WO2022133675A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2022133675A1
WO2022133675A1 PCT/CN2020/138085 CN2020138085W WO2022133675A1 WO 2022133675 A1 WO2022133675 A1 WO 2022133675A1 CN 2020138085 W CN2020138085 W CN 2020138085W WO 2022133675 A1 WO2022133675 A1 WO 2022133675A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission delay
drx
terminal device
time offset
target time
Prior art date
Application number
PCT/CN2020/138085
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080107165.2A priority Critical patent/CN116472749A/zh
Priority to PCT/CN2020/138085 priority patent/WO2022133675A1/zh
Publication of WO2022133675A1 publication Critical patent/WO2022133675A1/zh
Priority to US18/137,868 priority patent/US20230269732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method and terminal device.
  • the network device can configure (Discontinuous Reception, DRX) for the terminal device, so that the terminal device can monitor the Physical Uplink Control Channel (PDCCH) during the DRX Active Time (DRX Active Time). ).
  • DRX Active Time DRX Active Time
  • the terminal equipment enters the DRX activation period may be as follows: a scheduling request (Scheduling Request, SR) is sent on the Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH), and the SR In the pending state, the terminal device enters the DRX activation period.
  • Non-Terrestrial Network NTN
  • the signal transmission delay between the terminal device and the network device is greatly increased.
  • RTT Round-Trip Time
  • the embodiments of the present application provide a wireless communication method and a terminal device, so that the time offset from the completion of the SR until the SR is in a suspended state can be effectively determined, which can not only ensure the scheduling performance, but also take into account the energy saving of the terminal. need.
  • a wireless communication method comprising: sending an SR on an uplink carrier; after sending a target time offset of the SR, the SR is in a suspended state and enters a DRX activation period; wherein the target time offset is based on The transmission delay of the SR on the uplink carrier and the signal transmission delay on at least one downlink carrier are determined; at least one downlink carrier is the downlink carrier activated between the terminal equipment and the base station.
  • a terminal device for executing the method in the above-mentioned first aspect or each of its implementations.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • an apparatus for implementing the method in the above-mentioned first aspect or its respective implementation manners.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device in which the apparatus is installed executes the method in the first aspect or its respective implementations.
  • a computer program product comprising computer program instructions, the computer program instructions enable a computer to execute the methods in the above-mentioned first aspect to its implementation manners.
  • a computer program which, when run on a computer, causes the computer to execute the method of the above-mentioned first aspect or each of its implementations.
  • the technical solution provided by the present application can determine the target time offset. It can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • FIG. 1 is a schematic structural diagram of an NTN system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of another NTN system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a target time offset provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a target time offset provided by another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a target time offset provided by still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a target time offset provided by another embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • Satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Geostationary Earth Orbit
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • the network device can configure the DRX function for the terminal device, so that the terminal can monitor the PDCCH non-continuously, so as to save the power of the terminal.
  • each Media Access Control (MAC) entity has a DRX configuration, and the DRX configuration parameters include:
  • drx-onDurationTimer The duration that the terminal device wakes up at the beginning of a DRX cycle (Cycle);
  • drx-SlotOffset the delay for the terminal device to start drx-onDurationTimer
  • drx-InactivityTimer After the terminal device receives a PDCCH indicating uplink initial transmission or downlink initial transmission, the terminal device continues to monitor the duration of the PDCCH.
  • drx-RetransmissionTimerDL The longest duration for which the terminal device monitors the PDCCH indicating the downlink retransmission scheduling.
  • Each downlink HARQ process except the broadcast Hybrid Automatic Repeat Request (HARQ) process corresponds to a drx-RetransmissionTimerDL;
  • drx-RetransmissionTimerUL The longest duration for the terminal equipment to monitor the PDCCH indicating uplink retransmission scheduling.
  • Each uplink HARQ process corresponds to one drx-RetransmissionTimerUL;
  • drx-LongCycleStartOffset used to configure the DRX long cycle (Long DRX cycle), and the subframe offset at the beginning of the DRX long cycle and the DRX short cycle (Short DRX Cycle);
  • drx-ShortCycle DRX short cycle, optional configuration
  • the terminal device is in the duration of the DRX short cycle and does not receive any PDCCH, which is an optional configuration;
  • drx-HARQ-RTT-TimerDL the minimum waiting time that the terminal device expects to receive the PDCCH indicating downlink scheduling, and each downlink HARQ process except the broadcast HARQ process corresponds to a drx-HARQ-RTT-TimerDL;
  • drx-HARQ-RTT-TimerUL the minimum waiting time that the terminal device expects to receive the PDCCH indicating uplink scheduling, and each uplink HARQ process corresponds to one drx-HARQ-RTT-TimerUL.
  • the terminal device If the terminal device is configured with DRX, the terminal device needs to monitor the PDCCH during the DRX Active Time (DRX Active Time).
  • DRX Active Time The DRX activation period includes the following situations:
  • any one of the five timers drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL, drx-RetransmissionTimerUL, and ra-ContentionResolutionTimer is running.
  • SR is sent on PUCCH and SR is pending.
  • the terminal device After the terminal device successfully receives the random access response, it has not yet received the first time indicated by the PDCCH scrambled by the Cell-Radio Network Temporary Identifier (C-RNTI). Initial transfer.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • 5G NR further increases the system bandwidth on the basis of 4G.
  • the maximum bandwidth supported by a single carrier is 100MHz; for frequency bands above 6GHz, the maximum bandwidth supported by a single carrier is 400MHz.
  • 5G NR Like the Long Term Evolution (LTE) system, 5G NR also supports CA technology.
  • the network device can also configure one or more secondary cells (Secondary Cells) for the terminal through (Radio Resource Control, RRC) signaling.
  • Cell, SCell has two states: active and inactive. Only when the SCell is in an active state, the terminal device can send and receive data on this SCell. The terminal can monitor the PDCCH on the PCell and one or more activated SCells at the same time, and send and receive data, thereby increasing the data transmission rate.
  • a DRX enhancement method is introduced for the CA scenarios of Frequency Range (FR) 1 and FR2, that is, for one MAC entity, two DRX groups can be configured for the carrier corresponding to FR1 and the carrier corresponding to FR2.
  • the network device may configure a drx-InactivityTimer and drx-onDurationTimer for it. That is, the remaining DRX configuration parameters are the common configuration parameters of the two DRX packets. Cross-carrier scheduling between two DRX packets is currently not supported.
  • the terminal device applies to the network device for uplink resources through the SR.
  • the network device does not know when the terminal device needs to send uplink data, that is, when the terminal device will send the SR. Therefore, the network device can allocate periodic PUCCH resources for transmitting SR to the terminal device, and then the network device detects whether there is an SR report on the allocated SR resources.
  • SR in NR may be based on logical channels. For each uplink logical channel, the network device may choose whether to configure the PUCCH resource for transmitting the SR for the uplink logical channel. In the case that an uplink logical channel triggers an SR, if the network device configures a PUCCH resource for transmitting an SR for the uplink logical channel, the terminal device sends an SR on the PUCCH resource corresponding to the logical channel for transmitting an SR; Otherwise, the terminal device initiates random access.
  • the mechanism of SCell's beam failure recovery (Beam Failure Recovery, BFR) triggering SR is also introduced.
  • BFR Beam Failure Recovery
  • the terminal device triggers BFR on an SCell, if the gauge terminal device has resources available for new uplink transmission, and the available resources are sufficient to carry the BFR Media Access Control Control Element (MAC CE) or shortened (Truncated) BFR MAC CE, the terminal device informs the network that a beam failure has occurred on the SCell by sending a BFR MAC CE or a Truncated BFR MAC CE; otherwise, the BFR will trigger an SR.
  • MAC CE Media Access Control Control Element
  • Truncated BFR MAC CE Truncated
  • the network device may configure multiple PUCCH resources for transmitting SR for the terminal device.
  • Each PUCCH configuration used to transmit SR corresponds to the following configuration parameters:
  • the SR is sent on the PUCCH, and the SR is in the pending state, then the terminal device enters the DRX activation period.
  • the terminal device In the CA scenarios of FR1 and FR2, two DRX groups are configured, and the terminal device will enter the DRX activation period for the cells of the two DRX groups at the same time.
  • the signal transmission delay between the terminal equipment and the network equipment is greatly increased. From the perspective of terminal energy saving, it is necessary to introduce the SR triggering the terminal equipment to enter the DRX activation period.
  • a time offset determined based on the RTT For the CA scenarios of TN and NTN, or the NTN CA scenarios that are transparently forwarded through different satellites, etc., because the signal transmission paths and delays between the terminal equipment and the TN network on different carriers are quite different, therefore, How to determine the above time offset is a technical problem to be solved in the present application.
