WO2022151272A1 - 定时器启动方法、装置、终端及存储介质 - Google Patents

定时器启动方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2022151272A1
WO2022151272A1 PCT/CN2021/071928 CN2021071928W WO2022151272A1 WO 2022151272 A1 WO2022151272 A1 WO 2022151272A1 CN 2021071928 W CN2021071928 W CN 2021071928W WO 2022151272 A1 WO2022151272 A1 WO 2022151272A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink
timer
uplink transmission
offset
Prior art date
Application number
PCT/CN2021/071928
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180071607.7A priority Critical patent/CN116438864A/zh
Priority to CN202311333637.8A priority patent/CN117156542A/zh
Priority to PCT/CN2021/071928 priority patent/WO2022151272A1/zh
Priority to EP21918480.1A priority patent/EP4271062A4/en
Publication of WO2022151272A1 publication Critical patent/WO2022151272A1/zh
Priority to US18/338,426 priority patent/US20230337165A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/009Closed loop measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a timer starting method, device, terminal, and storage medium.
  • Small data transmission is a technology that enables the terminal to perform data transmission in the RRC_IDLE state (ie idle state) or the RRC_INACTIVE state (ie inactive state) based on the consideration of energy saving.
  • a response time window timer can be started.
  • the terminal Monitor the network side's response to small data transmission, and determine whether to retransmit according to the monitoring situation.
  • Embodiments of the present application provide a timer starting method, device, terminal, and storage medium.
  • the technical solution is as follows:
  • an embodiment of the present application provides a method for starting a timer, which is executed by a terminal, and the method includes:
  • the control parameter of the response time window timer is determined; the control parameter includes at least one of the start time offset of the timer and the timer duration; all The start time offset of the timer is the end moment of the uplink transmission corresponding to the uplink small data, and the time interval between the start moment of the response time window timer for the uplink transmission;
  • a response time window timer corresponding to the uplink transmission is started based on the control parameter.
  • an embodiment of the present application provides a method for early acquisition of uplink, the method is executed by a terminal, and the method includes:
  • the terminal Before the terminal performs the uplink transmission corresponding to the uplink small data, when the terminal has the positioning capability and the TA pre-compensation capability, obtain the service link TA of the terminal based on the positioning capability and the ephemeris information;
  • the TA of the terminal is acquired.
  • an embodiment of the present application provides a timer starting device, which is used in a terminal, and the device includes:
  • a parameter determination device configured to determine the control parameter of the response time window timer based on the round-trip delay RTT between the terminal and the network side device; the control parameter includes the start time offset of the timer and the middle of the timer duration At least one of; the start time offset of the timer is the end moment of the uplink transmission corresponding to the uplink small data, and the time interval between the start moment of the response time window timer for the uplink transmission;
  • a timer starting module configured to start a response time window timer corresponding to the uplink transmission based on the control parameter after the terminal performs the uplink transmission.
  • an uplink early acquisition apparatus which is used in a terminal, and the apparatus includes:
  • the first uplink advance acquisition module is configured to, before the terminal performs uplink transmission corresponding to uplink small data, when the terminal has positioning capability and TA pre-compensation capability, based on the positioning capability and ephemeris information, obtain the The service link TA of the terminal;
  • the second uplink early acquisition module is configured to acquire the TA of the terminal based on the service link TA.
  • an embodiment of the present application provides a computer device, the computer device includes a processor, a memory, and a transceiver, the memory stores a computer program, and the computer program is configured to be executed by the processor to Implement the above timer start method or uplink early acquisition method.
  • an embodiment of the present application further provides a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the above-mentioned timer starting method or upstream advance acquisition method.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the above-mentioned timer starting method or uplink early acquisition method.
  • the terminal can more accurately determine the start time offset and/or the timer duration of the timer based on the RTT between the terminal and the network side device, so as to make the timer more accurate. Accurately control the time for monitoring the network side's response, thereby realizing the accurate reception of the above response, improving the transmission effect of uplink small data, in addition, it can also avoid unnecessary monitoring of the downlink control signal by the terminal, so as to save the terminal's power Effect.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a network architecture diagram of an NTN system provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a timer starting method provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for obtaining an uplink in advance provided by an embodiment of the present application
  • FIG. 6 is a UE behavior sequence diagram provided by an embodiment of the present application.
  • Fig. 7 is a UE behavior sequence diagram provided by an embodiment of the present application.
  • Fig. 8 is a UE behavior sequence diagram provided by an embodiment of the present application.
  • FIG. 9 is a UE behavior sequence diagram provided by an embodiment of the present application.
  • FIG. 10 is a block diagram of a timer starting device provided by an embodiment of the present application.
  • FIG. 11 is a block diagram of an apparatus for obtaining uplink ahead of time provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of new business scenarios and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application.
  • the network architecture may include: terminal 10 and base station 20 .
  • the number of terminals 10 is usually multiple, and one or more terminals 10 may be distributed in a cell managed by each base station 20 .
  • the terminal 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to the wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station, MS), terminal device, etc.
  • UE User Equipment
  • MS Mobile Station
  • the base station 20 is a device deployed in the access network to provide the terminal 10 with a wireless communication function.
  • the base station 20 may include various forms of satellite base stations, macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in 5G New Radio (NR) systems, they are called gNodeBs or gNBs.
  • NR 5G New Radio
  • the name "base station” may change.
  • the above-mentioned apparatuses for providing wireless communication functions for the terminal 10 are collectively referred to as base stations.
  • the above-mentioned network architecture also includes other network devices, such as: a central control node (Central Network Control, CNC), an access and mobility management function (Access and Mobility Management Function, AMF) ) device, session management function (Session Management Function, SMF) or user plane function (User Plane Function, UPF) device, etc.
  • a central control node Central Network Control, CNC
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure can be applied to the 5G NR system, the subsequent evolution system of the 5G NR system, or the system before the 5G NR system, such as Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the 5G NR system is a new generation of wireless communication system based on the user's requirements for the rate, delay, high-speed mobility, and energy efficiency of wireless communication, as well as the diversity and complexity of wireless communication services in future life.
  • the main application scenarios of the 5G system are: Enhanced Mobile Broadband (eMBB), Ultra-reliable and Low Latency Communications (URLLC), Massive Machine Type Communication (mMTC) ).
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-reliable and Low Latency Communications
  • mMTC Massive Machine Type Communication
  • RRC Radio Resource Control
  • RRC_INACTIVE the RRC inactive state
  • RRC_ACTIVE the RRC connected state
  • RRC_IDLE Mobility is UE-based cell selection reselection, paging is initiated by CN, paging area is configured by CN, there is no UE AS context on the base station side, and there is no RRC connection between the UE and the base station.
  • RRC_CONNECTED There is an RRC connection between the UE and the base station, and a UE AS context exists between the base station and the UE.
  • the network side knows that the location of the UE is at the specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection reselection, there is a connection between CN-NR, UE AS context exists on a base station, paging is triggered by Radio Access Network (RAN), RAN-based The paging area is managed by the RAN, and the network side knows the location of the UE based on the paging area level of the RAN.
  • RAN Radio Access Network
  • Non-terrestrial communication network Non Terrestrial Network, NTN
  • Satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites are classified into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and highly elliptical orbits according to different orbital altitudes. (High Elliptical Orbit, HEO) satellites, etc.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • LEO satellite The altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • GEO satellite Geostationary orbit satellite with an orbital altitude of 35786km and a 24-hour rotation period around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • Satellite Beam A satellite beam is the smallest unit that a satellite covers the earth's surface, corresponding to different directions. Usually, a satellite covers the earth's surface through hundreds or thousands of satellite beams. These satellite beams can be deployed as different cells or within the same cell. Considering the possible co-channel interference between adjacent satellite beams, a frequency reuse factor greater than 1 is generally considered, that is, adjacent satellite beams are distinguished by different frequency points/carriers/frequency bands.
  • An NTN network usually consists of the following network elements:
  • One or more gateways to connect satellite and terrestrial public networks.
  • Feeder link The link used for communication between the gateway and the satellite.
  • Service link The link used for communication between the terminal and the satellite.
  • Satellite From the functions it provides, it can be divided into two types: satellite based on transparent payload and satellite based on regenerated payload.
  • Transparent transmission payload The satellite only provides the functions of radio frequency filtering, frequency conversion and amplification, that is, it only provides transparent transmission of the signal, and does not change the waveform signal it forwards.
  • Satellites can also provide functions of demodulation/decoding, routing/conversion, coding/modulation, that is to say, the satellite has some or all of the functions of the base station.
  • Inter-satellite link The link used for satellite-to-satellite communication in the scenario of regenerating payloads.
  • FIG. 2 shows a network architecture diagram of an NTN system provided by an embodiment of the present application.
  • the NTN system includes a terminal 201 , a satellite 202 , and a gateway device 203 .
  • the satellite 202 and the gateway device 203 are connected wirelessly (feeder link), the satellites 202 are connected wirelessly (inter-satellite link), and the gateway device 203 is connected to the data network.
  • the satellite 202 covers the earth's surface through a plurality of satellite beams 202a, and each beam covers a certain range area.
  • the terminal 201 is within the coverage of a satellite beam 202a, it can initiate random access to the base station 202 to establish a service link, and perform subsequent communications.
  • EDT was introduced in LTE.
  • the UE may always remain in the RRC-IDLE state, the suspend state or the RRC_INACTIVE state to complete the transmission of uplink and/or downlink small data packets.
  • the flow of the user plane transmission scheme of EDT can be as follows:
  • the UE selects one of the preamble groups used to indicate EDT and sends it to the eNB, and initiates the EDT transmission process.
  • the eNB configures the UE with uplink resources and TA for EDT through RAR;
  • the UE sends an RRCConnectionResumeRequest (RRC connection recovery request) message to the eNB, including a recovery ID (Resume ID), an RRC connection recovery cause (establishment cause), and an authentication token (shortResumeMAC-I).
  • RRC connection recovery request RRC connection recovery request
  • the UE side restores all Signalling Radio Bearers (SRB) and Data Radio Bearers (DRB), and derives it from the NextHop Chaining Count (NCC) parameter contained in the last connection release message new key.
  • SRB Signalling Radio Bearers
  • DRB Data Radio Bearers
  • NCC NextHop Chaining Count
  • User data is encrypted and transmitted on the Dedicated Traffic Channel (DTCH) and multiplexed with RRCConnectionResumeRequest.
  • DTCH Dedicated Traffic Channel
  • the eNB establishes an S1 connection, initiates a context recovery process to a mobility management entity (Mobility Management Entity, MME), and reactivates the bearer between S1-U.
  • MME Mobility Management Entity
  • the MME initiates a request to the Serving Gateway (Serving GateWay, S-GW) to reactivate the bearer between the UEs S1-U for subsequent user data delivery to the S-GW.
  • Serving Gateway Serving Gateway
  • the MME confirms to the eNB to restore the UE context.
  • the user data is submitted to the S-GW.
  • the S-GW submits the downlink data to the Enb.
  • the eNB suspends (suspends) the S1 connection, and the MME deactivates the bearer between the UE S1-U.
  • the eNB sends an RRC connection release (RRCConnectionRelease) message to the UE to keep the UE in a suspend state.
  • RRC connection release RRCConnectionRelease
  • the UE completes the transmission of small data packets without entering the connection state.
  • the network will configure a maximum transport block size (TBS) that the current network allows to transmit on SIB2.
  • TBS transport block size
  • the UE determines the amount of data to be transmitted. If it is less than the maximum TB size of the broadcast, the UE can initiate EDT transmission; otherwise, the UE uses the normal connection establishment process to enter the connection state to transmit data.
  • NB-IoT Narrow Band Internet of Things
  • eMTC Enhanced Machine Type Communication
  • a method for data transmission using the preconfigured uplink resource PUR in the state When the cell where the UE is located supports PUR transmission, the UE can request PUR configuration through PURConfigurationRequest (PUR configuration request) in the connected state, wherein the PURConfigurationRequest can optionally include the requested PUR period, TBS, number of PURs, etc.; (ng- )
  • PURConfigurationRequest PUR configuration request
  • TBS number of PURs, etc.
  • ng- The eNB configures the PUR for the UE by including the PUR-Config field in the RRCConnectinRelease message, and releases the UE to the IDLE state at the same time.
  • the configuration of the PUR is determined by the (ng-)eNB, possibly based on UE request, UE registration information and/or local policy.
  • the PUR is only valid in the currently configured cell, that is, when the UE detects a cell change and initiates random access in the new cell, the UE needs to release the PUR configured in the original cell.
  • the MAC layer confirms that the PUR-TimeAlignmentTimer is running;
  • RSRP change threshold ie, PUR-RSRP-ChangeThreshold or PUR-NRSRP-ChangeThreshold
  • NCC included in the RRCConnectionRelease message for the derivation of a new key
  • the process of UE in IDLE state using PUR for data transmission can be as follows:
  • the UE sends the RRCConnectionResumeRequest message to the eNB/ng-eNB, including the Resume ID (corresponding to the EPS scenario)/inactive wireless network temporary identity (Inactive-Radio Network Tempory Identity, I-RNTI) (corresponding to the 5GS scenario), establishment cause, shortResumeMAC-I, where Resume ID/IRNTI is used by the base station to identify the context of the UE in the suspend state, and shortResumeMAC-I is used for authentication.
  • Resume ID corresponding to the EPS scenario
  • I-RNTI Inactive-Radio Network Tempory Identity
  • the UE restores all SRBs and DRBs, uses the NCC contained in the RRCConnectionRelease message of the last connection to derive a new key, the user data is encrypted and transmitted on the DTCH, and multiplexed with the RRCConnectionResumeReques on the Common Control Channel (CCCH). .
  • CCCH Common Control Channel
  • the RRCConnectionRelease contains the following information:
  • the release cause is set to RRC-Suspend
  • the network If the network has downlink data to send, it is encrypted and transmitted through DTCH, and multiplexed with the RRCConnectionRelease message on the dedicated control channel (Dedicated Control CHannel, DCCH).
  • the RRC layer provides the following configuration parameters to the MAC layer:
  • PUR-RNTI PUR-ResponseWindowSize
  • Uplink Uplink, UL
  • the UE After the UE uses PUR for transmission, if the last subframe used for uplink physical shared channel (Physical Uplink Shared Channel, PUSCH) transmission is subframe n, the UE starts pur-ResponseWindowTimer in subframe n+4, and in subframe n+4 During the operation of pur-ResponseWindowTimer, it monitors the Physical Downlink Control Channel (PDCCH) scrambled by PUR-RNTI.
  • PUCCH Physical Downlink Control Channel
  • PUR-ResponseWindowTimer The duration of PUR-ResponseWindowTimer is PUR-ResponseWindowSize.
  • PUR-ResponseWindowTimer if the UE receives a PDCCH scrambled by PUR-RNTI, and the PDCCH indicates an uplink grant for uplink retransmission, the UE performs retransmission on the uplink grant resource, assuming that the retransmission is The last subframe used for PUSCH transmission is subframe m, and the UE restarts the PUR-ResponseWindowTimer in subframe m+4.
  • the UE stops the PUR-ResponseWindowTimer . Otherwise, if the MAC receives a back-off indication for the PUR transmission from the lower layer, the UE stops the PUR-ResponseWindowTimer, indicates to the upper layer that the PUR back-off indication is received, and discards the PUR-RNTI.
  • PDU Protocol Data Unit
  • the MAC layer indicates to the upper layer that the uplink transmission using the PUR fails, and discards the PUR-RNTI.
  • the upper layer can configure a timer PUR-TimeAlignmentTimer for the MAC layer.
  • the MAC layer When the MAC layer receives the PUR-TimeAlignmentTimer configuration from the upper layer, if the PUR-TimeAlignmentTimer is not running, it starts the PUR-TimeAlignmentTimer.
  • the MAC layer When the MAC layer receives the higher layer release the PUR-TimeAlignmentTimer configuration, if the PUR-TimeAlignmentTimer is running, it stops the PUR-TimeAlignmentTimer.
  • Timing Advance Command TAC
  • CE MAC layer control element
  • PDCCH PDCCH
  • Rel-17 initiated a project to carry out research on small data transmission under RRC_INACTIVE.
  • the project objectives are mainly in two directions: uplink small data transmission based on random access process (two-step/four-step) and pre-configured resources, such as configured authorization (Configured Grant, CG) type1 uplink small data transmission.
  • the UE starts the UPR response window timer at an interval of 4 subframes after using the PUR to send small data.
  • the currently supported 4ms interval mainly considers the terminal processing delay after the terminal sends the uplink (for example, for NB-IoT, the UE needs to switch from uplink transmission to downlink reception), and the fastest round-trip delay RTT from the UE sending the uplink to receiving the network response .
  • the RTT time of the signal transmission between the UE and the network is relatively short, so the time interval between the UE sending the uplink and starting the PUR response window timer mainly depends on the processing delay of the terminal.
  • the signal propagation delay between the UE and the network in NTN is greatly increased, and the RTT can even be much larger than the terminal processing time considered in the existing standard. Therefore, the PUR response window timer needs to be redefined for NTN.
  • the value of the offset value at the start time is greatly increased.
  • the TA of the UE is completely controlled by the network, and the UE in the RRC-IDLE state needs to verify the validity of the TA before using the PUR for uplink transmission, and can only be used when the TA is valid. PUR for upstream transmission.
  • R17NTN needs to support UEs with Global Navigation Satellite System (GNSS) positioning capability and TA pre-compensation capability. For this type of UE, there is no solution for TA estimation based on its own positioning capability in related technologies.
  • GNSS Global Navigation Satellite System
  • the small data transmission (Small Data Transmission, SDT) currently being studied by R17NR has similar problems to the PUR transmission in LTE for the scenario in which the UE in the RRC INACTIVE state uses CG for small data transmission. For example, how does the UE determine a valid TA before using the CG for transmission, when does the UE start to monitor the network's response after completing the small data transmission using the CG, and so on.
  • the solutions shown in the subsequent embodiments of the present application propose a solution in which the terminal adjusts the monitoring start time and/or the monitoring duration during uplink small data transmission, and the terminal actively performs TA estimation.
