WO2021159341A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2021159341A1
WO2021159341A1 PCT/CN2020/074937 CN2020074937W WO2021159341A1 WO 2021159341 A1 WO2021159341 A1 WO 2021159341A1 CN 2020074937 W CN2020074937 W CN 2020074937W WO 2021159341 A1 WO2021159341 A1 WO 2021159341A1
Authority
WO
WIPO (PCT)
Prior art keywords
iab node
node
base station
donor base
configuration information
Prior art date
Application number
PCT/CN2020/074937
Other languages
English (en)
French (fr)
Inventor
袁世通
刘凤威
邱晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20918995.0A priority Critical patent/EP4106403A4/en
Priority to CN202080094489.7A priority patent/CN115039443B/zh
Priority to PCT/CN2020/074937 priority patent/WO2021159341A1/zh
Publication of WO2021159341A1 publication Critical patent/WO2021159341A1/zh
Priority to US17/885,634 priority patent/US20220386187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and communication device.
  • the node that supports the relay function is referred to as the relay node for short.
  • the relay node provides functions and services similar to ordinary base stations for the terminals that access its cell.
  • the communication link between the relay node and the terminal is called the access chain. Road (access link).
  • the relay node accesses a base station serving it through a wireless interface in a manner similar to a terminal.
  • the base station is called a donor base station (Donor), and the wireless interface link between the relay node and the donor base station is called the backhaul link ( BackHaul link).
  • the future communication technology supports larger bandwidth and supports larger-scale multi-antenna or multi-beam transmission, providing conditions for the access link and the backhaul link to share air interface resources for the relay, that is, for the integration of wireless access
  • the link and the relay of the wireless backhaul link provide conditions.
  • a relay that integrates a wireless access link and a wireless backhaul link may be referred to as an integrated access and backhaul (IAB) node. It should be understood that the IAB node establishes a wireless backhaul link with one or more upper-level nodes and accesses the core network through the upper-level node.
  • the IAB node may also provide access services for multiple lower-level nodes and terminals.
  • Poor link status or congestion of the backhaul link or access link may cause the link communication between the IAB node and an upper-level node to be interrupted, which may involve the handover of the cross-host base station, how to perform the IAB node Handover across donor base stations is a problem that needs to be solved.
  • the present application provides a communication method and communication device, which are used to implement cross-donor base station handover of IAB nodes.
  • a communication method is provided.
  • the method can be executed by a first communication device.
  • the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as an IAB node as an example.
  • the method includes:
  • the IAB node receives first configuration information from the source donor base station.
  • the first configuration information includes the configuration information of the N MTs and the configuration information of the N DUs configured by the N target donor base stations for the IAB node, where N is greater than or equal to 1.
  • the MT is used to communicate with the upper node of the IAB node or the source donor base station or the target donor base station, and the DU is used to communicate with the lower node or terminal of the IAB node; when the MT of the IAB node meets certain conditions , The DU of the IAB node applies one of the configuration information of the N DUs.
  • the DU of the IAB node only applies the configuration information of a certain DU configured by the target donor base station for the IAB node when the MT of the IAB node meets a specific condition. It can be seen that through the method provided in the embodiments of the present application, it is possible to clarify the time when the IAB node applies the configuration information of a certain DU from the target donor base station, which is the time when the MT of the IAB node meets a specific condition.
  • the new configuration information of the DU of the IAB node is based on the premise that the MT meets certain conditions, it is possible to prevent the DU of the IAB node from sending synchronization signal block (synchronization signal block) in the process of implementing the cross-donor base station handover of the IAB node.
  • synchronization signal block synchronization signal block
  • SSB synchronization signal block
  • the specific conditions include but are not limited to one or more of the following conditions:
  • Condition 1 The measurement result of the first signal by the MT of the IAB node is less than a first preset threshold, where the first signal is sent by the upper-level node currently connected to the IAB node or the source donor base station.
  • a first preset threshold When the measurement result of the first signal by the MT of the IAB node is less than the first preset threshold, it can be considered that the communication quality of the current backhaul link of the IAB node is poor.
  • the IAB node can switch to, for example, the target donor base station to try to Ensure the communication quality of the backhaul link of the IAB node.
  • the DU of the IAB node applies the new configuration information to realize the switching of the superior node of the IAB node.
  • the measurement result of the second signal by the MT of the IAB node is greater than a second preset threshold, where the second signal is not sent by the upper-level node currently connected to the IAB node or the source donor base station.
  • a second preset threshold When the measurement result of the second signal by the MT of the IAB node is greater than the second preset threshold, it can be considered that there is an upper-level node (such as the target donor base station) that has a better measurement result than the upper-level node currently connected to the IAB node or the source donor base station, At this time, the IAB node can switch to the target donor base station to improve the communication quality of the backhaul link of the IAB node as much as possible, and the DU of the IAB node applies the new configuration information to realize the handover of the superior node of the IAB node.
  • the MT of the IAB node has a beam failure on the first carrier link, where the first carrier link is the communication link between the upper node or the source donor base station currently connected to the IAB node and the IAB node.
  • the MT of the IAB node has a radio link failure on the second carrier link, where the second carrier link is the communication link between the upper node or the source donor base station currently connected to the IAB node and the IAB node road.
  • the above condition 3 and condition 4 can be considered that the backhaul link of the IAB node is interrupted or blocked.
  • the IAB node can switch the currently connected upper node or the source donor base station to ensure the backhaul of the IAB node as much as possible The communication quality of the link.
  • the DU of the IAB node applies the new configuration information to realize the switching of the superior node of the IAB node.
  • Condition 5 The time length accumulated by the MT of the IAB node since receiving the configuration information from the source donor base station meets the preset time length. This condition can be considered that a clock is pre-configured. When the MT of the IAB node receives the configuration information, after the clock expires, the DU of the IAB node applies the new configuration information, and the IAB node does not need to perform measurement, etc. The realization of the IAB node It's simpler.
  • Condition six the MT of the IAB node starts or completes the random access process.
  • the MT of the IAB node starts or completes the random access process. It can be considered that the IAB node switches the backhaul link.
  • the DU of the IAB node applies the new configuration information, and the IAB node does not need to perform measurement, etc., the IAB node The realization of is simpler.
  • Condition 7 The MT of the IAB node receives the first signaling from the source donor base station, where the first signaling is used to instruct the IAB node to switch to the first target donor base station. Under this condition, the IAB node switches the currently connected superior node based on the instruction of the source donor base station, and does not need to judge the handover timing by itself, which can reduce the computational burden of the IAB node, making the implementation of the IAB node simpler and more beneficial to the network side Carry out resource management.
  • Condition eight the IAB node moves out of the target area.
  • the IAB node When the IAB node is mobile, the IAB node may move out of the coverage area of the superior node or move to an area with poor signal quality. Under this condition, if the IAB node is located in the target area, it can be considered that the current backhaul link communication quality of the IAB node is high. When the IAB node moves out of the target area, it is considered that in order to ensure the communication quality, the superior node of the IAB node can be switched, that is The DU of the IAB node applies the new configuration information.
  • the eight possible specific conditions are listed above.
  • the specific conditions to be selected can be configured by the base station or stipulated by the agreement to avoid conflicts between the resources of the DU sent by the IAB node and the resources of the MT sent by the IAB node, for example, the SSB.
  • the ways to determine whether the IAB node moves out of the target area include but are not limited to the following:
  • Manner 1 The identity (ID) of the area received by the IAB node is inconsistent with the ID of the area stored locally, and the IAB node moves out of the target area.
  • the DU of the IAB node may apply one of the configuration information of the N DUs based on, for example, the following rules:
  • Rule 1 It is relatively simple to arbitrarily select one configuration information from the configuration information of N DUs, and can reduce the complexity of the DU.
  • Rule 2 Select the DU configuration information corresponding to the first target serving node from the configuration information of N DUs, where the first target serving node is the first target donor base station among the N target donor base stations, or the first target service
  • the node is an IAB node connected to the first target donor base station among the N target donor base stations.
  • the first target serving node may be the node with the strongest sent reference signal, so as to ensure the communication quality of the backhaul link after the IAB node is switched.
  • the first target serving node may also work in the same frequency band as that of the source donor base station, which can reduce the complexity of the MT and DU resource reconfiguration of the IAB node and reduce the impact on the terminal.
  • the first target serving node can also be the node with the earliest arrival of the random access occasion (RACH) of the physical random access channel (PRACH), etc., so that the MT of the IAB node can initiate random access earlier , To reduce the impact of link communication quality degradation or link abnormality.
  • RACH random access occasion
  • PRACH physical random access channel
  • the configuration information of the DU includes a first set of PRACH resource configurations and a second set of PRACH resource configurations, that is, two sets of PRACH resource configurations.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for the lower-level IAB node to initiate random access to the DU.
  • the existence of the second set of PRACH resource configuration can prevent the subordinate IAB node from receiving the random access request of the terminal from causing the MT of the subordinate IAB node to fail to send the random access request.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • the PRACH resource configuration used for the IAB node to initiate random access may include a period scaling factor, which together with the PRACH configuration index may be used to determine the period of the PRACH resource, which is beneficial to compatibility with the PRACH resource configuration in the existing implementation.
  • the configuration information of the MT may also include one or more of the following information:
  • Backhaul adaptation protocol layer (backhaul adaptation protocol, BAP) configuration information; or,
  • the data bearer mapping information of the MT or,
  • the quality of service configuration information of the MT is the quality of service configuration information of the MT.
  • the method further includes:
  • the MT of the IAB node receives second configuration information from the source donor base station.
  • the second configuration information is P configuration information configured by the DU of the IAB node for P terminals.
  • Each configuration information corresponds to a terminal identifier, and P is greater than or equal to 1. That is, the IAB node pre-stores the configuration information of P terminals, so that when the MT of the IAB node switches back to the upper-level node of the transmission link, the DU of the IAB node sends the configuration information to the P terminals, which can reduce the switching delay of the terminal.
  • another communication method is provided, which can be executed by a second communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • a second communication device which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as the source donor base station as an example.
  • the method includes:
  • the source donor base station sends a configuration request message to N target donor base stations, and the source donor node receives configuration information sent by the N target donor base stations, where the configuration request message includes the identity information of the IAB node and one or the other of the IAB node Multiple cell information, N is greater than or equal to 1.
  • the configuration information sent by each target donor base station includes the configuration information of the MT configured by the target donor base station for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with the superior of the IAB node.
  • the node or the source donor base station communicates, and the DU is used to communicate with the subordinate node or terminal of the IAB node.
  • the configuration request message includes one or more cell information of the IAB node, such as physical cell identity (PCI), which is equivalent to telling N target donor base stations in advance.
  • PCI physical cell identity
  • the configuration request message further includes the measurement result of the synchronization signal block SSB of the multiple target donor base stations by the MT of the IAB node.
  • the configuration request message further includes at least one of the cell information of the DU of the IAB node, PRACH resource configuration, and synchronization signal configuration information.
  • the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the following description will be made by taking the communication device as the target donor base station as an example.
  • the method includes:
  • the target donor base station receives the configuration request message from the source donor base station and sends configuration information to the source donor base station, where the configuration request message includes the identity information of the IAB node and one or more cell information of the IAB node, and N is greater than or Equal to 1, the configuration information includes the configuration information of the MT configured by the target donor base station for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with the superior node of the IAB node or the source donor base station
  • the DU is used to communicate with the The subordinate node or terminal communication of the IAB node.
  • the DU configuration information includes the first set of PRACH resource configuration and the second set of PRACH resource configuration.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for the IAB node. Initiate random access.
  • the existence of the second set of PRACH resource configuration can prevent the subordinate IAB node from receiving the random access request of the terminal from causing the MT of the subordinate IAB node to fail to send the random access request.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • ZC root sequence index ZC root sequence index, PRACH configuration index, period scaling factor, or the number of RACH timings associated with each synchronization information block SSB, or the offset configuration of the time slot/subframe with RACH timing, wherein the period scaling factor And the PRACH configuration index is used to determine the period of the PRACH resource.
  • the method further includes: the target donor base station sends a specific condition to the source donor base station, and the specific condition may include one or more of the following conditions:
  • the measurement result of the first signal by the MT of the IAB node is less than a first preset threshold, where the first signal is sent by the upper-level node or the source donor base station to which the IAB node is currently connected.
  • the measurement result of the second signal by the MT of the IAB node is greater than the second preset threshold, where the second signal is not sent by the upper-level node currently connected to the IAB node or the source donor base station.
  • the MT of the IAB node has a beam failure on the first carrier link, where the first carrier link is the communication link between the IAB node and the upper node currently connected to the IAB node or the source donor base station .
  • the MT of the IAB node has a radio link failure on the second carrier link, where the second carrier link is the communication between the IAB node and the upper node currently connected to the IAB node or the source donor base station link.
  • the time length accumulated by the MT of the IAB node since receiving the configuration information from the source donor base station meets the preset time length.
  • the MT of the IAB node starts or completes the random access process.
  • the MT of the IAB node receives the first signaling from the source donor base station, and the first signaling is used to instruct the IAB node to switch to the first target donor base station.
  • the eighth type is the area ID or cell list or donor base station list. It should be understood that the eighth specific condition is used by the IAB node to determine whether to move out of the target area.
