间)远大于现有标准中考虑的终端处理时间。因此,有必要结合NTN系统中终端设备与网络侧之间的信号传输时延较大这一特性,做一些技术上的改进。
发明内容
本申请实施例提供了一种PDCCH监听方法及DRX上行重传定时器的控制方法。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种PDCCH监听方法,所述方法由终端设备执行,所述方法包括:
在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;
其中,所述第一时刻是PUSCH(Physical Uplink Shared Channel,物理上行共享信道)对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种DRX上行重传定时器的控制方法,所述方法由终端设备执行,所述方法包括:
在第一时刻启动DRX上行重传定时器;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种PDCCH监听装置,所述装置包括:
监听模块,用于在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种DRX上行重传定时器的控制装置,所述装置包括:
启动模块,用于在第一时刻启动DRX上行重传定时器;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器;
所述处理器,用于在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器;
所述处理器,用于在第一时刻启动DRX上行重传定时器;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
本申请实施例提供的技术方案可以包括如下有益效果:
本申请提供了一种PDCCH监听方法,终端设备并非从PUSCH对应的捆绑内的第1个重复传输对应的时刻就开始监听PDCCH,而是从第N个或第N+1个重复传输对应的时刻才开始监听PDCCH,该N为大于1的整数,且N的值可以依据诸如终端设备与网络设备之间的RTT等值进行设定,从而避免终端设备进行一些无必要的PDCCH监听,这有利于终端省电。
本申请还提供了一种DRX上行重传定时器的控制方法,终端设备并非从最后一个重复传输对应的时刻启动DRX上行重传定时器,而是在第一个重复传输之后的一段时间启动DRX上行重传定时器,这段时间可以考虑终端设备与网络设备之间的RTT以及网络设备的处理时间,从而在恰当的时机启动DRX上行重传定时器,不至于过早或者过晚启动,保证终端设备不错过接收网络设备发送的上行HARQ-ACK反馈,这同样有利于终端省电。
附图说明
图1是本申请一个实施例提供的透明转发的卫星网络架构的示意图;
图2是本申请一个实施例提供的再生转发的卫星网络架构的示意图;
图3是本申请一个实施例提供的PDCCH监听方法的流程图;
图4示例性示出了相关技术与本申请的DRX激活期的对比图;
图5是本申请一个实施例提供的DRX上行重传定时器的控制方法的流程图;
图6至图8示例性示出了DRX上行重传定时器的启动时机和运行时长的示意图;
图9是本申请一个实施例提供的PDCCH监听装置的框图;
图10是本申请一个实施例提供的DRX上行重传定时器的控制装置的框图;
图11是本申请一个实施例提供的终端设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,相关标准组织正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比于地面的蜂窝通信网络,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家 或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。目前阶段主要研究的是LEO和GEO。
1、LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端设备的发射功率要求不高。
2、GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
请参考图1,其示出了一种卫星网络架构的示意图,该卫星网络架构中的通信卫星是透明转发(transparent payload)的卫星。如图1所示,该卫星网络架构包括:终端设备10、卫星20、NTN网关30、接入网设备40和核心网设备50。
终端设备10和接入网设备40之间可通过空口(如Uu接口)进行通信。在图1所示架构中,接入网设备40可以部署在地面,终端设备10和接入网设备40之间的上下行通信,可以通过卫星20和NTN网关30(通常位于地面)进行中转传输。以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号转发给接入网设备40,后续由接入网设备40将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给接入网设备40,接入网设备40将下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
请参考图2,其示出了另一种卫星网络架构的示意图,该卫星网络架构中的通信卫星是再生转发(regenerative payload)的卫星。如图2所示,该卫星网络架构包括:终端设备10、卫星20、NTN网关30和核心网设备50。
在图2所示架构中,接入网设备40的功能集成在卫星20上,也即卫星20具备接入网设备40的功能。终端设备10和卫星20之间可通过空口(如Uu接口)进行通信。卫星20和NTN网关30(通常位于地面)之间可通过SRI(Satellite Radio Interface,卫星无线接口)进行通信。
在图2所示架构中,以上行传输为例,终端设备10将上行信号发送给卫星20,卫星20将上述上行信号转发给NTN网关30,再由NTN网关30将上述上行信号发送给核心网设备50。以下行传输为例,来自核心网设备50的下行信号发送给NTN网关30,NTN网关30将上述下行信号转发给卫星20,再由卫星20将上述下行信号转发给终端设备10。
在上述图1和图2所示的网络架构中,接入网设备40是用于为终端设备10提供无线通信服务的设备。接入网设备40与终端设备10之间可以建立连接,从而通过该连接进行通信,包括信令和数据的交互。接入网设备40的数量可以有多个,两个邻近的接入网设备40之间也可以通过有线或者无线的方式进行通信。终端设备10可以在不同的接入网设备40之间进行切换,也即与不同的接入网设备40建立连接。
以蜂窝通信网络为例,蜂窝通信网络中的接入网设备40可以是基站。基站是一种部署在接入网中用以为终端设备10提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为基站或接入网设备。
另外,本申请实施例中涉及的终端设备10,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端设备。在本申请实施例中,有些地方使用“UE”代表“终端设备”。在本申请实施例中,“网络设备”可以是接入网设备(如基站)或者卫星。