  • the solution involved in this application can be applied to a communication scenario where the round-trip propagation delay of wireless signals between the terminal and the network side such as the NTN network is relatively large, so that the terminal can obtain more accurate data when transmitting small data in the uplink.
  • TA and more accurately control the time of monitoring the network side response, thereby improving the transmission effect of uplink small data, in addition, it can avoid unnecessary monitoring by the terminal, and achieve the purpose of saving power of the terminal.
  • FIG. 3 shows a timer starting method provided by an embodiment of the present application.
  • the method may be performed by a terminal, wherein the above-mentioned terminal may be a terminal in the network architecture shown in FIG. 1 or FIG. 2 .
  • the method may include the following steps:
  • Step 301 Determine the control parameter of the response time window timer based on the round-trip delay RTT between the terminal and the network side device; the control parameter includes at least one of the start time offset of the timer and the timer duration;
  • the start time offset of the timer is the time interval between the end time of the uplink transmission corresponding to the uplink small data and the start time of the response time window timer for the uplink transmission.
  • Step 302 after the terminal performs the uplink transmission, starts a response time window timer corresponding to the uplink transmission based on the control parameter.
  • the terminal can more accurately determine the timing based on the RTT between the terminal and the network side device.
  • the start-up time offset and/or timer duration of the controller can more accurately control the time for monitoring the network side response, thereby realizing the accurate reception of the above response, improving the transmission effect of small uplink data, and avoiding The terminal performs unnecessary monitoring to achieve the purpose of saving power of the terminal.
  • FIG. 4 shows an uplink early acquisition method provided by an embodiment of the present application.
  • the method may be performed by a terminal, wherein the above-mentioned terminal may be a terminal in the network architecture shown in FIG. 1 or FIG. 2 .
  • the method may include the following steps:
  • Step 401 before the terminal performs the uplink transmission corresponding to the uplink small data, when the terminal has the positioning capability and the TA pre-compensation capability, obtains the service link TA of the terminal based on the positioning capability and ephemeris information.
  • Satellite ephemeris also known as two-line orbital data (Two-Line Orbital Element, TLE), is an expression used to describe the position and velocity of space vehicles (also known as two-line orbital data system).
  • the satellite ephemeris uses the mathematical relationship between the six orbital parameters of Kepler's law to determine the time, coordinates, azimuth, speed and other parameters of the flying body, with extremely high precision.
  • Satellite ephemeris can accurately calculate, predict, describe, track the time, position, speed and other operating states of satellites and flying objects; it can express the precise parameters of celestial objects, satellites, spacecraft, missiles, space junk and other flying objects; Placed in three-dimensional space; depicting the past, present and future of celestial bodies in three-dimensional time.
  • the time of the satellite ephemeris is calculated according to the universal time, that is, Universal Time Coordinated (UTC); the satellite ephemeris can be updated regularly.
  • UTC Universal Time Coordinated
  • the above-mentioned service link refers to a link between a terminal and a satellite in the NTN network in the NTN network.
  • the service link TA ie TA_service link
  • the service link TA_service link is the TA that needs to be compensated due to the influence of the service link.
  • Step 402 based on the service link TA, obtain the TA of the terminal.
  • the TA of the terminal refers to the TA used by the terminal when performing uplink transmission.
  • the terminal can obtain the service link TA based on the positioning capability and ephemeris information, and then estimate the TA of the terminal according to the service link TA.
  • the terminal when a service link exists between the terminal and the network side device, the terminal can combine the positioning capability and ephemeris information to obtain the service link due to the NTN.
  • the service link TA that needs to be compensated due to the influence of distance, and then obtain the TA of the terminal according to the service link TA, so as to realize the accurate prediction of the TA required by the terminal for uplink transmission, and reduce the difference between the terminal and the satellite in the NTN network as much as possible.
  • the influence of the communication distance between them on the uplink transmission corresponding to the uplink small data improves the accuracy of the uplink transmission in the NTN network.
  • control scheme of the response time window timer provided by the embodiment shown in FIG. 3 and the scheme of performing TA prediction by the terminal provided by the embodiment shown in FIG. 4 can be used independently.
  • control solution for the response time window timer provided by the embodiment shown in FIG. 3 may also be used in combination with the solution for performing TA prediction by the terminal provided by the embodiment shown in FIG. 4 .
  • the terminal can first perform TA prediction, and obtain the start time offset and/or timer duration of the response time window timer in combination with the RTT, and then the terminal performs uplink transmission corresponding to the uplink small data according to the predicted TA. , and after the uplink transmission, start the response time window timer according to the start time offset of the timer and/or the timer duration.
  • FIG. 5 shows The uplink transmission method provided by an embodiment of the present application.
  • the method may be performed by a terminal, wherein the above-mentioned terminal may be a terminal in the network architecture shown in FIG. 1 or FIG. 2 .
  • the method may include the following steps:
  • Step 501 when the terminal has the positioning capability and the TA pre-compensation capability, based on the positioning capability and the ephemeris information, obtain the service link TA of the terminal.
  • the terminal is a terminal in a non-radio resource control RRC connected state.
  • that the above-mentioned terminal is in a non-RRC connected state may mean that the terminal is in an RRC_IDLE state, or is in an RRC_INACTIVE state.
  • the UE in the NTN network, can locate its own position based on the positioning capability, and can calculate the position of the serving satellite according to the ephemeris information, and the distance of the service link can be calculated through the two pieces of position information.
  • Step 502 based on the service link TA, obtain the TA of the terminal.
  • the NTN system can include different network architectures.
  • the current NTN includes the NTN based on the transparent forwarding architecture and the NTN based on the regenerative forwarding architecture.
  • the corresponding methods for obtaining the TA of the terminal based on the service link TA also have differentiated.
  • the network where the terminal is located is an NTN based on the transparent forwarding architecture
  • the terminal receives the public TA indicated by the system
  • the sum of the service link TA and the public TA is used as the terminal's TA
  • the terminal TA can be set to serving link TA + public TA.
  • the system may also indicate the above-mentioned public TA through other means than broadcasting, for example, through RRC signaling, downlink control information, etc., and the embodiments of this application do not do anything for the means of indicating the public TA by the system limited.
  • the service link TA is used as the TA of the terminal.
  • the terminal may directly use the above-mentioned service link TA as the terminal's TA.
  • the service link TA is used as the TA of the terminal.
  • the terminal may directly use the above-mentioned service link TA as the TA of the terminal.
  • the service link TA of the terminal is obtained, and the TA of the terminal is obtained based on the service link TA.
  • the validity check of the self-maintained TA may not be performed directly based on the positioning capability. and ephemeris information, obtain the service link TA of the terminal, and obtain the TA of the terminal based on the service link TA.
  • the validity check of the TA maintained by the terminal may be performed before the terminal performs the uplink transmission corresponding to the uplink small data; when the TA maintained by the terminal fails the validity check, and the terminal has positioning
  • the terminal may obtain the service link TA of the terminal based on the positioning capability and ephemeris information, and obtain the TA of the terminal based on the service link TA.
  • the terminal when the terminal has positioning capability and TA pre-compensation capability, and is in the RRC_IDLE state or the RRC_INACTIVE state, if there is a need to send uplink small data, the terminal can be sent to the terminal first.
  • the maintained TA is checked for validity. If the TA maintained by the terminal fails the validity check, when the terminal has the positioning capability and the TA pre-compensation capability, it can obtain the service link of the terminal itself based on the positioning capability and ephemeris information. TA, and obtain the TA of the terminal based on the service link TA.
  • the TA maintained by the terminal passes the validity check, the TA maintained by the terminal is used as the TA of the terminal.
  • the terminal when the terminal has positioning capability and TA pre-compensation capability, and is in the RRC_IDLE state or the RRC_INACTIVE state, if there is a need to send uplink small data, the terminal can be sent to the terminal first.
  • the maintained TA is checked for validity, and if the TA maintained by the terminal passes the validity check, the terminal does not need to re-acquire the TA, that is, the terminal can directly use the currently maintained TA.
  • uplink transmission can be performed based on the TA of the terminal.
  • Step 503 Determine the control parameter of the response time window timer based on the round-trip delay RTT between the terminal and the network side device.
  • the control parameter includes at least one of a start time offset of the timer and a timer duration; the start time offset of the timer is the end time of the uplink transmission corresponding to the uplink small data, which is the same as that for the uplink transmission.
  • the time interval between the start moments of the response time window timer is the same as that for the uplink transmission.
  • the start time offset and/or timer of the response time window timer may be determined based on the round-trip delay RTT between the terminal and the network side device duration, so as to control the listening time for the network side response after the uplink transmission corresponding to the uplink small data.
  • the manner of determining the start time offset is also different.
  • the start time offset is the maximum value of the RTT and the first time offset; alternatively, the start time offset is the RTT.
  • the above-mentioned start time offset may be the maximum value between the RTT and the first time offset, It is also possible to use the RTT directly as the start time offset.
  • the value of the first time offset is a predefined value.
  • the first time offset is 4 subframes.
  • the above-mentioned first time offset may be a predefined value, for example, a value predefined by a protocol, or a value predefined by a system (eg, the system pre-indicates through broadcast or downlink signaling).
  • the above-mentioned first time offset may be 4 subframes, or may also be other time lengths, such as 3 subframes or 5 subframes, and so on.
  • the start time offset may be a value in the RTT and the second time offset, whichever is the largest, may also be the RTT; where the first RNTI is used to indicate the retransmission scheduling for the CG transmission in the RRC_INACTIVE state.
  • the value of the second time offset is a predefined value.
  • the value of the second time offset is a time interval from when the terminal completes the first repeated transmission of the uplink transmission PUSCH to the next PDCCCH listening opportunity.
  • the value of the second time offset is the time interval between the terminal completing the last repeated transmission of the uplink transmission PUSCH to the next PDCCCH listening opportunity.
  • the RTT may be directly used as the start time offset, or the RTT and the second time offset may be used.
  • the maximum value of the offsets is used as the start time offset.
  • the timer duration is determined based on a duration offset and an initial timer duration, where the initial timer duration is configured by the network.
  • the terminal may determine a duration offset based on the round-trip delay RTT, and adjust the timer duration based on the duration offset, that is, in combination with the duration offset and the initial network configuration
  • the timer duration determines the actual timer duration used.
  • the timer duration is the sum of the duration offset and the initial timer duration.
  • the terminal when the terminal determines the actual timer duration in combination with the duration offset and the initial timer duration configured by the network, the terminal may directly add the duration offset to the initial timer duration, Get the above timer duration.
  • the terminal may also determine the timer duration in other ways, for example, directly using the duration offset as the above-mentioned timer duration
  • the timer duration, or adding half of the initial timer duration to the duration offset is used as the above timer duration.
  • the embodiments of the present application do not limit the manner in which the terminal determines the actually used timer duration in combination with the duration offset and the initial timer duration configured by the network.
  • the manner of determining the duration offset is also different.
  • the uplink transmission is performed based on the PUR, or is based on the uplink retransmission indicated by the physical downlink control channel PDCCH scrambled by the PUR wireless network temporary identifier PUR-RNTI,
  • the duration offset is the difference between the maximum value of the RTT and the third time offset and the third time offset;
  • the duration offset is the difference between the RTT, and a third time offset.
  • the above-mentioned duration offset used to adjust the timer duration may be between the RTT and the third time offset.
  • the difference between the maximum value and the third time offset is taken from the shift, and the difference between the RTT and the third time offset may also be directly used as the duration offset.
  • the value of the third time offset is a predefined value.
  • the third time offset is 4 subframes.
  • the above-mentioned third time offset may be a predefined value, for example, a value predefined by a protocol, or a value predefined by a system (eg, the system pre-indicates through broadcast or downlink signaling).
  • the above-mentioned third time offset may be 4 subframes, or may also be other time lengths, such as 3 subframes or 5 subframes, and so on.
  • the first time offset and the third time offset may be the same time offset; or, the first time offset and the third time offset may also be different time offsets .
  • the duration offset is the RTT.
  • the difference between the RTT and the fourth time offset may be used as the duration offset
  • the difference between the maximum value of the RTT and the fourth time offset and the fourth time offset may also be used as the duration offset.
  • the value of the fourth time offset is a predefined value.
  • the value of the fourth time offset is the time interval between the terminal completing the first repeated transmission of the PUSCH uplink transmission to the next PDCCCH listening opportunity.
  • the value of the fourth time offset is a time interval between the terminal completing the last repeated transmission of the uplink transmission PUSCH to the next PDCCCH listening opportunity.
  • the HARQ process used in the uplink transmission is the HARQ process that enables the uplink HARQ retransmission function.
  • enabling the uplink HARQ retransmission function means that the network side performs retransmission scheduling based on the decoding result received in the uplink.
  • the RTT is the round-trip propagation delay of wireless signals between the terminal and a terrestrial base station in the NTN.
  • the round-trip delay between the terminal and the network side is related to the round-trip propagation of the wireless signal between the terminal and the ground base station.
  • Delay that is to say, the above RTT corresponds to the sum of the time period for the wireless signal sent from the terminal to be forwarded to the ground base station through the satellite and the time length for the wireless signal sent from the ground base station to be forwarded to the terminal through the satellite.
  • the RTT is the sum of the first common offset and the uplink advance TA of the terminal.
  • the RTT is the TA of the terminal.
  • the RTT may be calculated based on the TA of the terminal.
  • the RTT between the terminal and the network side can be set to common offset + terminal TA.
  • the terminal may also calculate the RTT based on the terminal's TA and the first common offset. For example, on the basis of the terminal's TA, add the first common offset multiplied by As a result of a coefficient (eg 1.2), the above RTT is obtained.
  • a coefficient eg 1.2
  • the system may also indicate the above common offset through other means than broadcasting, for example, through RRC signaling, downlink control information, etc., the embodiment of the present application does not do anything for the way the system indicates the common offset limited.
  • the terminal can directly use the TA of the terminal as the RTT between the terminal and the network side .
  • the terminal may also calculate the RTT based on the TA of the terminal, for example, multiplying the TA of the terminal by a coefficient (eg 1.2) to obtain the above RTT.
  • a coefficient eg 1.2
  • the embodiments of the present application do not limit the manner in which the terminal obtains the RTT based on the TA of the terminal.
  • the RTT is the round-trip propagation delay of the wireless signal between the terminal and a satellite in the NTN.
  • the satellite undertakes part or all of the base station functions, therefore, the round-trip delay between the terminal and the network side is related to the round-trip propagation of the wireless signal between the terminal and the satellite. , that is to say, the above RTT corresponds to the length of time for the wireless signal sent from the terminal to propagate to the satellite.
  • the RTT is the TA of the terminal.
  • the terminal may directly use the TA of the terminal as the RTT between the terminal and the network side.
  • the terminal may also calculate the RTT based on the TA of the terminal, for example, multiply the TA of the terminal by a coefficient (eg 1.2) to obtain the above RTT.
  • a coefficient eg 1.2
  • the embodiments of the present application do not limit the manner in which the terminal obtains the RTT based on the TA of the terminal.
  • Step 504 after the terminal performs the uplink transmission, starts a response time window timer corresponding to the uplink transmission based on the control parameter.
  • the terminal after the terminal performs the uplink transmission corresponding to the uplink small data according to the TA, it can start the corresponding uplink transmission based on the start time offset of the timer and/or the timer duration.
  • the corresponding response time window timer and during the running process of the response time window timer, monitor the network side's response to this uplink transmission.
  • the terminal starts the above-mentioned response time window timer in the subframe corresponding to the above-mentioned subframe after the end of uplink transmission plus the start time offset.
  • the duration of the response time window timer may be a duration pre-configured by the system (that is, the duration of the above-mentioned initial timer).
  • the terminal starts a response time window timer whose running duration is the above timer duration after the above uplink transmission ends and when the start time of the response time window timer arrives.
  • the start time of the response time window timer may be a preset start time, for example, the start time of the response time window timer may be the fourth subframe after the end time of uplink transmission.
  • the above-mentioned response time window is started on the subframe corresponding to the end of the uplink transmission of the terminal plus the start time offset. timer, and set the duration of the response time window timer to the above-mentioned timer duration.
  • a method for uplink transmission of small data for a UE in a non-connected state in an NTN disclosed in an embodiment of the present application can effectively utilize the TA pre-compensation capability of the UE for uplink transmission, and on the other hand, after the UE completes the uplink transmission using the configured uplink grant , the moment when the UE starts the response window timer can be well adapted to the NTN scenario, so as to achieve the purpose of power saving of the terminal.
  • the terminal can more accurately determine the timing based on the RTT between the terminal and the network side device.
  • the start-up time offset and/or timer duration of the controller so as to more accurately control the time for monitoring the network side response, thereby realizing the accurate reception of the above response, and improving the transmission effect of uplink small data.
  • the terminal when there is a service link between the terminal and the network-side device, the terminal can combine the positioning capability and ephemeris information to obtain the information that is affected by the distance of the service link in the NTN.
