WO2021142800A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2021142800A1
WO2021142800A1 PCT/CN2020/072856 CN2020072856W WO2021142800A1 WO 2021142800 A1 WO2021142800 A1 WO 2021142800A1 CN 2020072856 W CN2020072856 W CN 2020072856W WO 2021142800 A1 WO2021142800 A1 WO 2021142800A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
cell
uplink
parameter
Prior art date
Application number
PCT/CN2020/072856
Other languages
English (en)
French (fr)
Inventor
耿婷婷
酉春华
严乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/072856 priority Critical patent/WO2021142800A1/zh
Priority to CN202080092571.6A priority patent/CN114930915A/zh
Priority to EP20913626.6A priority patent/EP4075876A4/en
Publication of WO2021142800A1 publication Critical patent/WO2021142800A1/zh
Priority to US17/812,898 priority patent/US20220353767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, in particular to communication methods and devices.
  • the uplink (UL) coverage of the cell is less than the downlink (DL) coverage of the cell Scenes. Therefore, in the R17 standard stage, it is discussed to introduce a node with amplifying function to realize the coverage enhancement of NR.
  • One possible way is to deploy an uplink relay node, and the network equipment and the uplink relay node jointly realize the uplink coverage, so that the uplink coverage and downlink coverage of the NR are balanced.
  • the uplink relay node only supports the transmission of uplink services (data, signals, etc.) of the terminal device, for example, receiving the uplink service of the terminal device and forwarding it to the network device.
  • the uplink coverage is provided by the network equipment and the uplink relay node.
  • the uplink frequency of the network equipment and the uplink relay node are the same.
  • additional uplink frequency points can be avoided, such as additional uplink (supplementary uplink, SUL) frequency points, network equipment and terminal equipment need to support additional SUL problems, which can effectively reduce the network Deployment cost.
  • the uplink and downlink of the terminal device can be separated.
  • the terminal device when the terminal device is in the peripheral area of the downlink coverage area of the network device, the uplink service of the terminal device It is forwarded to the network device through the uplink relay node, and the downlink service of the terminal device is still sent by the network device to the terminal device. If the terminal device still performs uplink scheduling directly based on the downlink quality, problems such as high uplink transmission power of the terminal device will occur, which will affect other uplink devices. Interference occurs in service transmission.
  • This application provides a communication method and device to solve the problem of how to determine the uplink transmission power of the terminal device if the uplink service of the terminal device is forwarded to the network device through the relay node when the uplink relay node is introduced to enhance the uplink coverage.
  • the present application provides a communication method.
  • the method includes: receiving first information from a first network device, where the first information includes a quality threshold value and a path loss offset; Downlink path loss; when it is determined that the downlink quality is lower than the quality threshold, the uplink transmit power of the second path is determined according to the downlink path loss and the path loss offset, where the second path is the terminal device and The communication path between the second network devices.
  • the first network device can support the uplink service transmission and downlink service transmission of the terminal device, and can support the processing of the uplink service and downlink service of the terminal device.
  • the first network device can be in the NR system Devices such as base stations that communicate with terminal devices through one or more cells; the second network device only supports the uplink service transmission of the terminal device, for example, only supports receiving the uplink service of the terminal device, and forwards the received uplink service to the first network device
  • the second network device may be an uplink relay node.
  • the communication method described in this application can be implemented by a terminal device, or can be implemented by components such as a processing chip and a circuit in the terminal device.
  • the terminal device determines that it is located in the uplink coverage area of the second network device.
  • the terminal device can accurately determine whether it is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device according to the quality threshold, and can bias the path loss between the terminal device and the first network device.
  • the second network device is determined according to the downlink path loss and the path loss offset.
  • the uplink transmission power of the path includes: determining the uplink transmission power of the second path according to the downlink path loss, the path loss offset, and the second receiving target power.
  • the first network device can also indicate the second receiving target power corresponding to the second network device, which is beneficial for the terminal device to accurately determine the uplink transmit power of the communication path between the terminal device and the second network device, thereby avoiding the terminal The upstream transmission power of the device is too high.
  • the target power climb step is determined according to the number of random access retransmissions and the second power climb step corresponding to the second network device; the target power climb step is determined according to the target power climb step. Uplink transmit power is adjusted.
  • the terminal device when the terminal device is located in the uplink coverage area of the second network device, after the random access failure of the terminal device, based on the number of random access retransmissions and the second power increase step size corresponding to the second network device, the terminal device Adjusting the uplink transmission power of the communication path between the device and the second network device is beneficial to accurately control the uplink transmission power of the communication path between the terminal device and the second network device, and avoid problems such as excessively high uplink transmission power of the terminal device .
  • the timing advance TA corresponding to the second network device is determined.
  • the difference in the distance between the first network device and the second network device and the terminal device will also result in a difference between the TA of the terminal device corresponding to the first network device and the TA corresponding to the second network device, and the terminal device
  • the TA corresponding to the first network device can be corrected according to the timing advance offset to obtain the TA corresponding to the second network device, thereby avoiding interference with the uplink service transmission of different terminal devices and affecting the uplink service of the network device to the terminal device Received.
  • the present application provides a communication method.
  • the method includes: receiving second information from a first network device, the second information including a first parameter and a second parameter for a first cell, wherein the The first parameter is used for the first terminal device to perform cell selection or cell reselection, the second parameter is used for the second terminal device to perform cell selection or cell reselection, and the first terminal device supports the communication through the first network A terminal device that performs uplink service transmission between a device and a second network device, where the second terminal device is a terminal device that only supports uplink service transmission through the first network device; according to the second information and whether the terminal device Supporting uplink service transmission through the second network device, and determining parameters for cell selection or cell reselection.
  • the communication method described in this application can be implemented by a terminal device, or can be implemented by components such as a processing chip and a circuit in the terminal device.
  • the first network device sends the first parameter and the second parameter for the first cell to the terminal device to support the passage of the first network device and the second network
  • a terminal device that performs uplink service transmission by the device performs cell selection or cell reselection
  • a terminal device that only supports uplink service transmission through the first network device performs cell selection or cell reselection. It is avoided that only the second parameter for cell selection or cell reselection corresponding to the terminal device that only supports uplink service transmission through the first network device is sent, causing the problem of premature or late reselection of the cell.
  • the first parameter is used to determine the minimum reception level required by the first cell for uplink service transmission of the first terminal device; the second parameter is used to determine the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • an indirect indication may be used to indicate the minimum receiving level required by the first cell for uplink service transmission of the first terminal device and the minimum receiving level required for uplink service transmission of the second terminal device.
  • the first parameter is used to indicate the minimum reception level required by the first cell for uplink service transmission of the first terminal device;
  • the second parameter is used to indicate the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • a direct indication method may be used to indicate the minimum receiving level required by the first cell for uplink service transmission of the first terminal device and the minimum receiving level required for uplink service transmission of the second terminal device.
  • the first cell is a serving cell or a neighboring cell of the terminal device.
  • the first network device can send the second indication information to the terminal device, which is beneficial to the terminal device according to whether it supports the first network device and The ability of the second network device to perform uplink service transmission, and perform cell selection and reselection, to avoid the occurrence of the problem of premature or late reselection of the cell.
  • the present application provides a communication method.
  • the method includes: a first network device sends first information to a terminal device, where the first information includes a quality threshold value and a path loss offset.
  • the communication method described in this application can be implemented by the first network device, or can be implemented by components such as processing chips and circuits in the first network device.
  • the first information further includes the second receiving target power corresponding to the second network device.
  • the present application provides a communication method.
  • the method includes: a first network device sends second information to a terminal device, where the second information includes a first parameter and a second parameter for the first cell, where all The first parameter is used for the first terminal device to perform cell selection or cell reselection, the second parameter is used for the second terminal device to perform cell selection or cell reselection, and the first terminal device supports the first terminal device to perform cell selection or cell reselection.
  • a terminal device that performs uplink service transmission between a network device and a second network device, and the second terminal device is a terminal device that only supports uplink service transmission through the first network device.
  • the communication method described in this application can be implemented by the first network device, or can be implemented by components such as processing chips and circuits in the first network device.
  • the first parameter is used to determine the minimum reception level required by the first cell for uplink service transmission of the first terminal device; the second parameter is used to determine the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first parameter is used to indicate the minimum reception level required by the first cell for uplink service transmission of the first terminal device;
  • the second parameter is used to indicate the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first cell is a serving cell or a neighboring cell of the terminal device.
  • an embodiment of the present application provides a communication device that has any possible design method for implementing the first aspect or the first aspect, or implementing any of the second or second aspects.
  • the function of the method in the possible design can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units (modules) corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor.
  • the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute the first aspect or any of the first aspects.
  • the device may be a terminal device.
  • an embodiment of the present application provides a communication device that has a possible design method for implementing the third aspect or the third aspect, or any one of the fourth aspect or the fourth aspect.
  • the function of the method in the possible design can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units (modules) corresponding to the above-mentioned functions, such as a transceiver unit and a processing unit.
  • the device can be a chip or an integrated circuit.
  • the device includes a memory and a processor, and the memory is used to store a program executed by the processor.
  • the program is executed by the processor, the device can execute any of the foregoing third aspect or the third aspect.
  • the device may be a network device.
  • an embodiment of the present application provides a communication system.
  • the communication system may include a terminal device and a network device.
  • the terminal device may be used to implement the above-mentioned first aspect or any one of the possible designs of the first aspect.
  • the network device can be used to implement the method described in the third aspect or any one of the possible designs of the third aspect , Or implement the method described in the fourth aspect or any one of the possible designs of the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, the storage medium stores computer instructions, and when the computer instructions are executed, the first aspect or any one of the possibilities of the first aspect can be realized.
  • the method described in the design, or the method described in the second aspect or any one of the possible designs of the second aspect above, or the method described in the third aspect or any one of the possible designs of the third aspect above The method described above, or the method described in the fourth aspect or any one of the possible designs of the fourth aspect.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction.
  • the computer program or instruction When executed, it can implement the above-mentioned first aspect or any of the possible designs of the first aspect.
  • Figure 1 is a schematic diagram of the enhanced uplink coverage of the uplink relay node provided by this application.
  • Figure 2 is a schematic diagram of a communication architecture provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of path loss provided by an embodiment of the application.
  • 4A and 4B are schematic diagrams of uplink time adjustment in an embodiment of this application.
  • FIG. 5 is a schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another communication process provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of uplink and downlink coverage provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a cell selection/cell reselection process provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another cell selection/cell reselection process provided by an embodiment of this application.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 12 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a network device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, for example: it can be applied to communication systems such as the 5th generation (5G) system, and can also be applied to wireless fidelity (WiFi), global Microwave interconnection access (worldwide interoperability for microwave access, wimax), or future communication systems, such as the future 6th generation (6G) system, etc.
  • 5G can also be called new radio (NR).
  • the communication system architecture applied in the embodiment of the present application may be as shown in FIG. 2 and includes a first network device, a second network device, and a terminal device.
  • the first network device can support the uplink service transmission and transmission of the terminal device.
  • Downlink service transmission and can support the processing of the uplink service and downlink service of the terminal device.
  • the second network device only supports the uplink service transmission of the terminal device. For example, it only supports receiving the uplink service of the terminal device and forwards the received uplink service to The first network equipment.
  • the terminal device can directly perform uplink service and/or downlink service transmission with the first network device, and can also perform uplink service transmission with the first network device through the second network device.
  • Terminal devices including devices that provide users with voice and/or data connectivity, such as handheld devices with wireless connection functions, or processing devices connected to wireless modems.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing devices.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the first network device may refer to a device that communicates with the wireless terminal device through one or more cells on the air interface in the access network.
  • the first network device may be a node in a radio access network, may also be called a base station, or may also be called a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • the first network equipment are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (AP), etc.
  • the first network device may include a centralized unit (CU) node and/or a distributed unit (DU) node.
  • the CU implements part of the functions of gNB, and the DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the device used to implement the function of the first network device may be the first network device, or may be a device capable of supporting the first network device to implement the function, such as a chip system.
  • the device may be installed in the first network device.
  • the device for realizing the function of the first network device is the first network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the second network device which can also be called an uplink relay device (UL only), can be a relay device that only supports the transmission of uplink services from the terminal device. For example, it only supports the uplink service sent by the terminal device and sends the terminal device The uplink service is forwarded to the relay device of the first network device.
  • UL uplink relay device
  • the device used to implement the function of the second network device may be the second network device, or may be a device capable of supporting the second network device to implement the function, such as a chip system.
  • the device may be installed in the second network device. 2.
  • the device for realizing the function of the second network device is the second network device as an example to describe the technical solutions provided by the embodiments of the present application.