另外,以5G NTN网络为例,NTN网络中可以包括多颗卫星20。一颗卫星20可以覆盖一定范围的地面区域,为该地面区域上的终端设备10提供无线通信服务。另外,卫星20可以围绕地球做轨道运动,通过布设多个卫星20,可以实现对地球表面的不同区域的通信覆盖。
另外,在本申请实施例中,名词“网络”和“系统”通常混用,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE(Long Term Evolution,长期演进)系统,也可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统或者其他通信系统,本申请对此不作限定。
在介绍本申请技术方案之前,先对本申请涉及的一些背景技术知识进行介绍说明。
1、eMTC(enhanced Machine Type Communication,增强的机器类通信)及其物理信道
MPDCCH(MTC Physical Downlink Control Channel,MTC物理下行控制信道)用于发送调度信息,基于LTE R11的EPDCCH(Enhanced Physical Downlink Control Channel,增强的物理下行控制信道)设计,终端设备基于DMRS(Demodulation Reference Signal,解调参考信号)来接收控制信息,支持控制信息预编码和波束赋形等功能,一个EPDCCH传输一个或多个ECCE(Enhanced Control Channel Element,增强的控制信道资源),聚合等级为{1,2,4,8,16,32},每个ECCE由多个EREG(Enhanced Resource Element Group,增强的资源粒子组)组成。MPDCCH最大重复次数Rmax可配,取值范围{1,2,4,8,16,32,64,128,256}。
eMTC PDSCH(Physical Downlink Shared Channel,物理下行共享信道)与LTE PDSCH信道基本相同,但增加了重复和窄带间跳频,用于提高PDSCH信道覆盖能力和干扰平均化。eMTC终端设备可工作在ModeA和ModeB两种模式:在Mode A模式下,上行和下行HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)进程数最大为8,在该模式下,PDSCH重复次数为{1,4,16,32};在Mode B模式下,上行和下行HARQ进程数最大为2,在该模式下,PDSCH重复次数为{4,16,64,128,256,512,1024,2048}。
eMTC PUCCH(Physical Uplink Control Channel,物理上行控制信道)频域资源格式与LTE相同,支持跳频和重复发送。Mode A支持PUCCH上发送HARQ-ACK/NACK、SR(Scheduling Request,调度请求)、CSI(Channel State Information,信道状态信息),即支持PUCCH format 1/1a/2/2a,支持的重复次数为{1,2,4,8};Mode B不支持CSI反馈,即仅支持PUCCH format 1/1a,支持的重复次数为{4,8,16,32}。
eMTC PUSCH(Physical Uplink Shared Channel,物理上行共享信道)与LTE一样,但可调度的最大RB(Resource Block,资源块)数限制为6个。支持Mode A和Mode B两种模式,Mode A重复次数可以是{8,16,32},支持最多8个进程,速率较高;Mode B覆盖距离更远,重复次数可以是{192,256,384,512,768,1024,1536,2048},最多支持上行2个HARQ进程。
2、LTE DRX(Discontinuous Reception,非连续接收)过程
在LTE中,网络可以为终端设备配置DRX(Discontinuous Reception,非连续接收)功能,使终端设备非连续地监听PDCCH,以达到终端设备省电的目的。每个MAC(Medium Access Control,媒质接入控制)实体有一个DRX配置,DRX的配置参数包含:
-drx cycle:DRX周期;
-drx-onDurationTimer:DRX持续定时器;
-drx-StartOffset:UE启动drx-onDurationTimer的时延;
-drx-InactivityTimer:DRX非激活定时器;
-drx-RetransmissionTimer:DRX下行重传定时器,除广播HARQ进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimer(DRX下行重传定时器);需要说明的是,在LTE中,DRX下行重传定时器的名称中不包含“DL”字样;
-drx-ULRetransmissionTimer:DRX上行重传定时器,每个上行HARQ进程对应一个drx-ULRetransmissionTimer。
如果终端设备配置了DRX,则终端设备需要在DRX激活期监听PDCCH。DRX激活期包括如下几种情况:
-drx-onDurationTimer(DRX持续定时器),drx-InactivityTimer(DRX非激活定时器),drx-RetransmissionTimer(DRX下行重传定时器),drx-RetransmissionTimerShortTTI(DRX下行短TTI重传定时器),drx-ULRetransmissionTimer(DRX上行重传定时器),drx-ULRetransmissionTimerShortTTI(DRX上行短TTI重传定时器)以及mac-ContentionResolutionTimer(竞争解决定时器)这7个定时器中的任何一个定时器正在运行。
-在PUCCH/SPUCCH(Short PUCCH)上发送了SR并处于pending(等待)状态。
-在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到C-RNTI(Cell-Radio Network Temporary Identifier,小区-无线网络临时标识)加扰的PDCCH指示的一次初始传输。
-对于一个pending HARQ重传可以接收UL grant(上行授权),并且该异步HARQ进程的HARQ buffer(缓冲器)里有数据。
-配置了mpdcch-UL-HARQ-ACK-FeedbackConfig(针对MPDCCH的上行HARQ-ACK反馈)并且根据UL_REPETITION_NUMBER(PUSCH的最大重复传输次数)当前正在进行一个bundle(捆绑)内的重复传输。
终端设备启动或重启HARQ RTT Timer(HARQ RTT定时器)的条件为:
如果终端设备接收到一个指示下行传输的PDCCH,或者如果终端在该子帧有配置的下行授权,则:
a)如果该终端设备为NB-IoT(Narrow Band Internet of Things,窄带物联网)终端设备或者eMTC终端设备,则:
a1)如果物理层指示调度了多个TB(Transport Block,传输块)传输,则终端设备在接收该多个TB的最后一个TB的PDSCH的最后一次重复传输所在子帧启动该多个TB中的每个TB的PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