  • the service link TA needs to be compensated, and then the TA of the terminal is obtained according to the service link TA, so as to realize the accurate prediction of the TA required by the terminal for uplink transmission, and reduce the communication between the terminal and the satellite in the NTN network as much as possible.
  • the influence of the distance on the uplink transmission corresponding to the uplink small data improves the accuracy of the uplink transmission in the NTN network.
  • the process of using PUR to transmit small data by an NB-IoT or eMTC terminal in the IDLE state may be as follows:
  • the UE For a UE with positioning capability and TA pre-compensation capability, the UE sends small data on the PUR based on the effective TA maintained by itself; or, the UE is based on GNSS positioning capability and ephemeris information, and/or network broadcast
  • the public TA of the UE determines the TA of the UE and sends small data on the PUR. For this process, reference may be made to the descriptions under steps 501 and 502 in the above-mentioned embodiment shown in FIG. 5 , and details are not repeated here.
  • the start time of the PUR response window timer is determined according to the round-trip delay RTT of signal transmission between the UE and the network side.
  • the implementation process is as follows:
  • Step 1 the NB-IoT or eMTC UE receives the RRC release (RRC release) message of the network, indicating that the UE is released to the RRC IDLE state, and the RRC release message contains PUR-Config (PUR configuration); the UE in the RRC IDLE state uses PUR sends upstream data.
  • RRC release RRC release
  • PUR-Config PUR configuration
  • the UE first determines its own TA before using the PUR to send uplink transmission, and uses the determined TA to send the PUSCH on the PUR.
  • the method for the UE to determine the TA is as follows:
  • Method 1 The UE does not need to perform TA validity verification.
  • Method 2 The UE first performs TA validity verification.
  • the UE uses the current maintenance TA value. If the verification result is that the TA is invalid, the UE determines its own TA based on method 1.
  • the UE For a UE that does not have the ability to perform TA pre-compensation based on the positioning capability, the UE first performs TA validity verification. If the verification result is that the TA is valid, the UE can use PUR to transmit data.
  • Step 2 assuming that the last subframe used by the UE for PUSCH transmission using PUR is subframe n, the UE starts the PUR response window timer in subframe n+offset, and monitors the PUR-RNTI during the running of the PUR response window timer. scrambled PDCCH. Among them, the value of offset is:
  • the RTT is the RTT between the UE and the base station.
  • the RTT is the RTT between the UE and the ground base station.
  • Step 3 during the running of the PUR response window timer, if the UE receives the PDCCH scrambled by the PUR-RNTI, and the PDCCH indicates an uplink grant for uplink retransmission, the UE performs retransmission on the uplink grant resource, Assuming that the last subframe used for the retransmitted PUSCH transmission is subframe n, restart the PUR response window timer at subframe n+offset.
  • the method for determining the offset is the same as that in step 3.
  • FIG. 6 shows a UE behavior sequence diagram provided by an embodiment of the present application.
  • the sequence of uplink transmission, timer start, and response monitoring of the UE can be referred to as shown in FIG. 6 .
  • the duration of the PUR response window timer may be determined (adjusted) according to the round-trip delay of signal transmission between the UE and the network.
  • the process of using PUR to transmit small data by an NB-IoT or eMTC terminal in the IDLE state may be as follows:
  • Step 1 the NB-IoT or eMTC UE receives the RRC release message of the network, instructing to release the UE to the RRC IDLE state, and the RRC release message contains PUR-Config.
  • the UE in the RRC IDLE state uses this PUR to send the uplink number.
  • Step 2 Assuming that the last subframe used by the UE for PUSCH transmission using PUR is subframe n, the UE starts the PUR response window timer in subframe n+4, and monitors the PUR-RNTI during the operation of the PUR response window timer. scrambled PDCCH.
  • the duration of the PUR response window timer is PUR-ResponseWindowSize+offset, where the offset here is the above-mentioned duration offset, and the value of the offset is:
  • the above PUR-ResponseWindowSize+offset is the initial timer duration set by the network.
  • Step 3 during the running of the PUR response window timer, if the UE receives the PDCCH scrambled by the PUR-RNTI, and the PDCCH indicates an uplink grant for uplink retransmission, the UE performs retransmission on the uplink grant resource, Assuming that the last subframe used for the retransmitted PUSCH transmission is subframe n, restart the PUR response window timer at subframe n+4.
  • FIG. 7 shows a UE behavior sequence diagram provided by an embodiment of the present application.
  • the sequence of uplink transmission, timer start, and response monitoring of the UE can be referred to as shown in FIG. 7 .
  • the process of using CG resources to transmit small data by an NR terminal in the INACTIVE state may be as follows:
  • the UE For a UE with positioning capability and TA pre-compensation capability, the UE sends a small TA on the CG based on the effective TA maintained by itself or the TA determined based on the GNSS positioning capability and ephemeris information, and/or the public TA broadcasted by the network. data. After the UE completes the CG transmission, the start time of the first response window timer is determined according to the round-trip delay of signal transmission between the UE and the network.
  • the implementation process is as follows:
  • Step 1 the NR UE receives the RRC release message of the network, indicating that the UE is released to the RRC INACTIVE state.
  • the RRC release message includes the CG configuration, and the CG configuration is used for the UE to transmit small data in the RRC INACTIVE state.
  • the UE in the RRC INACTIVE state uses the CG to send uplink data.
  • the UE determines its own TA before using the CG to send uplink transmission, and uses the TA to send the PUSCH on the CG.
  • the method for the UE to determine the TA is as follows:
  • Method 1 The UE does not need to perform TA validity verification.
  • the UE determines its own TA based on the GNSS positioning capability and ephemeris information, and/or the public TA broadcast by the network.
  • Method 2 The UE first performs TA validity verification. If the verification result is that the TA is valid, the UE uses the current maintenance TA value. If the verification result is that the TA is invalid, the UE determines its own TA based on method 1.
  • the UE For a UE that does not have the ability to perform TA pre-compensation based on the positioning capability, the UE first performs TA validity verification. If the verification result is that the TA is valid, the UE can use the CG to transmit data.
  • Step 2 the UE starts the first response window timer after using the CG to complete the first repeat transmission (repeptition) of the PUSCH or a time offset offset after the last repeat transmission, and during the operation of the first response window timer Monitor the PDCCH scrambled by the first RNTI.
  • the duration of the first response window timer is configured by the network, and the first RNTI is a UE-specific RNTI.
  • the RTT is the RTT between the UE and the ground base station.
  • Step 3 During the operation of the first response window timer, if the UE receives the PDCCH scrambled by the first RNTI, and the PDCCH indicates an uplink grant for uplink retransmission, the UE stops the PDCCH when receiving the PDCCH.
  • the first response window timer The UE performs retransmission on the uplink grant resource, and restarts the first response window timer after a time offset offset after completing the PUSCH transmission.
  • FIG. 8 shows a UE behavior sequence diagram provided by an embodiment of the present application.
  • the timing sequence of the UE's uplink transmission, timer start, and response monitoring can be referred to as shown in FIG. 8 .
  • the duration of the first response window timer may be determined according to the round-trip delay of signal transmission between the UE and the network.
  • the implementation process is as follows:
  • Step 1 the NR UE receives the RRC release message of the network, indicating that the UE is released to the RRC INACTIVE state.
  • the RRC release message includes the CG configuration, and the CG configuration is used for the UE to transmit small data in the RRC INACTIVE state.
  • the UE in the RRC INACTIVE state uses the CG to send uplink data.
  • Step 2 the UE uses the CG to complete the first repeated transmission of the PUSCH, or the first time unit (such as a time symbol) after the last repeated transmission, or the first PDCCH monitoring opportunity to start the first response window timer, and in the During the running of the first response window timer, the PDCCH scrambled by the first RNTI is monitored.
  • the first time unit such as a time symbol
  • the duration of the first response window timer is the first duration + offset, wherein the first duration is configured by the network, and the value of offset is the difference between RTT and a specific time interval; or offset is RTT and a specific time interval
  • the maximum value in the difference between the specific time interval (or the offset is: the difference between the RTT and the specific time interval, and the maximum value between 0); wherein, the above specific time
  • the interval may be the time interval between the time when the first repeat transmission (repeptition) or the last repeat transmission of the PUSCH is completed and the next PDCCH listening opportunity; the RTT is the RTT between the UE and the base station.
  • the first RNTI is a UE-specific RNTI.
  • Step 3 During the operation of the first response window timer, if the UE receives the PDCCH scrambled by the first RNTI, and the PDCCH indicates an uplink grant for uplink retransmission, the UE stops when receiving the PDCCH.
  • the first response window timer The UE performs retransmission on the uplink grant resource, and starts the first time unit (such as a time symbol) or the first PDCCH listening opportunity after completing the first repetition of the PUSCH or the first time unit (such as a time symbol) after the last repetition of the transmission.
  • a response window timer, and the PDCCH scrambled by the first RNTI is monitored during the operation of the first response window timer.
  • FIG. 9 shows a UE behavior sequence diagram provided by an embodiment of the present application.
  • the sequence of uplink transmission, timer start, and response monitoring of the UE can be referred to as shown in FIG. 9 .
  • FIG. 10 shows a block diagram of an apparatus for starting a timer provided by an embodiment of the present application.
  • the device is used in a terminal, and has the function of implementing the steps performed by the terminal in the above-mentioned timer starting method.
  • the apparatus may include:
  • a parameter determination device 1001 configured to determine a control parameter of a response time window timer based on a round-trip delay RTT between the terminal and a network side device; the control parameter includes a start time offset of the timer and a timer duration At least one of; the start time offset of the timer is the end moment of the uplink transmission corresponding to the uplink small data, and the time interval between the start moment of the response time window timer for the uplink transmission;
  • the timer starting module 1002 is configured to start a response time window timer corresponding to the uplink transmission based on the control parameter after the terminal performs the uplink transmission.
  • the start time offset is the maximum value of the RTT and the first time offset, or the start time offset is the RTT.
  • the value of the first time offset is a predefined value.
  • the first time offset is 4 subframes.
  • the start time offset is all the maximum value among the RTT and the second time offset, or the start time offset is the RTT;
  • the first RNTI is used to indicate retransmission scheduling for CG transmission in the RRC_INACTIVE state.
  • the value of the second time offset is a predefined value.
  • the value of the second time offset is a time interval between when the terminal completes the first repeated transmission of the uplink transmission to the next physical downlink control channel PDCCH listening opportunity;
  • the value of the second time offset is the time interval from the last repeated transmission of the uplink transmission completed by the terminal to the next PDCCH listening opportunity.
  • the timer duration is determined based on a duration offset and an initial timer duration, and the initial timer duration is configured by the network.
  • the timer duration is the sum of the duration offset and the initial timer duration.
  • the uplink transmission is performed based on the PUR, or is based on the uplink retransmission indicated by the physical downlink control channel PDCCH scrambled by the PUR wireless network temporary identifier PUR-RNTI,
  • the duration offset is the difference between the maximum value of the RTT and the third time offset, and the third time offset; or, the duration offset is the RTT, and the third time offset.
  • the value of the third time offset is a predefined value.
  • the third time offset is 4 subframes.
  • the uplink transmission is performed based on CG resources, or is based on uplink retransmission indicated by the PDCCH scrambled by the first RNTI,
  • the duration offset is the difference between the maximum value of the RTT and the fourth time offset and the fourth time offset;
  • the duration offset is a difference between the RTT and a fourth time offset.
  • the value of the fourth time offset is a predefined value.
  • the value of the fourth time offset is the time interval from the terminal completing the first repeated transmission of the uplink transmission to the next PDCCCH listening opportunity;
  • the value of the fourth time offset is the time interval from the last repeated transmission of the uplink transmission completed by the terminal to the next PDCCCH listening opportunity.
  • the hybrid automatic repeat request HARQ process used in the uplink transmission is a HARQ process with an uplink HARQ retransmission function enabled.
  • the RTT is the round-trip propagation of wireless signals between the terminal and a terrestrial base station in the NTN delay.
  • the RTT is the sum of the first common offset and the uplink advance TA of the terminal
  • the RTT is the TA of the terminal.
  • the RTT is a round-trip propagation delay of a wireless signal between the terminal and a satellite in the NTN.
  • the RTT is the TA of the terminal.
  • the apparatus further includes:
  • a first uplink advance acquisition module configured to acquire the service of the terminal based on the positioning capability and ephemeris information when the terminal has the positioning capability and the TA pre-compensation capability before the terminal performs the uplink transmission link TA;
  • the second uplink early acquisition module is configured to acquire the TA of the terminal based on the service link TA.
  • the second uplink early acquisition module is configured to:
  • the network where the terminal is located is an NTN based on a transparent forwarding architecture, and the terminal receives the public TA indicated by the system, the sum of the service link TA and the public TA is used as the terminal's TA;
  • the service link TA is used as the TA of the terminal.
  • the second uplink advance acquisition module is configured to use the service link TA as the TA of the terminal when the network where the terminal is located is an NTN based on a regenerative forwarding architecture.
  • the first uplink advance acquisition module is configured to, before the terminal performs the uplink transmission, when the terminal has the positioning capability and the TA pre-compensation capability, not to the terminal
  • the service link TA of the terminal is acquired based on the positioning capability and ephemeris information.
  • the apparatus further includes:
  • a verification module which should perform validity verification on the TA maintained by the terminal before the terminal performs the uplink transmission
  • the first uplink advance acquisition module is used to acquire the service of the terminal based on the positioning capability and ephemeris information when the TA maintained by the terminal fails the validity check and the terminal has the positioning capability and the TA pre-compensation capability link TA.
  • the apparatus further includes:
  • the third upstream advance acquisition module is configured to use the TA maintained by the terminal as the TA of the terminal when the TA maintained by the terminal passes the validity check.
  • the terminal is a terminal in a non-radio resource control RRC active state.
  • the terminal can more accurately determine the timing based on the RTT between the terminal and the network side device.
  • the start-up time offset and/or timer duration of the controller so as to more accurately control the time for monitoring the network side response, thereby realizing the accurate reception of the above response, and improving the transmission effect of uplink small data.
  • FIG. 11 shows a block diagram of an apparatus for early uplink acquisition provided by an embodiment of the present application.
  • the device is used in a terminal, and has the function of implementing the steps performed by the terminal in the above-mentioned timer start/uplink advance acquisition method.
  • the apparatus may include:
  • the first uplink advance acquisition module 1101 is configured to, before the terminal performs the uplink transmission corresponding to the uplink small data, when the terminal has the positioning capability and the TA pre-compensation capability, based on the positioning capability and ephemeris information, obtain all the data.
  • the second uplink advance obtaining module 1102 is configured to obtain the TA of the terminal based on the serving link TA.
  • the terminal when a service link exists between the terminal and the network side device, the terminal can combine the positioning capability and ephemeris information to obtain the service link due to the NTN.
  • the service link TA that needs to be compensated due to the influence of distance, and then obtain the TA of the terminal according to the service link TA, so as to realize the accurate prediction of the TA required by the terminal for uplink transmission, and reduce the difference between the terminal and the satellite in the NTN network as much as possible.
  • the influence of the communication distance between them on the uplink transmission corresponding to the uplink small data improves the accuracy of the uplink transmission in the NTN network.
  • it can avoid unnecessary monitoring of the downlink control signal by the terminal, so as to achieve the effect of power saving of the terminal.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 12 shows a schematic structural diagram of a computer device 1200 provided by an embodiment of the present application.
  • the computer device 1200 may include: a processor 1201 , a receiver 1202 , a transmitter 1203 , a memory 1204 and a bus 1205 .
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1202 and the transmitter 1203 may be implemented as a communication component, which may be a communication chip.
  • the communication chip may also be referred to as a transceiver.
  • the memory 1204 is connected to the processor 1201 through the bus 1205 .
  • the memory 1204 can be used to store a computer program, and the processor 1201 is used to execute the computer program, so as to implement various steps performed by the terminal device in the above method embodiments.
  • memory 1204 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory, Erasable Programmable Read Only Memory, Static Anytime Access Memory, Read Only Memory, Magnetic Memory, Flash Memory, Programmable Read Only Memory.
  • the computer device includes a processor, a memory, and a transceiver (the transceiver may include a receiver for receiving information and a transmitter for transmitting information);
  • the processor is configured to determine the control parameter of the response time window timer based on the round-trip delay RTT between the terminal and the network side device; the control parameter includes the start time offset of the timer and the timer duration At least one of; the start time offset of the timer is the end moment of the uplink transmission corresponding to the uplink small data, and the time interval between the start moment of the response time window timer for the uplink transmission;
  • the processor is further configured to start a response time window timer corresponding to the uplink transmission based on the control parameter after the terminal performs the uplink transmission.
  • the processor is configured to, before the terminal performs the uplink transmission corresponding to the uplink small data, when the terminal has the positioning capability and the TA pre-compensation capability, obtain the information of the terminal based on the positioning capability and the ephemeris information.
  • service link TA
  • the processor is further configured to acquire the TA of the terminal based on the service link TA.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the storage medium, and the computer program is loaded and executed by a processor to implement the method shown in FIG. 3 , FIG. 4 or FIG. 5 . , the various steps performed by the terminal.
  • the application also provides a computer program product or computer program, the computer program product or computer program comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes each step performed by the terminal in the method shown in the above-mentioned FIG. 3, FIG. 4 or FIG. 5 .
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Abstract