  • Path loss refers to the average power loss of the signal introduced by the transmission distance and the transmission environment between the transmitter and the receiver. It is a quantity strongly related to transmission distance, transmission environment and carrier frequency.
  • c is the speed of light.
  • ⁇ T 2 d 2 /c, where d 2 is the distance between the network device and the terminal device 2.
  • the interval from the start time of the terminal device 1 sending the uplink signal to the start time of the network device receiving the uplink signal Is ⁇ T 1 . Therefore, for terminal device 1, the network device has a time difference of 2 ⁇ T 1 from the start time of sending the downlink signal to the start time of receiving the uplink signal. Similarly, for the terminal device 2, the network device is from the start time of sending the downlink signal to the start time of receiving the uplink signal. There is a time difference of 2 ⁇ T 2 at the beginning of receiving the uplink signal. As the distance between each terminal device and the network device is different, the time for the uplink signal to reach the network device is different, which may cause a timing deviation between the terminal devices. When the timing deviation is greater than the cyclic prefix (CP) of the orthogonal frequency division multiple (OFDM) symbol, terminal devices will interfere with each other.
  • CP cyclic prefix
  • OFDM orthogonal frequency division multiple
  • terminal devices need to perform timing adjustment, also called timing advance, or TA.
  • TA timing advance
  • the terminal device 1 advances the start time of sending uplink signals by 2 ⁇ T 1
  • the terminal device 2 advances the start time of sending uplink signals by 2 ⁇ T 2
  • the network device will receive the terminal device 1 and the terminal device 1 at the same time.
  • the uplink signal of the terminal device 2 solves the problem of mutual interference between the terminal devices.
  • the determination of uplink transmission power is to enable network devices to receive uplink services with appropriate received power.
  • the uplink services can be services transmitted by terminal devices through uplink physical channels.
  • proper received power means that the uplink service is correctly decoded by the network equipment.
  • the uplink transmission power of the uplink service cannot be unnecessarily high, so as not to affect other uplink services. Transmission causes interference.
  • the main control is the uplink transmission power when the terminal device sends the uplink service.
  • the uplink transmit power required by the channel is related to the attenuation (such as path loss) experienced by the channel, interference and noise level at the receiving end, etc., so accurate path loss determines the uplink transmit power It plays a vital role.
  • the uplink coverage is determined by only supporting the uplink service transmission and downlink service transmission of the terminal equipment.
  • the first network equipment (such as the base station that communicates with the terminal equipment through one or more cells in the NR system) is provided by the first network equipment and the second network equipment. How does the terminal equipment recognize that it is in the first network?
  • the uplink coverage area of the device is still in the uplink coverage area of the second network device, and when it is in the uplink coverage area of the second network device, how to determine the uplink transmission power to avoid interference with other uplink service transmission has become an urgent problem to be solved Problem, the embodiments of the present application aim to solve the above-mentioned problems.
  • “/" can indicate that the associated objects are in an "or” relationship.
  • A/B can indicate A or B; and "and/or” can be used to describe that there are three types of associated objects.
  • the relationship, for example, A and/or B can mean that: A alone exists, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” may be used to distinguish technical features with the same or similar functions. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations, or illustrations, and embodiments or design solutions described as “exemplary” or “for example” should not be interpreted as It is more preferable or advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner to facilitate understanding.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or various operations. Deformation of the operation. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • Fig. 5 is a schematic diagram of a communication process provided by an embodiment of the application, and the process includes:
  • a terminal device receives first information from a first network device, where the first information includes a quality threshold value and a path loss offset.
  • the communication path between the terminal device and the first network device is called the first path
  • the communication path between the terminal device and the second network device is called the second path
  • first “Path” and “second path” are also applied to the subsequent description in the embodiment of the present application, and will not be described separately.
  • the first network device may perform downlink service transmission with the terminal device through the first path
  • the terminal device may perform uplink service transmission with the first network device or the second network device through the first path or the second path.
  • the downlink quality of the downlink signal of the first network device received by the terminal device will be affected by the transmission distance, transmission environment, etc. As the distance between the terminal device and the first network device increases, the first network device received by the terminal device The downstream quality of the downstream signal shows a downward trend, and the power and signal-to-interference-to-noise ratio of the downstream signal will decrease. Therefore, in the cell where the second network device is deployed, whether the terminal device is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device can be identified (judged) based on the downlink quality.
  • the downlink quality may be the measured value of the downlink signal or channel between the terminal device and the first network device, including but not limited to reference signal receiving power (RSRP), reference signal receiving quality (reference signal) One or more of receiving quality (RSRQ), reference signal signal to interference plus noise ratio (SINR), etc.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR reference signal to interference plus noise ratio
  • the first network device may be pre-configured or set to determine whether the terminal device is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device
  • the quality threshold value (TH ULonly ), or the first network device may determine the quality threshold value according to a corresponding algorithm, which is not limited in the embodiment of the present application.
  • the quality threshold is the RSRP threshold
  • SINR the quality threshold is the SINR threshold.
  • the downlink path loss determined by the first terminal device is the downlink path loss of the first path. If the terminal device is located in the uplink coverage area of the second network device, according to the first The downlink path loss of the path and the determination of the uplink transmit power of the second path will cause the determined uplink transmit power to be mismatched with the received power required by the second network device. Therefore, in the embodiment of the present application, it can also be used in the first network.
  • a path loss delta is pre-configured or set in the device, and the path loss delta can be used to correct the downlink path loss of the first path to obtain the downlink path loss of the second path.
  • the path loss offset described above can also be replaced with a transmission power offset, where the transmission power offset can be determined according to the path loss offset, for example, equal to the path loss offset.
  • the terminal device determines the uplink transmit power of the first path (or the uncorrected uplink transmit power of the second path) according to the downlink path loss of the first path, and then The aforementioned transmit power offset corrects the determined uplink transmit power of the first path (or the uncorrected uplink transmit power of the second path).
  • the terminal device can also eliminate the difference between the downlink path loss of the first path and the downlink path loss of the second path, and obtain an accurate uplink transmit power of the second path.
  • the foregoing manner of obtaining the uplink transmit power of the second path based on the transmit power bias is similar to the manner of obtaining the downlink path loss of the second path based on the path loss bias.
  • the path loss bias is taken as an example for description.
  • the first information including the quality threshold value and the path loss offset may be through broadcast or multicast messages, or through radio resource control (RRC) messages dedicated to terminal equipment, or other RRC configuration messages , Or MAC control element (control element, CE) signaling is sent by the first network device to the terminal device.
  • RRC radio resource control
  • CE MAC control element
  • S502 The terminal device obtains the downlink quality, and when the downlink quality is not lower than the quality threshold, perform S503A, S503B, and when the downlink quality is lower than the quality threshold, perform S504A, S504B .
  • the terminal device can obtain it through downlink measurement.
  • the RSRP is obtained according to the average value of the signal power received on all resource elements (RE) carrying the reference signal in a certain symbol of the downlink signal of the first network device; according to the RSRP and the received signal strength indicator of the downlink signal
  • the ratio of (received signal strength indication, RSSI) obtains the RSRQ;
  • the SINR is obtained according to the ratio of the strength of the useful signal in the received downlink signal of the first network device to the strength of the interference signal (noise and interference).
  • the terminal device After the terminal device obtains the downlink quality (downlink quality of the first path), the terminal device determines whether the terminal device is located in the uplink coverage area of the first network device or in the uplink of the second network device based on the quality threshold and the obtained downlink quality. The coverage area is identified (judgment).
  • the downlink quality is not lower than the quality threshold, it means that the distance between the terminal device and the first network device is small, and the terminal device is located in the uplink coverage area of the first network device, and the terminal device needs to perform uplink service transmission through the first path;
  • the quality is lower than the quality threshold, it indicates that the distance between the terminal device and the first network device is large, the terminal device is located in the uplink coverage area of the second network device, and the terminal device needs to perform uplink service transmission through the second path.
  • the terminal device can also identify (judge) whether the terminal device is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device based on its location information.
  • the first information includes reference point location information (such as location information of the first network device or location information of the second network device) and a distance threshold.
  • the terminal device can determine whether the terminal device is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device according to its location information, reference point location information, and the distance threshold.
  • the terminal device compares with the distance threshold according to the distance between its location information and the reference point location information, and if it is less than or equal to the distance threshold, the terminal device determines that it is in the uplink coverage area of the reference point; otherwise The terminal device determines that it is not in the uplink coverage area of the reference point.
  • the terminal device determines the first downlink path loss according to the transmit power of the first network device and the downlink quality obtained by the terminal device;
  • the terminal device determines the downlink path loss of the first path, that is, the first downlink path loss, according to the transmit power of the first network device and the downlink quality acquired by the terminal device. For example, for the downlink path loss of the first path, the terminal device may be based on the signal strength (transmission power of the first network device) of the transmitted downlink signal carried in the downlink signal of the first network device and the RSRP obtained (measured) by the terminal device. The difference is obtained.
  • S503B The terminal device determines the uplink transmit power of the first path according to the first downlink path loss.
  • the terminal device compensates the first receiving target power of the first network device according to the downlink path loss of the first path, and determines the uplink transmit power of the first path.
  • the terminal device may directly determine the uplink transmit power of the first path according to the sum of the downlink path loss of the first path and the first received target power; optionally, the terminal device may also use uplink transmit power control According to the open-closed loop power control strategy and the like in the first path, the uplink transmit power of the first path is determined according to the downlink path loss of the first path and the first received target power, which is not limited in the embodiment of the present application.
  • the first received target power may be instructed or configured by the first network device for the terminal device through signaling (for example, RRC signaling, system message, or downlink control information (DCI), etc.).
  • signaling for example, RRC signaling, system message, or downlink control information (DCI), etc.
  • the terminal device determines the second downlink path loss according to the transmit power of the first network device, the downlink quality obtained by the terminal device, and the path loss offset;
  • the terminal device When the downlink quality acquired (measured) by the terminal device is lower than the quality threshold, it indicates that the terminal device is located in the uplink coverage area of the second network device, and the terminal device selects the second network device for uplink service transmission.
  • the terminal device may correct the downlink path loss of the first path according to the path loss bias to obtain the downlink path loss of the second path (that is, the second downlink path loss). For example, according to the sum of the path loss offset and the downlink path loss of the first path, the downlink path loss of the second path is obtained.
  • S504B The terminal device determines the uplink transmit power of the second path according to the second downlink path loss.
  • the terminal device when the first network device does not indicate the second network device's second receiving target power, the terminal device may default to the first network device and the second network device's receiving target power being the same.
  • the received target power may be the preamble received target power.
  • the terminal device compensates the first received target power according to the downlink path loss of the second path, and determines the uplink transmit power of the second path.
  • the terminal device can directly determine the uplink transmission power of the second path based on the obtained sum of the downlink path loss of the second path and the first received target power; optionally, the terminal device can also use uplink transmission.
  • the open-closed-loop power control strategy and other methods in power control determine the uplink transmit power of the second path according to the downlink path loss of the second path and the first received target power, which is not limited in this embodiment of the application.
  • the first information sent by the first network device to the terminal device may also include information corresponding to the second network device.
  • the terminal device may also correct the downlink path loss of the first path according to the path loss offset to obtain the downlink path loss of the second path, and determine the second receiving target according to the obtained downlink path loss of the second path.
  • the power is compensated to determine the uplink transmit power of the second path.
  • the TA determined by the first network device is usually determined based on the transmission deviation (such as the transmission time caused by the distance) between the terminal device and the first network device.
  • the transmission deviation such as the transmission time caused by the distance
  • the first network device will be based on the terminal device and the first network device.
  • the TA whose transmission deviation is determined between network devices is not applicable to the uplink service transmission between the terminal device and the second network device.
  • the terminal device adjusts the TA sent by the first network device (corresponding to the TA of the first network device) according to the timing advance offset (TA delta) to obtain the TA corresponding to the second network device .
  • the terminal device may determine the TA corresponding to the second network device according to the difference between the TA corresponding to the first network device and the TA delta.
  • the terminal device may also adjust the TA sent by the first network device according to the TA adjustment coefficient to obtain the TA corresponding to the second network device.
  • the terminal device may determine the TA corresponding to the second network device according to the product of the TA corresponding to the first network device and the TA adjustment coefficient.
  • the timing advance offset or TA adjustment coefficient may be pre-configured or set in the terminal device, or the timing advance offset may be pre-configured or set in the first network device.
  • the setting or TA adjustment coefficient can be sent to the terminal device through the first message or other messages or signaling.