a2)否则,终端设备在接收该PDSCH的最后一次重复传输所在子帧启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
b)否则,启动该PDSCH所使用的下行HARQ进程对应的HARQ RTT Timer。
如果HARQ RTT Timer超时,则:如果该HARQ进程的数据解码失败,则终端设备启动该下行HARQ进程对应的drx-RetransmissionTimer(DRX下行重传定时器)。对于NB-IoT终端设备,如果物理层指示对于该HARQ RTT Timer关联的是多个TB,则当所有这些HARQ进程对应的HARQ RTT Timer都超时之后启动或重启drx-InactivityTimer;否则,直接启动或重启drx-InactivityTimer。
终端设备启动或重启UL HARQ RTT Timer的条件为:
如果终端设备接收到PDCCH指示一个使用异步HARQ进程的上行传输,或者如果终端设备在该子帧对于某个异步HARQ进程有配置的上行授权,或者终端设备接收到PDCCH指示使用一个自动HARQ进程的上行传输,则:
a)如果没有配置mpdcch-UL-HARQ-ACK-FeedbackConfig
a1)如果物理层指示调度了多个TB传输,则终端设备在完成该多个TB的最后一个TB的PUSCH的最后一次重复传输所在子帧启动该多个TB中的每个TB的PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
a2)否则,终端设备在完成该PUSCH的最后一次重复传输所在子帧启动该PUSCH所使用的上行HARQ进程对应的UL HARQ RTT Timer。
b)如果配置了mpdcch-UL-HARQ-ACK-FeedbackConfig,且直到PUSCH的最后一次重复传输之前仍没有在PDCCH上接收到UL HARQ-ACK feedback
b1)终端设备在完成该PUSCH的最后一次重复传输所在子帧启动或重启所使用的上行HARQ进程对应的drx-ULRetransmissionTimer。
如果某个上行HARQ进程对应的UL HARQ RTT Timer超时,则终端设备启动该上行HARQ进程对应的drx-ULRetransmissionTimer。对于NB-IoT终端设备,如果物理层指示对于该UL HARQ RTT Timer关联的是多个TB,则当所有这些HARQ进程对应的UL HARQ RTT Timer都超时之后启动或重启drx-InactivityTimer;否则,直接启动或重启drx-InactivityTimer。
请参考图3,其示出了本申请一个实施例提供的PDCCH监听方法的流程图,该方法可以由终端设备执行,该方法可以包括如下步骤:
步骤310,在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;其中,第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,第二时刻是该捆绑内的最后一个重复传输对应的时刻,N为正整数。
在示例性实施例中,如果终端设备配置了DRX,则终端设备需要在DRX激活期内监听PDCCH。
在示例性实施例中,DRX激活期包括从第一时刻到第二时刻的时间段。其中,第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,第二时刻是该捆绑内的最后一个重复传输对应的时刻,N为正整数。PUSCH对应的捆绑中可以包括多个重复传输,例如,PUSCH对应的捆绑中包括的重复传输的个数(或称为次数)可以是{192,256,384,512,768,1024,1536,2048}中的任意一种。
在相关技术中,终端设备从PUSCH对应的捆绑内的第1个重复传输对应的时刻,就开始监听PDCCH,但是从终端设备向网络设备发送PUSCH,再到网络设备接收到该PUSCH之后向终端设备发送PDCCH(如在PDCCH上发送上行HARQ-ACK反馈),至少要经历一个终端设备与网络设备之间的RTT,因此终端设备从第1个重复传输对应的时刻就开始监听PDCCH是没有必要的,不利于终端省电。
在本申请实施例中,终端设备并非从第1个重复传输对应的时刻就开始监听PDCCH,而是从第N个或第N+1个重复传输对应的时刻才开始监听PDCCH,且该第N个或第N+1个重复传输并非是第1个重复传输,例如N为大于1的整数,且N的值可以依据诸如终端设备与网络设备之间的RTT等值进行设定,从而避免终端设备进行一些无必要的PDCCH监听,这有利于终端省电。
在示例性实施例中,N是对以下参数中的一种进行取整得到的值:
(1)终端设备与接入网设备之间的RTT值;
(2)终端设备的TA值;
(3)终端设备与卫星之间的RTT;
(4)终端设备与接入网设备之间的RTT值与网络处理时间之和;
(5)终端设备的TA值与网络处理时间之和;
(6)终端设备与卫星之间的RTT与网络处理时间之和。
可选地,网络处理时间包括接入网设备处理时间(或称为基站处理时间)和/或卫星处理时间。其中,网络处理时间(包括接入网设备处理时间和/或卫星处理时间)可以由网络侧通过系统消息或RRC(Radio Resource Control,无线资源控制)专用信令通知给终端设备。
可选地,上述取整为向上取整或向下取整。
可选地,上述时刻以毫秒或子帧为单位。
可选地,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备(即RedCap终端设备)。需要说明的是,对于eMTC终端设备设备来说,其监听的是MPDCCH。
在示例性实施例中,终端设备在DRX激活期内,监听PDCCH,该DRX激活期包括如下至少一种情况:
(1)drx-onDurationTimer(DRX持续定时器),drx-InactivityTimer(DRX非激活定时器),drx-RetransmissionTimerDL(DRX下行重传定时器),drx-DLRetransmissionTimerShortTTI(DRX下行短TTI重传定时器),drx-RetransmissionTimerUL(DRX上行重传定时器),drx-ULRetransmissionTimerShortTTI(DRX上行短TTI重传定时器)以及mac-ContentionResolutionTimer(竞争解决定时器)这7个定时器中的任何一个定时器正在运行。
(2)在PUCCH/SPUCCH(Short PUCCH)上发送了SR并处于pending(等待)状态。
(3)在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到C-RNTI加扰的PDCCH指示的一次初始传输。
(4)对于一个pending HARQ重传可以接收UL grant(上行授权),并且该异步HARQ进程的HARQ buffer(缓冲器)里有数据。
(5)配置了mpdcch-UL-HARQ-ACK-FeedbackConfig(针对MPDCCH的上行HARQ-ACK反馈)并且根据UL_REPETITION_NUMBER(PUSCH的最大重复传输次数)当前正在进行一个bundle(捆绑)内的前N-1个或前N个重复传输之外的重复传输,N为大于1的整数。该情况(5)所定义的时间段即为上文介绍的从第一时刻到第二时刻的时间段。