本申请公开了一种定时器启动方法、装置、终端及存储介质,属于无线通信技术领域。方法包括:基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器;对于上行小数据对应的上行传输对应的响应时间窗定时器,终端可以基于终端和网络侧设备之间的RTT,更准确的确定定时器的启动时间偏移量和/或定时器时长,从而更准确的控制对网络侧的响应进行监听的时间,进而实现对上述响应的准确接收,提高上行小数据的传输效果。

Description

定时器启动方法、装置、终端及存储介质 技术领域
本申请涉及无线通信技术领域,特别涉及一种定时器启动方法、装置、终端及存储介质。
背景技术
小数据传输是一种基于节能的考虑,使终端处于RRC_IDLE态(即空闲态)或者RRC_INACTIVE态(即非激活态)下进行数据传输的技术。
在小数据传输技术中,为了保证数据传输的成功率,相关技术中提出,终端在小数据传输过程发送数据之后,可以启动一个响应时间窗定时器,在该响应时间窗定时器运行期间,终端监听网络侧对小数据传输的响应,并根据监听情况确定是否重传。
发明内容
本申请实施例提供了一种定时器启动方法、装置、终端及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种定时器启动方法,由终端执行,所述方法包括:
基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
一方面,本申请实施例提供了一种上行提前获取方法,方法由终端执行,所述方法包括:
在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
基于所述服务链路TA,获取所述终端的TA。
另一方面,本申请实施例提供了一种定时器启动装置,用于终端中,所述装置包括:
参数确定装置,用于基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
定时器启动模块,用于在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
另一方面,本申请实施例提供了一种上行提前获取装置,用于终端中,所述装置包括:
第一上行提前获取模块,用于在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
第二上行提前获取模块,用于基于所述服务链路TA,获取所述终端的TA。
再一方面,本申请实施例提供了一种计算机设备,所述计算机设备包括处理器、存储器和收发器,所述存储器存储有计算机程序,所述计算机程序用于被所述处理器执行,以实现上述定时器启动方法或者上行提前获取方法。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述定时器启动方法或者上行提前获取方法。
另一方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述定时器启动方法或者上行提前获取方法。
本申请实施例提供的技术方案可以带来如下有益效果:
对于上行小数据对应的上行传输对应的响应时间窗定时器,终端可以基于终端和网络侧设备之间的RTT,更准确的确定定时器的启动时间偏移量和/或定时器时长,从而更准确的控制对网络侧的响应进行监听的时间,进而实现对上述响应的准确接收,提高上行小数据的传输效果,此外,还可以避免终端对下行控制信号进行不必要的监听,达到终端省电的效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的通信系统的网络架构的示意图;
图2是本申请一个实施例提供的NTN系统的网络架构图;
图3是本申请一个实施例提供的定时器启动方法的流程图;
图4是本申请一个实施例提供的上行提前获取方法的流程图;
图5是本申请一个实施例提供的上行传输方法的流程图;
图6是本申请一个实施例提供的UE行为时序图;
图7是本申请一个实施例提供的UE行为时序图;
图8是本申请一个实施例提供的UE行为时序图;
图9是本申请一个实施例提供的UE行为时序图;
图10是本申请一个实施例提供的定时器启动装置的框图;
图11是本申请一个实施例提供的上行提前获取装置的框图;
图12是本申请一个实施例提供的计算机设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的通信系统的网络架构的示意图。该网络架构可以包括:终端10和基站20。
终端10的数量通常为多个,每一个基站20所管理的小区内可以分布一个或多个终端10。终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
基站20是一种部署在接入网中用以为终端10提供无线通信功能的装置。基站20可以包括各种形式的卫星基站、宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G新空口(New Radio,NR)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。 为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为基站。
可选的,图1中未示出的是,上述网络架构还包括其它网络设备,比如:中心控制节点(Central Network Control,CNC)、接入和移动性管理功能(Access and Mobility Management Function,AMF)设备、会话管理功能(Session Management Function,SMF)或者用户面功能(User Plane Function,UPF)设备等等。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统,或者,也可以适用于5G NR系统之前的系统,比如长期演进(Long Term Evolution,LTE)系统。
在介绍本申请后续各个实施例所示的方案之前,首先对本申请涉及的几个名词概念进行介绍。
1)5G NR系统
5G NR系统是基于用户对无线通信的速率、延迟、高速移动性、能效的要求,以及未来生活中的无线通信业务的多样性、复杂性的需求而提出的新一代的无线通信系统。5G系统的主要应用场景为:增强移动超宽带(Enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-reliable and Low Latency Communications,URLLC)、大规模机器类通信(Massive Machine Type Communication,mMTC)。
在5G网络环境中,为了降低空口信令和快速恢复无线连接、快速恢复数据业务,定义一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活态(RRC_INACTIVE)状态,这种状态有别于RRC空闲态(RRC_IDLE)和RRC连接态(RRC_ACTIVE)。上述三种RRC状态如下:
RRC_IDLE:移动性为基于UE的小区选择重选,寻呼由CN发起,寻呼区域由CN配置,基站侧不存在UE AS上下文,UE和基站之间不存在RRC连接。
RRC_CONNECTED:UE和基站之间存在RRC连接,基站和UE存在UE AS上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
RRC_INACTIVE:移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE AS上下文存在某个基站上,寻呼由无线接入网络(Radio Access Network,RAN)触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
2)非地面通信网络(Non Terrestrial Network,NTN)
目前相关标准组织正在研究NTN技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。现阶段主要研究的NTN技术是基于LEO卫星和GEO卫星的通信技术。
LEO卫星:低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离 短,链路损耗少,对用户终端的发射功率要求不高。
GEO卫星:地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
卫星波束:卫星波束是卫星覆盖地球表面的最小单位,对应于不同的方向。通常,一个卫星通过成百上千个卫星波束来进行地球表面的覆盖。这些卫星波束可以被部署为不同的小区,也可以被部署在同一个小区内。考虑到相邻卫星波束之间可能造成的同频干扰,一般会考虑大于1的频率复用因子,即相邻的卫星波束采用不同的频点/载波/频段来区分。
目前,在R17NTN标准化中,主要研究透传payload NTN和再生payload NTN这两种NTN场景。NTN网络通常由以下网元组成:
1、一个或者多个网关,用于连接卫星和地面公共网络。
2、馈线链路(feeder link):用于网关和卫星之间通信的链路。
3、服务链路(service link):用于终端和卫星之间通信的链路。
4、卫星:从其提供的功能上可以分为基于透传payload的卫星和基于再生payload的卫星这两种。
透传payload:卫星只提供无线频率滤波、频率转换和放大的功能,即只提供信号的透明转发,不会改变其转发的波形信号。
再生payload:卫星除了提供无线频率滤波、频率转换和放大的功能,还可以提供解调/解码、路由/转换、编码/调制的功能,也就是说,卫星具有基站的部分或者全部功能。
5、星间链路:再生payload场景下,用于卫星和卫星之间通信的链路。
请参考图2,其示出了本申请一个实施例提供的NTN系统的网络架构图。如图2所示,该NTN系统包括终端201、卫星202、网关设备203。其中,卫星202与网关设备203通过无线方式连接(馈线链路),卫星202之间通过无线方式连接(星间链路),网关设备203与数据网络相连。其中,卫星202通过多个卫星波束202a覆盖地球表面,且每个波束覆盖一定的范围区域。终端201处于一个卫星波束202a的覆盖范围内时,可以向基站202发起随机接入建立服务链路,以及,进行后续的通信。
3)提前数据传输(Early Data Transmission,EDT)
LTE中引入了EDT。在该过程中,UE可以始终保持在RRC-IDLE状态、挂起(suspend)状态或者RRC_INACTIVE状态,完成上行和/或下行小数据包的传输。例如,EDT的用户面传输方案的流程可以如下:
S1,UE从用于指示EDT的前导码组中选择一个发送给eNB,发起EDT传输过程,eNB在接收到相应前导码后,通过RAR为UE配置用于EDT的上行资源和TA;
S2,UE向eNB发送RRCConnectionResumeRequest(RRC连接恢复请求)消息,包含恢复ID(Resume ID),RRC连接恢复原因(establishment cause),认证令牌(shortResumeMAC-I)。UE侧恢复全部信令无线承载(Signalling Radio Bearers,SRB)和数据无线承载(Data Radio Bearers,DRB),并通过上次连接释放消息包含的下一跳链接数参数(NextHop Chaining Count,NCC)衍生新的密钥。用户数据在专用业务信道(Dedicated Traffic Channel,DTCH)上加密传输,并与RRCConnectionResumeRequest复用。
S3,eNB建立S1连接,向移动性管理实体(Mobility Management Entity,MME)发起上下文恢复流程以及重新激活S1-U之间的承载。
S4,MME向服务网关(Serving GateWay,S-GW)发起请求重新激活UE S1-U之间的承载,用于后续用户数据递交到S-GW。
S5,MME向eNB确认恢复UE上下文。
S6,用户数据递交到S-GW。
S7,如果此时S-GW有下行数据发送,S-GW将下行数据递交给Enb。
S8,eNB suspend(中止)S1连接,MME去激活UE S1-U之间的承载。
S9,eNB向UE发送RRC连接释放(RRCConnectionRelease)消息,将UE继续保持在suspend状态。
对于上述数据传输,其实UE并没有进入连接状态,就完成了小数据包的传输。在配置上,网络会在SIB2上配置一个当前网络允许传输的最大传输块大小(Transport Block Size,TBS),UE判断自己待传输的数据量,如果小于这个广播的最大TB size,则UE可以发起EDT传输;反之,UE使用正常的连接建立过程,进入连接态传输数据。
4)基于预配置上行资源(Preconfigured Uplink Resource,PUR)的传输
在LTE R16中,针对窄带物联网(Narrow Band Internet of Things,NB-IoT)和增强的机器类型通信(Enhanced Machine Type Communication,eMTC)场景下的上行小数据传输进行了进一步增强,引入了在IDLE态利用预配置上行资源PUR进行数据传输的方法。当UE所在小区支持PUR传输时,UE可以在连接态通过PURConfigurationRequest(PUR配置请求)来请求PUR配置,其中,PURConfigurationRequest中可选择性的包含请求的PUR周期,TBS,PUR个数等;(ng-)eNB通过在RRCConnectinRelease消息中包含PUR-Config字段为UE配置PUR,同时将UE释放到IDLE态。PUR的配置由(ng-)eNB决定,可能基于UE的请求、UE注册信息和/或本地策略。
PUR只在当前配置的小区内有效,即当UE检测到小区变化,并在新的小区发起随机接入时,UE需要释放原小区配置的PUR。
在演进分组系统(Evolved Packet System,EPS)/5G系统(5G System,5GS)蜂窝物联网的用户面功能优化方案中,处于IDLE态的UE利用PUR进行数据传输前,需要满足以下前提条件:
1、有效的TA;需要满足以下两个条件:
如果配置了PUR时间对齐定时器(PUR-Time Alignment Timer):经MAC层确认该PUR-TimeAlignmentTimer正在运行;
如果配置了参考信号接收功率(Reference Signal Receiving Power,RSRP)变化门限(即PUR-RSRP-ChangeThreshold或PUR-NRSRP-ChangeThreshold):自从最近一次TA有效性验证以来,RSRP的变化(增大或减小)不大于该配置的RSRP变化阈值。
2、NCC;包含在RRCConnectionRelease消息中,用于新的密钥的衍生;
3、有效的PUR;
4、有RRC连接建立或恢复需求,如上行数据到达;
对于EPS/5GS蜂窝物联网用户面功能优化方案,处于IDLE态的UE利用PUR进行数据传输的流程可以如下:
S1,UE满足上述PUR传输前提条件;
S2,UE向eNB/ng-eNB发送RRCConnectionResumeRequest消息,包括Resume ID(对应EPS场景)/非激活的无线网络临时标识(Inactive-Radio Network Tempory Identity,I-RNTI)(对应5GS场景),establishment cause,shortResumeMAC-I,其中Resume ID/IRNTI用于基站识别suspend状态的UE的上下文,shortResumeMAC-I用于身份验证。UE恢复全部SRB和DRB,利用上次连接的RRCConnectionRelease消息中包含的NCC衍生新的密钥,用户数据在DTCH上加密和传输,并与公共控制信道(Common Control Channel,CCCH)上的RRCConnectionResumeReques复用。
S3,执行与EPS/5GS蜂窝物联网用户面功能优化方案下的MO-EDT传输流程相同的步骤。
S4,eNB/ng-eNB将用户数据递交到核心网后,通过RRCConnectionRelease消息将UE 保留在IDLE态,RRCConnectionRelease中包含如下信息:
a)释放原因(release Cause)设置为RRC-Suspend;
b)resume ID/I-RNTI;
c)NCC;
d)DRB-ContinueROHC。
若网络有下行数据发送,则通过DTCH加密和传输,并与专用控制信道(Dedicated Control CHannel,DCCH)上的RRCConnectionRelease消息复用。
为了支持PUR传输,RRC层向MAC层提供以下配置参数:
PUR-RNTI;PUR响应窗窗长(PUR-ResponseWindowSize);上行链路(Uplink,UL)授权配置信息。
在UE使用PUR进行了传输之后,如果上行物理共享信道(Physical Uplink Shared Channel,PUSCH)传输所使用的最后一个子帧为子帧n,则UE在子帧n+4启动pur-ResponseWindowTimer,并在pur-ResponseWindowTimer运行期间监听PUR-RNTI加扰的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
其中,PUR-ResponseWindowTimer的时长为PUR-ResponseWindowSize。
在PUR-ResponseWindowTimer运行期间,如果UE接收到PUR-RNTI加扰的PDCCH,并且该PDCCH指示了用于上行重传的上行授权,则UE在该上行授权资源上进行重传,假设该重传的PUSCH传输所使用的最后一个子帧为子帧m,则UE在子帧m+4重启PUR-ResponseWindowTimer。
如果MAC层接收到来自底层的针对该PUR传输的L1ACK,或者UE接收到PUR-RNTI加扰的PDCCH并且该MAC层协议数据单元(Protocol Data Unit,PDU)被成功解码,则UE停止PUR-ResponseWindowTimer。否则,如果MAC接收到来自底层的针对该PUR传输的回退指示,则UE停止PUR-ResponseWindowTimer,同时向高层指示收到PUR回退指示,并丢弃PUR-RNTI。
如果PUR-ResponseWindowTimer超时,则MAC层向高层指示使用PUR的上行传输失败,并丢弃PUR-RNTI。
为了UE维护TA从而可以使用PUR进行小数据传输,高层可以为MAC层配置一个定时器PUR-TimeAlignmentTimer。
当MAC层接收到高层的PUR-TimeAlignmentTimer配置,如果PUR-TimeAlignmentTimer没有运行,则启动PUR-TimeAlignmentTimer。
当MAC层接收到高层释放PUR-TimeAlignmentTimer配置,如果PUR-TimeAlignmentTimer正在运行,则停止PUR-TimeAlignmentTimer。
如果接收到定时提前控制(Timing Advance Command,TAC)MAC层控制单元(Control Element,CE)或者PDCCH指示TA调整,则基于TAC MAC CE或者PDCCH指示调整TA,同时启动或者重启PUR-TimeAlignmentTimer。
在进行TA有效性判断时,可以向MAC层确认TA定时器(timer)是否处于运行期间,当TA timer超时时,MAC层需要反馈给高层。
Rel-17立项开展对RRC_INACTIVE下小数据传输的研究,项目目标主要有两个方向:基于随机接入过程(两步/四步)的上行小数据传输以及基于预配置资源,如配置授权(Configured Grant,CG)type1的上行小数据传输。
在相关技术中,一方面,考虑到终端收发操作之间的转换时间,UE在使用PUR发送小数据之后会间隔4个子帧才启动UPR响应窗定时器。目前支持的4ms间隔主要考虑终端发送上行之后的终端处理时延(比如对于NB-IoT,UE需要从上行发送转换为下行接收),以及UE发送完上行到接收网络响应的最快往返时延RTT。在地面网络中,UE与网络之间的信号传输的RTT时间比较短,因此UE发送完上行到启动PUR响应窗定时器的时间间隔主要取 决于终端的处理时延。
与传统地面蜂窝网络相比,NTN中UE与网络之间的信号传播时延大幅增加,其RTT甚至可以远大于现有标准中考虑的终端处理时间,因此针对NTN需要重新定义PUR响应窗定时器启动时刻偏移值的取值。
另一方面,在LTE地面网络中,UE的TA完全由网络控制,处于RRC-IDLE态的UE在使用PUR进行上行传输之前需要先进行TA有效性验证,只有在TA有效的情况下才可以使用PUR进行上行传输。目前R17NTN要支持具备全球导航卫星系统(Global Navigation Satellite System,GNSS)定位能力同时具备TA预补偿能力的UE,对于这一类UE,相关技术中还没有基于自身的定位能力进行TA估计的方案。