  • an embodiment of the present application provides a communication device that has a function of implementing the behavior in the method embodiment of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a transceiver unit and a processing unit, where:
  • the transceiver unit is configured to receive first configuration information from the source donor base station, where the first configuration information includes configuration information of N MTs and configuration information of N DUs configured by N target donor base stations for the communication device, where N is greater than or Equal to 1, the MT is used to communicate with the upper node or the source donor base station or the target donor base station of the communication device, and the DU is used to communicate with the lower node or terminal of the communication device;
  • the processing unit is configured to, when the MT of the communication device meets a specific condition, the DU of the communication device applies one piece of configuration information among the configuration information of the N DUs.
  • the specific conditions include:
  • the measurement result of the MT of the communication device on the first signal is less than the first preset threshold, and the first signal is sent by the upper-level node or the source donor base station to which the communication device is currently connected; or,
  • the measurement result of the second signal by the MT of the communication device is greater than the second preset threshold, and the second signal is not sent by the superior node or the source donor base station to which the communication device is currently connected; or,
  • the MT of the communication device has a beam failure on the first carrier link, where the first carrier link is the communication link between the communication device and the upper node or the source donor base station to which the communication device is currently connected; or,
  • the MT of the communication device has a radio link failure on a second carrier link, where the second carrier link is the communication link between the communication device and the upper node or the source donor base station to which the communication device is currently connected; or ,
  • the MT of the communication device starts or completes the random access procedure; or,
  • the MT of the communication device receives first signaling from the source donor base station, where the first signaling is used to instruct the communication device to switch to the first target donor base station; or,
  • the communication device moves out of the target area.
  • moving the communication device out of the target area includes:
  • the identification ID of the area received by the communication device is inconsistent with the ID of the area stored locally; or,
  • the ID of the cell where the communication device is currently located is not in the list of received cells; or,
  • the donor base station corresponding to the node to which the communication device is currently connected is not in the received donor base station list.
  • the DU of the communication device applies one configuration information among the configuration information of N DUs, including:
  • Any configuration information is selected from the configuration information of N DUs; or,
  • the first target serving node is the first target donor base station among the N target donor base stations, or the first target serving node is N targets
  • the IAB node connected to the first target donor base station in the donor base station, where:
  • the strength of the reference signal sent by the first target service node is the largest; or,
  • the working frequency bands of the first target serving node and the source donor base station are the same; or,
  • the random access opportunity of the PRACH resource of the first target serving node comes earliest.
  • the DU configuration information includes the first set of PRACH resource configuration and the second set of PRACH resource configuration.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for the IAB node. Initiate random access.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • ZC root sequence index ZC root sequence index, PRACH configuration index, period scaling factor, subframe or slot offset, or the number of RACH occasions associated with each synchronization information block SSB, where the period scaling factor and PRACH configuration index are used to determine the period of the PRACH resource .
  • the configuration information of the MT also includes one or more of the following information:
  • the transceiver unit is further configured to:
  • the second configuration information is P configuration information configured by the DU of the communication device for P terminals, each configuration information corresponds to a terminal identifier, and P is greater than or equal to 1.
  • an embodiment of the present application provides another communication device, which has a function of implementing the behavior in the method embodiment of the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a sending unit and a receiving unit, where:
  • the sending unit is configured to send a configuration request message to N target donor base stations, where the configuration request message includes the identity information of the IAB node and one or more cell information of the IAB node, and N is greater than or equal to 1;
  • the receiving unit is configured to receive configuration information sent by N target donor base stations, where the configuration information sent by each target donor base station includes the configuration information of the MT configured by the target donor base station for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with The upper node of the IAB node or the communication device communicates, and the DU is used to communicate with the lower node or terminal of the IAB node.
  • the configuration request message also includes the measurement result of the synchronization signal block SSB of the multiple target donor base stations by the MT of the IAB node.
  • the configuration request message further includes at least one of the cell information of the DU of the IAB node, the physical random access channel PRACH resource configuration, and the synchronization signal configuration information.
  • the embodiments of the present application provide yet another communication device, which has the function of implementing the behaviors in the method embodiments of the third aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions. In a possible implementation manner, it includes a sending unit and a receiving unit, where:
  • the receiving unit is configured to receive a configuration request message from the source donor base station, where the configuration request message includes the identity information of the IAB node and one or more cell information of the IAB node, and N is greater than or equal to 1;
  • the sending unit is used to send configuration information to the source donor base station, where the configuration information includes the configuration information of the MT configured by the communication device for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with the upper node of the IAB node or the source donor base station,
  • the DU is used to communicate with the subordinate node or terminal of the IAB node.
  • the DU configuration information includes the first set of PRACH resource configuration and the second set of PRACH resource configuration.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for the IAB node. Initiate random access.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • ZC root sequence index ZC root sequence index, PRACH configuration index, period scaling factor, subframe or slot offset, or the number of RACH occasions associated with each synchronization information block SSB, where the period scaling factor and PRACH configuration index are used to determine the period of the PRACH resource .
  • the sending unit is also used to send specific conditions to the source donor base station, where the specific conditions include:
  • the measurement result of the first signal by the MT of the IAB node is less than the first preset threshold, and the first signal is sent by the current serving node of the IAB node; or,
  • the measurement result of the second signal by the MT of the IAB node is greater than the second preset threshold, and the second signal is not sent by the current serving node of the IAB node; or,
  • the MT of the IAB node has a beam failure on the first carrier link, which is the communication link between the IAB node and the current serving node of the IAB node; or,
  • the MT of the IAB node has a radio link failure on the first carrier link, and the first carrier link is the communication link between the IAB node and the current serving node of the IAB node; or,
  • the MT of the IAB node starts or completes the random access procedure
  • the MT of the IAB node receives the first signaling from the source donor base station, where the first signaling is used to instruct the IAB node to switch to the first target donor base station; or,
  • the embodiments of the present application provide a communication device.
  • the communication device may be the communication device in the fourth, fifth, or sixth aspect of the above-mentioned embodiment, or may be set in the fourth or fifth aspect. Or the chip in the communication device in the sixth aspect.
  • the communication device includes a communication interface, a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions or data, and the processor is coupled with the memory and a communication interface. When the processor reads the computer programs or instructions or data, the communication device is caused to execute the IAB node in the above method embodiment. Or the method executed by the source donor base station or the target donor base station.
  • the communication interface may be a transceiver in the communication device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a chip set in a network device, the communication interface It can be the input/output interface of the chip, such as input/output pins.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is an IAB node, the other devices are the source donor base station and the target donor base station; or, when the communication device is the source donor base station, the other devices are the IAB node and the target donor base station; or, When the communication device is the target donor base station, the other devices are the IAB node and the source donor base station.
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory for implementing the method executed by the communication device in the fourth aspect, the fifth aspect, or the sixth aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, the communication system including the communication device described in the fourth aspect, the communication device described in the fifth aspect, and the communication device described in the sixth aspect.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is run, it implements the methods executed by the IAB node in the above aspects; or implements the above The method performed by the source donor base station in each aspect; or the method performed by the target donor base station in the foregoing aspects.
  • a computer program product comprising: computer program code, when the computer program code is executed, causes the method executed by the IAB node in the above aspects to be executed, or causes The methods executed by the source donor base station in the foregoing aspects are executed; or the methods executed by the target donor base station in the foregoing aspects are executed.
  • the DU of the IAB node only applies the configuration information of a certain DU configured by the target donor base station for the IAB node when the MT of the IAB node meets a specific condition. Since the DU of the IAB node applies the new configuration information on the premise that the MT meets certain conditions, it can prevent the DU of the IAB node from sending, for example, the synchronization signal block SSB resource and The resources of the MT of the IAB node for sending the SSB conflict, so as to avoid abnormal communication of the terminal as much as possible.
  • the IAB node pre-stores the configuration information of P terminals, so that when the MT of the IAB node switches back to the upper node of the transmission link, the DU of the IAB node sends the configuration information to the P terminals, which can reduce the terminal’s Handover delay.
  • FIG. 1 is a schematic structural diagram of an IAB system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the structure of an IAB node provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a backhaul link and an access link provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of the architecture of an exemplary communication system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the architecture of another applicable communication system provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a structure of a network device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of IAB node communication provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of cross-host node migration of IAB nodes according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of an application scenario of a movable IAB node provided by an embodiment of the application.
  • FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of an application scenario of a mobile IAB node provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of an IAB node provided by an embodiment of this application.
  • FIG. 15 is a schematic diagram of still another structure of a communication device provided by an embodiment of this application.
  • the relay node can establish a wireless backhaul link with one or more upper-level nodes, and access the core network through the upper-level nodes.
  • the upper-level node can perform certain control (for example, data scheduling, timing modulation, power control, etc.) on the relay node through a variety of signaling.
  • the relay node can establish an access link with one or more lower-level nodes and provide services for one or more lower-level nodes.
  • the superior node of the relay node can be a base station or another relay node.
  • the subordinate node of the relay node can be a terminal or another relay node.
  • the upper-level node may also be called the upstream node, and the lower-level node may also be called the downstream node.
  • the backhaul link and the access link can share the same frequency band.
  • This solution is also called in-band relay.
  • In-band relay generally has half-duplex constraints. That is, the relay node cannot send the downlink signal to its lower node when receiving the downlink signal sent by its upper node, and the relay node cannot send the uplink signal to its upper node when receiving the uplink signal sent by its lower node.
  • the in-band relay scheme of the new generation wireless communication system new radio, NR
  • IAB node IAB node
  • the access link and the backhaul link use time division, space division or frequency division for resource multiplexing.
  • FIG. 1 shows an IAB system.
  • the IAB node provides wireless access and wireless backhaul of access services for the terminal.
  • the IAB donor node IAB host node
  • the IAB node provides a wireless backhaul function to the IAB node and provides an interface between the terminal and the core network.
  • the IAB node is connected to the IAB donor node through a wireless backhaul link, so that the terminal served by the IAB node is connected to the core network.
  • FIG. 2 shows a schematic structural diagram of an IAB node.
  • the IAB node in NR can be divided into two parts: mobile terminal (MT) and distributed unit (DU).
  • the MT can also be understood as a component similar to the terminal in the IAB, and the MT is called a function that resides on the IAB node. Since the MT functions like an ordinary terminal, it can be understood that the MT is used for the communication between the IAB node and the upper-level node.
  • the DU is relative to the centralized unit (CU) function of the network device, and the DU is used for the communication between the IAB node and the lower-level node.
  • CU centralized unit
  • the upper-level node may be a base station or other IAB nodes
  • the lower-level node may be a terminal or other IAB nodes.
  • the link between the MT and the upper-level node is called the parent BackHaul link
  • the link between the DU and the lower-level IAB node is called the child BackHaul link
  • the link between the DU and the subordinate terminal The link is called the access link.
  • the lower-level backhaul link is also referred to as the access link, where the upper-level backhaul link includes the upper-level backhaul uplink (uplink, UL) and the upper-level backhaul downlink (downlink, DL). ),
  • the lower-level backhaul link includes the lower-level backhaul UL and the lower-level backhaul DL, and the access link includes the access UL and the access DL, as shown in Figure 3.
  • the communication method provided in the embodiment of the present application can be applied to a wireless communication system with a relay node, as shown in FIG. 4.
  • FIG. 4 is only an exemplary illustration, and does not specifically limit the number of terminals and relay nodes included in the wireless communication system.
  • the relay node is generally called RN.
  • the relay node is generally called an IAB node.
  • the relay node may also be called a relay device, or a relay transmission and receptio point (rTRP), and the upper-level node of the relay node may be a network device (including the DU of the network device, Or include the CU of network equipment, etc.).
  • the IAB system shown in FIG. 5 includes at least one base station 100, one or more terminals served by the base station 100, one or more IAB nodes, and one or more terminals served by the IAB nodes.
  • the IAB node includes an IAB node 110, an IAB node 120, and an IAB node 130.
  • the base station 100 is generally called a donor next generation node B (DgNB), and the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the IAB node 120 is connected to the IAB node 110 through a wireless backhaul link 123 to access the network.
  • DgNB donor next generation node B
  • the IAB node 130 is connected to the IAB node 110 through a wireless backhaul link 133 to access the network.
  • the IAB node 110 serves one or more terminals 111
  • the IAB node 120 serves one or more terminals 121
  • the IAB node 130 serves one or more terminals 131.
  • the wireless backhaul links are all viewed from the perspective of the IAB node.
  • the wireless backhaul link 113 is the backhaul link of the IAB node 110.
  • the link 123 is the backhaul link of the IAB node 120.
  • an IAB node (such as 120) can be connected to another IAB node 110 through a wireless backhaul link (such as 123) to connect to the network, and the IAB node can be connected to the network through a multi-level wireless IAB node The internet.
  • IAB nodes in the embodiments of this application is only for the purpose of description, and does not mean that the solutions in the embodiments of this application are only used in NR scenarios.
  • IAB nodes can generally refer to any relay
  • the use of functional nodes or devices, IAB nodes and relay nodes in the implementation of this application should be understood to have the same meaning.
  • a node that provides wireless backhaul link resources such as 110
  • 120 is referred to as a lower-level node of the IAB node 110
  • the lower-level node can be regarded as a terminal of the upper-level node.
  • an IAB node (such as 120) can have as many A higher-level node provides services for it at the same time.