  • the present application can determine the above-mentioned time offset according to the transmission delay of the SR on the uplink carrier and the signal transmission delay of at least one downlink carrier.
  • FIG. 1 is a schematic structural diagram of an NTN system according to an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another NTN system according to an embodiment of the present application.
  • it includes a terminal device 1201 , a satellite 1202 and a base station 1203 .
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the wireless communication system shown in FIG. 1 and FIG. 2 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). , which is not limited in the embodiments of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • FIG. 3 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • the terminal device 310 , the satellite 320 and the base station 330 are included.
  • the terminal device 310 and the satellite 320 can communicate wirelessly, and the satellite 320 and the base station 330 can communicate.
  • wireless communication can also be performed between the terminal device 310 and the base station 330 .
  • the satellite 320 may not have the function of the base station, and the communication between the terminal device 310 and the base station 330 may be relayed by the satellite 320 . That is, the satellite 320 has a transparent forwarding function. In this case, there are two transmission paths between the terminal device 310 and the base station 330, and the CA technology can be used for these two transmission paths, which is the CA scenario of TN and NTN.
  • the satellite 320 may also have the function of a base station.
  • a dual-connectivity (Dual-Connectivity, DC) technology is used between the terminal device 310 , the satellite 320 and the base station 330 .
  • DC Dual-Connectivity
  • FIG. 4 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 410 the satellite 420 , the satellite 430 and the base station 440 are included.
  • Wireless communication can be performed between the terminal device 410 and the satellite 420
  • wireless communication can be performed between the terminal device 410 and the satellite 430 .
  • wireless communication can also be performed between the terminal device 410 and the base station 440 .
  • the satellite 420 and the satellite 430 may not have the function of the base station, and the communication between the terminal device 410 and the base station 440 may be relayed by the satellite 420 and the satellite 430 . That is, the satellite 420 and the satellite 430 have a transparent forwarding function. In this case, there are two transmission paths between the terminal device 410 and the base station 440, and CA technology can be used for these two transmission paths. This situation is the NTN CA scenario in the case of transparent forwarding by different satellites.
  • the satellite 420 and the satellite 430 may also have the function of the base station.
  • the DC technology is used between the terminal device 410 and the satellite 420 and the satellite 430 .
  • CA technology can be used for these two transmission paths. This situation is a combination scenario of DC and CA between different NTNs.
  • the technical solution of the present application can be applied to the following application scenarios, the application scenarios include: CA scenarios of TN and NTN, or NTN CA scenarios in the case of transparent forwarding by different satellites.
  • the application scenario of the technical solution of the present application is any of the following, but is not limited to this:
  • a terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wearable devices can also be called wearable smart devices. Wearable technology is used to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the base station may be a base station (Base Transceiver Station, BTS) in the Global System of Mobile communication (GSM) system or Code Division Multiple Access (Code Division Multiple Access, CDMA), or it may be A base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a base station (gNB) in an NR network ) or a base station in a future evolved PLMN network, etc.
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB base station
  • gNB base station in an NR network
  • a base station may provide services for a cell, and a terminal device communicates with the base station through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a cell corresponding to the base station,
  • a cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: a metro cell, a micro cell, a pico cell, and a femto cell. (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 5 is a flowchart of a wireless communication method provided by an embodiment of the present application. As shown in FIG. 5 , the method includes the following steps:
  • S510 The terminal device sends the SR on the uplink carrier.
  • the SR After the terminal device has sent the target time offset of the SR, the SR is in a suspended state and enters the DRX activation period, where the target time offset is based on the transmission delay of the SR on the uplink carrier and the signal transmission on at least one downlink carrier Delay is determined.
  • the terminal device may receive the following configuration information, but is not limited thereto: DRX-related parameters, SCell-related parameters, SR-related configuration, and the like.
  • the DRX-related parameters may include: one or more DRX packets configured for one MAC entity of the terminal device, but not limited thereto.
  • the DRX-related parameters also include: DRX configuration parameters as mentioned in the related knowledge.
  • the DRX-related parameters include: multiple DRX groups configured for one MAC entity of the terminal device
  • the DRX-related parameters also include: the correspondence between each SCell and the DRX group, wherein each SCell corresponds to a DRX group .
  • PCell corresponds to a default DRX group.
  • the SCell-related parameters include, but are not limited to, at least one SCell-related parameter.
  • the SR-related configuration includes PUCCH resources for transmitting SR, but is not limited thereto.
  • the configuration information may be carried in RRC signaling, but is not limited thereto.
  • the target time offset is a time offset based on the time when the transmission of the SR ends.
  • time offset may also be described as time offset, offset or offset, etc., which is not limited in this application.
  • the above at least one downlink carrier is a downlink carrier activated between the terminal device and the base station.
  • the SR is in a suspended state and enters the DRX activation period, wherein the target time offset is based on the transmission delay of the SR on the uplink carrier and at least one The signal transmission delay on the downlink carrier is determined.
  • Target time offset it can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • a DRX group is configured for one MAC entity, and the terminal device uniformly maintains the DRX activation period for the MAC entity:
  • the terminal device may receive the following configuration information, but is not limited thereto: DRX-related parameters, SCell-related parameters, SR-related configuration, and the like.
  • the DRX-related parameters may include: configuring one DRX group for one MAC entity of the terminal device, but not limited to this.
  • the DRX-related parameters also include: DRX configuration parameters as mentioned in the related knowledge.
  • the SCell-related parameters include, but are not limited to, at least one SCell-related parameter.
  • the SR-related configuration includes PUCCH resources for transmitting SR, but is not limited thereto.
  • the configuration information may be carried in RRC signaling, but is not limited thereto.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • the first signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers in the cell group where the uplink carrier is located. All activated downlink carriers are downlink carriers between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • the offset can be determined by the following formula (1):
  • DL del n is the signal transmission delay on the downlink carrier n
  • N is the terminal equipment sending SR
  • the number of all activated downlink carriers in the cell group where the uplink carrier of the The cell group can be a master cell group (Master Cell group, MCG) or a secondary cell group (Secondary Cell group, SCG).
  • the target time offset may also be greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • FIG. 6 is a schematic diagram of a target time offset provided by an embodiment of the present application.
  • a DRX group is configured for one MAC entity, and the terminal device uniformly maintains the DRX activation period for the MAC entity,
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to PCell is UL del+DL del 0, where DL del 0 represents the signal transmission delay of the downlink carrier corresponding to PCell.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 1 is UL del+DL del 1, where DL del 1 represents the signal transmission delay of the downlink carrier corresponding to SCell 1.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 2 is UL del+DL del 2, where DL del 2 represents the signal transmission delay of the downlink carrier corresponding to SCell 2.
  • one DRX group is configured for one MAC entity, and the terminal device uniformly maintains the DRX activation period for the MAC entity, the target time offset is based on the transmission delay of the SR on the uplink carrier and the transmission of the first signal. If the time delay is determined, even in the case that the signal transmission paths and time delays between the terminal equipment and the TN network on different carriers are quite different, the technical solution provided by the present application can determine the target time offset. It can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • a DRX group is configured for one MAC entity, and the terminal device maintains the DRX activation period for each serving cell corresponding to the MAC entity:
  • the terminal device may receive the following configuration information, but is not limited thereto: DRX-related parameters, SCell-related parameters, SR-related configuration, and the like.
  • the DRX-related parameters may include: configuring one DRX group for one MAC entity of the terminal device, but not limited to this.
  • the DRX-related parameters also include: DRX configuration parameters as mentioned in the related knowledge.
  • the SCell-related parameters include, but are not limited to, at least one SCell-related parameter.
  • the SR-related configuration includes PUCCH resources for transmitting SR, but is not limited thereto.
  • the configuration information may be carried in RRC signaling, but is not limited thereto.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • the downlink carrier corresponding to the serving cell is the downlink carrier between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • the target time offset is represented by offset
  • the transmission delay of SR on the uplink carrier is represented by UL del
  • the signal transmission delay of the downlink carrier corresponding to serving cell n is represented by DL del n
  • the cell group where the uplink carrier is located can be MCG or SCG
  • the offset can be determined by the following formula (2):
  • the target time offset may also be greater than the sum of the transmission delay of the SR on the uplink carrier and the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • FIG. 7 is a schematic diagram of a target time offset provided by another embodiment of the present application.
  • one DRX group is configured for one MAC entity, and the terminal device maintains each serving cell corresponding to the MAC entity.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to the PCell is UL del+DL del 0, where DL del 0 represents the signal transmission delay of the downlink carrier corresponding to the PCell.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 1 is UL del+DL del 1, where DL del 1 represents the signal transmission delay of the downlink carrier corresponding to SCell 1.