如图4所示,图4中(a)部分示出了采用相关技术提供的方案,终端设备从PUSCH对应的捆绑内的第1个重复传输对应的时刻,就开始监听PDCCH,即整个捆绑所对应的时间段均为终端设备进行PDCCH监听的DRX激活期。图4中(b)部分示出了采用本申请提供的技术方案,终端设备从PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻开始监听PDCCH,DRX激活期包括从第一时刻t1到第二时刻t2的时间段。
在本申请实施例中,终端设备并非从PUSCH对应的捆绑内的第1个重复传输对应的时刻就开始监听PDCCH,而是从第N个或第N+1个重复传输对应的时刻才开始监听PDCCH,该N为大于1的整数,且N的值可以依据诸如终端设备与网络设备之间的RTT等值进行设定,从而避免终端设备进行一些无必要的PDCCH监听,这有利于终端省电。
请参考图5,其示出了本申请一个实施例提供的DRX上行重传定时器的控制方法的流程图,该方法可以由终端设备执行,该方法可以包括如下步骤:
步骤510,在第一时刻启动DRX上行重传定时器;其中,第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,N为正整数。
在示例性实施例中,如果终端设备配置了DRX上行重传定时器,则终端设备在第一时刻 启动DRX上行重传定时器。在DRX上行重传定时器的运行期间内,处于DRX激活期,终端设备会进行PDCCH监听。示例性地,终端设备接收来自网络侧的RRC配置信息,该RRC配置信息用于配置DRX的相关参数,如包括DRX上行重传定时器等。
在示例性实施例中,PUSCH对应的捆绑中可以包括多个重复传输,例如,PUSCH对应的捆绑中包括的重复传输的个数(或称为次数)可以是{192,256,384,512,768,1024,1536,2048}中的任意一种。
在示例性实施例中,N是对以下参数中的一种进行取整得到的值:
终端设备与接入网设备之间的RTT值;
终端设备的TA值;
终端设备与卫星之间的RTT;
终端设备与接入网设备之间的RTT值与网络处理时间之和;
终端设备的TA值与网络处理时间之和;
终端设备与卫星之间的RTT与网络处理时间之和。
可选地,网络处理时间包括接入网设备处理时间(或称为基站处理时间)和/或卫星处理时间。其中,网络处理时间(包括接入网设备处理时间和/或卫星处理时间)可以由网络侧通过系统消息或RRC专用信令通知给终端设备。
可选地,上述取整为向上取整或向下取整。
可选地,上述时刻以毫秒或子帧为单位。
可选地,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备(即RedCap终端设备)。需要说明的是,对于eMTC终端设备设备来说,其监听的是MPDCCH。
在示例性实施例中,DRX上行重传定时器的运行时长为上述捆绑对应的最大重传时长与DRX上行重传定时器的配置时长之和。其中,捆绑对应的最大重传时长是指完成捆绑中的所有重复传输所占用的时长。DRX上行重传定时器的配置时长是指网络设备通过RRC配置信息为DRX上行重传定时器配置的运行时长。
在示例性实施例中,如果终端设备接收到PDCCH指示一个使用异步HARQ进程的上行传输,或者如果终端设备在该子帧对于某个异步HARQ进程有配置的上行授权,或者终端设备接收到PDCCH指示使用一个自动HARQ进程的上行传输,则如果配置了mpdcch-UL-HARQ-ACK-FeedbackConfig(针对MPDCCH的上行HARQ-ACK反馈),且直到PUSCH的最后一次重复传输之前仍没有在PDCCH上接收到UL HARQ-ACK feedback,则终端设备在该PUSCH的第N个或第N+1个重复传输对应的时刻启动或重启所使用的上行HARQ进程对应的DRX上行重传定时器。可选地,该DRX上行重传定时器的运行时长为PUSCH的捆绑对应的最大重传时长与DRX上行重传定时器的配置时长之和。
在示例性实施例中,终端设备在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,终端设备停止该第一异步HARQ进程对应的DRX上行重传定时器,或者,停止终端设备的所有异步HARQ进程对应的DRX上行重传定时器。其中,第一异步HARQ进程可以是PUSCH对应的所有异步HARQ进程中的任意一个异步HARQ进程。例如,如果终端设备接收到第一异步HARQ进程的上行HARQ-ACK反馈,且PUSCH还未传输完成,则终端设备停止该第一异步HARQ进程对应的DRX上行重传定时器。如果终端设备接收到第一异步HARQ进程的上行HARQ-ACK反馈,且PUSCH已经传输完成,则终端设备停止该PUSCH对应的所有异步HARQ进程对应的DRX上行重传定时器。
在示例性实施例中,终端设备在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,终端设备取消PUSCH对应的捆绑中剩余的重复传输。终端设备在接收到网络设备发送的上行HARQ-ACK反馈之后,及时停止后续的PUSCH重复传输,以达到节能省电的目的。
下面,结合图6、图7和图8对本实施例方案进行介绍说明。
如图6所示,终端设备最早能够接收上行HARQ-ACK反馈的时间点是第一时刻t1,即PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻。此时,对应于网络设备成功检测到PUSCH的第一个重复传输并立即向终端设备发送上行HARQ-ACK反馈。也就是说,DRX上行重传定时器的最早启动时刻是第一时刻t1。
如图7所示,终端设备最晚可能接收到上行HARQ-ACK反馈的时间点是第三时刻t3,即PUSCH对应的捆绑内的最后一个重复传输对应的时刻再经过N个或N+1个重复传输对应的时长。此时,对应于网络设备在检测到PUSCH的最后一个重复传输之后向终端设备发送上行HARQ-ACK反馈。也就是说,DRX上行重传定时器的最晚启动时刻是第三时刻t3。其中,第一时刻t1和第三时刻t3之间的间隔时长为PUSCH的捆绑对应的最大重传时长。另外,定义第四时刻t4为第三时刻t3加上DRX上行重传定时器的配置时长。
由于终端设备不确定网络设备会经历多少个PUSCH的重复传输才能正确接收该PUSCH,因此如图8所示,DRX上行重传定时器的运行时间需要从第一时刻t1开始,持续覆盖捆绑对应的最大重传时长以及DRX上行重传定时器的配置时长。也即,DRX上行重传定时器的运行时间需要从第一时刻t1开始直至第四时刻t4。
在相关技术中,终端设备在PUSCH对应的捆绑内的最后一个重复传输对应的时刻,启动DRX上行重传定时器,且DRX上行重传定时器的运行时长是网络设备通过RRC配置信息进行配置的(记为DRX上行重传定时器的配置时长)。但是,相关技术并没有充分考虑网络设备何时接收到PUSCH的重复传输并进行上行HARQ-ACK反馈,以及终端设备何时能够接收到网络设备的上行HARQ-ACK反馈,导致DRX上行重传定时器的启动时机以及运行时长的设定不够准确,不利于终端设备及时接收到网络设备的上行HARQ-ACK反馈。
