WO2022126520A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022126520A1
WO2022126520A1 PCT/CN2020/137296 CN2020137296W WO2022126520A1 WO 2022126520 A1 WO2022126520 A1 WO 2022126520A1 CN 2020137296 W CN2020137296 W CN 2020137296W WO 2022126520 A1 WO2022126520 A1 WO 2022126520A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
interval
uplink interval
preamble
terminal device
Prior art date
Application number
PCT/CN2020/137296
Other languages
English (en)
French (fr)
Inventor
胡奕
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20965536.4A priority Critical patent/EP4243493A4/en
Priority to PCT/CN2020/137296 priority patent/WO2022126520A1/zh
Priority to CN202080107051.8A priority patent/CN116636261A/zh
Publication of WO2022126520A1 publication Critical patent/WO2022126520A1/zh
Priority to US18/207,552 priority patent/US20230328674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method, terminal device, and network device.
  • the uplink channels supported by the Narrow Band Internet of Things (NB-IoT) network include: Narrowband Physical Random Access Channel (NPRACH) and Narrowband Physical Uplink Shared Channel (NPUSCH) ). Due to the introduction of the repeated transmission mechanism on NPRACH and NPUSCH, and because the NB-IoT terminal only supports the half-duplex type-B mode, that is, the terminal device can only receive or send data at the same time, but cannot send and receive data at the same time. Therefore, for the uplink transmission with a longer duration, an uplink (Uplink, UL) gap (gap), that is, an uplink gap, is introduced.
  • NPRACH Narrowband Physical Random Access Channel
  • NPUSCH Narrowband Physical Uplink Shared Channel
  • the uplink interval is mainly used for synchronization tracking and frequency offset using narrowband primary synchronization signal (Narrowband Primary Synchronization Signal, NPSS), narrowband secondary synchronization signal (Narrowband Secondary Synchronization Signal, NSSS) or narrowband reference signal (Narrowband Reference Signal, NRS) signal (frequency offset of crystal oscillator) compensation.
  • narrowband Primary Synchronization Signal Narrowband Primary Synchronization Signal
  • NSSS narrowband Secondary Synchronization Signal
  • NRS narrowband Reference Signal
  • the uplink interval is predefined in the protocol. Because NB-IoT terminals have the characteristics of low mobility, and the base station is also stationary in the ground network, the channel quality of NB-IoT terminals usually changes slowly, so it is reasonable to define the uplink interval in a predefined way.
  • Non-Terrestrial Network NTN
  • GEO non-Geostationary Earth Orbit
  • Embodiments of the present application provide a wireless communication method, terminal device, and network device, so as to adapt to non-GEO scenarios in an NTN network.
  • a first aspect provides a wireless communication method, comprising: acquiring configuration information of an uplink interval; repeating transmission of uplink information on an uplink channel according to the configuration information of the uplink interval; wherein the uplink interval is used by a terminal device to perform downlink on the uplink interval Synchronization and frequency offset compensation.
  • a wireless communication method comprising: acquiring configuration information of an uplink interval; repeating transmission of uplink information on an uplink channel according to the configuration information of the uplink interval; wherein the uplink interval is used for terminal equipment to perform TA on the uplink interval Pre-compensation or TA adjustment.
  • a wireless communication method including: sending configuration information of an uplink interval; wherein the uplink interval is used for a terminal device to perform downlink synchronization and frequency offset compensation on the uplink interval.
  • a wireless communication method including: sending configuration information of an uplink interval; wherein the uplink interval is used for terminal equipment to perform TA pre-compensation or TA adjustment on the uplink interval.
  • a terminal device configured to execute the method in the first aspect, the second aspect, or each implementation manner thereof.
  • the terminal device includes functional modules for executing the methods in the first aspect, the second aspect, or the respective implementation manners thereof.
  • a network device for performing the method in the third aspect, the fourth aspect or each of the implementations thereof.
  • the network device includes functional modules for executing the methods in the third aspect, the fourth aspect, or the respective implementation manners thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect, the second aspect or each of the implementations thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the methods in the third aspect, the fourth aspect or each of their implementations.
  • an apparatus for implementing the method in any one of the above-mentioned first aspect to the fourth aspect or each implementation manner thereof.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device installed with the apparatus executes the method in any one of the above-mentioned first to fourth aspects or their respective implementations .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first to fourth aspects or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions enable a computer to execute the method in any one of the above-mentioned first to fourth aspects or the implementations thereof.
  • a twelfth aspect provides a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to fourth aspects or the respective implementations thereof.
  • the configuration information of the uplink interval is not predefined, but is configured by the network device to the terminal device, which can realize the difference of the configuration information of the uplink interval corresponding to different terminal devices, so as to adapt to the non-GEO scene in the NTN network .
  • the terminal device may also insert an uplink interval into the uplink transmission according to the configuration information of the uplink interval to perform TA pre-compensation or TA adjustment. Therefore, the terminal device can accurately perform TA pre-compensation or TA adjustment, and uplink transmission regardless of whether the TA becomes smaller or larger.
  • Fig. 1 is the flow interaction diagram of the four-step random access process based on contention
  • FIG. 2 is a schematic diagram of time synchronization on the gNB side according to an embodiment of the present application
  • 3A is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • 3B is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 4 is an interaction flowchart of a wireless communication method provided by an embodiment of the present application.
  • 5A is a schematic configuration diagram of an uplink interval corresponding to an NPRACH according to an embodiment of the present application
  • 5B is a schematic configuration diagram of an uplink interval corresponding to an NPUSCH provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between a preamble, a first uplink interval, and a random access response window provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of the relationship between a preamble, a first uplink interval, and a random access response window provided by yet another embodiment of the present application;
  • FIG. 8 is a schematic diagram of the relationship between a preamble, a first uplink interval, and a random access response window provided by another embodiment of the present application;
  • FIG. 9 shows a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • FIG. 11 shows a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • FIG. 12 shows a schematic block diagram of a network device 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication system 1500 provided by an embodiment of the present application.
  • Satellite communication is not limited by the user's geographical area. For example, general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population. For satellite communication, due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO GEO Satellites
  • HEO High Elliptical Orbit
  • the altitude range of low-orbit satellites is 500km to 1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • the uplink channels supported by the NB-IoT network include: NPRACH and NPUSCH.
  • NPRACH is used to transmit a preamble.
  • NPUSCH supports two formats, format1 and format2.
  • NPUSCH format1 is used for uplink data transmission, and NPUSCH format2 is used to transmit Hybrid Automatic Repeat Request-Acknowledgement (HARQ-ACK) feedback information.
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • an uplink (Uplink, UL) gap (gap), that is, an uplink gap, is introduced.
  • the uplink interval is mainly for synchronous tracking and frequency offset (frequency offset of crystal oscillator) compensation by using NPSS, NSSS or NRS signals.
  • the uplink interval is predefined in the protocol. details as follows:
  • frequency offset compensation is performed with an uplink interval of 40ms.
  • FIG. 1 is a flow interaction diagram of a contention-based four-step random access procedure.
  • the random access procedure may include the following four steps:
  • the terminal device sends Msg 1 to the network device to tell the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble (Random Access Preamble, RAP), or is called a random access preamble sequence, Preamble sequence, preamble, etc.
  • RAP Random Access Preamble
  • Msg 1 can also be used for network equipment to estimate the transmission delay between itself and the terminal equipment and to calibrate the uplink time accordingly.
  • the terminal device selects a preamble index (index) and a PRACH resource for sending the preamble; then the terminal device transmits the preamble on the PRACH.
  • the network device will notify all terminal devices by broadcasting a system information system information block (System Information Block, SIB) on which time-frequency resources are allowed to transmit the preamble, for example, SIB1.
  • SIB System Information Block
  • the network device After receiving the Msg 1 sent by the terminal device, the network device sends Msg 2, that is, a random access response (Random Access Response, RAR) message to the terminal device.
  • the Msg 2 can carry, for example, a time advance (Time Advance, TA), an uplink grant instruction such as the configuration of uplink resources, and a temporary cell wireless network temporary identity (Temporary Cell-Radio Network Temporary Identity, TC-RNTI) and the like.
  • TA Time Advance
  • TC-RNTI Temporary Cell-Radio Network Temporary Identity
  • the terminal device monitors the Physical Downlink Control Channel (PDCCH) in the random access response window (RAR window) to receive the RAR message replied by the network device.
  • the RAR message may be descrambled using a corresponding random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device does not receive the RAR message replied by the network device within the RAR window, it is considered that the random access process has failed.
  • the terminal device successfully receives a RAR message, and the preamble index (preamble index) carried in the RAR message is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received. At this time, the terminal device The device can stop monitoring in the RAR window.
  • Msg 2 may include RAR messages for multiple terminal devices, and the RAR message of each terminal device may include a random access preamble identifier (RAP Identify, RAPID) used by the terminal device, used for transmitting Msg 3 resource information, TA adjustment information, TC-RNTI, etc.
  • RAP Identify random access preamble identifier
  • RAPID random access preamble identifier
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR belongs to its own RAR message. For example, the terminal device can use the preamble identifier to check. After determining that it belongs to its own RAR message, the terminal device generates Msg 3 at the RRC layer. And send Msg 3 to the network device. The identification information of the terminal device needs to be carried.
  • Msg 3 in step 3 of the 4-step random access procedure may include different contents to perform scheduled transmission (Scheduled Transmission).
  • Msg 3 may include an RRC connection request (RRC Connection Request) generated by the RRC layer, which at least carries the non-access stratum (Non-Access Stratum, NAS) identification information of the terminal device, and may also carry For example, a Serving-Temporary Mobile Subscriber Identity (S-TMSI) or a random number of the terminal device.