  • the IAB node 130 in FIG. 5 can also be connected to the IAB node 120 through the backhaul link 134, that is, both the IAB node 110 and the IAB node 120 are the upper nodes of the IAB node 130.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, and 134 may be bidirectional links, including uplink and downlink transmission links.
  • the wireless backhaul links 113, 123, 133, and 134 can be used by the upper-level node to provide services for the lower-level nodes, for example, the upper-level node 100 provides wireless backhaul services for the lower-level node 110.
  • the uplink and downlink of the backhaul link may be separated, that is, the uplink and the downlink are not transmitted through the same node.
  • Downlink transmission refers to the transmission of information or data by an upper-level node to lower-level nodes, such as node 100 transmitting information or data to node 110;
  • the node is not limited to whether it is a network node or a terminal.
  • the terminal can act as a relay node to serve other terminals.
  • the wireless backhaul link can be an access link in some scenarios.
  • the backhaul link 123 can also be regarded as an access link to the node 110, and the backhaul link 113 is also the access link of the node 100. link.
  • the foregoing upper-level node may be a base station or a relay node
  • the lower-level node may be a relay node or a terminal with a relay function.
  • the lower-level node may also be a terminal.
  • a donor node refers to a node that can access the core network through the node, or a network device of a wireless access network, for example, an anchor base station (or the above-mentioned donor base station, donor node),
  • the base station can access the network through the anchor point.
  • the anchor base station is responsible for the data processing of the packet data convergence protocol (packet data convergence protocol, PDCP) layer, or is responsible for receiving the data of the core network and forwarding it to the relay node, or receiving the data of the relay node and forwarding it to the core network.
  • Donor nodes can generally be connected to the network by wired means, such as optical fiber cables.
  • the network device may be called a base station, and may also be called a radio access network (RAN) node (or device).
  • the network equipment can be a next-generation Node B (gNB), a transmission reception point (TRP), an evolved Node B (evolved Node B, eNB), and a radio network controller (radio network controller).
  • network controller RNC
  • Node B NB
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B
  • HNB home evolved NodeB
  • BBU baseband unit
  • AP wireless fidelity access point
  • the name of the network device in the embodiment of this application may be a relay node (RN), a relay transmission and reception point (rTRP), an IAB node (IAB node), etc.; the upper node of the relay node may be a gNB (including gNB-DU, gNB-CU, etc.), it can also be another relay node.
  • RN relay node
  • rTRP relay transmission and reception point
  • IAB node IAB node
  • the upper node of the relay node may be a gNB (including gNB-DU, gNB-CU, etc.), it can also be another relay node.
  • the structure of the network device in the embodiment of the present application may be as shown in FIG. 6.
  • the network device can be divided into a CU and at least one DU.
  • the CU may be used to manage or control at least one DU, and it may also be referred to as the CU being connected to at least one DU.
  • This structure can disassemble the protocol layer of the network equipment in the communication system, in which part of the protocol layer is centrally controlled by the CU, and the remaining part or all of the protocol layer functions are distributed in the DU, and the CU is centrally controlled by the DU.
  • the protocol layer of the gNB includes the radio resource control (RRC) layer, the service data adaptation protocol (SDAP) layer, and the packet data convergence protocol.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the CU may be used to implement the functions of the RRC layer, the SDAP layer, and the PDCP layer
  • the DU may be used to implement the functions of the RLC layer, the MAC layer, and the physical layer.
  • CU and DU can be physically connected by optical fiber, and logically there is a specially defined F1 interface for communication between CU and DU.
  • CU is mainly responsible for radio resource control and configuration, cross-cell mobility management, bearer management, etc.
  • DU is mainly responsible for scheduling, physical signal generation and transmission.
  • the embodiment of this application does not specifically limit the protocol stack included in the CU and DU.
  • the network device may include the MT function and the DU function. That is, the IAB node communicates with the upper-level node through the MT.
  • the DU is the base station function module of the IAB node. It is used to realize the functions of the RLC layer, the MAC layer and the physical layer. It is mainly responsible for scheduling, physical signal generation and transmission, that is, the IAB node communicates with the The lower-level nodes communicate with the terminal, as shown in Figure 7.
  • Both the MT and DU of the IAB node have a complete transceiver module, and there is an interface between the two.
  • MT and DU are logic modules. In practice, they can share some sub-modules, for example, they can share transceiver antennas, baseband processing modules, etc., as shown in Figure 7.
  • the terminal involved in the embodiments of the present application is an entity on the user side for receiving or transmitting signals.
  • the terminal may be a device that provides voice and/or data connectivity to the user, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) Terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal) , User agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle-to-everything
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber station), mobile station (mobile station), remote station (remote station
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for the application of wearable technology to intelligently realize daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and Shoes etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals introduced above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). .
  • OBU on-board unit
  • FIG. 8 it is a schematic diagram of the migration of IAB nodes across host nodes.
  • the backhaul link between the IAB node and its directly connected superior node that is, the host node
  • the IAB The backhaul link of a node can be migrated to another superior node.
  • the backhaul link of an IAB node can be migrated to another superior candidate node or a potential node or an adjacent node.
  • the upper-level node is another host node or a lower-level IAB node connected to another host node.
  • FIG. 9 another possible application scenario is provided, that is, the application scenario of a mobile IAB node.
  • Fig. 9 takes as an example two host nodes (host node 1 and host node 2) and a mobile IAB node. It should be understood that due to the movement of the IAB node, the IAB node may be out of the coverage of the host node currently serving the IAB node.
  • the mobile IAB node can move from the location of IAB node 1 to the location of IAB node 2, or to the location of IAB node 3. It can be seen that the mobile IAB node moves from IAB node 1 to the location of IAB node 3.
  • the backhaul link of the IAB node can be migrated to another superior node. It should be understood that the mobile IAB node may move to the position of the IAB node 2 and may also move to the position of the IAB node 3. Therefore, in FIG. 9, the dotted line indicates that the mobile IAB node may move to the positions of the IAB node 2 and the IAB node 3.
  • the application scenarios shown in Figure 8 and Figure 9 all involve the migration of the IAB node. Since IAB includes MT and DU, for MT, the migration mechanism of the terminal can be used, that is, the base station will send the measurement configuration to the terminal. The terminal performs periodic measurement according to the configuration, and determines whether to report the measurement result according to the pre-configured threshold. The base station decides whether to let the terminal perform handover according to the received measurement result. If the current serving base station decides to switch the terminal, it will send a handover request to the target base station, and the handover request includes the measurement result of the terminal.
  • the target base station configures PRACH resources according to the terminal measurement results forwarded by the source base station of the serving terminal for the terminal to perform non-competitive random access (compared to competitive random access, non-competitive random access can prevent multiple terminals from using the same Resources, resulting in random access failure).
  • the base station configures one or more cells for the terminal as a target cell for conditional handover.
  • the condition may include one or two measurement results. When the terminal finds that at least one of the conditions is met, the handover can be performed.
  • the DU of the IAB node can serve one or more terminals and act as a base station. Usually the DU will send the SSB to serve the terminal. In order not to affect the terminal, the resource location of the SSB will generally not change. However, if the IAB node migrates across the host node, the new superior node of the migrated IAB node will send the SSB to serve the migrated IAB node (for example, the MT of the migrated IAB node needs to be received or measured at the resource location of the SSB SSB).
  • FR1 can be considered a low-frequency band, usually referring to the frequency range from 410MHz to 7125MHz.
  • the FR2 frequency band It is a high-frequency frequency band, which usually refers to the frequency range from 24.25GHz to 52.6GHz.
  • the information configured by the network side for the multiple terminals will be stored in the host node to which the IAB node is currently connected, that is, the mobility anchor of the terminal is hosted in the host base station. If the IAB node migrates across the host node, these multiple terminals need to be reconfigured. For example, the multiple terminals need to receive high-level configuration on the network side, which may include, for example, the key under the new host node, transmission resource configuration, pilot or Reference signal configuration, measurement configuration, etc. Since the network side needs to send high-level configurations for multiple terminals, this requires the network side to send a large amount of signaling in a short time, which increases the burden on the network side and the backhaul link.
  • the high-level configuration is generated at the new host node and sent to the terminal via one or more hops, which will cause serious delays. If the terminal is running a service that requires high latency, such as a game service, it may cause the game to freeze and reduce the quality of user experience.
  • a service that requires high latency such as a game service
  • the embodiment of the present application provides a communication method.
  • this method only when the DU of the IAB node meets certain conditions, the DU of the IAB node applies a certain configuration from the target donor base station for the IAB node. Configuration information of each DU. That is, it is clear when the IAB node applies the configuration information of a certain DU from the target donor base station, and the timing is that the MT of the IAB node meets a specific condition.
  • the new configuration information of the DU of the IAB node is based on the premise that the MT meets certain conditions, it is possible to prevent the DU of the IAB node from sending synchronization signal block (synchronization signal block) in the process of implementing the cross-donor base station handover of the IAB node.
  • synchronization signal block synchronization signal block
  • SSB synchronization signal block
  • the IAB node pre-stores the configuration information of P terminals, so that when the MT of the IAB node switches back to the upper node of the transmission link, the DU of the IAB node sends the configuration information to the P terminals, which can reduce the terminal’s Handover delay.
  • FIG. 10 is a flowchart of a communication method provided by an embodiment of this application.
  • the application of this method to the communication system shown in FIG. 4 and FIG. 5 is taken as an example.
  • the method can be executed by three communication devices, for example, the first communication device, the second communication device, and the third communication device.
  • the method is executed by the IAB node, the source donor base station, and the target node as an example, that is, the first communication device is the IAB node, the second communication device is the source donor base station, and the third communication device is Take the target node as an example.
  • the target node may be a target donor base station or other IAB nodes.
  • the target node is a target donor base station as an example.
  • the following IAB node may be the relay node in FIG. 4, or any IAB node in FIG. 5. It should be noted that the embodiment of the present application only uses the communication system of FIG. 4 and FIG. 5 as an example, and is not limited to this scenario.
  • the source donor base station refers to the donor base station to which the IAB node is currently connected.
  • the IAB node here refers to the IAB node to be migrated, and can also be referred to as the IAB node to be handed over, that is, the IAB node of the source donor base station that is currently connected to be handed over.
  • the target donor base station refers to the base station to which the IAB node will migrate or handover.
  • the source donor base station may also be referred to as a source IAB Donor
  • the target donor base station may be referred to as a target IAB Donor
  • the terminal is an example of a UE.
  • the source donor base station sends a configuration request message to N target donor base stations, where the configuration request message includes the identity information of an IAB node and one or more cell information of the IAB node, and N is greater than or equal to 1.
  • the source donor base station may configure the measurement configuration for the IAB node, that is, measurement related information, which may include, for example, parameters for measuring multiple target donor base stations.
  • the IAB node measures multiple target donor base stations according to the measurement configuration, and reports the measurement results to the source donor base station.
  • the source donor base station can determine N target donor base stations to which the IAB node is to be migrated from the multiple target donor base stations according to the measurement result.
  • the IAB node may perform S1001a, and the IAB node may send the measurement result of the IAB node to the source donor base station.
  • the source donor base station may not need to determine N target donor base stations based on the measurement results of the IAB node.
  • the source donor base station may determine N target donor base stations based on historical information or information specified by the network.
  • S1001a is an optional step and not indispensable. Therefore, a dotted line is used for illustration in FIG. 10.
  • the source donor base station can send a configuration request message to the N target donor base stations respectively.
  • the configuration request message is used to request the N target donor base stations to configure configuration information for the IAB node, for example, it may include MT Configuration information and DU configuration information.
  • the configuration request message is used to request the configuration information configured by the N target donor base stations for the IAB node.
  • One of the purposes is to switch the IAB node. Therefore, in some embodiments, the configuration request message may also become a handover request.
  • the message indicates that the IAB node needs to perform handover, and the target donor base station receives the handover request message and configures information for the IAB node.
  • the configuration request message can be carried in Xn interface signaling, and of course, it can also be carried in interface signaling between other base stations.
  • the configuration request message may include identification information used to indicate the IAB node, such as the ID of the IAB node itself, and for example, an E-UTRAN cell global identifier (ECGI), etc. In this way, the target donor base station can know which IAB node is configured with information according to the identification information of the IAB node.
  • the configuration request message may also include one or more cell information of the IAB node, that is, the cell information of the DU of the IAB node, such as the cell ID information of the DU of the IAB node, such as a physical cell identifier. (physical cell identity, PCI).
  • the configuration request message can inform the target donor base station in advance which PCI the IAB node uses, so that the target donor base station can generate configuration information for the IAB node based on the PCI reported by the IAB node, for example Generate SSB.
  • the configuration request message may also include at least one of the measurement result of the IAB node, the configuration information of the MT of the IAB node, and the configuration information of the DU.
  • the measurement result of the IAB node may be the measurement result of the IAB node on the SSB of the target donor base station, and may be carried in the configuration information of the MT. Since the configuration request message includes the configuration information of the MT of the AB node and the configuration information of the DU, the target donor base station can reconfigure the configuration information of the MT and the configuration information of the DU for the IAB node based on the configuration information of the MT of the IAB node and the configuration information of the DU. Configuration information.
  • the target donor base station does not need to configure the configuration information of the MT and the configuration information of the DU that are repeated with the IAB node, which can reduce the burden of the target donor base station, and can reduce the subsequent overhead of the target donor base station sending information configured for the IAB node.
