WO2022205015A1 - 一种同步方法及装置、终端设备、网络设备 - Google Patents

一种同步方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2022205015A1
WO2022205015A1 PCT/CN2021/084168 CN2021084168W WO2022205015A1 WO 2022205015 A1 WO2022205015 A1 WO 2022205015A1 CN 2021084168 W CN2021084168 W CN 2021084168W WO 2022205015 A1 WO2022205015 A1 WO 2022205015A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
terminal device
information
signal
physical channel
Prior art date
Application number
PCT/CN2021/084168
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/084168 priority Critical patent/WO2022205015A1/zh
Priority to CN202180096634.XA priority patent/CN117136576A/zh
Priority to EP21933695.5A priority patent/EP4319246A4/en
Publication of WO2022205015A1 publication Critical patent/WO2022205015A1/zh
Priority to US18/371,385 priority patent/US20240031960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a synchronization method and apparatus, terminal equipment, and network equipment.
  • the terminal device and the network device Before transmitting channels or signals between the terminal device and the network device, the terminal device and the network device need to obtain time-frequency synchronization. However, in the continuous transmission process, due to the long transmission time of the channel or signal, the time-frequency synchronization between the terminal device and the network device may become invalid. How to re-acquire the time-frequency synchronization between the terminal device and the network device is a waiting solved problem.
  • Embodiments of the present application provide a synchronization method and apparatus, terminal equipment, and network equipment.
  • the terminal device determines a first time interval, where the first time interval is used for the terminal device to acquire synchronization information
  • the terminal device acquires the synchronization information based on the first time interval, where the synchronization information is used to transmit a first physical channel or signal.
  • the network device sends configuration information of a first time interval to the terminal device, where the first time interval is used by the terminal device to acquire synchronization information, and the synchronization information is used by the terminal device to transmit the first physical channel or signal.
  • the synchronization apparatus provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a determining unit configured to determine a first time interval, where the first time interval is used for the terminal device to acquire synchronization information
  • an acquiring unit configured to acquire the synchronization information based on the first time interval, where the synchronization information is used to transmit a first physical channel or signal.
  • the synchronization apparatus provided by the embodiment of the present application is applied to network equipment, and the apparatus includes:
  • a sending unit configured to send configuration information of a first time interval to a terminal device, where the first time interval is used by the terminal device to obtain synchronization information, and the synchronization information is used by the terminal device to transmit a first physical channel or signal .
  • the terminal device provided in the embodiment of the present application may be the first device in the foregoing solution or the second device in the foregoing solution, and the communication device includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the above synchronization method.
  • the network device provided by the embodiment of the present application may be the first device in the foregoing solution or the second device in the foregoing solution, and the communication device includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the above synchronization method.
  • the chip provided by the embodiment of the present application is used to implement the above synchronization method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device on which the chip is installed executes the above synchronization method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above synchronization method.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above synchronization method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above synchronization method.
  • the terminal device determines the first time interval, acquires synchronization information within the first time interval, and transmits the first physical channel or signal by using the synchronization information.
  • the technical solutions of the embodiments of the present application can at least solve the problem of how to re-synchronize the terminal device and the network device during the continuous transmission process.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an NTN scenario based on a transparent transmission and forwarding satellite provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of an NTN scenario based on a regeneration and forwarding satellite provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram 1 of a timing relationship of an NTN system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram 2 of a timing relationship of an NTN system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between GWUS and PO provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a synchronization method provided by an embodiment of the present application.
  • FIG. 11-1 is a schematic diagram 1 of a relationship between a first time interval and a first physical channel or signal provided by an embodiment of the present application;
  • 11-2 is a second schematic diagram of the relationship between the first time interval and the first physical channel or signal provided by the embodiment of the present application;
  • 11-3 is a schematic diagram 3 of the relationship between the first time interval and the first physical channel or signal provided by the embodiment of the present application;
  • 12-1 is a schematic diagram 1 of time domain resources in a first time interval provided by an embodiment of the present application
  • 12-2 is a second schematic diagram of time domain resources in a first time interval provided by an embodiment of the present application.
  • 12-3 is a schematic diagram 3 of time domain resources in a first time interval provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a first time interval of application example 1 provided by an embodiment of the present application.
  • 14-1 is a schematic diagram 1 of the first time interval of the second application example provided by the embodiment of the present application.
  • 14-2 is a schematic diagram 2 of the first time interval of the second application example provided by the embodiment of the present application.
  • FIG. 15-1 is a schematic diagram 1 of a first time interval of application example 3 provided by an embodiment of the present application.
  • FIG. 15-2 is a schematic diagram 2 of the first time interval of the third application example provided by the embodiment of the present application.
  • 15-3 is a schematic diagram of a first time interval of Application Example 4 provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram 1 of a synchronization device provided by an embodiment of the present application.
  • 17 is a second schematic diagram of the structural composition of the synchronization device provided by the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System (UMTS), Internet of Things (IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication system, etc.
  • LTE Long Term Evolution
  • LTE time division duplex Time Division Duplex
  • UMTS Universal mobile communication system
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • UE user equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, an IoT device, a satellite handset, a Wireless Local Loop (WLL) station, a Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • IoT device a satellite handset
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • NTN non-terrestrial communication network equipment
  • NTN generally uses satellite communication to provide communication services to terrestrial users.
  • satellite communication has many unique advantages.
  • satellite communication is not limited by the user's geographical area.
  • general terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. where communication equipment cannot be set up or cannot be covered due to sparse population.
  • satellite communication due to a single Satellites can cover a large ground, and satellites can orbit around the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has great social value.
  • Satellite communications can be covered at low cost in remote mountainous areas and poor and backward countries or regions, so that people in these regions can enjoy advanced voice communication and mobile Internet technologies, which is conducive to narrowing the digital divide with developed regions and promoting development in these areas.
  • the satellite communication distance is long, and the communication cost does not increase significantly when the communication distance increases; finally, the satellite communication has high stability and is not limited by natural disasters.
  • NTN technology can be combined with various communication systems.
  • NTN technology can be combined with NR system as NR-NTN system.
  • the NTN technology can be combined with an Internet of Things (Internet of Things, IoT) system to form an IoT-NTN system.
  • IoT Internet of Things
  • the IoT-NTN system may include an NB-IoT-NTN system and an eMTC-NTN system.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • a terminal device 1101 and a satellite 1102 are included, and wireless communication can be performed between the terminal device 1101 and the satellite 1102 .
  • the network formed between the terminal device 1101 and the satellite 1102 may also be referred to as NTN.
  • the satellite 1102 can function as a base station, and the terminal device 1101 and the satellite 1102 can communicate directly. Under the system architecture, satellite 1102 may be referred to as a network device.
  • the communication system may include multiple network devices 1102, and the coverage of each network device 1102 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • the terminal device 1201 and the satellite 1202 can communicate wirelessly, and the satellite 1202 and the base station 1203 can communicate.
  • the network formed between the terminal device 1201, the satellite 1202 and the base station 1203 may also be referred to as NTN.
  • the satellite 1202 may not have the function of the base station, and the communication between the terminal device 1201 and the base station 1203 needs to be relayed through the satellite 1202 .
  • the base station 1203 may be referred to as a network device.
  • the communication system may include multiple network devices 1203, and the coverage of each network device 1203 may include other numbers of terminal devices, which are not limited in this embodiment of the present application.
  • the network device 1203 may be the network device 120 in FIG. 1 .
  • satellite 1102 or satellite 1202 includes but is not limited to:
  • Satellites can use multiple beams to cover the ground. For example, a satellite can form dozens or even hundreds of beams to cover the ground. In other words, a satellite beam can cover a ground area with a diameter of tens to hundreds of kilometers to ensure satellite coverage and increase the system capacity of the entire satellite communication system.
  • the altitude range of LEO satellites can be 500 kilometers to 1500 kilometers, the corresponding orbital period can be about 1.5 hours to 2 hours, the signal propagation delay of single-hop communication between users can generally be less than 20 milliseconds, and the maximum satellite visibility time It can be 20 minutes.
  • the signal propagation distance of the LEO satellite is short and the link loss is small, and the transmit power requirements of the user terminal are not high.
  • the orbital altitude of GEO satellites can be 35786km, the rotation period around the earth can be 24 hours, and the signal propagation delay of single-hop communication between users can generally be 250 milliseconds.
  • satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. ground area.
  • FIG. 1 to FIG. 3 only illustrate systems to which the present application applies in the form of examples, and of course, the methods shown in the embodiments of the present application may also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is only an association relationship to describe the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and A and B exist independently B these three cases.
  • the character "/" in this document generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or may indicate and be indicated , configuration and configuration, etc.
  • predefined or “predefined rules” mentioned in the embodiments of the present application can be stored in devices (for example, including terminal devices and network devices) in advance by storing corresponding codes, forms, or other methods that can be used for It is implemented in a manner of indicating related information, and the present application does not limit its specific implementation manner.
  • predefined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, such as LTE protocol, NR protocol, and related protocols applied in future communication systems, which are not limited in this application. .
  • Satellites can be divided into two types: transparent payload and regenerative payload.
  • transparent transmission satellite only the functions of radio frequency filtering, frequency conversion and amplification are provided, and only the transparent transmission of the signal is provided, and the waveform signal transmitted by it will not be changed.
  • regenerative repeater satellite in addition to the functions of radio frequency filtering, frequency conversion and amplification, it can also provide the functions of demodulation/decoding, routing/conversion, coding/modulation, and it has some or all of the functions of the base station.
  • one or more gateways may be included for communication between satellites and terminals.
  • FIG. 4 and FIG. 5 respectively show schematic diagrams of NTN scenarios based on transparent-transmitting and re-transmitting satellites.
  • the gateway and the satellite communicate through the feeder link, and the satellite and the terminal can communicate through the service link (service link).
  • the communication between the satellite and the satellite is through InterStar link
  • the communication between the gateway and the satellite is through the feeder link (Feeder link)
  • the communication between the satellite and the terminal can communicate through a service link.
  • the propagation delay of signal communication is usually less than 1 millisecond.
  • the propagation delay of signal communication is very large, ranging from tens of milliseconds to hundreds of milliseconds, depending on the satellite orbit.
  • the altitude is related to the service type of satellite communication.
  • the timing relationship of the IoT-NTN system needs to be enhanced compared to the IoT system.
  • the terminal equipment needs to consider the influence of Timing Advance (TA) when performing uplink transmission. Since the propagation delay in the system is relatively large, the range of the TA value is relatively large.
  • the terminal device When the terminal device is scheduled to perform uplink transmission in subframe n, the terminal device considers the round-trip propagation delay and transmits in advance during uplink transmission, so that the signal can reach the network device side on the uplink subframe n on the network device side.
  • the timing relationship in the IoT-NTN system may include two cases, as shown in Figure 6 and Figure 7 below.
  • Case 1 As shown in FIG. 6 , the downlink subframe and the uplink subframe on the network device side are aligned. Correspondingly, in order to align the uplink transmission of the terminal device with the uplink subframe of the network device side when reaching the network device side, the terminal device needs to use a larger TA value.
  • the TA value corresponds to the timing offset value Koffset. In other cases, the round trip transmission time (RTT) of the terminal device corresponds to the timing offset value Koffset.
  • Case 2 As shown in FIG. 7 , there is an offset value between the downlink subframe and the uplink subframe on the network device side. In this case, if it wants to align the uplink transmission of the terminal device with the uplink subframe on the network device side when it reaches the network device side, the terminal device only needs to use a smaller TA value. In some cases, the TA value corresponds to the timing offset value Koffset.
  • the terminal equipment includes a narrowband low complexity (Bandwidth reduced Low complexity, BL)/Coverage Enhancement (Coverage Enhancement, CE) terminal equipment.
  • BL/CE terminal equipment includes two modes: CEModeA and CEModeB.
  • the CEModeA mode supports coverage enhancement levels (coverage enhancement levels) 0 and 1
  • the CEModeB mode supports coverage enhancement levels 2 and 3.
  • Coverage enhancement level 0 corresponds to the scene with the best signal strength
  • coverage enhancement level 3 corresponds to the scene with the worst signal strength.
  • the bandwidth received and transmitted by the BL/CE terminal equipment is narrowband, and as an example, it includes 6 consecutive RBs in the LTE cell bandwidth. If the bandwidth of the LTE cell is greater than 6 RBs, the bandwidth of the LTE cell may include multiple narrowbands. Each narrowband corresponds to a narrowband number.
  • the Physical Random Access Channel can support up to 128 repeated transmissions; for CEModeA, the Physical Uplink Shared Channel (PUSCH) can support up to 128 repeated transmissions. 32 repeated transmissions, for CEModeB, PUSCH can support up to 2048 repeated transmissions.
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • network equipment can provide services for stationary terminal equipment, and can also provide services for terminal equipment with a certain moving speed.
  • the Doppler spread due to the moving speed of the terminal device may be 200 Hz (eg, approximately 240 km/h at 1 MHz, and approximately 120 km/h at 2 MHz).
  • the eMTC system also supports a dense positioning reference signal (Positioning Reference Signals, PRS) configuration, and a new time interval pattern corresponding to the dense PRS configuration.
  • PRS dense positioning reference signal
  • the eMTC system supports the following features:
  • EARFCN E-UTRA Absolute Radio Frequency Channel Number
  • the terminal device when the terminal device needs to re-acquire time-frequency synchronization, the terminal device can do it through the resynchronization signal (Resynchronization Signal, RSS) instead of the PSS/SSS signal, thereby saving time and power consumption.
  • RSS resynchronization Signal
  • CGI Cell Global Identity
  • N represents the valid time of the system message.
  • N is 3 or 24 hours. That is to say, the terminal device does not need to frequently acquire the SIB1 message, thereby saving time and power consumption.
  • the system message update indication is also copied in the RSS, that is, the terminal device may not need to acquire MIB messages frequently.
  • the terminal device can use the uplink resources preconfigured by the network device to perform PUSCH transmission in the idle state without completing the random access procedure.
  • the terminal device can request to be configured with PUR or request to release the PUR configuration.
  • the network device may configure the PUR for the end device based on the end device's request, the end device's registration information, and/or local policies. PUR takes effect only in the cell that has received the cell's PUR configuration.
  • PUR transmission can be triggered.
  • the terminal device may detect within the PUR search space window that the PUR-Radio Network Tempory Identity (RNTI) scrambled MTC physical downlink control channel (MTC Physical Downlink Control Channel, MPDCCH) carries positive acknowledgment (Acknowledgement, ACK) or fallback mode indication information.
  • RNTI PUR-Radio Network Tempory Identity
  • MPDCCH MTC Physical Downlink Control Channel
  • ACK positive acknowledgment
  • the terminal device should start from subframe n+4 to detect MPDCCH within the PUR-MPDCCH search window, and detect the MPDCCH within the PUR-MPDCCH search window from subframe n+4.
  • the detection of the MPDCCH is stopped in the PUR-MPDCCH search window, wherein the length of the PUR-MPDCCH search window is configured by high-level parameters.