在本申请实施例中,终端设备并非从最后一个重复传输对应的时刻启动DRX上行重传定时器(也即上述第N个或第N+1个重复传输,并非是最后一个重复传输),而是在第一个重复传输之后的一段时间启动DRX上行重传定时器,这段时间可以考虑终端设备与网络设备之间的RTT以及网络设备的处理时间,从而在恰当的时机启动DRX上行重传定时器,不至于过早或者过晚启动,保证终端设备不错过接收网络设备发送的上行HARQ-ACK反馈。
另外,DRX上行重传定时器的运行时长为捆绑对应的最大重传时长与该DRX上行重传定时器的配置时长之和,保证DRX上行重传定时器的运行时间能够覆盖网络设备所有可能发送上行HARQ-ACK反馈的实际,确保终端设备不错过接收网络设备发送的上行HARQ-ACK反馈,从而能够在接收到网络设备发送的上行HARQ-ACK反馈之后,及时停止后续的PUSCH重复传输,以达到节能省电的目的。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图9,其示出了本申请一个实施例提供的PDCCH监听装置的框图。该装置具有实现上述PDCCH监听方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图9所示,该装置900可以包括:监听模块910。
监听模块910,用于在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
在示例性实施例中,所述N是对以下参数中的一种进行取整得到的值:
终端设备与接入网设备之间的RTT值;
所述终端设备的TA值;
所述终端设备与卫星之间的RTT;
所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
所述终端设备的TA值与网络处理时间之和;
所述终端设备与卫星之间的RTT与网络处理时间之和。
在示例性实施例中,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
在示例性实施例中,所述取整为向上取整或向下取整。
在示例性实施例中,所述网络处理时间通过系统消息或RRC专用信令通知给所述终端设备。
在示例性实施例中,所述时刻以毫秒或子帧为单位。
在示例性实施例中,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备。
请参考图10,其示出了本申请一个实施例提供的DRX上行重传定时器的控制装置的框图。该装置具有实现上述DRX上行重传定时器的控制方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图10所示,该装置1000可以包括:启动模块1010。
启动模块1010,用于在第一时刻启动DRX上行重传定时器;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
在示例性实施例中,所述N是对以下参数中的一种进行取整得到的值:
终端设备与接入网设备之间的RTT值;
所述终端设备的TA值;
所述终端设备与卫星之间的RTT;
所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
所述终端设备的TA值与网络处理时间之和;
所述终端设备与卫星之间的RTT与网络处理时间之和。
在示例性实施例中,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
在示例性实施例中,所述取整为向上取整或向下取整。
在示例性实施例中,所述网络处理时间通过系统消息或RRC专用信令通知给所述终端设备。
在示例性实施例中,所述DRX上行重传定时器的运行时长为所述捆绑对应的最大重传时长与所述DRX上行重传定时器的配置时长之和。
在示例性实施例中,如图10所示,所述装置1000还包括:停止模块1020。
停止模块1020,用于在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,停止所述第一异步HARQ进程对应的DRX上行重传定时器,或者,停止终端设备的所有异步HARQ进程对应的DRX上行重传定时器。
在示例性实施例中,如图10所示,所述装置1000还包括:取消模块1030。
取消模块1030,用于在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,取消所述捆绑中剩余的重复传输。
在示例性实施例中,所述时刻以毫秒或子帧为单位。
在示例性实施例中,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图11,其示出了本申请一个实施例提供的终端设备110的结构示意图。该终端设备110可以包括:处理器111、接收器112、发射器113、存储器114和总线115。
处理器111包括一个或者一个以上处理核心,处理器111通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器112和发射器113可以实现为一个收发器116,该收发器116可以是一块通信芯片。
存储器114通过总线115与处理器111相连。
存储器114可用于存储计算机程序,处理器111用于执行该计算机程序,以实现上述方法实施例中终端设备执行的各个步骤。
此外,存储器114可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:RAM(Random-Access Memory,随机存储器)和ROM(Read-Only Memory,只读存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦写可编程只读存储器)、闪存或其他固态存储其技术,CD-ROM(Compact Disc Read-Only Memory,只读光盘)、DVD(Digital Video Disc,高密度数字视频光盘)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。
在示例性实施例中,处理器111用于执行计算机程序,以实现上述PDCCH监听方法。具体来讲:
所述处理器111,用于在从第一时刻到第二时刻的DRX激活期内,监听PDCCH;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
在示例性实施例中,所述N是对以下参数中的一种进行取整得到的值:
终端设备与接入网设备之间的RTT值;
所述终端设备的TA值;
所述终端设备与卫星之间的RTT;
所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
所述终端设备的TA值与网络处理时间之和;
所述终端设备与卫星之间的RTT与网络处理时间之和。
在示例性实施例中,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
在示例性实施例中,所述取整为向上取整或向下取整。
在示例性实施例中,所述网络处理时间通过系统消息或RRC专用信令通知给所述终端设备。
在示例性实施例中,所述时刻以毫秒或子帧为单位。
在示例性实施例中,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备。
在示例性实施例中,处理器111用于执行计算机程序,以实现上述DRX上行重传定时器的控制方法。具体来讲:
所述处理器111,用于在第一时刻启动DRX上行重传定时器;
