WO2022040867A1 - 随机接入的方法、终端设备和网络设备 - Google Patents

随机接入的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022040867A1
WO2022040867A1 PCT/CN2020/110834 CN2020110834W WO2022040867A1 WO 2022040867 A1 WO2022040867 A1 WO 2022040867A1 CN 2020110834 W CN2020110834 W CN 2020110834W WO 2022040867 A1 WO2022040867 A1 WO 2022040867A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset value
random access
time offset
information
terminal device
Prior art date
Application number
PCT/CN2020/110834
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080103046.XA priority Critical patent/CN115843462A/zh
Priority to PCT/CN2020/110834 priority patent/WO2022040867A1/zh
Publication of WO2022040867A1 publication Critical patent/WO2022040867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to a random access method, terminal device, and network device.
  • the terminal device After the terminal device sends the first message (message 1, Msg1) in the four-step random access, it starts the random access response (Random Access Response, RAR) time window (window) and starts monitoring the four-step random access.
  • the second message in the access (message 2, Msg2).
  • the signal propagation delay between the terminal equipment and the satellite in the non-terrestrial communication network increases greatly. In this case, how to start the RAR window during the random access process is a Problems to be solved.
  • the embodiments of the present application provide a random access method, terminal device, and network device.
  • the terminal device can open the random access time window at an appropriate time, so as to achieve the purpose of saving power of the terminal .
  • a method for random access comprising:
  • the terminal device selects a target time offset value from the first time offset value and the second time offset value, where the first time offset value is the TA determined by the terminal device, and the second time offset value is configured by the network device
  • the terminal device uses the target time offset value as the start time offset value of the random access time window.
  • a method for random access comprising:
  • the network device selects a target time offset value from the first time offset value and the second time offset value, where the target time offset value is an activation time offset value of the random access time window, and the first time offset value is For the TA determined by the terminal device, the second time offset value is the TA offset value configured by the network device;
  • the network device sends first information, where the first information is used to indicate that the first time offset value is used as the target time offset value, or the first information is used to indicate that the second time offset value is used as the target time offset value Target time offset value.
  • a terminal device for executing the method in the above-mentioned first aspect.
  • the terminal device includes functional modules for executing the method in the first aspect.
  • a network device for executing the method in the second aspect.
  • the network device includes functional modules for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect.
  • an apparatus for implementing the method in any one of the above-mentioned first to second aspects.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device on which the apparatus is installed executes the method in any one of the first to second aspects above.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the first to second aspects above.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the first to second aspects above.
  • a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to second aspects.
  • the network device instructs the TA determined by the terminal device or the TA offset value configured by the network device as the start time offset value of the random access time window, so that the terminal device can open the random access time window at an appropriate time , so as to achieve the purpose of terminal power saving.
  • FIG. 1 is a schematic diagram of a communication system architecture to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic flowchart of a four-step random access provided by the present application.
  • FIG. 3 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another random access method provided according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of maintaining a random access time window according to an embodiment of the present application.
  • FIG. 6 is another schematic flowchart of maintaining a random access time window provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of still another random access time window maintenance provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of still another random access time window maintenance provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the NR system defines the deployment scenarios of NTN systems including satellite networks.
  • NTN generally uses satellite communication to provide communication services to terrestrial users.
  • satellite communication has many unique advantages.
  • satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • Communication satellites are classified into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and highly elliptical orbits according to different orbital altitudes. (High Elliptical Orbit, HEO) satellites, etc.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of LEO satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the orbital altitude of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • the satellite uses multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover dozens of diameters. to hundreds of kilometers of ground.
  • the four-step random access includes:
  • Step 1 the terminal device sends a random access preamble (Preamble, namely Msg 1) to the network device.
  • Preamble namely Msg 1
  • the random access preamble may also be referred to as a preamble, a random access preamble sequence, a preamble sequence, or the like.
  • the terminal device may select physical random access channel (Physical Random Access Channel, PRACH) resources, and the PRACH resources may include time domain resources, frequency domain resources and code domain resources.
  • the network device sends random access related parameters to the terminal device by broadcasting a System Information Block (SIB) 1, wherein the random access common configuration information element (RACH-ConfigCommon IE) is for the synchronization signal block (Synchronization Signal Block, The Reference Signal Receiving Power (RSRP) threshold value (rsrp-ThresholdSSB) of the SSB) is used for the terminal device to select the SSB.
  • SIB System Information Block
  • RACH-ConfigCommon IE random access common configuration information element
  • RSRP Reference Signal Receiving Power
  • the terminal device compares the RSRP measurement result under each SSB with the rsrp-ThresholdSSB, and selects The SSB whose measured value is higher than the configured threshold value is used for access, and if there is no SSB that meets the configured threshold value, one is randomly selected from all SSBs for access.
  • Each SSB corresponds to a set of random access preamble (Preamble) resources and random access opportunity (RACH Occasion, RO) resources, and the terminal device randomly selects from the contention-based random access resources in the selected SSB, Set the Preamble index (PREAMBLE_INDEX) to the selected random access preamble.
  • Preamble random access preamble
  • RACH Occasion, RO random access opportunity
  • the network device can estimate the transmission delay between it and the terminal device according to the Preamble, and calibrate the uplink timing accordingly, and can roughly determine the resource size required by the terminal device to transmit Msg 3.
  • the Preamble is divided into Preamble group (group) A and Preamble group B. If there is Preamble group B in the random access resource, The terminal device can select the Preamble group according to the size of Msg 3 and pathloss.
  • Step 2 the network device sends a random access response (Random Access Response, RAR, namely Msg 2) to the terminal device
  • a random access response time window (RAR Window) can be opened, and the corresponding random access wireless network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI) can be detected in the RAR Window.
  • RAR Window Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the terminal device detects the PDCCH scrambled by the RA-RNTI, it can obtain the Physical Downlink Shared Channel (PDSCH) scheduled by the PDCCH.
  • the PDSCH includes the RAR corresponding to the Preamble.
  • the RA-RNTI is calculated according to the time-frequency position of the PRACH that sends the Preamble. Therefore, if multiple terminal devices send the Preamble on the same RO, the corresponding RARs are multiplexed in the same RAR media access control protocol data unit (Media Access Control Protocol). Protocol Data Unit, MAC PDU).
  • Media Access Control Protocol Media Access Control Protocol
  • Protocol Data Unit MAC PDU
  • the terminal successfully receives the PDCCH scrambled by the RA-RNTI corresponding to the RO resource sending the Preamble, and the RAR contains a random access sequence identifier (Random Access Preamble Identifier, RAPID) carried by a MAC sub-PDU (subPDU) and the above
  • RAPID Random Access Preamble Identifier
  • the RAR reception is successful, and the terminal can decode to obtain the Timing Advance Command (TAC), the uplink grant resource (UL Grant) and the Temporary Cell Radio Network Temporary Identity, TC- RNTI), Msg 3 was performed.
  • TAC Timing Advance Command
  • UL Grant uplink grant resource
  • TC- RNTI Temporary Cell Radio Network Temporary Identity
  • the terminal device needs to retransmit Msg 1. If the transmission times of Preamble exceed the network configuration The maximum number of transmissions (preambleTransMax), the terminal device reports the random access problem to the upper layer.
  • Step 3 the terminal device sends Msg 3.
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR belongs to its own RAR message. For example, the terminal device can use the preamble index to check. , RRC) layer generates Msg 3, and sends Msg 3 to the network device, which needs to carry the identification information of the terminal device, etc.
  • RRC Radio Resource Control
  • Msg 3 is mainly used to notify the network device of the trigger event of the random access.
  • the Msg 3 sent by the terminal device in step 3 may include different contents.
  • Msg 3 may include an RRC connection request message (RRC Setup Request) generated by the RRC layer.
  • RRC Setup Request RRC connection request message
  • Msg 3 may also carry, for example, a 5G-serving temporary mobile subscriber identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) or a random number of the terminal device.
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include an RRC connection reestablishment request message (RRC Reestabilshment Request) generated by the RRC layer.
  • RRC Reestabilshment Request RRC connection reestablishment request message
  • the Msg 3 may also carry, for example, a Cell Radio Network Temporary Identifier (C-RNTI) and the like.
  • C-RNTI Cell Radio Network Temporary Identifier
  • Msg 3 may include an RRC handover confirmation message (RRC Handover Confirm) generated by the RRC layer, which carries the C-RNTI of the terminal device.
  • RRC Handover Confirm RRC handover confirmation message
  • Msg 3 may also carry information such as a buffer status report (Buffer Status Report, BSR).
  • BSR Buffer Status Report
  • Msg 3 may include at least the C-RNTI of the terminal device.
  • Step 4 the network device sends a conflict resolution message (contention resolution), namely Msg 4, to the terminal device.
  • a conflict resolution message contention resolution
  • the network device sends Msg 4 to the terminal device, and the terminal device correctly receives the Msg 4 to complete the contention resolution (Contention Resolution).
  • the Msg 4 may carry the RRC connection establishment message.