  • RRC Connection Request RRC Connection Request
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include an RRC connection re-establishment request (RRC Connection Re-establishment Request) generated by the RRC layer without carrying any NAS message, and may also carry, for example, a cell radio network temporary identity (Cell Radio Network Temporary) Identifier, C-RNTI) and protocol control information (Protocol Control Information, PCI) and so on.
  • RRC Connection Re-establishment Request RRC Connection Re-establishment Request
  • C-RNTI Cell Radio Network Temporary
  • PCI Protocol Control Information
  • Msg 3 may include an RRC handover complete message (RRC Handover Confirm) generated by the RRC layer and the C-RNTI of the terminal device, and may also carry, for example, a buffer status report (Buffer Status Report, BSR); for other triggers
  • RRC Handover Confirm RRC handover complete message
  • BSR Buffer Status Report
  • the network device sends Msg 4 to the terminal device, and the terminal device correctly receives the Msg 4 to complete the contention resolution (Contention Resolution).
  • the Msg 4 may carry the RRC connection establishment message.
  • the network device in the contention resolution mechanism will carry its own unique identification in Msg 3, such as C-RNTI or identification information from the core network (such as S-TMSI or a random number), the network device in the contention resolution mechanism will The unique identification of the terminal device is carried in Msg 4 to designate the terminal device that wins the competition. And other terminal devices that do not win in the contention resolution will re-initiate random access.
  • the terminal device starts the RAR window after a period of time after sending Msg1.
  • the promoter subframe of the RAR window is n+X, where n is the last subframe where the last repeated transmission containing the preamble is located, and the value of X is based on Time Division Duplex (TDD) Or FDD, and NPRACH repeated transmission times to decide.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • NPRACH repeated transmission times to decide.
  • the value of X can be determined from Table 1.
  • TDD or FDD mode preamble format Number of repetitions of NPRACH X FDD 0 or 1 ⁇ 64 41 FDD 0 or 1 ⁇ 64 4 FDD 2 ⁇ 16 41 FDD 2 ⁇ 16 4 TDD any value any value 4
  • RAR window is also referred to as RAR receiving window, RAR time window, etc., which is not limited in this application.
  • Timing Advance (TA) mechanism in NR system 4. Timing Advance (TA) mechanism in NR system:
  • uplink transmission An important feature of uplink transmission is that different terminal devices have orthogonal multiple access in time-frequency, that is, uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the network equipment In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the network equipment requires that the arrival times of signals from different terminal equipments with different frequency domain resources at the same moment to the network equipment are basically aligned.
  • NR supports the uplink TA mechanism.
  • FIG. 2 is a schematic diagram of time synchronization on the gNB side provided by an embodiment of the present application.
  • the uplink clock and the downlink clock on the UE side are the same.
  • the time at which uplink data from different UEs arrive at the gNB side is not synchronized.
  • the gNB can control the time when the uplink data from different UEs arrive at the gNB, so that the time when the uplink data from different UEs arrive at the gNB side is synchronized with the downlink timing at the gNB side. Specifically, for a UE that is far away from the gNB, due to a larger transmission delay, it is necessary to send uplink data earlier than a UE that is closer to the gNB.
  • the gNB determines the TA value of each UE based on measuring the uplink transmission of the UE.
  • the gNB sends the TA command to the UE in two ways.
  • the gNB determines the TA value by measuring the received preamble, and sends it to the UE through the Timing Advance Command (Timing Advance Command) field of the RAR.
  • Timing Advance Command Timing Advance Command
  • Timing Advance Command Timing Advance Command
  • the channel quality of the NB-IoT terminal usually changes slowly, so it is more reasonable to define the uplink interval in a predefined way. .
  • the wireless signal transmission delay between the terminal device and the network will continue to change with the rapid movement of the satellite.
  • the variation rules of wireless channels between terminal equipment and the network under the coverage of non-GEO satellites located at different orbital heights are not the same; The changing rules of the wireless channel between the terminal equipment in the location and the network are also different. Therefore, the predefined way of uplink interval is not suitable for non-GEO scenarios in NTN network.
  • the present application can configure different uplink intervals for different NB-IoT terminals, so as to be suitable for non-GEO scenarios in the NTN network.
  • FIG. 3A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 3B is a schematic structural diagram of another communication system provided by an embodiment of the present application. Referring to FIG. 3B , it includes a terminal device 1201 , a satellite 1202 and a base station 1203 , the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the wireless communication system shown in FIG. 3A-FIG. 3B may further include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). , which is not limited in the embodiments of the present application.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application may be applied to unlicensed spectrum, and may also be applied to licensed spectrum.
  • unlicensed spectrum can also be considered as shared spectrum
  • licensed spectrum can also be considered as non-shared spectrum.
  • the terminal equipment may be an NB-IoT terminal or a non-NB-IoT terminal, wherein the terminal equipment in this application may also be referred to as user equipment ( User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent or user equipment, etc.
  • User Equipment User Equipment
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the network device may be a base station, as shown in FIG. 3B , and the network device may also have mobile characteristics, for example, the network device may be a mobile device, as shown in FIG. 3A .
  • the network device may be a satellite or a balloon station.
  • the satellites may be LEO satellites, MEO satellites, HEO satellites, and the like.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 4 is an interaction flowchart of a wireless communication method provided by an embodiment of the present application. As shown in FIG. 4 , the method includes the following steps:
  • the terminal device acquires the configuration information of the uplink interval, where the uplink interval is used for the terminal device to perform downlink synchronization and frequency offset compensation on the uplink interval.
  • S420 The terminal device repeatedly transmits the uplink information on the uplink channel according to the configuration information of the uplink interval.
  • the configuration information of the uplink interval is carried in any of the following, but is not limited to this: broadcast message, radio resource control (Radio Resource Control, RRC) signaling, media access control element (Media Access Control Control Element, MAC CE), Downlink Control Information (Downlink Control Information, DCI).
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • DCI Downlink Control Information
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval; wherein, an uplink interval occurs after each continuous insertion interval of the uplink channel.
  • FIG. 5A is a schematic diagram of the configuration of the uplink interval corresponding to the NPRACH provided by this embodiment of the application. As shown in FIG. 5A , an uplink interval of duration Y1 appears after each NPRACH is continuously inserted into the interval X1.
  • FIG. 5B is a schematic diagram of the configuration of an uplink interval corresponding to the NPUSCH provided by an embodiment of the present application. As shown in FIG. 5B , an uplink interval with a duration of Y2 appears after the NPUSCH is continuously inserted into the interval X2.
  • this application does not limit how the network device determines the duration of the uplink interval, and/or the insertion interval of the uplink interval.
  • the duration of the uplink interval may be predefined, and the network device only needs to configure the insertion interval of the uplink interval to the terminal device.
  • the insertion interval of the uplink interval may be predefined, and the network device only needs to configure the duration of the uplink interval to the terminal device.
  • the network device may also send the resource configuration of the uplink channel to the terminal device.
  • the resource configuration of the uplink channel is carried in any of the following, but not limited to: broadcast message, RRC signaling, MAC CE, DCI.
  • the above-mentioned uplink channel may be NPRACH or NPUSCH, but is not limited thereto.
  • the above-mentioned uplink information may be the preamble transmitted on the NPRACH. If the uplink channel is the NPUSCH, the above-mentioned uplink information may be uplink data transmitted on the NPUSCH or HARQ-ACK feedback information.
  • the network device may broadcast or configure the resource configuration of at least one NPRACH at a time.
  • the configuration information of the uplink interval is the configuration information for at least one NPRACH, that is, the configuration information of the uplink interval may correspond to one NPRACH resource or multiple NPRACH resources.
  • the configuration information of the uplink interval may be configured separately based on each set of NPRACH resources, or may be the configuration information that all NPRACH resources use the same uplink interval.
  • the resource configuration of each NPRACH includes at least one of the following items, but is not limited to this: the period of the NPRACH, the start time of the NPRACH resource within a period, the position of the starting subcarrier of the NPRACH resource, the NPRACH resource in the frequency domain The number of consecutive subcarriers occupied on the network, and the number of repeated transmissions of the preamble.
  • the configuration information of the uplink interval is not predefined, but is configured by the network device to the terminal device, which can realize the difference of the configuration information of the uplink interval corresponding to different terminal devices, so as to adapt to the NTN network.
  • Non-GEO scenarios are not predefined, but is configured by the network device to the terminal device, which can realize the difference of the configuration information of the uplink interval corresponding to different terminal devices, so as to adapt to the NTN network.
  • the terminal equipment needs to adjust the TA frequently.
  • the terminal device For uplink transmission with a large number of repetitions, the terminal device also needs to continuously adjust the TA during the repeated transmission. In the case where the TA becomes smaller, the terminal device can perform TA adjustment and uplink transmission at the same time, while in the case where the TA becomes larger, the terminal device cannot perform TA adjustment and uplink transmission simultaneously.
  • the network device can also configure the configuration information of the uplink interval for the terminal device.
  • the uplink channel is NPRACH
  • the configuration information of the uplink interval is used for the terminal device to perform TA pre-configuration on the uplink interval. Compensation (Timing Advance pre-compensation).
  • the uplink channel is the NPUSCH
  • the configuration information of the uplink interval is used for the terminal device to perform TA adjustment on the uplink interval.
  • the TA pre-compensation is calculated by the terminal device, and the terminal device needs to perform the TA compensation in the random access process.
  • TA pre-compensation is also referred to as TA compensation, TA pre-compensation value, etc., which is not limited in this application.
  • the terminal device may perform TA adjustment according to the TA adjustment command or based on the TA compensation capability of the terminal device itself.
