WO2024061031A1 - 一种通信的方法和装置 - Google Patents

一种通信的方法和装置 Download PDF

Info

Publication number
WO2024061031A1
WO2024061031A1 PCT/CN2023/117806 CN2023117806W WO2024061031A1 WO 2024061031 A1 WO2024061031 A1 WO 2024061031A1 CN 2023117806 W CN2023117806 W CN 2023117806W WO 2024061031 A1 WO2024061031 A1 WO 2024061031A1
Authority
WO
WIPO (PCT)
Prior art keywords
system information
control channel
downlink control
physical downlink
ssb
Prior art date
Application number
PCT/CN2023/117806
Other languages
English (en)
French (fr)
Inventor
王晖
廖树日
窦圣跃
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061031A1 publication Critical patent/WO2024061031A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communications, and, more specifically, to a communication method and device.
  • Non-terrestrial communication networks include satellite networks, high-altitude platforms, drones and other nodes, which together with the fifth generation (5G) system form a seamless global coverage of sea, land, air and space. , integrated communication network to meet various business needs.
  • 5G fifth generation
  • the ephemeris information of satellites in the NTN network is carried in system information (SI).
  • SI system information
  • the terminal equipment needs to obtain the SI in time to access the cell in time.
  • the search space of the physical downlink control channel (PDCCH) corresponding to the system information block (SIB) of the new radio (NR) using NTN technology is There is a mismatch problem between the patterns of SS) and synchronization signal block (SSB). If the terminal equipment continues to use the NR blind detection method to detect SI, the access efficiency of the terminal equipment will be low. Therefore, how to reduce the initial access delay of terminal equipment when 5G is applied to NTN scenarios is currently an issue that needs to be considered.
  • This application provides a communication method and device to determine the detection opportunity of the physical downlink control channel corresponding to the system information in the NTN network, and to reduce the waste of resources in blind detection of the system information in the detection opportunity of the physical downlink control channel. At the same time, the initial access delay is reduced.
  • embodiments of the present application provide a communication method, which can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device. This is not limited.
  • the method includes: the terminal device receives configuration information, the configuration information includes: an index of the first system information, the number n of synchronization information blocks SSB, where n is the number of SSBs in the yth group among Y groups within an SSB period.
  • the number, the y-th group is any one of the Y groups, and the number M of detection opportunities of the physical downlink control channel corresponding to the first system information included in the y-th group, where, n is an integer greater than 1, Y is an integer greater than or equal to 1, y is less than or equal to Y, and M is an integer greater than 1.
  • the terminal device determines the detection opportunity of the physical downlink control channel corresponding to the first system information according to the configuration information.
  • the terminal device acquires the first system information in a detection opportunity of a physical downlink control channel corresponding to the first system information.
  • the terminal device can obtain the number of SSBs of a group in an SSB cycle and the number of PDCCHs corresponding to the first system information in the group through the configuration information, and according to the The configuration information determines the detection opportunity of the PDCCH corresponding to the first credit information, optimizes the search space of the terminal device when searching for system information, and reduces the initial access delay.
  • the first system information includes one type of system information
  • the terminal device determines the physical downlink control channel corresponding to the first system information according to the configuration information.
  • K is the index of the SSB corresponding to the one type of system information
  • N is the total number of SSBs mentioned in T
  • o is the number of physical downlink control channel detection opportunities included in the time of receiving the SSB of the y-th packet
  • W is the detection of the physical downlink control channel in the system information window for receiving the 1 type of system information.
  • the number of opportunities, T is the time length of the system information window, which is used to receive the 1 type of system information, means upward Rounding, It means rounding down
  • mod is the modulus symbol.
  • the number of SSBs sent within the SSB time period of the y-th packet is n.
  • the terminal device can determine the time domain position of the search space of the scheduling information of the system information carried by the SSB with index K according to the configuration information, and calculate the detection opportunity of the first system information related to the terminal's random access through a formula. (time domain position in the search space), since the configuration information matches the SSB pattern, the reliability of blind detection of the terminal device can be improved, thereby reducing the delay for the terminal device to obtain random access related information.
  • the first system information includes P types of system information, P is an integer greater than 1, and the terminal device determines the first system information according to the configuration information.
  • K is the index of the SSB corresponding to the p-th system information
  • N is the total number of SSBs described in T
  • o is the number of detection opportunities of the physical downlink control channel contained in the time of receiving the SSB of the yth group
  • W is the number of detection opportunities of the physical downlink control channel in the system information window for receiving the P types of system information
  • T is the time length of the system information window
  • the system information window is used to receive the P types of system information
  • the pth type of system information is one of the P types of system information
  • mod is the modulus symbol.
  • the terminal device can blindly check multiple system information in one system information window, which increases the flexibility of network configuration, reduces the number of blind checks, and reduces the initial access delay.
  • the window length of the detection window of the physical downlink control channel corresponding to the first system information is equal to the SSB period.
  • the window length of the detection window of the physical downlink control channel corresponding to the first system information in the same manner as the SSB period, the number of blind detections by the terminal device in the physical downlink control channel can be reduced and system performance can be improved.
  • the first system information includes ephemeris information.
  • the terminal device receiving configuration information includes: the terminal device receiving second system information, and the second system information includes the configuration information.
  • embodiments of the present application provide a communication method, which can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device. This is not limited. For the convenience of description, The following description takes execution by the terminal device as an example.
  • the method includes: the terminal device receives configuration information, the configuration information includes: an index of first system information, the first system information includes P types of system information, P is an integer greater than or equal to 1, and the number of synchronization information blocks SSB n, n is the number of SSBs in the y-th group among Y groups in one SSB cycle, the y-th group is any one of the Y groups, and the y-th group includes The number M of physical downlink control channel detection opportunities corresponding to p types of system information.
  • the p-th type of system information is one of the P types of system information, where n is an integer greater than 1, and Y is greater than or equal to An integer of 1, y is less than or equal to Y, M is an integer greater than 1, p is an integer greater than or equal to 1 and less than or equal to P.
  • the terminal device determines the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information according to the configuration information.
  • the terminal device acquires the p-th type of system information in a detection opportunity of a physical downlink control channel corresponding to the p-th type of system information.
  • the detection opportunity of the physical downlink control channel corresponding to each type of system information in the first system information is configured through the configuration information received by the terminal device, which optimizes the search space of the terminal device when searching for system information and reduces the initial access delay.
  • the terminal device determines the detection opportunity of the physical downlink control channel corresponding to the p-th system information according to the configuration information, including: the p-th system
  • K is the index of the SSB corresponding to the p-th type of system information
  • N is the total number of SSBs mentioned in T
  • o is the number of detection opportunities of the physical downlink control channel included in the time of receiving the SSB of the y-th packet
  • W is the system information window for receiving the P-th system information and the p-th system
  • T is the time length of the system information window
  • the system information window is used to receive the first system information, means rounding up, It means rounding down
  • mod is the modulus symbol.
  • the time domain position of the detection opportunity of the physical downlink control channel corresponding to each of the P types of system information is different.
  • the terminal equipment can blindly detect different types of detection opportunities at different time domain positions.
  • System information optimizes the performance of terminal devices.
  • the window length of the detection window of the physical downlink control channel corresponding to the P types of system information is equal to the SSB period.
  • the terminal device can blindly check multiple system information in one system information window, which increases the flexibility of network configuration, reduces the number of blind checks, and reduces the initial access delay.
  • the P types of system information include ephemeris information.
  • the terminal device receiving configuration information includes: the terminal device receiving second system information, and the second system information includes the configuration information.
  • embodiments of the present application provide a communication method.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or a circuit). This is not limited.
  • a component of the network device such as a chip or a circuit.
  • the following description takes execution by a network device as an example.
  • the method includes: the network device sends configuration information, the configuration information is used by the terminal device to determine the detection opportunity of the physical downlink control channel corresponding to the first system information, and in the detection opportunity of the physical downlink control channel corresponding to the first system information
  • the first system information is obtained in , the y-th group is any one of the Y groups, and the number M of detection opportunities of the physical downlink control channel corresponding to the first system information included in the y-th group, where n is An integer greater than 1, Y is an integer greater than or equal to 1, y is less than or equal to Y, and M is an integer greater than 1.
  • the method further includes the network device determining the configuration information.
  • the network device can determine the configuration information according to the SSB pattern.
  • the first system information includes one type of system information
  • K is the index of the SSB corresponding to the one type of system information
  • N is the total number of SSBs mentioned in T
  • o is the number of detection opportunities of the physical downlink control channel included in the SSB time of sending the yth packet
  • W is the system information window in which the 1 type of system information is sent.
  • T is the time length of the system information window, which is used to send the one type of system information, means rounding up, It means rounding down
  • mod is the modulus symbol.
  • the first system information includes P types of system information, P is an integer greater than 1, and the physical downlink corresponding to the p-th type of system information in the P types of system information
  • K is the index of the SSB corresponding to the p-th type of system information
  • N is the total number of SSBs in T
  • o is the number of detection opportunities of the physical downlink control channel contained within the time of sending the SSB of the y-th packet
  • W is the number of detection opportunities in the system information window for sending the P types of system information.
  • the number of detection opportunities of the physical downlink control channel, T is the time length of the system information window
  • the system information window is used to send the P type of system information
  • the p-th type of system information is the P type of system information.
  • one of the means rounding up, It means rounding down
  • mod is the modulus symbol.
  • the window length of the detection window of the physical downlink control channel corresponding to the first system information is equal to the SSB period.
  • the first system information includes ephemeris information.
  • the network device sending configuration information includes: the network device sending second system information, and the second system information includes the configuration information.
  • embodiments of the present application provide a communication method.
  • the method can be executed by a network device, or can also be executed by a component of the network device (such as a chip or a circuit). This is not limited.
  • the network device sends configuration information.
  • the configuration information is used by the terminal device to determine the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information, and is obtained from the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information.
  • the p-th type of system information includes: an index of the first system information, the first system information includes P types of system information, P is an integer greater than or equal to 1, the number of synchronization information blocks SSB is n, n is the number of SSBs in the y-th group among Y groups in one SSB cycle, the y-th group is any one of the Y groups, and the p-th species included in the y-th group The number M of detection opportunities of the physical downlink control channel corresponding to the system information.
  • the p-th type of system information is one of the P types of system information, where n is an integer greater than 1, and Y is greater than or equal to 1. Integer, y is less than or equal to Y, M is an integer greater than 1, p is an integer greater than or equal to 1 and less than or equal to P.
  • the method further includes the network device determining the configuration information.
  • the network device can determine the configuration information according to the SSB pattern.
  • K is the index of the SSB corresponding to the p-th type of system information
  • N is the total number of SSBs mentioned in T
  • o is the number of detection opportunities of the physical downlink control channel contained in the SSB within the time of sending the SSB of the yth packet
  • W is the system information window in which the P types of system information are sent
  • T is the time length of the system information window
  • the system information window is used to send the P type of system information, means rounding up, It means rounding down
  • mod is the modulus symbol.
  • the time domain position of the detection opportunity of the physical downlink control channel corresponding to each of the P types of system information is different.
  • the period of the detection window of the physical downlink control channel corresponding to the P types of system information is equal to the SSB period.
  • the P types of system information include ephemeris information.
  • the network device sending configuration information includes: the network device sending second system information, and the second system information includes the configuration information.
  • a fifth aspect provides a communication device, which is used to perform the method provided in the first or second aspect.
  • the communication device may include units and/or modules for executing the method provided by the first aspect or any one of the above implementations of the first aspect, such as a processing unit and an acquisition unit.
  • the communication device may include units and/or modules for executing the method provided by the second aspect or any of the above implementations of the second aspect, such as a processing unit and an acquisition unit.
  • the communication device is a terminal device.
  • the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip, chip system or circuit in the terminal device.
  • the acquisition unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a sixth aspect provides a communication device, which is used to perform the method provided in the third or fourth aspect.
  • the communication device may include units and/or modules for executing the method provided by the third aspect or any of the above implementations of the third aspect, such as a processing unit and an acquisition unit.
  • the communication device may include units and/or modules for executing the method provided by the fourth aspect or any of the above implementations of the fourth aspect, such as a processing unit and an acquisition unit.
  • the communication device is a terminal device.
  • the acquisition unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip, chip system or circuit in the terminal device.
  • the acquisition unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.;
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • this application provides a processor, including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor performs the first to fourth aspects and The method in any possible implementation manner of the first to fourth aspects.
  • the above-mentioned processor can be a chip, the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver, and the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to perform the first to fourth aspects and the method in any possible implementation manner of the first to fourth aspects. .
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the arrangement of the memory and the processor.
  • ROM read-only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the eighth aspect can be a chip, and the processor can be implemented by hardware or software.
  • the processor can be a logic circuit, an integrated circuit, etc.; when implemented by software,
  • the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
  • the memory can be integrated in the processor, or can be located outside the processor and exist independently.
  • a computer-readable storage medium stores program code for device execution, and the program code includes the method provided by any one of the implementations of the first aspect or the second aspect.
  • a computer-readable storage medium stores program code for device execution, and the program code includes the method provided by any one of the implementations of the third aspect or the fourth aspect.
  • a computer program product comprising instructions is provided.
  • the computer program product is run on a computer, the computer is caused to execute the method provided in any one of the implementations of the first aspect or the second aspect.
  • a twelfth aspect provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer is caused to execute the method provided by any implementation of the third aspect or the fourth aspect.
  • a thirteenth aspect provides a communication system, including the communication device described in the fifth aspect and the communication device described in the sixth aspect.
  • Figure 1 shows a schematic diagram of a network architecture applicable to the embodiment of the present application.
  • Figure 2 shows a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 3 shows a schematic diagram of another application scenario according to the embodiment of the present application.
  • Figure 4 shows a schematic diagram of detection opportunities of PDCCH corresponding to the existing first type of system information.
  • Figure 5 shows a schematic diagram of detection opportunities of PDCCH corresponding to the existing second type of system information.
  • Figure 6 shows an SSB pattern suitable for embodiments of the present application.