  • the eMTC system also supports the following functions:
  • a terminal device in an idle state can detect MPDCCH through WUS detection.
  • the terminal device is configured with extended discontinuous reception (extended Discontinuous Reception, eDRX) in the idle state
  • the DRX cycle can be up to 10.24 seconds, and the maximum value is 2621.44 seconds (43.69 minutes).
  • the power consumption of paging detection can be reduced.
  • the terminal device only detects WUS or GWUS in the cell that was used last time.
  • the WUS or GWU is used to indicate that the terminal equipment should receive the MPDCCH paging message in this cell.
  • the WUS or GWUS can be associated with one or more paging occasions (Paging Occasion, PO) in a paging time window (Paging Time Window, PTW). If a terminal device detects WUS or a WUS group, the terminal device shall detect the next N POs, N ⁇ 1, until the terminal device receives a paging message.
  • the time relationship between WUS and PO is shown in FIG. 8
  • the time relationship between GWUS and PO is shown in FIG. 9 .
  • the terminal device can expect repeated WUS transmission within the configured maximum WUS length (Configured maximum WUS duration), but the actual transmitted WUS may be shorter. During a non-zero interval (Gap), the terminal device does not detect WUS.
  • EDT Early Data Transmission
  • HARQ-ACK Hybrid Automatic Repeat-reQuest Acknowledgement
  • the terminal equipment can reduce neighbor cell measurements under the condition that the relaxed detection criterion is satisfied. For example, neighborhood measurements are only performed every 24 hours.
  • an access prohibition mechanism based on coverage enhancement level is also introduced into the eMTC system. For example, if a terminal device of a certain coverage enhancement level is designated to be prohibited from accessing, all terminal devices higher than or equal to the coverage enhancement level are prohibited from accessing.
  • the network device needs to send synchronization assistance information, such as ephemeris information of the serving satellite, to the terminal device, so that the terminal device can complete time domain and/or frequency domain synchronization.
  • the terminal device needs to acquire the synchronization assistance information sent by the network device, and at the same time complete the corresponding time domain and/or frequency domain synchronization according to its own GNSS capability.
  • the terminal device Since the range of TA values in the IoT-NTN system may be very large, in the random access process, before sending the random access preamble sequence, the terminal device needs to perform TA pre-compensation according to the estimated TA information before performing PRACH sequence sending.
  • the terminal device When the terminal device is in an idle state, if the terminal device receives a paging message or receives a WUS, the terminal device needs to perform time-frequency synchronization after receiving the paging message or WUS, and then perform transmission, such as initiating random access. process.
  • the terminal equipment in the IoT-NTN system it usually does not have the ability to use the GNSS capability and transmit and receive in the IoT-NTN system at the same time.
  • the GNSS capability of the terminal device is realized through the GNSS module, and the ability of the terminal device to send and receive in the IoT-NTN system is realized through the IoT-NTN system working module.
  • the terminal device When the terminal device is in an idle state, if the terminal device receives a paging message or receives a WUS, the terminal device needs to perform time-frequency synchronization after receiving the paging message or WUS; or, the terminal device needs to perform time-frequency synchronization in advance. Synchronization for paging message or WUS reception.
  • the terminal device may need to start the GNSS module to locate the position of the terminal device, for example, to complete the GNSS first fix time (Time To First Fix, TTFF), and then switch from the GNSS module to the IoT-NTN system working module, through IoT-NTN
  • the system working module receives the NTN-SIB, and then obtains the ephemeris information of the serving satellite from the NTN-SIB.
  • a GNSS TTFF usually takes 1 second (warm start if the GNSS ephemeris information corresponding to the last TTFF was obtained within 4 hours) or less than 5 seconds (warm start if the GNSS almanac information corresponding to the last TTFF was obtained within 180 days) )time.
  • How to trigger GNSS search in IoT-NTN system is an open problem.
  • PRACH can support up to 128 repeated transmissions; for CEModeA, PUSCH can support up to 32 repeated transmissions, and for CEModeB, PUSCH can support up to 2048 repeated transmissions.
  • the timing offset in an RTT of length 28.4 ms is about 0.71 microseconds, and in a length of 256 milliseconds, the total timing offset is about 6.4 microseconds, The length of the cyclic prefix of the PUSCH is exceeded.
  • the Doppler shift change is 544 Hz/sec.
  • the transmission time of the uplink channel is relatively long, for example, when the time length of continuous transmission is greater than 256 milliseconds, in the NTN system, the changes of timing offset and Doppler offset are larger. Therefore, in the IoT-NTN system, in the process of continuous uplink channel transmission, how to resynchronize the uplink transmission is also a problem to be solved. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 10 is a schematic flowchart of a synchronization method provided by an embodiment of the present application. As shown in FIG. 10 , the synchronization method includes the following steps:
  • Step 1001 The terminal device determines a first time interval, where the first time interval is used for the terminal device to acquire synchronization information.
  • Step 1002 The terminal device acquires the synchronization information based on the first time interval, where the synchronization information is used to transmit a first physical channel or signal.
  • the terminal device determining the first time interval includes: the terminal device determining at least one of a length of the first time interval, a start position of the first time interval, and an end position of the first time interval.
  • the length of the first time interval is determined by:
  • the length of the first time interval is predefined; or,
  • the length of the first time interval is determined according to a predefined rule.
  • the length of the first time interval is obtained according to the configuration information of the network device.
  • the starting position of the first time interval is determined by:
  • the starting position of the first time interval is predefined; or,
  • the starting position of the first time interval is determined according to a predefined rule.
  • the starting position of the first time interval is obtained according to the configuration information of the network device.
  • the end position of the first time interval is determined by:
  • the end position of the first time interval is predefined; or,
  • the end position of the first time interval is determined according to a predefined rule.
  • the end position of the first time interval is obtained according to the configuration information of the network device.
  • the network device sends configuration information of a first time interval to a terminal device, where the first time interval is used for the terminal device to acquire synchronization information, and the synchronization information is used for the The terminal device transmits the first physical channel or signal.
  • the configuration information of the first time interval includes at least one of the following: the length of the first time interval; the start position of the first time interval; the end position of the first time interval .
  • the configuration information of the network device in the above scheme is transmitted by at least one of the following information: system messages, paging messages, WUS, RRC signaling, MAC CE and DCI.
  • the first time interval is determined according to a first offset value and/or a second offset value, wherein the first offset value is used to determine the start of the first time interval The distance between the start position and the first physical channel or signal, and the second offset value is used to determine the distance between the end position of the first time interval and the first physical channel or signal.
  • the first offset value is predefined or determined according to a predefined rule; and/or the second offset value is predefined or determined according to a predefined rule.
  • the network device sends configuration information of the first time interval to the terminal device, where the configuration information of the first time interval includes the first offset value and/or the second offset value, wherein, the first offset value is used to determine the distance between the start position of the first time interval and the first physical channel or signal, and the second offset value is used to determine the first The distance between the end position of the time interval and the first physical channel or signal.
  • the first time interval is located before the first physical channel or signal in the time domain, and the first offset value is used to determine the starting position of the first time interval and the distance between the starting positions of the first physical channel or signal; or, the first time interval is located after the first physical channel or signal in the time domain, and the first offset value is used to determine the The distance between the end position of the first physical channel or signal and the start position of the first time interval.
  • the first time interval is located before the first physical channel or signal in the time domain, and the second offset value is used to determine the end position of the first time interval and the first time interval.
  • the distance between the starting positions of a physical channel or signal; or, the first time interval is located after the first physical channel or signal in the time domain, and the second offset value is used to determine the first time interval. The distance between the end position of a physical channel or signal and the end position of the first time interval.
  • the length of the first time interval is different under different circumstances; and/or the purpose of the first time interval is different under different circumstances. For example, the length of the first time interval for downlink synchronization and the length of the first time interval for uplink synchronization are different.
  • the length of the first time interval is greater than 40 milliseconds.
  • the first time interval is located before the first physical channel or signal in the time domain, and the first offset value is used to determine the starting position of the first time interval and the first physical channel or signal.
  • the distance between the start positions, and the second offset value is used to determine the distance between the end position of the first time interval and the start position of the first physical channel or signal.
  • the first time interval is located after the first physical channel or signal in the time domain, and the first offset value is used to determine the end position of the first physical channel or signal and the start of the first time interval
  • the second offset value is used to determine the distance between the end position of the first physical channel or signal and the end position of the first time interval.
  • the first time interval has a first association relationship with the first physical channel or signal, wherein the first association relationship is through system messages, paging messages, WUS, RRC signaling, MAC At least one of CE and DCI is obtained; or, the first association relationship is predefined or obtained according to a predefined rule.
  • the first association relationship is predefined or obtained according to predefined rules, including:
  • the first time interval precedes the first physical channel or signal in the time domain;
  • the first time interval is located after the first physical channel or signal in the time domain;
  • the first time interval is located in the middle of the first physical channel or signal in the time domain.
  • the first time interval is located before the first physical channel or signal in the time domain, or the first time interval The time interval is used for uplink synchronization.
  • the first time interval is located before the first physical channel or signal in the time domain, or the first The time interval is used for downstream synchronization.
  • the first time interval is located after the first physical channel or signal in the time domain, or the first time interval is The time interval is used for uplink synchronization of subsequent uplink transmissions.
  • one or more first time intervals are distributed among the first physical channels or signals.
  • the network device sends third information, where the third information is used to determine the first association relationship, and the third information is carried in at least one of the following messages: System messages, paging messages, wake-up signals, RRC signaling, MAC CE, DCI.
  • the first time interval has a second association relationship with second information
  • the second information includes at least one of the following: satellite scene, terminal device capability, and coverage enhancement level.
  • the second association relationship is obtained through at least one of system messages, paging messages, wake-up signals, RRC signaling, MAC CE and DCI; or, the second association relationship is predefined or obtained according to predefined rules.
  • the second information includes satellite scenarios
  • the second association relationship includes:
  • the length of the first time interval is determined according to the satellite scene; or,
  • the length of the first time interval is configured by the network device according to the satellite scenario.
  • the length of the first time interval is L1
  • the first time interval is L2
  • the value of L1 is greater than the value of L2.
  • the second information includes terminal device capabilities
  • the second association relationship includes:
  • the length of the first time interval is determined according to the capability of the terminal device; or,
  • the length of the first time interval is configured by the network device according to the capability of the terminal device.
  • the terminal device determines the first time interval according to the capabilities of the terminal device supported by itself. For example, the terminal device supports the first coverage enhancement level, and the terminal device determines that the length of the first time interval is L1; or, the terminal device supports the second coverage enhancement level, and the terminal device determines the length of the first time interval to be L2. For example, the terminal device supports the CEModeA mode, and the terminal device determines that the length of the first time interval is L1; or, the terminal device supports the CEModeB mode, and the terminal device determines that the length of the first time interval is L2.
  • the network device configures the length of the first time interval according to the capability of the terminal device.
  • the terminal device reports the terminal device capabilities supported by itself to the network device. For example: if the terminal device capability supports the first coverage enhancement level, the network device configures the first time interval within the range of the first time interval configuration; if the terminal device capability supports the second coverage enhancement level, the network device configures the second time interval Configure the first time interval in the range. For example: if the terminal device capability supports the CEModeA mode, the network device configures the first time interval within the first time interval configuration range; if the terminal device capability supports the CEModeB mode, the network device configures the first time interval within the second time interval configuration range interval.
  • the second information includes a coverage enhancement level
  • the second association includes:
  • the length of the first time interval is determined according to the coverage enhancement level corresponding to the terminal device; or,
  • the length of the first time interval is configured by the network device according to the coverage enhancement level.
  • the terminal device determines the first time interval according to its corresponding coverage enhancement level. For example, the terminal device corresponds to the first coverage enhancement level, and the terminal device determines that the length of the first time interval is L1; or, the terminal device corresponds to the second coverage enhancement level, and the terminal device determines the length of the first time interval to be L2.
  • the network device configures the length of the first time interval according to the coverage enhancement level corresponding to the terminal device. For example: if the terminal device corresponds to the first coverage enhancement level, the network device configures the first time interval within the first time interval configuration range; if the terminal device corresponds to the second coverage enhancement level, the network device configures the second time interval configuration range Configure the first time interval.
  • the network device sends fourth information, the fourth information is used to determine the second association relationship, and the fourth information is carried in at least one of the following messages: System messages, paging messages, wake-up signals, RRC signaling, MAC CE, DCI.
  • the first time interval is used for the terminal device to acquire synchronization information.
  • the synchronization information includes at least one of the following: uplink timing synchronization, uplink frequency offset synchronization, downlink timing synchronization, and downlink frequency offset synchronization.
  • uplink timing synchronization is used for terminal equipment to achieve uplink time domain synchronization
  • uplink frequency offset synchronization is used for terminal equipment to achieve uplink frequency domain synchronization
  • downlink timing synchronization is used for terminal equipment to achieve downlink time domain synchronization
  • downlink frequency offset synchronization is used for terminal equipment Realize downlink frequency domain synchronization.
  • the terminal device performs uplink frequency domain and/or uplink time domain synchronization based on uplink timing synchronization and/or uplink frequency offset synchronization. It is understood from another aspect that the terminal device transmits the first physical channel or signal based on uplink timing synchronization and/or uplink frequency offset synchronization.
  • the terminal device performs downlink frequency domain and/or downlink time domain synchronization based on downlink timing synchronization and/or downlink frequency offset synchronization. It is understood from another aspect that the terminal device receives the first physical channel or signal based on downlink timing synchronization and/or downlink frequency offset synchronization.
  • the synchronization information is acquired by the positioning module and/or the communication module of the terminal device.
  • the terminal device has a positioning module and/or a communication module.
  • the positioning module and the communication module of the terminal device cannot work at the same time.
  • the positioning module of the terminal device includes a GNSS module.
  • the communication module of the terminal device is used to implement the communication function of the terminal device in the mobile communication system.
  • the mobile communication system may be, but not limited to, the IoT-NTN system.
  • the synchronization information is obtained based on first information, and the first information includes at least one of the following: timing information, timing change information, frequency offset information, frequency offset change information, location information, and ephemeris information .
  • the timing information includes common timing information.
  • the timing change information includes common timing change information.
  • the frequency offset information includes common frequency offset information.
  • the frequency offset change information includes common frequency offset change information.
  • the location information includes location information of the terminal device and/or location information of a network device.
  • the ephemeris information includes ephemeris information of serving satellites and/or ephemeris information of non-serving satellites; wherein the ephemeris information includes position information of satellites and/or speed information of satellites.
  • the positioning module of the terminal device is configured to obtain the first information through a positioning search (eg, GNSS search) function.
  • a positioning search eg, GNSS search
  • the positioning module of the terminal device is configured to acquire at least one of the following information in the first information: location information of the terminal device and ephemeris information of a non-serving satellite.
  • the communication module of the terminal device is configured to acquire system messages and/or downlink reference signals, where the system messages and/or downlink reference signals carry the first information.
  • the system message and/or the downlink reference signal carry at least one of the following information in the first information: common timing information, common timing change information, common frequency offset information, common frequency offset change information, Location information, ephemeris information of serving satellites.