  • TA adjustment and TA pre-compensation are both terminal equipment adjusting its TA.
  • the terminal equipment does not yet have a valid TA, so TA pre-compensation is performed.
  • the terminal device When the terminal equipment is connected In the state, the terminal device will maintain a TA, and can adjust the TA.
  • the configuration information of the uplink interval is carried in any of the following, but is not limited to this: broadcast message, RRC signaling, MAC CE, DCI.
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval.
  • the uplink interval occurs every time the uplink channel continues after the insertion interval.
  • this application does not limit how the network device determines the duration of the uplink interval, and/or the insertion interval of the uplink interval.
  • the duration of the uplink interval may be predefined, and the network device only needs to configure the insertion interval of the uplink interval to the terminal device.
  • the insertion interval of the uplink interval may be predefined, and the network device only needs to configure the duration of the uplink interval to the terminal device.
  • the network device may also send the resource configuration of the uplink channel to the terminal device.
  • the resource configuration of the uplink channel is carried in any of the following, but not limited to: broadcast message, RRC signaling, MAC CE, DCI.
  • the above-mentioned uplink channel may be NPRACH or NPUSCH, but is not limited thereto.
  • the network device may broadcast or configure the resource configuration of at least one NPRACH at a time.
  • the configuration information of the uplink interval is the configuration information for at least one NPRACH, that is, the configuration information of the uplink interval may correspond to one NPRACH resource or multiple NPRACH resources.
  • the configuration information of the uplink interval may be configured separately based on each set of NPRACH resources, or may be the configuration information that all NPRACH resources use the same uplink interval.
  • the resource configuration of each NPRACH includes at least one of the following items, but is not limited to this: the period of the NPRACH, the start time of the NPRACH resource within a period, the position of the starting subcarrier of the NPRACH resource, the NPRACH resource in the frequency domain The number of consecutive subcarriers occupied on the network, and the number of repeated transmissions of the preamble.
  • the terminal device may insert an uplink interval in the middle of uplink transmission according to the configuration information of the uplink interval to perform TA pre-compensation or TA adjustment. Therefore, the terminal device can accurately perform TA pre-compensation or TA adjustment, and uplink transmission regardless of whether the TA becomes smaller or larger.
  • the uplink interval is called the first uplink interval.
  • the uplink interval is called the second uplink interval, when the uplink channel is NPUSCH, and the uplink interval uses
  • the uplink interval is called the third uplink interval, when the uplink channel is the NPUSCH, and the uplink interval is used for the terminal equipment on the uplink interval.
  • the uplink interval is referred to as the fourth uplink interval.
  • the first uplink interval, the second uplink interval, the third uplink interval, and the fourth uplink interval may be completely different, partially the same, or completely the same.
  • the first uplink interval and the second uplink interval may be the same, and the third uplink interval and the fourth uplink interval may be the same.
  • the first uplink interval and the third uplink interval may be the same, and the second uplink interval and the fourth uplink interval may be the same.
  • the first uplink interval, the second uplink interval, the third uplink interval and the fourth uplink interval may be different.
  • the first uplink interval, the second uplink interval, the third uplink interval and the fourth uplink interval may be the same. In a word, this application does not limit this.
  • the terminal device starts the random access response window after a period of time after sending the Msg1.
  • the start subframe of the RAR window is n+X, where n is the last subframe where the last repeated transmission containing the preamble is located, and the value of X is determined by TDD or FDD and the number of NPRACH repeated transmissions. Decide. Specifically, the value of X can be determined from Table 1.
  • the uplink interval is no longer predefined, but configured by the network device. Based on this, the opening time of the random access response window will also change. This is explained in detail below:
  • the opening time of the random access response window may be n+Z1.
  • n represents the last subframe used by the last repeated transmission of the preamble
  • Z1 is the total duration of repeated transmission of the preamble, or the end time of the last first uplink interval inserted in the entire repeated transmission of the preamble to the preamble
  • the duration of the end time of the entire repeated transmission of the code is determined by the RTT between the terminal device and the network device.
  • Figure 7 is a schematic diagram of the relationship between the preamble, the first uplink interval and the random access response window provided by another embodiment of the application. As shown in Figure 7, the total duration of repeated transmission of the preamble here is equal to X1.
  • Figure 8 is a schematic diagram of the relationship between a preamble, a first uplink interval and a random access response window provided by another embodiment of the application.
  • the last one inserted in the entire repeated transmission of the preamble here
  • the above is to determine the opening time of the random access response window on the basis of the first uplink interval.
  • the opening time of the random access response window can also be determined on the basis of the second uplink interval.
  • the opening time of the random access response window can only be determined based on the first uplink interval or the second uplink interval.
  • the uplink interval is determined.
  • the opening time of the random access response window is n+Z3.
  • n represents the last subframe used by the last repeated transmission of the preamble
  • Z3 is the total duration of repeated transmission of the preamble, or, the end time of the last second uplink interval inserted in the entire repeated transmission of the preamble to the preamble
  • the duration of the end time of the entire repeated transmission of the code is determined by the RTT between the terminal device and the network device.
  • X3 represents the insertion interval of the second uplink interval
  • Y3 represents the duration of the second uplink interval
  • the determination of the opening time of the random access response window according to the second time interval is similar to the method of determining the opening time of the random access response window according to the first time interval, which is not repeated in this application.
  • the present application provides a method for determining the opening time of a random access response window in a non-GEO scenario of an NTN network.
  • FIG. 9 shows a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 includes: a communication unit 910, configured to obtain configuration information of an uplink interval.
  • the uplink information on the uplink channel is repeatedly transmitted according to the configuration information of the uplink interval.
  • the uplink interval is used for the terminal equipment to perform downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval. Wherein, an uplink interval occurs after each continuous insertion interval of the uplink channel.
  • the upstream channel is NPRACH.
  • the uplink interval is also used for the terminal equipment to perform TA pre-compensation and/or downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval is configuration information for at least one NPRACH.
  • the uplink information is a preamble in the random access process.
  • the terminal device further includes: a processing unit 920, configured to open a random access response window after sending the preamble.
  • the opening time of the random access response window is n+Z1.
  • n represents the last subframe used by the last repeated transmission of the preamble
  • Z1 is the total duration of the repeated transmission of the preamble, or the end time of the last uplink interval inserted in the entire repeated transmission of the preamble to the length of the preamble
  • the duration of the end time of the entire repeated transmission is determined by the RTT between the terminal device and the network device.
  • X1 represents the insertion interval of the uplink interval
  • Y1 represents the duration of the uplink interval
  • X1 represents the insertion interval of the uplink interval
  • Y1 represents the duration of the uplink interval.
  • the uplink channel is NPUSCH.
  • the uplink interval is also used for the terminal device to perform TA adjustment and/or downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval is carried in any one of the following: broadcast message, RRC signaling, MAC CE, and DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the terminal device 900 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 900 are respectively for realizing the above-mentioned method embodiments. For the sake of brevity, the corresponding process of the terminal device will not be repeated here.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal device 1000 includes: a communication unit 1010, configured to obtain configuration information of an uplink interval.
  • the uplink information on the uplink channel is repeatedly transmitted according to the configuration information of the uplink interval.
  • the uplink interval is used for the terminal equipment to perform TA pre-compensation or TA adjustment on the uplink interval.
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval. Wherein, an uplink interval occurs after each continuous insertion interval of the uplink channel.
  • the upstream channel is NPRACH.
  • the uplink interval is used for the terminal device to perform TA pre-compensation and/or downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval is configuration information for at least one NPRACH.
  • the uplink information is a preamble in the random access process.
  • the terminal device further includes: a processing unit 1020, configured to open a random access response window after sending the preamble.
  • the opening time of the random access response window is n+Z3.
  • n represents the last subframe used by the last repeated transmission of the preamble
  • Z3 is the total duration of repeated transmission of the preamble
  • the end time of the last uplink interval inserted in the entire repeated transmission of the preamble to the length of the preamble The duration of the end time of the entire repeated transmission and the round-trip delay RTT of signal transmission between the terminal device and the network device are determined.
  • X3 represents the insertion interval of the uplink interval
  • Y3 represents the duration of the uplink interval
  • X3 represents the insertion interval of the uplink interval
  • Y3 represents the duration of the uplink interval.
  • the uplink channel is NPUSCH.
  • the uplink interval is also used for the terminal device to perform TA adjustment on the uplink interval.
  • the configuration information of the uplink interval is carried in any one of the following: broadcast message, RRC signaling, MAC CE, and DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 1000 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 1000 are respectively for realizing the above-mentioned method embodiments.
  • the corresponding process of the terminal device will not be repeated here.
  • FIG. 11 shows a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • the network device 1100 includes: a communication unit 1110 configured to send configuration information of an uplink interval.
  • the uplink interval is used for the terminal equipment to perform downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval. Wherein, an uplink interval occurs after each continuous insertion interval of the uplink channel.
  • the upstream channel is NPRACH.
  • the uplink interval is also used for the terminal equipment to perform TA pre-compensation and/or downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval is configuration information for at least one NPRACH.
  • the uplink channel is NPUSCH.
  • the uplink interval is also used for the terminal device to perform TA adjustment on the uplink interval.
  • the configuration information of the uplink interval is carried in any one of the following: broadcast message, RRC signaling, MAC CE, and DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 1100 may correspond to the network devices in the method embodiments of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1100 are for realizing the above-mentioned method embodiments, respectively.
  • the corresponding process of the network device is not repeated here for brevity.
  • FIG. 12 shows a schematic block diagram of a network device 1200 according to an embodiment of the present application.