  • the target time offset corresponding to PCell is UL del+DL del 1.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 2 is UL del+DL del 2, where DL del 2 represents the signal transmission delay of the downlink carrier corresponding to SCell 2.
  • the target time offset corresponding to PCell is UL del+DL del 2.
  • one DRX group is configured for one MAC entity, and the terminal device maintains the DRX activation period for each serving cell corresponding to the MAC entity, the target time offset is based on the transmission delay of the SR on the uplink carrier.
  • the signal transmission delay of the downlink carrier corresponding to the serving cell is determined, even in the case where the signal transmission paths and delays between the terminal equipment and the TN network on different carriers are quite different, the The technical solution can also determine the target time offset. It can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • the terminal device maintains the DRX activation period for the multiple DRX groups, for any DRX group in the multiple DRX groups:
  • the terminal device may receive the following configuration information, but is not limited thereto: DRX-related parameters, SCell-related parameters, SR-related configuration, and the like.
  • the DRX-related parameters may include: configuring multiple DRX packets for one MAC entity of the terminal device, but not limited to this.
  • the DRX-related parameters also include: DRX configuration parameters as mentioned in the related knowledge.
  • the DRX-related parameters include: multiple DRX groups configured for one MAC entity of the terminal device
  • the DRX-related parameters also include: the correspondence between each SCell and the DRX group, wherein each SCell corresponds to a DRX group .
  • PCell corresponds to a default DRX group.
  • the SCell-related parameters include, but are not limited to, at least one SCell-related parameter.
  • the SR-related configuration includes PUCCH resources for transmitting SR, but is not limited thereto.
  • the configuration information may be carried in RRC signaling, but is not limited thereto.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the second signal.
  • the second signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers corresponding to the DRX packet. All downlink activated carriers are downlink carriers between the terminal equipment and the base station.
  • any one of the above-mentioned multiple DRX groups is any one of the multiple DRX groups in the cell group where the uplink carrier sending the SR is located.
  • the cell group where the uplink carrier is located may be MCG or SCG.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the second signal.
  • the target time offset corresponding to DRX group m is represented by offset m
  • the transmission delay of SR on the uplink carrier is represented by UL del
  • the signal transmission delay of the downlink carrier corresponding to serving cell n is represented by DL del
  • the offset m can be determined by the following formula (3):
  • the target time offset may also be greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the second signal.
  • FIG. 8 is a schematic diagram of a target time offset provided by another embodiment of the present application.
  • multiple DRX groups are configured for one MAC entity, and the terminal device maintains DRX activation for the multiple DRX groups respectively.
  • PCell corresponds to DRX group 1
  • SCell 1 and SCell 2 correspond to DRX group 2.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to PCell is UL del+DL del 0, where DL del 0 represents the signal transmission delay of the downlink carrier corresponding to the PCell.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell1 is UL del+DL del 1, where DL del 1 represents the signal transmission delay of the downlink carrier corresponding to SCell 1.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 2 is UL del+DL del 2, where DL del 2 represents the signal transmission delay of the downlink carrier corresponding to SCell 2.
  • the target time offset is based on the transmission delay of the SR on the uplink carrier and the first 2. If the signal transmission delay is determined, even in the case where the signal transmission paths and delays between the terminal equipment and the TN network on different carriers are quite different, the technical solution provided by this application can determine the target time offset. set. It can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • Multiple DRX groups are configured for one MAC entity, and the terminal device maintains the DRX activation period for multiple DRX groups respectively, and the terminal device does not support cross-carrier scheduling on carriers corresponding to different DRX groups:
  • the terminal device may receive the following configuration information, but is not limited thereto: DRX-related parameters, SCell-related parameters, SR-related configuration, and the like.
  • the DRX-related parameters may include: configuring multiple DRX packets for one MAC entity of the terminal device, but not limited to this.
  • the DRX-related parameters also include: DRX configuration parameters as mentioned in the related knowledge.
  • the DRX-related parameters include: multiple DRX groups configured for one MAC entity of the terminal device
  • the DRX-related parameters also include: the correspondence between each SCell and the DRX group, wherein each SCell corresponds to a DRX group .
  • PCell corresponds to a default DRX group.
  • the SCell-related parameters include, but are not limited to, at least one SCell-related parameter.
  • the SR-related configuration includes PUCCH resources for transmitting SR, but is not limited thereto.
  • the configuration information may be carried in RRC signaling, but is not limited thereto.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • the first DRX group is a DRX group that satisfies a preset condition among the multiple DRX groups.
  • the third signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers corresponding to the first DRX packet. All activated downlink carriers are downlink carriers between the terminal equipment and the base station.
  • the third signal transmission delay is the minimum value of the signal transmission delay on the first downlink carrier set corresponding to the first DRX group
  • the first downlink carrier set is the first uplink carrier determined according to the cross-carrier scheduling configuration
  • a set of downlink carriers corresponding to the set, the first uplink carrier set is a set of uplink carriers that can be transmitted by the uplink logical channel determined according to the link control protocol (Link Control Protocol, LCP) restriction of the uplink logical channel that triggers the SR.
  • An uplink carrier set corresponds to the first DRX packet.
  • the above-mentioned multiple DRX groups are multiple DRX groups in the cell group where the uplink carrier sending the SR is located.
  • the cell group where the uplink carrier is located may be MCG or SCG.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • the preset conditions include, but are not limited to, the following: the SR is triggered by a regular (regular) buffer status report (Buffer Status Report, BSR) triggered by the uplink logical channel, and is determined according to the LCP restriction of the uplink logical channel.
  • BSR Buffer Status Report
  • the uplink logical channel allows transmission on at least one serving cell corresponding to the first DRX packet.
  • this application does not limit the LCP restriction, and also does not limit how to determine whether the uplink logical channel is allowed to transmit on at least one serving cell corresponding to the first DRX packet according to the LCP restriction.
  • the preset condition includes, but is not limited to, the following: the SR is triggered by an event other than the regular BSR triggered by the uplink logical channel.
  • the DRX group m is a DRX group that satisfies the above preset conditions
  • its corresponding target time offset is represented by offset m
  • the transmission delay of SR on the uplink carrier is represented by UL del.
  • the offset m can be determined by the following formula (4):
  • the target time offset may also be greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • FIG. 9 is a schematic diagram of a target time offset provided by another embodiment of the present application.
  • multiple DRX groups are configured for one MAC entity, and the terminal device maintains DRX activation for the multiple DRX groups respectively. period, and the terminal equipment does not support cross-carrier scheduling on carriers corresponding to different DRX groups, PCell corresponds to DRX group 1, SCell 1 and SCell 2 correspond to DRX group 2, and because uplink logical channel 1 triggers SR, and the network The device configures that the uplink logical channel 1 cannot be transmitted on the PCell. Therefore, the DRX packet 1 does not meet the above preset conditions. Based on this, there is no need to determine the target time offset corresponding to the DRX packet 1.
  • the DRX group 2 satisfies the above preset condition, and based on this, the target time offset corresponding to the DRX group 2 needs to be determined.
  • the details are as follows:
  • the RTT between the terminal equipment and the base station on the downlink carrier corresponding to SCell 1 is UL del+DL del 1, where DL del 1 represents the signal transmission delay of the downlink carrier corresponding to SCell 1.
  • the RTT between the terminal device and the base station on the downlink carrier corresponding to SCell 2 is UL del+DL del 2, where DL del 2 represents the signal transmission delay of the downlink carrier corresponding to SCell 2.
  • the target time offset corresponding to DRX packet 2 is UL del+DL del 1.
  • the terminal device maintains the DRX activation period for the multiple DRX groups, and the terminal device does not support cross-carrier scheduling on carriers corresponding to different DRX groups.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal, even if the signal transmission paths and delays between the terminal equipment and the TN network on different carriers are relatively large.
  • the technical solution provided in this application can also determine the target time offset. It can not only ensure the scheduling performance, but also take into account the needs of terminal energy saving.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal device 1000 includes: a communication unit 1010 and a processing unit 1020, wherein the communication unit 1010 is configured to send the SR on the uplink carrier.
  • the processing unit 1020 is configured to be in a suspended state after sending the target time offset of the SR, and enter the DRX activation period.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the signal transmission delay on at least one downlink carrier.
  • At least one downlink carrier is an activated downlink carrier between the terminal equipment and the base station.
  • the application scenarios of the terminal equipment include: CA scenarios of TN and NTN, or NTN CA scenarios in the case of transparent forwarding by different satellites.
  • the application scenario of the terminal device is any of the following:
  • NTN CA scenarios in the case of transparent forwarding of different satellites.
  • a DRX group is configured for one MAC entity, and the terminal device uniformly maintains the DRX activation period for the MAC entity, and the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • the first signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers in the cell group where the uplink carrier is located. All activated downlink carriers are downlink carriers between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • the target time offset is greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the first signal.