  • the target donor base station can determine that all terminals under the IAB node need to be reconfigured.
  • the measurement result of the IAB node on the SSB of the target donor base station can be the measurement result of the IAB node on the cell defining SSB of the target donor base station, or the measurement result of the IAB node on the target donor base station.
  • the MT of the IAB node After the MT of the IAB node is connected to the network, it can be configured to measure the above-mentioned cell defining SSB, non-cell defining SSB, or off-sync raster SSB.
  • the configuration information of the DU may include the cell-specific signal and channel configuration of the currently running cell of the DU.
  • the cell-specific signal may include, for example, synchronization information, channel state information reference signal (CSI-RS), PRACH resource configuration, etc.
  • the configuration information of the DU may also include SSB transmission configuration information of at least one cell of the DU, such as synchronization signal transmission configuration (synchronization signal transmission configuration, STC).
  • the SSB can be cell defining SSB, non-cell defining SSB, or off-sync raster SSB.
  • the N target donor base stations send configuration information to the source donor node, and the configuration information sent by each target donor base station includes the configuration information of the MT and the configuration information of the DU configured by the target donor base station for the IAB node.
  • the MT is used to communicate with the upper node of the IAB node or the source donor base station
  • the DU is used to communicate with the lower node or terminal of the IAB node.
  • Each target donor base station generates configuration information for the IAB node, and sends the configuration information to the source donor base station, and the source donor base station forwards it to the IAB node.
  • the source donor base station sends first configuration information to the IAB node, where the first configuration information includes the configuration information of the N MTs and the configuration information of the N DUs configured by the N target donor base stations for the IAB node.
  • the first configuration information is generated by N target donor base stations and sent to the source donor base station.
  • Each target donor base station generates MT configuration information and DU configuration information for the IAB node.
  • the source donor base station can send the MT configuration information to the IAB node through RRC signaling, and send the DU configuration information to the IAB node through the F1-AP message.
  • the F1-AP message may also be carried in RRC signaling for transmission.
  • the configuration information of the MT may include a variety of information.
  • the configuration information of the MT may include the backhaul adaptation protocol (BAP) configuration, such as the backhaul of the MT of the IAB node. Routing information.
  • BAP configuration can be understood as the backhaul link adaptation layer configuration of the MT of the IAB node for routing.
  • the data received from the terminal before the migration of the IAB node can be transmitted according to the path indicated by the BAP configuration after the migration. After the IAB node is switched, the reconfiguration delay of the IAB node's MT can be reduced, and the IAB node can switch back to the upper node pair. The impact of throughput.
  • the configuration information of the MT may include data bearer mapping information of the MT.
  • the configuration information of the MT may include quality of service (QoS) configuration information of the MT.
  • QoS quality of service
  • the MT configuration information may also include the MT time slot format configuration, such as the IAB node’s TDD uplink time slot configuration and TDD downlink time slot configuration (TDD-UL-DL -ConfigDedicated-IAB-MT), mainly used to configure the transmission direction.
  • the MT of the IAB node communicates with the DU of the superior node of the IAB node according to the time slot format configuration of the MT.
  • the configuration information of the DU may also include a variety of information.
  • the configuration information of the DU may include the STC of at least one cell on the DU.
  • the DU configuration may also include the PRACH resource configuration for the DU to provide services to lower-level nodes.
  • the configuration information of the DU may include two sets of PRACH resource configurations, namely the first set of PRACH resource configurations and the second set of PRACH resource configurations.
  • the first set of PRACH resource configuration can be used for the terminal to initiate random access
  • the second set of PRACH resource configuration can be used for the lower-level IAB node to initiate random access, which can avoid the repetition of the ZC root sequence that may be caused by the IAB node switching the upper-level node, thereby avoiding PRACH interference.
  • the MT of the IAB node can receive the PRACH resources of the higher-level IAB node that is far away (for example, 5 km from the IAB node), and initiate random access.
  • the coverage range of the PRACH resources configured by the IAB node for the terminal is relatively narrow, for example, the coverage diameter is 3Km. Therefore, if the IAB node uses the PRACH resource configured for the terminal, that is, the PRACH resource covering a range of 3Km is connected to an upper-level node that is 5Km away, that is, out-of-range access, it will cause access failure.
  • the existence of the second set of PRACH resource configuration can prevent the MT of the lower-level IAB node from being unable to send the random access request due to receiving the random access request of the terminal.
  • the PRACH resource period of the second set of PRACH resource configurations is greater than the PRACH resource period of the first set of PRACH resource configurations.
  • the second set of PRACH resource configuration can be considered as dedicated to the IAB node.
  • the IAB node can use the second set of PRACH resource configuration or the first set of PRACH resource configuration, but the terminal can only use the first set of PRACH. Resource configuration, the second set of PRACH resource configuration cannot be used.
  • the first set of PRACH resource configuration also uses the PRACH resource configuration used for the terminal to generate the preamble sequence in the prior art, which will not be repeated here.
  • the second set of PRACH resource configuration is dedicated to the IAB node, and may include configuration information used for random access, such as period scaling information, system frame offset configuration, subframe/slot offset configuration, etc.
  • the second set of PRACH resource configuration may include at least one of the ZC root sequence index, PRACH configuration index, the number of RACH occasions associated with each SSB, or the offset configuration of the time slot/subframe with the RACH occasion .
  • the second set of PRACH resource configuration may also include a period scaling factor, which is combined with the PRACH configuration index to determine the period of the PRACH resource.
  • the second set of PRACH resource configuration can be added to the cycle scaling factor based on the existing implementation, which is more compatible with the PRACH resource configuration in the existing implementation.
  • the configuration information of the DU may also include a TDD uplink time slot configuration and a TDD downlink time slot configuration, which is used for the DU to communicate with a lower-level node or terminal.
  • the configuration information of the DU may also include available resources, unavailable resources, hard type resources, soft type resources, etc. of the DU of the IAB node.
  • the DU configuration information may also include periodic cell downlink reference signal configuration, such as CSI-RS configuration.
  • the target donor base station may generate part of the configuration information of the MT of the IAB node, and the other part of the configuration information of the MT may be indicated by the network side as the original configuration information of the MT of the IAB node. That is, when the network side instructs the IAB node to migrate through signaling, part of the configuration information of the MT received by the application and another part of the existing configuration information of the MT are applied. Of course, the network side does not necessarily send signaling, but may also be a system or protocol agreement. When an IAB node is migrated, part of the configuration information of the MT received by the application and another part of the existing configuration information of the MT are applied. That is, for the configuration that is not in the received configuration information, the MT uses the existing configuration by default.
  • MT application configuration information can also be considered as valid, or the configuration information can be enabled.
  • DU application configuration information refers to enabling the configuration information when the configuration information to be applied by the DU takes effect or when the DU wants to use the configuration information.
  • the MT of the IAB node initiates random access to the target donor base station.
  • the DU applies one configuration information among the configuration information of the N DUs.
  • the embodiment of the present application provides the opportunity for MT and DU application configuration information to avoid resource conflicts that may occur after the migration of the IAB node. That is, the embodiment of the present application provides a mechanism for the migration of IAB nodes across donor base stations, and the mechanism limits the timing of the MT and DU application configuration information.
  • the source donor base station may also send one or more conditions of the configuration information received by the MT application to the IAB node. It should be noted that, in the embodiment of the application, the source donor base station forwards the received configuration information of the MT and the configuration information of the DU to the IAB node, and sends one or more conditions of the configuration information received by the MT application to the IAB node. limit. For example, the two can be sent to the IAB node at the same time.
  • the source donor base station can send one or more conditions of the configuration information received by the MT application to the IAB node through a piece of signaling, such as RRC signaling, or send multiple pieces of configuration information received by the MT application to the IAB node through multiple RRC signaling. Two conditions, for example, each condition is carried in a piece of RRC signaling.
  • one or more conditions of the configuration information received by the MT application may be used to indicate that the MT satisfies the one or more conditions before initiating a random access procedure to the target donor base station. It should be understood that initiating the random access process to the target donor base station may be directly initiating the random access process to the target donor base station, or may be initiating the random access process to the subordinate node connected to the target donor base station.
  • the conditions that need to be met before the MT initiates a random access procedure to the target donor base station are referred to as specific conditions in the following. Exemplarily, the specific conditions may include one or more of the following conditions, which are respectively introduced below.
  • Condition 1 The measurement result of the first signal by the MT of the IAB node is less than a first preset threshold, where the first signal is sent by the current serving node of the IAB node, that is, the upper-level node or the source donor base station to which the IAB node is currently connected of.
  • the measurement result of the first signal by the MT of the IAB node is less than the first preset threshold, it can be considered that the communication quality of the current backhaul link of the IAB node is poor.
  • the IAB node can switch to, for example, the target donor base station to try to Ensure the communication quality of the backhaul link of the IAB node.
  • the DU of the IAB node applies the new configuration information to realize the switching of the superior node of the IAB node.
  • the first preset threshold may be a preset value or a value defined by the system or a value agreed upon by an agreement.
  • the first preset threshold may also be part of condition 1, that is, condition 1 is that the measurement result of the first signal by the MT of the IAB node is less than the first preset threshold, and the first preset threshold is determined by The source donor base station sends it to the IAB node as condition one.
  • the measurement result of the second signal by the MT of the IAB node is greater than a second preset threshold, where the second signal is not sent by the upper-level node currently connected to the IAB node or the source donor base station.
  • a second preset threshold When the measurement result of the second signal by the MT of the IAB node is greater than the second preset threshold, it can be considered that there is an upper-level node (such as the target donor base station) that has a better measurement result than the upper-level node currently connected to the IAB node or the source donor base station, At this time, the IAB node can switch to the target donor base station to improve the communication quality of the backhaul link of the IAB node as much as possible, and the DU of the IAB node applies the new configuration information to realize the handover of the superior node of the IAB node.
  • the second preset threshold may also be a preset value or a value defined by the system or a value agreed upon by an agreement.
  • the second preset threshold may be related to the second signal measurement result.
  • the second preset threshold is the sum of the second signal measurement result and a certain fixed value.
  • the second preset threshold may also be part of the second condition, that is, the second condition is that the measurement result of the first signal by the MT of the IAB node is less than the second preset threshold, and the second preset threshold is determined by The source donor base station sends to the IAB node as condition two.
  • the MT of the IAB node has a beam failure on the first carrier link, where the first carrier link is the communication link between the upper node or the source donor base station currently connected to the IAB node and the IAB node.
  • the strength of the reference signal is used to characterize the link quality (beam), and the terminal measures each reference signal in the reference signal set configured by the higher layer. If the strength of each reference signal in the reference signal set is less than a certain threshold, then The beam failed.
  • beam failure you can also refer to the description of the 3GPP standard.
  • the beam failure of the MT of the IAB node on the first carrier link also includes a situation in which the MT of the IAB node has a beam failure on the first carrier link and the beam fails after recovery.
  • Beam failure recovery failure means that the terminal detects the beam failure and tries to find a new beam to restore communication, but the process also fails.
  • the MT of the IAB node has a radio link failure on the second carrier link.
  • the MT determines that the measured RSRP is small, or cannot decode the physical downlink control channel (PDCCH) or the physical downlink shared channel (physical downlink shared channel, PDSCH), etc., where the second carrier link is a communication link between the upper-level node or the source donor base station currently connected to the IAB node and the IAB node.
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the above condition 3 and condition 4 can be considered that the backhaul link of the IAB node is interrupted or blocked.
  • the IAB node can switch the currently connected upper node or the source donor base station to ensure the backhaul of the IAB node as much as possible The communication quality of the link.
  • the DU of the IAB node applies the new configuration information to realize the switching of the superior node of the IAB node.
  • Condition 5 The time length accumulated by the MT of the IAB node since receiving the configuration information from the source donor base station meets the preset time length. This condition can be considered that a clock is pre-configured. When the MT of the IAB node receives the configuration information, after the clock expires, the DU of the IAB node applies the new configuration information, and the IAB node does not need to perform measurement, etc. The realization of the IAB node It's simpler.
  • the five possible specific conditions are listed above.
  • the specific conditions to be selected can be configured by the base station or stipulated by agreements.
  • the embodiment of the present application does not limit the manner of indicating which specific conditions are selected.
  • the target service node includes a target donor base station, and may also include an IAB node connected to the target donor base station.
  • the rules for the MT to select the target service node to be accessed may include but are not limited to the following:
  • the MT of the IAB node can select the target service node corresponding to the configuration information that meets the aforementioned five specific conditions for random access. It should be understood that if there are multiple target service nodes corresponding to the configuration information satisfying the aforementioned five specific conditions, the MT of the IAB node may select any one of the multiple target service nodes.
  • Rule 2 The MT of the IAB node selects the target serving node with the strongest reference signal to ensure the communication quality of the backhaul link after the IAB node is switched.
  • the strength of the reference signal can be characterized by the received power of the reference signal.
  • the MT performs reference signal receiving power (RSRP) measurements on all target service nodes, sorts the obtained measurement results in descending order, and selects the first target service node after sorting.
  • RSRP reference signal receiving power
  • the MT of the IAB node selects the target service node whose working frequency band is the same as the working frequency band of the source donor base station, which can reduce the complexity of the MT and DU resource reconfiguration of the IAB node, and reduce the impact on the terminal. It should be understood that the working frequency band is the same, and the center frequency of the carrier may be the same, or the center frequency of the SSB may be the same.