  • the network device 1200 includes: a communication unit 1210 configured to send configuration information of an uplink interval.
  • the uplink interval is used for the terminal equipment to perform TA pre-compensation or TA adjustment on the uplink interval.
  • the configuration information of the uplink interval includes: the duration of the uplink interval, and/or the insertion interval of the uplink interval. Wherein, an uplink interval occurs after each continuous insertion interval of the uplink channel.
  • the upstream channel is NPRACH.
  • the uplink interval is used for the terminal device to perform TA pre-compensation and/or downlink synchronization and frequency offset compensation on the uplink interval.
  • the configuration information of the uplink interval is configuration information for at least one NPRACH.
  • the uplink channel is NPUSCH.
  • the uplink interval is also used for the terminal device to perform TA adjustment on the uplink interval.
  • the configuration information of the uplink interval is carried in any one of the following: broadcast message, RRC signaling, MAC CE, and DCI.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 1200 may correspond to the network devices in the method embodiments of the present application, and the above-mentioned and other operations and/or functions of the various units in the network device 1200 are respectively for realizing the above-mentioned method embodiments.
  • the corresponding process of the network device is not repeated here for brevity.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided by an embodiment of the present application.
  • the communication device 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1300 may further include a memory 1320 .
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the methods in the embodiments of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated in the processor 1310.
  • the communication device 1300 may further include a transceiver 1330, and the processor 1310 may control the transceiver 1330 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the processor 1310 may control the transceiver 1330 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1330 may include a transmitter and a receiver.
  • the transceiver 1330 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 1300 may specifically be the network device of the embodiment of the present application, and the communication device 1300 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity .
  • the communication device 1300 may specifically be the terminal device of the embodiment of the present application, and the communication device 1300 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity .
  • FIG. 14 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 1400 may further include a memory 1420 .
  • the processor 1410 may call and run a computer program from the memory 1420 to implement the methods in the embodiments of the present application.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the apparatus 1400 may further include an input interface 1430 .
  • the processor 1410 can control the input interface 1430 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1400 may further include an output interface 1440 .
  • the processor 1410 may control the output interface 1440 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the apparatus can be applied to the network equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application, which are not repeated here for brevity.
  • the apparatus may be applied to the terminal equipment in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the terminal equipment in each method of the embodiments of the present application, which will not be repeated here for brevity.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 15 is a schematic block diagram of a communication system 1500 provided by an embodiment of the present application. As shown in FIG. 15 , the communication system 1500 includes a terminal device 1510 and a network device 1520 .
  • the terminal device 1510 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1520 can be used to implement the corresponding functions implemented by the network device or the base station in the above method. Repeat.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application, and when the computer program runs on the computer, the computer can execute the corresponding methods implemented by the network device or the base station in each method of the embodiments of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,该方法包括:获取上行间隔的配置信息;根据上行间隔的配置信息重复传输上行信道上的上行信息;其中,上行间隔用于终端设备在上行间隔上进行下行同步和频偏补偿,以适应NTN网络中非GEO场景。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
窄带物联网(Narrow Band Internet of Things,NB-IoT)网络支持的上行信道包括:窄带物理随机接入信道(Narrowband Physical Random Access Channel,NPRACH)和窄带物理上行共享信道(Narrowband Physical Uplink Shared Channel,NPUSCH)。由于在NPRACH和NPUSCH上引入了重复传输机制,同时由于NB-IoT终端只支持半双工type-B模式,即终端设备在同一时刻只能接收数据或者只能发送数据,而不能同时收发数据。因此,针对持续时间较长的上行传输,引入了上行链路(Uplink,UL)间隔(gap),即上行间隔。该上行间隔主要是为了利用窄带主同步信号(Narrowband Primary Synchronization Signal,NPSS)、窄带辅同步信号(Narrowband Secondary Synchronization Signal,NSSS)或者窄带参考信号(Narrowband Reference Signal,NRS)信号进行同步跟踪和频偏(晶振的频率偏移)补偿。
目前,上行间隔是在协议中预定义的。由于NB-IoT终端具备低移动性的特征,同时在地面网络中,基站也是静止的,因此,NB-IoT终端的信道质量通常变化缓慢,因此上行间隔采用预定义方式定义比较合理。
然而,在非地面通信网络(Non-Terrestrial Network,NTN)网络中,对于非地球同步轨道(Geostationary Earth Orbit,GEO)场景,即使终端设备处于静止状态,终端设备与网络之间的无线信号传输时延,也会随着卫星的快速移动而不断变化。此外,一方面,位于不同轨道高度的非GEO卫星覆盖下的终端设备与网络之间的无线信道变化规律不相同;另一方面,由于NTN网络覆盖范围远大于地面网络,位于同一小区内不同地理位置的终端设备与网络之间的无线信道变化规律也不相同。因此,上行间隔采用预定义的方式并不适用于NTN网络中非GEO场景。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,以适应NTN网络中非GEO场景。
第一方面,提供了一种无线通信方法,包括:获取上行间隔的配置信息;根据上行间隔的配置信息重复传输上行信道上的上行信息;其中,上行间隔用于终端设备在上行间隔上进行下行同步和频偏补偿。
第二方面,提供了一种无线通信方法,包括:获取上行间隔的配置信息;根据上行间隔的配置信息重复传输上行信道上的上行信息;其中,上行间隔用于终端设备在上行间隔上进行TA预补偿或TA调整。
第三方面,提供了一种无线通信方法,包括:发送上行间隔的配置信息;其中,上行间隔用于终端设备在上行间隔上进行下行同步和频偏补偿。
第四方面,提供了一种无线通信方法,包括:发送上行间隔的配置信息;其中,上行间隔用于终端设备在上行间隔上进行TA预补偿或TA调整。
第五方面,提供了一种终端设备,用于执行上述第一方面、第二方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面、第二方面或其各实现方式中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第三方面、第四方面或其各实现方 式中的方法。
具体地,该网络设备包括用于执行上述第三方面、第四方面或其各实现方式中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面、第二方面或其各实现方式中的方法。
第八方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面、第四方面或其各实现方式中的方法。
第九方面,提供了一种装置,用于实现上述第一方面至第四方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第四方面中任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第四方面中任一方面或其各实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第四方面中任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面或其各实现方式中的方法。
在本申请中,上行间隔的配置信息不是预定义的,而是网络设备配置给终端设备的,可以实现不同的终端设备对应的上行间隔的配置信息的差异性,以适应NTN网络中非GEO场景。
在本申请中,终端设备还可以根据上行间隔的配置信息在上行传输中插入上行间隔,以进行TA预补偿或者TA调整。因此,无论对于TA变小或者变大的情况,终端设备都可以准确地执行TA预补偿或者TA调整,以及上行传输。
附图说明
图1是基于竞争的四步随机接入过程的流程交互图;
图2为本申请一实施例提供的gNB侧的时间同步示意图;
图3A为本申请实施例提供的一种通信系统的架构示意图;
图3B为本申请实施例提供的另一种通信系统的架构示意图;
图4为本申请实施例提供的一种无线通信方法的交互流程图;