  • the network device Since the terminal device in step 3 can carry its own unique identifier in Msg 3, in the competition resolution mechanism, the network device will carry the unique identifier of the terminal device in Msg 4 to designate the terminal device that wins the competition. And other terminal devices that do not win in the contention resolution will re-initiate random access.
  • contention conflict resolution can be done in two ways:
  • Mode 1 If the terminal device carries the C-RNTI in Msg 3, then Msg 4 can be scheduled with the PDCCH scrambled by the C-RNTI.
  • Mode 2 If the terminal device does not carry C-RNTI in Msg 3, such as initial access, Msg 4 can be scheduled with PDCCH scrambled with TC-RNTI. At this point, the contention conflict can be resolved by receiving the PDSCH of Msg 4 through the terminal device, obtaining a conflict resolution ID, and matching the conflict resolution ID with the common control channel (CCCH) service data unit (Service data unit) in Msg 3. Data Unit, SDU) to determine whether to resolve the conflict.
  • CCCH common control channel
  • Service data unit Service data unit
  • SDU Data Unit
  • the network device can know the time when the terminal sends the preamble according to the RACH time-frequency resource used to receive the preamble from the terminal device, so as to determine the initial timing advance of the terminal device according to the sending time and receiving time of the preamble ( Timing Advance, TA), and inform the terminal device through RAR.
  • the terminal device starts the RAR window and starts monitoring Msg 2 after sending Msg 1.
  • the terminal device will receive the Msg 2 sent by the base station as soon as the TA time after the Msg 1 is sent.
  • the terminal device does not need to start the RAR window immediately after sending the Msg 1, which will cause additional power consumption of the terminal, and due to The inappropriate configuration of the RAR window causes the terminal device to fail to receive Msg 2 correctly before the end of the RAR window. How to start the RAR window during the random access process of NTN is an urgent problem to be solved.
  • the present application proposes a random access solution.
  • the terminal device can open the random access time window at an appropriate time, so as to realize the purpose of saving power of the terminal.
  • FIG. 3 is a schematic flowchart of a random access method 200 according to an embodiment of the present application. As shown in FIG. 3 , the method 200 may include at least part of the following contents:
  • the terminal device selects a target time offset value from the first time offset value and the second time offset value, where the first time offset value is the TA determined by the terminal device, and the second time offset value is the network
  • the terminal device uses the target time offset value as the start time offset value of the random access time window.
  • the terminal device may select the target time offset value from the first time offset value and the second time offset value, that is, after the terminal device has sent the first random access information
  • the start time offset value of the window, the random access time window is used for the terminal device to monitor the second random access information.
  • the first random access information may be Msg1
  • the second random access information may be Msg2
  • the random access time window may be the random access response time window (RAR). Window).
  • the first random access information may be the first piece of information (messageA, MsgA) in the two-step random access
  • the second random access information may be the first piece of information in the two-step random access
  • the random access time window may be a time window (MsgB window) received for MsgB in the two-step random access.
  • the random access time window is a random access response time window (RAR Window) of four-step random access, and the terminal device monitors Msg 2 during the operation of the random access time window.
  • RAR Window random access response time window
  • the random access time window is a time window (MsgB window) for receiving the second message (MsgB) in the two-step random access, and the terminal device monitors Msg B during the operation of the random access time window.
  • the terminal device may determine the TA by estimating the TA by itself.
  • the network device can configure the TA offset value by broadcasting system information.
  • the method 200 may be applied to an NTN system, that is, the network device may be a satellite in NTN.
  • the method 200 can also be applied to some other communication systems, which is not limited in this application.
  • the terminal device is a terminal that does not have the pre-compensation capability in the time domain and/or the frequency domain.
  • the terminal device cannot determine the start time offset value of the random access time window based on the time domain and/or frequency domain precompensation capability, and the terminal device can start the random access according to the target time offset value. Time Window.
  • the terminal device in this embodiment of the present application is not limited to a terminal that does not have the time domain and/or frequency domain pre-compensation capability, and may also be a terminal that has the time domain and/or frequency domain pre-compensation capability. In this case, the terminal device may ignore its time domain and/or frequency domain pre-compensation capability, and start the random access time window according to the target time offset value.
  • the terminal device receives first information sent by a network device, where the first information is used to indicate that the first time offset value is used as the target time offset value, or the first information A piece of information is used to indicate that the second time offset value is used as the target time offset value.
  • the terminal device may select the target time offset value from the first time offset value and the second time offset value according to the first information.
  • the network device can instruct the terminal device to use the TA determined by itself or the TA offset value configured by the network device as the start time offset value of the random access time window after sending the first random access information.
  • the first information is carried in configuration information.
  • the configuration information can be used to configure PRACH resources (ie, resources of Msg 1).
  • the configuration information can be used to configure PRACH resources and physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resources (that is, MsgA resources).
  • PRACH resources Physical Uplink Shared Channel, PUSCH resources
  • PUSCH Physical Uplink Shared Channel
  • the configuration information is carried in broadcast information, or the configuration information is carried in RRC signaling.
  • the configuration information may be a public configuration of a cell.
  • the configuration information is RRC reconfiguration information or RRC release information.
  • the terminal device can use the configuration information after entering an idle state (idle) or an inactive state (inactive).
  • the terminal device starts the random access time window according to the target time offset value.
  • the terminal device sends the first random access information; and after the target time offset value of the completion of sending the first random access information, the terminal device starts the random access time window.
  • the target time offset value is a TA determined by the terminal device, that is, the terminal device selects the first time offset value as the target time offset value.
  • the terminal device estimates the TA according to the round-trip propagation delay between it and the satellite.
  • the terminal device calculates the round-trip propagation delay according to its own position information and ephemeris information.
  • the terminal device obtains its own position information through a Global Navigation Satellite System (Global Navigation Satellite System, GNSS) capability.
  • GNSS Global Navigation Satellite System
  • the round-trip propagation delay is the TA.
  • the network device is a satellite.
  • the sum of the round-trip propagation delay and the feeder link round-trip delay is the TA.
  • the network device and the satellite are not the same device.
  • the terminal device can obtain its own position information through the GNSS capability, and calculate the round-trip propagation delay D 0 between the terminal device and the satellite in combination with the ephemeris information.
  • the terminal device obtains the feeder link through the system information broadcast by the network device.
  • the feeder link round-trip delay is obtained through system information broadcast by the network device.
  • the terminal device needs to have positioning capability.
  • the terminal device can realize positioning based on a global positioning system (Global Positioning System, GPS), Beidou and other positioning systems.
  • GPS Global Positioning System
  • Beidou Beidou and other positioning systems.
  • the network device receives the first random access information sent by the terminal device; and after receiving the first random access information, the network device sends the second random access information to the terminal device information without waiting for the first random access information sent by other terminals within its coverage.
  • Example 1 the network device responds as soon as possible after receiving the first random access information, without waiting for the reception of the first random access information of other terminals within its coverage.
  • the terminal device starts the random access time window. and the terminal device monitors the second random access information during the running of the random access time window.
  • the network device can indicate its specific implementation to the terminal device, and the terminal device can refer to the implementation of the network device when starting the random access time window, so that the terminal device can be used in an appropriate manner.
  • the random access time window is opened at the right time, so as to realize the purpose of power saving of the terminal.
  • the target time offset value is the TA offset value broadcast by the network device, that is, the terminal device selects the second time offset value as the target time offset value.
  • the terminal device receives system information broadcast by the network device, where the system information is used to configure the TA offset value, or the system information includes the TA offset value.
  • the TA offset value is the maximum TA supported within the cell coverage.
  • the network device receives the first random access information sent by the terminal device, and receives the first random access information of other terminals within its coverage; and the network device sends a message to the terminal device. Send second random access information.
  • Example 2 the network device considers sending the second random access information after collecting the first random access information sent by the terminal devices at the cell center and the cell edge.
  • the terminal device starts the random access time window. and the terminal device monitors the second random access information during the running of the random access time window.
  • the network device can indicate its specific implementation to the terminal device, and the terminal device can refer to the implementation of the network device when starting the random access time window, so that the terminal device can be used in an appropriate manner.
  • the random access time window is opened at the right time, so as to realize the purpose of power saving of the terminal.
  • the first random access information is the first piece of information in the four-step random access
  • the second random access information is the second piece of information in the four-step random access.
  • the first random access information is the first piece of information in the two-step random access
  • the second random access information is the second piece of information in the two-step random access
  • the terminal device can select the target time offset value from the TA offset value it determines and the TA offset value configured by the network device, and use the target time offset value as the start time of the random access time window Offset value, so that the terminal device can open the random access time window at an appropriate time, so as to achieve the purpose of saving power of the terminal.
  • the terminal device may select the target time offset value from the TA determined by the terminal device and the TA offset value configured by the network device based on the indication of the network device.
  • terminal-side embodiment of the present application is described in detail above with reference to FIG. 3
  • network-side embodiment of the present application is described in detail below with reference to FIG. 4 . It should be understood that the terminal-side embodiment and the network-side embodiment may correspond to each other. Similar For the description, reference may be made to the embodiments on the terminal side.
