WO2022120842A1 - Ntn网络中定时提前的预补偿方法、终端设备和网络设备 - Google Patents

Ntn网络中定时提前的预补偿方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022120842A1
WO2022120842A1 PCT/CN2020/135930 CN2020135930W WO2022120842A1 WO 2022120842 A1 WO2022120842 A1 WO 2022120842A1 CN 2020135930 W CN2020135930 W CN 2020135930W WO 2022120842 A1 WO2022120842 A1 WO 2022120842A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
indication information
terminal device
information
computer program
Prior art date
Application number
PCT/CN2020/135930
Other languages
English (en)
French (fr)
Inventor
于新磊
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080105219.1A priority Critical patent/CN116261909A/zh
Priority to PCT/CN2020/135930 priority patent/WO2022120842A1/zh
Publication of WO2022120842A1 publication Critical patent/WO2022120842A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the embodiments of the present application relate to the field of communications, and more particularly, to a pre-compensation method for Timing Advance (TA) in a non-terrestrial communication network (Non-Terrestrial Network, NTN), a terminal device, and a network device.
  • TA Timing Advance
  • An important feature of uplink transmission is that different terminal devices have orthogonal multiple access in time-frequency, that is, uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the network equipment requires that the arrival times of signals from different terminal equipments with different frequency domain resources at the same moment to the network equipment are basically aligned.
  • the New Radio (New Radio, NR) and NTN systems support the TA mechanism.
  • the time from each terminal device in a cell to the network device is prolonged and varies greatly, so it is considered to make the terminal device perform TA pre-compensation.
  • the terminal equipment can usually estimate the delay of the service link between the terminal equipment and the satellite through the location information and ephemeris information, but the difference between the satellite and the network equipment The delay of the feeder link between the two networks still exists, and the network equipment usually broadcasts the delay information of the feeder link.
  • the terminal equipment is performing During TA pre-compensation, it is uncertain whether to combine the feeder chain delay information. For terminal devices in the same cell, if some terminal devices combine the feeder link delay information, while some do not combine the feeder chain delay information. The delay information of the channel will cause the preamble sent by each terminal device to arrive at the network device inconsistently, thereby causing interference in the cell.
  • the embodiments of the present application provide a pre-compensation method for timing advance in an NTN network, a terminal device, and a network device, so that interference in a cell can be eliminated.
  • a first aspect provides a pre-compensation method for timing advance in an NTN network, including: receiving delay information of a feeder link; receiving indication information, where the indication information is used to indicate whether to perform TA pre-compensation based on the delay information; In the random access process, TA pre-compensation is performed according to the indication information.
  • a method for pre-compensating timing advance in an NTN network including: sending delay information of a feeder link; sending indication information, where the indication information is used to indicate whether to perform TA pre-compensation based on the delay information.
  • a terminal device for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes functional modules for executing the methods in the second aspect or the respective implementation manners thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or each of its implementations.
  • an apparatus for implementing the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • the apparatus includes: a processor for invoking and running a computer program from a memory, so that a device installed with the apparatus executes the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions cause a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to second aspects or each of the implementations thereof.
  • the terminal equipment may receive an indication from the network equipment to determine whether to perform TA pre-compensation based on the delay information of the feedback link, so that the terminal equipment in the serving cell adopts a consistent TA pre-compensation method, thereby avoiding the need for serving cells
  • Different terminal devices in the cell use different pre-compensation methods to send the preamble, thereby avoiding intra-cell interference.
  • FIG. 1 is a schematic structural diagram of an NTN system provided by an embodiment of the present application.
  • Fig. 2 is the flow interaction diagram of the four-step random access process based on contention
  • Fig. 3 is the flow interaction diagram of the four-step random access process based on non-contention
  • Fig. 4 is the flow interaction diagram of the two-step random access process based on contention
  • Fig. 5 is the process interaction diagram of fallback from two-step random access to four-step random access based on contention;
  • Fig. 6 is a flow interaction diagram of a two-step random access process based on non-contention
  • FIG. 7 is a schematic diagram of time synchronization on the gNB side provided by an embodiment of the present application.
  • FIG. 8 is an interactive flowchart of a pre-compensation method for timing advance in an NTN network according to an embodiment of the present application
  • FIG. 9 shows a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a network device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an NTN system according to an embodiment of the present application.
  • a terminal device 1101 a satellite 1102 and a network device 1103 are included.
  • Wireless communication can be performed between the terminal device 1101 and the satellite 1102
  • communication can be performed between the satellite 1102 and the network device 1103 .
  • the network formed between the terminal device 1101, the satellite 1102 and the network device 1103 may also be referred to as NTN.
  • the satellite 1102 may not have the function of the base station, and the communication between the terminal device 1101 and the network device 1103 needs to be relayed by the satellite 1102 .
  • the NTN system may include multiple network devices 1103, and the coverage of each network device 1103 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • a terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, Wireless communication equipment, user agent or user equipment, etc.
  • UE User Equipment
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • a network device may be a device used to communicate with a mobile device.
  • the network device can be an Access Point (AP) in a wireless local area network (Wireless Local Area Networks, WLAN), a Global System of Mobile communication (GSM) system or a Code Division Multiple Access (Code Division Multiple Access, A base station (Base Transceiver Station, BTS) in CDMA), a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or a Long Term Evolution (Long Term Evolution, LTE) ), or a relay station or an access point, or an in-vehicle device, a wearable device, and a network device (gNB) in an NR network or a network device in a future evolved PLMN network Wait.
  • AP Access Point
  • WLAN Wireless Local Area Networks
  • GSM Global System of Mobile communication
  • BTS Global System of Mobile communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • gNB network device
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the satellites may be low earth orbit (low earth orbit, LEO) satellites, medium earth orbit (medium earth orbit, MEO) satellites, geostationary earth orbit (geostationary earth orbit, GEO) satellites, high elliptical orbit (High Elliptical) satellites Orbit, HEO) satellites, etc.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • HEO high elliptical orbit
  • HEO High Elliptical Satellites Orbit
  • FIG. 1 only illustrates a system to which the present application applies.
  • the methods shown in the embodiments of the present application may also be applied to other systems, etc., which are not specifically limited in the embodiments of the present application.
  • the NTN system shown in FIG. 1 may further include other network entities such as a gateway, which is not limited in this embodiment of the present application.
  • the NTN system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application may be applied to unlicensed spectrum, and may also be applied to licensed spectrum.
  • unlicensed spectrum can also be considered as shared spectrum
  • licensed spectrum can also be considered as non-shared spectrum.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the random access process is mainly triggered by the following events:
  • Initial access The terminal device goes from a radio resource control (Radio Resource Control, RRC) idle state (RRC_IDLE) to an RRC connected state (RRC_CONNECTED).