图5A为本申请实施例提供的NPRACH对应的上行间隔的配置示意图;
图5B为本申请实施例提供的NPUSCH对应的上行间隔的配置示意图;
图6为本申请一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图;
图7为本申请再一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图;
图8为本申请又一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图;
图9示出了根据本申请实施例的终端设备900的示意性框图;
图10示出了根据本申请实施例的终端设备1000的示意性框图;
图11示出了根据本申请实施例的网络设备1100的示意性框图;
图12示出了根据本申请实施例的网络设备1200的示意性框图;
图13是本申请实施例提供的一种通信设备1300示意性结构图;
图14是本申请实施例的装置的示意性结构图;
图15是本申请实施例提供的一种通信系统1500的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在介绍本申请技术方案之前,下面将对本申请相关知识进行说明:
一、NTN相关背景
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究NTN技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、GEO卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。目前阶段主要研究的是LEO和GEO。
LEO
低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO
地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
二、针对NB-IoT终端的上行间隔
如上所述,NB-IoT网络支持的上行信道包括:NPRACH和NPUSCH。其中,NPRACH用于传输前导码(preamble)。NPUSCH支持format1和format2两种格式,NPUSCH format1用于上行数据传输,NPUSCH format2用于传输混合自动重复请求-确认(Hybrid Automatic Repeat Request-Acknowledgement,HARQ-ACK)反馈信息。
由于在NPRACH和NPUSCH上引入了重复传输机制,其最大重复传输次数可以达到2048。同时由于NB-IoT终端只支持FDD半双工type-B模式,即终端设备在同一时刻只能接收数据或者只能发送数据,而不能同时收发数据。因此,针对持续时间较长的上行传输,引入了上行链路(Uplink,UL)间隔(gap),即上行间隔。该上行间隔主要是为了利用NPSS、NSSS或者NRS信号进行同步跟踪和频偏(晶振的频率偏移)补偿。
目前,上行间隔是在协议中预定义的。具体如下:
对于NPUSCH:传输256ms数据,通过40ms的上行间隔进行频偏补偿。
对于NPRACH:传输64次前导码后,通过40ms的上行间隔进行频偏补偿。
三、长期演进(Long Term Evolution,LTE)系统中的随机接入过程
图1是基于竞争的四步随机接入过程的流程交互图。
如图1所示,该随机接入流程可以包括以下四个步骤:
步骤1,Msg 1。
终端设备向网络设备发送Msg 1,以告诉网络设备该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码(Random Access Preamble,RAP),或称为随机接入前导序列、前导序列、前导码等。同时,Msg 1还可以用于网络设备能估计其与终端设备之间的传输时延并以此校准上行时间。
具体而言,终端设备选择preamble索引(index)和用于发送preamble的PRACH资源;然后该终端设备在PRACH上传输Preamble。其中,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备,允许在哪些个时频资源上传输preamble,例如,SIB1。
步骤2,Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2,即随机接入响应(Random Access Response,RAR)消息。该Msg 2中例如可以携带时间提前量(Time Advance,TA)、上行授权指令例如上行资源的配置、以及临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,TC-RNTI)等。
终端设备则在随机接入响应窗口(RAR window)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以用于接收网络设备回复的RAR消息。该RAR消息可以使用相应的随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)进行解扰。
如果终端设备在该RAR window内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。
如果终端设备成功地接收到一个RAR消息,且该RAR消息中携带的前导码索引(preamble index)与终端设备通过Msg 1发送的前导码的索引相同时,则认为成功接收了RAR,此时终端设备就可以停止RAR window内的监听了。
其中,Msg 2中可以包括针对多个终端设备的RAR消息,每一个终端设备的RAR消息中可以包括该终端设备所采用的随机接入前导码标识(RAP Identify,RAPID)、用于传输Msg 3的资源的信息、TA调整信息、TC-RNTI等。
步骤3,Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码标识进行核对,在确定是属于自己的RAR消息后,终端设备在RRC层产生Msg 3,并向网络设备发送Msg 3。其中需要携带终端设备的标识信息等。
具体地,针对不同的随机接入触发事件,4步随机接入过程的步骤3中的Msg 3可以包括不同的内容,以进行调度传输(Scheduled Transmission)。
例如,对于初始接入的场景,Msg 3可以包括RRC层生成的RRC连接请求(RRC Connection Request),其中至少携带终端设备的非接入层(Non-Access Stratum,NAS)标识信息,还可以携带例如终端设备的服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于连接重建场景,Msg 3可以包括RRC层生成的RRC连接重建请求(RRC Connection Re-establishment Request)且不携带任何NAS消息,此外还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)和协议控制信息(Protocol Control Information,PCI)等。
又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换完成消息(RRC Handover Confirm)和终端设备的C-RNTI,还可携带例如缓冲状态报告(Buffer Status Report,BSR);对于其它触发事件例如上/下行数据到达的场景,Msg 3至少需要包括终端设备的C-RNTI。
步骤4,Msg 4。
网络设备向终端设备发送Msg 4,终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。例如在RRC连接建立过程中,Msg 4中可以携带RRC连接建立消息。
由于步骤3中的终端设备会在Msg 3中携带自己唯一的标识,例如C-RNTI或来自核心网的标识信息(比如S-TMSI或一个随机数),从而网络设备在竞争解决机制中,会在Msg 4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
目前LTE中,考虑到终端设备的收发操作之间的转换时间,终端设备在发送Msg1之后,间隔一段时间后启动RAR window。对于NB-IoT终端,RAR window的启动子帧为n+X,其中n为包含前导码的最后一次重复传输所在的最后一个子帧,X的取值根据时分双工(Time Division Duplex,TDD)或者FDD,以及NPRACH重复传输次数来决定。具体的,可以通过表1确定X值。
表1
TDD或者FDD模式 前导码格式 NPRACH的重复次数 X
FDD 0或者1 ≥64 41
FDD 0或者1 <64 4
FDD 2 ≥16 41
FDD 2 <16 4
TDD 任何值 任何值 4
需要说明的是,在本申请中,随机接入响应窗口(RAR window)也被称为RAR接收窗、RAR时间窗等,本申请对此不做限制。
四、NR系统中的定时提前(Timing Advance,TA)机制:
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,NR支持上行TA机制。
图2为本申请一实施例提供的gNB侧的时间同步示意图,如图2中的左侧附图所示,在没有采用TA机制时,UE侧的上行时钟和下行时钟是相同的,对于gNB侧发送的一个下行符号,由于不同UE与gNB之间的传播延迟不同,来自不同UE的上行数据到达gNB侧的时间不同步。如图2中的右侧附图所示,UE侧的上行时钟和下行时钟之间有偏移,并且不同UE有各自不同的上行TA值,即引入了TA机制。gNB通过适当地控制每个UE对应的TA值,可以控制来自不同UE的上行数据到达gNB的时间,以使来自不同UE的上行数据到达gNB侧的时间同步,并且与gNB侧的下行定时同步。具体地,对于距离gNB较远的UE,由于有较大的传输时延,就要比距离gNB较近的UE提前发送上行数据。
其中,gNB基于测量UE的上行传输来确定每个UE的TA值。gNB通过两种方式给UE发送TA命令。
初始TA的获取:在随机接入过程,gNB通过测量接收到的前导码(preamble)来确定TA值,并通过RAR的定时提前命令(Timing Advance Command)字段发送给UE。
RRC连接态下TA的调整:虽然在随机接入过程中,UE与gNB取得了上行同步,但上行信号到达gNB的定时可能会随着时间发生变化,因此,UE需要不断地更新其上行TA值,以保持上行同步。如果某个UE的TA值需要校正,则gNB会发送一个定时提前命令(Timing Advance Command)给该UE,要求其调整TA值。该Timing Advance Command是通过Timing Advance Command MAC CE发送给UE的。
如上所述,由于NB-IoT终端具备低移动性的特征,同时在地面网络中,基站也是静止的,因此,NB-IoT终端的信道质量通常变化缓慢,因此上行间隔采用预定义方式定 义比较合理。
然而,在NTN网络中,对于非GEO场景,即使终端设备处于静止状态,终端设备与网络之间的无线信号传输时延,也会随着卫星的快速移动而不断变化。此外,一方面,位于不同轨道高度的非GEO卫星覆盖下的终端设备与网络之间的无线信道变化规律不相同;另一方面,由于NTN网络覆盖范围远大于地面网络,位于同一小区内不同地理位置的终端设备与网络之间的无线信道变化规律也不相同。因此,上行间隔采用预定义的方式并不适用于NTN网络中非GEO场景。
为了解决上述技术问题,本申请可以给不同的NB-IoT终端配置具有差异性的上行间隔,以适用于NTN网络中非GEO场景。
下面结合图3A-图3B,对本申请中的通信系统的架构进行说明。
图3A为本申请实施例提供的一种通信系统的架构示意图。请参见图3A,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图3A所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。可选地,通信系统中可以包括多个网络设备1102,并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3B为本申请实施例提供的另一种通信系统的架构示意图。请参见图3B,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3B所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。可选地,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,图3A-图3B所示的无线通信系统还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例可应用于非授权频谱,也可以应用于授权频谱。其中,非授权频谱也可以认为是共享频谱,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:终端设备可以是NB-IoT终端,也可以是非NB-IoT终端,其中,本申请中的终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
可选地,网络设备可以是基站,如图3B所示,网络设备也可以具有移动特性,例如,网络设备可以为移动的设备,如图3A所示。可选地,网络设备可以为卫星、气球站。例如,卫星可以为LEO卫星、MEO卫星、HEO卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传 输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
下面将对本申请技术方案进行详细阐述:
实施例1
图4为本申请实施例提供的一种无线通信方法的交互流程图,如图4所示,该方法包括如下步骤:
S410:终端设备获取上行间隔的配置信息,其中,上行间隔用于终端设备在上行间隔上进行下行同步和频偏补偿。
S420:终端设备根据上行间隔的配置信息重复传输上行信道上的上行信息。
可选地,上行间隔的配置信息携带在以下任一项中,但不限于此:广播消息、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制单元(Media Access Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)。
可选地,上行间隔的配置信息包括:上行间隔的时长,和/或,上行间隔的插入间隔;其中,上行信道每持续插入间隔之后出现一个上行间隔。
示例性地,图5A为本申请实施例提供的NPRACH对应的上行间隔的配置示意图,如图5A所示,NPRACH每持续插入间隔X1之后出现一个时长为Y1的上行间隔。图5B为本申请实施例提供的NPUSCH对应的上行间隔的配置示意图,如图5B所示,NPUSCH每持续插入间隔X2之后出现一个时长为Y2的上行间隔。
值得一提的是,本申请对网络设备如何确定上行间隔的时长,和/或,上行间隔的插入间隔不做限制。
可选地,上行间隔的时长可以是预定义的,网络设备只需要向终端设备配置上行间隔的插入间隔。或者,上行间隔的插入间隔可以是预定义的,网络设备只需要向终端设备配置上行间隔的时长。
可选地,网络设备还可以向终端设备发送上行信道的资源配置。
可选地,上行信道的资源配置携带在以下任一项中,但不限于此:广播消息、RRC信令、MAC CE、DCI。
可选地,上述上行信道可以是NPRACH或者NPUSCH,但不限于此。
可选地,若上行信道是NPRACH,则上述上行信息可以是NPRACH上传输的前导码。若上行信道是NPUSCH,则上述上行信息可以是NPUSCH上传输的上行数据或者HARQ-ACK反馈信息。
可选地,如果网络设备通过广播消息广播NPRACH的资源配置时,其可以一次广播或者配置至少一个NPRACH的资源配置。基于此,上行间隔的配置信息是针对至少一个NPRACH的配置信息,即上述上行间隔的配置信息可以对应于一个NPRACH资源或者多个NPRACH资源。例如:上行间隔的配置信息可以是基于每套NPRACH资源分别配置,也可以是所有NPRACH资源使用相同的上行间隔的配置信息。