  • Figure 7 shows a schematic flow chart of a communication method 700 provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the corresponding PDCCH detection opportunities corresponding to the first type of first system information of the communication method 700 provided by the embodiment of the present application.
  • Figure 9 shows the corresponding PDCCH corresponding to the second first system information of the communication method 700 provided by the embodiment of the present application. Schematic diagram of detection opportunities.
  • Figure 10 shows a schematic diagram when the period of the PDCCH detection window corresponding to the first system information provided by the embodiment of the present application is not equal to the SSB period.
  • Figure 11 shows a schematic flow chart of a communication method 1100 provided by an embodiment of the present application.
  • FIG. 12 shows a schematic diagram of the corresponding PDCCH detection opportunities corresponding to a kind of first system information of the communication method 1100 provided by the embodiment of the present application.
  • Figure 13 shows a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • Figure 14 shows a schematic block diagram of a communication device 1400 provided by an embodiment of the present application.
  • Figure 15 shows a schematic block diagram of a chip system 1500 provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • Figure 1 illustrates the network architecture of the integration of satellite communication systems and fifth generation mobile communication technology (5G), including at least one terminal device, such as terminal device 110, terminal device 111, and at least one network device, such as Network equipment 120, network equipment 121, network equipment 122, and core network equipment 130.
  • Network equipment can be satellites and gateways, used to provide communication services to terminal devices. Among them, gateway stations can also be called ground stations, gateway stations, etc.
  • the link between the satellite and the terminal equipment is called the service link, and the link between the satellite and the gateway station is the feeder link.
  • ground terminal equipment accesses the network through the 5G new air interface, and the 5G network equipment is deployed on the satellite and connected to the core network equipment on the ground through a wireless link.
  • the wireless link there is a wireless link between the satellites to complete the signaling interaction and user data transmission between network devices.
  • the terminal equipment in the embodiment of the present application may also be called terminal, access terminal, user equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user Agent or user device.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, in 5G network Terminals or terminals in future evolution networks, etc.
  • SIP session initiation protocol
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the network device in the embodiment of the present application can be any communication device with wireless transceiver functions used to communicate with user equipment. It can be a network device deployed on a satellite or a network device deployed on the ground.
  • the network equipment includes but is not limited to: evolved Node B (eNB), Node B (NB), base transceiver station (BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point in the wireless fidelity (wireless fidelity, WIFI) system (transmission point, TP) or transmission and reception point (TRP), etc., which can also be 5G, such as gNB in the NR system, or transmission point (TRP or TP), one or more of the base stations in the 5G system.
  • 5G such as gNB in the NR system, or transmission point (TRP or TP), one or more of the base stations in the 5G system.
  • a group (including multiple antenna panels) of antenna panels can also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the RRC layer information is generated by the CU, and will eventually be encapsulated by the PHY layer of the DU into PHY layer information, or converted from the PHY layer information. Therefore, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the access network, or the CU can be divided into network devices in the core network (core network, CN), which is not limited in this application
  • Core network equipment 130 is used for initial access control, mobility management, session management, user security authentication, accounting and other services. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane. Each functional entity is not shown in Figure 1.
  • New air interface The wireless link between terminal equipment and network equipment.
  • Xn interface The interface between network equipment and network equipment, mainly used for signaling interactions such as switching.
  • NG interface The interface between network equipment and core network equipment. It mainly exchanges NAS and other signaling of the core network, as well as user business data.
  • the above-mentioned devices may still use their names in the 5G communication system, or may have other names, which are not limited in the embodiments of this application.
  • the functions of the above devices can be completed by an independent device or by several devices together.
  • network elements in the core network may be deployed on the same or different physical devices, which is not limited in the embodiments of this application.
  • Figure 1 is only an example and does not constitute any limitation on the scope of protection of the present application.
  • the communication method provided by the embodiment of the present application may also involve network elements or equipment not shown in Figure 1.
  • the communication method provided by the embodiment of the present application may also only include some of the equipment shown in Figure 1. This embodiment of the present application does not Not limited.
  • the above network architecture applied to the embodiments of the present application is only an example.
  • the network architecture applicable to the embodiments of the present application is not limited to this. Any network architecture that can realize the functions of each of the above devices is applicable to the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example: satellite communication systems, high altitude platform station (HAPS) communications, non-terrestrial network (NTN) systems such as drones, integrated communication and navigation (IcaN) systems, global navigation satellite systems (GNSS) and ultra-dense low-orbit satellite communication systems, general packet radio service (GPRS), LTE systems, including LTE frequency division duplex (FDD) systems and LTE time division duplex (TDD) systems, and long term evolution technology for vehicle communication (long tcd).
  • satellite communication systems for example: satellite communication systems, high altitude platform station (HAPS) communications, non-terrestrial network (NTN) systems such as drones, integrated communication and navigation (IcaN) systems, global navigation satellite systems (GNSS) and ultra-dense low-orbit satellite communication systems, general packet radio service (GPRS), LTE systems, including LTE frequency division duplex (FDD) systems and LTE time division duplex (TDD) systems, and long term evolution technology for vehicle communication
  • V2X vehicle-to-X
  • V2X can include vehicle-to-network (V2N), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), etc.
  • Internet of Vehicles Internet of Vehicles, machine type communication (MTC), Internet of Things (IoT), machine to machine (M2M), etc.
  • MTC machine type communication
  • IoT Internet of Things
  • M2M machine to machine
  • satellite communication systems include transparent transmission satellite architecture and non-transparent transmission satellite architecture.
  • Transparent transmission is also called elbow forwarding transmission, that is, the signal only undergoes frequency conversion, signal amplification and other processes on the satellite.
  • the satellite is transparent to the signal.
  • Non-transparent transmission is also called regenerative (on-board access/processing) transmission, that is, the satellite has some or all base station functions.
  • the gateway station has the functions of a base station or part of the functions of a base station.
  • the gateway station can be regarded as a ground base station, or the ground base station can be deployed separately from the gateway station.
  • the satellite When the satellite is working in the regenerative mode, the satellite has data processing capabilities and has the function of a base station or part of the base station function.
  • the satellite can be regarded as a base station.
  • Satellites can be low Earth orbit (LEO) satellites, non-geostationary earth orbit (NGEO) satellites, etc. Satellites can provide communication services, navigation services, and positioning services to terminal devices through multiple beams. Satellites use multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division and space division. Satellites communicate wirelessly with terminal equipment through broadcast communication signals and navigation signals, and satellites can communicate wirelessly with ground station equipment.
  • the satellite mentioned in the embodiment of this application may be a satellite base station, may also include an orbiting receiver or repeater for relaying information, or may be a network-side device mounted on the satellite.
  • FIG. 2 shows a schematic diagram of an application scenario according to the embodiment of the present application.
  • This scenario can be called “Transparent Satellite Architecture (RAN) architecture with transparent satellite)", or called bentpipe mode.
  • 3GPP non-3rd generation partnership project
  • Interworking function non-3GPP interworking function, N3IWF + satellite hub (satellite hub) communicate through non-3GPP radio protocol (non-3GPP radio protocol)
  • N3IWF + satellite hub can communicate through next generation (NG)
  • the interface (N2/N3) is connected to the 5G core network (5G CN), and the 5G CN is connected to the data network (DN) through the N6 interface.
  • the UE and satellite The NR protocol can be used to communicate between satellites and gNB. In this scenario, the satellite only plays the role of frequency conversion and forwarding.
  • FIG 3 shows a schematic diagram of another application scenario according to the embodiment of the present application.
  • This scenario can be called regenerative mode.
  • the satellite in this scenario is DU (NG-RAN with a regenerative satellite based on gNB-DU).
  • the UE and the satellite can communicate through the NR protocol, and the satellite and gNB-CU are connected through the F1 interface.
  • the terminal equipment After the cell search process, the terminal equipment has obtained downlink synchronization with the cell and obtained the physical cell identifier (PCI) of the cell. Subsequently, the terminal device obtains the system information (SI) of the cell and learns the configuration of the cell in order to access the cell and work normally in the cell.
  • PCI physical cell identifier
  • System information is cell-level information, which is effective for all terminal devices accessing the cell.
  • System information is organized in the form of system information block (SIB).
  • SIB system information block
  • Each SIB contains a series of parameters related to a certain function.
  • SI is mainly divided into master information block (MIB) and SIBs.
  • SIBs are divided into 26 types, including SIB1, SIB2...SIB26 (i.e. SIBType1 to SIBType26).
  • SIBType1 to SIBType26 When the terminal device is normally resident and initiates random access, it is generally necessary to obtain MIB, SIB1 and SIB2.
  • SI still includes MIBs and SIBs, of which SIBs are divided into 9 types, including SIB1, SIB2...SIBX. And redefine SIBs other than MIB and SIB1 as other system information (OSI).
  • OSI system information
  • the system messages obtained by the terminal device include MIB and SIB1.
  • MIB minimum system information
  • RMSI remaining minimum system information
  • OSI is delivered through SI messages, and each SI message contains one or more SIBs other than SIB1 that have the same scheduling requirements (these SIBs have the same transmission cycle).
  • the SIB contained in an SI message is specified through si-SchedulingInfo in SIB1.
  • Each SIB can only be included in one SI message.
  • each SI message is only transmitted in one SI window (SI-windows): that is, 1) an SI message is associated with an SI window, and this SI message can only be sent within the SI window and can be sent multiple times ( How many times, in which slots to send, etc., depends on the implementation of the base station), but other SI messages cannot be sent. 2)
  • SI windows are close to each other (if adjacent), there is no overlap, and there is no gap. 3)
  • the SI window length of all SI messages is the same. 4)
  • the periods of different SI messages are independent of each other.
  • each SI message contains at least 1 SIB, SIBs with the same scheduling period can be transmitted in the same SI message, and each SI message is only transmitted in one SI-window.
  • the satellite will tell the terminal device through the SIB1 information which SIs there are, which SIBs each SI contains, which SI window these SIs will be sent in, and the time domain position and length of the SI window, but will not tell the terminal In which subframes of the SI window the device schedules the SI.
  • the terminal device will try to decode in each subframe of the SI window corresponding to the SI message containing the SIB, that is, starting from the starting subframe of the SI window and continuing for si-WindowLength subframes. Until the SI message is successfully received.
  • satellite ephemeris is a list of position data of artificial satellites at various times, which is often used in the global positioning system (GPS). For example, in order to calculate the position of a point from GPS observations, the three-dimensional coordinates of the satellite observation time must be known. This observation time is the reference time of the ephemeris. Satellite ephemeris provides orbital parameters, and ephemeris can be used to determine the satellite's coordinates.
  • GPS global positioning system
  • the air interface delay is large.
  • the terminal device needs to accurately know the position of the satellite at each moment to calculate the timing advance in advance, so as to ensure that the uplink and downlink synchronization process of the initial access process proceeds smoothly.
  • the delay jitter and large Doppler frequency shift caused by the fast movement of low earth orbit (LEO) satellites will greatly affect the communication quality.
  • the satellite In order to accurately correct the time and frequency offset, the satellite sends its own orbit information and position information to the terminal equipment, so that the ground terminal equipment can accurately estimate the satellite's trajectory within a certain period of time, and calculate the timing advance based on the satellite's trajectory, using the timing In advance, the impact of air interface delay is offset, and the uplink and downlink synchronization process between the satellite side and the UE side is realized.
  • ephemeris information is included in SIBX and sent to the terminal device.
  • the terminal equipment detects the physical downlink control channel (PDCCH) of SIBX to obtain ephemeris information.
  • the terminal device searches for the candidate PDCCH that sends the system information wireless network temporary identity (RNTI) SI-RNTI in the public search space of the PDCCH, and after passing the verification, the corresponding SIB message will be obtained.
  • RNTI system information wireless network temporary identity
  • the terminal device obtains the SIBX message it will determine the location of the PDCCH monitoring occurrences of the SI message based on the value of the searchSpaceOtherSystemInformation field in the PDCCH.
  • searchSpaceOtherSystemInformation field it can be divided into two technical solutions according to the value of the searchSpaceOtherSystemInformation field.
  • the technical solution is to multiplex the PDCCH monitoring occasions (MO) of the SI message containing SIBX with the PDCCH monitoring occasions corresponding to SIB1.
  • the positions of SIB1 and SIBX can be calculated based on the position of the synchronization signal block (SSB) in the subframe shown in Figure 4, that is, the SSB pattern.
  • SSB synchronization signal block
  • a certain SSB can be calculated according to the corresponding formula.
  • the position of the PDCCH monitoring occasions of the SIBX corresponding to SSB#0 is the number of the slot in the subframe where SSB#0 is located.
  • the PDCCH monitoring occasions of the SI message will correspond to the [x*N+K]th time slot (slot) in the SI window.
  • x 0,1,....X-1.
  • N is the total number of SSBs.
  • the SSB pattern in this system is shown in Figure 6. That is, after sending 8 SSBs in the first 10ms, SIB1 and SIBX will be sent alternately. A complete blank system frame is then left open for sending information such as OSI.
  • the search space (SS) of SIBX is reused with the SS of SIB1, which will cause a waste of search resources of the terminal device.
  • the SS of SIBX is two consecutive slots, but one of the slots actually carries SIB1. Therefore, the terminal device's search resources are wasted.
  • the two consecutive slots corresponding to the SS of SIB1 are occupied by SIB1, or the user makes an error when decoding SIBX, at this time, it is necessary to wait for at least a complete SSB cycle to search for SIBX, causing the initial access delay. serious.
  • embodiments of the present application provide a communication method that configures configuration information that matches the pattern of SSB through the network device, so that the search space of SIBX matches the pattern of SSB, and at the same time, the length of the SI window is expanded to match
  • the SSB cycle can solve the problem of blind detection resource waste and initial access delay caused by the mismatch between SIBX's PDCCH MO and SSB pattern in the current NTN scenario.
  • the embodiments of the present application are only for convenience of understanding and explanation.