  • FIG. 4 is a schematic flowchart of a random access method 300 according to an embodiment of the present application. As shown in FIG. 4 , the method 300 may include at least part of the following contents:
  • the network device selects a target time offset value from the first time offset value and the second time offset value, where the target time offset value is the start time offset value of the random access time window, and the first time offset value is The offset value is the TA determined by the terminal device, and the second time offset value is the TA offset value configured by the network device;
  • the network device sends first information, where the first information is used to indicate that the first time offset value is used as the target time offset value, or the first information is used to indicate the second time offset value as the target time offset value.
  • the TA is estimated by the terminal device according to the round-trip propagation delay between it and the satellite.
  • the round-trip propagation delay is calculated by the terminal device according to its own position information and ephemeris information.
  • the round-trip propagation delay is the TA.
  • the sum of the round-trip propagation delay and the feeder link round-trip delay is the TA.
  • the feeder link round-trip delay is obtained through system information broadcast by the network device.
  • the network device broadcasts system information, where the system information is used to configure the TA offset value.
  • the TA offset value is the maximum TA supported within the coverage of the cell.
  • S310 may specifically be:
  • the network device selects the target time offset value from the first time offset value and the second time offset value according to its response mode to the first random access information sent by the terminal device within the coverage area.
  • the network device sends the second random access information to the terminal device without waiting for the first random access information sent by other terminals within its coverage after receiving the first random access information sent by the terminal device, then the network device selects the first time offset value as the target time offset value;
  • the network device sends the second random access information to the terminal device after receiving the first random access information sent by the terminal device and after receiving the first random access information sent by other terminals within its coverage. Then the network device selects the second time offset value as the target time offset value.
  • the first random access information is the first piece of information in the four-step random access
  • the second random access information is the second piece of information in the four-step random access
  • the first random access information is the first piece of information in the two-step random access
  • the second random access information is the second piece of information in the two-step random access.
  • the terminal device is a terminal without time domain and/or frequency domain precompensation capability.
  • the method 300 is applied to a non-terrestrial communication network NTN.
  • the terminal device may select the target time offset value from the TA determined by the terminal device and the TA offset value configured by the network device based on the indication of the network device, and use the target time offset value as a random access value.
  • the start time offset value of the entry time window so that the terminal device can open the random access time window at an appropriate time, so as to achieve the purpose of saving power of the terminal.
  • Embodiment 1 and Embodiment 2 are described by taking four-step random access as an example, and Embodiment 3 and Embodiment 4 are described by taking two-step random access as an example.
  • the network device sends first information, where the first information is used to indicate that the TA estimated by the terminal device is used as the start time offset value of the random access response time window (RAR Window).
  • RAR Window random access response time window
  • UE1, UE2 and UE3 are synchronized based on the Synchronization Signal Block (SSB), as shown in Figure 5, for UE1, UE1 uses its estimated TA1 as the start time offset value of the RAR Window.
  • SSB Synchronization Signal Block
  • UE1 uses its estimated TA1 as the start time offset value of the RAR Window.
  • UE2 takes its estimated TA2 as the start time offset value of the RAR Window.
  • UE3 takes its estimated TA3 as the start time offset value of the RAR Window.
  • UE1 sends Msg1_1 after the first delay after synchronization, and UE1 starts RAR Window1 after Msg1_1 and after TA1, and monitors the random access response during the operation of this RAR Window1 (RAR_1).
  • UE2 sends Msg1_2 after the second delay after synchronization, and UE2 starts RAR Window2 after Msg1_2 and passes through TA2, and monitors the random access response (RAR_2) during the operation of this RAR Window2.
  • UE3 sends Msg1_3 after the third delay after synchronization, and UE3 starts RAR Window3 after Msg1_3 and passes TA3, and monitors the random access response (RAR_3) during the operation of this RAR Window3.
  • the network device sends first information, where the first information is used to indicate that the TA offset value broadcast by the network device is used as the start time offset value of the random access response time window (RAR Window).
  • UE1, UE2, and UE3 are synchronized based on SSB.
  • UE1 sends Msg1_1 after the first delay after synchronization, and UE1 starts RAR Window1 after Msg1_1 passes the TA offset value, and monitors the RAR Window1 during operation Random Access Response (RAR_1).
  • UE2 sends Msg1_2 after the second delay after synchronization, and UE2 starts RAR Window2 after passing through the TA offset value after Msg1_2, and monitors the random access response (RAR_2) during the operation of this RAR Window2.
  • UE3 sends Msg1_3 after the third delay after synchronization, and UE3 starts RAR Window3 after passing through the TA offset value after Msg1_3, and monitors the random access response (RAR_3) during the operation of this RAR Window3.
  • the network device sends first information, where the first information is used to indicate that the TA estimated by the terminal device is used as the start time offset value of the MsgB time window.
  • UE1, UE2 and UE3 are synchronized based on SSB. As shown in FIG. 7 , for UE1, UE1 takes its estimated TA1 as the start time offset value of the MsgB time window. For UE2, UE2 takes its estimated TA2 as the start time offset value of the MsgB time window. For UE3, UE3 takes its estimated TA3 as the start time offset value of the MsgB time window. In addition, in Embodiment 3, as shown in FIG.
  • UE1 sends MsgA_1 after the first delay after synchronization, and UE1 starts MsgB time window 1 after MsgA_1 and after TA1, and listens during the operation of MsgB time window 1 MsgB_1.
  • UE2 sends MsgA_2 with a second delay after synchronization, and UE2 starts MsgB time window 2 after TA2 after MsgA_2, and monitors MsgB_2 during the operation of this MsgB time window 2.
  • UE3 sends MsgA_3 with a third delay after synchronization, and UE3 starts MsgB time window 3 after TA3 after MsgA_3, and monitors MsgB_3 during the operation of this MsgB time window 3.
  • the network device sends first information, where the first information is used to indicate that the TA offset value broadcast by the network device is used as the start time offset value of the MsgB time window.
  • UE1, UE2 and UE3 are synchronized based on SSB. As shown in Figure 8, UE1 sends MsgA_1 after the first delay after synchronization, and UE1 starts MsgB time window 1 after MsgA_1 and passes the TA offset value, and in the MsgB time window 1 Listen to MsgB_1 during runtime.
  • UE2 sends MsgA_2 after the second delay after synchronization, and UE2 starts MsgB time window 2 after the TA offset value after MsgA_2, and monitors MsgB_2 during the operation of this MsgB time window 2.
  • UE3 sends MsgA_3 after the third delay after synchronization, and UE3 starts MsgB time window 3 after the TA offset value after MsgA_3, and monitors MsgB_3 during the operation of this MsgB time window 3.
  • FIG. 9 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to select a target time offset value from a first time offset value and a second time offset value, where the first time offset value is a timing advance TA determined by the terminal device, and the The second time offset value is the TA offset value configured by the network device;
  • the processing unit 410 is further configured to use the target time offset value as the start time offset value of the random access time window.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is configured to receive first information, where the first information is used to indicate that the first time offset value is used as the target time offset value, or the first information is used to indicate that the first time offset value is used as the target time offset value. Two time offset values are used as the target time offset value;
  • the processing unit 410 is specifically used for:
  • the target time offset value is selected from the first time offset value and the second time offset value according to the first information.
  • the processing unit 410 is further configured to estimate the TA according to the round-trip propagation delay between the terminal device and the satellite.
  • the processing unit 410 is further configured to calculate the round-trip propagation delay according to the position information and ephemeris information of the terminal device itself.
  • the round-trip propagation delay is the TA.
  • the sum of the round-trip propagation delay and the feeder link round-trip delay is the TA.
  • the feeder link round-trip delay is obtained through system information broadcast by the network device.
  • the terminal device 400 further includes: a communication unit 420,
  • the communication unit 420 is further configured to receive system information broadcast by the network device, where the system information is used to configure the TA offset value.
  • the TA offset value is the maximum TA supported within the coverage of the cell.
  • the terminal device is a terminal without time domain and/or frequency domain precompensation capability.
  • the terminal device 400 further includes: a communication unit 420, wherein:
  • the communication unit 420 is configured to send the first random access information
  • the processing unit 410 is configured to start the random access time window.
  • the communication unit 420 is further configured to monitor the second random access information during the running of the random access time window.
  • the first random access information is the first piece of information in the four-step random access
  • the second random access information is the second piece of information in the four-step random access
  • the first random access information is the first piece of information in the two-step random access
  • the second random access information is the second piece of information in the two-step random access.
  • the terminal device is applied to the non-terrestrial communication network NTN.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively for realizing the method shown in FIG. 3 .
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 10 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the processing unit 510 is configured to select a target time offset value from the first time offset value and the second time offset value, where the target time offset value is an activation time offset value of the random access time window, and the first time offset value is The time offset value is the TA determined by the terminal device, and the second time offset value is the TA offset value configured by the network device;
  • the communication unit 520 is configured to send first information, where the first information is used to indicate that the first time offset value is used as the target time offset value, or the first information is used to indicate the second time offset value value as the target time offset value.