  • the first network device when the cell is a cell where the second network device is deployed, the first network device may be pre-configured or set with a timing advance for adjusting the TA corresponding to the first network device Offset or TA adjustment factor. After determining the TA corresponding to the first network device, the first network device may also determine the TA corresponding to the second network device according to the timing advance offset or the TA adjustment coefficient. The first network device may also send the TA corresponding to the first network device and the TA corresponding to the second network device or the timing advance offset or TA adjustment coefficient to the terminal device. The terminal device selects the corresponding TA or determines the corresponding TA according to whether it is located in the uplink coverage area of the first network device or the uplink coverage area of the second network device. For example, the TA corresponding to the first network device and the TA corresponding to the second network device or the timing advance offset or TA adjustment coefficient are sent to the terminal device through a first message or other messages or signaling.
  • the terminal device can perform uplink service transmission according to the uplink transmission power and the corresponding TA, such as sending a random access request according to the uplink transmission power and the corresponding TA to initiate random access.
  • the terminal device can determine the downlink path loss of the first path. For example, when the downlink path loss is lower than the downlink path loss threshold, select two-step random access, and select the random access preamble in group B; when the downlink path loss is not lower than the downlink path loss threshold, select four steps Random access, and select the random access preamble in groupA.
  • the random access request (message 1 (msg1)) sent by the terminal device to the network device includes the random access preamble.
  • the random access request (message A (msgA)) sent by the terminal device to the network device contains the random access preamble and uplink data, where the uplink data can also be referred to as the uplink payload ( UL payload), which can be an RRC connection establishment request, an RRC reestablishment request, an RRC connection recovery request, a beam recovery request, etc., which is similar to the message 3 (msg3) in the four-step random access.
  • the terminal device may also receive the maximum number of transmissions of the first preamble and the maximum number of transmissions of the second preamble sent by the first network device.
  • the maximum number of transmissions of the first preamble is the maximum number of times that the terminal device sends the preamble on the first path
  • the maximum number of times the second preamble is the maximum number of times the terminal device sends the preamble on the second path.
  • the terminal device can default to the first power climbing step size of the first network device, which is equal to the second power climbing step size corresponding to the second network device, and the terminal device can retransmit the number of times according to random access
  • the first power increase step size corresponding to the first network device determine the target power increase step size, adjust the determined initial uplink transmission power according to the target power increase step size, and resend the random access request.
  • the uplink coverage area of network equipment adopts the same power climbing mechanism.
  • the first network device may also send a second power climbing step size or a power climbing step size adjustment coefficient corresponding to the second network device to the terminal device.
  • the first network device sends the first power ramp step size corresponding to the first network device and the second power ramp step size corresponding to the second network device to the terminal device through a first message or other messages or signaling, where The first power climbing step length and the second power climbing step length may be the same or different.
  • the terminal device determines that it is located in the uplink coverage area of the second network device, after the terminal device fails to send the random access request, it performs the uplink transmission power increase based on the second power increase step size corresponding to the second network device, and according to the increase After the uplink transmit power, re-send the random access request.
  • the second power ramp step size or the power ramp step adjustment coefficient corresponding to the second network device can also be pre-configured or set in the terminal device. For example, the terminal device may calculate the second power climbing step corresponding to the second network device according to the pre-configured power climbing step adjustment coefficient and the first power climbing step corresponding to the first network device.
  • the random access preamble included in the random access request re-sent by the terminal device is the same as the random access request sent by the terminal device before the random access failure.
  • the included random access preamble may be the same or different, which is not limited in the embodiment of the present application.
  • the foregoing description is based on an example in which the first network device and the second network device are simultaneously deployed in a cell (carrier) to describe the determination of the uplink transmission power, TA, and the like. It is understandable that the technical solutions provided in the embodiments of the present application can also be applied to other scenarios where the first network device and the second network device are deployed at the same time to determine the uplink transmit power, TA, etc. For example: It is also applicable to a certain beam (frequency band) with both the first network equipment and the second network equipment.
  • uplink transmission power, TA, etc. for specific details on determining the uplink transmission power, TA, etc., please refer to the above
  • the first network device and the second network device are deployed in the cell at the same time, and the relevant details for determining the uplink transmission power, TA, etc. will not be repeated here.
  • Fig. 6 is a schematic diagram of a communication process provided by an embodiment of the application, and the process includes:
  • the terminal device receives second information from the first network device, where the second information includes the first parameter and the second parameter for the first cell.
  • the first parameter is used for the first terminal device to perform cell selection or cell reselection
  • the second parameter is used for the second terminal device to perform cell selection or cell reselection
  • the first terminal device supports the A terminal device that performs uplink service transmission between a network device and a second network device
  • the second terminal device is a terminal device that only supports uplink service transmission through the first network device.
  • the uplink coverage area (area 2) can also normally transmit uplink services; but if the terminal device only supports uplink service transmission through the first network device, the terminal device is located in the uplink coverage area of the second network device (area 2), The transmission of the uplink service cannot be performed normally, and the transmission of the uplink service can only be performed normally in the uplink coverage area (area 1) located in the first network device.
  • the terminal device faces two scenarios of cell selection or cell reselection.
  • Scenario 1 The serving cell of the terminal device is the cell where the second network device is deployed. Referring to Figure 7, when the terminal device supports uplink service transmission through the first network device and the second network device (that is, when the terminal device is the first terminal device), the terminal device located in area 1 and area 2 can continue to reside in the service. Cell: When the terminal device only supports uplink service transmission through the first network device (that is, the second terminal device), the terminal device located in area 1 can continue to camp in the serving cell, and located in area 2 needs to be reselected to another cell.
  • the serving cell of the terminal device is a cell where the second network device is not deployed. Regardless of whether the terminal device supports uplink service transmission through the first network device and the second network device (that is, whether it is the first terminal device or the second terminal device), the terminal device can continue to reside in the serving cell only if it is located in area 1 .
  • the selection requirements for neighboring cells are the same as the above-mentioned serving cells. For example: for a neighboring cell where the second network device is deployed, when the terminal device supports uplink service transmission through the first network device and the second network device, the terminal device is located in area 1 and area 2 of the neighboring cell. Cell: For a neighboring cell where the second network device is not deployed, regardless of whether the terminal device supports uplink service transmission through the first network device and the second network device, the terminal device can only camp in the neighboring cell if it is located in area 1 of the neighboring cell .
  • the terminal device when the terminal device performs cell selection or cell reselection, it needs to consider the cell where the second network device is deployed (for ease of description, the “cell where the second network device is deployed” is referred to as the first It is necessary to optimize the parameters of the terminal equipment for cell selection or reselection, so as to avoid the terminal equipment from reselecting the cell too early or too late, which affects the service transmission performance of the terminal equipment.
  • the first cell may be a serving cell of the terminal device or a neighboring cell of the terminal device, which is not limited in the embodiment of the present application.
  • the first network device only sends a parameter (such as the minimum reception level (q-RxLevMin2)) to the terminal device for cell selection or cell selection by the terminal device Reselection.
  • a parameter such as the minimum reception level (q-RxLevMin2)
  • the first network device sends second information to the terminal device.
  • the second information includes the information used for the first terminal device to perform cell selection or cell reselection. The first parameter selected, and the second parameter used for cell selection or cell reselection by the second terminal device.
  • the first parameter is used to indicate the minimum reception level (q-RxLevMin1) required by the first cell for uplink service transmission to the first terminal device
  • the second parameter is used to indicate that the first cell is The minimum receiving level (q-RxLevMin2) required by the terminal equipment for uplink service transmission.
  • the first parameter is used to determine the minimum reception level (q-RxLevMin1) required by the first cell for uplink service transmission to the first terminal device; the second parameter is used to determine the 2. The minimum receiving level (q-RxLevMin2) required by the terminal equipment for uplink service transmission.
  • the second parameter directly indicates the minimum reception level (q-RxLevMin2) required by the first cell for uplink service transmission to the second terminal device, and the first parameter indicates that the first cell performs uplink service transmission for the first terminal device.
  • the second message may include the first parameter and the second parameter for the serving cell, and the second parameter for the neighboring cell 1, to determine the q-RxLevMin1 and q-RxLevMin2 of the serving cell, and the q-RxLevMin2 of the neighboring cell.
  • the second message may include the second parameter for the serving cell, and the first parameter and the second parameter for the neighboring cell 1. Used to determine the q-RxLevMin2 of the serving cell, and q-RxLevMin1 and q-RxLevMin2 of the neighboring cells.
  • the second message may include the first parameter and the second parameter for the serving cell, and the first parameter and the second parameter for the neighboring cell 1, to Determine the q-RxLevMin1 and q-RxLevMin2 of the serving cell, and q-RxLevMin1 and q-RxLevMin2 of the neighboring cells.
  • the first network device may send the second information to the terminal device through a broadcast or multicast message, or through a dedicated RRC message for the terminal device, or other RRC configuration messages.
  • the terminal device determines a parameter for cell selection or cell reselection according to the second information and whether the terminal device supports uplink service transmission through the second network device.
  • Both cell selection and cell reselection need to use the S value (such as the cell selection reception level value (Srxlev)), where the S value can be based on the reception level value (Qrxlevmeas) measured by the terminal equipment and the minimum reception level required by the cell (q-RxLevMin) and other parameters are determined.
  • the S value includes the S value of the serving cell, or the S value of the serving cell and the S value of a neighboring cell. Referring to FIG. 8, when the serving cell where the terminal device resides is the first cell, the first network device may send a first message to the terminal device for the terminal device to obtain q-RxLevMin1 and q-RxLevMin2.
  • q-RxLevMin2 is greater than q-RxLevMin1.
  • the terminal device when the terminal device supports uplink service transmission through the first network device and the second network device (that is, when it is the first terminal device), the terminal device is based on the Qrxlevmeas and q of the serving cell -RxLevMin1 determines the S value of the serving cell; when the terminal device only supports uplink service transmission through the first network device (that is, the second terminal device), the terminal device determines the S value of the serving cell based on the Qrxlevmeas and q-RxLevMin2 of the serving cell value.
  • the terminal device For the determination of the S value of the neighboring cell, if the neighboring cell is the cell where the second network device is deployed, the terminal device is based on the neighboring cell's q-RxLevMin1 (for the first terminal device) or q-RxLevMin2 (for the second terminal device) ) To determine the S value of the neighboring cell. If the neighboring cell is not a cell where the second network device is deployed, the terminal device only determines the S value of the neighboring cell based on q-RxLevMin2 (applicable to the first terminal device and the second terminal device).
  • the terminal device also only determines the S value of the serving cell based on the q-RxLevMin2 (applicable to the first terminal device and the second terminal device) of the serving cell.
  • the first network device may send q-RxLevMin1 and q-RxLevMin2 corresponding to each frequency to the terminal device.
  • the terminal device determines the S value based on the q-RxLevMin1 and/or q-RxLevMin2 corresponding to the frequency of the neighboring cell.
  • the description will be made by taking the case where q-RxLevMin1 and/or q-RxLevMin2 are at the cell level as an example. If part of the cells under a certain frequency is the first cell and part is not the first cell, the first network device also needs to send the list of the first cell under each frequency, or the list of the non-first cell, or the list of each frequency The indication information of whether the cell in the cell list is the first cell.
  • q-RxLevMin1 For terminal equipment that supports uplink service transmission through the first network device and the second network device, when the cell is the first cell, select q-RxLevMin1 to determine the S value; when the cell is not the first cell, select q-RxLevMin2 to perform S value determination; and for terminal equipment that only supports uplink service transmission through the first network device, q-RxLevMin2 is always selected for S value determination.
  • the downlink transmit power of the first network device may be different.
  • different q-RxLevMin1 and/or q-RxLevMin2 can be set for different neighboring cells under the same frequency, that is, q-RxLevMin1 and/or q-RxLevMin2 are cell-level.
  • the first network device may send a cell list to the terminal device for each frequency, and each cell in the cell list corresponds to a group of q-RxLevMin1 and/or q-RxLevMin2. If q-RxLevMin1 is carried, it means that a second network device is deployed in the cell.
  • the terminal device may determine the S value based on the q-RxLevMin1 and/or q-RxLevMin2 corresponding to the neighboring cell.
  • the interaction between the first network device and the terminal device described above may also be applied to the interaction between the CU and the terminal device, or the interaction between the DU and the terminal device. It can be understood that the interaction mechanism between the network device and the terminal device in the various embodiments of the present application can be appropriately modified to adapt to the interaction between the CU or DU and the terminal device.
  • the DU may carry the first information and/or the second information in the F1 establishment request message or the gNB-DU configuration update message, or the gNB-CU configuration update confirmation message and send it to the CU, so that the communication between the CU and the terminal device You can refer to the foregoing embodiment or the modified operation of the embodiment to interact the foregoing first information and/or second information.