  • the interaction between a network device and a terminal device is used as an example to describe the method provided by the embodiments of the present application in detail.
  • the terminal equipment shown in the following embodiments can be replaced by components configured in the terminal equipment (such as circuits, chips, chip systems, or other programs that can be called). program and execute the function modules of the program, etc.).
  • the network devices shown in the following embodiments can be replaced by components configured in the network devices (such as circuits, chips, chip systems, or other functional modules capable of calling and executing programs, etc.).
  • As long as communication can be achieved according to the method provided by the embodiment of the present application by running a program that records the code of the method provided by the embodiment of the present application.
  • the physical downlink control channel (PDCCH) carries scheduling and other control information, including transmission format, resource allocation, uplink scheduling permission, power control, and uplink retransmission information.
  • the PDCCH channel is a set of physical resource elements (REs) that carry uplink and downlink control information.
  • the PDCCH carries information that distinguishes between public control information (public search space) and dedicated control information (dedicated search space). ).
  • the PDCCH information of different terminal equipment is distinguished by its corresponding radio network temporary identity (RNTI) information.
  • RNTI radio network temporary identity
  • Synchronization signal/physical broadcast channel block the synchronization signal/physical broadcast channel block can also become a synchronization signal block.
  • SSB includes the primary synchronization signal (PSS), the secondary synchronization signal (SSS) and the physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • a terminal device When a terminal device wants to access the network, it needs to perform cell search and obtain cell system information. For example, the terminal device can obtain downlink synchronization with the cell by searching for the above-mentioned SSB. After that, the terminal device obtains the system information of the cell, establishes a connection with the cell through a random access procedure, and obtains uplink synchronization.
  • the terminal device can obtain downlink synchronization with the cell by searching for the above-mentioned SSB. After that, the terminal device obtains the system information of the cell, establishes a connection with the cell through a random access procedure, and obtains uplink synchronization.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, priority, or importance, etc.
  • the names of first system information and second system information do not indicate the difference in content, information size, sending order, sender/receiver, priority or importance of the two pieces of information.
  • the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps.
  • detection opportunity can also be called “detection opportunity”.
  • detection opportunity and “detection opportunity” are used interchangeably. When the difference is not emphasized, The meaning they want to express is consistent.
  • Figure 7 is a schematic flow chart of the communication method 700 provided by the embodiment of the present application. The method includes the following steps.
  • the network device sends configuration information to the terminal device.
  • the configuration information includes the index of the first system information, the number of synchronization information blocks SSB n, n is the number of SSBs in the y-th group among Y groups in one SSB period, and the y-th group is the number of SSBs in the Y groups. Any one of, the number M of detection opportunities for the physical downlink control channel corresponding to the first system information included in the y-th group, where n is an integer greater than 1, Y is an integer greater than or equal to 1, and y is less than or equal to Y, M is an integer greater than 1.
  • the first system information includes P types of system information
  • the index of the first system information in the configuration information is the index of P types of system information.
  • Each type of system information corresponds to one index, that is, the first There is a one-to-one correspondence between the type of the first system information and the index of the first system information. For example, when P is 3, the indexes of the first system information are SI1, SI2 and SI3.
  • the SSB is sent in periods. For example, if the network device sends 256 SSBs every 640ms, the SSB sending period is 640ms (for the terminal device) Generally speaking, the reception cycle of SSB is 640ms).
  • the cycle of one SSB is shown. As shown in Figure 6, one SSB cycle can be divided into Y groups. For example, the groups can be grouped according to the subframes shown in Figure 6. Alternatively, a group can be called an SSB burst time, and the SSB burst time is the interval between SSBs located at the same location in two adjacent SSB groups.
  • the SSB burst time is defined as SSB# 0 is the time interval between SSB#8 located in the same time slot in the group.
  • the SSB burst time is the time interval between SSB#2 and SSB#10, and so on, which will not be described again.
  • the number of SSBs in each SSB group is 8.
  • the first system information may be carried on a PDSCH scheduled through the PDCCH, where the PDCCH is a PDCCH scrambled using SI_RNTI.
  • the first system information may be an SI message, such as an SI message carrying SIBX.
  • the detection opportunity of the physical downlink control channel corresponding to the first system information can also be understood as the detection opportunity of the DCI corresponding to the first system information, because the PDCCH carries DCI scrambled by SI_RNTI.
  • the network device can carry the configuration information by sending the second system information to the terminal device.
  • the second system information may be SIB1 or RMSI.
  • the second system information may be MIB, which includes configuration information.
  • the terminal device determines the detection opportunity of the physical downlink control channel corresponding to the first system information according to the configuration information.
  • I is the index of the detection opportunity of the physical downlink control channel corresponding to the system information
  • K is the index of the SSB corresponding to the system information
  • the system information window for sending the system information is T
  • the number of detection opportunities of the PDCCH of the system information in the system information window T is W
  • the number of SSBs corresponding to the system information window (SSBs sent by the network device and SSBs received by the terminal device) is N
  • X can be understood as the maximum number of PDCCH detection opportunities for the system information corresponding to each SSB in T.
  • i satisfies o is the number of detection opportunities for the physical downlink control channel contained in the SSB time (SSB for the network device and SSB for the terminal device) of the SSB of the yth packet.
  • Indicates rounding down, mod is the modulus symbol.
  • the subcarrier spacing (SCS) is 30KHz
  • the SSB period is 640ms
  • the number n of SSBs in a group of an SSB period is 8
  • the one type of system information in an SSB group corresponds to
  • the number M of detection opportunities for the physical downlink control channel is 20,
  • the time length (or window length or period) of the system information window T is 640ms
  • the number W of PDCCH detection opportunities for this type of system information in the system information window T is 640, when the number N of SSBs in the system information window is 256, you can get
  • the search space of system information corresponding to SSB is shown in Figure 8.
  • the network device sends 8 SSBs to the terminal device.
  • MO#2-MO#19 correspond to the detection opportunities of SSB#0-SSB#7.
  • I is the index of the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information.
  • K is the index of the SSB corresponding to the p-th type of system information.
  • X can be understood as the maximum number of PDCCH detection opportunities for P types of system information corresponding to each SSB in T.
  • i satisfies o is the number of detection opportunities of the physical downlink control channel contained in the SSB time of the SSB of the yth packet (for the network device, it is the sending SSB, for the terminal device, it is the receiving SSB), means rounding up, It means rounding down, and mod is the modulus symbol.
  • the p-th type of system information is one of the P types of system information.
  • the windows of the system information corresponding to the P types of system information are the same, and they are all the windows T of the first system information.
  • the first system information includes two types of system information, SI1 and SI2, and the values of p are 1 and 2 at this time.
  • the SCS is 30KHz
  • the SSB period is 640ms
  • the number n of SSBs in a group in an SSB period is 8
  • the number M of physical downlink control channel detection opportunities corresponding to the first systematic information in an SSB group is 20
  • the time length (or window length or period) of the system information window T is 640ms
  • the number of PDCCH detection opportunities W of the first system information in the system information window T is 640
  • the number of SSBs in the system information window N is 256.
  • the search space of system information corresponding to SSB is shown in Figure 9.
  • the network device sends 8 SSBs to the terminal device.
  • MO#2-MO#9 correspond to the blind detection SI1 in SSB#0-SSB#7 respectively.
  • MO#18 and MO#19 can be assigned to at least one of SI1 and SI2.
  • both MO#18 and MO#19 may be assigned to SI1.
  • both MO#18 and MO#19 are assigned to SI2.
  • MO#18 may be allocated to SI1, MO#19 may be allocated to SI2, etc.
  • the terminal device obtains the first system information in a detection opportunity of the physical downlink control channel corresponding to the first system information.
  • the terminal device After the terminal device determines the detection opportunity of the first system information through the above formula (1) or formula (2), it obtains the first system information in the detection opportunity of the physical downlink control channel through blind detection.
  • P types of system information (P equal to or greater than 1) can be defined.
  • the window length T of the detection window of the physical downlink control channel is equal to the SSB period.
  • SSB period 640ms
  • X 3. If the mapping rules for physical downlink control channel detection opportunities between SSB and system information in Figure 5 above are used, the following problems will occur:
  • MO#0 ⁇ MO#255 of the first SI window correspond to SSB#0 ⁇ SSB#255, but SSB#128 ⁇ SSB#255 have not been sent yet.
  • MO#0 ⁇ MO#255 of the second SI window still correspond to SSB#0 ⁇ SSB#255, which will seriously waste blind detection resources.
  • the window length of the system information can also be equal to 1.28s or 2.56s, etc. to match the SSB pattern, thereby further optimizing the search space when searching for system information.
  • the communication method provided by the embodiment of the present application is also compatible with the LTE system.
  • the SSB configured by the network device has only one cycle and the SSB group is 1, n is the SSB The total number indicates the configuration of SSB in the LTE system.
  • the method 700 also includes the following steps:
  • the terminal device obtains ephemeris information from P type system information.
  • the terminal device when the terminal device needs to obtain the ephemeris information sent by the satellite, the terminal device obtains the ephemeris information from the detected P types of system information, and uses the ephemeris information to estimate the satellite's orbit within a certain period of time. At the same time, it can calculate the timing advance based on the satellite's orbit, and use the timing advance to offset the impact of the air interface delay, thereby realizing the uplink and downlink synchronization process between the satellite and the terminal.
  • the terminal device can obtain the ephemeris information from the one type of system information.
  • the terminal device can obtain ephemeris information from the multiple types of system information.
  • Figure 11 is a schematic flow chart of the communication method 1100 provided by the embodiment of the present application. The method includes the following steps.
  • S1110 The network device sends configuration information to the terminal device.
  • the configuration information includes the index of the first system information
  • the first system information includes P types of system information
  • P is an integer greater than or equal to 1
  • the number of synchronization information blocks SSB is n
  • n is the number of Y groups in one SSB cycle.
  • the number of SSBs in the y-th group, the y-th group is any one of the Y groups, the number M of physical downlink control channel detection opportunities corresponding to the p-th type of system information included in the y-th group, the p-th
  • the first system information is one of the P types, where n is an integer greater than 1, Y is an integer greater than or equal to 1, y is less than or equal to Y, M is an integer greater than 1, and p is an integer greater than or equal to 1. Or an integer equal to 1 and less than or equal to P.
  • the index of the first system information in the configuration information is the index of P types of system information, and each type of system information corresponds to one index, that is, the type of system information and the index of the system information are in a one-to-one correspondence.
  • the description of the Y packets in the SSB cycle may refer to the relevant description in S710 above, and will not be described again here.
  • the first system information may be carried on a PDSCH scheduled through the PDCCH, where the PDCCH is a PDCCH scrambled using SI_RNTI.
  • the first system information may be an SI message, such as an SI message carrying SIBX.
  • the detection opportunity of the physical downlink control channel corresponding to the first system information can also be understood as the detection opportunity of the DCI corresponding to the first system information, because the PDCCH carries DCI scrambled by SI_RNTI.
  • the network device may carry the configuration information by sending the second system information to the terminal device.
  • the second system information may be SIB1 or RMSI.
  • the second system information may be MIB, which includes the configuration information.
  • the terminal device determines the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information based on the configuration information.
  • the terminal device can determine the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information through the following equation (3).
  • I x*n+i*M+K mod n+o (3)
  • I is the index of the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information
  • K is the index of the SSB corresponding to the p-th type of system information.
  • o is the number of detection opportunities of the physical downlink control channel contained in the SSB time of the SSB of the yth packet (for the network device, it is the sending SSB, for the terminal device, it is the receiving SSB), means rounding up, It means rounding down, and mod is the modulus symbol.
  • the terminal device can calculate the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information among the P types of system information based on the configuration information.
  • the first system information includes two types of system information, SI1 and SI2, and the values of p are 1 and 2 at this time.
  • the SCS is 30KHz
  • the SSB period is 640ms
  • the number n of SSBs in one group of one SSB period is 8
  • the number of physical downlink control channel detection opportunities corresponding to the first systematic information in one group of one SSB period M is 20
  • the time length (or window length or period) of the system information window T is 640ms
  • the number of PDCCH detection opportunities W of the first system information in the system information window T is 640
  • the number of SSBs in the system information window is N
  • the search space of system information corresponding to SSB is shown in Figure 12.
  • the network device sends 8 SSBs to the terminal device.
  • the terminal device searches for two types of system information, MO#2-MO#9 correspond to the blind detection SI1 in SSB#0-SSB#7 respectively. Detection opportunities, MO#2-MO#9 respectively correspond to blind detection SI2 detection opportunities in SSB#0-SSB#7.
  • time domain positions of the detection opportunities of the physical downlink control channel corresponding to each type of system information in the first system information are different. As shown in Figure 11. Although according to the above formula (3), it can be obtained that the indexes of the detection opportunities corresponding to SI1 and SI2 are the same, but their time domain positions are different.
  • the terminal device obtains the p-th type of system information in the detection opportunity of the physical downlink control channel corresponding to the p-th type of system information.
  • the terminal device After the terminal device determines the detection opportunity of the p-th system information through the above equation (3), it obtains the p-th system information in the detection opportunity of the physical downlink control channel through blind detection.
  • the detection window of the physical downlink control channel corresponding to the P types of system information can be defined.
  • the window length T is equal to the SSB period.
  • the method 1100 further includes the following steps:
  • the terminal device obtains ephemeris information from the p-th system information.
  • the terminal device when the terminal device needs to obtain the ephemeris information sent by the satellite, the terminal device obtains the ephemeris information from the detected p-th system information, and uses the ephemeris information to estimate the trajectory of the satellite within a certain period of time, and at the same time
  • the timing advance can be calculated based on the trajectory of the satellite, and the timing advance can be used to offset the impact of air interface delay and realize the uplink and downlink synchronization process between the satellite and the terminal.
  • each solution of the communication method provided by the embodiments of the present application is introduced from the perspective of each device/network element itself and from the perspective of interaction between each device/network element.