  • a DRX group is configured for one MAC entity, and the terminal device maintains the DRX activation period for each serving cell corresponding to the MAC entity, and for any serving cell in each serving cell, the target time offset is based on the SR.
  • the transmission delay of the uplink carrier is determined by the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • the downlink carrier corresponding to the serving cell is the downlink carrier between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • the target time offset is greater than the sum of the transmission delay of the SR on the uplink carrier and the signal transmission delay of the downlink carrier corresponding to the serving cell.
  • the target time offset is based on the SR
  • the transmission delay of the uplink carrier is determined by the transmission delay of the second signal.
  • the second signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers corresponding to the DRX packet. All activated downlink carriers are downlink carriers between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the second signal.
  • the target time offset is greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the second signal.
  • multiple DRX groups are configured for one MAC entity, and the terminal device maintains the DRX activation period for the multiple DRX groups, and the terminal device does not support cross-carrier scheduling on carriers corresponding to different DRX groups.
  • the target time offset is determined according to the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • the first DRX group is a DRX group that satisfies a preset condition among the multiple DRX groups.
  • the third signal transmission delay is the minimum value of the signal transmission delays on all activated downlink carriers corresponding to the first DRX packet. All activated downlink carriers are downlink carriers between the terminal equipment and the base station.
  • the target time offset is the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • the target time offset is greater than the sum of the transmission delay of the SR on the uplink carrier and the transmission delay of the third signal.
  • the preset conditions include: the SR is triggered by a regular BSR triggered by an uplink logical channel, and it is determined that the uplink logical channel is allowed to transmit on at least one serving cell corresponding to the first DRX packet according to the LCP restriction of the uplink logical channel.
  • the preset conditions include: the SR is triggered by other events than the normal BSR triggered by the uplink logical channel.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 1000 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 1000 are respectively for realizing the method shown in FIG. 5 .
  • the corresponding process of the terminal device in the above will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the methods in the embodiments of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1100 may specifically be the terminal device of the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity .
  • FIG. 12 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 1200 may further include a memory 1220 .
  • the processor 1210 may call and run a computer program from the memory 1220 to implement the methods in the embodiments of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated in the processor 1210.
  • the apparatus 1200 may further include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1200 may further include an output interface 1240 .
  • the processor 1210 may control the output interface 1240 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the apparatus may be applied to the terminal equipment in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the terminal equipment in each method of the embodiments of the present application, which will not be repeated here for brevity.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application, and when the computer program runs on the computer, the computer can execute the corresponding methods implemented by the network device or the base station in each method of the embodiments of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法和终端设备,该方法包括:在上行载波上发送SR;在发送完SR的目标时间偏置之后SR处于挂起状态,进入DRX激活期;其中,目标时间偏置是根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延确定的;至少一个下行载波是终端设备与基站之间激活的下行载波。从而可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。

Description

无线通信方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法和终端设备。
背景技术
在新空口(New Radio,NR)中,网络设备可以为终端设备配置(Discontinuous Reception,DRX),使得终端设备可以在DRX激活期(DRX Active Time)监听物理下行控制信道(Physical Uplink Control Channel,PDCCH)。在地面通信网络(Terrestrial Network,TN)中,终端设备进入DRX激活期可以是如下情况:在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上发送了调度请求(Scheduling Request,SR),并且SR处于挂起(pending)状态,那么终端设备进入DRX激活期。
与TN网络相比,在非地面通信网络(Non-Terrestrial Network,NTN)网络中,终端设备与网络设备之间的信号传输时延大幅增大,从终端节能的角度来讲,对于SR触发终端设备进入DRX激活期的情况,有必要引入一个基于往返时间(Round-Trip Time,RTT)确定的时间偏置(offset)。而对于TN与NTN的载波聚合(Carrier Aggregation,CA)场景,或者,通过不同卫星透明转发的NTN CA场景等,由于终端设备与地面网络之间在不同载波上的信号传输路径和时延都存在较大的差异,因此,如何确定上述时间偏置是本申请亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法和终端设备,从而可以有效的确定在完成SR之后到SR处于挂起状态的时间偏置,既可以保证调度性能,又可以很好地兼顾终端节能的需求。
第一方面,提供了一种无线通信方法,包括:在上行载波上发送SR;在发送完SR的目标时间偏置之后SR处于挂起状态,进入DRX激活期;其中,目标时间偏置是根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延确定的;至少一个下行载波是终端设备与基站之间激活的下行载波。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至或其各实现方式中的方法。
第六方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过本申请技术方案,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
附图说明
图1为本申请实施例提供的一种NTN系统的架构示意图;