  • the terminal device obtains information such as the location of the terminal device based on its Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • the terminal device can calculate timing and frequency offset based on the information obtained by GNSS and the synchronization assistance information indicated by the network device (such as the ephemeris information of the serving satellite), and apply timing advance compensation or compensation in idle state or inactive state or connected state. Frequency offset adjustment.
  • network devices may broadcast a common timing offset value.
  • the terminal device estimates a UE-specific TA (UE-specific TA) based on the location of the terminal device obtained by GNSS and the ephemeris information of the serving satellite indicated by the network device.
  • UE-specific TA UE-specific TA
  • the terminal device estimates the UE-specific TA based on the reference time obtained by GNSS and the reference time indicated by the network device.
  • the terminal device in the idle state or the inactive state can calculate the TA value according to the following formula:
  • TA (N TA,UE-specific +N TA,offset +N TA,common )*Ts.
  • N TA, UE-specific can be the UE-specific TA value estimated by the terminal equipment itself, and N TA, offset is the same as the existing protocol, for example, it is determined according to the network deployment frequency band and the coexistence of LTE or NR, or is predefined or is indicated by the network device or set to 0, N TA,common is determined according to the timing information and/or the timing change information, and Ts represents the sampling time interval unit.
  • Ts 1/(15*1000*2048).
  • N TA,common is a preset value or N TA,common is 0.
  • the TA value can be calculated according to the following formula:
  • TA (N TA +N TA,UE-specific +N TA,common +N TA,offset )*Ts
  • N TA, UE-specific can be the TA value estimated by the terminal equipment itself, N TA, offset is the same as the existing protocol, for example, it is determined according to the network deployment frequency band and the coexistence of LTE or NR, or it is predefined or the network Indicated by the device or set to 0, N TA may be the TA value indicated by the network device through a random access response (Random Access Response, RAR) or a timing advance command MAC CE, and N TA, common is based on the timing information and/or Determined by the timing change information, Ts represents the sampling time interval unit.
  • RAR Random Access Response
  • Ts represents the sampling time interval unit.
  • Ts 1/(15*1000*2048).
  • N TA,common is a preset value or N TA,common is 0.
  • the terminal equipment needs to jointly estimate the TA value N TA and Update TA.
  • the first physical channel or signal includes an uplink physical channel or an uplink reference signal, and the synchronization information is used to transmit the first physical channel or signal.
  • the first physical channel or signal includes at least one of the following: a physical random access channel (Physical Random Access Channel, PRACH), a message 3 (Msg3) in a random access process, and a physical uplink shared channel (Physical Uplink). Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH), Early Data Transmission (EDT), and transmission based on Preconfigured Uplink Resource (PUR).
  • PRACH Physical Random Access Channel
  • Msg3 message 3
  • PUCCH Physical Uplink Control Channel
  • EDT Early Data Transmission
  • PUR Preconfigured Uplink Resource
  • the first physical channel or signal further includes a message A (MsgA) in the random access procedure, where the MsgA includes the MsgA PRACH and the MsgA PUSCH.
  • the first physical channel or signal includes a downlink physical channel or a downlink reference signal
  • the synchronization information is used to receive the first physical channel or signal.
  • the first physical channel or signal includes at least one of the following: a wake-up signal (Wake-Up Signal, WUS), a paging-radio network temporary identity (Paging-Radio Network Tempory Identity, P-RNTI) scrambled Physical Downlink Control Channel (PDCCH), paging message, synchronization signal, system message.
  • the system message includes MIB and/or SIB.
  • the SIB includes an NTN system-specific SIB (NTN-SIB).
  • the synchronization information includes a TA value corresponding to uplink timing synchronization of the terminal device; the terminal device performs TA adjustment based on the first time interval and the TA value.
  • the time domain resources in the first time interval satisfy at least one of the following characteristics:
  • At least part of the time domain resources in the first time interval are not used for the communication module of the terminal device to send and receive;
  • At least part of the time domain resources in the first time interval is used for searching by the positioning module of the terminal device;
  • At least part of the time domain resources in the first time interval are used for the communication module of the terminal device to receive system messages and/or downlink reference signals sent by the network device;
  • At least part of the time domain resources in the first time interval are used for the terminal device to perform TA adjustment.
  • the time domain resource 1 in the first time interval is used for searching by the positioning module of the terminal device, and the time domain resource 1 in the first time interval is not used for transmitting and receiving by the communication module of the terminal device.
  • time domain resource 1 is used for searching by the positioning module of the terminal device
  • time domain resource 2 in the first time interval is used for the communication module of the terminal device to receive the system sent by the network device. messages and/or downlink reference signals.
  • the time domain resource 1 in the first time interval is used for the communication module of the terminal device to receive the system message and/or the downlink reference signal sent by the network device
  • the time domain resource 2 in the first time interval is used for the positioning module of the terminal device to search .
  • the positioning module and the communication module of the terminal device cannot work at the same time, and the time domain resource 1 corresponding to the positioning module and the time domain resource 2 corresponding to the communication module cannot overlap. It should be pointed out that since it takes a certain time for the terminal device to perform the handover between the positioning module and the communication module, there may be a small interval between the time domain resource 1 and the time domain resource 2 .
  • the time domain resource 0 in the first time interval is used by the terminal device to obtain the first information, and determine the synchronization information based on the first information, for example, the TA value corresponding to the uplink timing synchronization.
  • the time domain resource 0 is used for the terminal device to obtain the first information, including: the time domain resource 0 is used for the positioning module of the terminal device to search and/or the communication module receives the system message and/or the downlink reference signal sent by the network device.
  • the first information is acquired from the search result and/or the system message and/or the downlink reference signal.
  • time domain resource 0 may include time domain resource 1 and time domain resource 2 in FIG. 12-2 .
  • the time domain resource 3 in the first time interval is used for the terminal device to perform TA adjustment based on the determined TA value. Further, after the first time interval, the terminal device may transmit the first physical channel or signal based on the adjusted TA.
  • the length of the first time interval satisfies at least one of the following characteristics:
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the TA value
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the maximum value of the TA value
  • the length of the first time interval is greater than or equal to the length corresponding to the round-trip transmission time between the terminal device and the network device.
  • the timing offset length is greater than or equal to the timing offset value Koffset.
  • the following describes how the terminal device acquires synchronization information based on its positioning module and/or communication module.
  • the terminal device acquires the synchronization information based on a first time domain resource in the first time interval and a positioning module of the terminal device, wherein the first time domain resource is the at least part of the time domain resources in the first time interval.
  • the first time domain resource is not used for sending and receiving by the communication module of the terminal device.
  • the terminal device searches the first time domain resources in the first time interval by using the positioning module, so as to obtain at least one of the following information in the first information: location information of the terminal device, ephemeris information of non-serving satellites .
  • the terminal device acquires the synchronization information based on a second time domain resource in the first time interval and a communication module of the terminal device, wherein the second time domain resource is the at least part of the time domain resources in the first time interval.
  • the terminal device receives the system message and/or the downlink reference signal by using the communication module on the second time domain resource in the first time interval, and obtains the following information in the first information from the system message and/or the downlink reference signal At least one kind of information: common timing information, common timing change information, common frequency offset information, common frequency offset change information, location information of network equipment, and ephemeris information of serving satellites.
  • the terminal device acquires the synchronization information based on a first time domain resource in the first time interval and a positioning module of the terminal device, and based on a second time in the first time interval domain resources and the communication module of the terminal device to obtain the synchronization information; wherein, the first time domain resources are at least part of the time domain resources in the first time interval, and the second time domain resources are the at least part of the time domain resources in the first time interval.
  • the first time domain resource and the second time domain resource do not overlap in time domain.
  • the terminal device searches the first time domain resources in the first time interval by using the positioning module, so as to obtain at least one of the following information in the first information: location information of the terminal device, ephemeris information of non-serving satellites .
  • the terminal device receives the system message and/or the downlink reference signal by using the communication module on the second time domain resource in the first time interval, and obtains at least one of the following first information from the system message and/or the downlink reference signal Information: public timing information, public timing change information, public frequency offset information, public frequency offset change information, location information of network equipment, ephemeris information of serving satellites.
  • the first time interval is a time interval after the first physical channel or signal. If the terminal device receives the paging message on the paging opportunity, the terminal device acquires synchronization information within the first time interval, and further, the terminal device performs time-frequency synchronization based on the synchronization information within the first time interval, such as TA adjustment. If the terminal device does not receive a paging message on the paging opportunity, the terminal device ignores the first time interval.
  • the first time interval is the time interval after the first physical channel or signal (as shown in Figure 14-1 shown) or the first time interval is the time interval between the WUS/GWUS and the paging message (as shown in Figure 14-2).
  • the second time interval is the time interval between the WUS/GWUS and the paging message (as shown in FIG. 8 or FIG. 9 ).
  • the first time interval and the second time interval may not overlap at all, or may at least partially overlap, which is not limited in this application.
  • the terminal device If the terminal device receives the WUS/GWUS, the terminal device acquires synchronization information within the first time interval, and further, the terminal device performs time-frequency synchronization based on the synchronization information within the first time interval, such as TA adjustment. If the terminal device does not receive WUS/GWUS, the terminal device ignores the first time interval.
  • End devices are configured with PUR.
  • the terminal device can use the uplink resource (ie, PUR) preconfigured by the network device to perform PUSCH transmission in the idle state without completing the random access procedure.
  • PUR uplink resource
  • the network device may configure the PUR for the end device based on the end device's request, the end device's registration information, and/or local policies. PUR takes effect only in the cell that has received the cell's PUR configuration.
  • the first time interval is located before the PUR in the time domain.
  • the terminal device should obtain the synchronization information within the first time interval, and further, the terminal device performs time-frequency synchronization based on the synchronization information within the first time interval , for example to make TA adjustments.
  • the terminal device may trigger a PUR-based transmission.
  • the duration of the PUR-based transmission is very long, one or more first time intervals also need to be separated in the middle of the uplink transmission to ensure that the terminal device performs time-frequency synchronization again.
  • the terminal device detects the PUR-RNTI scrambled downlink control channel such as MPDCCH within the PUR search space window (eg PUR-MPDCCH search window), if no downlink control channel is detected If the channel or the downlink control channel is detected to carry the fallback mode indication information, the terminal device performs time-frequency synchronization within the first time interval after the PUR search space window, and then performs uplink transmission.
  • the PUR-RNTI scrambled downlink control channel such as MPDCCH within the PUR search space window (eg PUR-MPDCCH search window)
  • the terminal device performs time-frequency synchronization within the first time interval after the PUR search space window, and then performs uplink transmission.
  • the terminal device detects the PUR-RNTI scrambled downlink control channel such as MPDCCH within the PUR search space window (eg PUR-MPDCCH search window). If the downlink control channel is detected Carrying ACK information, the terminal device can stop the detection of the downlink control channel.
  • the PUR-RNTI scrambled downlink control channel such as MPDCCH within the PUR search space window (eg PUR-MPDCCH search window).
  • the terminal device uses the PUR to perform the PUSCH transmission end subframe is subframe n, then the terminal device should start from subframe n+k to detect MPDCCH in the PUR search space window, as an example, the value of k is 4 or The value of k is 4+Koffset.
  • the terminal device is configured or scheduled for transmission of the first physical channel or signal, wherein the time domain resource occupied by the first physical channel or signal is very long.
  • the terminal device may include a plurality of first time intervals in the transmission process of the first physical channel or signal according to the pre-definition or the configuration of the network device.
  • the lengths of the plurality of first time intervals may be the same; or, the lengths of at least two of the lengths of the plurality of first time intervals may be different.
  • the length of time that the first physical channel or signal is continuously transmitted is less than 256 milliseconds.
  • the first physical channel or signal is the first physical uplink shared channel, where the length of the first physical uplink shared channel is 512 milliseconds, and it is assumed that according to a predefined rule, the first physical channel or signal is continuous
  • the length of the transmission is 128 milliseconds.
  • every 128 milliseconds of continuous transmission needs to include one first time interval, that is, four first time intervals in total. Different first time intervals may correspond to different terminal device behaviors.
  • the first and third first time intervals are used for uplink synchronization acquisition and TA adjustment, corresponding to the first length; the second and fourth first time intervals are used for TA adjustment, corresponding to the second length .
  • the first length is greater than the second length.
  • the technical solutions of the embodiments of the present application can solve the problem of how to re-synchronize between the terminal device and the network device during the continuous transmission of channels or signals.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • downlink indicates that the transmission direction of the signal or data is the transmission direction from the station
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site
  • sideline is used to indicate that the transmission direction of the signal or data is The third direction sent from user equipment 1 to user equipment 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term "and/or" is only an association relationship for describing associated objects, indicating that there may be three kinds of relationships. Specifically, A and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character "/" in this document generally indicates that the related objects are an "or" relationship.
  • FIG. 16 is a schematic structural diagram 1 of a synchronization apparatus provided by an embodiment of the present application, which is applied to a terminal device.
  • the synchronization apparatus includes:
  • a determining unit 1601 configured to determine a first time interval, where the first time interval is used for the terminal device to acquire synchronization information
  • the obtaining unit 1602 is configured to obtain the synchronization information based on the first time interval, where the synchronization information is used to transmit a first physical channel or signal.
  • the synchronization information includes at least one of the following:
  • Uplink timing synchronization Uplink frequency offset synchronization, downlink timing synchronization, downlink frequency offset synchronization.
  • the synchronization information is acquired by a positioning module and/or a communication module of the terminal device.
  • the synchronization information is obtained based on first information, and the first information includes at least one of the following:
  • Timing information timing change information, frequency offset information, frequency offset change information, location information, ephemeris information.
  • the timing information includes common timing information.
  • the timing change information includes common timing change information.
  • the frequency offset information includes common frequency offset information.
  • the frequency offset change information includes common frequency offset change information.
  • the location information includes location information of the terminal device and/or location information of a network device.
  • the ephemeris information includes ephemeris information for serving satellites and/or ephemeris information for non-serving satellites;
  • the ephemeris information includes satellite position information and/or satellite speed information.
  • the communication module of the terminal device is configured to acquire system messages and/or downlink reference signals, where the system messages and/or downlink reference signals carry the first information.
  • the first physical channel or signal includes an uplink physical channel or an uplink reference signal, and the synchronization information is used to transmit the first physical channel or signal.
  • the first physical channel or signal includes at least one of the following:
  • PRACH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • EDT PUR-based transmission.
  • the first physical channel or signal includes a downlink physical channel or a downlink reference signal, and the synchronization information is used to receive the first physical channel or signal.
  • the first physical channel or signal includes at least one of the following:
  • At least part of the time domain resources in the first time interval are not used for receiving and sending by the communication module of the terminal device; and/or,
  • At least part of the time domain resources in the first time interval are used for searching by the positioning module of the terminal device; and/or,
  • At least part of the time domain resources in the first time interval are used for the communication module of the terminal device to receive system messages and/or downlink reference signals sent by the network device; and/or,
  • At least part of the time domain resources in the first time interval are used for the terminal device to perform TA adjustment.