  • the TA is estimated by the terminal device according to the round-trip propagation delay between it and the satellite.
  • the round-trip propagation delay is calculated by the terminal device according to its own position information and ephemeris information.
  • the round-trip propagation delay is the TA.
  • the sum of the round-trip propagation delay and the feeder link round-trip delay is the TA.
  • the feeder link round-trip delay is obtained through system information broadcast by the network device.
  • the communication unit 520 is further configured to broadcast system information, where the system information is used to configure the TA offset value.
  • processing unit 510 is specifically used for:
  • the target time offset value is selected from the first time offset value and the second time offset value according to its response to the first random access information sent by the terminal equipment within the coverage area.
  • processing unit 510 is specifically used for:
  • the network device sends the second random access information to the terminal device without waiting for the first random access information sent by other terminals within its coverage after receiving the first random access information sent by the terminal device, Select the first time offset value as the target time offset value;
  • the second time offset value is selected as the target time offset value.
  • the first random access information is the first piece of information in the four-step random access
  • the second random access information is the second piece of information in the four-step random access
  • the first random access information is the first piece of information in the two-step random access
  • the second random access information is the second piece of information in the two-step random access.
  • the terminal device is a terminal without time domain and/or frequency domain precompensation capability.
  • the network device is applied to a non-terrestrial communication network NTN.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the method shown in FIG. 4 .
  • the corresponding process of the network device in 300 is not repeated here for brevity.
  • FIG. 11 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 11 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 12 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the apparatus 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the apparatus 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the apparatus can be applied to the network equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application, which are not repeated here for brevity.
  • the apparatus can be applied to the mobile terminal/terminal equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the apparatus can implement the corresponding processes implemented by the mobile terminal/terminal equipment in each method of the embodiments of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 13 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种随机接入的方法、终端设备和网络设备,在NTN的随机接入过程中,终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。该随机接入的方法包括:终端设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该第一时间偏移值为该终端设备确定的TA,该第二时间偏移值为网络设备配置的TA偏移值;该终端设备将该目标时间偏移值作为随机接入时间窗的启动时间偏移值。

Description

随机接入的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种随机接入的方法、终端设备和网络设备。
背景技术
在蜂窝网络中,终端设备发送完四步随机接入中的第一条信息(message 1,Msg1)后就启动随机接入响应(Random Access Response,RAR)时间窗(window)开始监听四步随机接入中的第二条信息(message 2,Msg2)。与蜂窝网络相比,非地面通信网络(Non Terrestrial Network,NTN)中终端设备与卫星之间的信号传播时延大幅增加,此种情况下,如何在随机接入过程中启动RAR window,是一个亟待解决的问题。
发明内容
本申请实施例提供了一种随机接入的方法、终端设备和网络设备,在NTN的随机接入过程中,终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
第一方面,提供了一种随机接入的方法,该方法包括:
终端设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该第一时间偏移值为该终端设备确定的TA,该第二时间偏移值为网络设备配置的TA偏移值;
该终端设备将该目标时间偏移值作为随机接入时间窗的启动时间偏移值。
第二方面,提供了一种随机接入的方法,该方法包括:
网络设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该目标时间偏移值为随机接入时间窗的启动时间偏移值,该第一时间偏移值为终端设备确定的TA,该第二时间偏移值为该网络设备配置的TA偏移值;
该网络设备发送第一信息,该第一信息用于指示将该第一时间偏移值作为该目标时间偏移值,或者,该第一信息用于指示将该第二时间偏移值作为该目标时间偏移值。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,网络设备指示将终端设备确定的TA或者网络设备配置的TA偏移值作为随机接入时间窗的启动时间偏移值,从而终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种四步随机接入的示意性流程图。
图3是根据本申请实施例提供的一种随机接入的方法的示意性流程图。
图4是根据本申请实施例提供的另一种随机接入的方法的示意性流程图。
图5是本申请实施例提供的一种维护随机接入时间窗的示意性流程图。
图6是本申请实施例提供的另一种维护随机接入时间窗的示意性流程图。
图7是本申请实施例提供的再一种维护随机接入时间窗的示意性流程图。
图8是本申请实施例提供的再一种维护随机接入时间窗的示意性流程图。
图9是根据本申请实施例提供的一种终端设备的示意性框图。
图10是根据本申请实施例提供的一种网络设备的示意性框图。
图11是根据本申请实施例提供的一种通信设备的示意性框图。
图12是根据本申请实施例提供的一种装置的示意性框图。
图13是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实 现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
NR系统定义了包括卫星网络在内的NTN系统部署场景。NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道 (Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。
例如,LEO卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
又例如,GEO卫星轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
对于NTN系统,为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
在NR系统中,可以支持两种随机接入方式:基于竞争的随机接入方式和基于非竞争的随机接入方式。下面简单描述基于竞争的四步随机接入,如图2所示,四步随机接入包括:
步骤1,终端设备向网络设备发送随机接入前导码(Preamble,也即Msg 1)。
其中,随机接入前导码也可以称为前导码、随机接入前导码序列、前导码序列等。