  • Rule 4 The MT of the IAB node selects the node that has the earliest random access timing of the PRACH resource, so that the MT of the IAB node can initiate random access earlier and reduce the impact of link communication quality degradation or link abnormality.
  • the foregoing describes the specific conditions that the configuration information received by the MT application needs to meet.
  • the following describes the timing of the configuration information received by the DU application.
  • the DU can apply one configuration information among the configuration information of the N DUs.
  • the DU may also apply one configuration information among the configuration information of the N DUs under the following specific conditions.
  • the DU applies one configuration information among the configuration information of the N DUs.
  • the MT of the IAB node starts or completes the random access process. It can be considered that the IAB node switches the backhaul link.
  • the DU of the IAB node applies the new configuration information, and the IAB node does not need to perform measurement, etc., the IAB node The realization of is simpler.
  • the DU when the MT receives the first signaling from the source donor base station, the DU applies one configuration information among the configuration information of the N DUs.
  • the first signaling is used to instruct the IAB node to switch to the first target donor base station.
  • the IAB node switches the currently connected superior node based on the instruction of the source host base station, without the need to judge the handover timing by itself, which can reduce the computational burden of the IAB node, make the implementation of the IAB node easier, and is more beneficial to the network at the same time Resource management on the side.
  • the DU applies one configuration information among the configuration information of the N DUs.
  • the IAB node may move out of the coverage area of the superior node or move to an area with poor signal quality.
  • the IAB node located in the target area can be considered as the current backhaul link communication quality of the IAB node is high.
  • the superior node of the IAB node can be switched. That is, the DU of the IAB node applies the new configuration information.
  • the ways to determine whether the IAB node moves out of the target area include but are not limited to the following:
  • Manner 1 The identity (ID) of the area (area) received by the IAB node is inconsistent with the ID of the area stored locally, and the IAB node moves out of the target area. It should be understood that the system can also pre-configure an area ID. When the ID of the area where the IAB node is located is not consistent with the pre-configured area ID, the IAB node moves out of the target area.
  • Manner 3 The donor base station corresponding to the node to which the IAB node is currently connected is not in the received donor base station list, and the IAB node moves out of the target area. It should be understood that the system may also pre-configure the donor base station list. When the donor base station corresponding to the IAB node is not in the pre-configured donor base station list, the IAB node moves out of the target area.
  • the area ID, cell list, or donor base station list may be predefined by the system, or may be sent by the source donor base station to the IAB node.
  • the above only lists three ways to determine whether the IAB node has moved out of the target area. Any one of the methods listed above can be used to determine whether the IAB node has moved out of the target area to further determine whether the DU of the IAB node applies the new configuration information. opportunity.
  • the following takes the configuration information of the DU including the PRACH resource configuration as an example to introduce the timing of the configuration information received by the DU application.
  • the system or network side can configure the effective area of the PRACH resource by means of area ID, cell list, or donor base station list.
  • the effective area can be pre-configured by the system or notified by the network side.
  • the network side can realize the notification of the effective area by broadcasting system messages.
  • the IAB node when an IAB node is connected to a new superior node corresponding to an inactive area, that is, the new superior node is not in the aforementioned cell list or the target donor base station to which the new superior node is connected is not in the donor base station list, the IAB node The configuration information received by the DU application is to update the PRACH resource. Or, when the IAB node measures a new superior node corresponding to the inactive area, that is, the new superior node is not in the aforementioned cell list or the target donor base station connected to the new superior node is not in the donor base station list, the IAB node’s DU applies the new PRACH resource.
  • a new PRACH resource is applied.
  • the area ID corresponding to the current PRACH resource of the IAB node needs to be compared with the area ID broadcast by the new upper-level node or the target donor base station. If it is inconsistent, the new PRACH resource is applied.
  • the IAB node may also determine whether to apply the new PRACH resource based on the measurement result of the MT of the IAB node, that is, the time when the IAB node applies the new PRACH resource depends on the measurement result of the MT of the IAB node.
  • the MT of the IAB node discovers a neighboring cell based on the measurement configuration, such as synchronization signal measurement timing configuration (SMTC) and/or PCI information, which triggers the DU of the IAB node to use a new PRACH resource.
  • the cell ID that triggers the PRACH update and the new configuration information corresponding to the cell ID can be configured to the MT of the IAB node by the source donor base station through RRC signaling.
  • the embodiments of this application only take PRACH resources as an example, and it should be understood that the embodiments of this application are not limited to PRACH resources.
  • the time when the DU of the IAB node applies the new PRACH resource may also be the time when the DU of the IAB node applies the STC configuration and the PCI configuration.
  • the cell on the DU of the IAB node serves the terminal in order to ensure that the PCIs of adjacent cells are different and avoid inter-cell interference, when the IAB node migrates or moves, it may be necessary to reconfigure the PCI or STC.
  • the PRACH resource configuration may be obtained by the source donor base station requesting the target donor base station.
  • the configuration request message sent by the source donor base station to the target donor base station may be used to request the PRACH resource configuration of the DU of the IAB node.
  • the PRACH resource configuration may be obtained by the source donor base station requesting the core network device (for example, OAM server, AMF entity), for example, the source donor base station sends a configuration request message to the core network device, and the configuration request message may be used for Request the PRACH resource configuration of the DU of the IAB node.
  • the core network device for example, OAM server, AMF entity
  • the DU of the IAB node since the DU of the IAB node applies the new configuration information on the premise that the MT meets certain conditions, in the process of implementing the cross-donor base station handover of the IAB node, the DU of the IAB node can be prevented from sending, for example,
  • the resources of the synchronization signal block (synchronization signal block, SSB) conflict with the resources of the MT of the IAB node for sending the SSB, so as to avoid abnormal communication of the terminal as much as possible.
  • the configuration information of the DU may include, for example, the PRACH resource configuration.
  • the application of the new PRACH resource configuration is also based on the MT meeting specific conditions, which can avoid the repetition of the ZC root sequence that may be caused by the movement of the IAB node during the handover process. In turn, it avoids PRACH interference caused by the repetition of the ZC root sequence, and naturally avoids interference caused by conflicts such as primary synchronization signal (PSS), secondary synchronization signal (SSS), or PCI, and abnormal terminal communication .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PCI abnormal terminal communication
  • FIG. 11 is a schematic diagram of an application scenario provided by an embodiment of this application.
  • the scenario shown in FIG. 11 takes the IAB node to be migrated, the IAB node 1, the IAB node 2, and the donor base station of the IAB node 1 and the donor base station of the IAB node 2 as an example.
  • the superior node of the current IAB node to be migrated is IAB node 1. It should be understood that the backhaul link between the IAB node to be migrated and IAB node 1 is interrupted or the communication quality is poor.
  • the IAB node to be migrated may serve multiple terminals. As shown in Figure 11, the IAB node to be migrated serves two terminals as an example.
  • the information configured on the network side for the multiple terminals will be stored in the host node to which the IAB node to be migrated is currently connected. If the IAB node to be migrated is migrated across the host node, these multiple terminals need to be reconfigured.
  • the network side configures these multiple terminals through the high-level configuration.
  • the high-level configuration may include, for example, the key under the new host node, and transmit Resource configuration, pilot or reference signal configuration, measurement configuration, etc. Since the network side needs to send high-level configurations for multiple terminals, this requires the network side to send a large amount of signaling in a short time, which increases the burden on the network side and the backhaul link.
  • the high-level configuration is generated at the new host node and sent to the terminal via one or more hops, which will cause serious delays. If the terminal is running a service that requires high latency, such as a game service, it may cause the game to freeze and reduce the quality of user experience.
  • a service that requires high latency such as a game service
  • the IAB node to be migrated can pre-store the configuration information of P terminals, so that when the MT of the IAB node to be migrated switches back to the upper-level node of the link, the DU of the IAB node to be migrated goes to P terminals send configuration information, which can reduce the handover delay of the terminal.
  • P is greater than or equal to 1.
  • the source donor base station sends second configuration information to the MT of the migrated IAB node, where the second configuration information is P configurations configured for P terminals for the DU of the IAB node to be migrated Information, each configuration information corresponds to a terminal identification.
  • the source donor base station to which the IAB node to be migrated is currently connected may send a request message to the target donor base station.
  • the request message is used to request configuration information of P terminals served by the IAB node to be migrated from the target donor base station. It should be understood that the request message includes the ID of the terminal.
  • the target donor base station sends configuration information of P terminals to the source donor base station through high-level configuration signaling.
  • the high-level configuration signaling includes serving cell general configuration (ServingCellConfigCommon), terminal ID (for example, cell-radio network temporary identifier (C-RNTI)), and SSB measurement configuration.
  • the DU of the IAB node sends the configuration information of the P terminals to the corresponding terminals, which can reduce the switching delay of the terminal.
  • each target donor base station can send P terminal configuration information to the source donor base station.
  • the source donor base station what is received is multiple sets of configuration information for each terminal, so the IAB node to be migrated will eventually receive multiple sets of configuration information for each terminal.
  • the DU of the IAB node to be migrated can determine which set of configuration information to send to the terminal according to the superior node after the MT has been migrated.
  • each terminal has one or more configurations, and each configuration corresponds to an upper-level node or cell identifier of an IAB. Since the configuration information is pre-stored in the IAB DU, it can be transparent to the terminal.
  • the DU of the IAB node only applies the configuration information of a certain DU configured by the target donor base station for the IAB node when the MT of the IAB node meets certain conditions. Since the DU of the IAB node applies the new configuration information on the premise that the MT meets specific conditions, it can avoid the IAB node’s DU from sending the resources of the SSB and the IAB node during the process of implementing the cross-donor base station handover of the IAB node. The resources for the MT to send the SSB conflict, so as to avoid abnormal communication of the terminal as much as possible.
  • the IAB node pre-stores the configuration information of P terminals, so that when the MT of the IAB node switches back to the upper node of the transmission link, the DU of the IAB node sends the configuration information to the P terminals, which can reduce the terminal’s Handover delay.
  • the embodiments of this application are provided from the perspective of the interaction between the IAB node to be migrated, the source donor base station, the target donor base station, and the IAB node to be migrated, the source donor base station, and the target donor base station. Methods are introduced.
  • the IAB node, the source donor base station, and the target donor base station to be migrated may include a hardware structure and/or a software module, and a hardware structure, a software module, or a hardware structure plus software Module form to realize the above-mentioned functions.
  • FIG. 12 shows a schematic structural diagram of a communication device 1200.
  • the communication apparatus 1200 can correspondingly implement the functions or steps implemented by the IAB node or the source donor base station or the target donor base station in the foregoing method embodiments.
  • the communication device may include a sending unit 1210 and a receiving unit 1220, and optionally, may also include a processing unit 1230, which is indicated by a dotted line in FIG. 12.
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the sending unit 1210, the receiving unit 1220, and the processing unit 1230 may be coupled with the storage unit.
  • the processing unit 1230 may read instructions (code or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units can be set independently, or can be partially or fully integrated.
  • the sending unit 1210 and the receiving unit 1220 can be integrated and are called a transceiver unit.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the IAB node in the foregoing method embodiments.
  • the communication device 1200 may be an IAB node, or may be a component (for example, a chip or a circuit) applied to the IAB node.
  • the sending unit 1210 and the receiving unit 1220 can be used to perform all the receiving or sending operations performed by the IAB node in the embodiment shown in FIG. 10, such as S1003 and S1004 in the embodiment shown in FIG. 10, or S1001a, S1003 and S1004, and/or other processes used to support the technology described herein.
  • the processing unit 1230 is configured to perform all operations performed by the IAB node in the embodiment shown in FIG. 10 except for receiving and sending operations, such as S1005 in the embodiment shown in FIG. 10, and/or for supporting Other processes of the technique described in this article.
  • the receiving unit 1220 is configured to receive first configuration information from the source donor base station, and the first configuration information includes configuration information of N MTs and N DUs configured by N target donor base stations for the communication device.
  • Configuration information, N is greater than or equal to 1, the MT is used to communicate with the upper node or the source donor base station or the target donor base station of the communication device, and the DU is used to communicate with the lower node or terminal of the communication device;
  • the processing unit 1230 is configured to, when the MT of the communication device meets a specific condition, the DU of the communication device applies one piece of configuration information among the configuration information of the N DUs.
  • the specific conditions include:
  • the measurement result of the MT of the communication device on the first signal is less than the first preset threshold, and the first signal is sent by the superior node or the source donor base station to which the communication device is currently connected; or,
  • the measurement result of the second signal by the MT of the communication device is greater than the second preset threshold, and the second signal is not sent by the superior node or the source donor base station to which the communication device is currently connected; or,
  • the MT of the communication device has a beam failure on the first carrier link, where the first carrier link is the communication link between the communication device and the upper node or the source donor base station to which the communication device is currently connected; or,
  • the MT of the communication device has a radio link failure on a second carrier link, where the second carrier link is the communication link between the communication device and the upper node or the source donor base station to which the communication device is currently connected; or ,
  • the MT of the communication device starts or completes the random access procedure; or,
  • the MT of the communication device receives first signaling from the source donor base station, where the first signaling is used to instruct the communication device to switch to the first target donor base station; or,
  • the communication device moves out of the target area.