  • RRC Radio Resource Control
  • downlink (Downlink, DL) data arrives, and at this time, the uplink (Uplink, UL) is in an out-of-sync state.
  • UL data arrives, and there is no available physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource for Scheduling Request (Scheduling Request, SR) transmission.
  • PUCCH Physical Uplink Control Channel
  • SR Scheduling Request
  • the terminal device that is already in the uplink synchronization state can be allowed to use the random access channel (Random Access Channel, RACH) to replace the role of the SR.
  • RACH Random Access Channel
  • the terminal device requests other system information (Other System Information, OSI).
  • OSI Operating System Information
  • the following two random access modes are mainly supported, a contention-based random access mode and a non-contention-based random access mode.
  • FIG. 2 is a flow interaction diagram of a contention-based four-step random access procedure.
  • the random access procedure may include the following four steps:
  • the terminal device sends Msg 1 to the network device to tell the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble (Random Access Preamble, RAP), or is called a random access preamble sequence, Preamble sequence, preamble, etc.
  • RAP Random Access Preamble
  • Msg 1 can also be used for network equipment to estimate the transmission delay between itself and the terminal equipment and to calibrate the uplink time accordingly.
  • the terminal device selects a preamble index (index) and a physical random access channel (Physical Random Access Channel, PRACH) resource for sending the preamble; then the terminal device transmits the preamble on the PRACH.
  • the network device will notify all terminal devices by broadcasting a system information system information block (System Information Block, SIB) on which time-frequency resources are allowed to transmit the preamble, for example, SIB1.
  • SIB System Information Block
  • the network device After receiving the Msg 1 sent by the terminal device, the network device sends Msg 2, that is, a random access response (Random Access Response, RAR) message to the terminal device.
  • the Msg 2 may carry, for example, TA, uplink grant instructions such as uplink resource configuration, and temporary cell wireless network temporary identity (Temporary Cell-Radio Network Temporary Identity, TC-RNTI) and the like.
  • the terminal device monitors the Physical Downlink Control Channel (PDCCH) within the random access response time window (RAR window) to receive the RAR message replied by the network device.
  • the RAR message may be descrambled using a corresponding random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device does not receive the RAR message replied by the network device within the RAR time window, it is considered that this random access procedure has failed.
  • the terminal device successfully receives a RAR message, and the preamble index (preamble index) carried in the RAR message is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received. At this time, the terminal device The device can then stop monitoring within the RAR time window.
  • Msg 2 may include RAR messages for multiple terminal devices, and the RAR message of each terminal device may include a random access preamble identifier (RAP Identify, RAPID) used by the terminal device, used for transmitting Msg 3 resource information, TA adjustment information, TC-RNTI, etc.
  • RAP Identify random access preamble identifier
  • RAPID random access preamble identifier
  • the terminal device After receiving the RAR message, the terminal device determines whether the RAR belongs to its own RAR message. For example, the terminal device can use the preamble identifier to check. After determining that it belongs to its own RAR message, the terminal device generates Msg 3 at the RRC layer. And send Msg 3 to the network device. The identification information of the terminal device needs to be carried.
  • Msg 3 in step 3 of the 4-step random access procedure may include different contents to perform scheduled transmission (Scheduled Transmission).
  • Msg 3 may include an RRC connection request (RRC Connection Request) generated by the RRC layer, which at least carries the non-access stratum (Non-Access Stratum, NAS) identification information of the terminal device, and may also carry For example, a Serving-Temporary Mobile Subscriber Identity (S-TMSI) or a random number of the terminal device.
  • RRC Connection Request RRC Connection Request
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include an RRC connection reestablishment request (RRC Connection Re-establishment Request) generated by the RRC layer without carrying any NAS message, and may also carry, for example, a cell radio network temporary identity (Cell Radio Network Temporary) Identifier, C-RNTI) and protocol control information (Protocol Control Information, PCI) and so on.
  • RRC Connection Re-establishment Request RRC Connection Re-establishment Request
  • C-RNTI Cell Radio Network Temporary
  • PCI Protocol Control Information
  • Msg 3 may include an RRC handover complete message (RRC Handover Confirm) generated by the RRC layer and the C-RNTI of the terminal device, and may also carry, for example, a buffer status report (Buffer Status Report, BSR); for other triggers
  • RRC Handover Confirm RRC handover complete message
  • BSR Buffer Status Report
  • the network device sends Msg 4 to the terminal device, and the terminal device correctly receives the Msg 4 to complete the contention resolution (Contention Resolution).
  • the Msg 4 may carry the RRC connection establishment message.
  • the network device in the contention resolution mechanism will carry its own unique identification in Msg 3, such as C-RNTI or identification information from the core network (such as S-TMSI or a random number), the network device in the contention resolution mechanism will The unique identification of the terminal device is carried in Msg 4 to designate the terminal device that wins the competition. And other terminal devices that do not win in the contention resolution will re-initiate random access.
  • FIG. 3 is a flow interaction diagram of a non-contention-based four-step random access procedure.
  • the random access procedure may include the first two steps in FIG. 2 (ie, step 1 and step 2 in FIG. 2 ). in:
  • Step 1 the network device sends a random access preamble assignment (RA Preamble assignment) message to the terminal device.
  • RA Preamble assignment a random access preamble assignment
  • the terminal device sends Msg 1 to the network device to inform the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble.
  • the network device After receiving the Msg 1 sent by the terminal device, the network device sends Msg 2, that is, the RAR message, to the terminal device.
  • the Msg 2 may carry, for example, TA information, uplink grant instructions such as uplink resource configuration, and information such as TC-RNTI.
  • the terminal device does not receive the RAR message replied by the network device within the RAR time window, it is considered that this random access procedure has failed. If the terminal device successfully receives a RAR message, and the index of the preamble carried in the RAR message is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received, and the terminal device can stop the RAR at this time. The message is monitored.
  • Msg 1 and Msg 2 in the non-contention random access process For details of Msg 1 and Msg 2 in the non-contention random access process, reference may be made to the foregoing description of Msg 1 and Msg 2 in the contention-based random access process, and for brevity, they will not be repeated here.
  • FIG. 4 is a flow interaction diagram of a two-step random access process based on contention. As shown in FIG. 4 , the random access process may include:
  • MsgA includes: Preamble transmitted on PRACH and load information transmitted on Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the terminal device monitors the network side's response within the configured window, and if it receives an indication of successful contention resolution from the network, the terminal device ends the random access process.
  • Fig. 5 is a flow interaction diagram of contention-based fallback from two-step random access to four-step random access. As shown in Fig. 5, the random access flow may include:
  • MsgA includes: Preamble transmitted on PRACH and load information transmitted on Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the terminal device monitors the response from the network side in the configured window, and then receives the fallback instruction sent by the network, and then needs to perform step 3.