R17NR目前正在研究的小数据传输(Small Data Transmission,SDT),对于处于RRC INACTIVE态的UE使用CG进行小数据传输的场景,存在与LTE中PUR传输类似的问题。比如,UE在使用CG传输之前如何确定有效的TA,UE在使用CG完成小数据传输后什么时刻开始监听网络的响应等等。
本申请后续实施例所示的方案,提出一种终端在上行小数据传输时,对监听开始时刻和/或监听时长进行调整,以及,终端主动进行TA估计的方案。示例性的,本申请所涉及的方案可以应用在NTN网络等终端和网络侧之间的无线信号往返传播时延较大的通信场景中,使得终端在上行小数据传输时,能够获取到更准确的TA,以及,更准确的控制对网络侧的响应进行监听的时间,从而提高上行小数据的传输效果,此外还可以避免终端进行不必要的监听,达到终端省电的目的。
请参考图3,其示出了本申请一个实施例提供的定时器启动方法。该方法可以由终端执行,其中,上述终端可以是图1或者图2所示的网络架构中的终端。该方法可以包括如下步骤:
步骤301,基于该终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;该控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;该定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对该上行传输的响应时间窗定时器的启动时刻之间的时间间隔。
步骤302,在该终端执行该上行传输之后,基于该控制参数启动该上行传输对应的响应时间窗定时器。
综上所述,在本申请实施例所示的方案中,对于上行小数据对应的上行传输对应的响应时间窗定时器,终端可以基于终端和网络侧设备之间的RTT,更准确的确定定时器的启动时间偏移量和/或定时器时长,从而更准确的控制对网络侧的响应进行监听的时间,进而实现对上述响应的准确接收,提高上行小数据的传输效果,此外还可以避免终端进行不必要的监听,达到终端省电的目的。
请参考图4,其示出了本申请一个实施例提供的上行提前获取方法。该方法可以由终端执行,其中,上述终端可以是图1或者图2所示的网络架构中的终端。该方法可以包括如下步骤:
步骤401,在终端执行上行小数据对应的上行传输之前,当终端具有定位能力和TA预补偿能力时,基于定位能力和星历信息,获取终端的服务链路TA。
其中,上述星历信息是指NTN系统中的卫星对应的卫星星历。卫星星历又称为两行轨道数据(Two-Line Orbital Element,TLE),是用于描述太空飞行体位置和速度的表达式(也称为两行式轨道数据系统)。
卫星星历以开普勒定律的6个轨道参数之间的数学关系确定飞行体的时间、坐标、方位、速度等各项参数,具有极高的精度。
卫星星历能精确计算、预测、描绘、跟踪卫星、飞行体的时间、位置、速度等运行状态;能表达天体、卫星、航天器、导弹、太空垃圾等飞行体的精确参数;能将飞行体置于三维的空间;用时间立体描绘天体的过去、现在和将来。
卫星星历的时间按世界标准时间,即协调世界时(Universal Time Coordinated,UTC)进行计算;卫星星历可以定时更新。
在一种可能的实现方式中,上述服务链路,是指NTN网络中,终端和NTN网络中的卫星之间的链路。相应的,服务链路TA(即TA_service link),则是由于服务链路的影响而需要补偿的TA。
步骤402,基于服务链路TA,获取终端的TA。
其中,终端的TA,是指终端进行上行传输时使用的TA。
由于在NTN网络中,终端和卫星之间的距离通常很大,并且也可能存在较大的变化,因此,终端和卫星之间的距离对于两者之间的影响也会很大,为了使得终端发送的无线信号能够在准确的时间点上被卫星接收,在本申请实施例中,终端可以基于定位能力和星历信息,获取服务链路TA,再根据服务链路TA估算出终端的TA。
综上所述,在本申请实施例所示的方案中,当终端和网络侧设备之间存在服务链路时,终端可以结合定位能力和星历信息,获取到由于NTN中的服务链路的距离影响而需要补偿的服务链路TA,再根据服务链路TA来获取终端的TA,从而实现对终端进行上行传输所需要的TA的准确预测,尽可能的降低了NTN网络中终端和卫星之间的通信距离对于上行小数据对应的上行传输的影响,提高了NTN网络中的上行传输的准确性。
其中,上述图3所示的实施例提供的响应时间窗定时器的控制方案,与上述图4所示的实施例提供的终端进行TA预测的方案可以独立使用。
或者,上述图3所示的实施例提供的响应时间窗定时器的控制方案,与上述图4所示的实施例提供的终端进行TA预测的方案也可以结合使用。例如,在NTN网络中,终端可以先进行TA预测,并结合RTT获取响应时间窗定时器的启动时间偏移量和/或定时器时长,后续终端根据预测的TA执行上行小数据对应的上行传输,并在上行传输之后,根据定时器的启动时间偏移量和/或定时器时长启动响应时间窗定时器。
以上述图3所示的实施例提供的响应时间窗定时器的控制方案,与上述图4所示的实施例提供的终端进行TA预测的方案结合使用为例,请参考图5,其示出了本申请一个实施例提供的上行传输方法。该方法可以由终端执行,其中,上述终端可以是图1或者图2所示的网络架构中的终端。该方法可以包括如下步骤:
步骤501,当终端具有定位能力和TA预补偿能力时,基于该定位能力和星历信息,获取该终端的服务链路TA。
在一种可能的实现方式中,该终端是处于非无线资源控制RRC连接态的终端。
其中,上述终端处于非RRC连接态,可以是指终端处于RRC_IDLE态,或者,处于RRC_INACTIVE态。
在本申请实施例中,在NTN网络中,UE基于定位能力可以定位自己的位置,而根据星历信息可以计算得到服务卫星的位置,通过这2个位置信息可以计算服务链路service link的距离,通过该服务链路的距离以及无线信号的传播速率,即可以计算得到终端发出的无线信号传播到卫星所在位置的时延(delay),根据该delay即可以计算得到服务链路TA,比如,服务链路TA=2*delay。
步骤502,基于该服务链路TA,获取该终端的TA。
NTN系统可以包含不同的网络架构,比如,目前的NTN包括基于透明转发架构的NTN,以及基于再生转发架构的NTN,而不同的NTN架构,对应的基于服务链路TA获取终端的 TA的方式也有所区别。
在一种可能的实现方式中,当该终端所在网络是基于透明转发架构的NTN,且该终端接收到系统指示的公共TA时,将该服务链路TA与该公共TA之和作为该终端的TA;
在本申请实施例的一个示例性的方案中,如果当前NTN是基于透明转发架构的NTN,且系统指示了公共TA(common TA),比如,通过广播等方式指示针对NTN小区的TA,则终端的TA可以设置为服务链路TA+公共TA。
在一个示例性的方案中,系统也可以通过广播之外的其它方式来指示上述公共TA,比如,通过RRC信令、下行控制信息等等,本申请实施例对于系统指示公共TA的方式不做限定。
在一种可能的实现方式中,当该终端所在网络是基于透明转发架构的NTN,且该终端未接收到系统指示的公共TA时,将该服务链路TA作为该终端的TA。
在本申请实施例的一个示例性的方案中,如果当前NTN是基于透明转发架构的NTN,且系统没有指示公共TA,则终端可以直接将上述服务链路TA作为该终端的TA。
在一种可能的实现方式中,当该终端所在网络是基于再生转发架构的NTN时,将该服务链路TA作为该终端的TA。
在本申请实施例的一个示例性的方案中,如果当前NTN是基于再生转发架构的NTN,则终端可以直接将上述服务链路TA作为该终端的TA。
在一种可能的实现方式中,终端执行上行小数据对应的上行传输之前,当该终端具有定位能力和TA预补偿能力时,在不对该终端维护的TA进行有效性检验的情况下,基于该定位能力和星历信息,获取该终端的服务链路TA,并基于服务链路TA获取终端的TA。
在本申请实施例中,对于NTN中的终端,当该终端具有定位能力和TA预补偿能力,且处于RRC_IDLE态,或者RRC_INACTIVE态时,可以不对自己维护的TA进行有效性检验,直接基于定位能力和星历信息,获取该终端的服务链路TA,并基于服务链路TA获取终端的TA。
在另一种可能的实现方式中,终端执行上行小数据对应的上行传输之前,可以对该终端维护的TA进行有效性检验;当该终端维护的TA未通过有效性检验,且该终端具有定位能力和TA预补偿能力时,终端可以基于该定位能力和星历信息,获取该终端的服务链路TA,并基于服务链路TA获取终端的TA。
在本申请实施例中,对于NTN中的终端,当该终端具有定位能力和TA预补偿能力,且处于RRC_IDLE态,或者RRC_INACTIVE态时,如果有发送上行小数据的需求,则可以先对该终端维护的TA进行有效性检验,如果终端维护的TA未通过有效性检验,则当终端具有定位能力和TA预补偿能力时,可以自己基于该定位能力和星历信息,获取该终端的服务链路TA,并基于服务链路TA获取终端的TA。
在一种可能的实现方式中,当该终端维护的TA通过有效性检验时,将该终端维护的TA,作为该终端的TA。
在本申请实施例中,对于NTN中的终端,当该终端具有定位能力和TA预补偿能力,且处于RRC_IDLE态,或者RRC_INACTIVE态时,如果有发送上行小数据的需求,则可以先对该终端维护的TA进行有效性检验,如果终端维护的TA通过了有效性检验,则终端不需要重新获取TA,即可以直接使用当前为维护的TA。
终端确定上述终端的TA之后,当有上行小数据时,可以基于终端的TA进行上行传输。
步骤503,基于该终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数。
其中,该控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;该定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对该上行传输的响应时间窗定时器的启动时刻之间的时间间隔。
在本申请实施例中,当终端有上行小数据需要传输时,可以基于该终端和网络侧设备之 间的往返时延RTT,确定响应时间窗定时器的启动时间偏移量和/或定时器时长,以便在上行小数据对应的上行传输之后,控制对网络侧的响应的监听时间。
对于上行小数据来说,基于不同的资源执行的上行传输情况下,启动时间偏移量的确定方式也有所不同。
在一种可能的实现方式中,当该上行传输是基于预配置上行资源PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,该启动时间偏移量是该RTT和第一时间偏移量中的最大值;或者,该启动时间偏移量是该RTT。
在本申请实施例中,对于基于PUR执行的上行传输,或者,对于基于PUR执行的上行传输的重传,上述启动时间偏移量可以是在RTT和第一时间偏移量中取最大值,也可以直接使用RTT作为启动时间偏移量。
在一种可能的实现方式中,该第一时间偏移量的值为预定义的数值。
在一种可能的实现方式中,该第一时间偏移量为4个子帧。
其中,上述第一时间偏移量可以是预先定义的数值,比如,可以是协议预定义的数值,也可以是系统预定义的数值(比如,系统预先通过广播或者下行信令进行指示)。
上述第一时间偏移量可以是4个子帧,或者,也可以是其它时间长度,比如3个子帧或者5个子帧等等。
在一种可能的实现方式中,当该上行传输是基于配置授权CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,该启动时间偏移量可以是在RTT和第二时间偏移量中取最大值,也可以是该RTT;其中,该第一RNTI用于指示针对RRC_INACTIVE态的CG传输的重传调度。
在一种可能的实现方式中,该第二时间偏移量的值为预定义的数值。
在另一种可能的实现方式中,该第二时间偏移量的值为终端完成所述上行传输PUSCH的第一次重复传输到下一个PDCCCH监听时机的时间间隔。
在另一种可能的实现方式中,该第二时间偏移量的值为终端完成所述上行传输PUSCH的最后一次重复传输到下一个PDCCCH监听时机的时间间隔。
在本申请实施例中,对于基于CG资源执行的上行传输,或者,对于基于CG资源执行的上行传输的重传,可以直接使用RTT作为启动时间偏移量,也可以使用RTT和第二时间偏移量中的最大值作为启动时间偏移量。
在一种可能的实现方式中,该定时器时长是基于时长偏移量以及初始定时器时长确定的,该初始定时器时长由网络配置。
在本申请实施例中,终端可以基于往返时延RTT确定一个时长偏移量,并基于该时长偏移量,来调整定时器时长,也就是,结合该时长偏移量,以及网络配置的初始定时器时长,确定实际使用的定时器时长。
在一种可能的实现方式中,该定时器时长是该时长偏移量与该初始定时器时长之和。
在本申请实施例中,终端在结合该时长偏移量,以及网络配置的初始定时器时长,确定实际使用的定时器时长时,可以直接将时长偏移量与该初始定时器时长相加,得到上述定时器时长。
或者,终端在结合该时长偏移量,以及网络配置的初始定时器时长,确定实际使用的定时器时长时,也可以通过其它方式确定该定时器时长,比如,直接将时长偏移量作为上述定时器时长,或者,在时长偏移量的基础上加上初始定时器时长的一半,作为上述定时器时长。对于终端结合该时长偏移量以及网络配置的初始定时器时长确定实际使用的定时器时长的方式,本申请实施例不做限定。
对于上行小数据来说,基于不同的资源执行的上行传输情况下,时长偏移量的确定方式也有所不同。
在一种可能的实现方式中,当该上行传输是基于PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,
该时长偏移量是该RTT和第三时间偏移量中的最大值,与该第三时间偏移量之间的差值;
或者,该时长偏移量是该RTT,与第三时间偏移量之间的差值。
在本申请实施例中,对于基于PUR执行的上行传输,或者,对于基于PUR执行的上行传输的重传,上述用于调整定时器时长的时长偏移量,可以是在RTT和第三时间偏移量中取最大值与第三时间偏移量的差值,也可以直接使用RTT与第三时间偏移量的差值作为时长偏移量。
在一种可能的实现方式中,该第三时间偏移量的值为预定义的数值。
在一种可能的实现方式中,该第三时间偏移量为4个子帧。
其中,上述第三时间偏移量可以是预先定义的数值,比如,可以是协议预定义的数值,也可以是系统预定义的数值(比如,系统预先通过广播或者下行信令进行指示)。
上述第三时间偏移量可以是4个子帧,或者,也可以是其它时间长度,比如3个子帧或者5个子帧等等。
其中,上述第一时间偏移量和第三时间偏移量可以是相同的时间偏移量;或者,上述第一时间偏移量和第三时间偏移量也可以是不同的时间偏移量。
在一种可能的实现方式中,当该上行传输是基于CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,该时长偏移量是该RTT。
在本申请实施例中,对于基于CG资源执行的上行传输,或者,对于基于CG资源执行的上行传输的重传,可以使用RTT与第四时间偏移量之间的差值作为时长偏移量,也可以使用RTT和第四时间偏移量中的最大值,与该第四时间偏移量之间的差值作为时长偏移量。
在一种可能的实现方式中,该第四时间偏移量的值为预定义的数值。
在另一种可能的实现方式中,该第四时间偏移量的值为终端完成上行传输PUSCH的第一次重复传输到下一个PDCCCH监听时机的时间间隔。
在另一种可能的实现方式中,该第四时间偏移量的值为终端完成所述上行传输PUSCH的最后一次重复传输到下一个PDCCCH监听时机的时间间隔。
在一种可能的实现方式中,该上行传输使用的混合自动重传请求HARQ进程,为开启上行HARQ重传功能的HARQ进程。
在本申请实施例中,对于上行HARQ进程来说,开启上行HARQ重传功能,指的是网络侧基于上行接收的解码结果进行重传调度。
在一种可能的实现方式中,当该终端所在网络是基于透明转发架构的非地面通信网络NTN时,该RTT是该终端与该NTN中的地面基站之间的无线信号往返传播延时。
由于在基于透明转发架构的非地面通信网络NTN中,卫星不承担基站的功能,因此,终端和网络侧之间的往返时延,是与终端和地面基站之间的无线信号往返传播相关的时延,也就是说,上述RTT对应的是从终端发出的无线信号经过卫星转发至地面基站的时长,与从地面基站发出的无线信号经过卫星转发至终端的时长之和。
在一种可能的实现方式中,当该终端接收到系统指示的第一公共偏移量(common offset)时,该RTT是该第一公共偏移量与该终端的上行提前TA之和。
在一种可能的实现方式中当该终端未接收到系统指示的该第一公共偏移量时,该RTT是该终端的TA。
在本申请实施例中,在基于透明转发架构的非地面通信网络NTN中,终端在获取RTT时,可以基于终端的TA来计算该RTT。
在本申请实施例的一个示例性的方案中,如果当前NTN是基于透明转发架构的NTN,且系统指示了common offset,比如,通过广播等方式指示common offset,则终端与网络侧之间的RTT可以设置为common offset+终端的TA。
或者,如果当前NTN是基于透明转发架构的NTN,则终端也可以基于终端的TA和第一公共偏移量计算RTT,比如,在终端的TA的基础上,加上第一公共偏移量乘以一个系数(比如1.2)的结果,得到上述RTT。其中,本申请实施例对于终端基于终端的TA和第一公共偏移量获取RTT的方式不做限定。
在一个示例性的方案中,系统也可以通过广播之外的其它方式来指示上述common offset,比如,通过RRC信令、下行控制信息等等,本申请实施例对于系统指示common offset的方式不做限定。
在本申请实施例的另一个示例性的方案中,如果当前NTN是基于透明转发架构的NTN,且系统没有指示common offset,则终端可以直接将终端的TA,作为终端与网络侧之间的RTT。
或者,如果当前NTN是基于透明转发架构的NTN,则终端也可以基于终端的TA计算RTT,比如,在终端的TA的基础上乘以一个系数(比如1.2),得到上述RTT。其中,本申请实施例对于终端基于终端的TA获取RTT的方式不做限定。
在一种可能的实现方式中,当该终端所在网络是基于再生转发架构的NTN时,该RTT是该终端与该NTN中的卫星之间的无线信号往返传播延时。
由于在基于再生转发架构的非地面通信网络NTN中,卫星承担了部分或者全部的基站功能,因此,终端和网络侧之间的往返时延,是与终端和卫星之间的无线信号往返传播相关的时延,也就是说,上述RTT对应的是从终端发出的无线信号传播至卫星的时长。
在一种可能的实现方式中,该RTT是该终端的TA。
本申请实施例的一个示例性的方案中,如果当前NTN是基于再生转发架构的NTN,则终端可以直接将终端的TA,作为终端与网络侧之间的RTT。
或者,如果当前NTN是基于再生转发架构的NTN,则终端也可以基于终端的TA计算RTT,比如,在终端的TA的基础上乘以一个系数(比如1.2),得到上述RTT。其中,本申请实施例对于终端基于终端的TA获取RTT的方式不做限定。
步骤504,在该终端执行该上行传输之后,基于该控制参数启动该上行传输对应的响应时间窗定时器。
在本申请实施例中,终端根据TA执行了上行小数据对应的上行传输之后,即可以基于上述定时器的启动时间偏移量,和/或,定时器时长,来启动本次上行传输对应的相响应时间窗定时器,并在该响应时间窗定时器运行过程中,监听网络侧对本次上行传输的响应。
比如,当上述控制参数包括定时器的启动时间偏移量时,终端在上述的上行传输结束的子帧加上启动时间偏移量后对应的子帧上,启动上述响应时间窗定时器。可选的,在此情况下,响应时间窗定时器的时长可以是系统预先配置的时长(即上述初始定时器时长)。
再比如,当上述控制参数包括定时器时长时,终端在上述的上行传输结束后,并在响应时间窗定时器的启动时间到达时,启动运行时长为上述定时器时长的响应时间窗定时器。可选的,在此情况下,响应时间窗定时器的启动时间可以是预先设置的启动时间,比如,响应时间窗定时器的启动时间可以是上行传输结束时刻之后的第4个子帧。
再比如,当上述控制参数包括定时器的启动时间偏移量和定时器时长时,终端上述的上行传输结束的子帧加上启动时间偏移量后对应的子帧上,启动上述响应时间窗定时器,并将响应时间窗定时器的时长设置为上述定时器时长。
本申请实施例公开的一种NTN中非连接态的UE上行发送小数据的方法,一方面可以有效利用UE的TA预补偿能力进行上行传输,另一方面在UE使用配置上行授权完成上行传输之后,UE启动响应窗定时器的时刻可以很好的适配NTN场景,从而达到终端省电的目的。
综上所述,在本申请实施例所示的方案中,对于上行小数据对应的上行传输对应的响应时间窗定时器,终端可以基于终端和网络侧设备之间的RTT,更准确的确定定时器的启动时间偏移量和/或定时器时长,从而更准确的控制对网络侧的响应进行监听的时间,进而实现对上述响应的准确接收,提高上行小数据的传输效果,此外,还可以避免终端对下行控制信号 进行不必要的监听,达到终端省电的效果。