  • moving the communication device out of the target area includes:
  • the identification ID of the area received by the communication device is inconsistent with the ID of the area stored locally; or,
  • the ID of the cell where the communication device is currently located is not in the list of received cells; or,
  • the donor base station corresponding to the node to which the communication device is currently connected is not in the received donor base station list.
  • the DU of the communication device applies one of the configuration information of N DUs, including:
  • Any configuration information is selected from the configuration information of N DUs; or,
  • the first target serving node is the first target donor base station among the N target donor base stations, or the first target serving node is N targets
  • the IAB node connected to the first target donor base station in the donor base station, where:
  • the strength of the reference signal sent by the first target service node is the largest; or,
  • the working frequency bands of the first target serving node and the source donor base station are the same; or,
  • the random access opportunity of the PRACH resource of the first target serving node comes earliest.
  • the configuration information of the DU includes the first set of PRACH resource configuration and the second set of PRACH resource configuration.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for IAB.
  • the node initiates random access.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • ZC root sequence index ZC root sequence index, PRACH configuration index, period scaling factor, subframe or slot offset, or the number of RACH occasions associated with each synchronization information block SSB, where the period scaling factor and PRACH configuration index are used to determine the period of the PRACH resource .
  • the configuration information of the MT also includes one or more of the following information:
  • the receiving unit 1220 is further configured to:
  • the second configuration information is P configuration information configured by the DU of the communication device for P terminals, each configuration information corresponds to a terminal identifier, and P is greater than or equal to 1.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the source donor base station in the foregoing method embodiments.
  • the communication device 1200 may be a source donor base station, or may be a component (for example, a chip or a circuit) applied to the source donor base station node.
  • the sending unit 1210 and the receiving unit 1220 can be used to perform all receiving or sending operations performed by the source donor base station in the embodiment shown in FIG. 10, such as S1001, S1002, and S1003 in the embodiment shown in FIG. 10, or S1001a, S1001, S1002, and S1003, and/or other processes used to support the technology described herein.
  • the sending unit 1210 is configured to send a configuration request message to N target donor base stations, where the configuration request message includes the identity information of the IAB node and one or more cell information of the IAB node, and N is greater than or equal to 1;
  • the receiving unit 1220 is configured to receive configuration information sent by N target donor base stations, where the configuration information sent by each target donor base station includes the configuration information of the MT configured by the target donor base station for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with The upper node of the IAB node or the communication device communicates, and the DU is used to communicate with the lower node or terminal of the IAB node.
  • the configuration request message further includes the measurement result of the synchronization signal block SSB of multiple target donor base stations by the MT of the IAB node.
  • the configuration request message further includes at least one of the cell information of the DU of the IAB node, the physical random access channel PRACH resource configuration, and the synchronization signal configuration information.
  • the communication device 1200 can correspondingly implement the behaviors and functions of the target donor base station in the foregoing method embodiments.
  • the communication device 1200 may be a target donor base station, or may be a component (for example, a chip or a circuit) applied to the target donor base station node.
  • the sending unit 1210 and the receiving unit 1220 can be used to perform all receiving or sending operations performed by the target donor base station in the embodiment shown in FIG. 10, such as S1001, S1002, and S1004 in the embodiment shown in FIG. 10, and / Or other processes used to support the technology described herein.
  • the receiving unit 1220 is configured to receive a configuration request message from the source donor base station.
  • the configuration request message includes the identity information of the IAB node and one or more cell information of the IAB node, and N is greater than or equal to 1;
  • the unit 1210 is used to send configuration information to the source donor base station, where the configuration information includes the configuration information of the MT configured by the communication device for the IAB node and the configuration information of the DU.
  • the MT is used to communicate with the superior node of the IAB node or the source donor base station, and the DU Used to communicate with subordinate nodes or terminals of the IAB node.
  • the configuration information of the DU includes the first set of PRACH resource configuration and the second set of PRACH resource configuration.
  • the first set of PRACH resource configuration is used for the terminal to initiate random access
  • the second set of PRACH resource configuration is used for IAB.
  • the node initiates random access.
  • the second set of PRACH resource configuration includes one or more of the following configurations:
  • ZC root sequence index ZC root sequence index, PRACH configuration index, period scaling factor, subframe or slot offset, or the number of RACH occasions associated with each synchronization information block SSB, where the period scaling factor and PRACH configuration index are used to determine the period of the PRACH resource .
  • the sending unit is further configured to send a specific condition to the source donor base station, where the specific condition includes:
  • the measurement result of the first signal by the MT of the IAB node is less than the first preset threshold, and the first signal is sent by the current serving node of the IAB node; or,
  • the measurement result of the second signal by the MT of the IAB node is greater than the second preset threshold, and the second signal is not sent by the current serving node of the IAB node; or,
  • the MT of the IAB node has a beam failure on the first carrier link, which is the communication link between the IAB node and the current serving node of the IAB node; or,
  • the MT of the IAB node has a radio link failure on the first carrier link, and the first carrier link is the communication link between the IAB node and the current serving node of the IAB node; or,
  • the MT of the IAB node starts or completes the random access procedure
  • the MT of the IAB node receives the first signaling from the source donor base station, where the first signaling is used to instruct the IAB node to switch to the first target donor base station; or,
  • FIG. 13 shows a communication device 1300 provided by an embodiment of this application, where the communication device 1300 may be an IAB node, which can implement the function of the IAB node in the method provided in the embodiment of this application, or the communication device 1300 may be a base station. It can realize the function of the source donor base station or the target donor base station in the method provided by the embodiment of this application; the communication device 1300 may also be a device that can support the IAB node to realize the corresponding function in the method provided by the embodiment of this application, or can support the source donor A device for a base station or a target donor base station to implement corresponding functions in the method provided in the embodiment of the present application.
  • the communication device 1300 may be a chip system or an IAB node. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the foregoing sending unit 1210 and receiving unit 1220 may be transceivers, and the transceivers are integrated in the communication device 1300 to form a communication interface 1310.
  • the communication device 1300 includes at least one processor 1320, which is configured to implement or support the communication device 1300 to implement the functions of the IAB node, the source donor base station, or the target donor base station in the method provided in the embodiments of the present application.
  • processor 1320 is configured to implement or support the communication device 1300 to implement the functions of the IAB node, the source donor base station, or the target donor base station in the method provided in the embodiments of the present application.
  • the communication device 1300 may further include at least one memory 1330 for storing program instructions and/or data.
  • the memory 1330 and the processor 1320 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1320 may operate in cooperation with the memory 1330.
  • the processor 1320 may execute program instructions and/or data stored in the memory 1330, so that the communication device 1300 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication device 1300 may further include a communication interface 1310 for communicating with other devices through a transmission medium, so that the device used in the communication device 1300 can communicate with other devices.
  • a communication interface 1310 for communicating with other devices through a transmission medium, so that the device used in the communication device 1300 can communicate with other devices.
  • the communication device is an IAB node