  • each network element and device includes a corresponding hardware structure and/or software module to perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or by computer software driving the hardware depends on the specific application and design constraints of the technical solution. Technicians may use different methods to achieve the functions described for each specific application, but This implementation should not be considered beyond the scope of this application.
  • FIG. 13 shows a schematic block diagram of a communication device 1300 provided by an embodiment of the present application.
  • the device 1300 includes one or more virtual units, such as a transceiver unit 1310 and a processing unit 1320.
  • the transceiver unit 1310 may be used to implement corresponding communication functions.
  • the transceiver unit 1310 may also be called a communication interface or a communication unit.
  • the processing unit 1320 may be used to implement corresponding processing functions, such as determining the detection opportunity of the physical downlink control channel corresponding to the first system information.
  • the transceiver unit 1310 may also be referred to as a transceiver module, and the processing unit 1320 may also be referred to as a processing module.
  • the device 1300 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1320 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments. the action of the device.
  • the storage unit can also be called a storage module.
  • the device 1300 may be the terminal device in the aforementioned embodiment, or may be a component of the terminal device (such as a chip).
  • the device 1300 can implement steps or processes corresponding to those executed by the terminal device in the above method embodiment.
  • the transceiver unit 1310 can be used to perform the transceiver-related operations of the terminal device in the above method embodiment, such as the transceiver-related operations of the terminal device in the embodiment shown in Figure 7, and the transceiver-related operations of the terminal device in the embodiment shown in Figure 11.
  • the processing unit 1320 may be used to perform operations related to processing of the terminal device in the above method embodiments, such as operations related to processing of the terminal device in the embodiment shown in Figure 7, and operations related to processing of the terminal device in the embodiment shown in Figure 11. operation.
  • the transceiver unit 1310 is configured to receive configuration information.
  • the configuration information includes: the index of the first system information, the number n of synchronization information blocks SSB, where n is the yth of Y packets in an SSB period.
  • the number of SSBs in a group, the y-th group is any one of the Y groups, and the number M of detection opportunities of the physical downlink control channel corresponding to the first system information included in the y-th group , where n is an integer greater than 1, Y is an integer greater than or equal to 1, y is less than or equal to Y, and M is an integer greater than 1.
  • the processing unit 1320 is configured to determine the detection opportunity of the physical downlink control channel corresponding to the first system information according to the configuration information. It is also used to obtain the first system information in a detection opportunity of the physical downlink control channel corresponding to the first system information.
  • transceiver unit 1310 and the processing unit 1320 in the communication device 1300 can also implement other operations or functions of the terminal device in the above method, which will not be described again here.
  • the device 1300 may be the network device in the previous embodiment, or may be a component of the network device (such as a chip).
  • the device 1300 can implement steps or processes corresponding to those performed by the network device in the above method embodiment.
  • the transceiver unit 1310 can be used to perform the transceiver-related operations of the network device in the above method embodiment, such as the transceiver-related operations of the network device in the embodiment shown in Figure 7, and the transceiver-related operations of the network device in the embodiment shown in Figure 11.
  • the processing unit 1320 may be configured to perform operations related to the processing of the network device in the above method embodiments, such as the processing-related operations of the network device in the embodiment shown in Figure 7, and the processing-related operations of the network device in the embodiment shown in Figure 11. operation.
  • the transceiver unit 1310 is used to send configuration information.
  • the configuration information includes: the index of the first system information, the number n of synchronization information blocks SSB, where n is the th of Y packets in an SSB period.
  • the number of SSBs in y groups, the y-th group is any one of the Y groups, and the number M of detection opportunities of the physical downlink control channel corresponding to the first system information included in the y-th group, where n is An integer greater than 1, Y is an integer greater than or equal to 1, y is less than or equal to Y, and M is an integer greater than 1.
  • the configuration information is used by the terminal device to determine the detection opportunity of the physical downlink control channel corresponding to the first system information.
  • the transceiver unit 1310 and the processing unit 1320 in the communication device 1300 can also implement other operations or functions of the network device in the above method, which will not be described again here.
  • the device 1300 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the product implementation form of the device 1300 provided by the embodiment of this application is a program code that can be run on a computer.
  • the device 1300 provided in the embodiment of the present application may be a communication device, or may be a chip or chip applied on the communication device.
  • System on chip for example: system on chip (SoC)
  • the transceiver unit 1310 may be a transceiver, or an input/output interface
  • the processing unit 1320 may be a processor.
  • the transceiver unit 1310 may be an input/output interface, interface circuit, output circuit, input circuit, pin or circuit on the chip, chip system or circuit.
  • the processing unit 1320 may be a processor, processing circuit or logic circuit, etc.
  • the above-mentioned transceiver unit 1310 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • Figure 14 shows a schematic block diagram of a communication device 1400 provided by an embodiment of the present application.
  • the apparatus 1400 includes a processor 1410 coupled to a memory 1420.
  • a memory 1420 is also included for storing computer programs or instructions and/or data, and the processor 1410 is used to execute the computer programs or instructions stored in the memory 1420, or read the data stored in the memory 1420 to perform the above. Methods in Method Examples.
  • processors 1410 there are one or more processors 1410 .
  • the memory 1420 is integrated with the processor 1410, or is provided separately.
  • the device 1400 also includes a transceiver 1430, which is used for receiving and/or transmitting signals.
  • the processor 1410 is used to control the transceiver 1430 to receive and/or transmit signals.
  • the device 1400 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the processor 1410 is used to execute computer programs or instructions stored in the memory 1420 to implement related operations of the terminal device in each of the above method embodiments. For example, the method executed by the terminal device in the embodiment shown in FIG. 7, or the method executed by the terminal device in the embodiment shown in FIG. 11.
  • the device 1400 is used to implement the operations performed by the network device in each of the above method embodiments.
  • the processor 1410 is used to execute the computer program or instructions stored in the memory 1420 to implement the relevant operations of the network device in each method embodiment above.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 1410 .
  • the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 1420.
  • the processor 1410 reads the information in the memory 1420 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be one or more integrated circuits, used to execute relevant programs to execute the method embodiments of the present application.
  • a processor may include one or more processors and be implemented as a combination of computing devices.
  • the processor may include one or more of the following: microprocessor, microcontroller, digital signal processor (digital signal processor, DSP), digital signal processing device (digital signal processing device, DSPD), application specific integrated circuit (application specific integrated circuit (ASIC), field programmable gate array (FPGA), programmable logic device (PLD), gate logic, transistor logic, discrete hardware circuits, processing circuits or other suitable Hardware, firmware, and/or a combination of hardware and software to perform the various functions described in this disclosure.
  • the processor may be a general purpose processor or a special purpose processor.
  • processor 1410 may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit may be used to cause the device to execute software programs and process data in the software programs.
  • a portion of the processor may include non-volatile random access memory.
  • the processor may also store information about the device type.
  • Program in this application is used in a broad sense to mean software.
  • software include: program code, programs, subroutines, instructions, sets of instructions, code, code segments, software modules, applications, or software applications, and the like.
  • Programs can run on a processor and/or computer. To cause the device to perform various functions and/or processes described in this application.
  • Memory may store data required by a processor (eg, processor 1410) when executing software.
  • the memory can be implemented using any suitable storage technology.
  • memory may be any available storage medium accessible to the processor and/or computer.
  • Non-limiting examples of storage media include: random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPROM, EEPROM), Compact Disc-ROM (CD-ROM), static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) ), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM), removable media, optical disk storage, magnetic disk storage media, magnetic storage devices, flash memory, registers, state memory, remote mount memory
  • the memory eg, memory 1420
  • the processor eg, processor 1410
  • the memory may be used in connection with the processor to enable the processor to read information from the memory, store and/or write information in the memory.
  • the memory can be integrated into the processor.
  • the memory and processor may be provided in an integrated circuit (eg, the integrated circuit may be provided in a UE or other network node).
  • FIG. 15 shows a schematic block diagram of a chip system 1500 provided by an embodiment of the present application.
  • the chip system 1500 (or can also be called a processing system) includes a logic circuit 1510 and an input/output interface 1520.
  • the logic circuit 1510 may be a processing circuit in the chip system 1500 .
  • the logic circuit 1510 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 1500 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 1520 can be an input/output circuit in the chip system 1500, which outputs information processed by the chip system 1500, or inputs data or signaling information to be processed into the chip system 1500 for processing.
  • the chip system 1500 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the logic circuit 1510 is used to implement the processing-related operations performed by the terminal device in the above method embodiment, such as the processing-related operations performed by the terminal device in the embodiment shown in Figure 7, or the embodiment shown in Figure 11 Processing-related operations performed by the terminal device;
  • the input/output interface 1520 is used to implement sending and/or reception-related operations performed by the terminal device in the above method embodiment, such as the terminal device in the embodiment shown in Figure 7 The sending and/or receiving related operations performed, or the sending and/or receiving related operations performed by the terminal device in the embodiment shown in FIG. 11 .
  • the chip system 1500 is used to implement the operations performed by the network device in each of the above method embodiments.
  • the logic circuit 1510 is used to implement the processing-related operations performed by the network device in the above method embodiment, such as the processing-related operations performed by the network device in the embodiment shown in Figure 7, and the embodiment shown in Figure 11.
  • processing-related operations performed by the network device in the method the input/output interface 1520 is used to implement the sending and/or receiving-related operations performed by the network device in the above method embodiment.
  • the network device performs The sending and/or receiving related operations are also the sending and/or receiving related operations performed by the network device in the embodiment shown in FIG. 11 .
  • Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by communication devices (such as terminal equipment, and network equipment) in each of the above method embodiments.
  • communication devices such as terminal equipment, and network equipment
  • Embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions are executed by a computer, the methods executed by communication devices (such as terminal equipment, and network equipment) in each of the above method embodiments are implemented.
  • An embodiment of the present application also provides a communication system, which includes one or more of the terminal devices and network devices in the above embodiments.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided by this application.
  • each functional unit in each embodiment of the present application can be integrated into one unit, or each unit can be physically separated. exist, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network or other programmable devices.
  • the computer can be a personal computer, a server, or a network device, etc.