具体而言,终端设备可以选择物理随机接入信道(Physical Random Access Channel,PRACH)资源,PRACH资源可以包括时域资源、频域资源和码域资源。网络设备通过广播系统信息块(System Information Block,SIB)1向终端设备发送随机接入相关参数,其中随机接入公共配置信息元素(RACH-ConfigCommon IE)中的针对同步信号块(Synchronization Signal Block,SSB)的参考信号接收功率(Reference Signal Receiving Power,RSRP)门限值(rsrp-ThresholdSSB)用于终端设备进行SSB选择,终端设备将每个SSB下的RSRP测量结果与rsrp-ThresholdSSB进行对比,选择测量值高于所配置门限值的SSB进行接入,若没有满足配置门限值的SSB,则从全部SSB中随机选择一个进行接入。每个SSB对应一组随机接入前导码(Preamble)资源和随机接入时机(RACH Occasion,RO)资源,终端设备从选定的SSB中用于基于竞争的随机接入资源中进行随机选择,将Preamble索引(PREAMBLE_INDEX)设置为选定的随机接入Preamble。网络设备可以根据Preamble估计其与终端设备之间的传输时延并以此校准上行定时(timing),以及可以大体确定终端设备传输Msg 3所需要的资源大小。为了让网络设备可以更准确的了解到待传输的Msg 3的大小以分配合适的上行资源,将Preamble分为Preamble组(group)A和Preamble group B,若随机接入资源中存在Preamble group B,终端设备可以根据Msg 3的大小以及路损(pathloss)对Preamble group进行选择。
步骤2,网络设备向终端设备发送随机接入响应(Random Access Response,RAR,也即Msg 2)
终端设备向网络设备发送Preamble后,可以开启一个随机接入响应时间窗(RAR Window),在该RAR Window内根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)检测对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)。若终端设备检测到RA-RNTI加扰的PDCCH后,可以获得该PDCCH调度的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。其中,该PDSCH中包括Preamble对应的RAR。
RA-RNTI根据发送Preamble的PRACH的时频位置计算得到,因此如果多个终端设备在同一个RO上发送Preamble,则对应的RAR复用在同一个RAR媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU)中。若终端成功接收到与发送Preamble的RO资源对应的RA-RNTI加扰的PDCCH,并且RAR中包含一个MAC子PDU(subPDU)所携带的随机访问序列标识符(Random Access Preamble Identifier,RAPID)与上述Msg 1中选择的PREAMBLE_INDEX相对应,则RAR接收成功,终端可解码得到定时提前命令(Timing Advance Command,TAC),上行授权资源(UL Grant)和临时小区RNTI(Temporary Cell Radio Network Temporary Identity,TC-RNTI),进行Msg 3。
若在RAR Window运行期间没有接收到与发送Preamble的RO资源对应的RA-RNTI加扰的PDCCH,或接收到了RA-RNTI加扰的PDCCH,但RAR中不包含与PREAMBLE_INDEX对应的MAC subPDU,上述两种情况出现时则认为RAR接收失败,此时,若Preamble的传输次数没有超过网络配置的最大传输次数(preambleTransMax),终端设备需要对Msg 1进行重传,若Preamble的传输次数超过了网络配置的最大传输次数(preambleTransMax),终端设备向上层上报随机接入问题。
步骤3,终端设备发送Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码索引进行核对,在确定是属于自己的RAR消息后,可以在无线资源控制(Radio Resource Control,RRC)层产生Msg 3,并向网络设备发送Msg 3,其中需要携带终端设备的标识信息等。
其中,Msg 3主要用于通知网络设备该随机接入的触发事件。针对不同的随机接入触发事件,终 端设备在步骤3中发送的Msg 3可以包括不同的内容。
例如,对于初始接入的场景,Msg 3可以包括RRC层生成的RRC连接请求消息(RRC Setup Request)。此外,Msg 3还可以携带例如终端设备的5G-服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于RRC连接重建场景,Msg 3可以包括RRC层生成的RRC连接重建请求消息(RRC Reestabilshment Request)。此外,Msg 3还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)等。
又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换确认消息(RRC Handover Confirm),其携带终端设备的C-RNTI。此外,Msg 3还可携带例如缓冲状态报告(Buffer Status Report,BSR)等信息。对于其它触发事件例如上/下行数据到达的场景,Msg 3至少可以包括终端设备的C-RNTI。
步骤4,网络设备向终端设备发送冲突解决消息(contention resolution),即Msg 4。
网络设备向终端设备发送Msg 4,终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。例如在RRC连接建立过程中,Msg 4中可以携带RRC连接建立消息。
由于步骤3中的终端设备可以在Msg 3中携带自己唯一的标识,从而网络设备在竞争解决机制中,会在Msg4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
应理解,竞争冲突解决可以有两种方式:
方式一、如果终端设备在Msg 3携带了C-RNTI,则Msg 4可以用C-RNTI加扰的PDCCH调度。
方式二、如果终端设备没有在Msg 3中携带C-RNTI,比如是初始接入,则Msg 4可以用TC-RNTI加扰的PDCCH调度。此时,竞争冲突的解决可以是通过终端设备接收Msg 4的PDSCH,获得冲突解决ID,通过匹配该冲突解决ID与Msg 3中中的公共控制信道(Common control channel,CCCH)服务数据单元(Service Data Unit,SDU)来判断是否解决冲突。
从以上随机接入的过程可以看出,随机接入的主要目的就是终端设备与小区取得上行同步。在随机接入过程中,网络设备根据接收来自终端设备的preamble所使用的RACH时频资源就可以知道终端发送preamble的时刻,从而根据preamble的发送时刻和接收时刻确定终端设备的初始定时提前量(Timing Advance,TA),并通过RAR中告知终端设备。
需要说明的是,在蜂窝网络中,终端设备发送完Msg 1后就启动RAR window开始监听Msg 2。与传统NR采用的蜂窝网络相比,NTN中终端设备与卫星之间的信号传播时延大幅增加。终端设备最快会在Msg 1发送完的TA时间后收到基站发送的Msg 2,此外,终端设备没有必要在发送完Msg 1后立即启动RAR window,这样会造成额外的终端耗电,以及由于RAR window配置的不合适导致RAR window结束前终端设备无法正确接收Msg 2。如何在NTN的随机接入过程中启动RAR window,是一个亟待解决的问题。
基于上述问题,本申请提出了一种随机接入的方案,在NTN的随机接入过程中,终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的随机接入的方法200的示意性流程图,如图3所示,该方法200可以包括如下内容中的至少部分内容:
S210,终端设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该第一时间偏移值为该终端设备确定的TA,该第二时间偏移值为网络设备配置的TA偏移值;
S220,该终端设备将该目标时间偏移值作为随机接入时间窗的启动时间偏移值。
也即,在本申请实施例中,终端设备可以从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,也即,终端设备在发送完第一随机接入信息后可以选择使用自行确定的TA作为随机接入时间窗的启动时间偏移值,或者,终端设备在发送完第一随机接入信息后可以选择使用网络设备配置的TA偏移值作为随机接入时间窗的启动时间偏移值,该随机接入时间窗用于终端设备监听第二随机接入信息。
需要说明的是,对于四步随机接入,该第一随机接入信息可以是Msg1,该第二随机接入信息可以是Msg2,该随机接入时间窗可以是随机接入响应时间窗(RAR Window)。对于两步随机接入,该第一随机接入信息可以是两步随机接入中的第一条信息(messageA,MsgA),该第二随机接入信息可以是两步随机接入中的第二条信息(messageB,MsgB),该随机接入时间窗可以是两步随机接入中针对MsgB接收的时间窗(MsgB window)。
例如,该随机接入时间窗为四步随机接入的随机接入响应时间窗(RAR Window),终端设备在 该随机接入时间窗运行期间监听Msg 2。
又例如,该随机接入时间窗为两步随机接入中针对第二条消息(MsgB)接收的时间窗(MsgB window),终端设备在该随机接入时间窗运行期间监听Msg B。
在本申请实施例中,该终端设备可以通过自行估计TA的方式确定TA。此外,网络设备可以通过广播系统信息的方式配置TA偏移值。
可选地,该方法200可以应用于NTN系统,即该网络设备可以是NTN中的卫星。另外,该方法200也可以应用于一些其他的通信系统,本申请对此并不限定。
需要说明的是,NTN中终端设备与卫星之间的信号传播时延大幅增加,基于目标时间偏移值启动随机接入时间窗,可以消除终端设备与卫星之间的信号传播时延大幅增加对随机接入的影响。
可选地,在本申请实施例中,该终端设备为不具有时域和/或频域预补偿能力的终端。此种情况下,该终端设备无法基于时域和/或频域预补偿能力来确定随机接入时间窗的启动时间偏移值,该终端设备可以根据该目标时间偏移值启动该随机接入时间窗。
需要说明的是,本申请实施例中的终端设备并不限于不具有时域和/或频域预补偿能力的终端,还可以是具有时域和/或频域预补偿能力的终端,此种情况下,终端设备可以忽略其时域和/或频域预补偿能力,而是根据该目标时间偏移值启动该随机接入时间窗。
可选地,在本申请实施例中,该终端设备接收网络设备发送的第一信息,该第一信息用于指示将该第一时间偏移值作为该目标时间偏移值,或者,该第一信息用于指示将该第二时间偏移值作为该目标时间偏移值。
具体地,该终端设备可以根据该第一信息,从该第一时间偏移值和该第二时间偏移值中选择该目标时间偏移值。
也就是说,网络设备可以指示终端设备在发送完第一随机接入信息之后使用自行确定的TA还是使用网络设备配置的TA偏移值作为随机接入时间窗的启动时间偏移值。
可选地,在本申请实施例中,该第一信息承载在配置信息中。
对于四步随机接入,该配置信息可以用于配置PRACH资源(即Msg 1的资源)。
对于两步随机接入,该配置信息可以用于配置PRACH资源和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源(即MsgA的资源)。
可选地,该配置信息承载于广播信息中,或者,该配置信息承载于RRC信令中。
需要说明的是,若该配置信息承载于广播信息中,该配置信息可以是小区公共配置。
可选地,若该配置信息承载于RRC信令中,该配置信息为RRC重配置信息或者RRC释放信息。终端设备在进入空闲态(idle)或者去激活态(inactive)之后可以使用该配置信息。
可选地,在本申请实施例中,该终端设备根据该目标时间偏移值启动该随机接入时间窗。
具体地,该终端设备发送第一随机接入信息;以及在该第一随机接入信息发送完成的目标时间偏移值之后,该终端设备启动该随机接入时间窗。
可选地,作为示例1,该目标时间偏移值为该终端设备确定的TA,即该终端设备选择该第一时间偏移值作为该目标时间偏移值。
可选地,在示例1中,该终端设备根据其与卫星之间的往返传播时延,估计该TA。