其中,所述第一时刻是PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
在示例性实施例中,所述N是对以下参数中的一种进行取整得到的值:
终端设备与接入网设备之间的RTT值;
所述终端设备的TA值;
所述终端设备与卫星之间的RTT;
所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
所述终端设备的TA值与网络处理时间之和;
所述终端设备与卫星之间的RTT与网络处理时间之和。
在示例性实施例中,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
在示例性实施例中,所述取整为向上取整或向下取整。
在示例性实施例中,所述网络处理时间通过系统消息或RRC专用信令通知给所述终端设备。
在示例性实施例中,所述DRX上行重传定时器的运行时长为所述捆绑对应的最大重传时长与所述DRX上行重传定时器的配置时长之和。
在示例性实施例中,所述处理器111还用于在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,停止所述第一异步HARQ进程对应的DRX上行重传定时器,或者,停止终端设备的所有异步HARQ进程对应的DRX上行重传定时器。
在示例性实施例中,所述处理器111还用于在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,取消所述捆绑中剩余的重复传输。
在示例性实施例中,所述时刻以毫秒或子帧为单位。
在示例性实施例中,终端设备包括以下至少一种类型:eMTC终端设备、NB-IoT终端设备、低能力终端设备。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
可选地,该计算机可读存储介质可以包括:ROM(Read-Only Memory,只读存储器)、RAM(Random-Access Memory,随机存储器)、SSD(Solid State Drives,固态硬盘)或光盘等。其中,随机存取记忆体可以包括ReRAM(Resistance Random Access Memory,电阻式随机存取记忆体)和DRAM(Dynamic Random Access Memory,动态随机存取存储器)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述PDCCH监听方法,或者上述DRX上行重传定时器的控制方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (39)

  1. 一种物理下行控制信道PDCCH监听方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    在从第一时刻到第二时刻的非连续接收DRX激活期内,监听PDCCH;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述N是对以下参数中的一种进行取整得到的值:
    所述终端设备与接入网设备之间的往返传输时间RTT值;
    所述终端设备的定时提前TA值;
    所述终端设备与卫星之间的RTT;
    所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
    所述终端设备的TA值与网络处理时间之和;
    所述终端设备与卫星之间的RTT与网络处理时间之和。
  3. 根据权利要求2所述的方法,其特征在于,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
  4. 根据权利要求2或3所述的方法,其特征在于,所述取整为向上取整或向下取整。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述网络处理时间通过系统消息或无线资源控制RRC专用信令通知给所述终端设备。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述时刻以毫秒或子帧为单位。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述终端设备包括以下至少一种类型:增强的机器类型通信eMTC终端设备、窄带物联网NB-IoT终端设备、低能力终端设备。
  8. 一种非连续接收DRX上行重传定时器的控制方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    在第一时刻启动DRX上行重传定时器;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述N是对以下参数中的一种进行取整得到的值:
    所述终端设备与接入网设备之间的往返传输时间RTT值;
    所述终端设备的定时提前TA值;
    所述终端设备与卫星之间的RTT;
    所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
    所述终端设备的TA值与网络处理时间之和;
    所述终端设备与卫星之间的RTT与网络处理时间之和。
  10. 根据权利要求9所述的方法,其特征在于,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
  11. 根据权利要求9或10所述的方法,其特征在于,所述取整为向上取整或向下取整。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述网络处理时间通过系统消息或无线资源控制RRC专用信令通知给所述终端设备。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述DRX上行重传定时器的运行时长为所述捆绑对应的最大重传时长与所述DRX上行重传定时器的配置时长之和。
  14. 根据权利要求8至13任一项所述的方法,其特征在于,所述方法还包括:
    在接收到第一异步混合自动重传请求HARQ进程的上行HARQ-ACK反馈的情况下,停止所述第一异步HARQ进程对应的DRX上行重传定时器,或者,停止所述终端设备的所有异步HARQ进程对应的DRX上行重传定时器。
  15. 根据权利要求8至14任一项所述的方法,其特征在于,所述方法还包括:
    在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,取消所述捆绑中剩余的重复传输。
  16. 根据权利要求8至15任一项所述的方法,其特征在于,所述时刻以毫秒或子帧为单位。
  17. 根据权利要求8至16任一项所述的方法,其特征在于,所述终端设备包括以下至少一种类型:增强的机器类型通信eMTC终端设备、窄带物联网NB-IoT终端设备、低能力终端设备。
  18. 一种物理下行控制信道PDCCH监听装置,其特征在于,所述装置包括:
    监听模块,用于在从第一时刻到第二时刻的非连续接收DRX激活期内,监听PDCCH;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