  • the computer instruction can be stored in a computer-readable storage medium, or transmitted from a computer-readable storage medium to another computer-readable storage medium, for example, the computer instruction can be transmitted from a website site, a computer, a server or a data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信的方法和装置,以实现在NTN网络中确定系统信息对应的物理下行控制信道的检测机会,在减少该物理下行控制信道的检测机会中盲检系统信息的资源浪费情况的同时,降低初始接入时延。该方法包括:终端设备接收配置信息,根据配置信息确定第一系统信息对应的PDCCH的检测机会,并在第一系统信息对应的PDCCH的检测机会中获取第一系统信息。配置信息包括:第一系统信息的索引,该第一系统信息包括P种系统信息,P为大于或等于1的整数,一个SSB周期内Y个分组中的第y个分组内的SSB的数量n,第y个分组为Y个分组中的任意一个,第y个分组内包括的P种系统信息对应的PDCCH的检测机会的数量M。

Description

一种通信的方法和装置
本申请要求于2022年09月19日提交中国专利局、申请号为202211137677.0、申请名称为“一种通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及一种通信的方法和装置。
背景技术
非地面通信网络(non-terrestrial networks,NTN)包括卫星网络、高空平台和无人机等节点,与第五代(5th generation,5G)系统共同构成全球无缝覆盖的海、陆、空、天、地一体化综合通信网,满足各种业务需求。
NTN网络中卫星的星历信息是携带在系统信息(system information,SI)中的,为了计算出卫星在各个时刻的位置,需要终端设备及时获取SI,以便及时接入小区。然而,在5G制式下采用NTN技术的新无线(new radio,NR)的系统信息块(system information block,SIB)对应的物理下行控制信道(physical downlink control channel,PDCCH)的搜索空间(search space,SS)与同步信号块(synchronization signal block,SSB)的图样存在不匹配的问题,若终端设备继续使用NR的盲检方式检测SI,会使得终端设备的接入效率较低。因此,在5G应用到NTN场景下如何降低终端设备的初始接入时延是目前需要考虑的问题。
发明内容
本申请提供一种通信的方法和装置,以实现在NTN网络中确定系统信息对应的物理下行控制信道的检测机会,在减少该物理下行控制信道的检测机会中盲检系统信息的资源浪费情况的同时,降低初始接入时延。
第一方面,本申请实施例提供一种通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。该方法包括:终端设备接收配置信息,所述配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的所述第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。所述终端设备根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会。所述终端设备在所述第一系统信息对应的物理下行控制信道的检测机会中获取所述第一系统信息。基于上述方案,通过与SSB图样相匹配的配置信息,使得终端设备通过配置信息可以获得一个SSB周期内的一个分组的SSB的数量以及该分组内的第一系统信息对应的PDCCH的数量,并根据配置信息确定第一信用信息对应的PDCCH的检测机会,优化了终端设备在搜索系统信息时的搜索空间,降低了初始接入时延。
结合第一方面,在第一方面的一些实现方式中,所述第一系统信息包括1种系统信息,所述终端设备根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会,包括:所述1种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述1种系统信息对应的SSB的索引,N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述1种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述1种系统信息,表示向上 取整,表示向下取整,mod为取模符号。
应理解,上述第y个分组的所述SSB的时间内发送的SSB的数量为n。
基于上述方案,终端设备可以根据配置信息,确定索引为K的SSB携带的系统信息的调度信息的搜索空间的时域位置,通过公式计算与终端的随机接入相关的第一系统信息的检测机会(搜索空间的时域位置),由于配置信息与SSB图样相匹配,因此,能够提升终端设备盲检的可靠性,从而达到降低终端设备获取随机接入相关信息的时延的目的。
结合第一方面,在第一方面的一些实现方式中,所述第一系统信息包括P种系统信息,P为大于1的整数,所述终端设备根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会,包括:所述P种系统信息中第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述第p种系统信息对应的SSB的索引,中满足(x mod P=p-1)的值,p=1,2…P,N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述P种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述P种系统信息,所述第p种系统信息为所述P种系统信息中的一种,表示向上取整,表示向下取整,mod为取模符号。
基于上述方案,使终端设备可以在一个系统信息窗口盲检多个系统信息,增加了网络配置的灵活性,减少了盲检的次数,降低了初始接入时延。
结合第一方面,在第一方面的一些实现方式中,所述第一系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
通过将第一系统信息对应的物理下行控制信道的检测窗口的窗长设置为与SSB周期相同的方式,可以减少终端设备在物理下行控制信道中的盲检的次数,提升系统性能。
结合第一方面,在第一方面的一些实现方式中,所述第一系统信息中包括星历信息。
结合第一方面,在第一方面的一些实现方式中,所述终端设备接收配置信息包括:所述终端设备接收第二系统信息,所述第二系统信息包括所述配置信息。
第二方面,本申请实施例提供一种通信的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。该方法包括:终端设备接收配置信息,所述配置信息包括:第一系统信息的索引,所述第一系统信息包括P种系统信息,P为大于或者等于1的整数,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的第p种系统信息对应的物理下行控制信道的检测机会的数量M,所述第p种系统信息为所述P种系统信息中的一种,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数,p为大于或等于1且小于或者等于P的整数。所述终端设备根据所述配置信息确定所述第p种系统信息对应的物理下行控制信道的检测机会。所述终端设备在所述第p种统信息对应的物理下行控制信道的检测机会中获取所述第p种系统信息。
基于上述方案,通过终端设备接收的配置信息配置第一系统信息中每一种系统信息对应的物理下行控制信道的检测机会,优化了终端设备在搜索系统信息时的搜索空间,降低了初始接入时延。
结合第二方面,在第二方面的一些实现方式中,所述终端设备根据所述配置信息确定所述第p种系统信息对应的物理下行控制信道的检测机会,包括:所述第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述第p种系统信息对应的SSB的索引,N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述P种系统信息的系统信息窗口中与所述第p种系统信息对应的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述第一系统信息,表示向上取整,表示向下取整,mod为取模符号。
结合第二方面,在第二方面的一些实现方式中,所述P种系统信息中的每一种系统信息对应的物理下行控制信道的检测机会的时域位置不同。
基于上述方案,通过将第一系统信息中的每一种类型的系统信息对应的物理下行控制信道的检测机会的时域位置进行区分,使终端设备在不同的时域位置上盲检不同类型的系统信息,优化了终端设备的性能。
结合第二方面,在第二方面的一些实现方式中,所述P种系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
基于上述方案,使终端设备可以在一个系统信息窗口盲检多个系统信息,增加了网络配置的灵活性,减少了盲检的次数,降低了初始接入时延。
结合第二方面,在第二方面的一些实现方式中,所述P种系统信息中包括星历信息。
结合第二方面,在第二方面的一些实现方式中,所述终端设备接收配置信息包括:所述终端设备接收第二系统信息,所述第二系统信息包括所述配置信息。
第三方面,本申请实施例提供一种通信的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。该方法包括:网络设备发送配置信息,所述配置信息用于终端设备确定第一系统信息对应的物理下行控制信道的检测机会,并在所述第一系统信息对应的物理下行控制信道的检测机会中获取所述第一系统信息,所述配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的所述第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。
可选地,该方法还包括网络设备确定所述配置信息。
在一种可实现的方式中,网络设备可以根据SSB图样确定该配置信息。
结合第三方面,在第三方面的一些实现方式中,所述第一系统信息包括1种系统信息,所述1种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述1种系统信息对应的SSB的索引,N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述1种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述1种系统信息,表示向上取整,表示向下取整,mod为取模符号。
结合第三方面,在第三方面的一些实现方式中,所述第一系统信息包括P种系统信息,P为大于1的整数,所述P种系统信息中第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述第p种系统信息对应的SSB的索引,中满足(x mod P=p-1)的值,p=1,2…P,N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述P种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述P种系统信息,所述第p种系统信息为所述P种系统信息中的一种,表示向上取整,表示向下取整,mod为取模符号。
结合第三方面,在第三方面的一些实现方式中,所述第一系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
结合第三方面,在第三方面的一些实现方式中,所述第一系统信息中包括星历信息。
结合第三方面,在第三方面的一些实现方式中,所述网络设备发送配置信息,包括:所述网络设备发送第二系统信息,所述第二系统信息包括所述配置信息。
第四方面,本申请实施例提供一种通信的方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为 例进行说明。网络设备发送配置信息,所述配置信息用于终端设备确定第p种系统信息对应的物理下行控制信道的检测机会,并在所述第p种系统信息对应的物理下行控制信道的检测机会中获取所述第p种系统信息,所述配置信息包括:第一系统信息的索引,所述第一系统信息包括P种系统信息,P为大于或者等于1的整数,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的第p种系统信息对应的物理下行控制信道的检测机会的数量M,所述第p种系统信息为所述P种系统信息中的一种,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数,p为大于或等于1且小于或者等于P的整数。
可选地,该方法还包括网络设备确定所述配置信息。
在一种可实现的方式中,网络设备可以根据SSB图样确定该配置信息。
结合第四方面,在第四方面的一些实现方式中,所述第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
I=x*n+i*M+K mod n+o
其中,K为所述第p种系统信息对应的SSB的索引,N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述P种系统信息的系统信息窗口中与所述第p种系统信息对应的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述P种系统信息,表示向上取整,表示向下取整,mod为取模符号。
结合第四方面,在第四方面的一些实现方式中,所述P种系统信息中的每一种系统信息对应的物理下行控制信道的检测机会的时域位置不同。
结合第四方面,在第四方面的一些实现方式中,所述P种系统信息对应的物理下行控制信道的检测窗口的周期等于所述SSB周期。
结合第四方面,在第四方面的一些实现方式中,所述P种系统信息中包括星历信息。
结合第四方面,在第四方面的一些实现方式中,所述网络设备发送配置信息,包括:所述网络设备发送第二系统信息,所述第二系统信息包括所述配置信息。
第五方面,提供了一种通信的装置,该装置用于执行上述第一方面或第二方面提供的方法。具体地,该通信的装置的可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。或者,该通信的装置的可以包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信的装置为终端设备。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信的装置为终端设备中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供了一种通信的装置,该装置用于执行上述第三方面或第四方面提供的方法。具体地,该通信的装置的可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。或者,该通信的装置的可以包括用于执行第四方面或第四方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信的装置为终端设备。获取单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信的装置为终端设备中的芯片、芯片系统或电路。获取单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第七方面,本申请提供一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一至第四方面以及 第一至第四方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一至第四方面以及第一至第四方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面的任意一种实现方式提供的方法。
第十方面,提供一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第三方面或第四方面的任意一种实现方式提供的方法。
第十一方面,提供一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面的任意一种实现方式提供的方法。
第十二方面,提供一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第三方面或第四方面的任意一种实现方式提供的方法。
第十三方面,提供一种通信系统,包括第五方面所述的通信的装置和第六方面所述的通信的装置。
上述第三方面至第十三方面带来的有益效果具体可以参考第一方面或第二方面中有益效果的描述,此处不再赘述。
附图说明
图1示出了本申请实施例适用的一种网络架构的示意图。
图2示出了本申请实施例的一种应用场景的示意图。
图3示出了本申请实施例的另一种应用场景的示意图。
图4示出了现有的第一种系统信息对应的PDCCH的检测机会的示意图。
图5示出了现有的第二种系统信息对应的PDCCH的检测机会的示意图。
图6示出了适用于本申请实施例的一种SSB图样。
图7示出了本申请实施例提供的一种通信方法700的示意性流程图。
图8示出了本申请实施例提供的对应于通信方法700的第一种第一系统信息的对应的PDCCH的检测机会的示意图。
图9示出了本申请实施例提供的对应于通信方法700的第二种第一系统信息的对应的PDCCH的 检测机会的示意图。
图10示出了本申请实施例提供的第一系统信息对应的PDCCH的检测窗口的周期与SSB周期不相等时的示意图。
图11示出了本申请实施例提供的一种通信方法1100的示意性流程图。
图12示出了本申请实施例提供的对应于通信方法1100的一种第一系统信息的对应的PDCCH的检测机会的示意图。
图13示出了本申请实施例提供的一种通信装置1300的示意性框图。
图14示出了本申请实施例提供的一种通信装置1400的示意性框图。
图15示出了本申请实施例提供的一种芯片系统1500的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的一种网络架构的示意图。图1示例的是卫星通信系统与第五代移动通信技术(5th generation mobile communication technology,5G)融合的网络架构,包括至少一个终端设备,例如终端设备110、终端设备111,至少一个网络设备,例如网络设备120、网络设备121、网络设备122,核心网设备130。网络设备可以是卫星和关口站(gateway),用于为终端设备提供通信服务。其中,关口站还可以称作地面站、信关站等。卫星与终端设备之间的链路称为服务链路(service link),卫星与关口站之间的链路为馈电链路(feeder link)。
在5G通信系统中,地面终端设备通过5G新空口接入网络,5G网络设备部署在卫星上,并通过无线链路与地面的核心网设备相连。同时,在卫星之间存在无线链路,完成网络设备与网络设备之间的信令交互和用户数据传输。其中,图1中的各个网络节点以及个网络节点间的接口说明如下。
本申请实施例中的终端设备也可以称为终端、接入终端、用户设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中的网络设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备,可以是部署在卫星上的网络设备,也可以是部署在地面上的网络设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、节点B(Node B,NB)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU)等。在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能, DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