  • the obtaining unit 1602 is configured to obtain the synchronization information based on a first time domain resource in the first time interval and a positioning module of the terminal device, wherein the first time domain The resources are at least part of the time domain resources in the first time interval.
  • the first time domain resource is not used for transceiving by the communication module of the terminal device.
  • the obtaining unit 1602 is configured to obtain the synchronization information based on the second time domain resource in the first time interval and the communication module of the terminal device, wherein the second time domain The resources are at least part of the time domain resources in the first time interval.
  • the obtaining unit 1602 is configured to obtain the synchronization information based on a first time domain resource in the first time interval and a positioning module of the terminal device, wherein the first time domain The resources are at least part of the time domain resources in the first time interval, and the first time domain resources and the second time domain resources do not overlap in the time domain.
  • the synchronization information includes a timing advance TA value corresponding to the uplink timing synchronization of the terminal equipment; the apparatus further includes:
  • An adjustment unit 1603, configured to perform TA adjustment based on the first time interval and the TA value.
  • the length of the first time interval satisfies at least one of the following characteristics:
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the TA value
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the maximum value of the TA value
  • the length of the first time interval is greater than or equal to the length corresponding to the round-trip transmission time between the terminal device and the network device.
  • the length of the first time interval is predefined; or,
  • the length of the first time interval is determined according to a predefined rule.
  • the length of the first time interval is obtained according to the configuration information of the network device.
  • the starting position of the first time interval is predefined; or,
  • the starting position of the first time interval is determined according to a predefined rule.
  • the starting position of the first time interval is obtained according to the configuration information of the network device.
  • the end position of the first time interval is predefined; or,
  • the end position of the first time interval is determined according to a predefined rule.
  • the end position of the first time interval is obtained according to the configuration information of the network device.
  • the configuration information of the network device is transmitted by at least one of the following information:
  • the first time interval is determined according to a first offset value and/or a second offset value, wherein the first offset value is used to determine the start of the first time interval The distance between the start position and the first physical channel or signal, and the second offset value is used to determine the distance between the end position of the first time interval and the first physical channel or signal.
  • the first time interval is located before the first physical channel or signal in the time domain, and the first offset value is used to determine the starting position of the first time interval and the the distance between the starting positions of the first physical channel or signal; or,
  • the first time interval is located after the first physical channel or signal in the time domain, and the first offset value is used to determine the end position of the first physical channel or signal and the end position of the first time interval. The distance between the starting positions.
  • the first time interval is located before the first physical channel or signal in the time domain, and the second offset value is used to determine the end position of the first time interval and the first time interval. the distance between the origins of a physical channel or signal; or,
  • the first time interval is located after the first physical channel or signal in the time domain, and the second offset value is used to determine the end position of the first physical channel or signal and the end position of the first time interval. The distance between the end positions.
  • the first time interval has a first association with the first physical channel or signal, wherein,
  • the first association relationship is obtained through at least one of system messages, paging messages, wake-up signals, RRC signaling, MAC CE, and DCI; or,
  • the first association relationship is predefined or obtained according to a predefined rule.
  • the first association relationship is predefined or obtained according to predefined rules, including:
  • the first time interval precedes the first physical channel or signal in the time domain;
  • the first time interval is located after the first physical channel or signal in the time domain;
  • the first time interval is located in the middle of the first physical channel or signal in the time domain.
  • the first time interval has a second association relationship with second information
  • the second information includes at least one of the following:
  • the second association relationship is obtained through at least one of system messages, paging messages, wake-up signals, RRC signaling, MAC CE, and DCI; or,
  • the second association relationship is predefined or obtained according to a predefined rule.
  • the second information includes terminal device capabilities
  • the second association relationship includes:
  • the length of the first time interval is determined according to the capability of the terminal device; or,
  • the length of the first time interval is configured by the network device according to the capability of the terminal device.
  • the second information includes a coverage enhancement level
  • the second association includes:
  • the length of the first time interval is determined according to the coverage enhancement level corresponding to the terminal device; or,
  • the length of the first time interval is configured by the network device according to the coverage enhancement level.
  • FIG. 17 is a second schematic structural diagram of a synchronization apparatus provided by an embodiment of the present application, which is applied to a network device. As shown in FIG. 17 , the synchronization apparatus includes:
  • a sending unit 1701 is configured to send configuration information of a first time interval to a terminal device, where the first time interval is used by the terminal device to obtain synchronization information, and the synchronization information is used by the terminal device to transmit the first physical channel or Signal.
  • the configuration information of the first time interval includes at least one of the following:
  • the configuration information of the first time interval includes a first offset value and/or a second offset value, wherein,
  • the first offset value is used to determine the distance between the start position of the first time interval and the first physical channel or signal
  • the second offset value is used to determine the first time interval The distance between the end position and the first physical channel or signal.
  • the first time interval is located before the first physical channel or signal in the time domain, and the first offset value is used to determine the starting position of the first time interval and the the distance between the starting positions of the first physical channel or signal; or,
  • the first time interval is located after the first physical channel or signal in the time domain, and the first offset value is used to determine the end position of the first physical channel or signal and the end position of the first time interval. The distance between the starting positions.
  • the first time interval is located before the first physical channel or signal in the time domain, and the second offset value is used to determine the end position of the first time interval and the first time interval. the distance between the origins of a physical channel or signal; or,
  • the first time interval is located after the first physical channel or signal in the time domain, and the second offset value is used to determine the end position of the first physical channel or signal and the end position of the first time interval. The distance between the end positions.
  • the first time interval has a first association with the first physical channel or signal.
  • the sending unit 1701 is further configured to send third information, where the third information is used to determine the first association relationship, and the third information is carried in at least one of the following messages: system message, paging message, wake-up signal, RRC signaling, MAC CE, DCI.
  • the first time interval has a second association relationship with second information
  • the second information includes at least one of the following:
  • the sending unit 1701 is further configured to send fourth information, where the fourth information is used to determine the second association relationship, and the fourth information is carried in at least one of the following messages: system message, paging message, wake-up signal, RRC signaling, MAC CE, DCI.
  • the second information includes terminal device capabilities, and the apparatus further includes:
  • a configuration unit 1702 configured to configure the length of the first time interval according to the capability of the terminal device.
  • the second information includes a coverage enhancement level
  • the apparatus further includes:
  • a configuration unit 1702 configured to configure the length of the first time interval according to the coverage enhancement level.
  • the configuration information of the first time interval is transmitted by at least one of the following information:
  • the first time domain resource in the first time interval is used for the positioning module of the terminal device to obtain the synchronization information, wherein the first time domain resource is the first time interval at least some of the time-domain resources in .
  • the first time domain resource is not used for transceiving by the communication module of the terminal device.
  • the second time domain resource in the first time interval is used for the communication module of the terminal device to acquire the synchronization information, wherein the second time domain resource is the first time interval at least some of the time-domain resources in .
  • the second time domain resource in the first time interval does not overlap with the first time domain resource in the first time interval, and the first time domain resource is used for the terminal device's
  • the positioning module obtains the synchronization information.
  • the synchronization information includes a TA value corresponding to the uplink timing synchronization of the terminal device; the length of the first time interval satisfies at least one of the following characteristics:
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the TA value
  • the length of the first time interval is greater than or equal to the timing offset length corresponding to the maximum value of the TA value
  • the length of the first time interval is greater than or equal to the length corresponding to the round-trip transmission time between the terminal device and the network device.
  • FIG. 18 is a schematic structural diagram of a communication device 1800 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1800 shown in FIG. 18 includes a processor 1810, and the processor 1810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1800 may further include a memory 1820 .
  • the processor 1810 may call and run a computer program from the memory 1820 to implement the methods in the embodiments of the present application.
  • the memory 1820 may be a separate device independent of the processor 1810, or may be integrated in the processor 1810.
  • the communication device 1800 may further include a transceiver 1830, and the processor 1810 may control the transceiver 1830 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1830 may include a transmitter and a receiver.
  • the transceiver 1830 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1800 may specifically be the network device in this embodiment of the present application, and the communication device 1800 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 1800 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1800 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1900 shown in FIG. 19 includes a processor 1910, and the processor 1910 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1900 may further include a memory 1920 .
  • the processor 1910 may call and run a computer program from the memory 1920 to implement the methods in the embodiments of the present application.
  • the memory 1920 may be a separate device independent of the processor 1910, or may be integrated in the processor 1910.
  • the chip 1900 may further include an input interface 1930 .
  • the processor 1910 may control the input interface 1930 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 1900 may further include an output interface 1940 .
  • the processor 1910 can control the output interface 840 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 20 is a schematic block diagram of a communication system 2000 provided by an embodiment of the present application. As shown in FIG. 20 , the communication system 2000 includes a terminal device 2010 and a network device 2020 .
  • the terminal device 2010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 2020 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种同步方法及装置、终端设备、网络设备,该方法包括:终端设备确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;所述终端设备基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。

Description

一种同步方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种同步方法及装置、终端设备、网络设备。
背景技术
终端设备与网络设备之间在传输信道或信号之前,需要终端设备与网络设备取得时频同步。然而,在连续传输过程中,由于信道或信号的传输时间比较长,可能会导致终端设备与网络设备之间的时频同步失效,终端设备与网络设备之间如何重新取得时频同步是一个待解决的问题。
发明内容
本申请实施例提供一种同步方法及装置、终端设备、网络设备。
本申请实施例提供的同步方法,包括:
终端设备确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;
所述终端设备基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
本申请实施例提供的同步方法,包括:
网络设备向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。
本申请实施例提供的同步装置,应用于终端设备,所述装置包括:
确定单元,用于确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;
获取单元,用于基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
本申请实施例提供的同步装置,应用于网络设备,所述装置包括:
发送单元,用于向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。
本申请实施例提供的终端设备,可以是上述方案中的第一设备或者是上述方案中的第二设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的同步方法。
本申请实施例提供的网络设备,可以是上述方案中的第一设备或者是上述方案中的第二设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的同步方法。
本申请实施例提供的芯片,用于实现上述的同步方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的同步方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的同步方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的同步方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的同步方法。
通过上述技术方案,终端设备确定第一时间间隔,在第一时间间隔内获取同步信息,从而利用该同步信息传输第一物理信道或信号。采用本申请实施例的技术方案,至少可以解决在连续传输过程中,终端设备与网络设备之间如何重新进行同步的问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例提供的另一种通信系统的架构示意图;
图3是本申请实施例提供的另一种通信系统的架构示意图;
图4是本申请实施例提供的基于透传转发卫星的NTN场景的示意图;
图5是本申请实施例提供的基于再生转发卫星的NTN场景的示意图;
图6是本申请实施例提供的NTN系统的定时关系示意图一;
图7是本申请实施例提供的NTN系统的定时关系示意图二;
图8是本申请实施例提供的WUS和PO之间的关系示意图;
图9是本申请实施例提供的GWUS和PO之间的关系示意图;
图10是本申请实施例提供的同步方法的流程示意图;
图11-1是本申请实施例提供的第一时间间隔与第一物理信道或信号之间的关系示意图一;
图11-2是本申请实施例提供的第一时间间隔与第一物理信道或信号之间的关系示意图二;
图11-3是本申请实施例提供的第一时间间隔与第一物理信道或信号之间的关系示意图三;
图12-1是本申请实施例提供的第一时间间隔内的时域资源的示意图一;
图12-2是本申请实施例提供的第一时间间隔内的时域资源的示意图二;
图12-3是本申请实施例提供的第一时间间隔内的时域资源的示意图三;
图13是本申请实施例提供的应用实例一的第一时间间隔的示意图;
图14-1是本申请实施例提供的应用实例二的第一时间间隔的示意图一;
图14-2是本申请实施例提供的应用实例二的第一时间间隔的示意图二;
图15-1是本申请实施例提供的应用实例三的第一时间间隔的示意图一;
图15-2是本申请实施例提供的应用实例三的第一时间间隔的示意图二;
图15-3是本申请实施例提供的应用实例四的第一时间间隔的示意图;
图16是本申请实施例提供的同步装置的结构组成示意图一;
图17是本申请实施例提供的同步装置的结构组成示意图二;
图18是本申请实施例提供的一种通信设备示意性结构图;
图19是本申请实施例的芯片的示意性结构图;
图20是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN) 设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
3GPP正在研究非地面通信网络设备(Non Terrestrial Network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设通信设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
NTN技术可以和各种通信系统结合。例如,NTN技术可以和NR系统结合为NR-NTN系统。又例如,NTN技术可以和物联网(Internet of Things,IoT)系统结合为IoT-NTN系统。作为示例,IoT-NTN系统可以包括NB-IoT-NTN系统和eMTC-NTN系统。
图2是本申请实施例提供的另一种通信系统的架构示意图。
如图2所示,包括终端设备1101和卫星1102,终端设备1101和卫星1102之间可以进行无线通信。终端设备1101和卫星1102之间所形成的网络还可以称为NTN。在图2所示的通信系统的架构中,卫星1102可以具有基站的功能,终端设备1101和卫星1102之间可以直接通信。在系统架构下,可以将卫星1102称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1102, 并且每个网络设备1102的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
图3是本申请实施例提供的另一种通信系统的架构示意图。
如图3所示,包括终端设备1201、卫星1202和基站1203,终端设备1201和卫星1202之间可以进行无线通信,卫星1202与基站1203之间可以通信。终端设备1201、卫星1202和基站1203之间所形成的网络还可以称为NTN。在图3所示的通信系统的架构中,卫星1202可以不具有基站的功能,终端设备1201和基站1203之间的通信需要通过卫星1202的中转。在该种系统架构下,可以将基站1203称为网络设备。在本申请的一些实施例中,通信系统中可以包括多个网络设备1203,并且每个网络设备1203的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。所述网络设备1203可以是图1中的网络设备120。
应理解,上述卫星1102或卫星1202包括但不限于:
低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等等。卫星可采用多波束覆盖地面,例如,一颗卫星可以形成几十甚至数百个波束来覆盖地面。换言之,一个卫星波束可以覆盖直径几十至上百公里的地面区域,以保证卫星的覆盖以及提升整个卫星通信系统的系统容量。
作为示例,LEO卫星的高度范围可以为500千米~1500千米,相应轨道周期约可以为1.5小时~2小时,用户间单跳通信的信号传播延迟一般可小于20毫秒,最大卫星可视时间可以为20分钟,LEO卫星的信号传播距离短且链路损耗少,对用户终端的发射功率要求不高。GEO卫星的轨道高度可以35786km,围绕地球旋转周期可以为24小时,用户间单跳通信的信号传播延迟一般可为250毫秒。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
需要说明的是,图1至图3只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
卫星从其提供的功能上可以分为透传转发(transparent payload)和再生转发(regenerative payload)两种。对于透传转发卫星,只提供无线频率滤波,频率转换和放大的功能,只提供信号的透明转发,不会改变其转发的波形信号。对于再生转发卫星,除了提供无线频率滤波,频率转换和放大的功能,还可以提供解调/解码,路由/转换,编码/调制的功能,其具有基站的部分或者全部功能。
在NTN中,可以包括一个或多个网关(Gateway),用于卫星和终端之间的通信。
图4和图5分别示出了基于透传转发卫星和再生转发卫星的NTN场景的示意图。
如图4所示,对于基于透传转发卫星的NTN场景,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。如图5所示,对于基于再生转发卫星的NTN场景,卫星和卫星之间通过星间(InterStar link)进行通信,网关和卫星之间通过馈线链路(Feeder link)进行通信,卫星和终端之间可以通过服务链路(service link)进行通信。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
IoT-NTN系统的定时关系
在陆地通信系统中,信号通信的传播时延通常小于1毫秒。在IoT-NTN系统中,由于终端设备 和卫星(或者说网络设备)之间的通信距离很远,信号通信的传播时延很大,范围可以从几十毫秒到几百毫秒,具体和卫星轨道高度和卫星通信的业务类型相关。为了处理比较大的传播时延,IoT-NTN系统的定时关系相对于IoT系统需要增强。
在IoT-NTN系统中,和IoT系统一样,终端设备在进行上行传输时需要考虑定时提前(Timing Advance,TA)的影响。由于系统中的传播时延较大,因此TA值的范围也比较大。当终端设备被调度在子帧n进行上行传输时,该终端设备考虑往返传播时延,在上行传输时提前传输,从而可以信号到达网络设备侧时在网络设备侧上行的子帧n上。具体地,IoT-NTN系统中的定时关系可能包括两种情况,分别如下图6和图7所示。
情况1如图6所示,网络设备侧的下行子帧和上行子帧是对齐的。相应地,为了使终端设备的上行传输到达网络设备侧时和网络设备侧的上行子帧对齐,终端设备需要使用一个较大的TA值。在一些情况下,该TA值对应定时偏移值Koffset。在另一些情况下,终端设备的往返传输时间(Round Trip Time,RTT)对应定时偏移值Koffset。
情况2如图7所示,网络设备侧的下行子帧和上行子帧之间有一个偏移值。在这种情况下,如果想要使终端设备的上行传输到达网络设备侧时和网络设备侧的上行子帧对齐,终端设备只需要使用一个较小的TA值。在一些情况下,该TA值对应定时偏移值Koffset。
eMTC系统
在增强机器类通信(Enhance Machine Type Communication,eMTC)系统中,终端设备包括窄带低复杂度(Bandwidth reduced Low complexity,BL)/覆盖增强(Coverage Enhancement,CE)终端设备。BL/CE终端设备包括CEModeA和CEModeB两种模式。其中,CEModeA模式支持覆盖增强等级(coverage enhancement level)0和1,CEModeB模式支持覆盖增强等级2和3。覆盖增强等级0对应信号强度最好的场景,覆盖增强等级3对应信号强度最差的场景。BL/CE终端设备接收和发送的带宽为窄带,作为示例,包括LTE小区带宽中连续的6个RB。如果LTE小区的带宽大于6个RB,则LTE小区带宽中可以包括多个窄带。每个窄带对应一个窄带编号。
在eMTC系统中,在初始接入阶段,物理随机接入信道(Physical Random Access Channel,PRACH)最多可以支持128次重复传输;对于CEModeA,物理上行共享信道(Physical Uplink Shared Channel,PUSCH)最多可以支持32次重复传输,对于CEModeB,PUSCH最多可以支持2048次重复传输。
在eMTC系统中,网络设备可以为静止不动的终端设备提供服务,也可以为具有一定移动速度的终端设备提供服务。例如终端设备的移动速度导致的多普勒扩展可以为200赫兹(例如1兆赫兹下大概240公里/小时,2兆赫兹下大概120公里/小时)。eMTC系统也支持密集定位参考信号(Positioning Reference Signals,PRS)配置,以及密集PRS配置对应的新的时间间隔图案。
在减少时延方面,eMTC系统中支持如下特性:
(1)在EARFCN(E-UTRA Absolute Radio Frequency Channel Number)预配置可用的情况下,通过为终端设备预配置EARFCN和地理区域,可以加速终端设备的初始接入过程。
(2)在一个小区中,当终端设备需要重新获取时频同步时,终端设备可以通过再同步信号(Resynchronization Signal,RSS)来完成而不是通过PSS/SSS信号,从而可以节省时间和功耗。
(3)通过使能增强小区全球标识(Cell Global Identity,CGI)获取来减少主信息块(Master Information Block,MIB)和系统信息块(System Information Block,SIB)1或SIB2的获取次数。
(4)在MIB中引入一个标签(flag)比特来指示SIB消息在过去的N个小时内是否发生更新。其中,N表示系统消息有效时间,作为示例,N取值为3或24小时。也就是说,终端设备不需要频繁地去获取SIB1消息,从而可以节省时间和功耗。该系统消息更新指示也被复制在RSS中,即终端设备可能也不需要频繁地获取MIB消息。