此外,在本申请实施例所示的方案中,当终端和网络侧设备之间存在服务链路时,终端可以结合定位能力和星历信息,获取到由于NTN中的服务链路的距离影响而需要补偿的服务链路TA,再根据服务链路TA来获取终端的TA,从而实现对终端进行上行传输所需要的TA的准确预测,尽可能的降低了NTN网络中终端和卫星之间的通信距离对于上行小数据对应的上行传输的影响,提高了NTN网络中的上行传输的准确性。
在基于上述图5所示实施例的一个示例性的方案中,处于IDLE态的NB-IoT或者eMTC终端使用PUR传输小数据的过程可以如下:
对于具备定位能力,同时具备TA预补偿能力的UE,该UE基于自己维护的有效的TA,在PUR上发送小数据;或者,该UE基于GNSS定位能力和星历信息,和/或,网络广播的公共TA确定该UE的TA,并在PUR上发送小数据。该过程可以参考上述图5所示实施例中的步骤501和步骤502下的内容介绍,此处不再赘述。UE完成基于PUR的传输之后,根据UE与网络侧之间的信号传输往返时延RTT确定PUR响应窗定时器的启动时刻。
该实施过程如下:
步骤1,NB-IoT或者eMTC UE接收网络的RRC释放(RRC release)消息,指示将UE释放到RRC IDLE态,该RRC release消息中包含PUR-Config(PUR配置);处于RRC IDLE态的UE使用PUR发送上行数据。
其中,对于具备定位能力同时具备TA预补偿能力的UE,该UE在使用PUR发送上行传输之前,先确定自己的TA,使用确定的TA在PUR上发送PUSCH。UE确定TA的方法如下:
方法1:UE不需要进行TA有效性验证。
UE基于GNSS定位能力和星历信息,和/或网络广播的公共TA确定自己的TA。其中,对于透明转发NTN网络架构,UE基于定位能力和星历信息估算service link对应的TA_service link;比如,如果网络广播了针对NTN小区的common TA,则UE确定补偿的TA为TA=TA_service link+common TA;如果网络没有广播common TA,则UE确定补偿的TA为TA=TA_service link。对于再生转发NTN网络架构,UE基于定位能力和星历信息估算service link对应的TA_service link,则UE确定补偿的TA为TA=TA_service link。
方法2:UE先进行TA有效性验证。
如果验证结果为TA有效,则UE使用当前的维护TA值。如果验证结果为TA无效,则UE基于方法1确定自己的TA。
对于不具备基于定位能力进行TA预补偿能力的UE,该UE先进行TA有效性验证,在验证结果为TA有效的情况下,UE可以使用PUR传输数据。
步骤2,假设UE使用PUR进行PUSCH传输所使用的最后一个子帧为子帧n,则UE在子帧n+offset启动PUR响应窗定时器,并且在PUR响应窗定时器运行期间监听PUR-RNTI加扰的PDCCH。其中,offset的取值为:
offset=max(4,RTT);或者,offset=RTT。其中,RTT为UE与基站之间的RTT。
对于透明转发NTN网络架构,RTT为UE与地面基站之间的RTT。其确定方法为:如果网络广播了一个common offset,则RTT=TA+common offset,该common offset为网络补偿的TA(即网络侧UL定时相对于UL定时的提前偏移量);如果网络没有广播common offset,则RTT=TA。
对于再生转发NTN网络架构,RTT为UE与卫星之间的RTT,即RTT=TA。
步骤3,在PUR响应窗定时器运行期间,如果UE接收到PUR-RNTI加扰的PDCCH,并且该PDCCH指示了用于上行重传的上行授权,则UE在该上行授权资源上进行重传,假设该重传的PUSCH传输所使用的最后一个子帧为子帧n,在子帧n+offset重启PUR响应窗定时器。其中,offset的确定方法同步骤3。
请参考图6,其示出了本申请一个实施例提供的UE行为时序图。上述示例性的方案中, UE的上行传输、定时器启动、以及响应监听的时序可以参考图6所示。
在基于上述图5所示实施例的一个示例性的方案中,UE完成PUR传输之后,可以根据UE与网络之间的信号传输往返时延确定(获调整)PUR响应窗定时器的时长。
其中,处于IDLE态的NB-IoT或者eMTC终端使用PUR传输小数据的过程可以如下:
步骤1,NB-IoT或者eMTC UE接收网络的RRC release消息,指示将UE释放到RRC IDLE态,RRC release消息中包含PUR-Config。处于RRC IDLE态的UE使用该PUR发送上行数。
步骤2,假设UE使用PUR进行PUSCH传输所使用的最后一个子帧为子帧n,则UE在子帧n+4启动PUR响应窗定时器,并且在PUR响应窗定时器运行期间监听PUR-RNTI加扰的PDCCH。PUR响应窗定时器的时长为PUR-ResponseWindowSize+offset,其中,这里的offset即为上述的时长偏移量,offset的取值为:
offset=max(4,RTT)-4;或者,offset=RTT-4。
上述PUR-ResponseWindowSize+offset,即为网络设置的初始定时器时长。
步骤3,在PUR响应窗定时器运行期间,如果UE接收到PUR-RNTI加扰的PDCCH,并且该PDCCH指示了用于上行重传的上行授权,则UE在该上行授权资源上进行重传,假设重传的PUSCH传输所使用的最后一个子帧为子帧n,在子帧n+4重启PUR响应窗定时器。
请参考图7,其示出了本申请一个实施例提供的UE行为时序图。上述示例性的方案中,UE的上行传输、定时器启动、以及响应监听的时序可以参考图7所示。
在基于上述图5所示实施例的一个示例性的方案中,处于INACTIVE态的NR终端使用CG资源传输小数据的过程可以如下:
对于具备定位能力,同时具备TA预补偿能力的UE,该UE基于自己维护的有效的TA或者基于GNSS定位能力和星历信息,和/或网络广播的公共TA确定的TA,在CG上发送小数据。UE完成CG传输之后根据UE与网络之间的信号传输往返时延确定第一响应窗定时器的启动时刻。
该实施过程如下:
步骤1,NR UE接收网络的RRC release消息,指示将UE释放到RRC INACTIVE态,该RRC release消息中包含CG配置,该CG配置用于该UE在RRC INACTIVE态传输小数据。处于RRC INACTIVE态的UE使用该CG发送上行数据。
对于具备定位能力同时具备TA预补偿能力的UE,该UE在使用CG发送上行传输之前,先确定自己的TA,并使用该TA在CG上发送PUSCH。UE确定TA的方法如下:
方法1:UE不需要进行TA有效性验证。UE基于GNSS定位能力和星历信息,和/或网络广播的公共TA确定自己的TA。
对于透明转发NTN网络架构,UE基于定位能力和星历信息估算service link对应的TA_service link:如果网络广播了针对NTN小区的common TA,则UE确定补偿的TA为TA=TA_service link+common TA;如果网络没有广播common TA,则UE确定补偿的TA为TA=TA_service link。
对于再生转发NTN网络架构,UE基于定位能力和星历信息估算service link对应的TA_service link,则UE确定补偿的TA为TA=TA_service link。
方法2:UE先进行TA有效性验证。如果验证结果为TA有效,则UE使用当前的维护TA值。如果验证结果为TA无效,则UE基于方法1确定自己的TA。
对于不具备基于定位能力进行TA预补偿能力的UE,该UE先进行TA有效性验证,在验证结果为TA有效的情况下,UE可以使用CG传输数据。
步骤2,UE在使用CG完成PUSCH的第一次重复传输(repeptition)或者最后一次重复传输之后的一个时间偏移offset之后启动第一响应窗定时器,并且在该第一响应窗定时器运行期间监听第一RNTI加扰的PDCCH。该第一响应窗定时器的时长由网络配置,该第一RNTI为UE专属RNTI。其中,offset的取值为offset=RTT;或者offset为RTT,以及特定的时间 间隔中的最大值,其中,该特定的时间间隔可以是完成上述PUSCH的第一次重复传输(repeptition)或者最后一次重复传输的时刻,到下一个PDCCH监听时机的时间间隔;其中,该RTT为UE与基站之间的RTT。
对于透明转发NTN网络架构,RTT为UE与地面基站之间的RTT。其确定方法为:如果网络广播了一个common offset,则RTT=TA+common offset,该common offset为网络补偿的TA(即网络侧UL定时相对于UL定时的提前偏移量);如果网络没有广播common offset,则RTT=TA。
对于再生转发NTN网络架构,RTT为UE与卫星之间的RTT,即RTT=TA。
步骤3,在该第一响应窗定时器运行期间,如果UE接收到第一RNTI加扰的PDCCH,并且该PDCCH指示了用于上行重传的上行授权,则UE在收到该PDCCH时停止该第一响应窗定时器。UE在该上行授权资源上进行重传,并在完成PUSCH传输之后的一个时间偏移offset之后重启该第一响应窗定时器。
请参考图8,其示出了本申请一个实施例提供的UE行为时序图。上述示例性的方案中,UE的上行传输、定时器启动、以及响应监听的时序可以参考图8所示。
在基于上述图5所示实施例的一个示例性的方案中,UE完成CG传输之后,可以根据UE与网络之间的信号传输往返时延确定第一响应窗定时器的时长。
该实施过程如下:
步骤1,NR UE接收网络的RRC release消息,指示将UE释放到RRC INACTIVE态,该RRC release消息中包含CG配置,该CG配置用于该UE在RRC INACTIVE态传输小数据。处于RRC INACTIVE态的UE使用该CG发送上行数据。
步骤2,UE在使用CG完成PUSCH的第一次重复传输,或者最后一次重复传输之后的第一个时间单元(如时间符号)或者第一次PDCCH监听时机启动第一响应窗定时器,并且在该第一响应窗定时器运行期间监听第一RNTI加扰的PDCCH。该第一响应窗定时器的时长为第一时长+offset,其中第一时长由网络配置,offset的取值为offset为RTT和特定的时间间隔的差值;或者offset为RTT和特定的时间间隔中的最大值,与该特定的时间间隔之间的差值(或者说,offset为:RTT和特定的时间间隔之间的差值,与0之间的最大值);其中,上述特定的时间间隔可以是完成上述PUSCH的第一次重复传输(repeptition)或者最后一次重复传输的时刻,到下一个PDCCH监听时机之间的时间间隔;该RTT为UE与基站之间的RTT。该第一RNTI为UE专属RNTI。
步骤3,在该第一响应窗定时器运行期间,如果UE接收到该第一RNTI加扰的PDCCH,并且该PDCCH指示了用于上行重传的上行授权,则UE在收到该PDCCH时停止该第一响应窗定时器。UE在该上行授权资源上进行重传,并在完成PUSCH的第一次重复传输(repetition)或者最后一次重复传输之后的第一个时间单元(如时间符号)或者第一次PDCCH监听时机启动第一响应窗定时器,并且在该第一响应窗定时器运行期间监听第一RNTI加扰的PDCCH。
请参考图9,其示出了本申请一个实施例提供的UE行为时序图。上述示例性的方案中,UE的上行传输、定时器启动、以及响应监听的时序可以参考图9所示。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图10,其示出了本申请一个实施例提供的定时器启动装置的框图。该装置用于终端中,且具有实现上述定时器启动方法中,由终端执行的步骤的功能。如图10所示,该装置可以包括:
参数确定装置1001,用于基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述 上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
定时器启动模块1002,用于在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
在一种可能的实现方式中,当所述上行传输是基于预配置上行资源PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,所述启动时间偏移量是所述RTT和第一时间偏移量中的最大值,或者,所述启动时间偏移量是所述RTT。
在一种可能的实现方式中,所述第一时间偏移量的值为预定义的数值。
在一种可能的实现方式中,所述第一时间偏移量为4个子帧。
在一种可能的实现方式中,当所述上行传输是基于配置授权CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,所述启动时间偏移量是所述RTT和第二时间偏移量中的最大值,或者,所述启动时间偏移量是所述RTT;
其中,所述第一RNTI用于指示针对RRC_INACTIVE态的CG传输的重传调度。
在一种可能的实现方式中,所述第二时间偏移量的值为预定义的数值。
在一种可能的实现方式中,所述第二时间偏移量的值为所述终端完成所述上行传输的第一次重复传输到下一个物理下行控制信道PDCCH监听时机的时间间隔;
或者,所述第二时间偏移量的值为所述终端完成所述上行传输的最后一次重复传输到下一个PDCCH监听时机的时间间隔。
在一种可能的实现方式中,所述定时器时长是基于时长偏移量以及初始定时器时长确定的,所述初始定时器时长由网络配置。
在一种可能的实现方式中,定时器时长是所述时长偏移量与所述初始定时器时长之和。
在一种可能的实现方式中,当所述上行传输是基于PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,
所述时长偏移量是所述RTT和第三时间偏移量中的最大值,与所述第三时间偏移量之间的差值;或者,所述时长偏移量是所述RTT,与所述第三时间偏移量之间的差值。
在一种可能的实现方式中,所述第三时间偏移量的值为预定义的数值。
在一种可能的实现方式中,所述第三时间偏移量为4个子帧。
在一种可能的实现方式中,当所述上行传输是基于CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,
时长偏移量是RTT和第四时间偏移量中的最大值,与所述第四时间偏移量之间的差值;
或者,所述时长偏移量是所述RTT与第四时间偏移量之间的差值。
在一种可能的实现方式中,所述第四时间偏移量的值为预定义的数值。
在一种可能的实现方式中,所述第四时间偏移量的值为所述终端完成所述上行传输的第一次重复传输到下一个PDCCCH监听时机的时间间隔;
或者,所述第四时间偏移量的值为所述终端完成所述上行传输的最后一次重复传输到下一个PDCCCH监听时机的时间间隔。
在一种可能的实现方式中,所述上行传输使用的混合自动重传请求HARQ进程,为开启上行HARQ重传功能的HARQ进程。
在一种可能的实现方式中,当所述终端所在网络是基于透明转发架构的非地面通信网络NTN时,所述RTT是所述终端与所述NTN中的地面基站之间的无线信号往返传播延时。
在一种可能的实现方式中,当所述终端接收到系统指示的第一公共偏移量时,所述RTT是所述第一公共偏移量与所述终端的上行提前TA之和;
当所述终端未接收到系统指示的所述第一公共偏移量时,所述RTT是所述终端的TA。
在一种可能的实现方式中,当所述终端所在网络是基于再生转发架构的NTN时,所述RTT是所述终端与所述NTN中的卫星之间的无线信号往返传播延时。
在一种可能的实现方式中,所述RTT是所述终端的TA。
在一种可能的实现方式中,所述装置还包括:
第一上行提前获取模块,用于在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
第二上行提前获取模块,用于基于所述服务链路TA,获取所述终端的TA。
在一种可能的实现方式中,所述第二上行提前获取模块,用于,
当所述终端所在网络是基于透明转发架构的NTN,且所述终端接收到系统指示的公共TA时,将所述服务链路TA与所述公共TA之和作为所述终端的TA;
当所述终端所在网络是基于透明转发架构的NTN,且所述终端未接收到系统指示的公共TA时,将所述服务链路TA作为所述终端的TA。
在一种可能的实现方式中,所述第二上行提前获取模块,用于当所述终端所在网络是基于再生转发架构的NTN时,将所述服务链路TA作为所述终端的TA。
在一种可能的实现方式中,所述第一上行提前获取模块,用于在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,在不对所述终端维护的TA进行有效性检验的情况下,基于所述定位能力和星历信息,获取所述终端的服务链路TA。
在一种可能的实现方式中,所述装置还包括:
检验模块,应于在终端执行所述上行传输之前,对所述终端维护的TA进行有效性检验;
第一上行提前获取模块,用于当终端维护的TA未通过有效性检验,且所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA。
在一种可能的实现方式中,所述装置还包括:
第三上行提前获取模块,用于当所述终端维护的TA通过有效性检验时,将所述终端维护的TA,作为所述终端的TA。
在一种可能的实现方式中,所述终端是处于非无线资源控制RRC激活态的终端。
综上所述,在本申请实施例所示的方案中,对于上行小数据对应的上行传输对应的响应时间窗定时器,终端可以基于终端和网络侧设备之间的RTT,更准确的确定定时器的启动时间偏移量和/或定时器时长,从而更准确的控制对网络侧的响应进行监听的时间,进而实现对上述响应的准确接收,提高上行小数据的传输效果,此外,还可以避免终端对下行控制信号进行不必要的监听,达到终端省电的效果。
请参考图11,其示出了本申请一个实施例提供的上行提前获取装置的框图。该装置用于终端中,且具有实现上述定时器启动/上行提前获取方法中,由终端执行的步骤的功能。如图11所示,该装置可以包括:
第一上行提前获取模块1101,用于在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
第二上行提前获取模块1102,用于基于所述服务链路TA,获取所述终端的TA。
综上所述,在本申请实施例所示的方案中,当终端和网络侧设备之间存在服务链路时,终端可以结合定位能力和星历信息,获取到由于NTN中的服务链路的距离影响而需要补偿的服务链路TA,再根据服务链路TA来获取终端的TA,从而实现对终端进行上行传输所需要的TA的准确预测,尽可能的降低了NTN网络中终端和卫星之间的通信距离对于上行小数据对应的上行传输的影响,提高了NTN网络中的上行传输的准确性,此外,还可以避免终端对下行控制信号进行不必要的监听,达到终端省电的效果。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施 例中进行了详细描述,此处将不做详细阐述说明。
请参考图12,其示出了本申请一个实施例提供的计算机设备1200的结构示意图。该计算机设备1200可以包括:处理器1201、接收器1202、发射器1203、存储器1204和总线1205。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1202和发射器1203可以实现为一个通信组件,该通信组件可以是一块通信芯片。该通信芯片也可以称为收发器。
存储器1204通过总线1205与处理器1201相连。存储器1204可用于存储计算机程序,处理器1201用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在示例性实施例中,所述计算机设备包括处理器、存储器和收发器(该收发器可以包括接收器和发射器,接收器用于接收信息,发射器用于发送信息);
在一种可能的实现方式中,当计算机设备实现为终端时,
所述处理器,用于基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
所述处理器,还用于在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
在另一种可能的实现方式中,当计算机设备实现为终端时,
所述处理器,用于在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
所述处理器,还用于基于所述服务链路TA,获取所述终端的TA。
本申请实施例中的终端执行的各个方法步骤可以参考上述图3、图4或图5所示实施例中由终端执行的全部或者部分步骤,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述图3、图4或图5所示的方法中,由终端执行的各个步骤。
本申请还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述图3、图4或图5所示的方法中,由终端执行的各个步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (33)