核心网设备130,用于初始接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体,在图1中未示出各功能实体。
新空口:终端设备和网络设备之间的无线链路。
Xn接口:网络设备和网络设备之间的接口,主要用于切换等信令交互。
NG接口:网络设备和核心网设备之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
在未来的通信系统,例如6G通信系统中,上述设备仍可以使用其在5G通信系统中的名称,或者也可以有其它名称,本申请实施例对此不作限定。上述设备的功能可以由一个独立设备完成,也可以由若干个设备共同完成。在实际部署中,核心网中的网元可以部署在相同或者不同的物理设备上,本申请实施例对此不作限定。图1只是一种示例,对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元或设备,当然本申请实施例提供的通信方法也可以只包括图1示出的部分设备,本申请实施例对此不作限定。
上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个设备的功能的网络架构都适用于本申请实施例。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、高空平台(high altitude platform station,HAPS)通信、无人机等非地面网络(non-terrestrial network,NTN)系统,通信、导航一体化(integrated communication and navigation,IcaN)系统、全球导航卫星系统(global navigation satellite system,GNSS)和超密低轨卫星通信系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统,包括LTE频分双工(freq终端ncy division duplex,FDD)系统和LTE时分双工(time division duplex,TDD)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)以及机器间通信长期演进技术(long term evolution-machine,LTE-M)、第五代(5th generation,5G)系统或未来演进的通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器到机器(machine to machine,M2M)等。
其中,卫星通信系统包括透传卫星架构与非透传卫星架构。透传也称为弯管转发传输,即信号在卫星上只进行了频率的转换,信号的放大等过程,卫星对于信号而言是透明的。非透传也称为再生(星上接入/处理)传输,即卫星具有部分或全部基站功能。当卫星工作在透传(transparent)模式时,卫星具有中继转发的功能。关口站具有基站的功能或部分基站功能。可选的,可以将关口站看作地面基站,或者,地面基站可以与关口站分开部署。当卫星工作在再生(regenerative)模式时,卫星具有数据处理能力、具有基站的功能或部分基站功能,可以将卫星看作基站。
卫星可以为低地球轨道(low earth orbit,LEO)卫星、非静止轨道(non-geostationary earth orbit,NGEO)卫星等,卫星可以通过多波束向终端设备提供通信服务、导航服务和定位服务等。卫星采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。卫星通过广播通信信号和导航信号等与终端设备进行无线通信,卫星可与地面站设备进行无线通信。本申请实施例中提及的卫星,可以为卫星基站,也可包括用于对信息进行中继的轨道接收机或中继器,或者为搭载在卫星上的网络侧设备。
图2示出了本申请实施例的一种应用场景的示意图。该场景可以称为“透明卫星架构(RAN  architecture with transparent satellite)”,或者称为弯管(bentpipe)模式。如图2中的(a)所示,UE与卫星之间、卫星与非第三代合作伙伴计划(3rd generation partnership project,3GPP)互通功能(non-3GPP interworking function,N3IWF)+卫星集线器(satellite hub)之间,通过非3GPP无线协议(non-3GPP radio protocol)进行通信,N3IWF+卫星集线器可以通过下一代(next generation,NG)接口(N2/N3)与5G核心网(5G core network,5G CN)连接,5G CN通过N6接口与数据网络(data network,DN)连接。如图2中的(b)所示,UE与卫星之间、卫星与gNB之间可以通过NR协议通信。在该场景中,卫星仅起到变频转发作用。
图3示出了本申请实施例的另一种应用场景的示意图。该场景可以称为再生(regenerative)模式。如图3所示,该场景中卫星是DU(NG-RAN with a regenerative satellite based on gNB-DU),UE与卫星之间可以通过NR协议通信,卫星与gNB-CU之间通过F1接口连接。
可以理解的是,本申请实施例还可以应用于卫星作为接入回传一体化(integrated access and backhaul,IAB)的场景中。
小区搜索过程之后,终端设备已经与小区取得下行同步,得到小区的物理小区标识(physical cell identifier,PCI)。随后,终端设备获取到小区的系统信息(system information,SI),并获知小区的配置,以便接入该小区并在该小区内正常地工作。
系统信息是小区级别的信息,即对接入该小区的所有终端设备均生效。系统信息是以系统信息块(system information block,SIB)的方式组织的,每个SIB包含了与某个功能相关的一系列参数。
在4G网络系统中,SI主要分成主信息块(master information block,MIB)和SIBs。其中,SIBs又分为26种类型,包括SIB1,SIB2…SIB26(即SIBType1到SIBType26)。当终端设备正常驻留以及发起随机接入时,一般需要获取MIB、SIB1和SIB2。
在NR系统中,SI仍然包括MIB和SIBs,其中,SIBs又分为9种类型,包括SIB1,SIB2…SIBX。并且重新定义MIB和SIB1之外的SIBs为其他系统信息(other system information,OSI)。当终端设备正常驻留以及发起随机接入时,终端设备获取的系统消息包括MIB和SIB1。此外,在NR中又引入两个新的概念,分别为最小系统信息(minimum system information,MSI)和剩余最小系统信息(remaining system information,RMSI)。他们之间的关系如下表1所示。
表1
具体地,OSI通过SI消息下发,每个SI消息包含了一个或多个除SIB1外的拥有相同调度需求的SIB(这些SIB有相同的传输周期)。一个SI消息包含的SIB是通过SIB1中的si-SchedulingInfo指定的。每个SIB只能包含在一个SI消息中。同时,每个SI消息只在一个SI窗口(SI-window s)中传输:即1)一个SI消息跟一个SI窗口相关联,该SI窗口内只能发这个SI消息且可以重复发送多次(发多少次,在哪些slot上发送等,取决于基站的实现),但不能发送其它SI消息。2)SI窗口之间是紧挨着的(如果相邻时),既不重叠,也不会有空隙。3)所有SI消息的SI窗口长度都相同。4)不同SI消息的周期是相互独立的。
综上可以知晓,每个SI消息至少包含1个SIB,相同调度周期的SIB可以在同一个SI消息中传输,且每个SI消息只在一个SI-window传输。
在卫星通信过程中,卫星会通过SIB1的信息告诉终端设备有哪些SI,每个SI包含了哪些SIB,这些SI会在哪个SI窗口发送以及SI窗口的时域位置和长度,但不会告诉终端设备在SI窗口的哪些子帧调度了该SI。当需要某个SIB时,终端设备就会在包含该SIB的SI消息对应的SI窗口的每个子帧去尝试解码,也就是从SI窗口的起始子帧开始,共持续si-WindowLength个子帧,直到成功接收到SI消息为止。
在卫星通信系统的初始接入过程中,为了卫星与终端设备在初始接入过程中的上行同步顺利完成,卫星在下发SIB1的同时发送星历信息给终端设备。其中,卫星星历是人造卫星在各个时刻的位置数据列表,常用于全球定位系统(global positioning system,GPS)。例如,为了从GPS观测量中计算出点位的位置,必须获知卫星观测时刻的三维坐标,这个观测时刻就是星历的参考时间。卫星星历提供轨道参数,星历可以用来决定卫星的坐标。在卫星通信中,由于卫星和地面距离较远,空口时延较大,终 端设备需要准确的知道卫星在各个时刻的位置才能够提前计算出定时提前,这样才能确保初始接入过程的上下行同步过程顺利进行。然而,近地轨道(low earth orbit,LEO)卫星运动速度快导致的时延抖动、多普勒频移偏大等会极大的影响通信质量。为了能够准确纠正时频偏,卫星发送自身运行的轨道信息和位置信息给终端设备,从而使得地面终端设备在一定时间内准确估计卫星的运行轨迹,并根据卫星的运行轨迹计算定时提前,利用定时提前,抵消空口时延带来的影响,实现卫星侧与UE侧的上下行同步流程。
当前,星历信息是包含在SIBX中发送给终端设备的。此时,终端设备检测SIBX的物理下行控制信道(physical down control channel,PDCCH)以得到星历信息。具体地,终端设备在PDCCH的公共搜索空间里查找发送系统信息无线网络临时标识(radio network temporary identity,RNTI)SI-RNTI的候选PDCCH,并通过校验后,将获得响应的SIB消息。终端设备在获取SIBX消息时,会根据PDCCH中的searchSpaceOtherSystemInformation字段的值确定SI消息的PDCCH monitoring occasions的位置。
具体地,根据searchSpaceOtherSystemInformation字段的值可以分为两种技术方案。
当searchSpaceOtherSystemInformation字段的值为0时,采用包含SIBX的SI消息的PDCCH的检测时机(monitoring occasions,MO)与SIB1对应的PDCCH monitoring occasions复用的技术方案。在该方案中,可以根据图4所示的同步信号块(synchronization signal block,SSB)在子帧中的位置,即SSB图样(pattern)计算出SIB1和SIBX的位置。根据图4可以获知,在一个系统帧10ms内的前2ms,发送8个SSB,在后8ms交替发送SSB对应的SIB1和SIBX,这样可以保证用户在收到SIB1之后尽早拿到星历星系以完成上行同步流程。此时可以根据相应的公式计算某个SSB,例如SSB#0对应的SIBX的PDCCH monitoring occasions的位置在SSB#0所在的子帧中的时隙(slot)的编号。
当searchSpaceOtherSystemInformation字段的值不为0时,在第K的SSB波束下的用户设备,SI消息的PDCCH monitoring occasions将对应SI window内的第【x*N+K】个时隙(slot)。其中,x=0,1,….X-1。N为SSB的总个数。X通过SI window内PDCCH monitoring occasions的数量除以N来计算。示例性的,假设SI window窗长=80slot,SI窗内可用的PDCCH monitoring occasions个数=80,SSB数量N=16,X=5,则SSB对应的SI消息的搜索空间如图5所示。示例性的,可以计算出SSB#0对应的SIBX的PDCCH monitoring occasions处于SI window窗内的第0、16、32、48、64个slot。
然而,在当前NTN系统中,为了保证用户在收到SSB之后能够尽早完成上行同步流程接入网络,在该系统中的SSB pattern如图6所示。即在前10ms发送完8个SSB后,将对SIB1和SIBX交替发送。之后空出一个完整的空白系统帧,用于发送诸如OSI等信息。
值得注意的是,在第一种方案中,由于SIBX的搜索空间(search space,SS)与SIB1的SS复用,会带来终端设备搜索资源的浪费。这是因为终端设备在搜索SIBX时,SIBX的SS是两个连续的slot,但其中的一个slot实际上承载的是SIB1,因此,造成了终端设备搜索资源的浪费。此外,一旦SIB1的SS所对应的两个连续slot都被SIB1占用,或者用户在解码SIBX时出现错误,此时,至少需要等待一个完整的SSB周期才能搜索到SIBX,造成初始接入的时延严重。对于方案二来说,则会出现SIBX的SS与当前的NTN系统中SSB pattern不适配的问题,同样会导致盲检资源的浪费和增大初始接入时延等问题。示例性的,当SI window窗长=80slot,SI窗内可用的PDCCH monitoring occasions个数=80,SSB数量N=16时,终端设备会在SI window的第0、16、32、48、64个slot上盲检SIBX。可对于网络设备侧来说,SSB#0对应的SIBX的发送位置存在于SI window内的第6个slot上,即方案二与NTN系统下的SSB pattern存在不匹配的问题。
有鉴于此,本申请实施例提供一种通信的方法,通过网络设备配置与SSB的pattern相匹配的配置信息,使得SIBX的搜索空间与SSB的pattern相匹配,同时对SI window长度进行扩展以匹配SSB周期,能够解决当前NTN场景下,SIBX的PDCCH MO与SSB pattern不匹配导致的盲检资源浪费以及影响初始接入时延的问题。
以下不失一般性地,以网络设备和终端设备之间的交互为例详细说明本申请实施例提供的通信方法。
应理解,本申请实施例仅为便于理解和说明,以网络设备与终端设备之间的交互为例详细说明本申请实施例所提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置于终端设备中的部件(如电路、芯片、芯片系统或其他能够调用程 序并执行程序的功能模块等)。下文实施例示出的网络设备可以替换为配置于网络设备中的部件(如电路、芯片、芯片系统或其他能够调用程序并执行程序的功能模块等)。只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法实现通信即可。
为了更好地理解本申请提供的技术方案,下面先对本申请实施例中所涉及到的术语作出详细说明:
1、物理下行控制信道(physical downlink control channel,PDCCH)承载调度以及其他控制信息,具体包含传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等。PDCCH信道是一组物理资源粒子(resource element,RE)的集合,其承载上下行控制信息,根据其作用域不同,PDCCH承载信息区分公共控制信息(公共搜索空间)和专用控制信息(专用搜寻空间)。其中,不同终端设备的PDCCH信息通过其对应的无线网络临时标识(radio network temporary identity,RNTI)信息区分。
2、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB),同步信号/物理广播信道块也可以成为同步信号块。其中,SSB包含主同步信号primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。
当终端设备要接入网络时,需要进行小区搜索和获取小区系统信息。例如,终端设备可以通过搜索上述SSB,与小区取得下行同步。之后,终端设备获取小区的系统信息(system information),并通过随机接入过程(random access procedure)与小区建立连接并取得上行同步。
此外,作出以下几点说明。
第一,在本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一系统信息和第二系统信息,这种名称也并不是表示这两个信息的内容、信息量大小、发送顺序、发送端/接收端、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。
第二,在下文示出的实施例中,“检测机会”也可以称为“检测时机”,在本申请实施例中,检测机会”和“检测时机”交替使用,在不强调其区别时,其所要表达的含义是一致的。
为便于理解本申请所提供的通信方法,首先结合附图详细说明本申请所提供的通信方法。
图7为本申请实施例提供的通信方法700的示意性流程图。该方法包括如下多个步骤。
S710,网络设备向终端设备发送配置信息。
其中,配置信息包括第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,第y个分组为Y个分组中的任意一个,第y个分组内包括的第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。
需要说明的是,在本申请实施例中,第一系统信息包括P种系统信息,配置信息中的第一系统信息的索引为P种系统信息的索引,每种系统信息对应一个索引,即第一系统信息的类型和第一系统信息的索引是一一对应的关系。示例性的,当P为3时,第一系统信息的索引为SI1、SI2和SI3。
应理解,在通信过程中的SSB的发送时长中,SSB是分周期发送的,示例性的,若网络设备发送SSB时是每640ms中发送256个SSB,则SSB的发送周期640ms(对终端设备来讲,SSB的接收周期为640ms)。在图6中,示出了一个SSB的周期。如图6所示,可以将一个SSB周期分为Y个组,例如,可根据图6中所示的子帧进行分组。或者,可以将一个分组称为SSB突发(burst)时间,该SSB burst时间为相邻的两个SSB组中位于相同位置的SSB之间的间隔时间。示例性的,在图6中,第一个分组(子帧#0)中的SSB#0位于第一个分组的第一个时隙(slot)内,则SSB突发时间定义为与SSB#0位于分组中同样时隙的SSB#8之间的时间间隔。或者,SSB突发时间为SSB#2和SSB#10之间的时间间隔,以此类推,不再赘述。在图6中每个SSB组中的SSB的数量为8。
在一种可实现的方式中,第一系统信息可以是通过PDCCH调度的PDSCH承载的,其中,PDCCH是使用SI_RNTI加扰的PDCCH。示例性的,第一系统信息可以是SI消息,例如承载SIBX的SI消息。同时,第一系统信息对应的物理下行控制信道的检测机会也可以理解为第一系统信息对应的DCI的检测机会,这是因为PDCCH上承载着由SI_RNTI加扰的DCI。
此外,在本申请实施例中,网络设备可以通过向终端设备发送第二系统信息来承载配置信息,在 一种可实现的方式中,第二系统信息可以为SIB1或者为RMSI。在另一种可实现的方式中,第二系统信息可以是MIB,MIB中包括配置信息。
S720,终端设备根据配置信息确定第一系统信息对应的物理下行控制信道的检测机会。
在一种可实现的方式中,当第一系统信息的类型为单一类型时,即第一系统信息包括1中系统信息,也就是P等于1时,终端设备可通过下式(1)确定第一系统信息对应的物理下行控制信道的检测机会。
I=x*n+i*M+K mod n+o     (1)
其中,I为该1种系统信息对应的物理下行控制信道的检测机会的索引,K为系统信息对应的SSB的索引,当发送该1种系统信息的系统信息窗口为T,且该1种系统信息在系统信息窗口T中的PDCCH的检测机会的数量为W,对应于系统信息窗口的SSB(对与网络设备为发送的SSB,对于终端设备为接收的SSB)的数量为N时,定义且x满足x=0,1,…(X-1)。其中,X可以理解为T内每个SSB对应的该1种系统信息的PDCCH检测机会的最大数量,此外,i满足o为在第y个分组的SSB的时间内SSB时间(对与网络设备为发送的SSB,对于终端设备为接收的SSB)内包含的物理下行控制信道的检测机会的数量,表示向上取整,表示向下取整,mod为取模符号。