(5)预配置上行资源(Preconfigured Uplink Resource,PUR)。终端设备可以在空闲态使用网络设备预配置的上行资源进行PUSCH传输而不需要完成随机接入过程。终端设备在连接态的时候可以请求被配置PUR或请求PUR配置释放。网络设备可以基于终端设备的请求、终端设备的注册信息和/或当地政策为终端设备配置PUR。PUR仅在收到小区PUR配置的小区中生效。当上层请求重建立或恢复RRC连接,且终端设备被配置有效的PUR,且满足TA有效性准则时,可以触发PUR传输。
在该上行传输过程中,终端设备可能在PUR搜索空间窗内检测到PUR-无线网络临时标识(Radio Network Tempory Identity,RNTI)扰码的MTC物理下行控制信道(MTC Physical Downlink Control Channel,MPDCCH)携带的肯定确认(Acknowledgement,ACK)或回退模式指示信息。作为示例,如果终端设备使用预配置的上行资源进行PUSCH传输的结束子帧为子帧n,则终端设备应从子帧 n+4开始在PUR-MPDCCH搜索窗内检测MPDCCH,并在检测到PUR-RNTI扰码的MPDCCH后在该PUR-MPDCCH搜索窗停止MPDCCH的检测,其中,PUR-MPDCCH搜索窗的长度是高层参数配置的。
在降低功耗方面,除了上述特性,eMTC系统还支持如下功能:
(1)唤醒信号(Wake-Up Signals,WUS)。在空闲态的终端设备可以通过WUS检测来检测MPDCCH。当终端设备在空闲态被配置扩展非连续接收(extended Discontinuous Reception,eDRX)时,该DRX循环(DRX cycle)最长可以为10.24秒,其中,最大值为2621.44秒(43.69分)。
在被配置WUS或WUS组(Group WUS,GWUS)的情况下,可以减少寻呼检测的功耗。终端设备仅在上一次使用过的小区里检测WUS或者GWUS。WUS或GWU用于指示终端设备应在该小区接收MPDCCH寻呼消息。对于未被配置eDRX的终端设备,WUS或GWUS可以关联到寻呼时间窗(Paging Time Window,PTW)里的一个或多个寻呼时机(Paging Occasion,PO)。如果终端设备检测到WUS或WUS组,则终端设备应检测接下来的N个PO,N≥1,直到该终端设备收到一个寻呼消息。
WUS和PO之间的时间关系如图8所示,GWUS和PO之间的时间关系如图9所示。终端设备可以期待在配置的最大WUS长度(Configured maximum WUS duration)内WUS重复传输,但实际传输的WUS可能较短。在非0的间隔(Gap)内,终端设备不检测WUS。
(2)数据提前传输(Early Data Transmission,EDT)。对于终端设备仅需要传输小数据的场景,例如数据量大概在100字节左右,则终端设备可以通过随机接入过程中的消息3和消息4来进行该数据的传输。另外,网络设备在EDT过程中的任意时刻也可以指示回退到传统(legacy)的随机接入过程。
(3)上行传输的混合自动重传请求应答(Hybrid Automatic Repeat-reQuest Acknowledgement,HARQ-ACK)反馈。在终端设备被调度上行传输的过程中,通过在MPDCCH中引入HARQ-ACK反馈信息,可以使网络设备指示终端设备该上行传输已被正确接收,从而使终端设备提前中止MPDCCH检测或提前中止PUSCH传输。
(4)小区重选放松检测。对于静止的终端设备,在满足放松检测准则的情况下,终端设备可以减少邻区测量。例如每24小时才进行邻区测量。
另外,对于处于高覆盖增强等级的终端设备,由于需要几十、几百甚至上千次的重复传输,通常关联较多的资源消耗。为了增强网络设备的接入控制,在eMTC系统中还引入了基于覆盖增强等级的接入禁止机制。例如,如果指定某一覆盖增强等级的终端设备禁止接入,则所有高于或等于该覆盖增强等级的终端设备均禁止接入。
IoT-NTN系统中的时频同步
在IoT-NTN系统(例如eMTC-NTN系统)中,网络设备需要向终端设备发送同步辅助信息例如服务卫星的星历信息等,用于终端设备完成时域和/或频域同步。相应地,终端设备需要获取网络设备发送的同步辅助信息,同时根据自身的GNSS能力来完成相应的时域和/或频域同步。
由于在IoT-NTN系统中TA值的范围可能很大,在随机接入过程中,终端设备在发送随机接入前导序列前,需要先根据估计的TA信息在进行TA的预补偿后再进行PRACH序列的发送。
当终端设备处于空闲态时,如果终端设备收到寻呼消息或收到WUS,则终端设备需要在收到寻呼消息或收到WUS后进行时频同步,然后再进行传输例如发起随机接入过程。
对于IoT-NTN系统中的终端设备,通常不具备同时使用GNSS能力和在IoT-NTN系统中进行收发的能力。终端设备的GNSS能力通过GNSS模块实现,终端设备在IoT-NTN系统中进行收发的能力通过IoT-NTN系统工作模块实现。当终端设备处于空闲态时,如果终端设备收到寻呼消息或收到WUS,则终端设备需要在收到寻呼消息或收到WUS后进行时频同步;或者,终端设备需要提前进行时频同步,从而进行寻呼消息或WUS的接收。在这个过程中,终端设备可能需要启动GNSS模块定位终端设备的位置,例如完成GNSS首次定位时间(Time To First Fix,TTFF),然后从GNSS模块切换到IoT-NTN系统工作模块,通过IoT-NTN系统工作模块接收NTN-SIB,进而从NTN-SIB中获取服务卫星的星历信息。一次GNSS TTFF通常需要1秒(热启动如果上一次TTFF对应的GNSS星历信息是在4小时内获得的)或小于5秒(温启动如果上一次TTFF对应的GNSS年历信息是在180天内获得的)的时间。在IoT-NTN系统中如何触发GNSS搜索是一个待解决的问题。
在eMTC系统中,PRACH最多可以支持128次重复传输;对于CEModeA,PUSCH最多可以支持32次重复传输,对于CEModeB,PUSCH最多可以支持2048次重复传输。在NTN系统中,以600公里的LEO场景下,在一次长度为28.4毫秒的RTT中的定时偏移大概为0.71微秒,在256毫 秒的长度为,总的定时偏移大概为6.4微秒,超过了PUSCH的循环前缀的长度。另外,多普勒频移变化为544赫兹/秒。
由于上行信道传输时间比较长,例如连续传输的时间长度大于256毫秒时,而在NTN系统中,定时偏移和多普勒偏移的变化更大。因此,在IoT-NTN系统中,在连续上行信道传输过程中,如何进行上行传输的重新同步也是一个待解决的问题。为此,提出了本申请实施例的以下技术方案。
需要说明的是,虽然上述相关方案是以上行同步进行说明的,但本申请实施例的技术方案不仅可以解决上行同步的问题,也可以解决下行同步的问题。
需要说明的是,本申请实施例的技术方案可以但不局限于应用于NR-NTN系统、IoT-NTN系统。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图10是本申请实施例提供的同步方法的流程示意图,如图10所示,所述同步方法包括以下步骤:
步骤1001:终端设备确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息。
步骤1002:所述终端设备基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
在一些实施例中,终端设备确定第一时间间隔,包括:终端设备确定第一时间间隔的长度、第一时间间隔的起始位置和第一时间间隔的结束位置中的至少之一。
在一些实施例中,所述第一时间间隔的长度通过以下方式确定:
所述第一时间间隔的长度是预定义的;或者,
所述第一时间间隔的长度是根据预定义的规则确定的;或者,
所述第一时间间隔的长度是根据网络设备的配置信息获取的。
在一些实施例中,所述第一时间间隔的起始位置通过以下方式确定:
所述第一时间间隔的起始位置是预定义的;或者,
所述第一时间间隔的起始位置是根据预定义的规则确定的;或者,
所述第一时间间隔的起始位置是根据网络设备的配置信息获取的。
在一些实施例中,所述第一时间间隔的结束位置通过以下方式确定:
所述第一时间间隔的结束位置是预定义的;或者,
所述第一时间间隔的结束位置是根据预定义的规则确定的;或者,
所述第一时间间隔的结束位置是根据网络设备的配置信息获取的。
在一些实施例中,对于网络设备来说,网络设备向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。在一些实施例中,所述第一时间间隔的配置信息包括以下至少之一:所述第一时间间隔的长度;所述第一时间间隔的起始位置;所述第一时间间隔的结束位置。
在一些实施例中,上述方案中的所述网络设备的配置信息通过以下信息中的至少一种传输:系统消息、寻呼消息、WUS、RRC信令、MAC CE和DCI。
在一些实施例中,所述第一时间间隔是根据第一偏移值和/或第二偏移值确定的,其中,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
在一些实施例中,第一偏移值是预定义的或根据预定义规则确定的;和/或,第二偏移值是预定义的或根据预定义规则确定的。
在一些实施例中,对于网络设备来说,网络设备向终端设备发送第一时间间隔的配置信息,所述第一时间间隔的配置信息包括第一偏移值和/或第二偏移值,其中,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号的起始位置之间的距离;或者,所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第一偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的起始位置之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号的起始位置之间的距离;或 者,所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第二偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的结束位置之间的距离。
在一些实施例中,不同情况下的所述第一时间间隔的长度不同;和/或,不同情况下的所述第一时间间隔的用途不同。例如,用于下行同步的第一时间间隔的长度和用于上行同步的第一时间间隔的长度不同。
在一些实施例中,所述第一时间间隔的长度大于40毫秒。
作为示例,参照图11-1,第一时间间隔在时域上位于第一物理信道或信号之前,第一偏移值用于确定第一时间间隔的起始位置和第一物理信道或信号的起始位置之间的距离,第二偏移值用于确定第一时间间隔的结束位置和第一物理信道或信号的起始位置之间的距离。
作为示例,参照图11-2,第一时间间隔在时域上位于第一物理信道或信号之后,第一偏移值用于确定第一物理信道或信号的结束位置和第一时间间隔的起始位置之间的距离,第二偏移值用于确定第一物理信道或信号的结束位置和第一时间间隔的结束位置之间的距离。
在一些实施例中,所述第一时间间隔与所述第一物理信道或信号具有第一关联关系,其中,所述第一关联关系通过系统消息、寻呼消息、WUS、RRC信令、MAC CE和DCI中的至少一种获取;或者,所述第一关联关系是预定义的或根据预定义规则获取。
在一些实施例中,所述第一关联关系是预定义的或根据预定义规则获取,包括:
所述第一时间间隔在时域上位于所述第一物理信道或信号之前;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号中间。
作为示例,所述第一物理信道或信号为上行物理信道或上行参考信号的情况下,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,或者,所述第一时间间隔用于上行同步。
作为示例,所述第一物理信道或信号为下行物理信道或下行参考信号的情况下,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,或者,所述第一时间间隔用于下行同步。
作为示例,所述第一物理信道或信号为下行物理信道或下行参考信号的情况下,所述第一时间间隔在时域上位于所述第一物理信道或信号之后,或者,所述第一时间间隔用于后续上行传输的上行同步。
作为示例,参照图11-3,第一物理信道或信号的中间分布有一个或多个第一时间间隔。
在一些实施例中,对于网络设备来说,所述网络设备发送第三信息,所述第三信息用于确定所述第一关联关系,所述第三信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
在一些实施例中,所述第一时间间隔与第二信息具有第二关联关系,所述第二信息包括以下至少之一:卫星场景、终端设备能力、覆盖增强等级。
在一些实施例中,所述第二关联关系通过系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE和DCI中的至少一种获取;或者,所述第二关联关系是预定义的或根据预定义规则获取。
在一些实施例中,所述第二信息包括卫星场景,所述第二关联关系包括:
所述第一时间间隔的长度是根据所述卫星场景确定的;或者,
所述第一时间间隔的长度是网络设备根据所述卫星场景配置的。
作为示例,在GEO卫星场景中,第一时间间隔的长度为L1,在LEO卫星场景中,第一时间间隔为L2,L1值大于L2值。
在一些实施例中,所述第二信息包括终端设备能力,所述第二关联关系包括:
所述第一时间间隔的长度是根据所述终端设备能力确定的;或者,
所述第一时间间隔的长度是网络设备根据所述终端设备能力配置的。
作为示例,终端设备根据自身支持的终端设备能力确定第一时间间隔。例如:终端设备支持第一覆盖增强等级,终端设备确定第一时间间隔的长度为L1;或者,终端设备支持第二覆盖增强等级,终端设备确定第一时间间隔的长度为L2。例如:终端设备支持CEModeA模式,终端设备确定第一时间间隔的长度为L1;或者,终端设备支持CEModeB模式,终端设备确定第一时间间隔的长度为L2。
作为示例,网络设备根据所述终端设备能力配置所述第一时间间隔的长度。可选地,终端设备向网络设备上报自身支持的终端设备能力。例如:若终端设备能力支持第一覆盖增强等级,则网络设备在第一时间间隔配置范围内配置第一时间间隔;若终端设备能力支持第二覆盖增强等级,则网络设备在第二时间间隔配置范围内配置第一时间间隔。例如:若终端设备能力支持CEModeA模式, 则网络设备在第一时间间隔配置范围内配置第一时间间隔;若终端设备能力支持CEModeB模式,则网络设备在第二时间间隔配置范围内配置第一时间间隔。
在一些实施例中,所述第二信息包括覆盖增强等级,所述第二关联关系包括:
所述第一时间间隔的长度是根据所述终端设备对应的覆盖增强等级确定的;或者,
所述第一时间间隔的长度是网络设备根据所述覆盖增强等级配置的。
作为示例,终端设备根据自身对应的覆盖增强等级确定第一时间间隔。例如:终端设备对应第一覆盖增强等级,终端设备确定第一时间间隔的长度为L1;或者,终端设备对应第二覆盖增强等级,终端设备确定第一时间间隔的长度为L2。
作为示例,网络设备根据终端设备对应的覆盖增强等级配置所述第一时间间隔的长度。例如:若终端设备对应第一覆盖增强等级,则网络设备在第一时间间隔配置范围内配置第一时间间隔;若终端设备对应第二覆盖增强等级,则网络设备在第二时间间隔配置范围内配置第一时间间隔。
在一些实施例中,对于网络设备来说,所述网络设备发送第四信息,所述第四信息用于确定所述第二关联关系,所述第四信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
本申请实施例中,所述第一时间间隔用于所述终端设备获取同步信息。在一些实施例中,所述同步信息包括以下至少之一:上行定时同步、上行频偏同步、下行定时同步、下行频偏同步。
其中,上行定时同步用于终端设备实现上行时域同步;上行频偏同步用于终端设备实现上行频域同步;下行定时同步用于终端设备实现下行时域同步;下行频偏同步用于终端设备实现下行频域同步。
在一些实施例中,终端设备基于上行定时同步和/或上行频偏同步,进行上行频域和/或上行时域同步。从另一方面理解,终端设备基于上行定时同步和/或上行频偏同步,发送第一物理信道或信号。
在一些实施例中,终端设备基于下行定时同步和/或下行频偏同步,进行下行频域和/或下行时域同步。从另一方面理解,终端设备基于下行定时同步和/或下行频偏同步,接收第一物理信道或信号。
本申请实施例中,所述同步信息由所述终端设备的定位模块和/或通信模块获取得到。
这里,终端设备具有定位模块和/或通信模块。在一些实施例中,终端设备具有定位模块和通信模块的情况下,终端设备的定位模块和通信模块不能同时工作。
在一些实施例中,终端设备的定位模块包括GNSS模块。
在一些实施例中,终端设备的通信模块用于实现终端设备在移动通信系统中的通信功能,作为示例,移动通信系统可以但不局限于是IoT-NTN系统。
本申请实施例中,所述同步信息基于第一信息获取得到,所述第一信息包括以下至少之一:定时信息、定时变化信息、频偏信息、频偏变化信息、位置信息、星历信息。
在一些实施例中,所述定时信息包括公共定时信息。
在一些实施例中,所述定时变化信息包括公共定时变化信息。
在一些实施例中,所述频偏信息包括公共频偏信息。
在一些实施例中,所述频偏变化信息包括公共频偏变化信息。
在一些实施例中,所述位置信息包括所述终端设备的位置信息和/或网络设备的位置信息。
在一些实施例中,所述星历信息包括服务卫星的星历信息和/或非服务卫星的星历信息;其中,所述星历信息包括卫星的位置信息和/或卫星的速度信息。
在一些实施例中,所述终端设备的定位模块用于通过定位搜索(如GNSS搜索)功能获取所述第一信息。作为示例,所述终端设备的定位模块用于获取所述第一信息中的如下至少一种信息:终端设备的位置信息、非服务卫星的星历信息。
在一些实施例中,所述终端设备的通信模块用于获取系统消息和/或下行参考信号,所述系统消息和/或下行参考信号携带所述第一信息。作为示例,所述系统消息和/或下行参考信号携带所述第一信息中的如下至少一种信息:公共定时信息、公共定时变化信息、公共频偏信息、公共频偏变化信息、网络设备的位置信息、服务卫星的星历信息。
在一些实施例中,终端设备基于其全球导航卫星系统(Global Navigation Satellite System,GNSS)获得终端设备的位置等信息。并且,终端设备基于GNSS获得的信息以及网络设备指示的同步辅助信息(例如服务卫星的星历信息),可以计算定时和频偏,并在空闲态或非激活态或连接态应用定时提前补偿或频偏调整。
另外,网络设备可能广播一个公共定时偏移值。
在一些实施例中,终端设备基于GNSS获得的终端设备的位置以及网络设备指示的服务卫星的 星历信息来估计UE专用TA(UE-specific TA)。
在一些实施例中,终端设备基于GNSS获得的参考时间和网络设备指示的参考时间来估计UE专用TA。
在一些实施例中,例如在随机接入过程发起前(在传输Msg1或MsgA前),空闲态或非激活态的终端设备可以根据以下公式计算TA值:
TA=(N TA,UE-specific+N TA,offset+N TA,common)*Ts。
其中,N TA,UE-specific可以是终端设备自行估计得到的UE专用TA值,N TA,offset和现有协议相同例如是根据布网频段和LTE或NR共存情况确定的或者是预定义的或者是网络设备指示的或设为0,N TA,common是根据所述定时信息和/或所述定时变化信息确定的,Ts表示采样时间间隔单位。
在一些情况下,Ts=1/(15*1000*2048)。
在一些情况下,如果终端设备没有获取所述定时信息和/或所述定时变化信息,则N TA,common为预设值或N TA,common为0。
在一些实施例中,例如如果终端设备收到网络设备指示的TA值,则可以根据以下公式计算TA值:
TA=(N TA+N TA,UE-specific+N TA,common+N TA,offset)*Ts
其中,N TA,UE-specific可以是终端设备自行估计得到的TA值,N TA,offset和现有协议相同例如是根据布网频段和LTE或NR共存情况确定的或者是预定义的或者是网络设备指示的或设为0,N TA可以是网络设备通过随机接入响应(Random Access Response,RAR)或定时提前命令MAC CE指示的TA值,N TA,common是根据所述定时信息和/或所述定时变化信息确定的,Ts表示采样时间间隔单位。
在一些情况下,Ts=1/(15*1000*2048)。
在一些情况下,如果终端设备没有获取所述定时信息和/或所述定时变化信息,则N TA,common为预设值或N TA,common为0。
也就是说,在一些情况下,终端设备需要根据终端设备自行估计得到的TA值、网络设备广播的所述定时信息和/或所述定时变化信息和网络设备发送的TA值N TA联合估计和更新TA。
在一些实施例中,所述第一物理信道或信号包括上行物理信道或上行参考信号,所述同步信息用于发送所述第一物理信道或信号。作为示例,所述第一物理信道或信号包括以下至少一种:物理随机接入信道(Physical Random Access Channel,PRACH)、随机接入过程中的消息3(Msg3)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、数据提前传输(Early Data Transmission,EDT)、基于预配置上行资源(Preconfigured Uplink Resource,PUR)的传输。作为示例,对于NR-NTN系统来说,所述第一物理信道或信号还包括随机接入过程中的消息A(MsgA),其中,MsgA包括MsgA PRACH和MsgA PUSCH。
在一些实施例中,所述第一物理信道或信号包括下行物理信道或下行参考信号,所述同步信息用于接收所述第一物理信道或信号。作为示例,所述第一物理信道或信号包括以下至少一种:唤醒信号(Wake-Up Signal,WUS)、寻呼-无线网络临时标识(Paging-Radio Network Tempory Identity,P-RNTI)扰码的物理下行控制信道(Physical Downlink Control Channel,PDCCH)、寻呼消息、同步信号、系统消息。这里,所述系统消息包括MIB和/或SIB。作为示例,对于NTN系统来说,SIB包括NTN系统专有的SIB(NTN-SIB)。
在一些实施例中,所述同步信息包括所述终端设备的上行定时同步对应的TA值;所述终端设备基于所述第一时间间隔和所述TA值进行TA调整。
在一些实施例中,所述第一时间间隔中的时域资源满足以下至少一种特征:
所述第一时间间隔中的至少部分时域资源不用于所述终端设备的通信模块进行收发;
所述第一时间间隔中的至少部分时域资源用于所述终端设备的定位模块进行搜索;
所述第一时间间隔中的至少部分时域资源用于所述终端设备的通信模块接收网络设备发送的系统消息和/或下行参考信号;
所述第一时间间隔中的至少部分时域资源用于所述终端设备进行TA调整。
作为示例,参照图12-1,第一时间间隔中时域资源1用于终端设备的定位模块进行搜索,第一时间间隔中时域资源1不用于终端设备的通信模块进行收发。
作为示例,参照图12-2,第一时间间隔中时域资源1用于终端设备的定位模块进行搜索,第一时间间隔中时域资源2用于终端设备的通信模块接收网络设备发送的系统消息和/或下行参考信号。或者,第一时间间隔中时域资源1用于终端设备的通信模块接收网络设备发送的系统消息和/或下行 参考信号,第一时间间隔中时域资源2用于终端设备的定位模块进行搜索。这里,终端设备的定位模块和通信模块不能同时工作,定位模块对应的时域资源1和通信模块对应的时域资源2不能重叠。需要指出的是,由于终端设备执行定位模块与通信模块之间的切换需要一定时间,因而时域资源1和时域资源2之间可以有一个小的间隔。