  • Msg 3 and Msg 4 may refer to the foregoing description of Msg 3 and Msg 4 in the non-contention-based four-step random access process for details. For brevity, they will not be repeated here.
  • Figure 6 is a flow diagram of a non-contention-based two-step random access process. As shown in Figure 6, the random access process may include:
  • Step 1 the network device sends a random access preamble assignment (RA Preamble assignment) message to the terminal device.
  • RA Preamble assignment a random access preamble assignment
  • MsgA includes: Preamble transmitted on PRACH and load information transmitted on PUSCH.
  • the terminal device After MsgA is transmitted, the terminal device receives MsgB, that is, a random access response.
  • uplink transmission An important feature of uplink transmission is that different terminal devices have orthogonal multiple access in time-frequency, that is, uplink transmissions of different terminal devices from the same cell do not interfere with each other.
  • the network equipment In order to ensure the orthogonality of uplink transmission and avoid intra-cell interference, the network equipment requires that the arrival times of signals from different terminal equipments with different frequency domain resources at the same moment to the network equipment are basically aligned.
  • NR supports the uplink TA mechanism.
  • FIG. 7 is a schematic diagram of time synchronization on the gNB side provided by an embodiment of the present application.
  • the uplink clock and the downlink clock on the UE side are the same.
  • the time at which uplink data from different UEs arrive at the gNB side is not synchronized.
  • the gNB can control the time when the uplink data from different UEs arrive at the gNB, so that the time when the uplink data from different UEs arrive at the gNB side is synchronized with the downlink timing at the gNB side. Specifically, for a UE that is far away from the gNB, due to a larger transmission delay, it is necessary to send uplink data earlier than a UE that is closer to the gNB.
  • the gNB determines the TA value of each UE based on measuring the uplink transmission of the UE.
  • the gNB sends the TA command to the UE in two ways.
  • the gNB determines the TA value by measuring the received preamble, and sends it to the UE through the Timing Advance Command (Timing Advance Command) field of the RAR.
  • Timing Advance Command Timing Advance Command
  • Timing Advance Command Timing Advance Command
  • the TA mechanism is introduced in the NR system, while the NTN network has its particularity, that is, in the NTN network, the time from each terminal device in a cell to the network device is prolonged and varies greatly.
  • terminal equipment can perform TA pre-compensation (Timing Advance pre-compensation).
  • the TA pre-compensation is calculated by the terminal device, and the terminal device needs to perform the TA compensation in the random access process.
  • TA pre-compensation is also referred to as TA compensation, TA pre-compensation value, etc., which is not limited in this application.
  • a time offset (offset) is introduced, if the The time offset adopts the round trip time (Round Trip Time, RTT) from the terminal device to the network device, and the network device needs to broadcast the delay information of the feeder link.
  • RTT Round Trip Time
  • a terrestrial gateway may be set between the satellite and the network device, and the feeder link refers to the link from the satellite to the terrestrial network.
  • the delay information of the feeder link may be the delay on the feeder link, or the factors or parameter information that cause the delay on the feeder link, which is not limited in this application.
  • the terminal equipment From the perspective of the terminal equipment, after the network equipment broadcasts the delay information of the feeder link, since the terminal equipment does not know whether the uplink timing and the downlink timing are aligned on the network equipment side or the satellite side, the terminal equipment does not know whether to feed the feeder link.
  • the delay information of the electrical link is used to estimate the TA precompensation when sending Msg1 or MsgA.
  • the terminal equipment need to be aligned on the network equipment side, when the terminal equipment sends Msg1 or MsgA, it needs to combine the feeder link delay information, location information and ephemeris information to estimate TA pre-compensation; if If the uplink timing and downlink timing of the terminal equipment are aligned on the satellite side, when sending Msg1 or MsgA, it is not necessary to perform TA precompensation in conjunction with the feeder link delay information.
  • the network device may indicate to the terminal device whether to perform TA pre-compensation based on the delay information of the feeder link.
  • FIG. 8 is an interactive flowchart of a method for pre-compensating timing advance in an NTN network provided by an embodiment of the present application. As shown in FIG. 8 , the method includes the following steps:
  • S810 The network device sends the delay information of the feeder link to the terminal device.
  • the network device sends indication information to the terminal device, where the indication information is used to indicate whether to perform TA pre-compensation based on the delay information.
  • S830 During the random access process, the terminal device performs TA pre-compensation according to the indication information.
  • the above-mentioned time delay information of the feeder link may be carried in the configuration information of the serving cell where the above-mentioned terminal equipment is located and sent by the network equipment.
  • the configuration information of the serving cell further includes: configuration information of random access resources, etc., which is not limited in this application.
  • the above indication information may be sent separately from the delay information of the feeder link, or may be sent together, which is not limited in this application.
  • the length of the above indication information may be 1, and the value may be 0 or 1.
  • the indication information indicates that TA pre-compensation is performed based on the delay information.
  • the value of the indication information indicates that TA pre-compensation is not performed based on the delay information.
  • the indication information takes a value of 0, it is indicated to perform TA pre-compensation based on the delay information.
  • the value of the indication information is 1, it indicates that TA pre-compensation is not performed based on the delay information.
  • the above-mentioned indication information is indicated for all terminal equipments in the serving cell where the above-mentioned terminal equipment is located, that is, it is indicated for all terminal equipments in the serving cell in a unified manner.
  • the above-mentioned indication information may be carried in a system message or radio resource control (Radio Resource Control, RRC) dedicated signaling, but is not limited thereto.
  • RRC Radio Resource Control
  • the indication information indicates that TA pre-compensation is performed based on the delay information. If the reference point at which the uplink timing and downlink timing of the terminal device are aligned is a satellite, the indication information indicates that TA pre-compensation is not performed based on the delay information.
  • the reference point for the alignment of the uplink timing and the downlink timing of the terminal equipment is the network equipment, which is also referred to as the alignment of the uplink timing and the downlink timing of the terminal equipment on the network equipment side.
  • the reference point for the alignment of the uplink timing and downlink timing of the terminal equipment is the satellite, which is also referred to as the alignment of the uplink timing and downlink timing of the terminal equipment on the satellite side.
  • the terminal device when sending Msg1 or MsgA, performs TA pre-compensation according to the indication information.
  • the technical solutions of the present application can be applied to a non-contention-based four-step random access process, a non-contention-based two-step random access process, a contention-based two-step random access process, and a contention-based two-step random access process.
  • the access falls back to the four-step random access process, etc., which is not limited in this application.
  • the terminal device performs TA pre-compensation according to the delay information, the location information and ephemeris information of the terminal device, and how does the terminal device
  • the existing technical solutions can be used to perform TA pre-compensation on the location information and ephemeris information, which is not limited in this application.