  • the CU may carry the first information and/or the second information in the F1 establishment response message, or the gNB-CU configuration update message, or the gNB-DU configuration update confirmation message to send to the DU, so that the communication between the DU and the terminal device You can refer to the foregoing embodiment or the modified operation of the embodiment to interact the foregoing first information and/or second information.
  • each network element includes a hardware structure and/or software unit (or module) corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 10 shows a possible exemplary block diagram of a communication device involved in an embodiment of the present application, and the device 1000 may exist in the form of software.
  • the apparatus 1000 may include: a processing unit 1002 and a transceiving unit 1003.
  • the processing unit 1002 is used to implement corresponding processing functions.
  • the transceiver unit 1003 is used to support communication between the device 1000 and other network entities.
  • the transceiving unit 1003 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1000 may further include a storage unit 1001 for storing program codes and/or data of the device 1000.
  • the apparatus 1000 may be the terminal device in any of the foregoing embodiments, or may also be a component such as a chip provided in the terminal device.
  • the processing unit 1002 may support the apparatus 1000 to perform the actions of the terminal device in the above method examples.
  • the processing unit 1002 mainly executes the internal actions of the terminal device in the method example, and the transceiver unit 1003 can support the communication between the apparatus 1000 and the network device.
  • the transceiver unit 1003 is configured to receive first information from the first network device, where the first information includes a quality threshold value and a path loss offset;
  • the processing unit 1002 is configured to obtain the downlink quality and the downlink path loss of the first path; and when it is determined that the downlink quality is lower than the quality threshold, determine the second path according to the downlink path loss and the path loss offset.
  • the uplink transmit power of the path, and the second path is a communication path between the terminal device and the second network device.
  • the processing unit 1002 biases according to the downlink path loss and the path loss, When determining the uplink transmission power of the second path, it is specifically used to determine the uplink transmission power of the second path according to the downlink path loss, the path loss offset, and the second receiving target power.
  • the processing unit 1002 is further configured to determine the target power rise step size according to the number of random access retransmissions and the second power rise step size corresponding to the second network device;
  • the target power climbing step size adjusts the uplink transmission power.
  • the processing unit 1002 is further configured to determine the TA corresponding to the second network device.
  • the transceiver unit 1003 is configured to receive second information from the first network device, where the second information includes a first parameter and a second parameter for the first cell, where the first The parameter is used for the first terminal device to perform cell selection or cell reselection, the second parameter is used for the second terminal device to perform cell selection or cell reselection, and the first terminal device supports the use of the first network device and A terminal device for a second network device to perform uplink service transmission, where the second terminal device is a terminal device that only supports uplink service transmission through the first network device;
  • the processing unit 1002 is configured to determine parameters for cell selection or cell reselection according to the second information and whether the terminal device supports uplink service transmission through the second network device.
  • the first parameter is used to determine the minimum reception level required by the first cell for uplink service transmission of the first terminal device; the second parameter is used to determine the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first parameter is used to indicate the minimum reception level required by the first cell for uplink service transmission of the first terminal device;
  • the second parameter is used to indicate the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first cell is a serving cell or a neighboring cell of the terminal device.
  • the foregoing processing unit 1002 may be implemented by a processor, the foregoing transceiver unit 1003 may be implemented by a transceiver or a communication interface, etc., and the foregoing storage unit 1001 may be implemented by a memory.
  • an embodiment of the present application further provides a terminal device 1100.
  • the terminal device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores instructions or programs or data, and the memory 1120 may be used to implement the functions of the storage unit 1001 in the foregoing embodiment.
  • the processor 1110 is configured to read instructions or programs or data stored in the memory 1120. When the instructions or programs stored in the memory 1120 are executed, the processor 1110 is used to perform operations performed by the processing unit 1002 in the foregoing embodiment, and the transceiver 1130 is used to perform operations performed by the transceiving unit 1003 in the foregoing embodiment.
  • the device 1000 or the terminal device 1100 in the embodiment of the present application may correspond to the terminal device in the communication method (FIG. 5 or FIG. 6) in the embodiment of the present application, and the operation of each module in the device 1000 or the terminal device 1100 and /Or the function is to realize the corresponding process of each method in FIG. 5 or FIG. 6, for the sake of brevity, it is not repeated here.
  • FIG. 12 shows a possible exemplary block diagram of another communication device involved in an embodiment of the present application, and the communication device 1200 may exist in the form of software.
  • the apparatus 1200 may include: a processing unit 1202 and a transceiver unit 1203.
  • the processing unit 1202 is used to implement corresponding processing functions.
  • the transceiver unit 1203 is used to support the communication between the device 1200 and other network entities.
  • the transceiving unit 1203 may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1200 may further include a storage unit 1201 for storing program codes and/or data of the apparatus 1200.
  • the apparatus 1200 may be the first network device in any of the foregoing embodiments (for example, the first network device is the first network device in Embodiment 1), or may also be a component such as a chip set in the first network device .
  • the processing unit 1202 may support the apparatus 1200 to perform the actions of the first network device in the foregoing method examples. Alternatively, the processing unit 1202 mainly executes the internal actions of the first network device in the method example, and the transceiving unit 1203 may support the communication between the apparatus 1200 and the terminal device.
  • the transceiver unit 1203 is configured to send first information to the terminal device, where the first information includes a quality threshold value and a path loss offset.
  • the first information further includes the second receiving target power corresponding to the second network device.
  • the transceiver unit 1203 is configured to send second information to the terminal device, where the second information includes a first parameter and a second parameter for the first cell, where the first parameter is Cell selection or cell reselection is performed on the first terminal device, the second parameter is used for the cell selection or cell reselection by the second terminal device, and the first terminal device supports the first network device and the second network device A terminal device that performs uplink service transmission, and the second terminal device is a terminal device that only supports uplink service transmission through the first network device.