示例性的,假定子载波间隔(subcarrier spacing,SCS)为30KHz,SSB的周期为640ms,一个SSB周期的一个分组内的SSB的数量n为8,一个SSB分组内的该1种系统信息对应的物理下行控制信道的检测机会的数量M为20,系统信息窗口的时间长度(或者窗长或者周期)T为640ms,该1种系统信息在系统信息窗口T中的PDCCH的检测机会的数量W为640,系统信息窗口的SSB的数量N为256时,可以得到,此时,SSB对应的系统信息的搜索空间如图8所示。在图8中,对于前20ms,网络设备向终端设备发送8个SSB,终端设备在搜索该1种系统信息时,MO#2-MO#19对应SSB#0-SSB#7的检测机会。
在另一种可实现的方式中,当第一系统信息的类型为P种类型,即第一系统信息包括P种系统信息,P为大于1的整数时,终端设备可通过下式(2)确定P种系统信息中的每一种系统信息对应的物理下行控制信道的检测机会。
I=x*n+i*M+K mod n+o     (2)
其中,I为第p种系统信息对应的物理下行控制信道的检测机会的索引。K为第p种系统信息对应的SSB的索引,当发送P种系统信息的系统信息窗口为T,且P种系统信息在系统信息窗口T中的PDCCH的检测机会的数量为W,对应于系统信息窗口的SSB(对与网络设备为发送的SSB,对于终端设备为接收的SSB)的数量为N时,X等于且x满足x=0,1,…(X-1)中满足(x mod P=p-1)的值,p=1,2…P。其中,X可以理解为T内每个SSB对应的P种系统信息的PDCCH检测机会的最大数量。此外,i满足o为在第y个分组的所述SSB的时间内SSB时间(对与网络设备为发送的SSB,对于终端设备为接收的SSB)内包含的物理下行控制信道的检测机会的数量,表示向上取整,表示向下取整,mod为取模符号。
应理解,第p种系统信息为P种系统信息中的一种。同时,P种系统信息对应的系统信息的窗口是相同的,均为第一系统信息的窗口T。
示例性的,当P等于2时,该第一系统信息中包括SI1和SI2两类系统信息,此时p的取值为1和2。假定SCS为30KHz,SSB的周期为640ms,一个SSB周期的一个分组内的SSB的数量n为8,一个SSB分组内的第一系统性信息对应的物理下行控制信道的检测机会的数量M为20,系统信息窗口的时间长度(或者窗长或者周期)T为640ms,第一系统信息在系统信息窗口T中的PDCCH的检测机会的数量W为640,系统信息窗口的SSB的数量N为256时,可以得到,x=0、1和2。此时,SSB对应的系统信息的搜索空间如图9所示。在图9中,对于前20ms,网络设备向终端设备发送8个SSB,终端设备在搜索第一系统信息时,MO#2-MO#9分别对应SSB#0-SSB#7中盲检SI1的检测机会(对应为x=0),MO#10-17分别对应SSB#0-SSB#7中盲检SI2检测机会(对应为x=1)。需要说明的是,当x=2时,MO#18和MO#19可以分配给SI1和SI2中的至少一个。例如,可以是MO#18和MO#19均分配给SI1。或者,MO#18和MO#19均分配给SI2。或者,还可以是MO#18分配给SI1,MO#19分配给SI2等。
S730,终端设备在第一系统信息对应的物理下行控制信道的检测机会中获取第一系统信息。
终端设备通过上述式(1)或式(2)确定第一系统信息的检测机会后,通过盲检在物理下行控制信道的检测机会中获取第一系统信息。
需要说明的是,为了使得SSB对应的系统信息的物理下行控制信道检测机会可以和SSB图样更加匹配,在一种可实现的方式中,可以定义P种系统信息(P等于或者大于1)对应的物理下行控制信道的检测窗口的窗长T等于SSB周期。
具体地,可以结合图10来进行说明。在图10中,采用N=256,SSB周期=640ms,系统信息窗长T=320ms,系统信息窗长内物理下行控制信道检测机会的个数W=640,X=3。若采用上述图5中的SSB与系统信息的物理下行控制信道检测机会的映射规则,会出现下述问题:
1.第一个SI窗的MO#0~MO#255对应SSB#0~SSB#255,而SSB#128~SSB#255还没发送。
2.第二个SI窗的MO#0~MO#255依旧对应SSB#0~SSB#255,会严重浪费盲检资源。
因此,在本申请实施例中,系统信息的窗长还可以等于1.28s或者2.56s等以匹配SSB图样,从而进一步优化搜索系统信息时的搜索空间。
此外,需要说明的是,本申请实施例提供的通信方法还可以兼容LTE系统的,当网络设备配置的SSB仅有一个周期,且这个SSB的分组为1个时,其中,n就为SSB的总数,则表示LTE系统中SSB的配置。
可选地,在本申请实施例中,该方法700还包括如下步骤:
S740,终端设备在P种系统信息中获取星历信息。
具体地,当终端设备需要获取卫星发送的星历信息时,终端设备在检测到的P种系统信息中获取星历信息,并利用该星历信息在一定时间内估计卫星的运行轨迹,同时可以根据卫星的运行轨迹计算定时提前,利用定时提前,抵消空口时延带来的影响,实现卫星与终端的上下行同步流程。
应理解,当第一系统信息包括的系统信息为1种时,终端设备可以在该1种系统信息中获取星历信息。当第一系统信息包括的系统信息为多种时,终端设备可以在该多种系统信息中获取星历信息。
图11为本申请实施例提供的通信方法1100的示意性流程图。该方法包括如下多个步骤。
S1110,网络设备向终端设备发送配置信息。
其中,配置信息包括第一系统信息的索引,第一系统信息包括P种系统信息,P为大于或等于1的整数,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,第y个分组为Y个分组中的任意一个,第y个分组内包括的第p种系统信息对应的物理下行控制信道的检测机会的数量M,第p种第一系统信息为所述P种类型中的一种,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数,p为大于或等于1且小于或者等于P的整数。
同样的,配置信息中的第一系统信息的索引为P种系统信息的索引,每种类型的系统信息对应一个索引,即系统信息的类型和系统信息的索引是一一对应的关系。
其中,对SSB周期内Y个分组的说明可参照上述S710中的相关说明,此处不再赘述。
在一种可实现的方式中,第一系统信息可以是通过PDCCH调度的PDSCH承载的,其中,PDCCH是使用SI_RNTI加扰的PDCCH。示例性的,第一系统信息可以是SI消息,例如承载SIBX的SI消息。同时,第一系统信息对应的物理下行控制信道的检测机会也可以理解为第一系统信息对应的DCI的检测机会,这是因为PDCCH上承载着由SI_RNTI加扰的DCI。
此外,网络设备可以通过向终端设备发送第二系统信息来承载配置信息,在一种可实现的方式中,第二系统信息可以为SIB1或者为RMSI。在另一种可实现的方式中,第二系统信息可以是MIB,MIB中包括配置信息。
S1120,终端设备根据配置信息确定第p种系统信息对应的物理下行控制信道的检测机会。
具体的,终端设备可通过如下式(3)确定第p种系统信息对应的物理下行控制信道的检测机会。
I=x*n+i*M+K mod n+o    (3)
其中,I为第p种系统信息对应的物理下行控制信道的检测机会的索引,K为第p种系统信息对应的SSB的索引,当发送P种系统信息的系统信息窗口为T,且P种系统信息的系统信息窗口中与第p种系统信息对应的物理下行控制信道的检测机会的数量为W,对应于系统信息窗口的SSB(对与网络设备为发送的SSB,对于终端设备为接收的SSB)的数量为N时,定义且x满足x= 0,1,…(X-1)。其中,X可以理解为T内每个SSB对应的第p种系统信息的PDCCH检测机会的最大数量,p=1,2…P,此外,i满足o为在第y个分组的所述SSB的时间内SSB时间(对与网络设备为发送的SSB,对于终端设备为接收的SSB)内包含的物理下行控制信道的检测机会的数量,表示向上取整,表示向下取整,mod为取模符号。
在图11所示的方法1100中,终端设备可以根据配置信息计算出P种系统信息中的第p种系统信息对应的物理下行控制信道的检测机会。
示例性的,当P等于2时,该第一系统信息中包括SI1和SI2两类系统信息,此时p的取值为1和2。假定SCS为30KHz,SSB的周期为640ms,一个SSB周期的一个分组内的SSB的数量n为8,一个SSB周期的一个分组内的第一系统性信息对应的物理下行控制信道的检测机会的数量M为20,系统信息窗口的时间长度(或者窗长或者周期)T为640ms,第一系统信息在系统信息窗口T中的PDCCH的检测机会的数量W为640,系统信息窗口的SSB的数量N为256时,可以得到,此时SSB对应的系统信息的搜索空间如图12所示。在图12中,对于前20ms,网络设备向终端设备发送8个SSB,终端设备在搜索两种系统信息时,MO#2-MO#9分别对应SSB#0-SSB#7中盲检SI1的检测机会,MO#2-MO#9分别对应SSB#0-SSB#7中盲检SI2检测机会。
应理解,第一系统信息中的每一种类型的系统信息对应的物理下行控制信道的检测机会的时域位置不同。如图11所示。虽然根据上式(3)进行计算时,可以得到SI1和SI2对应的检测机会的索引相同,但其所处的时域位置不同。
S1130,终端设备在第p种系统信息对应的物理下行控制信道的检测机会中获取所述第p种系统信息。
终端设备通过上述式(3)确定第p种系统信息的检测机会后,通过盲检在物理下行控制信道的检测机会中获取第p种系统信息。
需要说明的是,为了使得SSB对应的系统信息的物理下行控制信道检测机会可以和SSB图样更加匹配,在一种可实现的方式中,可以定义P种系统信息对应的物理下行控制信道的检测窗口的窗长T等于SSB周期。
可选地,在本申请实施例中,该方法1100还包括如下步骤:
S1140,终端设备在第p种系统信息中获取星历信息。
具体地,当终端设备需要获取卫星发送的星历信息时,终端设备在检测到的第p种系统信息中获取星历信息,并利用该星历信息在一定时间内估计卫星的运行轨迹,同时可以根据卫星的运行轨迹计算定时提前,利用定时提前,抵消空口时延带来的影响,实现卫星与终端的上下行同步流程。
应理解,本申请实施例中图7和图11中的实施例只是示例性地描述,图中的示意并不对执行顺序造成限定,本领域技术人员基于图中的示例,可以对各个步骤之间的先后顺序进行灵活调整。并且,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。并且,上述步骤并非是必选的步骤,当在其中一个或多个步骤缺少时也能解决本申请要解决的问题,那么其对应的技术方案也在本申请公开的范围内。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
此外,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
上述本申请提供的实施例中,分别从各个设备/网元本身、以及从各个设备/网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元和设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但 是这种实现不应认为超出本申请的范围。
图13示出了本申请实施例提供的一种通信装置1300的示意性框图。该装置1300包括一个或多个虚拟单元,如收发单元1310和处理单元1320。收发单元1310可以用于实现相应的通信功能。收发单元1310还可以称为通信接口或通信单元。处理单元1320可以用于实现相应的处理功能,如确定第一系统信息对应的物理下行控制信道的检测机会。其中,该收发单元1310还可以称为收发模块,处理单元1320还可以称为处理模块。
可选地,该装置1300还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1320可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备的动作。其中,存储单元还可以称为存储模块。
在第一种设计中,该装置1300可以是前述实施例中的终端设备,也可以是终端设备的组成部件(如芯片)。该装置1300可实现对应于上文方法实施例中的终端设备执行的步骤或者流程。其中,收发单元1310可用于执行上文方法实施例中终端设备的收发相关的操作,如图7所示实施例中终端设备的收发相关的操作,又如图11所示实施例中终端设备的收发相关的操作。处理单元1320可用于执行上文方法实施例中终端设备的处理相关的操作,如图7所示实施例中终端设备的处理相关的操作,又如图11所示实施例中终端设备的处理相关的操作。
在一种可能的实现方式,收发单元1310,用于接收配置信息,配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的所述SSB的数量,第y个分组为所述Y个分组中的任意一个,第y个分组内包括的所述第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。
处理单元1320,用于根据配置信息确定第一系统信息对应的物理下行控制信道的检测机会。还用于在第一系统信息对应的物理下行控制信道的检测机会中获取第一系统信息。
应理解,各单元或模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
此外,该通信装置1300中的收发单元1310和处理单元1320还可实现上述方法中终端设备的其他操作或功能,此处不再赘述。
在第二种设计中,该装置1300可以是前述实施例中的网络设备,也可以是网络设备的组成部件(如芯片)。该装置1300可实现对应于上文方法实施例中的网络设备执行的步骤或者流程。其中,收发单元1310可用于执行上文方法实施例中网络设备的收发相关的操作,如图7所示实施例中网络设备的收发相关的操作,又如图11所示实施例中网络设备的收发相关的操作。处理单元1320可用于执行上文方法实施例中网络设备的处理相关的操作,如图7所示实施例中网络设备的处理相关的操作,又如图11所示实施例中网络设备的处理相关的操作。
在一种可能的实现方式中,收发单元1310,用于发送配置信息,配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,第y个分组为Y个分组中的任意一个,第y个分组内包括的第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。配置信息用于终端设备确定第一系统信息对应的物理下行控制信道的检测机会。
该通信装置1300中的收发单元1310和处理单元1320还可实现上述方法中网络设备的其他操作或功能,此处不再赘述。
应理解,各单元或模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1300以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
示例地,本申请实施例提供的装置1300的产品实现形态是可以在计算机上运行的程序代码。
示例地,本申请实施例提供的装置1300可以是通信设备,也可以是应用于通信设备上的芯片、芯 片系统(例如:片上系统(system on chip,SoC))或电路。当该装置1300为通信设备时,收发单元1310可以是收发器,或,输入/输出接口;处理单元1320可以是处理器。当该装置1300为用于通信设备中的芯片、芯片系统或电路时,收发单元1310可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元1320可以是处理器、处理电路或逻辑电路等。此外,上述收发单元1310还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
图14示出了本申请实施例提供的一种通信装置1400的示意性框图。该装置1400包括处理器1410,处理器1410与存储器1420耦合。可选地,还包括存储器1420,用于存储计算机程序或指令和/或数据,处理器1410用于执行存储器1420存储的计算机程序或指令,或读取存储器1420存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器1410为一个或多个。
可选地,存储器1420为一个或多个。
可选地,该存储器1420与该处理器1410集成在一起,或者分离设置。
可选地,如图14所示,该装置1400还包括收发器1430,收发器1430用于信号的接收和/或发送。例如,处理器1410用于控制收发器1430进行信号的接收和/或发送。
作为一种方案,该装置1400用于实现上文各个方法实施例中由终端设备执行的操作。
例如,处理器1410用于执行存储器1420存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。例如,图7所示实施例中终端设备执行的方法,或图11所示实施例中终端设备执行的方法。
作为另一种方案,该装置1400用于实现上文各个方法实施例中由网络设备执行的操作。
例如,处理器1410用于执行存储器1420存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。例如,图7所示实施例中网络设备执行的方法;再例如,图11所示实施例中网络设备执行的方法。
在实现过程中,上述方法的各步骤可以通过处理器1410中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1420,处理器1410读取存储器1420中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,处理器可以为一个或多个集成电路,用于执行相关程序,以执行本申请方法实施例。
处理器(例如,处理器1410)可包括一个或多个处理器并实现为计算设备的组合。处理器可分别包括以下一种或多种:微处理器、微控制器、数字信号处理器(digital signal processor,DSP)、数字信号处理设备(digital signal processing device,DSPD)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、选通逻辑、晶体管逻辑、分立硬件电路、处理电路或其它合适的硬件、固件和/或硬件和软件的组合,用于执行本公开中所描述的各种功能。处理器可以是通用处理器或专用处理器。例如,处理器1410可以是基带处理器或中央处理器。基带处理器可用于处理通信协议和通信数据。中央处理器可用于使装置执行软件程序,并处理软件程序中的数据。此外,处理器的一部分还可以包括非易失性随机存取存储器。例如,处理器还可以存储设备类型的信息。
本申请中的程序在广义上用于表示软件。软件的非限制性示例包括:程序代码、程序、子程序、指令、指令集、代码、代码段、软件模块、应用程序、或软件应用程序等。程序可以在处理器和/或计算机中运行。以使得装置执行本申请中描述的各种功能和/或过程。
存储器(例如,存储器1420)可存储供处理器(例如,处理器1410)在执行软件时所需的数据。存储器可以使用任何合适的存储技术实现。例如,存储器可以是处理器和/或计算机能够访问的任何可用存储介质。存储介质的非限制性示例包括:随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、 光盘只读存储器(Compact Disc-ROM,CD-ROM)、静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)、可移动介质、光盘存储器、磁盘存储介质、磁存储设备、闪存、寄存器、状态存储器、远程挂载存储器、本地或远程存储器组件,或能够携带或存储软件、数据或信息并可由处理器/计算机访问的任何其它介质。需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
存储器(例如,存储器1420)和处理器(例如,处理器1410)可以分开设置或集成在一起。存储器可以用于与处理器连接,使得处理器能够从存储器中读取信息,在存储器中存储和/或写入信息。存储器可以集成在处理器中。存储器和处理器可以设置在集成电路中(例如,该集成电路可以设置在UE或其他网络节点中)。
图15示出了本申请实施例提供的一种芯片系统1500的示意性框图。该芯片系统1500(或者也可以称为处理系统)包括逻辑电路1510以及输入/输出接口(input/output interface)1520。
其中,逻辑电路1510可以为芯片系统1500中的处理电路。逻辑电路1510可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统1500可以实现本申请各实施例的方法和功能。输入/输出接口1520,可以为芯片系统1500中的输入输出电路,将芯片系统1500处理好的信息输出,或将待处理的数据或信令信息输入芯片系统1500进行处理。