  19. 根据权利要求18所述的装置,其特征在于,所述N是对以下参数中的一种进行取整得到的值:
    终端设备与接入网设备之间的往返传输时间RTT值;
    所述终端设备的定时提前TA值;
    所述终端设备与卫星之间的RTT;
    所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
    所述终端设备的TA值与网络处理时间之和;
    所述终端设备与卫星之间的RTT与网络处理时间之和。
  20. 根据权利要求19所述的装置,其特征在于,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
  21. 根据权利要求19或20所述的装置,其特征在于,所述取整为向上取整或向下取整。
  22. 根据权利要求19至21任一项所述的装置,其特征在于,所述网络处理时间通过系统消息或无线资源控制RRC专用信令通知给所述终端设备。
  23. 根据权利要求18至22任一项所述的装置,其特征在于,所述时刻以毫秒或子帧为单位。
  24. 根据权利要求18至23任一项所述的装置,其特征在于,终端设备包括以下至少一种类型:增强的机器类型通信eMTC终端设备、窄带物联网NB-IoT终端设备、低能力终端设备。
  25. 一种非连续接收DRX上行重传定时器的控制装置,其特征在于,所述装置包括:
    启动模块,用于在第一时刻启动DRX上行重传定时器;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
  26. 根据权利要求25所述的装置,其特征在于,所述N是对以下参数中的一种进行取整得到的值:
    终端设备与接入网设备之间的往返传输时间RTT值;
    所述终端设备的定时提前TA值;
    所述终端设备与卫星之间的RTT;
    所述终端设备与接入网设备之间的RTT值与网络处理时间之和;
    所述终端设备的TA值与网络处理时间之和;
    所述终端设备与卫星之间的RTT与网络处理时间之和。
  27. 根据权利要求26所述的装置,其特征在于,所述网络处理时间包括接入网设备处理时间和/或卫星处理时间。
  28. 根据权利要求26或27所述的装置,其特征在于,所述取整为向上取整或向下取整。
  29. 根据权利要求26至28任一项所述的装置,其特征在于,所述网络处理时间通过系统消息或无线资源控制RRC专用信令通知给所述终端设备。
  30. 根据权利要求25至29任一项所述的装置,其特征在于,所述DRX上行重传定时器的运行时长为所述捆绑对应的最大重传时长与所述DRX上行重传定时器的配置时长之和。
  31. 根据权利要求25至30任一项所述的装置,其特征在于,所述装置还包括:
    停止模块,用于在接收到第一异步混合自动重传请求HARQ进程的上行HARQ-ACK反馈的情况下,停止所述第一异步HARQ进程对应的DRX上行重传定时器,或者,停止终端设备的所有异步HARQ进程对应的DRX上行重传定时器。
  32. 根据权利要求25至31任一项所述的装置,其特征在于,所述装置还包括:
    取消模块,用于在接收到第一异步HARQ进程的上行HARQ-ACK反馈的情况下,取消所述捆绑中剩余的重复传输。
  33. 根据权利要求25至32任一项所述的装置,其特征在于,所述时刻以毫秒或子帧为单位。
  34. 根据权利要求25至33任一项所述的装置,其特征在于,终端设备包括以下至少一种类型:增强的机器类型通信eMTC终端设备、窄带物联网NB-IoT终端设备、低能力终端设备。
  35. 一种终端设备,其特征在于,所述终端设备包括处理器;
    所述处理器,用于在从第一时刻到第二时刻的非连续接收DRX激活期内,监听物理下行控制信道PDCCH;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述第二时刻是所述捆绑内的最后一个重复传输对应的时刻,所述N为正整数。
  36. 一种终端设备,其特征在于,所述终端设备包括处理器;
    所述处理器,用于在第一时刻启动非连续接收DRX上行重传定时器;
    其中,所述第一时刻是物理上行共享信道PUSCH对应的捆绑内的第N个或第N+1个重复传输对应的时刻,所述N为正整数。
  37. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至7任一项所述的物理下行控制信道PDCCH监听方法,或者如权利要求8至17任一项所述的非连续接收DRX上行重传定时器的控制方法。
  38. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至7任一项所述的物理下行控制信道PDCCH监听方法,或者如权利要求8至17任一项所述的非连续接收DRX上行重传定时器的控制方法。
  39. 一种计算机程序产品或计算机程序,其特征在于,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至7任一项所述的物理下行控制信道PDCCH监听方法,或者如权利要求8至17任一项所述的非连续接收DRX上行重传定时器的控制方法。
PCT/CN2021/091905 2021-05-06 2021-05-06 Pdcch监听方法及drx上行重传定时器的控制方法 WO2022232991A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/091905 WO2022232991A1 (zh) 2021-05-06 2021-05-06 Pdcch监听方法及drx上行重传定时器的控制方法
CN202180087391.3A CN116671214A (zh) 2021-05-06 2021-05-06 Pdcch监听方法及drx上行重传定时器的控制方法
EP21939639.7A EP4277397A4 (en) 2021-05-06 2021-05-06 PDCCH MONITORING PROCEDURES AND DRX UPLINK RETRANSMISSION TIMER CONTROL PROCEDURES
US18/450,390 US20230389126A1 (en) 2021-05-06 2023-08-15 Pdcch monitoring method and drx uplink retransmission timer control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091905 WO2022232991A1 (zh) 2021-05-06 2021-05-06 Pdcch监听方法及drx上行重传定时器的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/450,390 Continuation US20230389126A1 (en) 2021-05-06 2023-08-15 Pdcch monitoring method and drx uplink retransmission timer control method

Publications (1)

Publication Number Publication Date