  • the first parameter is used to determine the minimum reception level required by the first cell for uplink service transmission of the first terminal device; the second parameter is used to determine the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first parameter is used to indicate the minimum reception level required by the first cell for uplink service transmission of the first terminal device;
  • the second parameter is used to indicate the first The minimum receiving level required by a cell for uplink service transmission of the second terminal device.
  • the first cell is a serving cell or a neighboring cell of the terminal device.
  • the processing unit 1202 may be implemented by a processor, the transceiving unit 1203 may be implemented by a transceiver or a communication interface, and the storage unit 1201 may be implemented by a memory.
  • an embodiment of the present application further provides a network device 1300.
  • the network device 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • instructions or programs or data are stored in the memory 1320, and the memory 1320 may be used to implement the functions of the storage unit 1201 in the foregoing embodiment.
  • the processor 1310 is configured to read instructions or programs or data stored in the memory 1320. When the instructions or programs stored in the memory 1320 are executed, the processor 1310 is used to perform the operations performed by the processing unit 1202 in the foregoing embodiment, and the transceiver 1330 is used to perform the operations performed by the transceiving unit 1203 in the foregoing embodiment.
  • the device 1200 or the network device 1300 of the embodiment of the present application may correspond to the first network device in the communication method (FIG. 5 or FIG. 6) of the embodiment of the present application, and the device 1200 or the network device 1300 of each module
  • the operations and/or functions are used to implement the corresponding procedures of the methods in FIG. 5 or FIG. 6 respectively.
  • details are not described herein again.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit (or communication unit) of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 1410 and a processing unit 1420.
  • the transceiving unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1410 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1410 as the sending unit, that is, the transceiving unit 1410 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1410 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 1420 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 1410 is used to perform the sending and receiving operations on the terminal device side in S501 in FIG. 5, and/or the transceiving unit 1410 is also used to perform other transceiving operations on the terminal device side in the embodiment of the present application.
  • the processing unit 1420 is configured to perform processing operations on the terminal device side in S502 in FIG. 5, and/or the processing unit 1420 is further configured to perform other processing steps on the terminal device side in the embodiment of the present application.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the terminal device side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the terminal device side in the foregoing method embodiment can be executed.
  • the device 1500 includes one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more basebands A unit (baseband unit, BBU) (also referred to as a digital unit, digital unit, DU) 1520.
  • RRU 1510 may be called a transceiver unit, which corresponds to the transceiver unit 1203 in FIG. 12.
  • the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 ⁇ RF unit 1512.
  • the RRU 1510 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending configuration information to terminal devices.
  • the 1520 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1202 in FIG. 12, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the first network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • a computer-readable storage medium is provided, and an instruction is stored thereon.
  • the instruction is executed, the method on the first network device side in the foregoing method embodiment can be executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed, the method on the first network device side in the foregoing method embodiment can be executed.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了通信方法及装置,用于解决当引入上行中继节点增强上行覆盖时,如果终端设备的上行业务通过中继节点转发给网络设备,终端设备如何确定上行发射功率,以避免对其它上行业务传输产生干扰的问题。所述方法包括:终端设备从第一网络设备接收第一信息,所述第一信息包括质量门限值和路径损耗偏置;获取下行质量和第一路径的下行路径损耗;当确定下行质量低于所述质量门限值时,根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,所述第二路径是终端设备和第二网络设备之间的通信路径。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,特别涉及通信方法及装置。
背景技术
在新无线(new radio,NR)小区部署时,考虑到网络设备的发射功率要高于终端设备的发射功率,存在小区的上行(uplink,UL)覆盖小于小区的下行(downlink,DL)覆盖的场景。因此在R17标准阶段,讨论引入具有放大功能的节点,实现NR的覆盖增强。一种可能的方式是部署上行中继节点,由网络设备和上行中继节点共同实现上行覆盖,使得NR的上行覆盖和下行覆盖平衡。如图1所示,上行中继节点仅支持终端设备的上行业务(数据、信号等)传输,例如接收终端设备的上行业务,并转发给网络设备。在这种部署架构下,上行覆盖是由网络设备和上行中继节点共同提供的,网络设备和上行中继节点的上行频点是一样的,一个小区存在一个下行频点和一个上行频点,可以避免为实现上行覆盖和下行覆盖平衡,额外设置上行频点,如额外设置补充上行链路(supplementary uplink,SUL)频点,网络设备和终端设备需要额外支持SUL的问题,可以有效降低网络的部署成本。
然而,在接入部署上行中继节点的小区时,终端设备的上行和下行可以分离,仍以图1为例,当终端设备处于网络设备的下行覆盖区域的外围区域时,终端设备的上行业务通过上行中继节点转发给网络设备,终端设备下行业务仍然由网络设备发送给终端设备,如果终端设备依然基于下行质量直接进行上行调度,会出现终端设备的上行发射功率过高等问题,对其它上行业务传输产生干扰。
发明内容
本申请提供一种通信方法及装置,用以解决当引入上行中继节点增强上行覆盖时,如果终端设备的上行业务通过中继节点转发给网络设备,终端设备如何确定上行发射功率,以避免对其它上行业务传输产生干扰的问题。
第一方面,本申请提供一种通信方法,该方法包括:从第一网络设备接收第一信息,所述第一信息包括质量门限值和路径损耗偏置;获取下行质量和第一路径的下行路径损耗;当确定下行质量低于所述质量门限值时,根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,所述第二路径是终端设备和第二网络设备之间的通信路径。
在本申请中,第一网络设备可以支持终端设备的上行业务传输和下行业务传输,并可以支持对终端设备的上行业务和下行业务进行处理,作为一种示例第一网络设备可以为NR系统中通过一个或多个小区与终端设备通信的基站等设备;第二网络设备仅支持终端设备的上行业务传输,例如仅支持接收终端设备的上行业务,并将接收的上行业务转发给第一网络设备,作为一种示例,第二网络设备可以为上行中继节点。
本申请中所描述的通信方法,可以由终端设备实现,也可以由终端设备中的处理芯片、电路等部件实现。采用上述方法,终端设备在获取的下行质量低于质量阈值时,确定位于第二网络设备的上行覆盖区域。终端设备可以根据质量门限值准确的确定是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域,并可以根据路径损耗偏置, 对终端设备和第一网络设备之间的通信路径的路径损耗进行修正,得到终端设备和第二网络设备之间的通信路径的路径损耗,进而准确确定终端设备和第二网络设备之间的通信路径的上行发射功率,避免了终端设备的上行发射功率过高等问题,从而避免了对其它上行业务传输产生干扰。
在一种可能的设计中,如果所述第一信息还包括对应于所述第二网络设备的第二接收目标功率,所述根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,包括:根据所述下行路径损耗、所述路径损耗偏置和所述第二接收目标功率,确定所述第二路径的上行发射功率。
上述设计中,第一网络设备还可以指示对应于第二网络设备的第二接收目标功率,有利于终端设备准确确定终端设备和第二网络设备之间的通信路径的上行发射功率,从而避免终端设备的上行发射功率过高等问题。
在一种可能的设计中,根据随机接入重传次数和对应于所述第二网络设备的第二功率攀升步长,确定目标功率攀升步长;根据所述目标功率攀升步长对所述上行发射功率进行调整。
上述设计中,当终端设备位于第二网络设备的上行覆盖区域,终端设备在随机接入失败后,基于随机接入重传次数和对应于第二网络设备的第二功率攀升步长,对终端设备和第二网络设备之间的通信路径的上行发射功率进行调整,有利于对终端设备和第二网络设备之间的通信路径的上行发射功率精准控制,避免终端设备的上行发射功率过高等问题。
在一种可能的设计中,确定对应于所述第二网络设备的定时提前量TA。
上述设计中,第一网络设备和第二网络设备与终端设备之间的距离存在差异,也会导致终端设备对应于第一网络设备的TA和对应于第二网络设备的TA存在差异,终端设备可以根据定时提前量偏置对对应于第一网络设备的TA进行修正,得到对应于第二网络设备的TA,从而避免不同终端设备的上行业务传输产生干扰,影响网络设备对终端设备的上行业务的接收。
第二方面,本申请提供了一种通信方法,该方法包括:从第一网络设备接收第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过所述第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备;根据所述第二信息和所述终端设备是否支持通过所述第二网络设备进行上行业务传输,确定用于进行小区选择或小区重选的参数。
本申请中所描述的通信方法,可以由终端设备实现,也可以由终端设备中的处理芯片、电路等部件实现。采用上述方法,当小区为部署有第二网络设备的小区时,第一网络设备向终端设备发送针对第一小区的第一参数和第二参数,用于支持通过第一网络设备和第二网络设备进行上行业务传输的终端设备进行小区选择或小区重选,和仅支持通过第一网络设备进行上行业务传输的终端设备进行小区选择或小区重选。避免仅发送对应用于仅支持通过第一网络设备进行上行业务传输的终端设备,进行小区选择或小区重选的第二参数,造成小区的过早或过晚重选的问题。
在一种可能的设计中,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于确定所述第一小区对所述第二终端 设备进行上行业务传输要求的最小接收电平。
上述设计中,可以采用间接指示的方式指示第一小区对第一终端设备进行上行业务传输要求的最小接收电平和对第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
上述设计中,可以采用直接指示的方式指示第一小区对第一终端设备进行上行业务传输要求的最小接收电平和对第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一小区是终端设备的服务小区或邻小区。
上述设计中,当服务小区或邻小区为部署有第二网络设备的小区时,第一网络设备均可向终端设备发送第二指示信息,有利于终端设备根据自身是否支持通过第一网络设备和第二网络设备进行上行业务传输的能力,进行小区的选择和重选,避免小区过早或过晚重选问题的发生。
第三方面,本申请提供一种通信方法,该方法包括:第一网络设备向终端设备发送第一信息,所述第一信息包括质量门限值和路径损耗偏置。
本申请中所描述的通信方法,可以由第一网络设备实现,也可以由第一网路设备中的处理芯片、电路等部件实现。
在一种可能的设计中,所述第一信息还包括对应于第二网络设备的第二接收目标功率。
第四方面,本申请提供一种通信方法,该方法包括:第一网络设备向终端设备发送第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过所述第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备。
本申请中所描述的通信方法,可以由第一网络设备实现,也可以由第一网路设备中的处理芯片、电路等部件实现。
在一种可能的设计中,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于确定所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一小区是终端设备的服务小区或邻小区。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或者第一方面的任一种可能的设计中方法,或实现上述第二方面或者第二方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元(模块),比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行 的程序,当程序被处理器执行时,所述装置可以执行上述第一方面或者第一方面的任一种可能的设计中所述的方法,或执行上述第二方面或者第二方面的任一种可能的设计中所述的方法或的功能。
在一个可能的设计中,该装置可以为终端设备。