图2为本申请实施例提供的另一种NTN系统的架构示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的另一种通信系统的架构示意图;
图5为本申请实施例提供的一种无线通信方法的流程图;
图6为本申请一实施例提供的目标时间偏置的示意图;
图7为本申请另一实施例提供的目标时间偏置的示意图;
图8为本申请再一实施例提供的目标时间偏置的示意图;
图9为本申请又一实施例提供的目标时间偏置的示意图;
图10示出了根据本申请实施例的终端设备1000的示意性框图;
图11是本申请实施例提供的一种通信设备1100示意性结构图;
图12是本申请实施例的装置的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本申请技术方案之前,下面对本申请相关知识进行阐述:
一、NTN相关背景
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究NTN技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
二、5G NR DRX
在5G NR中,网络设备可以为终端设备配置DRX功能,使终端非连续地监听 PDCCH,以达到终端省电的目的。在NR版本(Release,Rel)15中,每个媒体访问控制(Media Access Control,MAC)实体有一个DRX配置,DRX的配置参数包含:
drx-onDurationTimer:在一个DRX周期(Cycle)的开始终端设备醒来的持续时间;
drx-SlotOffset:终端设备启动drx-onDurationTimer的时延;
drx-InactivityTimer:当终端设备收到一个指示上行初传或者下行初传的PDCCH后,终端设备继续监听PDCCH的持续时间。
drx-RetransmissionTimerDL:终端设备监听指示下行重传调度的PDCCH的最长持续时间。除广播混合自动重复请求(Hybrid Automatic Repeat Request,HARQ)进程之外的每个下行HARQ进程对应一个drx-RetransmissionTimerDL;
drx-RetransmissionTimerUL:终端设备监听指示上行重传调度的PDCCH的最长持续时间。每个上行HARQ进程对应一个drx-RetransmissionTimerUL;
drx-LongCycleStartOffset:用于配置DRX长周期(Long DRX cycle),以及DRX长周期和DRX短周期(Short DRX Cycle)开始的子帧偏移;
drx-ShortCycle:DRX短周期,为可选配置;
drx-ShortCycleTimer:终端设备处于DRX短周期的持续时间,并且没有接收到任何PDCCH,为可选配置;
drx-HARQ-RTT-TimerDL:终端设备期望接收到指示下行调度的PDCCH需要的最少等待时间,除广播HARQ进程之外的每个下行HARQ进程对应一个drx-HARQ-RTT-TimerDL;
drx-HARQ-RTT-TimerUL:终端设备期望接收到指示上行调度的PDCCH需要的最少等待时间,每个上行HARQ进程对应一个drx-HARQ-RTT-TimerUL。
如果终端设备被配置了DRX,则终端设备需要在DRX激活期(DRX Active Time)监听PDCCH。DRX激活期包括如下几种情况:
drx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL以及ra-ContentionResolutionTimer这5个定时器中的任何一个定时器正在运行。
在PUCCH上发送了SR,并且SR处于挂起状态。
在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后,还没有接收到小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)加扰的PDCCH指示的一次初始传输。
三、5G NR CA
为了能够提供更大的数据传输速率,提升用户体验,5G NR在4G基础上进一步增大了系统带宽。在5G NR中,对于6GHz以下频段,单载波支持的最大带宽为100MHz;对于6GHz以上频段,单载波支持的最大带宽为400MHz。
与长期演进(Long Term Evolution,LTE)系统相同,5G NR也支持CA技术。对于支持CA特性的终端设备,该终端设备除了有一个主小区(Primary Cell,PCell),网络设备还可以通过(Radio Resource Control,RRC)信令还可以为终端配置一个或者多个辅小区(Secondary Cell,SCell)。SCell有激活和非激活两种状态。只有当SCell处于激活状态时,终端设备才可以在这个SCell上进行数据的发送和接收。终端可以同时在PCell和激活的一个或者多个SCell上监听PDCCH,并进行数据的发送和接收,从而提升数据传输速率。
四、在NR Rel16中,针对频率范围(Frequency Range,FR)1和FR2的CA场景引入了DRX增强方法,即针对一个MAC实体可以针对FR1对应的载波和FR2对应的载波配置两个DRX分组。对于DRX分组2,网络设备可以为其配置一个drx-InactivityTimer和drx-onDurationTimer。即,其余的DRX配置参数为两个DRX分组的公共配置参数。目前不支持两个DRX分组之间的跨载波调度。
五、5G NR SR过程
终端设备通过SR向网络设备申请上行资源。而网络设备并不知道终端设备何时需要发送上行数据,即不知道终端设备什么时候会发送SR。因此,网络设备可以为终端设备分配周期性的用于传输SR的PUCCH资源,然后网络设备在已经分配的SR资源上检测是否有SR上报。
NR中的SR可以是基于逻辑信道的。对于每个上行逻辑信道,网络设备可以选择是否为该上行逻辑信道配置用于传输SR的PUCCH资源。在一个上行逻辑信道触发了SR的情况下,如果网络设备为该上行逻辑信道配置了用于传输SR的PUCCH资源,则终端设备在该逻辑信道对应的用于传输SR的PUCCH资源上发送SR;否则,终端设备发起随机接入。
在NR Rel16中,还引入了SCell的波束失败恢复(Beam Failure Recovery,BFR)触发SR的机制。当终端设备在某个SCell上触发了BFR,如果gauge终端设备有可用于上行新传的资源,并且该可用资源足以承载BFR媒体接入控制单元(Media Access Control Control Element,MAC CE)或者缩短的(Truncated)BFR MAC CE,则终端设备通过发送BFR MAC CE或者Truncated BFR MAC CE告知网络其在该SCell上发生了波束失败;否则,该BFR会触发SR。
其中,网络设备可以为终端设备配置多个用于传输SR的PUCCH资源。每个用于传输SR的PUCCH配置对应以下配置参数:
1、PUCCH资源周期和时隙/时间符号偏移;
2、PUCCH资源索引。
如上所述,在PUCCH上发送了SR,并且SR处于挂起(pending)状态,那么终端设备进入DRX激活期。在FR1和FR2的CA场景下,配置了两个DRX分组,终端设备会同时针对这两个DRX分组的小区都进入DRX激活期。
与TN网络相比,在NTN网络中,终端设备与网络设备之间的信号传输时延大幅增大,从终端节能的角度来讲,对于SR触发终端设备进入DRX激活期的情况,有必要引入一个基于RTT确定的时间偏置。而对于TN与NTN的CA场景,或者,通过不同卫星透明转发的NTN CA场景等,由于终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异,因此,如何确定上述时间偏置谁本申请亟待解决的技术问题。
为了解决上述技术问题,本申请可以根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延来确定上述时间偏置。
下面结合图1和图2,对本申请中的NTN系统的架构进行说明。
图1为本申请实施例提供的一种NTN系统的架构示意图。请参见图1,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图1所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。可选地,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图2为本申请实施例提供的另一种NTN系统的架构示意图。请参见图2,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。可选地,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施 例对此不做限定。
可选地,图1、图2所示的无线通信系统还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。
下面对本申请技术方案可应用的通信系统进行说明:
图3为本申请实施例提供的一种通信系统的架构示意图。如图3所示,包括终端设备310、卫星320和基站330,终端设备310和卫星320之间可以进行无线通信,卫星320与基站330之间可以通信。并且终端设备310和基站330之间也可以进行无线通信。
需要说明的是,卫星320可以不具有基站的功能,终端设备310和基站330之间的通信可以通过卫星320的中转。即卫星320具有透明转发功能。这种情况下,终端设备310和基站330之间存在两条传输路径,针对这两条传输路径可以采用CA技术,这种情况即为TN和NTN的CA场景。
当然,卫星320也可以具有基站的功能,这时终端设备310与卫星320、基站330之间采用双连接(Dual-Connectivity,DC)技术。同时终端设备310和基站330之间存在两条传输路径,针对这两条传输路径可以采用CA技术,这种情况即为TN和NTN的双连接DC和CA的结合场景。
图4为本申请实施例提供的另一种通信系统的架构示意图。如图4所示,包括终端设备410、卫星420、卫星430和基站440,终端设备410和卫星420之间可以进行无线通信,终端设备410和卫星430之间可以进行无线通信。并且终端设备410和基站440之间也可以进行无线通信。
需要说明的是,卫星420、卫星430可以不具有基站的功能,终端设备410和基站440之间的通信可以通过卫星420、卫星430的中转。即卫星420、卫星430具有透明转发功能。这种情况下,终端设备410和基站440之间存在两条传输路径,针对这两条传输路径可以采用CA技术,这种情况即为不同卫星透明转发情况下的NTN CA场景。
当然,卫星420、卫星430也可以具有基站的功能,这时终端设备410与卫星420、卫星430之间采用DC技术。同时终端设备410和基站440之间存在两条传输路径,针对这两条传输路径可以采用CA技术,这种情况即为不同NTN之间的DC和CA的结合场景。
值得一提的是,本申请技术方案可以应用于如下应用场景,该应用场景包括:TN和NTN的CA场景,或者,不同卫星透明转发情况下的NTN CA场景。
可选地,本申请技术方案的应用场景为以下任一项,但不限于此:
1、TN和NTN的CA场景;
2、不同卫星透明转发情况下的NTN CA场景;
3、TN和NTN的双连接DC和CA的结合场景;
4、不同NTN之间的DC和CA的结合场景。
在本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化 设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,基站可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者NR网络中的基站(gNB)或者未来演进的PLMN网络中的基站等。
在本申请实施例中,基站可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与基站进行通信,该小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
下面将对本申请技术方案进行详细阐述:
实施例1
图5为本申请实施例提供的一种无线通信方法的流程图,如图5所示,该方法包括如下步骤:
S510:终端设备在上行载波上发送SR。
S520:终端设备在发送完SR的目标时间偏置之后SR处于挂起状态,进入DRX激活期,其中,目标时间偏置是根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延确定的。
应理解的是,终端设备可以接收如下配置信息,但不限于此:DRX相关参数、SCell相关参数、SR相关配置等。
可选地,DRX相关参数可以包括:为终端设备的一个MAC实体配置的一个或者多个DRX分组,但不限于此。例如:DRX相关参数还包括:如相关知识提及的DRX的配置参数。
可选地,当DRX相关参数包括:为终端设备的一个MAC实体配置的多个DRX分组时,DRX相关参数还包括:每个SCell与DRX分组的对应关系,其中,每个SCell对应一个DRX分组。
值得一提的是,PCell对应一个默认的DRX分组。