作为示例,参照图12-3,第一时间间隔中时域资源0用于终端设备获取第一信息,以及基于第一信息确定出同步信息,例如上行定时同步对应的TA值。这里,时域资源0用于终端设备获取第一信息,包括:时域资源0用于终端设备的定位模块进行搜索和/或通信模块接收网络设备发送的系统消息和/或下行参考信号,从搜索结果中和/或系统消息和/或下行参考信号获取第一信息。进一步,由于终端设备的定位模块和通信模块不能同时工作,因此定位模块对应的时域资源和通信模块对应的时域资源不能重叠。这里,时域资源0可以包括图12-2中的时域资源1和时域资源2。第一时间间隔中时域资源3用于终端设备基于确定出的TA值进行TA调整。进一步,在第一时间间隔之后,终端设备可以基于调整TA发送第一物理信道或信号。
在一些实施例中,为了能够实现在第一时间间隔后立刻进行上行传输,所述第一时间间隔的长度满足以下至少一种特征:
所述第一时间间隔的长度大于或等于所述TA值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述TA值的最大值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述终端设备和网络设备之间的往返传输时间对应的长度。
在一些实施例中,所述定时偏移长度大于或等于定时偏移值Koffset。
以下对终端设备如何基于其定位模块和/或通信模块获取同步信息进行描述。
方式一
在一些实施例中,所述终端设备基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源。这里,所述第一时域资源不用于所述终端设备的通信模块进行收发。
具体地,终端设备在第一时间间隔中的第一时域资源上利用定位模块进行搜索,从而获得第一信息中的以下至少一种信息:终端设备的位置信息、非服务卫星的星历信息。
方式二
在一些实施例中,所述终端设备基于所述第一时间间隔中的第二时域资源和所述终端设备的通信模块获取所述同步信息,其中,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。
具体地,终端设备在第一时间间隔中的第二时域资源上利用通信模块接收系统消息和/或下行参考信号,从所述系统消息和/或下行参考信号中获取第一信息中的以下至少一种信息:公共定时信息、公共定时变化信息、公共频偏信息、公共频偏变化信息、网络设备的位置信息、服务卫星的星历信息。
方式三
在一些实施例中,所述终端设备基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,基于所述第一时间间隔中的第二时域资源和所述终端设备的通信模块获取所述同步信息;其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。所述第一时域资源和所述第二时域资源在时域上不重叠。
具体地,终端设备在第一时间间隔中的第一时域资源上利用定位模块进行搜索,从而获得第一信息中的以下至少一种信息:终端设备的位置信息、非服务卫星的星历信息。终端设备在第一时间间隔中的第二时域资源上利用通信模块接收系统消息和/或下行参考信号,从所述系统消息和/或下行参考信号中获取第一信息中的以下至少一种信息:公共定时信息、公共定时变化信息、公共频偏信息、公共频偏变化信息、网络设备的位置信息、服务卫星的星历信息。
以下结合具有应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
参照图13,以第一物理信道或信号包括寻呼消息为例,第一时间间隔为第一物理信道或信号后的时间间隔。如果终端设备在寻呼机会上收到寻呼消息,则终端设备在第一时间间隔内获取同步信息,进一步,终端设备在第一时间间隔内基于同步信息进行时频同步,例如进行TA调整。如果终端设备在寻呼机会上没有收到寻呼消息,则终端设备忽略第一时间间隔。
应用实例二
参照图14-1和图14-2,以第一物理信道或信号包括WUS/GWUS和寻呼消息为例,第一时间间 隔为第一物理信道或信号后的时间间隔(如图14-1所示)或第一时间间隔为WUS/GWUS和寻呼消息中间的时间间隔(如图14-2所示)。第二时间间隔为WUS/GWUS和寻呼消息之间的时间间隔(如图8或图9所示)。第一时间间隔和第二时间间隔可以完全不重叠,也可以至少部分重叠,本申请对此并不限定。
如果终端设备收到WUS/GWUS,则终端设备在第一时间间隔内获取同步信息,进一步,终端设备在第一时间间隔内基于同步信息进行时频同步,例如进行TA调整。如果终端设备没有收到WUS/GWUS,则终端设备忽略第一时间间隔。
应用实例三
终端设备被配置PUR。终端设备可以在空闲态使用网络设备预配置的上行资源(即PUR)进行PUSCH传输而不需要完成随机接入过程。终端设备在连接态的时候可以请求被配置PUR或请求PUR配置释放。网络设备可以基于终端设备的请求、终端设备的注册信息和/或当地政策为终端设备配置PUR。PUR仅在收到小区PUR配置的小区中生效。
参照图15-1和图15-2,以第一物理信道或信号包括基于PUR的传输为例,第一时间间隔在时域上位于PUR之前。当上层请求重建立或恢复RRC连接,且终端设备被配置有效的PUR时,终端设备应在第一时间间隔内获取同步信息,进一步,终端设备在第一时间间隔内基于同步信息进行时频同步,例如进行TA调整。在满足TA有效性准则时,终端设备可以触发基于PUR的传输。这里,如果基于PUR的传输持续时间很长,则在该上行传输中间也需要间隔一个或多个第一时间间隔,以保证终端设备重新进行时频同步。
如图15-1所示,在基于PUR的传输之后,终端设备在PUR搜索空间窗(例如PUR-MPDCCH搜索窗)内检测PUR-RNTI扰码的下行控制信道例如MPDCCH,如果未检测到下行控制信道或者检测到下行控制信道携带回退模式指示信息,则终端设备在PUR搜索空间窗之后的第一时间间隔内进行时频同步,而后进行上行传输。
如图15-2所示,在基于PUR的传输之后,终端设备在PUR搜索空间窗(例如PUR-MPDCCH搜索窗)内检测PUR-RNTI扰码的下行控制信道例如MPDCCH,如果检测到下行控制信道携带ACK信息,则终端设备可以停止下行控制信道的检测。
上述方案中,如果终端设备使用PUR进行PUSCH传输的结束子帧为子帧n,则终端设备应从子帧n+k开始在PUR搜索空间窗内检测MPDCCH,作为示例,k的取值为4或k的取值为4+Koffset。
应用实例四
终端设备被配置或被调度第一物理信道或信号的传输,其中,第一物理信道或信号占用的时域资源很长。相应地,终端设备可以根据预定义或网络设备的配置,在第一物理信道或信号的传输过程中包括多个第一时间间隔。其中,该多个第一时间间隔的长度可以相同;或者,该多个第一时间间隔的长度中的至少两个第一时间间隔的长度可以不同。在一些实施例中,第一物理信道或信号连续传输的时间长度小于256毫秒。
如图15-3所示,第一物理信道或信号为第一物理上行共享信道,其中,第一物理上行共享信道的长度为512毫秒,并且假设根据预定义规则,第一物理信道或信号连续传输的时间长度为128毫秒。则在第一物理上行共享信道的传输过程中,每连续传输128毫秒需要包括一个第一时间间隔,即一共包括4个第一时间间隔。不同的第一时间间隔可以对应不同的终端设备行为。在该示例中,第一个和第三个第一时间间隔用于上行同步获取及TA调整,对应第一长度;第二个和第四个第一时间间隔用于TA调整,对应第二长度。在该示例中,第一长度大于第二长度。
本申请实施例的技术方案,可以解决在信道或信号连续传输过程中,终端设备与网络设备之间如何重新进行同步的问题。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限 定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图16是本申请实施例提供的同步装置的结构组成示意图一,应用于终端设备,如图16所示,所述同步装置包括:
确定单元1601,用于确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;
获取单元1602,用于基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
在一些实施例中,所述同步信息包括以下至少之一:
上行定时同步、上行频偏同步、下行定时同步、下行频偏同步。
在一些实施例中,所述同步信息由所述终端设备的定位模块和/或通信模块获取得到。
在一些实施例中,所述同步信息基于第一信息获取得到,所述第一信息包括以下至少之一:
定时信息、定时变化信息、频偏信息、频偏变化信息、位置信息、星历信息。
在一些实施例中,所述定时信息包括公共定时信息。
在一些实施例中,所述定时变化信息包括公共定时变化信息。
在一些实施例中,所述频偏信息包括公共频偏信息。
在一些实施例中,所述频偏变化信息包括公共频偏变化信息。
在一些实施例中,所述位置信息包括所述终端设备的位置信息和/或网络设备的位置信息。
在一些实施例中,所述星历信息包括服务卫星的星历信息和/或非服务卫星的星历信息;
其中,所述星历信息包括卫星的位置信息和/或卫星的速度信息。
在一些实施例中,所述终端设备的通信模块用于获取系统消息和/或下行参考信号,所述系统消息和/或下行参考信号携带所述第一信息。
在一些实施例中,所述第一物理信道或信号包括上行物理信道或上行参考信号,所述同步信息用于发送所述第一物理信道或信号。
在一些实施例中,所述第一物理信道或信号包括以下至少一种:
PRACH、随机接入过程中的消息3、PUSCH、PUCCH、EDT、基于PUR的传输。
在一些实施例中,所述第一物理信道或信号包括下行物理信道或下行参考信号,所述同步信息用于接收所述第一物理信道或信号。
在一些实施例中,所述第一物理信道或信号包括以下至少一种:
WUS、P-RNTI扰码的PDCCH、寻呼消息、同步信号、系统消息。
在一些实施例中,所述第一时间间隔中的至少部分时域资源不用于所述终端设备的通信模块进行收发;和/或,
所述第一时间间隔中的至少部分时域资源用于所述终端设备的定位模块进行搜索;和/或,
所述第一时间间隔中的至少部分时域资源用于所述终端设备的通信模块接收网络设备发送的系统消息和/或下行参考信号;和/或,
所述第一时间间隔中的至少部分时域资源用于所述终端设备进行TA调整。
在一些实施例中,所述获取单元1602,用于基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源。
在一些实施例中,所述第一时域资源不用于所述终端设备的通信模块进行收发。
在一些实施例中,所述获取单元1602,用于基于所述第一时间间隔中的第二时域资源和所述终端设备的通信模块获取所述同步信息,其中,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。
在一些实施例中,所述获取单元1602,用于基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源,所述第一时域资源和所述第二时域资源在时域上不重叠。
在一些实施例中,所述同步信息包括所述终端设备的上行定时同步对应的定时提前TA值;所 述装置还包括:
调整单元1603,用于基于所述第一时间间隔和所述TA值进行TA调整。
在一些实施例中,所述第一时间间隔的长度满足以下至少一种特征:
所述第一时间间隔的长度大于或等于所述TA值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述TA值的最大值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述终端设备和网络设备之间的往返传输时间对应的长度。
在一些实施例中,所述第一时间间隔的长度是预定义的;或者,
所述第一时间间隔的长度是根据预定义的规则确定的;或者,
所述第一时间间隔的长度是根据网络设备的配置信息获取的。
在一些实施例中,所述第一时间间隔的起始位置是预定义的;或者,
所述第一时间间隔的起始位置是根据预定义的规则确定的;或者,
所述第一时间间隔的起始位置是根据网络设备的配置信息获取的。
在一些实施例中,所述第一时间间隔的结束位置是预定义的;或者,
所述第一时间间隔的结束位置是根据预定义的规则确定的;或者,
所述第一时间间隔的结束位置是根据网络设备的配置信息获取的。
在一些实施例中,所述网络设备的配置信息通过以下信息中的至少一种传输:
系统消息、寻呼消息、WUS、无线资源控制RRC信令、媒体接入控制MAC控制单元CE和下行控制信息DCI。
在一些实施例中,所述第一时间间隔是根据第一偏移值和/或第二偏移值确定的,其中,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号的起始位置之间的距离;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第一偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的起始位置之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号的起始位置之间的距离;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第二偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的结束位置之间的距离。
在一些实施例中,所述第一时间间隔与所述第一物理信道或信号具有第一关联关系,其中,
所述第一关联关系通过系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE和DCI中的至少一种获取;或者,
所述第一关联关系是预定义的或根据预定义规则获取。
在一些实施例中,所述第一关联关系是预定义的或根据预定义规则获取,包括:
所述第一时间间隔在时域上位于所述第一物理信道或信号之前;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号中间。
在一些实施例中,所述第一时间间隔与第二信息具有第二关联关系,所述第二信息包括以下至少之一:
卫星场景、终端设备能力、覆盖增强等级。
在一些实施例中,所述第二关联关系通过系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE和DCI中的至少一种获取;或者,
所述第二关联关系是预定义的或根据预定义规则获取。
在一些实施例中,所述第二信息包括终端设备能力,所述第二关联关系包括:
所述第一时间间隔的长度是根据所述终端设备能力确定的;或者,
所述第一时间间隔的长度是网络设备根据所述终端设备能力配置的。
在一些实施例中,所述第二信息包括覆盖增强等级,所述第二关联关系包括:
所述第一时间间隔的长度是根据所述终端设备对应的覆盖增强等级确定的;或者,
所述第一时间间隔的长度是网络设备根据所述覆盖增强等级配置的。
本领域技术人员应当理解,本申请实施例的上述同步装置的相关描述可以参照本申请实施例的同步方法的相关描述进行理解。
图17是本申请实施例提供的同步装置的结构组成示意图二,应用于网络设备,如图17所示,所述同步装置包括:
发送单元1701,用于向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。
在一些实施例中,所述第一时间间隔的配置信息包括以下至少之一:
所述第一时间间隔的长度;
所述第一时间间隔的起始位置;
所述第一时间间隔的结束位置。
在一些实施例中,所述第一时间间隔的配置信息包括第一偏移值和/或第二偏移值,其中,
所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号的起始位置之间的距离;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第一偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的起始位置之间的距离。
在一些实施例中,所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号的起始位置之间的距离;或者,
所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第二偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的结束位置之间的距离。
在一些实施例中,所述第一时间间隔与所述第一物理信道或信号具有第一关联关系。
在一些实施例中,所述发送单元1701,还用于发送第三信息,所述第三信息用于确定所述第一关联关系,所述第三信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
在一些实施例中,所述第一时间间隔与第二信息具有第二关联关系,所述第二信息包括以下至少之一:
卫星场景、终端设备能力、覆盖增强等级。
在一些实施例中,所述发送单元1701,还用于发送第四信息,所述第四信息用于确定所述第二关联关系,所述第四信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
在一些实施例中,所述第二信息包括终端设备能力,所述装置还包括:
配置单元1702,用于根据所述终端设备能力配置所述第一时间间隔的长度。
在一些实施例中,所述第二信息包括覆盖增强等级,所述装置还包括:
配置单元1702,用于根据所述覆盖增强等级配置所述第一时间间隔的长度。
在一些实施例中,所述第一时间间隔的配置信息通过以下信息中的至少一种传输:
系统消息、寻呼消息、WUS、RRC信令、MAC CE和下行控制信息DCI。
在一些实施例中,所述第一时间间隔中的第一时域资源用于所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源。
在一些实施例中,所述第一时域资源不用于所述终端设备的通信模块进行收发。
在一些实施例中,所述第一时间间隔中的第二时域资源用于所述终端设备的通信模块获取所述同步信息,其中,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。
在一些实施例中,所述第一时间间隔中的第二时域资源与所述第一时间间隔中的第一时域资源不重叠,所述第一时域资源用于所述终端设备的定位模块获取所述同步信息。
在一些实施例中,所述同步信息包括所述终端设备的上行定时同步对应的TA值;所述第一时间间隔的长度满足以下至少一种特征:
所述第一时间间隔的长度大于或等于所述TA值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述TA值的最大值对应的定时偏移长度;
所述第一时间间隔的长度大于或等于所述终端设备和网络设备之间的往返传输时间对应的长度。
本领域技术人员应当理解,本申请实施例的上述同步装置的相关描述可以参照本申请实施例的同步方法的相关描述进行理解。
图18是本申请实施例提供的一种通信设备1800示意性结构图。该通信设备可以终端设备,也可以是网络设备。图18所示的通信设备1800包括处理器1810,处理器1810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,通信设备1800还可以包括存储器1820。其中,处理器1810可以从存储器1820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1820可以是独立于处理器1810的一个单独的器件,也可以集成在处理器1810中。
可选地,如图18所示,通信设备1800还可以包括收发器1830,处理器1810可以控制该收发器1830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1830可以包括发射机和接收机。收发器1830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1800具体可为本申请实施例的网络设备,并且该通信设备1800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1800具体可为本申请实施例的移动终端/终端设备,并且该通信设备1800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例的芯片的示意性结构图。图19所示的芯片1900包括处理器1910,处理器1910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图19所示,芯片1900还可以包括存储器1920。其中,处理器1910可以从存储器1920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1920可以是独立于处理器1910的一个单独的器件,也可以集成在处理器1910中。
可选地,该芯片1900还可以包括输入接口1930。其中,处理器1910可以控制该输入接口1930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1900还可以包括输出接口1940。其中,处理器1910可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图20是本申请实施例提供的一种通信系统2000的示意性框图。如图20所示,该通信系统2000包括终端设备2010和网络设备2020。
其中,该终端设备2010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备2020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可 以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计 算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种同步方法,所述方法包括:
    终端设备确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;
    所述终端设备基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
  2. 根据权利要求1所述的方法,其中,所述同步信息包括以下至少之一:
    上行定时同步、上行频偏同步、下行定时同步、下行频偏同步。
  3. 根据权利要求1或2所述的方法,其中,所述同步信息由所述终端设备的定位模块和/或通信模块获取得到。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述同步信息基于第一信息获取得到,所述第一信息包括以下至少之一:
    定时信息、定时变化信息、频偏信息、频偏变化信息、位置信息、星历信息。
  5. 根据权利要求4所述的方法,其中,所述定时信息包括公共定时信息。
  6. 根据权利要求4或5所述的方法,其中,所述定时变化信息包括公共定时变化信息。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述频偏信息包括公共频偏信息。