可选地,该终端设备根据自身位置信息和星历信息计算该往返传播时延。
例如,该终端设备通过全球导航卫星系统(Global Navigation Satellite System,GNSS)能力获取自身位置信息。
可选地,在示例1中,对于再生转发的卫星,该往返传播时延为该TA。此种情况下,该网络设备即为卫星。例如,终端设备可以通过GNSS能力获取自身位置信息,并结合星历信息计算终端设备和卫星之间的往返传播时延D 0来估计TA,此种情况下,TA=D 0
可选地,在示例1中,对于透明转发的卫星,该往返传播时延与馈电链路往返时延的和为该TA。此种情况下,该网络设备与卫星不是同一设备。例如,终端设备可以通过GNSS能力获取自身位置信息,并结合星历信息计算终端设备和卫星之间的往返传播时延D 0,同时,终端设备通过网络设备广播的系统信息获取了馈电链路往返时延D 1,此种情况下,TA=D 0+D 1
可选地,该馈电链路往返时延为通过该网络设备广播的系统信息获取的。
需要说明的是,在示例1中,该终端设备需要具有定位能力。例如,该终端设备能够基于全球定位系统(Global Positioning System,GPS)、北斗等定位系统实现定位。
可选地,在示例1中,该网络设备接收该终端设备发送的第一随机接入信息;以及在接收到第一随机接入信息之后,该网络设备向该终端设备发送第二随机接入信息,且无需等待其覆盖范围内的其他终端发送的第一随机接入信息。
即,在示例1中,该网络设备接收到该第一随机接入信息之后尽快响应,无需等待其覆盖范围内的其他终端的第一随机接入信息的接收。
此外,在该第一随机接入信息发送完成的该目标时间偏移值之后,该终端设备启动该随机接入时间窗。以及该终端设备在该随机接入时间窗运行期间监听第二随机接入信息。
可选地,在示例1中,网络设备可以将其具体的实现方式指示给终端设备,终端设备可以在启动该随机接入时间窗的时候可以参考网络设备的实现方式,从而终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
可选地,作为示例2,该目标时间偏移值为网络设备广播的TA偏移值,即该终端设备选择该第二时间偏移值作为该目标时间偏移值。
可选地,在示例2中,该终端设备接收该网络设备广播的系统信息,该系统信息用于配置该TA偏移值,或者,该系统信息包括该TA偏移值。
可选地,在示例2中,该TA偏移值为小区覆盖范围内支持的最大TA。
可选地,在示例2中,该网络设备接收该终端设备发送的第一随机接入信息,以及接收其覆盖范围内的其他终端的第一随机接入信息;以及该网络设备向该终端设备发送第二随机接入信息。
即,在示例2中,网络设备考虑收集小区中心和小区边缘的终端设备发送的第一随机接入信息之后,再发送第二随机接入信息。
此外,在该第一随机接入信息发送完成的该第一时间偏移值之后,该终端设备启动该随机接入时间窗。以及该终端设备在该随机接入时间窗运行期间监听第二随机接入信息。
可选地,在示例2中,网络设备可以将其具体的实现方式指示给终端设备,终端设备可以在启动该随机接入时间窗的时候可以参考网络设备的实现方式,从而终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
在示例1和示例2中,例如,该第一随机接入信息为四步随机接入中的第一条信息,该第二随机接入信息为四步随机接入中的第二条信息。
在示例1和示例2中,又例如,该第一随机接入信息为两步随机接入中的第一条信息,该第二随机接入信息为两步随机接入中的第二条信息。
因此,在本申请实施例中,终端设备可以从其确定的TA和网络设备配置的TA偏移值中选择目标时间偏移值,以及将目标时间偏移值作为随机接入时间窗的启动时间偏移值,从而终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
进一步地,终端设备可以基于网络设备的指示从终端设备确定的TA和网络设备配置的TA偏移值中选择目标时间偏移值。
上文结合图3,详细描述了本申请的终端侧实施例,下文结合图4,详细描述本申请的网络侧实施例,应理解,终端侧实施例与网络侧实施例可以相互对应,类似的描述可以参照终端侧实施例。
图4是根据本申请实施例的随机接入的方法300的示意性流程图,如图4所示,该方法300可以包括如下内容中的至少部分内容:
S310,网络设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该目标时间偏移值为随机接入时间窗的启动时间偏移值,该第一时间偏移值为终端设备确定的TA,该第二时间偏移值为该网络设备配置的TA偏移值;
S320,该网络设备发送第一信息,该第一信息用于指示将该第一时间偏移值作为该目标时间偏移值,或者,该第一信息用于指示将该第二时间偏移值作为该目标时间偏移值。
可选地,该TA为该终端设备根据其与该卫星之间的往返传播时延估计的。
可选地,该往返传播时延为该终端设备根据自身位置信息和星历信息计算得到的。
对于再生转发的卫星,该往返传播时延为该TA。
对于透明转发的卫星,该往返传播时延与馈电链路往返时延的和为该TA。
可选地,该馈电链路往返时延为通过该网络设备广播的系统信息获取的。
可选的,该网络设备广播系统信息,该系统信息用于配置该TA偏移值。
可选地,该TA偏移值为小区覆盖范围内支持的最大TA。
可选地,S310具体可以是:
该网络设备根据其对覆盖范围内的终端设备发送的第一随机接入信息的响应方式,从该第一时间偏移值和该第二时间偏移值中选择该目标时间偏移值。
具体地,在本申请实施例中,
若该网络设备在接收到终端设备发送的第一随机接入信息之后,无需等待其覆盖范围内的其他终端发送的第一随机接入信息,就向该终端设备发送第二随机接入信息,则该网络设备选择该第一时间 偏移值作为该目标时间偏移值;
若该网络设备在接收到终端设备发送的第一随机接入信息之后,且接收其覆盖范围内的其他终端发送的第一随机接入信息之后,向该终端设备发送第二随机接入信息,则该网络设备选择该第二时间偏移值作为该目标时间偏移值。
可选地,该第一随机接入信息为四步随机接入中的第一条信息,该第二随机接入信息为四步随机接入中的第二条信息;或者,
该第一随机接入信息为两步随机接入中的第一条信息,该第二随机接入信息为两步随机接入中的第二条信息。
可选地,该终端设备为不具有时域和/或频域预补偿能力的终端。
可选地,该方法300应用于非地面通信网络NTN。
因此,在本申请实施例中,终端设备可以基于网络设备的指示从终端设备确定的TA和网络设备配置的TA偏移值中选择目标时间偏移值,以及将目标时间偏移值作为随机接入时间窗的启动时间偏移值,从而终端设备能够在合适的时机开启随机接入时间窗,从而实现终端省电的目的。
以下分别通过实施例1至实施例4详述本申请实施例中的方案。需要说明的是,实施例1和实施例2以四步随机接入为例进行说明,实施例3和实施例4以两步随机接入为例进行说明。
实施例1
网络设备发送第一信息,该第一信息用于指示将终端设备估计的TA作为随机接入响应时间窗(RAR Window)的启动时间偏移值。UE1、UE2和UE3基于同步信号块(Synchronization Signal Block,SSB)同步,如图5所示,对于UE1,UE1将其估计的TA1作为RAR Window的启动时间偏移值。对于UE2,UE2将其估计的TA2作为RAR Window的启动时间偏移值。对于UE3,UE3将其估计的TA3作为RAR Window的启动时间偏移值。
另外,在实施例1中,如图5所示,UE1在同步之后经过第一延时发送Msg1_1,以及UE1在Msg1_1之后经过TA1之后启动RAR Window1,并在该RAR Window1运行期间监听随机接入响应(RAR_1)。UE2在同步之后经过第二延时发送Msg1_2,以及UE2在Msg1_2之后经过TA2之后启动RAR Window2,并在该RAR Window2运行期间监听随机接入响应(RAR_2)。UE3在同步之后经过第三延时发送Msg1_3,以及UE3在Msg1_3之后经过TA3之后启动RAR Window3,并在该RAR Window3运行期间监听随机接入响应(RAR_3)。
实施例2
网络设备发送第一信息,该第一信息用于指示将网络设备广播的TA偏移值作为随机接入响应时间窗(RAR Window)的启动时间偏移值。UE1、UE2和UE3基于SSB同步,如图6所示,UE1在同步之后经过第一延时发送Msg1_1,以及UE1在Msg1_1之后经过TA偏移值之后启动RAR Window1,并在该RAR Window1运行期间监听随机接入响应(RAR_1)。UE2在同步之后经过第二延时发送Msg1_2,以及UE2在Msg1_2之后经过TA偏移值之后启动RAR Window2,并在该RAR Window2运行期间监听随机接入响应(RAR_2)。UE3在同步之后经过第三延时发送Msg1_3,以及UE3在Msg1_3之后经过TA偏移值之后启动RAR Window3,并在该RAR Window3运行期间监听随机接入响应(RAR_3)。
实施例3
网络设备发送第一信息,该第一信息用于指示将终端设备估计的TA作为MsgB时间窗的启动时间偏移值。UE1、UE2和UE3基于SSB同步,如图7所示,对于UE1,UE1将其估计的TA1作为MsgB时间窗的启动时间偏移值。对于UE2,UE2将其估计的TA2作为MsgB时间窗的启动时间偏移值。对于UE3,UE3将其估计的TA3作为MsgB时间窗的启动时间偏移值。另外,在实施例3中,如图7所示,UE1在同步之后经过第一延时发送MsgA_1,以及UE1在MsgA_1之后经过TA1之后启动MsgB时间窗1,并在该MsgB时间窗1运行期间监听MsgB_1。UE2在同步之后经过第二延时发送MsgA_2,以及UE2在MsgA_2之后经过TA2之后启动MsgB时间窗2,并在该MsgB时间窗2运行期间监听MsgB_2。UE3在同步之后经过第三延时发送MsgA_3,以及UE3在MsgA_3之后经过TA3之后启动MsgB时间窗3,并在该MsgB时间窗3运行期间监听MsgB_3。
实施例4
网络设备发送第一信息,该第一信息用于指示将网络设备广播的TA偏移值作为MsgB时间窗的启动时间偏移值。UE1、UE2和UE3基于SSB同步,如图8所示,UE1在同步之后经过第一延时发送MsgA_1,以及UE1在MsgA_1之后经过TA偏移值之后启动MsgB时间窗1,并在该MsgB时间窗1运行期间监听MsgB_1。UE2在同步之后经过第二延时发送MsgA_2,以及UE2在MsgA_2之后经过TA偏移值之后启动MsgB时间窗2,并在该MsgB时间窗2运行期间监听MsgB_2。UE3在同 步之后经过第三延时发送MsgA_3,以及UE3在MsgA_3之后经过TA偏移值之后启动MsgB时间窗3,并在该MsgB时间窗3运行期间监听MsgB_3。
上文结合图3至图8,详细描述了本申请的方法实施例,下文结合图9至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备400的示意性框图。如图9所示,该终端设备400包括:
处理单元410,用于从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,所述第一时间偏移值为所述终端设备确定的定时提前量TA,所述第二时间偏移值为网络设备配置的TA偏移值;
所述处理单元410,还用于将所述目标时间偏移值作为随机接入时间窗的启动时间偏移值。
可选地,该终端设备400还包括:通信单元420,
该通信单元420用于接收第一信息,该第一信息用于指示将所述第一时间偏移值作为所述目标时间偏移值,或者,所述第一信息用于指示将所述第二时间偏移值作为所述目标时间偏移值;
所述处理单元410具体用于:
根据所述第一信息,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值。
可选地,该处理单元410还用于根据该终端设备与卫星之间的往返传播时延,估计该TA。
可选地,该处理单元410还用于根据该终端设备自身位置信息和星历信息计算该往返传播时延。
可选地,对于再生转发的卫星,该往返传播时延为该TA。
可选地,对于透明转发的卫星,该往返传播时延与馈电链路往返时延的和为该TA。
可选地,该馈电链路往返时延为通过该网络设备广播的系统信息获取的。
可选地,该终端设备400还包括:通信单元420,
该通信单元420还用于接收该网络设备广播的系统信息,该系统信息用于配置该TA偏移值。
可选地,该TA偏移值为小区覆盖范围内支持的最大TA。