  • TA pre-compensation is performed according to the location information and ephemeris information of the terminal device, that is, the terminal device performs TA pre-compensation only based on its location information and ephemeris information.
  • the terminal device performs TA pre-compensation according to the location information and ephemeris information of the terminal device may adopt the prior art solution, which is not limited in this application.
  • the terminal equipment can receive the indication of the network equipment to determine whether to perform TA pre-compensation based on the delay information of the feedback link, so that the terminal equipment in the serving cell adopts a consistent TA pre-compensation method, thereby avoiding Different terminal devices in the serving cell use different pre-compensation methods to send the preamble, thereby avoiding interference in the cell.
  • FIG. 9 shows a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 includes:
  • the communication unit 910 is configured to receive delay information and indication information of the feeder link, where the indication information is used to indicate whether to perform TA pre-compensation based on the delay information.
  • the processing unit 920 is configured to perform TA pre-compensation according to the indication information in the random access process.
  • the indication information indicates that TA pre-compensation is performed based on the delay information. If the reference point at which the uplink timing and downlink timing of the terminal device are aligned is a satellite, the indication information indicates that TA pre-compensation is not performed based on the delay information.
  • the indication information is indicated for all terminal devices in the serving cell.
  • the indication information is carried in a system message or RRC dedicated signaling.
  • the processing unit 920 is specifically configured to: perform TA pre-compensation according to the indication information when the Msg1 or the MsgA is sent.
  • the processing unit 920 is specifically configured to: if the indication information indicates that TA pre-compensation is performed based on the delay information, perform TA pre-compensation according to the delay information, the location information and ephemeris information of the terminal device. If the indication information indicates that TA pre-compensation is not performed based on the delay information, TA pre-compensation is performed according to the location information and ephemeris information of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the terminal device 900 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 900 are respectively for realizing the method shown in FIG. 8 .
  • the corresponding process of the terminal device in the above will not be repeated here.
  • FIG. 10 shows a schematic block diagram of a network device 1000 according to an embodiment of the present application.
  • the network device 1000 includes: a communication unit 1010 configured to send delay information and indication information of the feeder link, where the indication information is used to indicate whether to perform TA pre-compensation based on the delay information.
  • the indication information indicates that TA pre-compensation is performed based on the delay information. If the reference point at which the uplink timing and downlink timing of the terminal device are aligned is a satellite, the indication information indicates that TA pre-compensation is not performed based on the delay information.
  • the indication information is indicated for all terminal devices in the serving cell.
  • the indication information is carried in a system message or RRC dedicated signaling.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the network device 1000 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1000 are respectively for realizing the method shown in FIG. 8 .
  • the corresponding process of the network device in the above will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the methods in the embodiments of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1100 may specifically be a network device in this embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1100 may specifically be the terminal device of the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity .
  • FIG. 12 is a schematic structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the apparatus 1200 may further include a memory 1220 .
  • the processor 1210 may call and run a computer program from the memory 1220 to implement the methods in the embodiments of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated in the processor 1210.