可选地,每个NPRACH的资源配置包括以下至少一项,但不限于此:NPRACH的周期,NPRACH资源在一个周期内的起始时间,NPRACH资源的起始子载波位置,NPRACH资源在频域上占用的连续子载波个数,前导码的重复传输次数。
综上,在本申请中,上行间隔的配置信息不是预定义的,而是网络设备配置给终端设备的,可以实现不同的终端设备对应的上行间隔的配置信息的差异性,以适应NTN网络中非GEO场景。
实施例2
对于NTN网络中非GEO场景,由于RTT会发生快速变化,因此,终端设备需要频 繁的调整TA。对于重复次数较多的上行传输,终端设备在重复传输期间也需要不断调整TA。对于TA变小的情况,终端设备可以同时执行TA调整和上行传输,而对于TA变大的情况,终端设备无法同时执行TA调整和上行传输。
为了解决上述技术问题,在本申请中,网络设备也可以为终端设备配置上行间隔的配置信息,当上行信道是NPRACH时,该上行间隔的配置信息用于终端设备在该上行间隔上进行TA预补偿(Timing Advance pre-compensation)。当上行信道是NPUSCH时,该上行间隔的配置信息用于终端设备在该上行间隔上进行TA调整。
需要说明的是,TA预补偿是终端设备计算得到的,该终端设备在随机接入过程中所要进行的TA补偿。
应理解的是,该TA预补偿也被称为TA补偿、TA预补偿值等,本申请对此不做限制。
可选地,当上行信道是NPUSCH时,终端设备可以根据TA调整命令或者基于终端设备自身的TA补偿能力执行TA调整。
需要说明的是,TA调整和TA预补偿都是终端设备调整其TA,在随机接入发送Msg1时,此时终端设备还没有有效的TA,因此进行的是TA预补偿,当终端设备处于连接态时,终端设备会维护一个TA,并且可以调整该TA。
可选地,在本实施例中,上行间隔的配置信息携带在以下任一项中,但不限于此:广播消息、RRC信令、MAC CE、DCI。
可选地,在本实施例中,上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔。其中,所述上行信道每持续所述插入间隔之后出现一个所述上行间隔。
值得一提的是,本申请对网络设备如何确定上行间隔的时长,和/或,上行间隔的插入间隔不做限制。
可选地,上行间隔的时长可以是预定义的,网络设备只需要向终端设备配置上行间隔的插入间隔。或者,上行间隔的插入间隔可以是预定义的,网络设备只需要向终端设备配置上行间隔的时长。
可选地,网络设备还可以向终端设备发送上行信道的资源配置。
可选地,上行信道的资源配置携带在以下任一项中,但不限于此:广播消息、RRC信令、MAC CE、DCI。
可选地,上述上行信道可以是NPRACH或者NPUSCH,但不限于此。
可选地,如果网络设备通过广播消息广播NPRACH的资源配置时,其可以一次广播或者配置至少一个NPRACH的资源配置。基于此,上行间隔的配置信息是针对至少一个NPRACH的配置信息,即上述上行间隔的配置信息可以对应于一个NPRACH资源或者多个NPRACH资源。例如:上行间隔的配置信息可以是基于每套NPRACH资源分别配置,也可以是所有NPRACH资源使用相同的上行间隔的配置信息。
可选地,每个NPRACH的资源配置包括以下至少一项,但不限于此:NPRACH的周期,NPRACH资源在一个周期内的起始时间,NPRACH资源的起始子载波位置,NPRACH资源在频域上占用的连续子载波个数,前导码的重复传输次数。
综上,在本申请中,对于NTN网络中非GEO场景,终端设备可以根据上述上行间隔的配置信息在上行传输中间插入上行间隔,以进行TA预补偿或者TA调整。因此,无论对于TA变小或者变大的情况,终端设备都可以准确地执行TA预补偿或者TA调整,以及上行传输。
需要说明的是,为了方便起见,当上行信道是NPRACH,且上行间隔用于终端设备在该上行间隔上进行下行同步和频偏补偿时,这种情况,将该上行间隔称为第一上行间隔,当上行信道是NPRACH,且上行间隔用于终端设备在该上行间隔上进行TA预补偿时,这种情况,将该上行间隔称为第二上行间隔,当上行信道是NPUSCH,且上行间隔 用于终端设备在该上行间隔上进行下行同步和频偏补偿时,这种情况,将该上行间隔称为第三上行间隔,当上行信道是NPUSCH,且上行间隔用于终端设备在该上行间隔上进行TA调整时,这种情况,将该上行间隔称为第四上行间隔。
可选地,上述第一上行间隔、第二上行间隔、第三上行间隔和第四上行间隔可以完全不同,也可以部分相同,又或者是完全相同。例如:第一上行间隔与第二上行间隔可以相同,第三上行间隔与第四上行间隔可以相同。或者,第一上行间隔与第三上行间隔可以相同,第二上行间隔与第四上行间隔可以相同。又或者,第一上行间隔、第二上行间隔可、第三上行间隔和第四上行间隔均不同。再或者,第一上行间隔、第二上行间隔可、第三上行间隔和第四上行间隔均相同。总之,本申请对此不做限制。
实施例3
如上所述,目前LTE中,考虑到终端设备的收发操作之间的转换时间,终端设备在发送Msg1之后,间隔一段时间后启动随机接入响应窗口。对于NB-IoT终端,RAR window的启动子帧为n+X,其中n为包含前导码的最后一次重复传输所在的最后一个子帧,X的取值根据TDD或者FDD,以及NPRACH重复传输次数来决定。具体的,可以通过表1确定X值。
其中,表1中X=41,实际上是40+1,这里的40即为预定义的上行间隔的时长。如本申请的,在NTN网络的非GEO场景下,上行间隔不再是预定义的,而是网络设备配置的。基于此,随机接入响应窗口的开启时间也会发生变化。下面对此做详细说明:
可选地,假设上述第一上行间隔的插入间隔和时长分别用X1和Y1表示。那么随机接入响应窗口的开启时间可以是n+Z1。n表示前导码的最后一次重复传输使用的最后一个子帧,Z1是由前导码的重复传输总时长,或者,在前导码的整个重复传输中插入的最后一个第一上行间隔的结束时间到前导码的整个重复传输的结束时间的时长,以及终端设备和网络设备之间RTT确定的。
可选地,假设Z1是由前导码的重复传输总时长决定的,若前导码的重复传输总时长大于或等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。例如:图6为本申请一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图,如图6所示,这里的前导码的重复传输总时长大于X1,这种情况下,Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。
若前导码的重复传输总时长小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1}。
可选地,假设Z1是由在前导码的整个重复传输中插入的最后一个第一上行间隔的结束时间到前导码的整个重复传输的结束时间的时长,以及终端设备和网络设备之间RTT确定的。若前导码的重复传输总时长等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。例如:图7为本申请再一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图,如图7所示,这里的前导码的重复传输总时长等于X1,这种情况下,Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。或者,在前导码的整个重复传输中插入的最后一个第一上行间隔的结束时间到前导码的整个重复传输的结束时间等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。例如:图8为本申请又一实施例提供的前导码、第一上行间隔和随机接入响应窗口的关系示意图,如图8所示,这里的在前导码的整个重复传输中插入的最后一个第一上行间隔的结束时间到前导码的整个重复传输的结束时间等于X1,这种情况下,Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。若前导码的重复传输总时长小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1}。或者,在前导码的整个重复传输中插入的最后一个第一上行间隔的结束时间到前导码的整个重复传输的结束时间小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1}。
以上是在第一上行间隔的基础上确定随机接入响应窗口的开启时间。
实际上,在本申请中,也可以在第二上行间隔的基础上确定随机接入响应窗口的开 启时间,当然,在确定随机接入响应窗口的开启时间只能基于第一上行间隔或者第二上行间隔确定。
可选地,随机接入响应窗口的开启时间是n+Z3。n表示前导码的最后一次重复传输使用的最后一个子帧,Z3是由前导码的重复传输总时长,或者,在前导码的整个重复传输中插入的最后一个第二上行间隔的结束时间到前导码的整个重复传输的结束时间的时长,以及终端设备和网络设备之间RTT确定的。
可选地,若前导码的重复传输总时长大于或等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1}。若前导码的重复传输总时长小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1}。其中,X3表示第二上行间隔的插入间隔,Y3表示第二上行间隔的时长。
可选地,若前导码的重复传输总时长等于X3,或者,在前导码的整个重复传输中插入的最后一个第二上行间隔的结束时间到前导码的整个重复传输的结束时间等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1}。若前导码的重复传输总时长小于X3,或者,在前导码的整个重复传输中插入的最后一个第二上行间隔的结束时间到前导码的整个重复传输的结束时间小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1}。
值得一提的是,关于根据第二时间间隔确定随机接入响应窗口的开启时间,与,根据第一时间间隔确定随机接入响应窗口的开启时间的方法类似,本申请对此不再赘述。
综上,在本申请提供了在NTN网络的非GEO场景下确定随机接入响应窗口的开启时间的方法。
上文结合图4至图8,详细描述了本申请的方法实施例,下文结合图9至图15,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备900的示意性框图。如图9所示,该终端设备900包括:通信单元910,用于:获取上行间隔的配置信息。根据上行间隔的配置信息重复传输上行信道上的上行信息。其中,上行间隔用于终端设备在上行间隔上进行下行同步和频偏补偿。
可选地,上行间隔的配置信息包括:上行间隔的时长,和/或,上行间隔的插入间隔。其中,上行信道每持续插入间隔之后出现一个上行间隔。
可选地,上行信道是NPRACH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA预补偿和/或下行同步和频偏补偿。
可选地,上行间隔的配置信息是针对至少一个NPRACH的配置信息。
可选地,上行信息是随机接入过程中的前导码。终端设备还包括:处理单元920,用于在发送前导码之后,开启随机接入响应窗口。其中,随机接入响应窗口的开启时间是n+Z1。n表示前导码的最后一次重复传输使用的最后一个子帧,Z1是由前导码的重复传输总时长,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间的时长,以及终端设备和网络设备之间RTT确定的。
可选地,若前导码的重复传输总时长大于或等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。若前导码的重复传输总时长小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1}。其中,X1表示上行间隔的插入间隔,Y1表示上行间隔的时长。
可选地,若前导码的重复传输总时长等于X1,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1}。若前导码的重复传输总时长小于X1,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1}。其中,X1表示上行间隔的插入间隔,Y1表示上行间隔的时长。
可选地,上行信道是NPUSCH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA调整和/或下行同步和频偏补偿。
可选地,上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备900可对应于本申请方法实施例中的终端设备,并且终端设备900中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括:通信单元1010,用于:获取上行间隔的配置信息。根据上行间隔的配置信息重复传输上行信道上的上行信息。其中,上行间隔用于终端设备在上行间隔上进行TA预补偿或TA调整。
可选地,上行间隔的配置信息包括:上行间隔的时长,和/或,上行间隔的插入间隔。其中,上行信道每持续插入间隔之后出现一个上行间隔。
可选地,上行信道是NPRACH。
可选地,上行间隔用于终端设备在上行间隔上进行TA预补偿和/或下行同步和频偏补偿。
可选地,上行间隔的配置信息是针对至少一个NPRACH的配置信息。
可选地,上行信息是随机接入过程中的前导码。终端设备还包括:处理单元1020,用于在发送前导码之后,开启随机接入响应窗口。其中,随机接入响应窗口的开启时间是n+Z3。n表示前导码的最后一次重复传输使用的最后一个子帧,Z3是由前导码的重复传输总时长,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间的时长,以及终端设备和网络设备之间信号传输往返时延RTT确定的。
可选地,若前导码的重复传输总时长大于或等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1}。若前导码的重复传输总时长小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1}。其中,X3表示上行间隔的插入间隔,Y3表示上行间隔的时长。
可选地,若前导码的重复传输总时长等于X3,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1}。若前导码的重复传输总时长小于X3,或者,在前导码的整个重复传输中插入的最后一个上行间隔的结束时间到前导码的整个重复传输的结束时间小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1}。其中,X3表示上行间隔的插入间隔,Y3表示上行间隔的时长。
可选地,上行信道是NPUSCH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA调整。
可选地,上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备1000可对应于本申请方法实施例中的终端设备,并且终端设备1000中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中终端设备的相应流程,为了简洁,在此不再赘述。
图11示出了根据本申请实施例的网络设备1100的示意性框图。如图11所示,该网络设备1100包括:通信单元1110,用于发送上行间隔的配置信息。其中,上行间隔用于 终端设备在上行间隔上进行下行同步和频偏补偿。
可选地,上行间隔的配置信息包括:上行间隔的时长,和/或,上行间隔的插入间隔。其中,上行信道每持续插入间隔之后出现一个上行间隔。
可选地,上行信道是NPRACH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA预补偿和/或下行同步和频偏补偿。
可选地,上行间隔的配置信息是针对至少一个NPRACH的配置信息。