作为一种方案,该芯片系统1500用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路1510用于实现上文方法实施例中由终端设备执行的处理相关的操作,如,图7所示实施例中终端设备执行的处理相关的操作,或,图11所示实施例中终端设备执行的处理相关的操作;输入/输出接口1520用于实现上文方法实施例中由终端设备执行的发送和/或接收相关的操作,如,图7所示实施例中的终端设备执行的发送和/或接收相关的操作,或,图11所示实施例中终端设备执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统1500用于实现上文各个方法实施例中由网络设备执行的操作。
例如,逻辑电路1510用于实现上文方法实施例中由网络设备执行的处理相关的操作,如,图7所示实施例中网络设备执行的处理相关的操作,又如图11所示实施例中网络设备执行的处理相关的操作;输入/输出接口1520用于实现上文方法实施例中由网络设备执行的发送和/或接收相关的操作,如,图7所示实施例中网络设备执行的发送和/或接收相关的操作,又如图11所示实施例中网络设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由通信装置(如终端设备,又如网络设备)执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由通信装置(如终端设备,又如网络设备)执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文各实施例中的如终端设备,又如网络设备中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理 存在,也可以两个或两个以上单元集成在一个单元中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种通信的方法,其特征在于,用于终端设备或终端设备中的芯片系统,包括:
    接收配置信息,所述配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的所述第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数;
    根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会;
    在所述第一系统信息对应的物理下行控制信道的检测机会中获取所述第一系统信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一系统信息包括1种系统信息,
    所述根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会,包括:
    所述1种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述1种系统信息对应的SSB的索引,x=0,1,…(X-1),N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述1种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述1种系统信息,表示向上取整,表示向下取整,mod为取模符号。
  3. 根据权利要求1所述的方法,其特征在于,所述第一系统信息包括P种系统信息,P为大于1的整数,
    所述根据所述配置信息确定所述第一系统信息对应的物理下行控制信道的检测机会,包括:
    所述P种系统信息中第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述第p种系统信息对应的SSB的索引,x=0,1,…(X-1)中满足(x mod P=p-1)的值,p=1,2…P,N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述P种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述P种系统信息,所述第p种系统信息为所述P种系统信息中的一种,表示向上取整,表示向下取整,mod为取模符号。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一系统信息中包括星历信息。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述接收配置信息包括:
    接收第二系统信息,所述第二系统信息包括所述配置信息。
  7. 一种通信的方法,其特征在于,用于终端设备或终端设备中的芯片系统,包括:
    接收配置信息,所述配置信息包括:第一系统信息的索引,所述第一系统信息包括P种系统信息,P为大于或者等于1的整数,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的第p种系统信息对应的物理下行控制信道的检测机会的数量M,所述第p种系统信息为所述P种系统信息中的一种,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数,p为大于或等于1且小于或者等于P的整数;
    根据所述配置信息确定所述第p种系统信息对应的物理下行控制信道的检测机会;
    在所述第p种系统信息对应的物理下行控制信道的检测机会中获取所述第p种系统信息。
  8. 根据权利要求7所述的方法,其特征在于,
    所述根据所述配置信息确定所述第p种系统信息对应的物理下行控制信道的检测机会,包括:
    所述第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述第p种系统信息对应的SSB的索引,x=0,1,…(X-1),N为T中所述SSB的总数,o为在接收所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为接收所述P种系统信息的系统信息窗口中与所述第p种系统信息对应的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于接收所述P种系统信息,表示向上取整,表示向下取整,mod为取模符号。
  9. 根据权利要求7或8所述的方法,所述P种系统信息中的每一种系统信息对应的物理下行控制信道的检测机会的时域位置不同。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述P种系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述P种系统信息中包括星历信息。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述接收配置信息包括:
    接收第二系统信息,所述第二系统信息包括所述配置信息。
  13. 一种通信的方法,其特征在于,用于网络设备或网络设备中的芯片系统,包括:
    发送配置信息,所述配置信息用于终端设备确定第一系统信息对应的物理下行控制信道的检测机会,并在所述第一系统信息对应的物理下行控制信道的检测机会中获取所述第一系统信息,所述配置信息包括:第一系统信息的索引,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的所述第一系统信息对应的物理下行控制信道的检测机会的数量M,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述第一系统信息包括1种系统信息,
    所述1种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述1种系统信息对应的SSB的索引,x=0,1,…(X-1),N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述1种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述1种系统信息,表示向上取整,表示向下取整,mod为取模符号。
  15. 根据权利要求13所述的方法,其特征在于,所述第一系统信息包括P种系统信息,P为大于1的整数,
    所述P种系统信息中第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述第p种系统信息对应的SSB的索引,x=0,1,…(X-1)中满足(x mod P=p-1)的值,p=1,2…P,N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述P种系统信息的系统信息窗口中的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述P种系统信息,所述第p种系统信息为所述P种系统信息中的一种,表示向上取整,表示向下取整,mod为取模符号。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
  17. 根据权利要求13至16中任一项所述的方法,其特征在于,所述第一系统信息中包括星历信息。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述发送配置信息,包括:
    发送第二系统信息,所述第二系统信息包括所述配置信息。
  19. 一种通信的方法,其特征在于,用于网络设备或网络设备中的芯片系统,包括:
    发送配置信息,所述配置信息用于终端设备确定第p种系统信息对应的物理下行控制信道的检测 机会,并在所述第p种系统信息对应的物理下行控制信道的检测机会中获取所述第p种系统信息,所述配置信息包括:第一系统信息的索引,所述第一系统信息包括P种系统信息,P为大于或者等于1的整数,同步信息块SSB的数量n,n为一个SSB周期内Y个分组中的第y个分组内的SSB的数量,所述第y个分组为所述Y个分组中的任意一个,所述第y个分组内包括的第p种系统信息对应的物理下行控制信道的检测机会的数量M,所述第p种系统信息为所述P种系统信息中的一种,其中,n为大于1的整数,Y为大于或者等于1的整数,y小于或者等于Y,M为大于1的整数,p为大于或等于1且小于或者等于P的整数。
  20. 根据权利要求18所述的方法,其特征在于,
    所述第p种系统信息对应的物理下行控制信道的检测机会的索引I满足以下关系:
    I=x*n+i*M+K mod n+o
    其中,K为所述第p种系统信息对应的SSB的索引,x=0,1,…(X-1),N为T中所述SSB的总数,o为在发送所述第y个分组的所述SSB的时间内包含的物理下行控制信道的检测机会的数量,W为发送所述P种系统信息的系统信息窗口中与所述第p种系统信息对应的物理下行控制信道的检测机会的数量,T为所述系统信息窗口的时间长度,所述系统信息窗口用于发送所述P种系统信息,表示向上取整,表示向下取整,mod为取模符号。
  21. 根据权利要求19或20所述的方法,其特征在于,所述P种系统信息中的每一种系统信息对应的物理下行控制信道的检测机会的时域位置不同。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述P种系统信息对应的物理下行控制信道的检测窗口的窗长等于所述SSB周期。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述P种系统信息中包括星历信息。
  24. 根据权利要求19至23中任一项所述的方法,其特征在于,所述发送配置信息,包括:
    发送第二系统信息,所述第二系统信息包括所述配置信息。
  25. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1至6中任一项所述的方法,或者如权利要求7至12中任一项所述的方法,或者如权利要求13至18中任一项所述的方法,或者如权利要求19至24中任一项所述的方法。
  26. 一种芯片,其特征在于,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以执行如权利要求1至6中任一项所述的方法,或者如权利要求7至12中任一项所述的方法,或者如权利要求13至18中任一项所述的方法,或者如权利要求19至24中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如权利要求1至6中任一项所述的方法,或者如权利要求7至12中任一项所述的方法,或者如权利要求13至18中任一项所述的方法,或者如权利要求19至24中任一项所述的方法被实现。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如权利要求1至6中任一项所述的方法,或者如权利要求7至12中任一项所述的方法,或者如权利要求13至18中任一项所述的方法,或者如权利要求19至24中任一项所述的方法被实现。
PCT/CN2023/117806 2022-09-19 2023-09-08 一种通信的方法和装置 WO2024061031A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211137677.0A CN117769037A (zh) 2022-09-19 2022-09-19 一种通信的方法和装置
CN202211137677.0 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024061031A1 true WO2024061031A1 (zh) 2024-03-28

Family

ID=90309113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117806 WO2024061031A1 (zh) 2022-09-19 2023-09-08 一种通信的方法和装置

Country Status (2)

Country Link
CN (1) CN117769037A (zh)
WO (1) WO2024061031A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230726A1 (ko) * 2020-05-15 2021-11-18 엘지전자 주식회사 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2021257971A1 (en) * 2020-06-19 2021-12-23 Convida Wireless, Llc Si acquisition and paging for reduced capability nr devices
US20220030546A1 (en) * 2020-07-21 2022-01-27 Qualcomm Incorporated Reliable paging and short message transmission with repetition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230726A1 (ko) * 2020-05-15 2021-11-18 엘지전자 주식회사 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2021257971A1 (en) * 2020-06-19 2021-12-23 Convida Wireless, Llc Si acquisition and paging for reduced capability nr devices
US20220030546A1 (en) * 2020-07-21 2022-01-27 Qualcomm Incorporated Reliable paging and short message transmission with repetition

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SAMSUNG ELECTRONICS: "PDCCH Monitoring Occasions in SI Window", 3GPP TSG-RAN2 103BIS, R2-1813695, 27 September 2018 (2018-09-27), XP051523190 *
SAMSUNG: "PDCCH Monitoring Occasions in SI Window", 3GPP TSG-RAN2 103BIS, R2-1813693, 27 September 2018 (2018-09-27), XP051523188 *
SAMSUNG: "SI Message Transmission in NR-U", 3GPP TSG-RAN2 105BIS, R2-1903109, 28 March 2019 (2019-03-28), XP051692387 *
SAMSUNG: "SI Message Transmission in NR-U", 3GPP TSG-RAN2 106, R2-1905716, 2 May 2019 (2019-05-02), XP051710070 *
SAMSUNG: "SI Message Transmission/Reception in NR-U", 3GPP TSG-RAN2 103BIS, R2-1813691, 28 September 2018 (2018-09-28), XP051523186 *

Also Published As

Publication number Publication date
CN117769037A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN112369093B (zh) 同步信号块ssb传输方式的确定方法、设备、芯片和介质
US20230069646A1 (en) Method for determining transmission resources and terminal device
EP4192150A1 (en) Channel transmission method, terminal device, and network device
WO2021237675A1 (zh) 无线通信方法和终端设备
JP7441960B2 (ja) 情報伝送方法、端末機器及びネットワーク機器
CN113518420B (zh) 通信方法以及通信装置
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2024061031A1 (zh) 一种通信的方法和装置
CN115997389A (zh) 寻呼方法、终端设备和网络设备
CN115413045B (zh) 信息传输方法、终端设备和网络设备
CN115103393B (zh) 物理信道监测方法和终端设备
WO2023123080A1 (zh) 侧行通信方法和设备
EP4156744A1 (en) Wireless communication method, terminal device and network device
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022205015A1 (zh) 一种同步方法及装置、终端设备、网络设备
WO2023206128A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023039811A1 (zh) 通信方法及通信装置
US20240057215A1 (en) Method for wireless communication and terminal device
WO2023050355A1 (zh) 无线通信的方法、终端设备和网络设备
CN117769818A (zh) 通信方法及终端设备
CN116648968A (zh) 无线通信的方法和终端设备
JP2023547593A (ja) リソースセットの伝送方法及び端末
CN116867049A (zh) 一种通信方法、装置及计算机可读存储介质
CN116671164A (zh) 无线通信的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867321

Country of ref document: EP

Kind code of ref document: A1