可选地,该终端设备为不具有时域和/或频域预补偿能力的终端。
可选地,该终端设备400还包括:通信单元420,其中,
该通信单元420用于发送第一随机接入信息;
在该第一随机接入信息发送完成的该目标时间偏移值之后,该处理单元410用于启动该随机接入时间窗。
可选地,该通信单元420还用于在该随机接入时间窗运行期间监听第二随机接入信息。
可选地,该第一随机接入信息为四步随机接入中的第一条信息,该第二随机接入信息为四步随机接入中的第二条信息;或者,
该第一随机接入信息为两步随机接入中的第一条信息,该第二随机接入信息为两步随机接入中的第二条信息。
可选地,该终端设备应用于非地面通信网络NTN。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备500的示意性框图。如图10所示,该网络设备500包括:
处理单元510,用于从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,该目标时间偏移值为随机接入时间窗的启动时间偏移值,该第一时间偏移值为终端设备确定的TA,该第二时间偏移值为该网络设备配置的TA偏移值;
通信单元520,用于发送第一信息,该第一信息用于指示将该第一时间偏移值作为该目标时间偏移值,或者,该第一信息用于指示将该第二时间偏移值作为该目标时间偏移值。
可选地,该TA为该终端设备根据其与该卫星之间的往返传播时延估计的。
可选地,该往返传播时延为该终端设备根据自身位置信息和星历信息计算得到的。
可选地,对于再生转发的卫星,该往返传播时延为该TA。
可选地,对于透明转发的卫星,该往返传播时延与馈电链路往返时延的和为该TA。
可选地,该馈电链路往返时延为通过该网络设备广播的系统信息获取的。
可选地,该通信单元520还用于广播系统信息,该系统信息用于配置该TA偏移值。
可选地,该处理单元510具体用于:
根据其对覆盖范围内的终端设备发送的第一随机接入信息的响应方式,从该第一时间偏移值和该 第二时间偏移值中选择该目标时间偏移值。
可选地,该处理单元510具体用于:
若该网络设备在接收到终端设备发送的第一随机接入信息之后,无需等待其覆盖范围内的其他终端发送的第一随机接入信息,就向该终端设备发送第二随机接入信息,选择该第一时间偏移值作为该目标时间偏移值;
若该网络设备在接收到终端设备发送的第一随机接入信息之后,且接收其覆盖范围内的其他终端发送的第一随机接入信息之后,向该终端设备发送第二随机接入信息,选择该第二时间偏移值作为该目标时间偏移值。
可选地,该第一随机接入信息为四步随机接入中的第一条信息,该第二随机接入信息为四步随机接入中的第二条信息;或者,
该第一随机接入信息为两步随机接入中的第一条信息,该第二随机接入信息为两步随机接入中的第二条信息。
可选地,该终端设备为不具有时域和/或频域预补偿能力的终端。
可选地,该网络设备应用于非地面通信网络NTN。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备600示意性结构图。图11所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图11所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统800的示意性框图。如图13所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中, 上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方 式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种随机接入的方法,其特征在于,包括:
    终端设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,所述第一时间偏移值为所述终端设备确定的定时提前量TA,所述第二时间偏移值为网络设备配置的TA偏移值;
    所述终端设备将所述目标时间偏移值作为随机接入时间窗的启动时间偏移值。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息用于指示将所述第一时间偏移值作为所述目标时间偏移值,或者,所述第一信息用于指示将所述第二时间偏移值作为所述目标时间偏移值;
    所述终端设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,包括:
    所述终端设备根据所述第一信息,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据其与卫星之间的往返传播时延,估计所述TA。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据自身位置信息和星历信息计算所述往返传播时延。
  5. 如权利要求3或4所述的方法,其特征在于,
    对于再生转发的卫星,所述往返传播时延为所述TA。
  6. 如权利要求3或4所述的方法,其特征在于,
    对于透明转发的卫星,所述往返传播时延与馈电链路往返时延的和为所述TA。
  7. 如权利要求6所述的方法,其特征在于,所述馈电链路往返时延为通过所述网络设备广播的系统信息获取的。
  8. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备广播的系统信息,所述系统信息用于配置所述TA偏移值。
  9. 如权利要求1、2或8所述的方法,其特征在于,所述TA偏移值为小区覆盖范围内支持的最大TA。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述终端设备为不具有时域和/或频域预补偿能力的终端。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第一随机接入信息;
    在所述第一随机接入信息发送完成的所述目标时间偏移值之后,所述终端设备启动所述随机接入时间窗。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述随机接入时间窗运行期间监听第二随机接入信息。
  13. 如权利要求12所述的方法,其特征在于,
    所述第一随机接入信息为四步随机接入中的第一条信息,所述第二随机接入信息为四步随机接入中的第二条信息;或者,
    所述第一随机接入信息为两步随机接入中的第一条信息,所述第二随机接入信息为两步随机接入中的第二条信息。
  14. 如权利要求1至13中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN。
  15. 一种随机接入的方法,其特征在于,包括:
    网络设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,所述目标时间偏移值为随机接入时间窗的启动时间偏移值,所述第一时间偏移值为终端设备确定的定时提前量TA,所述第二时间偏移值为所述网络设备配置的TA偏移值;
    所述网络设备发送第一信息,所述第一信息用于指示将所述第一时间偏移值作为所述目标时间偏移值,或者,所述第一信息用于指示将所述第二时间偏移值作为所述目标时间偏移值。
  16. 如权利要求15所述的方法,其特征在于,
    所述TA为所述终端设备根据其与所述卫星之间的往返传播时延估计的。
  17. 如权利要求16所述的方法,其特征在于,所述往返传播时延为所述终端设备根据自身位置信息和星历信息计算得到的。
  18. 如权利要求16或17所述的方法,其特征在于,
    对于再生转发的卫星,所述往返传播时延为所述TA。
  19. 如权利要求16或17所述的方法,其特征在于,
    对于透明转发的卫星,所述往返传播时延与馈电链路往返时延的和为所述TA。
  20. 如权利要求19所述的方法,其特征在于,所述馈电链路往返时延为通过所述网络设备广播的系统信息获取的。
  21. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备广播系统信息,所述系统信息用于配置所述TA偏移值。
  22. 如权利要求15或21所述的方法,其特征在于,所述TA偏移值为小区覆盖范围内支持的最大TA。
  23. 如权利要求15至22中任一项所述的方法,其特征在于,所述网络设备从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,包括:
    所述网络设备根据其对覆盖范围内的终端设备发送的第一随机接入信息的响应方式,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值。
  24. 如权利要求23所述的方法,其特征在于,所述网络设备根据其对覆盖范围内的终端设备发送的第一随机接入信息的响应方式,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值,包括:
    若所述网络设备在接收到终端设备发送的第一随机接入信息之后,无需等待其覆盖范围内的其他终端发送的第一随机接入信息,就向所述终端设备发送第二随机接入信息,则所述网络设备选择所述第一时间偏移值作为所述目标时间偏移值;
    若所述网络设备在接收到终端设备发送的第一随机接入信息之后,且接收其覆盖范围内的其他终端发送的第一随机接入信息之后,向所述终端设备发送第二随机接入信息,则所述网络设备选择所述第二时间偏移值作为所述目标时间偏移值。
  25. 如权利要求24所述的方法,其特征在于,
    所述第一随机接入信息为四步随机接入中的第一条信息,所述第二随机接入信息为四步随机接入中的第二条信息;或者,
    所述第一随机接入信息为两步随机接入中的第一条信息,所述第二随机接入信息为两步随机接入中的第二条信息。
  26. 如权利要求15至25中任一项所述的方法,其特征在于,所述终端设备为不具有时域和/或频域预补偿能力的终端。
  27. 如权利要求15至26中任一项所述的方法,其特征在于,所述方法应用于非地面通信网络NTN。
  28. 一种终端设备,其特征在于,包括:
    处理单元,用于从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,所述第一时间偏移值为所述终端设备确定的定时提前量TA,所述第二时间偏移值为网络设备配置的TA偏移值;
    所述处理单元,还用于将所述目标时间偏移值作为随机接入时间窗的启动时间偏移值。
  29. 如权利要求28所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于接收第一信息,所述第一信息用于指示将所述第一时间偏移值作为所述目标时间偏移值,或者,所述第一信息用于指示将所述第二时间偏移值作为所述目标时间偏移值;
    所述处理单元具体用于:
    根据所述第一信息,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值。
  30. 如权利要求28或29所述的终端设备,其特征在于,
    所述处理单元还用于根据所述终端设备与卫星之间的往返传播时延,估计所述TA。
  31. 如权利要求30所述的终端设备,其特征在于,所述处理单元还用于根据所述终端设备自身位置信息和星历信息计算所述往返传播时延。
  32. 如权利要求30或31所述的终端设备,其特征在于,
    对于再生转发的卫星,所述往返传播时延为所述TA。
  33. 如权利要求30或31所述的终端设备,其特征在于,
    对于透明转发的卫星,所述往返传播时延与馈电链路往返时延的和为所述TA。
  34. 如权利要求33所述的终端设备,其特征在于,所述馈电链路往返时延为通过所述网络设备广播的系统信息获取的。
  35. 如权利要求28或29所述的终端设备,其特征在于,所述终端设备还包括:通信单元,
    所述通信单元用于接收所述网络设备广播的系统信息,所述系统信息用于配置所述TA偏移值。
  36. 如权利要求28、29或35所述的终端设备,其特征在于,所述TA偏移值为小区覆盖范围内支持的最大TA。
  37. 如权利要求28至36中任一项所述的终端设备,其特征在于,所述终端设备为不具有时域和/或频域预补偿能力的终端。
  38. 如权利要求28至37中任一项所述的终端设备,其特征在于,所述终端设备还包括:通信单元,其中,