第六方面,本申请实施例提供一种通信装置,该装置具有实现上述第三方面或者第三方面的任一种可能的设计中方法,或实现上述第四方面或者第四方面的任一种可能的设计中方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元(模块),比如包括收发单元和处理单元。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置包括存储器和处理器,存储器用于存储所述处理器执行的程序,当程序被处理器执行时,所述装置可以执行上述第三方面或者第三方面的任一种可能的设计中所述的方法,或执行上述第四方面或者第四方面的任一种可能的设计中所述的方法的功能。
在一个可能的设计中,该装置可以为网络设备。
第七方面,本申请实施例提供一种通信系统,该通信系统可以包括终端设备和网络设备,其中,终端设备可用于执行上述第一方面或者第一方面的任一种可能的设计中所述的方法,或执行上述第二方面或者第二方面的任一种可能的设计中所述的方法,网络设备可以用于执行上述第三方面或者第三方面的任一种可能的设计中所述的方法,或执行上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述存储介质存储有计算机指令,当所述计算机指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
第九方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当计算机程序或指令被执行时,可以实现上述第一方面或者第一方面的任一种可能的设计中所述的方法,或实现上述第二方面或者第二方面的任一种可能的设计中所述的方法,或实现上述第三方面或者第三方面的任一种可能的设计中所述的方法,或实现上述第四方面或者第四方面的任一种可能的设计中所述的方法。
上述第三方面至第九方面所能达到的技术效果请参照上述第一方面或第二方面所能达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请提供的上行中继节点增强上行覆盖示意图;
图2为本申请实施例提供的通信架构示意图;
图3为本申请实施例提供的路径损耗示意图;
图4A和图4B为本申请实施例中上行时间调整示意图;
图5为本申请实施例提供的通信过程示意图;
图6为本申请实施例提供的另一通信过程示意图;
图7为本申请实施例提供的上下行覆盖示意图;
图8为本申请实施例提供的小区选择/小区重选过程示意图;
图9为本申请实施例提供的另一小区选择/小区重选过程示意图;
图10为本申请实施例提供的通信装置的示意性框图;
图11为本申请实施例提供的终端设备的示意性框图;
图12为本申请实施例提供的通信装置的另一示意性框图;
图13为本申请实施例提供的网络设备的示意性框图;
图14为本申请实施例提供的终端设备的结构示意图;
图15为本申请实施例提供的网络设备的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:可以应用到第五代(5th generation,5G)系统等通信系统中,也可以应用到无线保真(wireless fidelity,WiFi)、全球微波互联接入(worldwide interoperability for microwave access,wimax)、或者未来的通信系统中,如未来的第六代(6th generation,6G)系统等。其中,5G还可以称为新无线(new radio,NR)。
示例性的,本申请实施例所应用的通信系统架构可以如图2所示,包括第一网络设备、第二网络设备和终端设备。需要说明的是,本申请实施例中不限定图2中所示通信系统中第一网络设备、第二网络设备以及终端设备的个数,其中第一网络设备可以支持终端设备的上行业务传输和下行业务传输,并可以支持对终端设备的上行业务和下行业务进行处理,第二网络设备仅支持终端设备的上行业务传输,例如仅支持接收终端设备的上行业务,并将接收的上行业务转发给第一网络设备。终端设备可以直接与第一网络设备进行上行业务和/或下行业务的传输,还可以通过第二网络设备与第一网络设备进行上行业务传输。
在介绍本申请实施例之前,首先对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency  identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)、第一网络设备,可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。所述第一网络设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。目前,一些第一网络设备的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,所述第一网络设备可以包括集中单元(centralized unit,CU)节点和/或分布单元(distributed unit,DU)节点。CU实现gNB的部分功能,DU实现gNB的部分功能。例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。
本申请实施例中,用于实现第一网络设备的功能的装置可以是第一网络设备,也可以是能够支持第一网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在第一网络设备中。在本申请实施例提供的技术方案中,以用于实现第一网络设备的功能的装置是第一网络设备为例,描述本申请实施例提供的技术方案。
3)、第二网络设备,也可以称为上行中继设备(UL only),可以是仅支持终端设备上行业务传输的中继设备,如仅支持接收终端设备发送的上行业务,将终端设备发送的上行业务转发给第一网络设备的中继设备。
本申请实施例中,用于实现第二网络设备的功能的装置可以是第二网络设备,也可以是能够支持第二网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在第二网络设备中。在本申请实施例提供的技术方案中,以用于实现第二网络设备的功能的装置是第二网络设备为例,描述本申请实施例提供的技术方案。
4)、路径损耗(pathloss),是指发射机和接收机之间由传输距离和传输环境引入的信号平均功率损耗。它是一个与传输距离、传输环境和载波频率强相关的量。参照图3所示,在通信系统中路径损耗可以简单理解为网络设备发射的信号传输到终端设备位置时的功率损耗,比如:pathloss=网络设备或小区的发射功率与终端设备测量的接收功率的差。
3)、上行时间调整(定时提前量(timing advance,TA)确定)。
如图4A所示,由于网络设备和终端设备之间的信号传播有延迟,从网络设备发送下行信号的起始时刻到终端设备1接收下行信号的起始时刻的间隔为ΔT 1=d 1/c,其中d 1为网络设备和终端设备1之间的距离,c为信号传播速度。对于无线通信,c为光速。类似地,ΔT 2=d 2/c,其中d 2为网络设备和终端设备2之间的距离。如果终端设备1不进行上行定时调整,以接收下行信号的起始时刻为参考向网络设备发送上行信号,从终端设备1发送上行信号的起始时刻到网络设备接收上行信号的起始时刻间隔同样为ΔT 1。因此,针对终端设备1,网络设备从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 1的时间差,同理,针对终端设备2,网络设备从发送下行信号的起始时刻到接收上行信号的起始时刻存在2ΔT 2的时间差。由于各终端设备和网络设备之间的距离不同,使得上行信号到达网络设备的时间各不相同,造成终端设备之间可能存在定时偏差。而当定时偏差大于正交频分复用(orthogonal frequency division multiple,OFDM)符号的循环前缀(cyclic prefix,CP)时,终端设备之间会互相干扰。
为了解决终端设备之间的干扰问题,终端设备需要进行定时调整,也称为定时提前量,即TA。如图4B所示,终端设备1将发送上行信号的起始时刻提前2ΔT 1,终端设备2将发送上行信号的起始时刻提前2ΔT 2,则网络设备将在相同的时刻接收到终端设备1和终端设备2的上行信号,从而解决终端设备间互相干扰的问题。
5)、上行发射功率确定,也可以称为上行功率控制,是为了使网络设备以合适的接收功率接收上行业务,该上行业务可以是终端设备通过上行物理信道传输的业务。示例的,合适的接收功率一方面意味着该上行业务被网络设备正确解码时所需的接收功率,另一方面意味着该上行业务的上行发射功率也不能不必要的高,以免对其它上行业务传输造成干扰。为了使网络设备能够以合适的接收功率接收终端设备通过上行物理信道发送的上行业务,在上行发射功率确定中,主要控制的是终端设备发送上行业务时的上行发射功率。可选地,对于某一个信道,该信道所需的上行发射功率与该信道所经历的衰减(如路径损耗)、接收端的干扰和噪声水平等相关,因此准确的路径损耗对上行发射功率的确定起着至关重要的作用。
参照图1和图2所示,随着仅支持接收终端设备的上行业务的第二网络设备的部署(如上行中继节点),上行覆盖由仅由支持终端设备的上行业务传输和下行业务传输的第一网络设备(如NR系统中通过一个或多个小区与终端设备通信的基站等)提供,转为由第一网络设备和第二网络设备共同提供,终端设备如何识别是处于第一网络设备的上行覆盖区域,还是处于第二网络设备的上行覆盖区域,并在处于第二网络设备的上行覆盖区域时,如何确定上行发射功率,避免对其它上行业务传输产生干扰,成为一个亟待解决的问题, 本申请实施例旨在解决上述问题。
下面结合附图详细说明本申请实施例。另外,需要理解,在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
【实施例一】
图5为本申请实施例提供的一种通信过程示意图,所述过程包括:
S501:终端设备从第一网络设备接收第一信息,所述第一信息包括质量门限值和路径损耗偏置。
在部署有第二网络设备的小区,终端设备与网络设备之间存在两条通信路径,即终端设备和第一网络设备之间的通信路径,以及终端设备和第二网络设备之间的通信路径,在本申请实施例中,将终端设备和第一网络设备之间的通信路径称为第一路径,将终端设备和第二网络设备之间的通信路径称为第二路径,其中“第一路径”和“第二路径”也应用于本申请实施例中的后续描述中,不再另行说明。第一网络设备可以通过第一路径,与终端设备进行下行业务传输,终端设备可以通过第一路径或第二路径与第一网络设备或第二网络设备进行上行业务传输。
终端设备接收到的第一网络设备的下行信号的下行质量会受到传输距离、传输环境等的影响,随着终端设备与第一网络设备之间距离的增加,终端设备接收到的第一网络设备的下行信号的下行质量呈现下降趋势,如下行信号的功率、信干噪比等会下降。因此,在部署有第二网络设备的小区,可以基于下行质量对终端设备是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域进行识别(判断)。其中,所述下行质量可以为终端设备与第一网络设备之间下行方向信号或信道的测量值,包括但不限于参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receivingquality,RSRQ)、参考信号信干噪比(signal to interference plus noise ratio,SINR)等中的一个或多个。
当小区为部署有第二网络设备的小区时,在第一网络设备中可以预先配置或设置有用于确定终端设备是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域的质量门限值(TH ULonly),或者第一网络设备可以根据相应的算法确定该质量门限值,本申请实施例中对此不做限定。示例的,当下行质量为RSRP时,则质量门限值为RSRP门限值,当下行质量为SINR时,则质量门限值为SINR门限值。
另外,当小区为部署有第二网络设备的小区时,第一终端设备确定的下行路径损耗,是第一路径的下行路径损耗,如果终端设备位于第二网络设备的上行覆盖区域,根据第一路径的下行路径损耗,确定第二路径的上行发射功率,会导致确定的上行发射功率与第二网络设备所需的接收功率不匹配,因此,在本申请实施例中,还可以在第一网络设备中预先配置或设置有路径损耗偏置(pathloss delta),所述路径损耗偏置可以用于对第一路径的下行路径损耗进行修正,得到第二路径的下行路径损耗。
可以理解的是,上述路径损耗偏置也可以替换为发送功率偏置,其中发送功率偏置可以根据路径损耗偏置确定,例如:与路径损耗偏置相等。当终端设备位于第二网络设备的上行覆盖区域,终端设备依据第一路径的下行路径损耗,确定出第一路径的上行发射功率(或未经修正的第二路径的上行发射功率)后,根据上述发送功率偏置对确定出的第一路径的上行发射功率(或未经修正的第二路径的上行发射功率)进行修正。终端设备也可以消除第一路径的下行路径损耗与第二路径的下行路径损耗存在的差异,得到准确的第二路径的上行发射功率。上述基于发送功率偏置得到第二路径的上行发射功率的方式,与基于路径损耗偏置得到第二路径的下行路径损耗的方式相似,下述实施例中以路径损耗偏置为例进行描述。
作为一种示例,包括质量门限值和路径损耗偏置的第一信息可以通过广播或者组播消息,或者通过终端设备专用的无线资源控制(radio resource control,RRC)消息,或者其他RRC配置消息,或者MAC控制单元(control element,CE)信令由第一网络设备发送给终端设备。
S502:所述终端设备获取下行质量,当所述下行质量不低于所述质量门限值时,进行S503A、S503B,当所述下行质量低于所述质量门限值时,进行S504A、S504B。
示例的,对于RSRP、RSRQ和SINR等下行质量,终端设备可以通过下行测量的方式获得。如根据在第一网络设备下行信号某个符号内承载参考信号的所有资源粒子(resource element,RE)上接收到的信号功率的平均值得到RSRP;根据所述RSRP与下行信号接收的信号强度指示(received signal strength indication,RSSI)的比值得到RSRQ;根据接收到的第一网络设备下行信号中有用信号的强度与干扰信号(噪声和干扰)的强度的比值得到SINR。
终端设备获取下行质量(第一路径的下行质量)后,终端设备基于质量门限值和获取的下行质量,对终端设备是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域进行识别(判断)。当下行质量不低于质量门限时,说明终端设备与第一网络设备之间距离较小,终端设备位于第一网络设备的上行覆盖区域,终端设备需要通过第一路径进行上行业务传输;当下行质量低于质量门限时,说明终端设备与第一网络设备之间距离较大,终端设备位于第二网络设备的上行覆盖区域,终端设备需要通过第二路径进行上行业务传输。
作为一种可能的实现方式,终端设备又可以根据其位置信息,对终端设备是位于第一 网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域进行识别(判断)。第一信息包括参考点位置信息(比如第一网络设备的位置信息或者第二网络设备的位置信息)和距离门限。终端设备可以根据其所在的位置信息,参考点位置信息,以及所述距离门限,确定终端设备是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域。比如,终端设备根据其所在的位置信息和参考点位置信息的距离,和所述距离门限比较,若小于或等于所述距离门限,则终端设备确定其在所述参考点的上行覆盖区域,否则终端设备确定其不在所述参考点的上行覆盖区域。
S503A:所述终端设备根据第一网络设备的发射功率与所述终端设备获取的下行质量确定第一下行路径损耗;
当终端设备获取(测量)的下行质量不低于质量门限值时,说明终端设备位于第一网络设备的上行覆盖区域,终端设备选择第一网络设备进行上行业务传输。终端设备根据第一网络设备的发射功率与所述终端设备获取的下行质量确定第一路径的下行路径损耗,即第一下行路径损耗。示例的,对于第一路径的下行路径损耗,终端设备可以根据第一网络设备下行信号中携带的发送下行信号的信号强度(第一网络设备的发射功率)与终端设备获得(测量)的RSRP的差值得到。
S503B:所述终端设备根据所述第一下行路径损耗,确定第一路径的上行发射功率。
终端设备根据第一路径的下行路径损耗,对第一网络设备的第一接收目标功率进行补偿,确定第一路径的上行发射功率。作为一种示例,终端设备可以直接根据第一路径的下行路径损耗和所述第一接收目标功率的和,确定第一路径的上行发射功率;可选的,终端设备还可以采用上行发射功率控制中的开闭环功率控制策略等方式,根据第一路径的下行路径损耗和所述第一接收目标功率,确定第一路径的上行发射功率,本申请实施例对此不进行限定。
其中,第一接收目标功率可以是第一网络设备通过信令(例如RRC信令、系统消息、或下行控制信息(downlink control information,DCI)等)为终端设备指示或配置的。
S504A:所述终端设备根据第一网络设备的发射功率、所述终端设备获取的下行质量和所述路径损耗偏置确定第二下行路径损耗;
当终端设备获取(测量)的下行质量低于质量门限值时,说明终端设备位于第二网络设备的上行覆盖区域,终端设备选择第二网络设备进行上行业务传输。终端设备可以根据路径损耗偏置对第一路径的下行路径损耗进行修正,得到第二路径的下行路径损耗(即第二下行路径损耗)。例如根据路径损耗偏置和第一路径的下行路径损耗的和,得到第二路径的下行路径损耗。
S504B:所述终端设备根据所述第二下行路径损耗,确定第二路径的上行发射功率。
在本申请实施例中,当第一网络设备未指示第二网络设备的第二接收目标功率时,终端设备可以默认第一网络设备和第二网络设备的接收目标功率相同。可选的,接收目标功率可以为前导码接收目标功率。终端设备根据第二路径的下行路径损耗,对第一接收目标功率进行补偿,确定第二路径的上行发射功率。作为一种示例,终端设备可以直接根据得到的第二路径的下行路径损耗和所述第一接收目标功率的和,确定第二路径的上行发射功率;可选的,终端设备还可以采用上行发射功率控制中的开闭环功率控制策略等方式,根据第二路径的下行路径损耗和所述第一接收目标功率,确定第二路径的上行发射功率,本申请实施例对此不进行限定。
在一种可能的实施中,为了提高上行发射功率确定的准确性,避免对其它上行业务传输产生干扰,第一网络设备向终端设备发送的第一信息中还可以包括对应于第二网络设备的第二接收目标功率。终端设备还可以通过根据路径损耗偏置对第一路径的下行路径损耗进行修正,得到的第二路径的下行路径损耗,并根据得到的第二路径的下行路径损耗,对所述第二接收目标功率进行补偿,确定第二路径的上行发射功率。
另外,第一网络设备确定的TA通常是基于终端设备与第一网络设备之间传输偏差(如距离引起的传输时间)确定的。当终端设备位于第二网络设备的上行覆盖区域时,由于终端设备与第二网络设备的距离,小于终端设备与第一网络设备之间的距离,会导致第一网络设备基于终端设备与第一网络设备之间传输偏差确定的TA,不适用于终端设备与第二网络设备之前的上行业务传输。为了避免不同终端设备的上行业务传输产生干扰,在本申请实施例中,终端设备在位于第二网络设备的上行覆盖区域时,还需要确定对应于第二网络设备的TA。
在一种可能的实施中,终端设备根据定时提前量偏置(TA delta)对第一网络设备发送的TA(对应于第一网络设备的TA)进行调整,得到对应于第二网络设备的TA。作为一种示例,终端设备可以根据对应于第一网络设备的TA与TA delta的差,确定对应于第二网络设备的TA。可选的,终端设备也可以根据TA调整系数对第一网络设备发送的TA进行调整,得到对应于第二网络设备的TA。作为一种示例,终端设备可以根据对应于第一网络设备的TA与TA调整系数的积,确定对应于第二网络设备的TA。其中,在本申请实施例中,在终端设备中可以预先配置或设置有所述定时提前量偏置或TA调整系数,也可以在第一网络设备中预先配置或设置有所述定时提前量偏置或TA调整系数,并可以通过第一消息或者其它消息或信令发送给终端设备。