  • the apparatus 1200 may further include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the apparatus 1200 may further include an output interface 1240 .
  • the processor 1210 may control the output interface 1240 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the apparatus can be applied to the network equipment in the embodiments of the present application, and the apparatus can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application, which are not repeated here for brevity.
  • the apparatus may be applied to the terminal equipment in the embodiments of the present application, and the apparatus may implement the corresponding processes implemented by the terminal equipment in each method of the embodiments of the present application, which will not be repeated here for brevity.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-on-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 1300 includes a terminal device 1310 and a network device 1320 .
  • the terminal device 1310 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1320 can be used to implement the corresponding functions implemented by the network device or the base station in the above method. Repeat.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in this embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, in order to It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application, and when the computer program runs on the computer, the computer can execute the corresponding methods implemented by the network device or the base station in each method of the embodiments of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种NTN网络中定时提前的预补偿方法、终端设备和网络设备,该方法包括:接收馈电链路的时延信息;接收指示信息,指示信息用于指示是否基于时延信息进行TA预补偿;在随机接入过程中,根据指示信息进行TA预补偿。从而避免了服务小区内不同终端设备采用不同的预补偿方式来发送前导码,进而避免了小区内的干扰。

Description

NTN网络中定时提前的预补偿方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种非地面通信网络(Non-Terrestrial Network,NTN)中定时提前(Timing Advance,TA)的预补偿方法、终端设备和网络设备。
背景技术
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,新空口(New Radio,NR)和NTN系统支持TA的机制。
由于在NTN网络中,一个小区内的各个终端设备到网络设备的时延长且差异大,因此考虑令终端设备进行TA预补偿。针对包括终端设备、卫星和网络设备的NTN网络,终端设备通常可以通过位置信息和星历信息来估计终端设备和卫星之间的服务链路(service link)的时延,但卫星和网络设备之间的馈电链路(feeder link)时延仍然存在,网络设备通常广播馈电链路的时延信息。对于终端设备而言,其不确定是要在网络设备侧实现上行定时和下行定时的对齐,还是在卫星侧实现上行定时和下行定时的对齐,因此,在随机接入过程中,终端设备在进行TA预补偿时,不确定是否要结合馈电链路的时延信息,对于同一小区的终端设备而言,如果有些终端设备结合了馈电链路的时延信息,而有些没有结合馈电链路的时延信息,将会导致各个终端设备发送的前导码(preamble)到达网络设备的时间不一致,从而引起小区内的干扰。
发明内容
本申请实施例提供了一种NTN网络中定时提前的预补偿方法、终端设备和网络设备,从而可以消除小区内的干扰。
第一方面,提供了一种NTN网络中定时提前的预补偿方法,包括:接收馈电链路的时延信息;接收指示信息,指示信息用于指示是否基于时延信息进行TA预补偿;在随机接入过程中,根据指示信息进行TA预补偿。
第二方面,提供了一种NTN网络中定时提前的预补偿方法,包括:发送馈电链路的时延信息;发送指示信息,指示信息用于指示是否基于时延信息进行TA预补偿。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
在本申请中,终端设备可以接收网络设备的指示,以确定是否基于反馈链路的时延信息进行TA预补偿,使得服务小区内的终端设备采用一致的TA预补偿方式,从而避免了服务小区内不同终端设备采用不同的预补偿方式来发送前导码,进而避免了小区内的干扰。
附图说明
图1为本申请实施例提供的一种NTN系统的架构示意图;
图2是基于竞争的四步随机接入过程的流程交互图;
图3是基于非竞争的四步随机接入过程的流程交互图;
图4是基于竞争的两步随机接入过程的流程交互图;
图5是基于竞争的从两步随机接入回退到四步随机接入的流程交互图;
图6是基于非竞争的两步随机接入过程的流程交互图;
图7为本申请一实施例提供的gNB侧的时间同步示意图;
图8为本申请实施例提供的一种NTN网络中定时提前的预补偿方法的交互流程图;
图9示出了根据本申请实施例的终端设备900的示意性框图;
图10示出了根据本申请实施例的网络设备1000的示意性框图;
图11是本申请实施例提供的一种通信设备1100示意性结构图;
图12是本申请实施例的装置的示意性结构图;
图13是本申请实施例提供的一种通信系统1300的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于NTN系统,但不限于此。
下面结合图1,对本申请中的NTN系统的架构进行说明。
图1为本申请实施例提供的一种NTN系统的架构示意图。请参见图1,包括终端设备1101、卫星1102和网络设备1103,终端设备1101和卫星1102之间可以进行无线通信,卫星1102与网络设备1103之间可以通信。终端设备1101、卫星1102和网络设备1103之间所形成的网络还可以称为NTN。在图1所示的通信系统的架构中,卫星1102可以不具有基站的功能,终端设备1101和网络设备1103之间的通信需要通过卫星1102的中转。可选地,NTN系统中可以包括多个网络设备1103,并且每个网络设备1103的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解的是,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电 话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
作为示例而非限定,在本申请实施例中,该终端设备可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的接入点(Access Point,AP),全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解的是,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统等,本申请实施例对此不作具体限定。
可选地,图1所示的NTN系统还可以包括网关等其他网络实体,本申请实施例对此不作限定。
可选地,本申请实施例中的NTN系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例可应用于非授权频谱,也可以应用于授权频谱。其中,非授权频谱也可以认为是共享频谱,授权频谱也可以认为是非共享频谱。
应理解,本申请中术语“系统”和“网络”在本文中常可互换使用。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为了清楚地阐述本申请实施例的思想,首先对本申请实施例的相关技术内容进行简要描述。
一、随机接入过程主要由如下事件触发:
(1)初始接入(initial access):终端设备从无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE)到RRC连接态(RRC_CONNECTED)。
(2)RRC连接重建(RRC Connection Re-establishment)。
(3)切换(handover),即终端设备需要与新的小区建立上行同步。
(4)在RRC_CONNECTED下,下行链路(Downlink,DL)数据到达,此时上行链路(Uplink,UL)处于失步状态。
(5)在RRC_CONNECTED下,UL数据到达,此时UL处于失步状态。
(6)在RRC_CONNECTED下,UL数据到达,没有可用的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源用于调度请求(Scheduling Request,SR)传输。此时,可以允许已经处于上行同步状态的终端设备使用随机接入信道(Random Access Channel,RACH)来替代SR的作用。