WO2022232991A1 true WO2022232991A1 (zh) 2022-11-10

Family

ID=83932549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091905 WO2022232991A1 (zh) 2021-05-06 2021-05-06 Pdcch监听方法及drx上行重传定时器的控制方法

Country Status (4)

Country Link
US (1) US20230389126A1 (zh)
EP (1) EP4277397A4 (zh)
CN (1) CN116671214A (zh)
WO (1) WO2022232991A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105761A1 (en) * 2019-10-04 2021-04-08 FG Innovation Company Limited Method and apparatus for transmission timing enhancement for different numerologies in ntn
CN112640531A (zh) * 2020-12-08 2021-04-09 北京小米移动软件有限公司 小区切换方法及装置、通信设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030853A4 (en) * 2019-10-24 2023-11-01 KT Corporation SIDELINK COMMUNICATION CONTROL METHOD AND RELATED DEVICE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210105761A1 (en) * 2019-10-04 2021-04-08 FG Innovation Company Limited Method and apparatus for transmission timing enhancement for different numerologies in ntn
CN112640531A (zh) * 2020-12-08 2021-04-09 北京小米移动软件有限公司 小区切换方法及装置、通信设备和存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OPPO: "Consideration on MAC enhancement for NTN", 3GPP DRAFT; R2-2006781, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911688 *
OPPO: "Discussion on DRX operation in NTN", 3GPP DRAFT; R2-1913336, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051791342 *
OPPO: "HARQ impact on DRX and LCP in NTN", 3GPP DRAFT; R2-2100160, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973374 *
See also references of EP4277397A4 *

Also Published As

Publication number Publication date
EP4277397A1 (en) 2023-11-15
US20230389126A1 (en) 2023-11-30
CN116671214A (zh) 2023-08-29
EP4277397A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2023123514A1 (zh) Gnss有效性的处理方法、装置、设备及存储介质
US20220232596A1 (en) Discontinuous reception method, terminal device and storage medium
US20230208508A1 (en) Transmission control method and apparatus, device, and storage medium
US20220151015A1 (en) Method and apparatus for data transmission, terminal, and storage medium
US20230224091A1 (en) Wireless communication method and device
WO2021155605A1 (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
WO2021026849A1 (zh) 数据传输方法、装置及系统
WO2022232991A1 (zh) Pdcch监听方法及drx上行重传定时器的控制方法
WO2022077174A1 (zh) 无线通信方法和设备
WO2022077141A1 (zh) 随机接入响应接收窗的确定方法、装置、设备及介质
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2023279295A1 (zh) 信息处理方法、装置、终端设备及存储介质
WO2022082353A1 (zh) 非连续接收重传定时器的启动方法、装置、设备及介质
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2023070682A1 (zh) 随机接入方法、装置、设备及存储介质
WO2023245594A1 (zh) 无线通信方法、终端设备以及网络设备
WO2022040848A1 (zh) 信息传输方法、装置、设备及存储介质
WO2022099514A1 (zh) 无线通信方法和设备
WO2022151272A1 (zh) 定时器启动方法、装置、终端及存储介质
EP4340432A1 (en) Method for determining drx activation period and terminal device
WO2022205482A1 (zh) 无线通信方法和终端设备
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2022027179A1 (zh) 数据处理方法、装置、设备及存储介质
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180087391.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021939639

Country of ref document: EP

Effective date: 20230807

NENP Non-entry into the national phase

Ref country code: DE