在另一种可能的实施中,当小区为部署有第二网络设备的小区时,在第一网络设备中可以预先配置或设置有用于对对应于第一网络设备的TA进行调整的定时提前量偏置或TA调整系数。第一网络设备在确定对应于第一网络设备的TA后,还可以根据所述定时提前量偏置或TA调整系数,确定对应于第二网络设备的TA。第一网络设备又可以将对应于第一网络设备的TA,和对应于第二网络设备的TA或所述定时提前量偏置或TA调整系数均发送给终端设备。终端设备根据是位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域,选择相应的TA或者确定相应的TA。如通过第一消息或者其它消息或信令将对应于第一网络设备的TA,和对应于第二网络设备的TA或所述定时提前量偏置或TA调整系数发送给终端设备。
终端设备确定上行发射功率和相应的TA后,终端设备可以根据上行发射功率和相应的TA进行上行业务传输,如根据上行发射功率和相应的TA发送随机接入请求,发起随机接入。其中对于随机接入前导(preamble)和随机接入方式(如两步或四步随机接入)的选择,终端设备可以根据第一路径的下行路损确定。示例的,当下行路损低于下行路损阈值时,选择两步随机接入,并选择组(group)B中的随机接入前导;当下行路损不低于下行路损阈值时,选择四步随机接入,并选择groupA中的随机接入前导。其中,当选择四步随机接入时,终端设备向网络设备发送的随机接入请求(消息1(msg1))中包含随机接入前导。当选择两步随机接入时,终端设备向网络设备发送的随机接入请求(消息A(msgA))中包含随机接入前导和上行数据,其中所述上行数据也可以称为上行有效载荷 (UL payload),可以是RRC连接建立请求,RRC重建请求,RRC连接恢复请求,波束恢复请求等,与四步随机接入中消息3(msg3)所起作用相似。可选的,终端设备还可以接收第一网络设备发送的第一前导码最大传输次数和第二前导码最大传输次数。其中,第一前导码最大传输次数为终端设备在第一路径上发送前导码的最大次数,第二前导码最大次数为终端设备在第二路径发送前导码的最大次数。
当终端设备随机接入失败时,如果终端设备中未预先配置或设置对应于第二网络设备的第二功率攀升步长,或未接收到第一网络设备发送的对应于第二网络设备的第二功率攀升步长,终端设备可以默认对应于第一网络设备的第一功率攀升步长,与对应于第二网络设备的第二功率攀升步长相等,终端设备可以根据随机接入重传次数和对应于第一网络设备的第一功率攀升步长,确定目标功率攀升步长,根据目标功率攀升步长对确定的初始上行发射功率进行调整,重新发送随机接入请求。即当对应于第一网络设备的第一功率攀升步长,与对应于第二网络设备的第二功率攀升步长相等时,无论终端设备位于第一网络设备的上行覆盖区域,还是位于第二网络设备的上行覆盖区域,均采用相同的功率攀升机制。
可选的,第一网络设备还可以向终端设备发送有对应于第二网络设备的第二功率攀升步长或者功率攀升步长调整系数。例如:第一网络设备通过第一消息或者其它消息或信令将对应于第一网络设备的第一功率攀升步长和对应于第二网络设备的第二功率攀升步长发送给终端设备,其中所述第一功率攀升步长和所述第二功率攀升步长可以相同也可以不同。当终端设备确定位于第二网络设备的上行覆盖区域,终端设备在发送随机接入请求失败后,基于对应于第二网络设备的第二功率攀升步长,进行上行发射功率的攀升,并根据攀升后的上行发射功率,重新发送随机接入请求。可选的,对应于第二网络设备的第二功率攀升步长或功率攀升步长调整系数,也可以预先配置或设置在终端设备中。例如:终端设备可以根据预先配置的功率攀升步长调整系数,和对应于第一网络设备的第一功率攀升步长,计算得到对应于第二网络设备的第二功率攀升步长。
需要理解的是,在本申请实施例中,随机接入失败后,终端设备重新发送的随机接入请求中包含的随机接入前导,与随机接入失败前终端设备发送的随机接入请求中包含的随机接入前导可以相同,也可以不同,本申请实施例对此不进行限定。
另外,需要理解的是,上述是以小区(载波)同时部署有第一网络设备和第二网络设备为例,对上行发射功率、TA等的确定进行描述。可以理解的是,本申请实施例的提供的技术方案,还可以适用于其它同时部署有第一网络设备和第二网络设备的场景,对上行发射功率、TA等的确定。例如:还适用于某一波束(频段)同时部署有第一网络设备和第二网络设备,对上行发射功率、TA等的确定,相关确定上行发射功率、TA等的具体细节,请参考上述以小区同时部署有第一网络设备和第二网络设备,对上行发射功率、TA等确定的相关细节,此处不再赘述。
【实施例二】
图6为本申请实施例提供的一种通信过程示意图,所述过程包括:
S601:终端设备从第一网络设备接收第二信息,所述第二信息包括针对第一小区的第一参数和第二参数。
其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于 第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过第一网络设备进行上行业务传输的终端设备。
参照图2和图7所示,当小区为部署有第二网络设备的小区时,如果终端设备支持通过第一网络设备和第二网络设备进行上行业务传输,则终端设备位于第二网络设备的上行覆盖区域(区域2),也能正常进行上行业务的传输;但如果终端设备仅支持通过第一网络设备进行上行业务传输,则终端设备位于第二网络设备的上行覆盖区域(区域2),不能正常进行上行业务的传输,仅能在位于第一网络设备的上行覆盖区域(区域1)正常进行上行业务的传输。
基于此,根据终端设备当前驻留的小区(服务小区)是否为部署有第二网络设备的小区,终端设备面临两种小区选择或小区重选的场景。
场景1:终端设备的服务小区为部署有第二网络设备的小区。参照图7所示,当终端设备支持通过第一网络设备和第二网络设备进行上行业务传输时(即为第一终端设备时),终端设备位于区域1和区域2均可继续驻留在服务小区;当终端设备仅支持通过第一网络设备进行上行业务传输时(即为第二终端设备时),终端设备位于区域1可以继续驻留在服务小区,位于区域2需要重选到其它小区。
场景2:终端设备的服务小区为未部署有第二网络设备的小区。无论终端设备是否支持通过第一网络设备和第二网络设备进行上行业务传输(即无论为第一终端设备,还是为第二终端设备),终端设备仅位于区域1才可以继续驻留在服务小区。
另外,在小区选择或小区重选时,对于邻小区的选择需求与上述服务小区相同。例如:对于部署有第二网络设备的邻小区,当终端设备支持通过第一网络设备和第二网络设备进行上行业务传输时,终端设备位于邻小区的区域1和区域2均可驻留到邻小区;对于未部署有第二网络设备的邻小区,无论终端设备是否支持通过第一网络设备和第二网络设备进行上行业务传输,终端设备仅位于邻小区的区域1才可以驻留到邻小区。
因此,在本申请实施例中,终端设备进行小区选择或小区重选时,需要考虑部署有第二网络设备的小区(为了便于描述以下将“部署有第二网络设备的小区”称为第一小区)的影响,需要对终端设备进行小区选择或重选的参数进行优化,用以避免终端设备过早或过晚进行小区重选,影响终端设备的业务传输性能。需要理解的是,第一小区可以是终端设备的服务小区,也可以是终端设备的邻小区,本申请实施例对此不进行限定。
可选的,不同于未部署有第二网络设备的小区,第一网络设备仅向终端设备发送一个参数(如最小接收电平(q-RxLevMin2)),用于终端设备的进行小区选择或小区重选,对于第一小区(部署有第二网络设备的小区),第一网络设备向终端设备发送有第二信息,所述第二信息中包括用于第一终端设备进行小区选择或小区重选的第一参数,以及用于第二终端设备进行小区选择或小区重选的第二参数。
在一种可能的实施中,第一参数用于指示第一小区对第一终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin1),第二参数用于指示第一小区对第二终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin2)。
在另一种可能的实施中,第一参数用于确定第一小区对第一终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin1);第二参数用于确定第一小区对第二终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin2)。作为一种示例,第二参数直接指示第 一小区对第二终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin2),第一参数指示第一小区对第一终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin1)与第一小区对第二终端设备进行上行业务传输要求的最小接收电平(q-RxLevMin2)的差值(q-RxLevMinUL-offset),终端设备可以根据q-RxLevMin2与q-RxLevMinUL-offset的和,确定q-RxLevMin1。
以服务小区部署有第二网络设备,邻小区1未部署有第二网络设备为例。第二消息可以包括针对服务小区的第一参数和第二参数,以及针对邻小区1的第二参数,用以确定服务小区的q-RxLevMin1和q-RxLevMin2,以及邻小区的q-RxLevMin2。
以服务小区未部署有第二网络设备,小区1部署有第二网络设备为例,则第二消息可以包括针对服务小区的第二参数,以及针对邻小区1的第一参数和第二参数,用以确定服务小区的q-RxLevMin2,以及邻小区的q-RxLevMin1和q-RxLevMin2。
以服务小区和邻小区均部署有第二网络设备为例,则第二消息可以包括针对服务小区的第一参数和第二参数,以及针对邻小区1的第一参数和第二参数,用以确定服务小区的q-RxLevMin1和q-RxLevMin2,以及邻小区的q-RxLevMin1和q-RxLevMin2。
作为一种示例,第一网络设备可以通过广播或者组播消息,或者通过终端设备专用RRC消息,或者其他RRC配置消息将第二信息发送给终端设备。
S602:所述终端设备根据所述第二信息和所述终端设备是否支持通过所述第二网络设备进行上行业务传输,确定用于进行小区选择或小区重选的参数。
小区选择和小区重选时均需使用到S值(如小区选择接收电平值(Srxlev)),其中S值可以根据终端设备测量的接收电平值(Qrxlevmeas)和小区要求的最小接收电平(q-RxLevMin)等参数确定。可以理解的,S值包括服务小区的S值,或者服务小区的S值和邻小区的S值。参照图8所示,当终端设备驻留的服务小区为第一小区时,第一网络设备可以向终端设备发送第一消息,用于终端设备获得q-RxLevMin1和q-RxLevMin2。通常q-RxLevMin2大于q-RxLevMin1。以服务小区部署有第二网络设备为例,当终端设备支持通过第一网络设备和第二网络设备进行上行业务传输时(即为第一终端设备时),终端设备基于服务小区的Qrxlevmeas和q-RxLevMin1确定服务小区的S值;当终端设备仅支持通过第一网络设备进行上行业务传输时(即为第二终端设备时),终端设备基于服务小区的Qrxlevmeas和q-RxLevMin2确定服务小区的S值。对于邻小区的S值的确定,如果邻小区为部署了第二网络设备的小区,终端设备基于邻小区的q-RxLevMin1(适用于第一终端设备)或q-RxLevMin2(适用于第二终端设备),确定邻小区的S值。如果邻小区未部署有第二网络设备的小区,终端设备仅基于q-RxLevMin2(适用于第一终端设备和第二终端设备),确定邻小区的S值。可选的,如果服务小区为未部署有第二网络设备的小区,终端设备也仅基于服务小区的q-RxLevMin2(适用于第一终端设备和第二终端设备),确定服务小区的S值。
参照图9所示,小区对应的频率(频点)不同,对应的q-RxLevMin1和/或q-RxLevMin2可能不同。即q-RxLevMin1和/或q-RxLevMin2可以是频率级的,制式级的,小区级的,切片级的,波束级的,或者同步信号/物理广播信道块(synchronization signal/physical broadcast channel,SSB)级的。在本申请实施例中,第一网络设备可以向终端设备发送每个频率对应的q-RxLevMin1和q-RxLevMin2。终端设备在确定邻小区的S值时,基于邻小区所在频率对应的q-RxLevMin1和/或q-RxLevMin2进行S值的确定。
可选地,以q-RxLevMin1和/或q-RxLevMin2是小区级的为例进行描述。如果某个频率下的小区部分是第一小区,部分非第一小区,第一网络设备还需要发送每个频率下的第一小区的列表,或非第一小区的列表,或每个频率的小区列表下的小区是否是第一小区的指示信息。支持通过第一网络设备和第二网络设备进行上行业务传输的终端设备,在小区为第一小区时,选择q-RxLevMin1进行S值的确定;在小区非第一小区时,选择q-RxLevMin2进行S值的确定;而对于仅支持通过所述第一网络设备进行上行业务传输的终端设备总是选择q-RxLevMin2进行S值确定。
可选地,对于同一个频率下的多个不同的小区,考虑到其覆盖范围的需求不同,则第一网络设备的下行发射功率可能不同。此时,可以针对同一频率下的不同的邻小区设置不同的q-RxLevMin1和/或q-RxLevMin2,即q-RxLevMin1和/或q-RxLevMin2是小区级的。第一网络设备可以针对每个频率向终端设备发送一个小区列表,小区列表里的每个小区对应一组q-RxLevMin1和/或q-RxLevMin2。如果携带了q-RxLevMin1,则说明该小区部署有第二网络设备。终端设备可以基于邻小区对应的q-RxLevMin1和/或q-RxLevMin2进行S值的确定。
可以理解的,在本申请的各个实施例中,上述第一网络设备与终端设备之间的交互,也可以适用到CU与终端设备之间的交互,或者DU与终端设备之间的交互。可以理解的,本申请的各个实施例中网络设备与终端设备交互机制可以进行适当的变形,以适用CU或者DU与终端设备之间的交互。
可选的,DU可以将第一信息和/或第二信息携带在F1建立请求消息或者gNB-DU配置更新消息,或者gNB-CU配置更新确认消息中发送给CU,使得CU和终端设备之间可以参考上述实施例或实施例的变形操作,交互上述第一信息和/或第二信息。
可选的,CU可以将第一信息和/或第二信息携带在F1建立响应消息,或者gNB-CU配置更新消息,或者gNB-DU配置更新确认消息发送给DU,使得DU和终端设备之间可以参考上述实施例或实施例的变形操作,交互上述第一信息和/或第二信息。
上述主要从第一网络设备和终端设备之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,为了实现上述功能,各网元包括了执行各个功能相应的硬件结构和/或软件单元(或模块)。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图10示出了本申请实施例中所涉及的一种通信装置的可能的示例性框图,该装置1000可以以软件的形式存在。装置1000可以包括:处理单元1002和收发单元1003。
一种可能的设计中,处理单元1002用于实现相应的处理功能。收发单元1003用于支持装置1000与其他网络实体的通信。可选地,收发单元1003可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1000还可以包括存储单元1001,用于存储装置1000的程序代码和/或数据。
该装置1000可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中 的芯片等部件。处理单元1002可以支持装置1000执行上文中各方法示例中终端设备的动作。或者,处理单元1002主要执行方法示例中的终端设备内部动作,收发单元1003可以支持装置1000与网络设备之间的通信。
具体地,在一个可能的实施例中,收发单元1003,用于从第一网络设备接收第一信息,所述第一信息包括质量门限值和路径损耗偏置;
处理单元1002,用于获取下行质量和第一路径的下行路径损耗;以及当确定下行质量低于所述质量门限值时,根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,所述第二路径是终端设备和第二网络设备之间的通信路径。
在一种可能的设计中,如果所述第一信息还包括对应于所述第二网络设备的第二接收目标功率,所述处理单元1002根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率时,具体用于根据所述下行路径损耗、所述路径损耗偏置和所述第二接收目标功率,确定所述第二路径的上行发射功率。
在一种可能的设计中,所述处理单元1002,还用于根据随机接入重传次数和对应于所述第二网络设备的第二功率攀升步长,确定目标功率攀升步长;根据所述目标功率攀升步长对所述上行发射功率进行调整。
在一种可能的设计中,所述处理单元1002,还用于确定对应于所述第二网络设备的TA。
在另一个可能的实施例中,收发单元1003,用于从第一网络设备接收第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过所述第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备;
处理单元1002,用于根据所述第二信息和所述终端设备是否支持通过所述第二网络设备进行上行业务传输,确定用于进行小区选择或小区重选的参数。
在一种可能的设计中,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于确定所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一小区是终端设备的服务小区或邻小区。
上述处理单元1002可以通过处理器实现,上述收发单元1003可以通过收发器或者通信接口等实现,上述存储单元1001可以通过存储器实现。
如图11所示,本申请实施例还提供一种终端设备1100,该终端设备1100包括处理器1110,存储器1120与收发器1130。
一种可能的设计中,存储器1120中存储指令或程序或数据,存储器1120可以用于实现上述实施例中存储单元1001的功能。处理器1110用于读取存储器1120中存储的指令或程序或数据。存储器1120中存储的指令或程序被执行时,该处理器1110用于执行上述实施例中处理单元1002执行的操作,收发器1130用于执行上述实施例中收发单元1003执行的操作。
应理解,本申请实施例的装置1000或终端设备1100可对应于本申请实施例的通信方法(图5或图6)中的终端设备,并且装置1000或终端设备1100中的各个模块的操作和/或功能分别为了实现图5或图6中的各个方法的相应流程,为了简洁,在此不再赘述。
在采用集成的单元(模块)的情况下,图12示出了本申请实施例中所涉及的又一种通信装置的可能的示例性框图,该通信装置1200可以以软件的形式存在。装置1200可以包括:处理单元1202和收发单元1203。
一种可能的设计中,处理单元1202用于实现相应的处理功能。收发单元1203用于支持装置1200与其他网络实体的通信。可选地,收发单元1203可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。可选的,装置1200还可以包括存储单元1201,用于存储装置1200的程序代码和/或数据。