(7)来自RRC的同步重配置请求。
(8)终端由RRC非激活态(RRC_INACTIVE)向激活态(RRC_ACTIVE)过渡。
(9)在辅服务小区(Secondary Cell,SCell)添加过程中建立时间校准。
(10)终端设备请求其他系统信息(Other System Information,OSI)。
(11)终端设备波束失败恢复(beam failure recovery)。
二、随机接入过程:
在NR版本(Release,Rel)-15版本中,主要支持以下两种随机接入方式,基于竞争的随机接入方式和基于非竞争的随机接入方式。
为了便于理解,下面将结合图2和图3简单介绍随机接入过程。
图2是基于竞争的四步随机接入过程的流程交互图。
如图2所示,该随机接入流程可以包括以下四个步骤:
步骤1,Msg 1。
终端设备向网络设备发送Msg 1,以告诉网络设备该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码(Random Access Preamble,RAP),或称为随机接入前导序列、前导序列、前导码等。同时,Msg 1还可以用于网络设备能估计其与终端设备之间的传输时延并以此校准上行时间。
具体而言,终端设备选择preamble索引(index)和用于发送preamble的物理随机接入信道(PhysicalRandom Access Channel,PRACH)资源;然后该终端设备在PRACH上传输Preamble。其中,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备,允许在哪些个时频资源上传输preamble,例如,SIB1。
步骤2,Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2,即随机接入响应(Random Access Response,RAR)消息。该Msg 2中例如可以携带TA、上行授权指令例如上行资源的配置、以及临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,TC-RNTI)等。
终端设备则在随机接入响应时间窗(RAR window)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以用于接收网络设备回复的RAR消息。该RAR消息可以使用相应的随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)进行解扰。
如果终端设备在该RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。
如果终端设备成功地接收到一个RAR消息,且该RAR消息中携带的前导码索引(preamble index)与终端设备通过Msg 1发送的前导码的索引相同时,则认为成功接收了RAR,此时终端设备就可以停止RAR时间窗内的监听了。
其中,Msg 2中可以包括针对多个终端设备的RAR消息,每一个终端设备的RAR消息中可以包括该终端设备所采用的随机接入前导码标识(RAP Identify,RAPID)、用于传输Msg 3的资源的信息、TA调整信息、TC-RNTI等。
步骤3,Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码标识进行核对,在确定是属于自己的RAR消息后,终端设备在RRC层产生Msg 3,并向网络设备发送Msg 3。其中需要携带终端设备的标识信息等。
具体地,针对不同的随机接入触发事件,4步随机接入过程的步骤3中的Msg 3可以包括不同的内容,以进行调度传输(Scheduled Transmission)。
例如,对于初始接入的场景,Msg 3可以包括RRC层生成的RRC连接请求(RRC Connection Request),其中至少携带终端设备的非接入层(Non-Access Stratum,NAS)标识信息,还可以携带例如终端设备的服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于连接重建场景,Msg 3可以包括RRC层生成的RRC连接重建请求(RRC Connection Re-establishment Request)且不携带任何NAS消息,此外还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)和协议控制信息(Protocol Control Information,PCI)等。
又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换完成消息(RRC Handover Confirm)和终端设备的C-RNTI,还可携带例如缓冲状态报告(Buffer Status Report,BSR);对于其它触发事件例如上/下行数据到达的场景,Msg 3至少需要包括终端设备的C-RNTI。
步骤4,Msg 4。
网络设备向终端设备发送Msg 4,终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。例如在RRC连接建立过程中,Msg 4中可以携带RRC连接建立消息。
由于步骤3中的终端设备会在Msg 3中携带自己唯一的标识,例如C-RNTI或来自核心网的标识信息(比如S-TMSI或一个随机数),从而网络设备在竞争解决机制中,会在Msg 4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
图3是基于非竞争的四步随机接入过程的流程交互图。
如图3所示,该随机接入流程可以包括图2中的前两个步骤(即图2中的步骤1和步骤2)。其中:
步骤0,网络设备向终端设备发送随机接入前导码分配(RA Preamble assignment)消息。
步骤1,Msg 1。
终端设备向网络设备发送Msg 1,以向网络设备告知该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码。
步骤2,Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2即RAR消息。该Msg 2中例如可以携带TA信息、上行授权指令例如上行资源的配置、以及TC-RNTI等信息。
如果终端设备在该RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。如果终端设备成功地接收到一个RAR消息,且该RAR消息中携带的前导码索引与终端设备通过Msg 1发送的前导码的索引相同,则认为成功接收了 RAR,此时终端设备就可以停止RAR消息的监听了。
非竞争的随机接入过程中的Msg 1和Msg 2,具体可以参考前述对基于竞争的随机接入过程中的Msg 1和Msg 2的描述,为了简洁,这里不再赘述。
NR Rel-16版本引入了两步随机接入过程,其引入可以降低时延同时减小信令开销。图4是基于竞争的两步随机接入过程的流程交互图,如图4所示,该随机接入流程可以包括:
步骤1,Msg A。
其中,MsgA包括:在PRACH上传输的Preamble和在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上传输的负载信息。
步骤2,MsgB。
在MsgA传输后,终端设备在配置的窗口内监听网络侧的响应,如果收到网络下发的竞争解决成功的指示,则终端设备结束随机接入过程。
图5是基于竞争的从两步随机接入回退到四步随机接入的流程交互图,如图5所示,该随机接入流程可以包括:
步骤1,Msg A。
其中,MsgA包括:在PRACH上传输的Preamble和在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)上传输的负载信息。
步骤2,MsgB。
在MsgA传输后,终端设备在配置的窗口内监听网络侧的响应,这时收到网络下发的回退指示,这时需要执行步骤3。
步骤3,Msg 3。
步骤4,Msg 4。
其中,Msg 3和Msg 4,具体可以参考前述对基于非竞争的四步随机接入过程中的Msg 3和Msg 4的描述,为了简洁,这里不再赘述。
图6是基于非竞争的两步随机接入过程的流程交互图,如图6所示,该随机接入流程可以包括:
步骤0,网络设备向终端设备发送随机接入前导码分配(RA Preamble assignment)消息。
步骤1,Msg A。
其中,MsgA包括:在PRACH上传输的Preamble和在PUSCH上传输的负载信息。
步骤2,MsgB。
在MsgA传输后,终端设备接收MsgB,即随机接入响应。
三、NR系统中的TA机制:
上行传输的一个重要特征是不同终端设备在时频上正交多址接入,即来自同一小区的不同终端设备的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,网络设备要求来自同一时刻但不同频域资源的不同终端设备的信号到达网络设备的时间基本上是对齐的。为了保证网络设备侧的时间同步,NR支持上行TA机制。
图7为本申请一实施例提供的gNB侧的时间同步示意图,如图7中的左侧附图所示,在没有采用TA机制时,UE侧的上行时钟和下行时钟是相同的,对于gNB侧发送的一个下行符号,由于不同UE与gNB之间的传播延迟不同,来自不同UE的上行数据到达gNB侧的时间不同步。如图7中的右侧附图所示,UE侧的上行时钟和下行时钟之间有偏移,并且不同UE有各自不同的上行TA值,即引入了TA机制。gNB通过适当地控制每个UE对应的TA值,可以控制来自不同UE的上行数据到达gNB的时间,以使来自不同UE的上行数据到达gNB侧的时间同步,并且与gNB侧的下行定时同步。具体地,对于距离gNB较远的UE,由于有较大的传输时延,就要比距离gNB较近的UE提前发送上行数据。
其中,gNB基于测量UE的上行传输来确定每个UE的TA值。gNB通过两种方式给UE发送TA命令。
初始TA的获取:在随机接入过程,gNB通过测量接收到的前导码(preamble)来确定TA值,并通过RAR的定时提前命令(Timing Advance Command)字段发送给UE。
RRC连接态下TA的调整:虽然在随机接入过程中,UE与gNB取得了上行同步,但上行信号到达gNB的定时可能会随着时间发生变化,因此,UE需要不断地更新其上行TA值,以保持上行同步。如果某个UE的TA值需要校正,则gNB会发送一个定时提前命令(Timing Advance Command)给该UE,要求其调整TA值。该Timing Advance Command是通过Timing Advance Command MAC CE发送给UE的。
如上所述,在NR系统中引入了TA机制,而NTN网络有其特殊性,即在NTN网络中,一个小区内的各个终端设备到网络设备的时延长且差异大,为了解决这一问题,在NTN网络中终端设备可以进行TA预补偿(Timing Advance pre-compensation)。