可选地,上行信道是NPUSCH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA调整。
可选地,上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备1100可对应于本申请方法实施例中的网络设备,并且网络设备1100中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中网络设备的相应流程,为了简洁,在此不再赘述。
图12示出了根据本申请实施例的网络设备1200的示意性框图。如图12所示,该网络设备1200包括:通信单元1210,用于发送上行间隔的配置信息。其中,上行间隔用于终端设备在上行间隔上进行TA预补偿或TA调整。
可选地,上行间隔的配置信息包括:上行间隔的时长,和/或,上行间隔的插入间隔。其中,上行信道每持续插入间隔之后出现一个上行间隔。
可选地,上行信道是NPRACH。
可选地,上行间隔用于终端设备在上行间隔上进行TA预补偿和/或下行同步和频偏补偿。
可选地,上行间隔的配置信息是针对至少一个NPRACH的配置信息。
可选地,上行信道是NPUSCH。
可选地,上行间隔还用于终端设备在上行间隔上进行TA调整。
可选地,上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备1200可对应于本申请方法实施例中的网络设备,并且网络设备1200中的各个单元的上述和其它操作和/或功能分别为了实现上述方法实施例中网络设备的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例提供的一种通信设备1300示意性结构图。图13所示的通信设备1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,如图13所示,通信设备1300还可以包括收发器1330,处理器1310可以控制该收发器1330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1330可以包括发射机和接收机。收发器1330还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1300具体可为本申请实施例的网络设备,并且该通信设备1300可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1300具体可为本申请实施例的终端设备,并且该通信设备1300可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的装置的示意性结构图。图14所示的装置1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,装置1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,该装置1400还可以包括输入接口1430。其中,处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1400还可以包括输出接口1440。其中,处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图15是本申请实施例提供的一种通信系统1500的示意性框图。如图15所示,该通信系统1500包括终端设备1510和网络设备1520。
其中,该终端设备1510可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1520可以用于实现上述方法中由网络设备或者基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically  EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以 通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (86)

  1. 一种无线通信方法,其特征在于,包括:
    获取上行间隔的配置信息;
    根据所述上行间隔的配置信息重复传输上行信道上的上行信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行下行同步和频偏补偿。
  2. 根据权利要求1所述的方法,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,所述上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述上行信道是窄带物理随机接入信道NPRACH。
  4. 根据权利要求3所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行定时提前TA预补偿。
  5. 根据权利要求3或4所述的方法,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述上行信息是随机接入过程中的前导码;所述方法还包括:
    在发送所述前导码之后,开启随机接入响应窗口;
    其中,所述随机接入响应窗口的开启时间是n+Z1;n表示所述前导码的最后一次重复传输使用的最后一个子帧,Z1是由所述前导码的重复传输总时长,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间的时长,以及所述终端设备和网络设备之间信号传输往返时延RTT确定的。
  7. 根据权利要求6所述的方法,其特征在于,
    若所述前导码的重复传输总时长大于或等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1};
    若所述前导码的重复传输总时长小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1};
    其中,X1表示所述上行间隔的插入间隔,Y1表示所述上行间隔的时长。
  8. 根据权利要求6所述的方法,其特征在于,
    若所述前导码的重复传输总时长等于X1,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1};
    若所述前导码的重复传输总时长小于X1,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1};
    其中,X1表示所述上行间隔的插入间隔,Y1表示所述上行间隔的时长。
  9. 根据权利要求1或2所述的方法,其特征在于,所述上行信道是窄带物理上行共享信道NPUSCH。
  10. 根据权利要求9所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、无线资源控制RRC信令、媒体接入控制单元MAC CE、下行控制信息DCI。
  12. 一种无线通信方法,其特征在于,包括:
    获取上行间隔的配置信息;
    根据所述上行间隔的配置信息重复传输上行信道上的上行信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿或TA调整。
  13. 根据权利要求12所述的方法,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,所述上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  14. 根据权利要求12或13所述的方法,其特征在于,所述上行信道是NPRACH。
  15. 根据权利要求14所述的方法,其特征在于,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿。
  16. 根据权利要求14或15所述的方法,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述上行信息是随机接入过程中的前导码;所述方法还包括:
    在发送所述前导码之后,开启随机接入响应窗口;
    其中,所述随机接入响应窗口的开启时间是n+Z3;n表示所述前导码的最后一次重复传输使用的最后一个子帧,Z3是由所述前导码的重复传输总时长,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间的时长,以及所述终端设备和网络设备之间RTT确定的。
  18. 根据权利要求17所述的方法,其特征在于,
    若所述前导码的重复传输总时长大于或等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1};
    若所述前导码的重复传输总时长小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1};
    其中,X3表示所述上行间隔的插入间隔,Y3表示所述上行间隔的时长。
  19. 根据权利要求17所述的方法,其特征在于,
    若所述前导码的重复传输总时长等于X3,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1};
    若所述前导码的重复传输总时长小于X3,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1};
    其中,X3表示所述上行间隔的插入间隔,Y3表示所述上行间隔的时长。
  20. 根据权利要求12或13所述的方法,其特征在于,所述上行信道是NPUSCH。
  21. 根据权利要求20所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  22. 根据权利要求12-21任一项所述的方法,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  23. 一种无线通信方法,其特征在于,包括:
    发送上行间隔的配置信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行下行同步和频偏补偿。
  24. 根据权利要求23所述的方法,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  25. 根据权利要求24所述的方法,其特征在于,所述上行信道是NPRACH。
  26. 根据权利要求25所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA预补偿。
  27. 根据权利要求25或26所述的方法,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  28. 根据权利要求24所述的方法,其特征在于,所述上行信道是NPUSCH。
  29. 根据权利要求28所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  30. 根据权利要求23-29任一项所述的方法,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  31. 一种无线通信方法,其特征在于,包括:
    发送上行间隔的配置信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿或TA调整。
  32. 根据权利要求31所述的方法,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  33. 根据权利要求32所述的方法,其特征在于,所述上行信道是NPRACH。
  34. 根据权利要求33所述的方法,其特征在于,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿。
  35. 根据权利要求33或34所述的方法,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  36. 根据权利要求32所述的方法,其特征在于,所述上行信道是NPUSCH。
  37. 根据权利要求36所述的方法,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  38. 根据权利要求31-37任一项所述的方法,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  39. 一种终端设备,其特征在于,包括:通信单元,用于:
    获取上行间隔的配置信息;
    根据所述上行间隔的配置信息重复传输上行信道上的上行信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行下行同步和频偏补偿。
  40. 根据权利要求39所述的终端设备,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,所述上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  41. 根据权利要求39或40所述的终端设备,其特征在于,所述上行信道是NPRACH。
  42. 根据权利要求41所述的终端设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA预补偿。
  43. 根据权利要求41或42所述的终端设备,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  44. 根据权利要求41-43任一项所述的终端设备,其特征在于,所述上行信息是随机接入过程中的前导码;所述终端设备还包括:
    处理单元,用于在发送所述前导码之后,开启随机接入响应窗口;
    其中,所述随机接入响应窗口的开启时间是n+Z1;n表示所述前导码的最后一次重复传输使用的最后一个子帧,Z1是由所述前导码的重复传输总时长,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间的时长,以及所述终端设备和网络设备之间RTT确定的。
  45. 根据权利要求44所述的终端设备,其特征在于,
    若所述前导码的重复传输总时长大于或等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1};
    若所述前导码的重复传输总时长小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1};
    其中,X1表示所述上行间隔的插入间隔,Y1表示所述上行间隔的时长。
  46. 根据权利要求44所述的终端设备,其特征在于,
    若所述前导码的重复传输总时长等于X1,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间等于X1,则Z1=max{Y1+1,RTT}或者Z1=max{Y1+1,RTT+1};
    若所述前导码的重复传输总时长小于X1,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间小于X1,则Z1=max{4,RTT}或者Z1=max{4,RTT+1};
    其中,X1表示所述上行间隔的插入间隔,Y1表示所述上行间隔的时长。
  47. 根据权利要求39或40所述的终端设备,其特征在于,所述上行信道是NPUSCH。
  48. 根据权利要求47所述的终端设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  49. 根据权利要求39-48任一项所述的终端设备,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  50. 一种终端设备,其特征在于,包括:通信单元,用于:
    获取上行间隔的配置信息;