  8. 根据权利要求4至7中任一项所述的方法,其中,所述频偏变化信息包括公共频偏变化信息。
  9. 根据权利要求4至8中任一项所述的方法,其中,所述位置信息包括所述终端设备的位置信息和/或网络设备的位置信息。
  10. 根据权利要求4至9中任一项所述的方法,其中,所述星历信息包括服务卫星的星历信息和/或非服务卫星的星历信息;
    其中,所述星历信息包括卫星的位置信息和/或卫星的速度信息。
  11. 根据权利要求4至10中任一项所述的方法,其中,所述终端设备的通信模块用于获取系统消息和/或下行参考信号,所述系统消息和/或下行参考信号携带所述第一信息。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述第一物理信道或信号包括上行物理信道或上行参考信号,所述同步信息用于发送所述第一物理信道或信号。
  13. 根据权利要求12所述的方法,其中,所述第一物理信道或信号包括以下至少一种:
    物理随机接入信道PRACH、随机接入过程中的消息3、物理上行共享信道PUSCH、物理上行控制信道PUCCH、数据提前传输EDT、基于预配置上行资源PUR的传输。
  14. 根据权利要求1至11中任一项所述的方法,其中,所述第一物理信道或信号包括下行物理信道或下行参考信号,所述同步信息用于接收所述第一物理信道或信号。
  15. 根据权利要求14所述的方法,其中,所述第一物理信道或信号包括以下至少一种:
    唤醒信号WUS、寻呼-无线网络临时标识P-RNTI扰码的物理下行控制信道PDCCH、寻呼消息、同步信号、系统消息。
  16. 根据权利要求1至15中任一项所述的方法,其中,
    所述第一时间间隔中的至少部分时域资源不用于所述终端设备的通信模块进行收发;和/或,
    所述第一时间间隔中的至少部分时域资源用于所述终端设备的定位模块进行搜索;和/或,
    所述第一时间间隔中的至少部分时域资源用于所述终端设备的通信模块接收网络设备发送的系统消息和/或下行参考信号;和/或,
    所述第一时间间隔中的至少部分时域资源用于所述终端设备进行TA调整。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述终端设备基于所述第一时间间隔获取所述同步信息,包括:
    所述终端设备基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源。
  18. 根据权利要求17所述的方法,其中,所述第一时域资源不用于所述终端设备的通信模块进行收发。
  19. 根据权利要求1至18中任一项所述的方法,其中,所述终端设备基于所述第一时间间隔获取所述同步信息,包括:
    所述终端设备基于所述第一时间间隔中的第二时域资源和所述终端设备的通信模块获取所述同步信息,其中,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。
  20. 根据权利要求19所述的方法,其中,所述终端设备基于所述第一时间间隔中的第一时域资源和所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源,所述第一时域资源和所述第二时域资源在时域上不重叠。
  21. 根据权利要求1至20中任一项所述的方法,其中,所述同步信息包括所述终端设备的上行定时同步对应的定时提前TA值;
    所述终端设备基于所述第一时间间隔和所述TA值进行TA调整。
  22. 根据权利要求21所述的方法,其中,所述第一时间间隔的长度满足以下至少一种特征:
    所述第一时间间隔的长度大于或等于所述TA值对应的定时偏移长度;
    所述第一时间间隔的长度大于或等于所述TA值的最大值对应的定时偏移长度;
    所述第一时间间隔的长度大于或等于所述终端设备和网络设备之间的往返传输时间对应的长度。
  23. 根据权利要求1至22中任一项所述的方法,其中,
    所述第一时间间隔的长度是预定义的;或者,
    所述第一时间间隔的长度是根据预定义的规则确定的;或者,
    所述第一时间间隔的长度是根据网络设备的配置信息获取的。
  24. 根据权利要求1至23中任一项所述的方法,其中,
    所述第一时间间隔的起始位置是预定义的;或者,
    所述第一时间间隔的起始位置是根据预定义的规则确定的;或者,
    所述第一时间间隔的起始位置是根据网络设备的配置信息获取的。
  25. 根据权利要求1至24中任一项所述的方法,其中,
    所述第一时间间隔的结束位置是预定义的;或者,
    所述第一时间间隔的结束位置是根据预定义的规则确定的;或者,
    所述第一时间间隔的结束位置是根据网络设备的配置信息获取的。
  26. 根据权利要求23至25中任一项所述的方法,其中,所述网络设备的配置信息通过以下信息中的至少一种传输:
    系统消息、寻呼消息、WUS、无线资源控制RRC信令、媒体接入控制MAC控制单元CE和下行控制信息DCI。
  27. 根据权利要求1至26中任一项所述的方法,其中,所述第一时间间隔是根据第一偏移值和/或第二偏移值确定的,其中,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
  28. 根据权利要求27所述的方法,其中,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号的起始位置之间的距离;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第一偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的起始位置之间的距离。
  29. 根据权利要求27所述的方法,其中,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号的起始位置之间的距离;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第二偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的结束位置之间的距离。
  30. 根据权利要求1至29中任一项所述的方法,其中,所述第一时间间隔与所述第一物理信道或信号具有第一关联关系,其中,
    所述第一关联关系通过系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE和DCI中的至少一种获取;或者,
    所述第一关联关系是预定义的或根据预定义规则获取。
  31. 根据权利要求30所述的方法,其中,所述第一关联关系是预定义的或根据预定义规则 获取,包括:
    所述第一时间间隔在时域上位于所述第一物理信道或信号之前;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之后;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号中间。
  32. 根据权利要求1至31中任一项所述的方法,其中,所述第一时间间隔与第二信息具有第二关联关系,所述第二信息包括以下至少之一:
    卫星场景、终端设备能力、覆盖增强等级。
  33. 根据权利要求32所述的方法,其中,所述第二关联关系通过系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE和DCI中的至少一种获取;或者,
    所述第二关联关系是预定义的或根据预定义规则获取。
  34. 根据权利要求32或33所述的方法,其中,所述第二信息包括终端设备能力,所述第二关联关系包括:
    所述第一时间间隔的长度是根据所述终端设备能力确定的;或者,
    所述第一时间间隔的长度是网络设备根据所述终端设备能力配置的。
  35. 根据权利要求32或33所述的方法,其中,所述第二信息包括覆盖增强等级,所述第二关联关系包括:
    所述第一时间间隔的长度是根据所述终端设备对应的覆盖增强等级确定的;或者,
    所述第一时间间隔的长度是网络设备根据所述覆盖增强等级配置的。
  36. 一种同步方法,所述方法包括:
    网络设备向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。
  37. 根据权利要求36所述的方法,其中,所述第一时间间隔的配置信息包括以下至少之一:
    所述第一时间间隔的长度;
    所述第一时间间隔的起始位置;
    所述第一时间间隔的结束位置。
  38. 根据权利要求36或37所述的方法,其中,所述第一时间间隔的配置信息包括第一偏移值和/或第二偏移值,其中,
    所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号之间的距离,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号之间的距离。
  39. 根据权利要求38所述的方法,其中,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第一偏移值用于确定所述第一时间间隔的起始位置和所述第一物理信道或信号的起始位置之间的距离;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第一偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的起始位置之间的距离。
  40. 根据权利要求38所述的方法,其中,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之前,所述第二偏移值用于确定所述第一时间间隔的结束位置和所述第一物理信道或信号的起始位置之间的距离;或者,
    所述第一时间间隔在时域上位于所述第一物理信道或信号之后,所述第二偏移值用于确定所述第一物理信道或信号的结束位置和所述第一时间间隔的结束位置之间的距离。
  41. 根据权利要求36至40中任一项所述的方法,其中,所述第一时间间隔与所述第一物理信道或信号具有第一关联关系。
  42. 根据权利要求41所述的方法,其中,所述方法还包括:
    所述网络设备发送第三信息,所述第三信息用于确定所述第一关联关系,所述第三信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
  43. 根据权利要求36至42中任一项所述的方法,其中,所述第一时间间隔与第二信息具有第二关联关系,所述第二信息包括以下至少之一:
    卫星场景、终端设备能力、覆盖增强等级。
  44. 根据权利要求43所述的方法,其中,所述方法还包括:
    所述网络设备发送第四信息,所述第四信息用于确定所述第二关联关系,所述第四信息携带在以下至少一种消息中:系统消息、寻呼消息、唤醒信号、RRC信令、MAC CE、DCI。
  45. 根据权利要求43或44所述的方法,其中,所述第二信息包括终端设备能力,所述方法还包括:
    所述网络设备根据所述终端设备能力配置所述第一时间间隔的长度。
  46. 根据权利要求43或44所述的方法,其中,所述第二信息包括覆盖增强等级,所述方法还包括:
    所述网络设备根据所述覆盖增强等级配置所述第一时间间隔的长度。
  47. 根据权利要求36至46中任一项所述的方法,其中,所述第一时间间隔的配置信息通过以下信息中的至少一种传输:
    系统消息、寻呼消息、WUS、RRC信令、MAC CE和下行控制信息DCI。
  48. 根据权利要求36至47中任一项所述的方法,其中,所述第一时间间隔中的第一时域资源用于所述终端设备的定位模块获取所述同步信息,其中,所述第一时域资源为所述第一时间间隔中的至少部分时域资源。
  49. 根据权利要求48所述的方法,其中,所述第一时域资源不用于所述终端设备的通信模块进行收发。
  50. 根据权利要求36至49中任一项所述的方法,其中,所述第一时间间隔中的第二时域资源用于所述终端设备的通信模块获取所述同步信息,其中,所述第二时域资源为所述第一时间间隔中的至少部分时域资源。
  51. 根据权利要求50所述的方法,其中,所述第一时间间隔中的第二时域资源与所述第一时间间隔中的第一时域资源不重叠,所述第一时域资源用于所述终端设备的定位模块获取所述同步信息。
  52. 根据权利要求36至51中任一项所述的方法,其中,所述同步信息包括所述终端设备的上行定时同步对应的TA值;所述第一时间间隔的长度满足以下至少一种特征:
    所述第一时间间隔的长度大于或等于所述TA值对应的定时偏移长度;
    所述第一时间间隔的长度大于或等于所述TA值的最大值对应的定时偏移长度;
    所述第一时间间隔的长度大于或等于所述终端设备和网络设备之间的往返传输时间对应的长度。
  53. 一种同步装置,应用于终端设备,所述装置包括:
    确定单元,用于确定第一时间间隔,所述第一时间间隔用于所述终端设备获取同步信息;
    获取单元,用于基于所述第一时间间隔获取所述同步信息,所述同步信息用于传输第一物理信道或信号。
  54. 一种同步装置,应用于网络设备,所述装置包括:
    发送单元,用于向终端设备发送第一时间间隔的配置信息,所述第一时间间隔用于所述终端设备获取同步信息,所述同步信息用于所述终端设备传输第一物理信道或信号。
  55. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至35中任一项所述的方法。
  56. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求36至52中任一项所述的方法。
  57. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至35中任一项所述的方法。
  58. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求36至52中任一项所述的方法。
  59. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至35中任一项所述的方法。
  60. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求36至52中任一项所述的方法。
  61. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至35中任一项所述的方法。
  62. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求36至52中任一项所述的方法。
  63. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至35中任一项所述的方法。
  64. 一种计算机程序,所述计算机程序使得计算机执行如权利要求36至52中任一项所述的方法。
PCT/CN2021/084168 2021-03-30 2021-03-30 一种同步方法及装置、终端设备、网络设备 WO2022205015A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/084168 WO2022205015A1 (zh) 2021-03-30 2021-03-30 一种同步方法及装置、终端设备、网络设备
CN202180096634.XA CN117136576A (zh) 2021-03-30 2021-03-30 一种同步方法及装置、终端设备、网络设备
EP21933695.5A EP4319246A4 (en) 2021-03-30 2021-03-30 SYNCHRONIZATION METHOD AND APPARATUS, TERMINAL DEVICE AND NETWORK DEVICE
US18/371,385 US20240031960A1 (en) 2021-03-30 2023-09-21 Synchronization method and apparatus, and terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084168 WO2022205015A1 (zh) 2021-03-30 2021-03-30 一种同步方法及装置、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/371,385 Continuation US20240031960A1 (en) 2021-03-30 2023-09-21 Synchronization method and apparatus, and terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022205015A1 true WO2022205015A1 (zh) 2022-10-06

Family

ID=83455478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084168 WO2022205015A1 (zh) 2021-03-30 2021-03-30 一种同步方法及装置、终端设备、网络设备

Country Status (4)

Country Link
US (1) US20240031960A1 (zh)
EP (1) EP4319246A4 (zh)
CN (1) CN117136576A (zh)
WO (1) WO2022205015A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012524A (zh) * 2018-01-05 2019-07-12 维沃移动通信有限公司 时频同步方法、网络设备和终端
CN110830206A (zh) * 2018-08-10 2020-02-21 展讯通信(上海)有限公司 Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站
CN111064539A (zh) * 2019-12-23 2020-04-24 展讯半导体(南京)有限公司 一种上行同步方法、通信装置及存储介质
US20200374164A1 (en) * 2019-05-20 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Dmrs for mmw ran
CN112492623A (zh) * 2017-07-24 2021-03-12 华为技术有限公司 一种同步信号的发送方法、接收方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492623A (zh) * 2017-07-24 2021-03-12 华为技术有限公司 一种同步信号的发送方法、接收方法和装置
CN110012524A (zh) * 2018-01-05 2019-07-12 维沃移动通信有限公司 时频同步方法、网络设备和终端
CN110830206A (zh) * 2018-08-10 2020-02-21 展讯通信(上海)有限公司 Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站
US20200374164A1 (en) * 2019-05-20 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Dmrs for mmw ran
CN111064539A (zh) * 2019-12-23 2020-04-24 展讯半导体(南京)有限公司 一种上行同步方法、通信装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4319246A4 *

Also Published As

Publication number Publication date
US20240031960A1 (en) 2024-01-25
CN117136576A (zh) 2023-11-28
EP4319246A4 (en) 2024-05-29
EP4319246A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN113597794B (zh) 随机接入的方法和设备
EP4024971A1 (en) Random access method and terminal device
US20220124824A1 (en) Method for random access and communication device
WO2022205014A1 (zh) 信息传输方法、终端设备和网络设备
WO2022056854A1 (zh) 无线通信方法和设备
WO2022027387A1 (en) Rach procedures for non-terrestrial networks for base station
CN116438862A (zh) 无线通信方法和终端设备
WO2022205015A1 (zh) 一种同步方法及装置、终端设备、网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
WO2022027376A1 (en) Rach procedures for non-terrestrial networks for user equipment
WO2023206488A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
WO2022205002A1 (zh) 传输定时的调整方法、确定方法和终端设备
WO2021184335A1 (zh) 一种小区切换方法、终端设备及存储介质
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023206355A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
WO2022120591A1 (zh) 一种随机接入方法、电子设备及存储介质
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
WO2023077456A1 (zh) 随机接入的方法、终端设备和网络设备
WO2024061031A1 (zh) 一种通信的方法和装置
WO2023077384A1 (zh) 无线通信方法、终端设备和网络设备
WO2022155976A1 (zh) 初始接入方法、终端设备和网络设备
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
CN117203924A (zh) 无线通信的方法、终端设备和网络设备
CN117882476A (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021933695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933695

Country of ref document: EP

Effective date: 20231030