需要说明的是,TA预补偿是终端设备计算得到的,该终端设备在随机接入过程中所要进行的TA补偿。
应理解的是,该TA预补偿也被称为TA补偿、TA预补偿值等,本申请对此不做限制。
针对随机接入过程中终端设备接收Msg2或MsgB的随机接入响应时间窗,以及四步随机接入过程中终端设备接收Msg4的竞争冲突解决定时器,引入一个时间偏置(offset),如果该时间偏置采用终端设备到网络设备的往返时间(Round Trip Time,RTT),则网络设备需要广播馈电链路的时延信息。
需要说明的是,在图1所示的NTN网络中,卫星和网络设备之间可以设置有地面网关,而馈电链路指的是卫星到地面网络的链路。
可选地,馈电链路的时延信息可以是馈电链路上的时延,或者是导致馈电链路上的时延的因素或者参数信息等,本申请对此不做限制。
从终端设备角度来讲,当网络设备广播了馈电链路的时延信息后,由于终端设备不知道上行定时和下行定时是在网络设备侧还是卫星侧对齐,因此终端设备不知道是否将馈电链路的时延信息用于估计发送Msg1或者MsgA时的TA预补偿。即如果终端设备的上行定时和下行定时需要在网络设备侧对齐,则终端设备在发送Msg1或MsgA时,需要结合馈电链路的时延信息、位置信息和星历信息估算TA预补偿;如果终端设备的上行定时和下行定时在卫星侧对齐,则在发送Msg1或MsgA时,不需要结合馈电链路的时延信息做TA预补偿。而如果小区内不同终端设备在同一随机接入信道(Random Access CHannel,RACH)时机上采取不一致的TA预补偿方式发送前导码,会导致前导码到达网络设备的时间存在差异,可能引起小区内干扰。
为了解决上述技术问题,在本申请中,网络设备可以向终端设备指示是否基于馈电链路的时延信息进行TA预补偿。
下面将对本申请技术方案进行详细阐述:
图8为本申请实施例提供的一种NTN网络中定时提前的预补偿方法的交互流程图,如图8所示,该方法包括如下步骤:
S810:网络设备向终端设备发送馈电链路的时延信息。
S820:网络设备向终端设备发送指示信息,指示信息用于指示是否基于时延信息进行TA预补偿。
S830:终端设备在随机接入过程中,根据指示信息进行TA预补偿。
可选地,上述馈电链路的时延信息可以携带在网络设备发送的上述终端设备所在的服务小区的配置信息中。
可选地,服务小区的配置信息还包括:随机接入资源的配置信息等,本申请对此不做限制。
可选地,上述指示信息可以与馈电链路的时延信息分开发送,也可以一起发送,本申请对此不做限制。
可选地,上述指示信息的长度可以是1,取值可以是0或者1,当指示信息取值为1时,指示基于时延信息进行TA预补偿。当指示信息取值为0时,指示不基于时延信息进行TA预补偿。或者,当指示信息取值为0时,指示基于时延信息进行TA预补偿。当指示信息取值为1时,指示不基于时延信息进行TA预补偿。
需要说明的是,本申请对指示信息长度、取值以及各个取值表示的意义不做限制。
可选地,上述指示信息是针对上述终端设备所在的服务小区内的所有终端设备指示的,即针对该服务小区内的所有终端设备统一指示的。
可选地,上述指示信息可以携带在系统消息或者无线资源控制(Radio Resource Control,RRC)专用信令中,但不限于此。
可选地,若终端设备的上行定时和下行定时对齐的参考点是网络设备,则指示信息指示基于时延信息进行TA预补偿。若终端设备的上行定时和下行定时对齐的参考点是卫星,则指示信息指示不基于时延信息进行TA预补偿。
应理解的是,终端设备的上行定时和下行定时对齐的参考点是网络设备,也被称为终端设备的上行定时和下行定时在网络设备侧对齐。终端设备的上行定时和下行定时对齐的参考点是卫星,也被称为终端设备的上行定时和下行定时在卫星侧对齐。
可选地,终端设备在发送Msg1或者MsgA时,根据指示信息进行TA预补偿。
可选地,本申请技术方案可以应用于基于非竞争的四步随机接入过程、基于非竞争的两步随机接入过程、基于竞争的两步随机接入过程、基于竞争的从两步随机接入回退到四步随机接入过程等,本申请对此不做限制。
可选地,若指示信息指示基于时延信息进行TA预补偿,则终端设备根据时延信息、终端设备的位置信息和星历信息进行TA预补偿,而终端设备如何根据时延信息、终端设备的位置信息和星历信息进行TA预补偿可以采用现有技术方案,本申请对此不做限制。
可选地,若指示信息指示不基于时延信息进行TA预补偿,则根据终端设备的位置信息和星历信息进行TA预补偿,即终端设备仅根据它的位置信息和星历信息进行TA预补偿,而终端设备如何根据终端设备的位置信息和星历信息进行TA预补偿可以采用现有技术方案,本申请对此不做限制。
综上,在本申请中,终端设备可以接收网络设备的指示,以确定是否基于反馈链路的时延信息进行TA预补偿,使得服务小区内的终端设备采用一致的TA预补偿方式,从而避免了服务小区内不同终端设备采用不同的预补偿方式来发送前导码,进而避免了小区内的干扰。
上文结合图8,详细描述了本申请的方法实施例,下文结合图9至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图9示出了根据本申请实施例的终端设备900的示意性框图。如图9所示,该终端设备900包括:
通信单元910,用于接收馈电链路的时延信息以及指示信息,指示信息用于指示是否基于时延信息进行TA预补偿。
处理单元920,用于在随机接入过程中,根据指示信息进行TA预补偿。
可选地,若终端设备的上行定时和下行定时对齐的参考点是网络设备,则指示信息指示基于时延信息进行TA预补偿。若终端设备的上行定时和下行定时对齐的参考点是卫星,则指示信息指示不基于时延信息进行TA预补偿。
可选地,指示信息是针对服务小区内的所有终端设备指示的。
可选地,指示信息携带在系统消息或者RRC专用信令中。
可选地,处理单元920具体用于:在发送Msg1或者MsgA时,根据指示信息进行TA预补偿。
可选地,处理单元920具体用于:若指示信息指示基于时延信息进行TA预补偿,则根据时延信息、终端设备的位置信息和星历信息进行TA预补偿。若指示信息指示不基于时延信息进行TA预补偿,则根据终端设备的位置信息和星历信息进行TA预补偿。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备900可对应于本申请方法实施例中的终端设备,并且终端设备900中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备1000的示意性框图。如图10所示,该网络设备1000包括:通信单元1010,用于发送馈电链路的时延信息和指示信息,指示信息用于指示是否基于时延信息进行TA预补偿。
可选地,若终端设备的上行定时和下行定时对齐的参考点是网络设备,则指示信息指示基于时延信息进行TA预补偿。若终端设备的上行定时和下行定时对齐的参考点是卫星,则指示信息指示不基于时延信息进行TA预补偿。
可选地,指示信息是针对服务小区内的所有终端设备指示的。
可选地,指示信息携带在系统消息或者RRC专用信令中。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备1000可对应于本申请方法实施例中的网络设备,并且网络设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图8所示方法中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备1100示意性结构图。图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1100具体可为本申请实施例的终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,装置1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该装置1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备或者基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic  RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种NTN网络中定时提前的预补偿方法,其特征在于,包括:
    接收馈电链路的时延信息;
    接收指示信息,所述指示信息用于指示是否基于所述时延信息进行定时提前TA预补偿;
    在随机接入过程中,根据所述指示信息进行TA预补偿。
  2. 根据权利要求1所述的方法,其特征在于,
    若终端设备的上行定时和下行定时对齐的参考点是网络设备,则所述指示信息指示基于所述时延信息进行TA预补偿;
    若所述终端设备的上行定时和下行定时对齐的参考点是卫星,则所述指示信息指示不基于所述时延信息进行TA预补偿。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息是针对服务小区内的所有终端设备指示的。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述指示信息携带在系统消息或者无线资源控制RRC专用信令中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述在随机接入过程中,根据所述指示信息进行TA预补偿,包括:
    在发送消息Msg1或者MsgA时,根据所述指示信息进行TA预补偿。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述指示信息进行TA预补偿,包括:
    若所述指示信息指示基于所述时延信息进行TA预补偿,则根据所述时延信息、终端设备的位置信息和星历信息进行TA预补偿;
    若所述指示信息指示不基于所述时延信息进行TA预补偿,则根据终端设备的位置信息和星历信息进行TA预补偿。
  7. 一种NTN网络中定时提前的预补偿方法,其特征在于,包括:
    发送馈电链路的时延信息;
    发送指示信息,所述指示信息用于指示是否基于所述时延信息进行TA预补偿。
  8. 根据权利要求7所述的方法,其特征在于,
    若终端设备的上行定时和下行定时对齐的参考点是网络设备,则所述指示信息指示基于所述时延信息进行TA预补偿;
    若所述终端设备的上行定时和下行定时对齐的参考点是卫星,则所述指示信息指示不基于所述时延信息进行TA预补偿。
  9. 根据权利要求7或8所述的方法,其特征在于,所述指示信息是针对服务小区内的所有终端设备指示的。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述指示信息携带在系统消息或者RRC专用信令中。
  11. 一种终端设备,其特征在于,包括:
    通信单元,用于接收馈电链路的时延信息以及指示信息,所述指示信息用于指示是否基于所述时延信息进行TA预补偿;
    处理单元,用于在随机接入过程中,根据所述指示信息进行TA预补偿。
  12. 根据权利要求11所述的终端设备,其特征在于,