    所述通信单元用于发送第一随机接入信息;
    在所述第一随机接入信息发送完成的所述目标时间偏移值之后,所述处理单元用于启动所述随机接入时间窗。
  39. 如权利要求38所述的终端设备,其特征在于,所述通信单元还用于在所述随机接入时间窗运行期间监听第二随机接入信息。
  40. 如权利要求39所述的终端设备,其特征在于,
    所述第一随机接入信息为四步随机接入中的第一条信息,所述第二随机接入信息为四步随机接入中的第二条信息;或者,
    所述第一随机接入信息为两步随机接入中的第一条信息,所述第二随机接入信息为两步随机接入中的第二条信息。
  41. 如权利要求28至40中任一项所述的终端设备,其特征在于,所述终端设备应用于非地面通信网络NTN。
  42. 一种网络设备,其特征在于,包括:
    处理单元,用于从第一时间偏移值和第二时间偏移值中选择目标时间偏移值,所述目标时间偏移值为随机接入时间窗的启动时间偏移值,所述第一时间偏移值为终端设备确定的定时提前量TA,所述第二时间偏移值为所述网络设备配置的TA偏移值;
    通信单元,用于发送第一信息,所述第一信息用于指示将所述第一时间偏移值作为所述目标时间偏移值,或者,所述第一信息用于指示将所述第二时间偏移值作为所述目标时间偏移值。
  43. 如权利要求42所述的网络设备,其特征在于,
    所述TA为所述终端设备根据其与所述卫星之间的往返传播时延估计的。
  44. 如权利要求43所述的网络设备,其特征在于,所述往返传播时延为所述终端设备根据自身位置信息和星历信息计算得到的。
  45. 如权利要求43或44所述的网络设备,其特征在于,
    对于再生转发的卫星,所述往返传播时延为所述TA。
  46. 如权利要求43或44所述的网络设备,其特征在于,
    对于透明转发的卫星,所述往返传播时延与馈电链路往返时延的和为所述TA。
  47. 如权利要求46所述的网络设备,其特征在于,所述馈电链路往返时延为通过所述网络设备广播的系统信息获取的。
  48. 如权利要求42所述的网络设备,其特征在于,
    所述通信单元还用于广播系统信息,所述系统信息用于配置所述TA偏移值。
  49. 如权利要求42或48所述的网络设备,其特征在于,所述TA偏移值为小区覆盖范围内支持的最大TA。
  50. 如权利要求42至49中任一项所述的网络设备,其特征在于,所述处理单元具体用于:
    根据其对覆盖范围内的终端设备发送的第一随机接入信息的响应方式,从所述第一时间偏移值和所述第二时间偏移值中选择所述目标时间偏移值。
  51. 如权利要求50所述的网络设备,其特征在于,所述处理单元具体用于:
    若所述网络设备在接收到终端设备发送的第一随机接入信息之后,无需等待其覆盖范围内的其他终端发送的第一随机接入信息,就向所述终端设备发送第二随机接入信息,选择所述第一时间偏移值作为所述目标时间偏移值;
    若所述网络设备在接收到终端设备发送的第一随机接入信息之后,且接收其覆盖范围内的其他终端发送的第一随机接入信息之后,向所述终端设备发送第二随机接入信息,选择所述第二时间偏移值作为所述目标时间偏移值。
  52. 如权利要求51所述的网络设备,其特征在于,
    所述第一随机接入信息为四步随机接入中的第一条信息,所述第二随机接入信息为四步随机接入中的第二条信息;或者,
    所述第一随机接入信息为两步随机接入中的第一条信息,所述第二随机接入信息为两步随机接入中的第二条信息。
  53. 如权利要求42至52中任一项所述的网络设备,其特征在于,所述终端设备为不具有时域和 /或频域预补偿能力的终端。
  54. 如权利要求42至53中任一项所述的网络设备,其特征在于,所述网络设备应用于非地面通信网络NTN。
  55. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  56. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求15至27中任一项所述的方法。
  57. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法。
  58. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求15至27中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至27中任一项所述的方法。
  61. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求15至27中任一项所述的方法。
  63. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  64. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至27中任一项所述的方法。
PCT/CN2020/110834 2020-08-24 2020-08-24 随机接入的方法、终端设备和网络设备 WO2022040867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103046.XA CN115843462A (zh) 2020-08-24 2020-08-24 随机接入的方法、终端设备和网络设备
PCT/CN2020/110834 WO2022040867A1 (zh) 2020-08-24 2020-08-24 随机接入的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110834 WO2022040867A1 (zh) 2020-08-24 2020-08-24 随机接入的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022040867A1 true WO2022040867A1 (zh) 2022-03-03

Family

ID=80354385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110834 WO2022040867A1 (zh) 2020-08-24 2020-08-24 随机接入的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN115843462A (zh)
WO (1) WO2022040867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915926A (zh) * 2022-03-31 2022-08-16 联想(北京)有限公司 数据处理方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945471A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种小区切换方法及装置
WO2019190164A1 (en) * 2018-03-26 2019-10-03 Samsung Electronics Co., Ltd. Improvements in and relating to random access in a telecommunication network
WO2020156678A1 (en) * 2019-02-01 2020-08-06 Nokia Technologies Oy Control mechanism for random access procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945471A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种小区切换方法及装置
WO2019190164A1 (en) * 2018-03-26 2019-10-03 Samsung Electronics Co., Ltd. Improvements in and relating to random access in a telecommunication network
WO2020156678A1 (en) * 2019-02-01 2020-08-06 Nokia Technologies Oy Control mechanism for random access procedure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Uplink timing advance/RACH procedure and Initial Access for NTN", 3GPP DRAFT; R1-1912470, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820054 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915926A (zh) * 2022-03-31 2022-08-16 联想(北京)有限公司 数据处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115843462A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
EP4188003A1 (en) Handover method, terminal device, and network device
US20220159732A1 (en) Random access method and device
US20230119893A1 (en) Wireless communication method and terminal device
EP4207873A1 (en) Network slicing information processing method, terminal device, and network device
US20230189349A1 (en) Data transmission method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2022027238A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022067547A1 (zh) 无线通信方法、终端设备和网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
CN116438862A (zh) 无线通信方法和终端设备
WO2022183406A1 (zh) 传输数据信道的方法、终端设备和网络设备
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
CN118104322A (zh) 上行同步中的定时提前量维持方法、终端设备和网络设备
CN117859407A (zh) 无线通信的方法、终端设备和网络设备
EP4138505A1 (en) Wireless communication method, terminal device, and network device
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2024040598A1 (zh) 无线通信的方法和终端设备
WO2023133885A1 (zh) 无线通信的方法和终端设备
WO2022246588A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022155976A1 (zh) 初始接入方法、终端设备和网络设备
WO2023050335A1 (zh) 无线通信的方法、终端设备和网络设备
CN115413045B (zh) 信息传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950542

Country of ref document: EP

Kind code of ref document: A1