该装置1200可以为上述任一实施例中的第一网络设备(比如,第一网络设备为实施例一中的第一网络设备)、或者还可以为设置在第一网络设备中的芯片等部件。处理单元1202可以支持装置1200执行上文中各方法示例中第一网络设备的动作。或者,处理单元1202主要执行方法示例中的第一网络设备内部动作,收发单元1203可以支持装置1200与终端设备之间的通信。
具体地,在一个可能的实施例中,收发单元1203,用于向终端设备发送第一信息,所述第一信息包括质量门限值和路径损耗偏置。
在一种可能的设计中,所述第一信息还包括对应于第二网络设备的第二接收目标功率。
在另一个可能的实施例中,收发单元1203,用于向终端设备发送第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备。
在一种可能的设计中,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于确定所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
在一种可能的设计中,所述第一小区是终端设备的服务小区或邻小区。
上述处理单元1202可以通过处理器实现,上述收发单元1203可以通过收发器或者通信接口等实现,上述存储单元1201可以通过存储器实现。
如图13所示,本申请实施例还提供一种网络设备1300,该网络设备1300包括处理器1310,存储器1320与收发器1330。
一种可能的设计中,存储器1320中存储指令或程序或数据,存储器1320可以用于实现上述实施例中存储单元1201的功能。处理器1310用于读取存储器1320中存储的指令或程序或数据。存储器1320中存储的指令或程序被执行时,该处理器1310用于执行上述实施例中处理单元1202执行的操作,收发器1330用于执行上述实施例中收发单元1203执行的操作。
应理解,本申请实施例的装置1200或网络设备1300可对应于本申请实施例的通信方法(图5或图6)中的第一网络设备,并且装置1200或网络设备1300中的各个模块的操作和/或功能分别为了实现图5或图6中的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图14示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(或通信单元),将具有处理功能的处理器视为终端设备的处理单元。如图14所示,终端设备包括收发单元1410和处理单元1420。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1410用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1420用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1410用于执行图5的S501中终端设备侧的发送和接收操作,和/或收发单元1410还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1420,用于执行图5中的S502中终端设备侧的处理操作,和/或处理单元1420还用于执行本申请实施例中终端设备侧的其他处理步骤。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中终端设备侧的方法。
本实施例中的装置为网络设备时,该网络设备可以如图15所示,装置1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为收发单元,与图12中的收发单元1203对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送配置信息。所述BBU 1520部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图12中的处理单元1202对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于第一网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时可以执行上述方法实施例中第一网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时可以执行上述方法实施例中第一网络设备侧的方法。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除 可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (18)

  1. 一种通信方法,其特征在于,包括:
    从第一网络设备接收第一信息,所述第一信息包括质量门限值和路径损耗偏置;
    获取下行质量和第一路径的下行路径损耗;
    当确定下行质量低于所述质量门限值时,根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,所述第二路径是终端设备和第二网络设备之间的通信路径。
  2. 如权利要求1所述的方法,其特征在于,如果所述第一信息还包括对应于所述第二网络设备的第二接收目标功率,所述根据所述下行路径损耗和所述路径损耗偏置,确定第二路径的上行发射功率,包括:
    根据所述下行路径损耗、所述路径损耗偏置和所述第二接收目标功率,确定所述第二路径的上行发射功率。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据随机接入重传次数和对应于所述第二网络设备的第二功率攀升步长,确定目标功率攀升步长;
    根据所述目标功率攀升步长对所述上行发射功率进行调整。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    确定对应于所述第二网络设备的定时提前量TA。
  5. 一种通信方法,其特征在于,包括:
    从第一网络设备接收第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过所述第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备;
    根据所述第二信息和所述终端设备是否支持通过所述第二网络设备进行上行业务传输,确定用于进行小区选择或小区重选的参数。
  6. 如权利要求5所述的方法,其特征在于,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;
    所述第二参数用于确定所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;
    所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
  8. 如权利要求5-7中任一项所述的方法,其特征在于,所述第一小区是终端设备的服务小区或邻小区。
  9. 一种通信方法,其特征在于,包括:
    第一网络设备向终端设备发送第一信息,所述第一信息包括质量门限值和路径损耗偏置。
  10. 如权利要求9所述的方法,其特征在于,所述第一信息还包括对应于第二网络设 备的第二接收目标功率。
  11. 一种通信方法,其特征在于,包括:
    第一网络设备向终端设备发送第二信息,所述第二信息包括针对第一小区的第一参数和第二参数,其中,所述第一参数用于第一终端设备进行小区选择或小区重选,所述第二参数用于第二终端设备进行小区选择或小区重选,所述第一终端设备为支持通过所述第一网络设备和第二网络设备进行上行业务传输的终端设备,所述第二终端设备为仅支持通过所述第一网络设备进行上行业务传输的终端设备。
  12. 如权利要求11所述的方法,其特征在于,所述第一参数用于确定所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;
    所述第二参数用于确定所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一参数用于指示所述第一小区对所述第一终端设备进行上行业务传输要求的最小接收电平;
    所述第二参数用于指示所述第一小区对所述第二终端设备进行上行业务传输要求的最小接收电平。
  14. 如权利要求11-13中任一项所述的方法,其特征在于,所述第一小区是终端设备的服务小区或邻小区。
  15. 一种通信装置,其特征在于,用于实现如权利要求1-8中任一项所述的通信方法。
  16. 一种通信装置,其特征在于,用于实现如权利要求9-14中任一项所述的通信方法。
  17. 一种通信系统,其特征在于,包括如权利要求15所述的通信装置和如权利要求16所述的通信装置。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在被一个或多个处理器读取并执行时实现如权利要求1-8中任一项所述的通信方法或如权利要求9-14中任一项所述的通信方法。
PCT/CN2020/072856 2020-01-17 2020-01-17 通信方法及装置 WO2021142800A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/072856 WO2021142800A1 (zh) 2020-01-17 2020-01-17 通信方法及装置
CN202080092571.6A CN114930915A (zh) 2020-01-17 2020-01-17 通信方法及装置
EP20913626.6A EP4075876A4 (en) 2020-01-17 2020-01-17 COMMUNICATION METHOD AND DEVICE
US17/812,898 US20220353767A1 (en) 2020-01-17 2022-07-15 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072856 WO2021142800A1 (zh) 2020-01-17 2020-01-17 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/812,898 Continuation US20220353767A1 (en) 2020-01-17 2022-07-15 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021142800A1 true WO2021142800A1 (zh) 2021-07-22

Family

ID=76863300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072856 WO2021142800A1 (zh) 2020-01-17 2020-01-17 通信方法及装置

Country Status (4)

Country Link
US (1) US20220353767A1 (zh)
EP (1) EP4075876A4 (zh)
CN (1) CN114930915A (zh)
WO (1) WO2021142800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104314A1 (zh) * 2022-11-15 2024-05-23 中国移动通信有限公司研究院 功率控制方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726660A (zh) * 2002-12-17 2006-01-25 摩托罗拉公司 用于发射功率控制的方法和设备
CN103718612A (zh) * 2011-07-28 2014-04-09 黑莓有限公司 用于具有多传输点的无线系统的接入和上行链路功率控制的方法和系统
CN105007606A (zh) * 2014-04-24 2015-10-28 中兴通讯股份有限公司 小区选择重选参数确定方法、基站、终端及通信系统
US20170223732A1 (en) * 2008-09-19 2017-08-03 Texas Instruments Incorporated Preamble group selection in random access of wireless networks
CN109842926A (zh) * 2017-11-27 2019-06-04 华为技术有限公司 一种功率控制的方法、装置及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150181546A1 (en) * 2012-07-23 2015-06-25 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
CN105144804B (zh) * 2012-10-02 2018-11-30 高通股份有限公司 协调式多点传输方案中用于上行链路发射功率控制和定时的方法和装置
CN108633042B (zh) * 2017-03-24 2021-03-30 华为技术有限公司 一种通信方法、终端及网络设备
CN109151968B (zh) * 2017-06-16 2021-02-23 华为技术有限公司 一种功率确定方法、设备及系统
CN110381553B (zh) * 2017-11-16 2020-09-08 华为技术有限公司 通信的方法、通信装置和计算机可读存储介质
WO2019242623A1 (en) * 2018-06-21 2019-12-26 FG Innovation Company Limited Method and apparatus for performing cell (re) selection in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1726660A (zh) * 2002-12-17 2006-01-25 摩托罗拉公司 用于发射功率控制的方法和设备
US20170223732A1 (en) * 2008-09-19 2017-08-03 Texas Instruments Incorporated Preamble group selection in random access of wireless networks
CN103718612A (zh) * 2011-07-28 2014-04-09 黑莓有限公司 用于具有多传输点的无线系统的接入和上行链路功率控制的方法和系统
CN105007606A (zh) * 2014-04-24 2015-10-28 中兴通讯股份有限公司 小区选择重选参数确定方法、基站、终端及通信系统
CN109842926A (zh) * 2017-11-27 2019-06-04 华为技术有限公司 一种功率控制的方法、装置及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Uplink Power Control Discussions for CoMP", 3GPP DRAFT; R1-113736, vol. RAN WG1, 8 November 2011 (2011-11-08), San Francisco, USA, pages 1 - 5, XP050561855 *
HUAWEI , HISILICON , MEDIATEK , CHINA TELECOM: "WF on Pathloss Offset of SUL for LTE-NR UL Coexistence", 3GPP DRAFT; R1-1714835 WF ON PATHLOSS OFFSET FOR LTE-NR UL COEXISTENCE V4P1, vol. RAN WG1, 26 August 2017 (2017-08-26), Prague, Czech Republic, pages 1 - 4, XP051328366 *
See also references of EP4075876A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104314A1 (zh) * 2022-11-15 2024-05-23 中国移动通信有限公司研究院 功率控制方法及设备

Also Published As

Publication number Publication date
EP4075876A4 (en) 2023-01-04
US20220353767A1 (en) 2022-11-03
CN114930915A (zh) 2022-08-19
EP4075876A1 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US11303343B2 (en) Method, terminal device, and network device for beam failure management and beam recovery
WO2018171759A1 (zh) 一种信息传输方法和装置
JP2023166438A (ja) 情報送信方法および装置
CN114258641B (zh) 基于探测的波束管理和中继器关联
US20190059082A1 (en) Method, base station, and user terminal for using location information of user terminal
US10432366B2 (en) Carrier aggregation with improved efficiency
JP2014505422A (ja) 無線通信システムにおける機器内共存干渉を調整する装置及び方法
WO2021088158A1 (zh) 无线通信方法、终端设备和网络设备
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2021218820A1 (zh) 测量方法、装置及系统
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
WO2018120065A1 (zh) 动态时分双工的设置装置、方法以及通信系统
CN117397282A (zh) 并发测量间隙模式中的间隙消除
WO2021159341A1 (zh) 一种通信方法及通信装置
WO2021056587A1 (zh) 一种通信方法及装置
CN115136523A (zh) 反馈资源的确定方法和装置
WO2021012822A1 (zh) 一种通信方法及装置
US20220353767A1 (en) Communication Method and Apparatus
WO2021212372A1 (zh) 资源分配方法和终端
WO2022061545A1 (zh) 一种通信方法和装置
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
WO2022082791A1 (zh) 通信方法和通信装置
WO2024031573A1 (zh) 通信方法、终端设备和网络设备
WO2024065538A1 (zh) 开关控制方法、信息指示方法、转发器和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913626

Country of ref document: EP

Effective date: 20220715

NENP Non-entry into the national phase

Ref country code: DE