    根据所述上行间隔的配置信息重复传输上行信道上的上行信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿或TA调整。
  51. 根据权利要求50所述的终端设备,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,所述上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  52. 根据权利要求50或51所述的终端设备,其特征在于,所述上行信道是NPRACH。
  53. 根据权利要求52所述的终端设备,其特征在于,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  55. 根据权利要求52-54任一项所述的终端设备,其特征在于,所述上行信息是随机接入过程中的前导码;所述终端设备还包括:
    处理单元,用于在发送所述前导码之后,开启随机接入响应窗口;
    其中,所述随机接入响应窗口的开启时间是n+Z3;n表示所述前导码的最后一次重复传输使用的最后一个子帧,Z3是由所述前导码的重复传输总时长,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间的时长,以及所述终端设备和网络设备之间信号传输往返时延RTT确定的。
  56. 根据权利要求55所述的终端设备,其特征在于,
    若所述前导码的重复传输总时长大于或等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1};
    若所述前导码的重复传输总时长小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1};
    其中,X3表示所述上行间隔的插入间隔,Y3表示所述上行间隔的时长。
  57. 根据权利要求55所述的终端设备,其特征在于,
    若所述前导码的重复传输总时长等于X3,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间等于X3,则Z3=max{Y3+1,RTT}或者Z3=max{Y3+1,RTT+1};
    若所述前导码的重复传输总时长小于X3,或者,在所述前导码的整个重复传输中插入的最后一个所述上行间隔的结束时间到所述前导码的整个重复传输的结束时间小于X3,则Z3=max{4,RTT}或者Z3=max{4,RTT+1};
    其中,X3表示所述上行间隔的插入间隔,Y3表示所述上行间隔的时长。
  58. 根据权利要求50或51所述的终端设备,其特征在于,所述上行信道是NPUSCH。
  59. 根据权利要求58所述的终端设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  60. 根据权利要求50-59任一项所述的终端设备,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  61. 一种网络设备,其特征在于,包括:
    通信单元,用于发送上行间隔的配置信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行下行同步和频偏补偿。
  62. 根据权利要求61所述的网络设备,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  63. 根据权利要求62所述的网络设备,其特征在于,所述上行信道是NPRACH。
  64. 根据权利要求63所述的网络设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA预补偿。
  65. 根据权利要求63或64所述的网络设备,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  66. 根据权利要求62所述的网络设备,其特征在于,所述上行信道是NPUSCH。
  67. 根据权利要求66所述的网络设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  68. 根据权利要求61-67任一项所述的网络设备,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  69. 一种网络设备,其特征在于,包括:
    通信单元,用于发送上行间隔的配置信息;
    其中,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿或TA调整。
  70. 根据权利要求69所述的网络设备,其特征在于,所述上行间隔的配置信息包括:所述上行间隔的时长,和/或,所述上行间隔的插入间隔;
    其中,上行信道每持续所述插入间隔之后出现一个所述上行间隔。
  71. 根据权利要求70所述的网络设备,其特征在于,所述上行信道是NPRACH。
  72. 根据权利要求71所述的网络设备,其特征在于,所述上行间隔用于终端设备在所述上行间隔上进行TA预补偿。
  73. 根据权利要求71或72所述的网络设备,其特征在于,所述上行间隔的配置信息是针对至少一个NPRACH的配置信息。
  74. 根据权利要求70所述的网络设备,其特征在于,所述上行信道是NPUSCH。
  75. 根据权利要求74所述的网络设备,其特征在于,所述上行间隔还用于终端设备在所述上行间隔上进行TA调整。
  76. 根据权利要求69-75任一项所述的网络设备,其特征在于,所述上行间隔的配置信息携带在以下任一项中:广播消息、RRC信令、MAC CE、DCI。
  77. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  78. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求23至38中任一项所述的方法。
  79. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至22中任一项所述的方法。
  80. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求23至38中任一项所述的方法。
  81. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求23至38中任一项所述的方法。
  83. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  84. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求23至38中任一项所述的方法。
  85. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求23至38中任一项所述的方法。
PCT/CN2020/137296 2020-12-17 2020-12-17 无线通信方法、终端设备和网络设备 WO2022126520A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20965536.4A EP4243493A4 (en) 2020-12-17 2020-12-17 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
PCT/CN2020/137296 WO2022126520A1 (zh) 2020-12-17 2020-12-17 无线通信方法、终端设备和网络设备
CN202080107051.8A CN116636261A (zh) 2020-12-17 2020-12-17 无线通信方法、终端设备和网络设备
US18/207,552 US20230328674A1 (en) 2020-12-17 2023-06-08 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137296 WO2022126520A1 (zh) 2020-12-17 2020-12-17 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/207,552 Continuation US20230328674A1 (en) 2020-12-17 2023-06-08 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022126520A1 true WO2022126520A1 (zh) 2022-06-23

Family

ID=82058801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137296 WO2022126520A1 (zh) 2020-12-17 2020-12-17 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230328674A1 (zh)
EP (1) EP4243493A4 (zh)
CN (1) CN116636261A (zh)
WO (1) WO2022126520A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
CN106972915A (zh) * 2017-03-30 2017-07-21 苏州维特比信息技术有限公司 一种信号传输方法和窄带无线终端
CN111316723A (zh) * 2017-11-21 2020-06-19 高通股份有限公司 开环上行链路定时提前
CN111510954A (zh) * 2016-02-05 2020-08-07 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备
US20200367097A1 (en) * 2019-05-14 2020-11-19 Qualcomm Incorporated Method and apparatus for configuring uplink hybrid automatic repeat request (harq) retransmission timer for narrowband communications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3681238B1 (en) * 2018-05-10 2021-12-08 LG Electronics Inc. Method for transmitting/receiving random access preamble in wireless communication system, and apparatus therefor
CN111064539B (zh) * 2019-12-23 2021-10-26 展讯半导体(南京)有限公司 一种上行同步方法、通信装置及存储介质
CN115039460A (zh) * 2020-05-07 2022-09-09 中兴通讯股份有限公司 用于上行链路补偿间隔的系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938931A (zh) * 2011-08-15 2013-02-20 北京为邦远航无线技术有限公司 大范围非同步上行接入方法及装置
CN111510954A (zh) * 2016-02-05 2020-08-07 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
CN106972915A (zh) * 2017-03-30 2017-07-21 苏州维特比信息技术有限公司 一种信号传输方法和窄带无线终端
CN111316723A (zh) * 2017-11-21 2020-06-19 高通股份有限公司 开环上行链路定时提前
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备
US20200367097A1 (en) * 2019-05-14 2020-11-19 Qualcomm Incorporated Method and apparatus for configuring uplink hybrid automatic repeat request (harq) retransmission timer for narrowband communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243493A4 *

Also Published As

Publication number Publication date
EP4243493A4 (en) 2024-01-17
US20230328674A1 (en) 2023-10-12
EP4243493A1 (en) 2023-09-13
CN116636261A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US20220159732A1 (en) Random access method and device
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20230337289A1 (en) Wireless communication method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2022067547A1 (zh) 无线通信方法、终端设备和网络设备
WO2022056854A1 (zh) 无线通信方法和设备
WO2022126520A1 (zh) 无线通信方法、终端设备和网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备
WO2022067528A1 (zh) 信道传输的方法、终端设备和网络设备
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2023039809A1 (zh) Sr触发方法、随机接入方法、装置、设备及存储介质
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023133885A1 (zh) 无线通信的方法和终端设备
WO2022205015A1 (zh) 一种同步方法及装置、终端设备、网络设备
WO2021146836A1 (zh) 随机接入类型选择方法及装置
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2023004552A1 (zh) 随机接入方法、装置、设备及存储介质
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
WO2022236542A1 (zh) 传输方法、终端设备、网络设备及通信系统
US20230422240A1 (en) Wireless communication method, terminal device, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107051.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2020965536

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020965536

Country of ref document: EP

Effective date: 20230608

NENP Non-entry into the national phase

Ref country code: DE