可选地,SCell相关参数包括至少一个SCell的相关参数,但不限于此。
可选地,SR相关配置包括用于传输SR的PUCCH资源,但不限于此。
可选地,配置信息可以携带在RRC信令中,但不限于此。
可选地,目标时间偏置是在SR的发送结束时刻的基础上的时间偏置。
应理解的是,在本申请中,时间偏置也可以被描述为时间偏移、偏置或者偏移等,本申请对此不做限制。
应理解的是,上述至少一个下行载波是终端设备与基站之间激活的下行载波。
综上,在本申请中,终端设备在发送完SR的目标时间偏置之后SR处于挂起状态, 进入DRX激活期,其中,目标时间偏置是根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延确定的,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
下面将针对DRX分组的不同配置情况,以及,终端设备对DRX激活期的维护情况对本申请技术方案进行详细说明:
实施例2
针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体统一维护DRX激活期的情况:
应理解的是,终端设备可以接收如下配置信息,但不限于此:DRX相关参数、SCell相关参数、SR相关配置等。
可选地,DRX相关参数可以包括:为终端设备的一个MAC实体配置一个DRX分组,但不限于此。例如:DRX相关参数还包括:如相关知识提及的DRX的配置参数。
可选地,SCell相关参数包括至少一个SCell的相关参数,但不限于此。
可选地,SR相关配置包括用于传输SR的PUCCH资源,但不限于此。
可选地,配置信息可以携带在RRC信令中,但不限于此。
可选地,目标时间偏置是根据SR在上行载波的传输时延与第一信号传输时延确定的。其中,第一信号传输时延是上行载波所在的小区组中所有激活的下行载波上的信号传输时延的最小值。所有激活的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与第一信号传输时延之和。
假设目标时间偏置用offset表示,SR在上行载波的传输时延用UL del表示,下行载波的信号传输时延用DL del表示,那么可以通过如下公式(1)确定offset:
offset=UL del+min{DL del n,(n=1,2,…N)}    (1)
其中,DL del n为在下行载波n上的信号传输时延,min{DL del n,(n=1,2,…N)}为上述第一信号传输时延,N为终端设备在发送SR的上行载波所在的小区组中所有激活的下行载波个数,其中,在TN和NTN的双连接DC和CA的结合场景,或者,不同NTN之间的DC和CA的结合场景下,上行载波所在的小区组可以是主小区组(Master Cell group,MCG)或辅小区组(Secondary Cell group,SCG)。
可选地,目标时间偏置也可以大于SR在上行载波的传输时延与第一信号传输时延之和。
示例性地,图6为本申请一实施例提供的目标时间偏置的示意图,如图6所示,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体统一维护DRX激活期的情况,对于PCell而言,终端设备与基站在PCell对应的下行载波上的RTT为UL del+DL del 0,其中,DL del 0表示PCell对应的下行载波的信号传输时延。对于SCell 1而言,终端设备与基站在SCell 1对应的下行载波上的RTT为UL del+DL del 1,其中,DL del 1表示SCell 1对应的下行载波的信号传输时延。对于SCell 2而言言,终端设备与基站在SCell 2对应的下行载波上的RTT为UL del+DL del 2,其中,DL del 2表示SCell 2对应的下行载波的信号传输时延。通过上述方案可以确定出目标时间偏置是UL del+DL del 0。
综上,在本申请中,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体统一维护DRX激活期的情况,目标时间偏置是根据SR在上行载波的传输时延与第一信号传输时延确定的,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
实施例3
针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体对应的各个服 务小区分别维护DRX激活期的情况:
应理解的是,终端设备可以接收如下配置信息,但不限于此:DRX相关参数、SCell相关参数、SR相关配置等。
可选地,DRX相关参数可以包括:为终端设备的一个MAC实体配置一个DRX分组,但不限于此。例如:DRX相关参数还包括:如相关知识提及的DRX的配置参数。
可选地,SCell相关参数包括至少一个SCell的相关参数,但不限于此。
可选地,SR相关配置包括用于传输SR的PUCCH资源,但不限于此。
可选地,配置信息可以携带在RRC信令中,但不限于此。
可选地,针对各个服务小区中的任一个服务小区,目标时间偏置是根据SR在上行载波的传输时延与该服务小区对应的下行载波的信号传输时延确定的。服务小区对应的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与服务小区对应的下行载波的信号传输时延之和。
假设目标时间偏置用offset表示,SR在上行载波的传输时延用UL del表示,服务小区n对应的下行载波的信号传输时延用DL del n表示,n=1,2,…N,N为终端设备在发送SR的上行载波所在的小区组中当前激活的下行载波个数,其中,在TN和NTN的双连接DC和CA的结合场景,或者,不同NTN之间的DC和CA的结合场景下,上行载波所在的小区组可以是MCG或SCG,那么可以通过如下公式(2)确定offset:
offset=UL del+DL del n     (2)
可选地,目标时间偏置也可以大于SR在上行载波的传输时延与服务小区对应的下行载波的信号传输时延之和。
示例性地,图7为本申请另一实施例提供的目标时间偏置的示意图,如图7所示,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体对应的各个服务小区分别维护DRX激活期的情况,对于PCell而言,终端设备与基站在PCell对应的下行载波上的RTT为UL del+DL del 0,其中,DL del 0表示PCell对应的下行载波的信号传输时延。通过上述方案可以确定出PCell对应的目标时间偏置是UL del+DL del 0。对于SCell 1而言,终端设备与基站在SCell 1对应的下行载波上的RTT为UL del+DL del 1,其中,DL del 1表示SCell 1对应的下行载波的信号传输时延。通过上述方案可以确定出PCell对应的目标时间偏置是UL del+DL del 1。对于SCell 2而言言,终端设备与基站在SCell 2对应的下行载波上的RTT为UL del+DL del 2,其中,DL del 2表示SCell 2对应的下行载波的信号传输时延。通过上述方案可以确定出PCell对应的目标时间偏置是UL del+DL del 2。
综上,在本申请中,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体对应的各个服务小区分别维护DRX激活期的情况,目标时间偏置是根据SR在上行载波的传输时延与该服务小区对应的下行载波的信号传输时延确定的,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
实施例4
针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期的情况,针对多个DRX分组中的任一个DRX分组:
应理解的是,终端设备可以接收如下配置信息,但不限于此:DRX相关参数、SCell相关参数、SR相关配置等。
可选地,DRX相关参数可以包括:为终端设备的一个MAC实体配置多个DRX分组,但不限于此。例如:DRX相关参数还包括:如相关知识提及的DRX的配置参数。
可选地,当DRX相关参数包括:为终端设备的一个MAC实体配置的多个DRX分 组时,DRX相关参数还包括:每个SCell与DRX分组的对应关系,其中,每个SCell对应一个DRX分组。
值得一提的是,PCell对应一个默认的DRX分组。
可选地,SCell相关参数包括至少一个SCell的相关参数,但不限于此。
可选地,SR相关配置包括用于传输SR的PUCCH资源,但不限于此。
可选地,配置信息可以携带在RRC信令中,但不限于此。
可选地,在本实施例中,针对多个DRX分组中的任一个DRX分组,目标时间偏置是根据SR在上行载波的传输时延与第二信号传输时延确定的。其中,第二信号传输时延是该DRX分组对应的所有激活的下行载波上的信号传输时延的最小值。所有下行激活的载波是终端设备与基站之间的下行载波。
应理解的是,上述多个DRX分组中的任一个DRX分组是发送SR的上行载波所在的小区组中的多个DRX分组中的任一个DRX分组。其中,在TN和NTN的双连接DC和CA的结合场景,或者,不同NTN之间的DC和CA的结合场景下,上行载波所在的小区组可以是MCG或SCG。
可选地,目标时间偏置是SR在上行载波的传输时延与第二信号传输时延之和。
假设DRX分组m对应的目标时间偏置用offset m表示,SR在上行载波的传输时延用UL del表示,在DRX分组m中,服务小区n对应的下行载波的信号传输时延用DL del n表示,n=1,2,…N,N为与DRX分组m对应的当前激活的下行载波个数,那么可以通过如下公式(3)确定offset m:
offset m=UL del+min{DL del n,(n=1,2,…N)}      (3)
可选地,目标时间偏置也可以大于SR在上行载波的传输时延与第二信号传输时延之和。
示例性地,图8为本申请再一实施例提供的目标时间偏置的示意图,如图8所示,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期的情况,PCell对应DRX分组1,SCell 1和SCell 2对应DRX分组2,对于PCell而言,终端设备与基站在PCell对应的下行载波上的RTT为UL del+DL del 0,其中,DL del 0表示PCell对应的下行载波的信号传输时延。通过上述方案可以确定出DRX分组1对应的目标时间偏置是UL del+DL del 0。对于SCell 1而言,终端设备与基站在SCell1对应的下行载波上的RTT为UL del+DL del 1,其中,DL del 1表示SCell 1对应的下行载波的信号传输时延。对于SCell 2而言,终端设备与基站在SCell 2对应的下行载波上的RTT为UL del+DL del 2,其中,DL del 2表示SCell 2对应的下行载波的信号传输时延。通过上述方案可以确定出DRX分组2对应的目标时间偏置是UL del+DL del 1。
综上,在本申请中,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期的情况,目标时间偏置是根据SR在上行载波的传输时延与第二信号传输时延确定的,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
实施例5
针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期,且终端设备不支持在不同DRX分组对应的载波上进行跨载波调度的情况:
应理解的是,终端设备可以接收如下配置信息,但不限于此:DRX相关参数、SCell相关参数、SR相关配置等。
可选地,DRX相关参数可以包括:为终端设备的一个MAC实体配置多个DRX分组,但不限于此。例如:DRX相关参数还包括:如相关知识提及的DRX的配置参数。
可选地,当DRX相关参数包括:为终端设备的一个MAC实体配置的多个DRX分组时,DRX相关参数还包括:每个SCell与DRX分组的对应关系,其中,每个SCell对 应一个DRX分组。
值得一提的是,PCell对应一个默认的DRX分组。
可选地,SCell相关参数包括至少一个SCell的相关参数,但不限于此。
可选地,SR相关配置包括用于传输SR的PUCCH资源,但不限于此。
可选地,配置信息可以携带在RRC信令中,但不限于此。
可选地,在本实施例中,针对多个DRX分组中第一DRX分组,目标时间偏置是根据SR在上行载波的传输时延与第三信号传输时延确定的。其中,第一DRX分组是多个DRX分组中满足预设条件的DRX分组。第三信号传输时延是第一DRX分组对应的所有激活的下行载波上的信号传输时延的最小值。所有激活的下行载波是终端设备与基站之间的下行载波。或者,第三信号传输时延是第一DRX分组对应的第一下行载波集合上的信号传输时延的最小值,该第一下行载波集合是根据跨载波调度配置确定的第一上行载波集合对应的下行载波集合,该第一上行载波集合是根据触发SR的上行逻辑信道的链路控制协议(Link Control Protocol,LCP)限制确定的该上行逻辑信道可以进行传输的上行载波集合,该第一上行载波集合与第一DRX分组对应。