  • the other device is a source donor base station and/or a target donor base station
  • the other device is an IAB node and/or target donor base station Base station
  • the communication device is a target donor base station
  • the other equipment is an IAB node and/or a source donor base station.
  • the processor 1320 may use the communication interface 1310 to send and receive data.
  • the communication interface 1310 may specifically be a transceiver.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1310, the processor 1320, and the memory 1330.
  • the memory 1330, the processor 1320, and the communication interface 1310 are connected by a bus 1340.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1320 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1330 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • FIG. 14 shows another form of the communication device 1300.
  • the communication device 1300 is an IAB node.
  • the IAB node includes an MT and a DU.
  • the MT may include a communication interface, a processor, and a memory, and a bus connecting the communication interface, the processor, and the memory.
  • the communication interface can be used to communicate with The upper node of the IAB node or the source donor base station or the target donor base station communicates.
  • the DU may also include a communication interface, a processor, and a memory, and a bus connecting the communication interface, the processor, and the memory, where the communication interface is used to communicate with subordinate nodes or terminals of the IAB node.
  • Fig. 15 shows another form of a communication device. It is easy to understand and easy to illustrate.
  • the communication device is the source donor base station or the target donor base station as an example.
  • the communication device 1500 may be applied to the system shown in FIG. 3 or FIG. 4, and may be the donor node in FIG. 3 and FIG.
  • the communication device 1500 may include one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU). ) 1520.
  • RRU 1510 may be called a communication module, which corresponds to the sending unit 1210 and the receiving unit 1220 in FIG. 12.
  • the communication module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include At least one antenna 1511 and radio frequency unit 1512.
  • the RRU 1510 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the communication device 1500 is used by the source donor base station to forward the target donor base station received from the target donor base station to the IAB node.
  • the target donor base station is configured for the IAB node MT configuration information and DU configuration information.
  • the 1520 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1230 in FIG. 12, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the IAB node or the source donor base station or the target donor base station in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application also provides a communication system.
  • the communication system includes an IAB node, a source donor base station, and a target donor base station, or may also include more IAB nodes, a source donor base station, and a target donor base station.
  • the IAB node, the source donor base station, and the target donor base station are respectively used to implement the functions of the above-mentioned related equipment in FIG. 10.
  • the relevant description in the foregoing method embodiment please refer to the relevant description in the foregoing method embodiment, which is not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the IAB node, the source host base station, or the target host base station in FIG. 10.
  • the embodiment of the present application also provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the IAB node, the source host base station, or the target host base station in FIG. 10.
  • the embodiment of the present application provides a chip system, which includes a processor and may also include a memory, which is used to implement the functions of the IAB node, the source donor base station, or the target donor base station in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • At least one means one or more
  • plural means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first message and the second message are only for distinguishing different messages, but do not indicate the difference in priority, sending order, or importance of the two messages.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及通信装置,其中通信方法包括:IAB节点接收来自源宿主基站的第一配置信息,该第一配置信息包括N个目标宿主基站为该IAB节点配置的N个MT的配置信息和N个DU的配置信息,当该IAB节点的MT满足特定条件时,该IAB节点的DU应用所述N个DU的配置信息中的一个配置信息,其中,N大于或等于1,MT用于与该IAB节点的上级节点或者所述源宿主基站或者所述目标宿主基站通信,DU用于与该IAB节点的下级节点或者终端通信。该方法在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如SSB的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。

Description

一种通信方法及通信装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
为了提升网络容量和覆盖,提出了一种支持无线回传传输的中继链路用于实现密集网络的部署。把支持中继功能的节点简称为中继节点,中继节点对接入其小区的终端提供与普通基站类似的功能和服务,中继节点与终端之间的通信链路称之为接入链路(access link)。中继节点通过无线接口以类似终端的方式接入一个服务于它的基站,该基站称为宿主基站(Donor),中继节点和宿主基站之间的无线接口链路称为回传链路(BackHaul link)。
未来通信技术支持更大的带宽且支持更大规模的多天线或者多波束的传输,为接入链路和回传链路共享空口资源的中继提供了条件,也就是为集成了无线接入链路和无线回传链路的中继提供了条件。集成了无线接入链路和无线回传链路的中继可以称为接入回传一体化(integrated access and backhaul,IAB)节点。应理解,IAB节点与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网,IAB节点也可以为多个下级节点和终端提供接入服务。
回传链路或者接入链路的链路状态不佳或者拥塞等可能导致IAB节点与某个上级节点之间的链路通信中断,可能会涉及到跨宿主基站的切换,如何进行IAB节点的跨宿主基站的切换是需要解决的问题。
发明内容
本申请提供一种通信方法及通信装置,用于实现IAB节点的跨宿主基站的切换。
第一方面,提供一种通信方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为IAB节点为例进行描述。该方法包括:
IAB节点接收来自源宿主基站的第一配置信息,该第一配置信息包括N个目标宿主基站为该IAB节点配置的N个MT的配置信息和N个DU的配置信息,其中,N大于或等于1,MT用于与该IAB节点的上级节点或者所述源宿主基站或者所述目标宿主基站通信,DU用于与该IAB节点的下级节点或者终端通信;当该IAB节点的MT满足特定条件时,该IAB节点的DU应用所述N个DU的配置信息中的一个配置信息。
在本申请实施例中,IAB节点的DU在IAB节点的MT满足特定条件的情况下,IAB节点的DU才应用来自目标宿主基站为IAB节点配置的某个DU的配置信息。可见,通过本申请实施例提供的方法,可以明确IAB节点应用来自目标宿主基站的某个DU的配置信息的时机,该时机即IAB节点的MT满足特定条件。由于IAB节点的DU应用新的配置信息是以MT满足特定条件为前提的,所以在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如同步信号块(synchronization signal block,SSB)的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。
在可能的实现方式中,所述特定条件包括但不限于以下几种条件中的一种或多种:
条件一,该IAB节点的MT对第一信号的测量结果小于第一预设阈值,其中,第一信号是该IAB节点当前连接的上级节点或者源宿主基站发送的。当IAB节点的MT对第一信号的测量结果小于第一预设阈值,可以认为该IAB节点当前回传链路的通信质量较差,此时该IAB节点可以切换到例如目标宿主基站,以尽量保证该IAB节点的回传链路的通信质量。此时该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。
条件二,该IAB节点的MT对第二信号的测量结果大于第二预设阈值,其中,第二信号不是该IAB节点当前连接的上级节点或者源宿主基站发送的。当IAB节点的MT对第二信号的测量结果大于第二预设阈值,可以认为存在比该IAB节点当前连接的上级节点或者源宿主基站的测量结果更好的上级节点(例如目标宿主基站),此时该IAB节点可以切换到目标宿主基站,以尽量提高该IAB节点的回传链路的通信质量,且该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。
条件三,该IAB节点的MT在第一载波链路上发生波束失败,其中,第一载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。
条件四,该IAB节点的MT在第二载波链路上发生无线链路失败,其中,第二载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。
上述的条件三和条件四可以认为是该IAB节点的回传链路发生中断或者被遮挡,此时该IAB节点可以切换当前连接的上级节点或源宿主基站,以尽量保证该IAB节点的回传链路的通信质量。且此时该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。
条件五,该IAB节点的MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长。该条件可以认为预先配置一个时钟,当IAB节点的MT接收到配置信息后,在该时钟到期后,该IAB节点的DU应用新的配置信息,不需要IAB节点进行测量等,IAB节点的实现更为简单。
条件六,该IAB节点的MT开始或完成随机接入过程。通常来说,IAB节点的MT开始或完成随机接入过程,可以认为IAB节点切换回传链路,此时该IAB节点的DU应用新的配置信息,同样不需要IAB节点进行测量等,IAB节点的实现更为简单。
条件七,该IAB节点的MT接收到来自源宿主基站的第一信令,该第一信令用于指示该IAB节点切换到第一目标宿主基站。该条件下,IAB节点基于源宿主基站的指令切换当前所连接的上级节点,不需要自身判断切换时机,可降低IAB节点的计算负担,使得IAB节点的实现更为简单,并且更加有利于网络侧进行资源管理。
条件八,该IAB节点移出目标区域。当IAB节点是可移动的,IAB节点有可能移出上级节点的覆盖范围或者移动到信号质量较差的区域。该条件,IAB节点位于目标区域可以认为是该IAB节点当前的回传链路的通信质量较高,当该IAB节点移出目标区域,则认为为了保证通信质量,可以切换IAB节点的上级节点,即IAB节点的DU应用新的配置信息。
上述列举了可能的八种特定条件,具体选择哪种特定条件,可以通过基站配置或者通过协议规定,可避免IAB节点的DU发送例如SSB的资源与IAB节点的MT发送SSB的资源发生冲突。
在可能的实现方式中,判断该IAB节点是否移出目标区域的方式,包括但不限于以下几种:
方式一,该IAB节点接收的区域的标识(identity,ID)与本地存储的区域的ID不一致,则该IAB节点移出目标区域。
方式二,该IAB节点当前所在的小区的ID不在接收的小区列表中,则该IAB节点移出目标区域。
方式三,该IAB节点当前连接的节点所对应的宿主基站不在接收的宿主基站列表中,则该IAB节点移出目标区域。
应理解如上只是列举了三种判断该IAB节点是否移出目标区域的方式,通过上述的列举的任意一种方式可以判断该IAB节点是否移出目标区域,以进一步确定该IAB节点的DU应用新的配置信息的时机。
在可能的实现方式中,当N大于1时,该IAB节点的DU可以基于例如以下几种规则应用所述N个DU的配置信息中的一个配置信息:
规则一,从N个DU的配置信息任意选择一个配置信息,较为简单,可降低DU的复杂度。
规则二,从N个DU的配置信息中选择与第一目标服务节点对应的DU配置信息,该第一目标服务节点为N个目标宿主基站中的第一目标宿主基站,或者该第一目标服务节点为N个目标宿主基站中的第一目标宿主基站连接的IAB节点。其中,第一目标服务节点可以是发送的参考信号的强度最大的节点,以尽量保证IAB节点切换后的回传链路的通信质量。第一目标服务节点也可以工作频段是与源宿主基站的工作频段相同的节点,可降低IAB节点的MT和DU资源重配置的复杂度,以及减少对终端的影响。第一目标服务节点也可以是物理随机接入信道(physical random access channel,PRACH)的随机接入时机(RACH occasion)最早到来的节点等,这样可以让IAB节点的MT更早地发起随机接入,减少链路通信质量的下降或者链路异常造成的影响。
在可能的实现方式中,所述DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,即两套PRACH资源配置。其中,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于下级IAB节点向DU发起随机接入。第二套PRACH资源配置的存在,可避免下级IAB节点由于接收终端的随机接入请求导致该下级IAB节点的MT没法发送随机接入请求。
在可能的实现方式中,所述第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子,或每个同步信息块SSB关联的RACH时机(RACH occasion,RO)数,或者对拥有RACH时机的时隙/子帧的偏移量配置,其中,所述周期缩放因子和所述PRACH配置索引用于确定PRACH资源的周期。在该方案中,用于IAB节点发起随机接入的PRACH资源配置可以包括周期缩放因子,与PRACH配置索引一起可以用于确定PRACH资源的周期,利于兼容现有实现方式中的PRACH资源配置。
在可能的实现方式中,所述MT的配置信息还可以包括如下信息中的一项或多项:
回传适配协议层(backhaul adaptation protocol,BAP)配置信息;或者,
所述MT的数据承载映射信息;或者,
所述MT的服务质量配置信息。
在可能的实现方式中,所述方法还包括:
IAB节点的MT接收来自源宿主基站的第二配置信息,该第二配置信息是该IAB节点 的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识,P大于或等于1。即IAB节点预存P个终端的配置信息,这样IAB节点的MT切换回传链路的上级节点时,IAB节点的DU再向P个终端发送配置信息,可降低终端的切换时延。
第二方面,提供另一种通信方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为源宿主基站为例进行描述。该方法包括:
源宿主基站向N个目标宿主基站发送配置请求消息,以及该源宿主节点接收N个目标宿主基站发送的配置信息,其中,该配置请求消息包括IAB节点的身份标识信息和该IAB节点的一个或多个小区信息,N大于或等于1;每个目标宿主基站发送的配置信息包括该目标宿主基站为该IAB节点配置的MT的配置信息和DU的配置信息,MT用于与该IAB节点的上级节点或者源宿主基站通信,DU用于与该IAB节点的下级节点或者终端通信。由于IAB节点的DU可以有一个或多个小区,配置请求消息包括该IAB节点的一个或多个小区信息,例如物理小区标识(physical cell identity,PCI),相当于提前告诉N个目标宿主基站,该IAB节点的DU用了哪些PCI,从而N个目标宿主基站基于PCI生成DU的配置信息等,可避免IAB节点的MT完成接入后,IAB节点的DU仍然采用原来的配置,造成潜在的资源冲突。
在可能的实现方式中,所述配置请求消息还包括该IAB节点的MT对多个目标宿主基站的同步信号块SSB的测量结果。
在可能的实现方式中,所述配置请求消息还包括该IAB节点的DU的小区信息、PRACH资源配置以及同步信号配置信息中的至少一种信息。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,提供再一种通信方法,该方法可由第三通信装置执行,第三通信住哪个职可以是通信设备或者能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为目标宿主基站为例进行描述。该方法包括:
目标宿主基站接收来自源宿主基站的配置请求消息,并向源宿主基站发送配置信息,其中,配置请求消息包括IAB节点的身份标识信息和所述IAB节点的一个或多个小区信息,N大于或等于1,所述配置信息包括该目标宿主基站为IAB节点配置的MT的配置信息和DU的配置信息,MT用于与该IAB节点的上级节点或者所述源宿主基站通信,DU用于与该IAB节点的下级节点或者终端通信。
在可能的实现方式中,DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于IAB节点发起随机接入。第二套PRACH资源配置的存在,可避免下级IAB节点由于接收终端的随机接入请求导致该下级IAB节点的MT没法发送随机接入请求。