  1. 一种定时器启动方法,其特征在,所述方法由终端执行,所述方法包括:
    基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
    在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
  2. 根据权利要求1所述的方法,其特征在于,当所述上行传输是基于预配置上行资源PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,
    所述启动时间偏移量是所述RTT和第一时间偏移量中的最大值;
    或者,所述启动时间偏移量是所述RTT。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时间偏移量的值为预定义的数值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时间偏移量为4个子帧。
  5. 根据权利要求1所述的方法,其特征在于,
    当所述上行传输是基于配置授权CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,
    所述启动时间偏移量是所述RTT和第二时间偏移量中的最大值;
    或者,所述启动时间偏移量是所述RTT;
    其中,所述第一RNTI用于指示针对RRC_INACTIVE态的CG传输的重传调度。
  6. 根据权利要求5所述的方法,其特征在于,所述第二时间偏移量的值为预定义的数值。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述第二时间偏移量的值为所述终端完成所述上行传输的第一次重复传输到下一个物理下行控制信道PDCCH监听时机的时间间隔;
    或者,所述第二时间偏移量的值为所述终端完成所述上行传输的最后一次重复传输到下一个PDCCH监听时机的时间间隔。
  8. 根据权利要求1所述的方法,其特征在于,
    所述定时器时长是基于时长偏移量以及初始定时器时长确定的,所述初始定时器时长由网络配置。
  9. 根据权利要求8所述的方法,其特征在于,所述定时器时长是所述时长偏移量与所述初始定时器时长之和。
  10. 根据权利要求8或9所述的方法,其特征在于,当所述上行传输是基于PUR执行的传输,或者是基于PUR无线网络临时标识PUR-RNTI加扰的物理下行控制信道PDCCH指示的上行重传时,
    所述时长偏移量是所述RTT和第三时间偏移量中的最大值,与所述第三时间偏移量之间的差值;
    或者,所述时长偏移量是所述RTT,与第三时间偏移量之间的差值。
  11. 根据权利要求10所述的方法,其特征在于,所述第三时间偏移量的值为预定义的数值。
  12. 根据权利要求11所述的方法,其特征在于,所述第三时间偏移量为4个子帧。
  13. 根据权利要求8或9所述的方法,其特征在于,当所述上行传输是基于CG资源执行的传输,或者是基于第一RNTI加扰的PDCCH指示的上行重传时,
    所述时长偏移量是所述RTT和第四时间偏移量中的最大值,与所述第四时间偏移量之间 的差值;
    或者,所述时长偏移量是所述RTT与第四时间偏移量之间的差值。
  14. 根据权利要求13所述的方法,其特征在于,所述第四时间偏移量的值为预定义的数值。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述第四时间偏移量的值为所述终端完成所述上行传输的第一次重复传输到下一个PDCCCH监听时机的时间间隔;
    或者,所述第四时间偏移量的值为所述终端完成所述上行传输的最后一次重复传输到下一个PDCCCH监听时机的时间间隔。
  16. 根据权利要求1至15任一所述的方法,其特征在于,
    所述上行传输使用的混合自动重传请求HARQ进程,为开启上行HARQ重传功能的HARQ进程。
  17. 根据权利要求1至16任一所述的方法,其特征在于,
    当所述终端所在网络是基于透明转发架构的非地面通信网络NTN时,所述RTT是所述终端与所述NTN中的地面基站之间的无线信号往返传播延时。
  18. 根据权利要求17所述的方法,其特征在于,
    当所述终端接收到系统指示的第一公共偏移量时,所述RTT是所述第一公共偏移量与所述终端的上行提前TA之和;
    当所述终端未接收到系统指示的所述第一公共偏移量时,所述RTT是所述终端的TA。
  19. 根据权利要求1至18任一所述的方法,其特征在于,
    当所述终端所在网络是基于再生转发架构的NTN时,所述RTT是所述终端与所述NTN中的卫星之间的无线信号往返传播延时。
  20. 根据权利要求19所述的方法,其特征在于,所述RTT是所述终端的TA。
  21. 根据权利要求1至20任一所述的方法,其特征在于,所述方法还包括:
    在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
    基于所述服务链路TA,获取所述终端的TA。
  22. 根据权利要求21所述的方法,其特征在于,所述基于所述服务链路TA,获取所述终端的TA,包括:
    当所述终端所在网络是基于透明转发架构的NTN,且所述终端接收到系统指示的公共TA时,将所述服务链路TA与所述公共TA之和作为所述终端的TA;
    当所述终端所在网络是基于透明转发架构的NTN,且所述终端未接收到系统指示的公共TA时,将所述服务链路TA作为所述终端的TA。
  23. 根据权利要求21所述的方法,其特征在于,所述基于所述服务链路TA,获取所述终端的TA,包括:
    当所述终端所在网络是基于再生转发架构的NTN时,将所述服务链路TA作为所述终端的TA。
  24. 根据权利要求21至23任一所述的方法,其特征在于,所述在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA,包括:
    在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,在不对所述终端维护的TA进行有效性检验的情况下,基于所述定位能力和星历信息,获取所述终端的服务链路TA。
  25. 根据权利要求21至23任一所述的方法,其特征在于,所述在所述终端执行所述上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息, 获取所述终端的服务链路TA之前,还包括:
    在所述终端执行所述上行传输之前,对所述终端维护的TA进行有效性检验;
    所述当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA,包括:
    当所述终端维护的TA未通过有效性检验,且所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    当所述终端维护的TA通过有效性检验时,将所述终端维护的TA,作为所述终端的TA。
  27. 根据权利要求1至26任一所述的方法,其特征在于,
    所述终端是处于非无线资源控制RRC激活态的终端。
  28. 一种上行提前获取方法,其特征在于,所述方法由终端执行,所述方法包括:
    在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
    基于所述服务链路TA,获取所述终端的TA。
  29. 一种定时器启动装置,其特征在,所述装置用于终端中,所述装置包括:
    参数确定装置,用于基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
    定时器启动模块,用于在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
  30. 一种上行提前获取装置,其特征在于,所述装置由终端执行,所述装置包括:
    第一上行提前获取模块,用于在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
    第二上行提前获取模块,用于基于所述服务链路TA,获取所述终端的TA。
  31. 一种计算机设备,其特征在于,所述计算机设备实现为终端,所述计算机设备包括处理器、存储器和收发器;
    所述处理器,用于基于所述终端和网络侧设备之间的往返时延RTT,确定响应时间窗定时器的控制参数;所述控制参数包括定时器的启动时间偏移量和定时器时长中的至少一种;所述定时器的启动时间偏移量为上行小数据对应的上行传输的结束时刻,与针对所述上行传输的响应时间窗定时器的启动时刻之间的时间间隔;
    所述处理器,还用于在所述终端执行所述上行传输之后,基于所述控制参数启动所述上行传输对应的响应时间窗定时器。
  32. 一种计算机设备,其特征在于,所述计算机设备实现为终端,所述计算机设备包括处理器、存储器和收发器;
    所述处理器,用于在所述终端执行上行小数据对应的上行传输之前,当所述终端具有定位能力和TA预补偿能力时,基于所述定位能力和星历信息,获取所述终端的服务链路TA;
    所述处理器,还用于基于所述服务链路TA,获取所述终端的TA。
  33. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至27任一项所述的定时器启动方法,或者,实现如权利要求28所述的上行提前获取方法。
PCT/CN2021/071928 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质 WO2022151272A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180071607.7A CN116438864A (zh) 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质
CN202311333637.8A CN117156542A (zh) 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质
PCT/CN2021/071928 WO2022151272A1 (zh) 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质
EP21918480.1A EP4271062A4 (en) 2021-01-14 2021-01-14 TIMER START METHOD AND DEVICE AS WELL AS TERMINAL AND STORAGE MEDIUM
US18/338,426 US20230337165A1 (en) 2021-01-14 2023-06-21 Timer starting method and apparatus, and terminal and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071928 WO2022151272A1 (zh) 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,426 Continuation US20230337165A1 (en) 2021-01-14 2023-06-21 Timer starting method and apparatus, and terminal and storage medium