应理解的是,上述多个DRX分组是发送SR的上行载波所在的小区组中的多个DRX分组。其中,在TN和NTN的双连接DC和CA的结合场景,或者,不同NTN之间的DC和CA的结合场景下,上行载波所在的小区组可以是MCG或SCG。
可选地,目标时间偏置是SR在上行载波的传输时延与第三信号传输时延之和。
可选地,预设条件包括如下内容,但不限于此:SR是由上行逻辑信道触发的常规(regular)缓存状态报告(Buffer Status Report,BSR)触发的,且根据上行逻辑信道的LCP限制确定上行逻辑信道允许在第一DRX分组对应的至少一个服务小区上传输。
其中,本申请对LCP限制不做限制,并且如何根据LCP限制确定上行逻辑信道是否允许在第一DRX分组对应的至少一个服务小区上传输,也不做限制。
可选地,预设条件包括如下内容,但不限于此:SR是由除上行逻辑信道触发的常规BSR之外的其他事件触发的。
假设DRX分组m是满足上述预设条件的DRX分组,其对应的目标时间偏置用offset m表示,SR在上行载波的传输时延用UL del表示,在DRX分组m中,服务小区n对应的下行载波的信号传输时延用DL del n表示,n=1,2,…N,N为与DRX分组m对应的当前激活的下行载波个数,那么可以通过如下公式(4)确定offset m:
offset m=UL del+min{DL del n,(n=1,2,…N)}    (4)
可选地,目标时间偏置也可以大于SR在上行载波的传输时延与第三信号传输时延之和。
示例性地,图9为本申请又一实施例提供的目标时间偏置的示意图,如图9所示,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期,且终端设备不支持在不同DRX分组对应的载波上进行跨载波调度的情况,PCell对应DRX分组1,SCell 1和SCell 2对应DRX分组2,而由于上行逻辑信道1触发了SR,且网络设备配置上行逻辑信道1不能在PCell上传输,因此,DRX分组1不满足上述预设条件,基于此,无需确定DRX分组1对应的目标时间偏置。相反,DRX分组2满足上述预设条件,基于此,需要确定DRX分组2对应的目标时间偏置。具体如下:对于SCell 1而言,终端设备与基站在SCell 1对应的下行载波上的RTT为UL del+DL del 1,其中,DL del 1表示SCell 1对应的下行载波的信号传输时延。对于SCell 2而言,终端设备与基站在SCell 2对应的下行载波上的RTT为UL del+DL del 2,其中,DL del 2表示SCell 2对应的下行载波的信号传输时延。通过上述方案可以确定出DRX分组2对应的目标时间偏置是UL del+DL del 1。
综上,在本申请中,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期,且终端设备不支持在不同DRX分组对应的载波上进行 跨载波调度的情况,目标时间偏置是根据SR在上行载波的传输时延与第三信号传输时延确定的,即使在终端设备与TN网络之间在不同载波上的信号传输路径和时延都存在较大的差异的情况下,本申请提供的技术方案也可以确定目标时间偏置。既可以保证调度性能,又可以很好地兼顾终端节能的需求。
上文结合图5至图9,详细描述了本申请的方法实施例,下文结合图10至图12,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括:通信单元1010和处理单元1020,其中,通信单元1010用于在上行载波上发送SR。处理单元1020用于在发送完SR的目标时间偏置之后SR处于挂起状态,进入DRX激活期。目标时间偏置是根据SR在上行载波的传输时延和至少一个下行载波上的信号传输时延确定的。至少一个下行载波是终端设备与基站之间激活的下行载波。
可选地,终端设备的应用场景包括:TN和NTN的CA场景,或者,不同卫星透明转发情况下的NTN CA场景。
可选地,终端设备的应用场景为以下任一项:
TN和NTN的CA场景。
不同卫星透明转发情况下的NTN CA场景。
TN和NTN的双连接DC和CA的结合场景。
不同NTN之间的DC和CA的结合场景。
可选地,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体统一维护DRX激活期的情况,目标时间偏置是根据SR在上行载波的传输时延与第一信号传输时延确定的。其中,第一信号传输时延是上行载波所在的小区组中所有激活的下行载波上的信号传输时延的最小值。所有激活的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与第一信号传输时延之和。
可选地,目标时间偏置大于SR在上行载波的传输时延与第一信号传输时延之和。
可选地,针对一个MAC实体配置一个DRX分组,且终端设备针对MAC实体对应的各个服务小区分别维护DRX激活期的情况,针对各个服务小区中的任一个服务小区,目标时间偏置是根据SR在上行载波的传输时延与服务小区对应的下行载波的信号传输时延确定的。服务小区对应的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与服务小区对应的下行载波的信号传输时延之和。
可选地,目标时间偏置大于SR在上行载波的传输时延与服务小区对应的下行载波的信号传输时延之和。
可选地,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期的情况,针对多个DRX分组中的任一个DRX分组,目标时间偏置是根据SR在上行载波的传输时延与第二信号传输时延确定的。其中,第二信号传输时延是DRX分组对应的所有激活的下行载波上的信号传输时延的最小值。所有激活的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与第二信号传输时延之和。
可选地,目标时间偏置大于SR在上行载波的传输时延与第二信号传输时延之和。
可选地,针对一个MAC实体配置多个DRX分组,且终端设备针对多个DRX分组分别维护DRX激活期,终端设备不支持在不同DRX分组对应的载波上进行跨载波调度的情况,针对多个DRX分组中第一DRX分组,目标时间偏置是根据SR在上行载波的传输时延与第三信号传输时延确定的。其中,第一DRX分组是多个DRX分组中满足预设条件的DRX分组。第三信号传输时延是第一DRX分组对应的所有激活的下行载波上的信号传输时延的最小值。所有激活的下行载波是终端设备与基站之间的下行载波。
可选地,目标时间偏置是SR在上行载波的传输时延与第三信号传输时延之和。
可选地,目标时间偏置大于SR在上行载波的传输时延与第三信号传输时延之和。
可选地,预设条件包括:SR是由上行逻辑信道触发的常规BSR触发的,且根据上行逻辑信道的LCP限制确定上行逻辑信道允许在第一DRX分组对应的至少一个服务小区上传输。
可选地,预设条件包括:SR是由除上行逻辑信道触发的常规BSR之外的其他事件触发的。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备1000可对应于本申请方法实施例中的终端设备,并且终端设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法中终端设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备1100示意性结构图。图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,装置1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该装置1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者 软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (39)

  1. 一种无线通信方法,其特征在于,包括:
    在上行载波上发送调度请求SR;
    在发送完所述SR的目标时间偏置之后所述SR处于挂起状态,进入非连续接收DRX激活期;
    其中,所述目标时间偏置是根据所述SR在所述上行载波的传输时延和至少一个下行载波上的信号传输时延确定的;所述至少一个下行载波是终端设备与基站之间激活的下行载波。
  2. 根据权利要求1所述的方法,其特征在于,所述方法的应用场景包括:地面网络TN和非地面网络NTN的载波聚合CA场景,或者,不同卫星透明转发情况下的NTN CA场景。
  3. 根据权利要求2所述的方法,其特征在于,所述方法的应用场景为以下任一项:
    TN和NTN的CA场景;
    不同卫星透明转发情况下的NTN CA场景;
    TN和NTN的双连接DC和CA的结合场景;
    不同NTN之间的DC和CA的结合场景。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,
    针对一个媒体访问控制MAC实体配置一个DRX分组,且所述终端设备针对所述MAC实体统一维护DRX激活期的情况,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第一信号传输时延确定的;
    其中,所述第一信号传输时延是所述上行载波所在的小区组中所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  5. 根据权利要求4所述的方法,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第一信号传输时延之和。
  6. 根据权利要求4所述的方法,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第一信号传输时延之和。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,
    针对一个MAC实体配置一个DRX分组,且所述终端设备针对所述MAC实体对应的各个服务小区分别维护DRX激活期的情况,针对所述各个服务小区中的任一个服务小区,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延确定的;所述服务小区对应的下行载波是所述终端设备与所述基站之间的下行载波。
  8. 根据权利要求7所述的方法,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延之和。
  9. 根据权利要求7所述的方法,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延之和。
  10. 根据权利要求1-3任一项所述的方法,其特征在于,
    针对一个MAC实体配置多个DRX分组,且所述终端设备针对所述多个DRX分组分别维护DRX激活期的情况,针对所述多个DRX分组中的任一个DRX分组,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第二信号传输时延确定的;
    其中,所述第二信号传输时延是所述DRX分组对应的所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  11. 根据权利要求10所述的方法,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第二信号传输时延之和。
  12. 根据权利要求10所述的方法,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第二信号传输时延之和。
  13. 根据权利要求1-3任一项所述的方法,其特征在于,
    针对一个MAC实体配置多个DRX分组,且所述终端设备针对所述多个DRX分组分别维护DRX激活期,所述终端设备不支持在不同DRX分组对应的载波上进行跨载波调度的情况,针对所述多个DRX分组中第一DRX分组,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第三信号传输时延确定的;
    其中,所述第一DRX分组是所述多个DRX分组中满足预设条件的DRX分组;所述第三信号传输时延是所述第一DRX分组对应的所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  14. 根据权利要求13所述的方法,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第三信号传输时延之和。
  15. 根据权利要求13所述的方法,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第三信号传输时延之和。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述预设条件包括:所述SR是由上行逻辑信道触发的常规缓存状态报告BSR触发的,且根据所述上行逻辑信道的链路控制协议LCP限制确定所述上行逻辑信道允许在所述第一DRX分组对应的至少一个服务小区上传输。
  17. 根据权利要求13-15任一项所述的方法,其特征在于,所述预设条件包括:所述SR是由除上行逻辑信道触发的常规BSR之外的其他事件触发的。