    若终端设备的上行定时和下行定时对齐的参考点是网络设备,则所述指示信息指示基于所述时延信息进行TA预补偿;
    若所述终端设备的上行定时和下行定时对齐的参考点是卫星,则所述指示信息指示不基于所述时延信息进行TA预补偿。
  13. 根据权利要求11或12所述的终端设备,其特征在于,所述指示信息是针对服 务小区内的所有终端设备指示的。
  14. 根据权利要求11-13任一项所述的终端设备,其特征在于,所述指示信息携带在系统消息或者RRC专用信令中。
  15. 根据权利要求11-14任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    在发送Msg1或者MsgA时,根据所述指示信息进行TA预补偿。
  16. 根据权利要求11-15任一项所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述指示信息指示基于所述时延信息进行TA预补偿,则根据所述时延信息、终端设备的位置信息和星历信息进行TA预补偿;
    若所述指示信息指示不基于所述时延信息进行TA预补偿,则根据终端设备的位置信息和星历信息进行TA预补偿。
  17. 一种网络设备,其特征在于,包括:
    通信单元,用于发送馈电链路的时延信息和指示信息,所述指示信息用于指示是否基于所述时延信息进行TA预补偿。
  18. 根据权利要求17所述的网络设备,其特征在于,
    若终端设备的上行定时和下行定时对齐的参考点是网络设备,则所述指示信息指示基于所述时延信息进行TA预补偿;
    若所述终端设备的上行定时和下行定时对齐的参考点是卫星,则所述指示信息指示不基于所述时延信息进行TA预补偿。
  19. 根据权利要求17或18所述的网络设备,其特征在于,所述指示信息是针对服务小区内的所有终端设备指示的。
  20. 根据权利要求17-19任一项所述的网络设备,其特征在于,所述指示信息携带在系统消息或者RRC专用信令中。
  21. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至6中任一项所述的方法。
  22. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求7至10中任一项所述的方法。
  23. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至6中任一项所述的方法。
  24. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求7至10中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至6中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求7至10中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至6中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求7至10中任一项所述的方法。
  29. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至6中任一项所述的方法。
  30. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求7至10中任一项所述的方法。
PCT/CN2020/135930 2020-12-11 2020-12-11 Ntn网络中定时提前的预补偿方法、终端设备和网络设备 WO2022120842A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105219.1A CN116261909A (zh) 2020-12-11 2020-12-11 Ntn网络中定时提前的预补偿方法、终端设备和网络设备
PCT/CN2020/135930 WO2022120842A1 (zh) 2020-12-11 2020-12-11 Ntn网络中定时提前的预补偿方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135930 WO2022120842A1 (zh) 2020-12-11 2020-12-11 Ntn网络中定时提前的预补偿方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022120842A1 true WO2022120842A1 (zh) 2022-06-16

Family

ID=81974149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135930 WO2022120842A1 (zh) 2020-12-11 2020-12-11 Ntn网络中定时提前的预补偿方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN116261909A (zh)
WO (1) WO2022120842A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180097679A1 (en) * 2016-09-30 2018-04-05 Huawei Technologies Co., Ltd. Timing Adjustment Free Solution to Uplink Synchronous Operations
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法
CN111800852A (zh) * 2019-04-08 2020-10-20 电信科学技术研究院有限公司 一种时延补偿及其控制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111770552B (zh) * 2016-12-23 2022-10-28 展讯通信(上海)有限公司 卫星通信中的小区接入方法及装置
US11552700B2 (en) * 2019-03-11 2023-01-10 Mediatek Inc. Uplink transmission timing for non-terrestrial networks
WO2020191781A1 (zh) * 2019-03-28 2020-10-01 华为技术有限公司 一种数据传输方法及装置
CN111800851B (zh) * 2019-04-08 2022-12-09 大唐移动通信设备有限公司 一种时延补偿方法及装置
WO2020210963A1 (zh) * 2019-04-15 2020-10-22 Oppo广东移动通信有限公司 消息传输的方法和设备
CN111953396B (zh) * 2019-05-17 2023-12-29 中兴通讯股份有限公司 一种传输配置方法、装置、通信节点和通信设备
CN111447672B (zh) * 2020-03-10 2022-04-22 中国信息通信研究院 一种定时提前量指示方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180097679A1 (en) * 2016-09-30 2018-04-05 Huawei Technologies Co., Ltd. Timing Adjustment Free Solution to Uplink Synchronous Operations
CN111565472A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种确定定时提前量的方法及设备
CN111800852A (zh) * 2019-04-08 2020-10-20 电信科学技术研究院有限公司 一种时延补偿及其控制方法及装置
CN111770565A (zh) * 2020-06-23 2020-10-13 中国科学院上海微系统与信息技术研究所 一种非地面网络的定时提前调整方法

Also Published As

Publication number Publication date
CN116261909A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN114222374A (zh) 一种通信方法及装置
US20220159732A1 (en) Random access method and device
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20220394650A1 (en) Information transmission method, terminal device and network device
WO2021128309A1 (zh) 随机接入的方法和终端设备
US20230337289A1 (en) Wireless communication method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2022067519A1 (zh) 随机接入方法和终端设备
WO2022027238A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022067547A1 (zh) 无线通信方法、终端设备和网络设备
WO2022056854A1 (zh) 无线通信方法和设备
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2022183406A1 (zh) 传输数据信道的方法、终端设备和网络设备
WO2022099634A1 (zh) 无线通信方法、终端设备和网络设备
JP2023519396A (ja) 端末デバイスによって実行される方法、及び端末デバイス
WO2023108454A1 (zh) 上行同步中的定时提前量维持方法、终端设备和网络设备
WO2022126520A1 (zh) 无线通信方法、终端设备和网络设备
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2023133885A1 (zh) 无线通信的方法和终端设备
WO2023019409A1 (zh) 信息指示方法、终端设备、网络设备、芯片和存储介质
WO2024119317A1 (zh) 无线通信的方法和终端设备
WO2024040598A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964778

Country of ref document: EP

Kind code of ref document: A1