Publications (1)

Publication Number Publication Date
WO2022151272A1 true WO2022151272A1 (zh) 2022-07-21

Family

ID=82446351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071928 WO2022151272A1 (zh) 2021-01-14 2021-01-14 定时器启动方法、装置、终端及存储介质

Country Status (4)

Country Link
US (1) US20230337165A1 (zh)
EP (1) EP4271062A4 (zh)
CN (2) CN117156542A (zh)
WO (1) WO2022151272A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202045A1 (zh) * 2017-05-04 2018-11-08 维沃移动通信有限公司 定时器配置方法、用户终端、网络侧设备和系统
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3184111A1 (en) * 2020-08-20 2022-02-24 Min Xu Methods and apparatuses for transmission using preconfigured uplink resource

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202045A1 (zh) * 2017-05-04 2018-11-08 维沃移动通信有限公司 定时器配置方法、用户终端、网络侧设备和系统
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Timing Advance, Random Access and DRX aspects in NTN", 3GPP DRAFT; R2-2007590, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051912263 *
See also references of EP4271062A4 *

Also Published As

Publication number Publication date
US20230337165A1 (en) 2023-10-19
CN116438864A (zh) 2023-07-14
EP4271062A1 (en) 2023-11-01
EP4271062A4 (en) 2024-03-06
CN117156542A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023123514A1 (zh) Gnss有效性的处理方法、装置、设备及存储介质
WO2021062726A1 (zh) 随机接入方法、终端设备、网络设备及存储介质
US20230208508A1 (en) Transmission control method and apparatus, device, and storage medium
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20220151015A1 (en) Method and apparatus for data transmission, terminal, and storage medium
US20220353855A1 (en) Random access resource configuration method and apparatus, device, and storage medium
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
WO2022011710A1 (zh) 上行定时提前的更新方法、装置、设备及介质
WO2022151272A1 (zh) 定时器启动方法、装置、终端及存储介质
WO2022077141A1 (zh) 随机接入响应接收窗的确定方法、装置、设备及介质
WO2022205223A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2022205232A1 (zh) 覆盖增强等级的确定方法、配置方法、装置及存储介质
WO2022116099A1 (zh) 随机接入的触发控制方法、装置、设备及存储介质
WO2021179139A1 (zh) 一种释放上行资源的方法、终端设备、网络设备
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2022104602A1 (zh) Ntn中定时提前的上报方法、接收方法、装置及设备
WO2023130272A1 (zh) 信息处理方法、装置、设备及存储介质
WO2022232991A1 (zh) Pdcch监听方法及drx上行重传定时器的控制方法
WO2023065171A1 (zh) 数据传输处理方法、装置、设备及存储介质
WO2022141414A1 (zh) 公共信息的广播方法、装置、设备及介质
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2022160137A1 (zh) 无线通信方法、终端设备和网络设备
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
WO2022082353A1 (zh) 非连续接收重传定时器的启动方法、装置、设备及介质
WO2023245594A1 (zh) 无线通信方法、终端设备以及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021918480

Country of ref document: EP

Effective date: 20230725

NENP Non-entry into the national phase

Ref country code: DE