  18. 一种终端设备,其特征在于,包括:
    通信单元,用于在上行载波上发送SR;
    处理单元,用于在发送完所述SR的目标时间偏置之后所述SR处于挂起状态,进入DRX激活期;
    其中,所述目标时间偏置是根据所述SR在所述上行载波的传输时延和至少一个下行载波上的信号传输时延确定的;所述至少一个下行载波是终端设备与基站之间激活的下行载波。
  19. 根据权利要求18所述的终端设备,其特征在于,所述终端设备的应用场景包括:TN和NTN的CA场景,或者,不同卫星透明转发情况下的NTN CA场景。
  20. 根据权利要求19所述的终端设备,其特征在于,所述终端设备的应用场景为以下任一项:
    TN和NTN的CA场景;
    不同卫星透明转发情况下的NTN CA场景;
    TN和NTN的双连接DC和CA的结合场景;
    不同NTN之间的DC和CA的结合场景。
  21. 根据权利要求18-20任一项所述的终端设备,其特征在于,
    针对一个MAC实体配置一个DRX分组,且所述终端设备针对所述MAC实体统一维护DRX激活期的情况,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第一信号传输时延确定的;
    其中,所述第一信号传输时延是所述上行载波所在的小区组中所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  22. 根据权利要求21所述的终端设备,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第一信号传输时延之和。
  23. 根据权利要求21所述的终端设备,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第一信号传输时延之和。
  24. 根据权利要求18-20任一项所述的终端设备,其特征在于,
    针对一个MAC实体配置一个DRX分组,且所述终端设备针对所述MAC实体对应的各个服务小区分别维护DRX激活期的情况,针对所述各个服务小区中的任一个服务小区,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延确定的;所述服务小区对应的下行载波是所述终端设备与所述基站之间的下行载波。
  25. 根据权利要求24所述的终端设备,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延之和。
  26. 根据权利要求24所述的终端设备,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述服务小区对应的下行载波的信号传输时延之和。
  27. 根据权利要求18-20任一项所述的终端设备,其特征在于,
    针对一个MAC实体配置多个DRX分组,且所述终端设备针对所述多个DRX分组分别维护DRX激活期的情况,针对所述多个DRX分组中的任一个DRX分组,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第二信号传输时延确定的;
    其中,所述第二信号传输时延是所述DRX分组对应的所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  28. 根据权利要求27所述的终端设备,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第二信号传输时延之和。
  29. 根据权利要求27所述的终端设备,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第二信号传输时延之和。
  30. 根据权利要求18-20任一项所述的终端设备,其特征在于,
    针对一个MAC实体配置多个DRX分组,且所述终端设备针对所述多个DRX分组分别维护DRX激活期,所述终端设备不支持在不同DRX分组对应的载波上进行跨载波调度的情况,针对所述多个DRX分组中第一DRX分组,所述目标时间偏置是根据所述SR在所述上行载波的传输时延与第三信号传输时延确定的;
    其中,所述第一DRX分组是所述多个DRX分组中满足预设条件的DRX分组;所述第三信号传输时延是所述第一DRX分组对应的所有激活的下行载波上的信号传输时延的最小值;所述所有激活的下行载波是所述终端设备与所述基站之间的下行载波。
  31. 根据权利要求30所述的终端设备,其特征在于,所述目标时间偏置是所述SR在所述上行载波的传输时延与所述第三信号传输时延之和。
  32. 根据权利要求30所述的终端设备,其特征在于,所述目标时间偏置大于所述SR在所述上行载波的传输时延与所述第三信号传输时延之和。
  33. 根据权利要求30-32任一项所述的终端设备,其特征在于,所述预设条件包括:所述SR是由上行逻辑信道触发的常规BSR触发的,且根据所述上行逻辑信道的LCP限制确定所述上行逻辑信道允许在所述第一DRX分组对应的至少一个服务小区上传输。
  34. 根据权利要求30-32任一项所述的终端设备,其特征在于,所述预设条件包括:所述SR是由除上行逻辑信道触发的常规BSR之外的其他事件触发的。
  35. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
  36. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至17中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令 使得计算机执行如权利要求1至17中任一项所述的方法。
  39. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
PCT/CN2020/138085 2020-12-21 2020-12-21 无线通信方法和终端设备 WO2022133675A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080107165.2A CN116472749A (zh) 2020-12-21 2020-12-21 无线通信方法和终端设备
PCT/CN2020/138085 WO2022133675A1 (zh) 2020-12-21 2020-12-21 无线通信方法和终端设备
US18/137,868 US20230269732A1 (en) 2020-12-21 2023-04-21 Wireless communication method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138085 WO2022133675A1 (zh) 2020-12-21 2020-12-21 无线通信方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/137,868 Continuation US20230269732A1 (en) 2020-12-21 2023-04-21 Wireless communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2022133675A1 true WO2022133675A1 (zh) 2022-06-30

Family

ID=82156951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138085 WO2022133675A1 (zh) 2020-12-21 2020-12-21 无线通信方法和终端设备

Country Status (3)

Country Link
US (1) US20230269732A1 (zh)
CN (1) CN116472749A (zh)
WO (1) WO2022133675A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012314A (zh) * 2016-10-31 2018-05-08 联发科技股份有限公司 降低功耗方法及其无线通信装置
CN110876177A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ue非连续接收的控制、指示方法及装置、存储介质、终端、基站
CN111183606A (zh) * 2017-08-10 2020-05-19 康维达无线有限责任公司 用于nr的增强型已连接模式drx过程

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012314A (zh) * 2016-10-31 2018-05-08 联发科技股份有限公司 降低功耗方法及其无线通信装置
CN111183606A (zh) * 2017-08-10 2020-05-19 康维达无线有限责任公司 用于nr的增强型已连接模式drx过程
CN110876177A (zh) * 2018-08-31 2020-03-10 展讯通信(上海)有限公司 Ue非连续接收的控制、指示方法及装置、存储介质、终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On scheduling, HARQ, and DRX for NTN", 3GPP DRAFT; R2-2010168, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20201102 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942854 *

Also Published As

Publication number Publication date
US20230269732A1 (en) 2023-08-24
CN116472749A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN113728697B (zh) 无线通信方法和终端设备
US20220159732A1 (en) Random access method and device
US20230224091A1 (en) Wireless communication method and device
US20240023015A1 (en) Sidelink transmission method and terminal
US20240267992A1 (en) Wireless communication method, terminal device, and network device
CN116192337A (zh) 无线通信的方法及装置
US20230231661A1 (en) Channel transmission method, terminal device and network device
WO2021022430A1 (zh) 随机接入的方法和通信设备
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2023108454A1 (zh) 上行同步中的定时提前量维持方法、终端设备和网络设备
WO2022133675A1 (zh) 无线通信方法和终端设备
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2022077174A1 (zh) 无线通信方法和设备
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
WO2022236965A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024174059A1 (zh) 用于侧行通信的方法、终端设备及网络设备
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2024092456A1 (zh) 位置测量方法、定时器维护方法和设备
WO2022227086A1 (zh) 通信方法及装置
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023236213A1 (zh) 通信方法、终端设备及网络设备
WO2022236574A1 (zh) 时域参数确定方法、终端设备及网络设备
WO2024174177A1 (zh) 通信方法、装置、终端设备、介质、芯片、产品及程序
WO2024148465A1 (zh) 测量方法和终端设备
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107165.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966256

Country of ref document: EP

Kind code of ref document: A1