在可能的实现方式中,所述第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子,或每个同步信息块SSB关联的RACH时机数,或者对拥有RACH时机的时隙/子帧的偏移量配置,其中,所述周期缩放因子和所述PRACH配置索引用于确定PRACH资源的周期。该实现方式利于兼容现有实现方式中的PRACH资源配置。
在可能的实现方式中,所述方法还包括:该目标宿主基站向源宿主基站发送特定条件, 特定条件可以包括如下条件的一种或多种:
第一种,该IAB节点的MT对第一信号的测量结果小于第一预设阈值,其中,第一信号是该IAB节点当前连接的上级节点或者源宿主基站发送的。
第二种,该IAB节点的MT对第二信号的测量结果大于第二预设阈值,其中,第二信号不是该IAB节点当前连接的上级节点或者源宿主基站发送的。
第三种,该IAB节点的MT在第一载波链路上发生波束失败,其中,第一载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。
第四种,该IAB节点的MT在第二载波链路上发生无线链路失败,其中,第二载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。
第五种,该IAB节点的MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长。
第六种,该IAB节点的MT开始或完成随机接入过程。
第七种,该IAB节点的MT接收到来自源宿主基站的第一信令,该第一信令用于指示该IAB节点切换到第一目标宿主基站。
第八种,区域ID或小区列表或宿主基站列表。应理解,第八种特定条件用于IAB节点判断是否移出目标区域。
该实现方式所带来的技术效果具体可参考前述第一方面的各种实现方式的技术效果的介绍,这里不再赘述。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括收发单元和处理单元,其中:
收发单元,用于接收来自源宿主基站的第一配置信息,该第一配置信息包括N个目标宿主基站为该通信装置配置的N个MT的配置信息和N个DU的配置信息,N大于或等于1,MT用于与该通信装置的上级节点或者源宿主基站或者目标宿主基站通信,所述DU用于与该通信装置的下级节点或者终端通信;
处理单元,用于当该通信装置的所述MT满足特定条件时,该通信装置的DU应用N个DU的配置信息中的一个配置信息。
在可能的实现方式中,所述特定条件包括:
该通信装置的MT对第一信号的测量结果小于第一预设阈值,所述第一信号是该通信装置当前连接的上级节点或者源宿主基站发送的;或者,
该通信装置的MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是该通信装置当前连接的上级节点或者源宿主基站发送的;或者,
该通信装置的MT在第一载波链路上发生波束失败,所述第一载波链路为该通信装置与该通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
该通信装置的MT在第二载波链路上发生无线链路失败,所述第二载波链路为该通信装置与该通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
该通信装置的MT从接收到来自所述源宿主基站的配置信息开始所累积的时长满足 预设时长;或者,
该通信装置的MT开始或完成随机接入过程;或者,
该通信装置的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示该通信装置切换到第一目标宿主基站;或者,
该通信装置移出目标区域。
在可能的实现方式中,该通信装置移出目标区域,包括:
该通信装置接收的区域的标识ID与本地存储的区域的ID不一致;或者,
该通信装置当前所在的小区的ID不在接收的小区列表中;或者,
该通信装置当前连接的节点所对应的宿主基站不在接收的宿主基站列表中。
在可能的实现方式中,当N大于1时,该通信装置的DU应用N个DU的配置信息中的一个配置信息,包括:
从N个DU的配置信息任意选择一个配置信息;或者,
从N个DU的配置信息中选择与第一目标服务节点对应的DU配置信息,第一目标服务节点为N个目标宿主基站中的第一目标宿主基站,或者第一目标服务节点为N个目标宿主基站中的第一目标宿主基站连接的IAB节点,其中:
第一目标服务节点发送的参考信号的强度最大;或者,
第一目标服务节点与源宿主基站的工作频段相同;或者,
第一目标服务节点的PRACH资源的随机接入时机最早到来。
在可能的实现方式中,DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于IAB节点发起随机接入。
在可能的实现方式中,第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,周期缩放因子和PRACH配置索引用于确定PRACH资源的周期。
在可能的实现方式中,MT的配置信息还包括如下信息的一项或多项:
回传适配协议层BAP配置信息;或者,
MT的数据承载映射信息;或者,
MT的服务质量配置信息。
在可能的实现方式中,所述收发单元还用于:
接收来自源宿主基站的第二配置信息,该第二配置信息为该通信装置的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识,P大于或等于1。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例提供了另一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括发送单元和接收单元,其中:
发送单元,用于向N个目标宿主基站发送配置请求消息,该配置请求消息包括IAB节点的身份标识信息和IAB节点的一个或多个小区信息,N大于或等于1;
接收单元,用于接收N个目标宿主基站发送的配置信息,其中,每个目标宿主基站发送的配置信息包括目标宿主基站为IAB节点配置的MT的配置信息和DU的配置信息,MT用于与IAB节点的上级节点或者该通信装置通信,DU用于与IAB节点的下级节点或者终端通信。
在可能的实现方式中,该配置请求消息还包括IAB节点的MT对多个目标宿主基站的同步信号块SSB的测量结果。
在可能的实现方式中,该配置请求消息还包括IAB节点的DU的小区信息、物理随机接入信道PRACH资源配置以及同步信号配置信息中的至少一种信息。
关于第五方面或第五方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第六方面,本申请实施例提供了再一种通信装置,该通信装置具有实现上述第三方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,包括发送单元和接收单元,其中:
接收单元,用于接收来自源宿主基站的配置请求消息,该配置请求消息包括IAB节点的身份标识信息和IAB节点的一个或多个小区信息,N大于或等于1;
发送单元,用于向源宿主基站发送配置信息,其中配置信息包括该通信装置为IAB节点配置的MT的配置信息和DU的配置信息,MT用于与IAB节点的上级节点或者源宿主基站通信,DU用于与IAB节点的下级节点或者终端通信。
在可能的实现方式中,DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于IAB节点发起随机接入。
在可能的实现方式中,第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,周期缩放因子和PRACH配置索引用于确定PRACH资源的周期。
在可能的实现方式中,发送单元还用于向源宿主基站发送特定条件,其中,特定条件包括:
IAB节点的MT对第一信号的测量结果小于第一预设阈值,第一信号是IAB节点的当前服务节点发送的;或者,
IAB节点的MT对第二信号的测量结果大于第二预设阈值,第二信号不是IAB节点的当前服务节点发送的;或者,
IAB节点的MT在第一载波链路上发生波束失败,第一载波链路为IAB节点与IAB节点的当前服务节点之间的通信链路;或者,
IAB节点的MT在第一载波链路上发生无线链路失败,第一载波链路为IAB节点与IAB节点的当前服务节点之间的通信链路;或者,
IAB节点的MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
IAB节点的MT开始或完成随机接入过程;或者,
IAB节点的MT接收到来自源宿主基站的第一信令,第一信令用于指示IAB节点切换 到第一目标宿主基站;或者,
区域标识ID;或者,
小区列表;或者;
宿主基站列表。
关于第六方面或第六方面的各种可能的实施方式所带来的技术效果,可参考对于第三方面或第三方面的各种可能的实施方式的技术效果的介绍。
第七方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第四方面、第五方面或第六方面中的通信装置,或者为设置在第四方面、第五方面或第六方面中的通信装置中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述方法实施例中由IAB节点或源宿主基站或目标宿主基站所执行的方法。
应理解,该通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。该收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为IAB节点时,该其它设备为源宿主基站和目标宿主基站;或者,当该通信装置为源宿主基站时,该其它设备为IAB节点和目标宿主基站;或者,当该通信装置为目标宿主基站时,该其它设备为IAB节点和源宿主基站。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第四方面、第五方面或第六方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信系统,所述通信系统包括第四方面所述的通信装置、第五方面所述的通信装置以及第六方面所述的通信装置。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由IAB节点执行的方法;或实现上述各方面中由源宿主基站执行的方法;或实现上述各方面中由目标宿主基站执行的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由IAB节点执行的方法被执行,或使得上述各方面中由源宿主基站执行的方法被执行;或使得上述各方面中由目标宿主基站执行的方法被执行。
上述第七方面至第十一方面及其实现方式的有益效果可以参考对第一方面或第二方面或第三方面的方法及其实现方式的有益效果的描述。
本申请实施例提供了的方法中,IAB节点的DU在IAB节点的MT满足特定条件的情况下,IAB节点的DU才应用来自目标宿主基站为IAB节点配置的某个DU的配置信息。由于IAB节点的DU应用新的配置信息是以MT满足特定条件为前提的,所以在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如同步信号块SSB的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。另外,在该方法中,即IAB节点预存P个终端的配置信息,这样IAB节点的MT切换回传链路的上级节点时,IAB节点的DU再向P个终端发送配置信息,可降低终端的切换时延。
附图说明
图1为本申请实施例提供的一种IAB系统的结构示意图;
图2为本申请实施例提供的IAB节点的结构示意图;
图3为本申请实施例提供的一种回传链路、接入链路的示意图;
图4为本申请实施例提供的适用的一示例性的通信系统的架构示意图;
图5为本申请实施例提供的适用的另一示例性的通信系统的架构示意图;
图6为本申请实施例提供的网络设备的一种结构示意图;
图7为本申请实施例提供的一种IAB节点通信的示意图;
图8为本申请实施例提供的IAB节点跨宿主节点的迁移示意图;
图9为本申请实施例提供的可移动的IAB节点的应用场景示意图;
图10为本申请实施例提供的通信方法的流程示意图;
图11为本申请实施例提供的移动IAB节点的一种应用场景示意图;
图12为本申请实施例提供的通信装置的一种结构示意图;
图13为本申请实施例提供的通信装置的另一种结构示意图;
图14为本申请实施例提供的IAB节点的一种结构示意图;
图15为本申请实施例提供的通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
为了提高频谱利用率,未来的基站部署将会更加密集。然而由于光纤的部署成本非常高昂,通过无线中继节点(relay node,RN)的回传链路与核心网建立连接,可节省部分光纤部署成本。
中继节点可以与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网。上级节点可通过多种信令对中继节点进行一定的控制(例如,数据调度、定时调制、功率控制等)。另外,中继节点可以与一个或多个下级节点建立接入链路,并为一个或多个下级节点提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点。中继节点的下级节点可以是终端,也可以是另一个中继节点。在某些情形下,上级节点也可以称为上游节点,下级节点也可以称为下游节点。
为了提高频谱的利用率,回传链路和接入链路可共享相同频段,该方案也称为带内中继。带内中继一般具有半双工的约束。也就是中继节点在接收其上级节点发送的下行信号时不能向其下级节点发送下行信号,且中继节点在接收其下级节点发送的上行信号时不能向其上级节点发送上行信号。新一代无线通信系统(new radio,NR)的带内中继方案被称为IAB,相应的,中继节点被称为IAB节点(IAB node)。IAB节点在正常工作时,接入链路与回传链路以时分,空分或频分的方式进行资源复用。
图1示出了一种IAB系统,IAB节点为终端提供无线接入和接入业务的无线回传。IAB donor节点(IAB宿主节点)向IAB节点提供无线回传功能,并提供终端与核心网的接口。IAB 节点通过无线回传链路连接到IAB donor节点,从而使IAB节点所服务的终端与核心网进行连接。
图2示出了IAB节点的一种结构示意图。NR中的IAB节点可分为移动终端(mobile termination,MT)与分布式单元(distributed unit,DU)两部分。MT也可以理解为类似终端的一个组件在IAB中,MT被称为驻留在IAB节点上的功能。由于MT类似一个普通终端的功能,那么可以理解为MT用于IAB节点与上级节点通信。DU是相对网络设备的集中单元(centralized unit,CU)功能而言的,DU用于IAB节点与下级节点通信。应理解,上级节点可以是基站或者其他IAB节点,下级节点可以是终端或者其他IAB节点。MT与上级节点通信的链路称为上级回传链路(parent BackHaul link),DU与下级IAB节点通信的链路称为下级回传链路(child BackHaul link),而DU与下属终端通信的链路称为接入链路。在一些实施例中,下级回传链路也被称为接入链路,其中,上级回传链路包括上级回传上行链路(uplink,UL)以及上级回传下行链路(downlink,DL),下级回传链路包括下级回传UL和下级回传DL,接入链路包括接入UL和接入DL,如图3所示。
本申请实施例提供的通信方法可以应用于具有中继节点的无线通信系统,如图4所示。应理解,图4仅是一种示例性说明,并不对无线通信系统中包括的终端、中继节点的数量进行具体限定。在LTE中,中继节点一般被称为RN。在NR中,中继节点一般被称为IAB节点。在一些实施例中,中继节点也可以称为中继设备,或者中继传输接收点(relay transmission and receptio point,rTRP),中继节点的上级节点可以是网络设备(包括网络设备的DU,或者包括网络设备的CU等)。
如图5所示,给出了NR场景中的一种IAB系统的结构示意图。在图5所示的IAB系统至少包括一个基站100,及基站100所服务的一个或多个终端,一个或多个IAB节点及该IAB节点所服务的一个或多个终端。IAB节点包括IAB节点110、IAB节点120和IAB节点130,通常基站100被称为宿主基站(donor next generation node B,DgNB),IAB节点110通过无线回传链路113连接到基站100。IAB节点120是通过无线回传链路123连接到IAB节点110以接入到网络。IAB节点130是通过无线回传链路133连接到IAB节点110以接入到网络。IAB节点110服务一个或多个终端111,IAB节点120所服务一个或多个终端121,IAB节点130服务一个或多个终端131。需要说明的是,在本申请实施例中,所述无线回传链路都是从IAB节点的角度来看的,比如无线回传链路113是IAB节点110的回传链路,无线回传链路123是IAB节点120的回传链路。如图5所示,一个IAB节点(如120),可以通过无线回传链路(如123)连接另一个IAB节点110,从而连接到网络,而且,IAB节点可以经过多级无线IAB节点连接到网络。
应理解,本申请实施例中采用IAB节点仅仅出于描述的需要,并不表示本申请实施例的方案仅用于NR的场景,在本申请实施例中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请实施中的IAB节点和中继节点的使用应理解具有相同的含义。
通常,把提供无线回传链路资源的节点,如110,称为IAB节点120的上级节点,而120则称为IAB节点110下级节点。通常,下级节点可以被看作是上级节点的一个终端。应理解,图5所示的IAB系统中,一个IAB节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB节点(如120)可以有多个上级节点同时为其提供服务。如图5中的IAB节点130还可以通过回传链路134连接到IAB节点120,即,IAB节点110和IAB节点120都为IAB节点130的上级节点。
另无线链路102、112、122、132、113、123、133和134可以是双向链路,包括上行和下行传输链路。特别地,无线回传链路113、123、133和134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即上行链路和下行链路不是通过同一个节点进行传输的。下行传输是指上级节点向下级节点传输信息或数据,如节点100向节点110传输信息或数据;上行传输是指下级节点向上级节点传输信息或数据,如节点110向节点100传输信息或数据。所述节点不限于是网络节点还是终端,例如,在D2D场景下,终端可以充当中继节点为其他终端服务。无线回传链路在某些场景下又可以是接入链路,如回传链路123对节点110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端,如D2D场景下,下级节点也可以是终端。
需要说明的是,donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的网络设备,例如为锚点基站(或上文提到的宿主基站、宿主节点),通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。Donor节点一般可以通过有线的方式连接到网络,例如光纤线缆。
网络设备可以称为基站,又可以称为无线接入网(radio access network,RAN)节点(或设备)。示例的,网络设备可以为下一代节点B(next-generation Node B,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。本申请实施例中网络设备的名称可以是中继节点(RN),中继发送接收点(rTRP),IAB节点(IAB node)等;中继节点的上级节点可以是gNB(包括gNB-DU,gNB-CU等),也可以是另一个中继节点。
示例性的,本申请实施例中的网络设备的结构可以如图6所示。具体的,网络设备可以划分为CU和至少一个DU。其中,CU可以用于管理或者控制至少一个DU,也可以称之为CU与至少一个DU连接。这种结构可以将通信系统中网络设备的协议层拆开,其中部分协议层放在CU集中控制,剩下部分或全部协议层功能分布在DU中,由CU集中控制DU。以网络设备为gNB为例,gNB的协议层包括无线资源控制(radio resource control,RRC)层、业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体访问控制子层(media access control,MAC)层和物理层(physical layer,PHY)。其中,示例性的,CU可以用于实现RRC层、SDAP层和PDCP层的功能,DU可以用于实现RLC层、MAC层和物理层的功能。CU与DU物理上可以通过光纤连接,逻辑上存在一个专门定义的F1接口,用于CU与DU之间进行通信。从功能的角度,CU主要负责无线资源控制与配置,跨小区移动性管理,承载管理等;DU主要负责调度,物理信号生成与发送。本申请实施例不对CU、DU包括的协议栈做具体限定。
若网络设备是中继设备,尤其是IAB节点时,网络设备可以包括MT功能和DU功能。即IAB节点通过MT与上级节点进行通信,DU是IAB节点的基站功能模块,用于实现 RLC层、MAC层和物理层的功能,主要负责调度、物理信号生成与发送,即IAB节点通过DU与下级节点和终端进行通信,如图7所示。IAB节点的MT与DU均具有完整的收发模块,且两者之间具有接口。但应注意,MT与DU为逻辑模块,在实际中,两者可以共享部分子模块,例如可共用收发天线,基带处理模块等,如图7所示。
本申请实施例中涉及的终端,是用户侧的一种用于接收或发射信号的实体。终端可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车与外界(vehicle-to-everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化实现方式、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
在一种可能的应用场景中,如图8所示,为IAB节点跨宿主节点迁移的示意图。如果IAB节点与其直接连接的上级节点(也就是宿主节点)之间的回传链路中断或者该回传链路的通信质量下降,为了保证该IAB节点的回传链路的通信质量,该IAB节点的回传链路可以迁移到另一个上级节点,例如IAB节点的回传链路可以迁移到另一上级候选节点或者潜在节点或者相邻的节点。如果上一级节点是另一个宿主节点或者是另一个宿主节点连接的下级IAB节点。
且考虑到未来通信中,IAB节点具有移动性,如图9所示的,提供了另一种可能的应用场景,即可移动的IAB节点的应用场景。图9以包括2个宿主节点(分别为宿主节点1 和宿主节点2)和一个移动IAB节点为例。应理解,由于IAB节点的移动,那么该IAB节点可能脱离当前服务该IAB节点的宿主节点的覆盖范围。例如移动IAB节点从IAB节点1所在位置可以移动到IAB节点2所在的位置,也可以移动到IAB节点3所在的位置,可以看到,移动IAB节点从IAB节点1移动到IAB节点3的位置,就不在宿主节点1所覆盖的范围。为了保证该IAB节点的回传链路的通信质量,该IAB节点的回传链路可以迁移到另一个上级节点。应理解,移动IAB节点可能移动到IAB节点2的位置,也可能移动到IAB节点3的位置,因此在图9中,用虚线示意移动IAB节点可能移动到IAB节点2和IAB节点3的位置。
图8和图9所示的应用场景均就涉及到该IAB节点的迁移。由于IAB包括MT和DU,对于MT而言,可以沿用终端的迁移机制,即基站会给终端发送测量配置。终端根据配置进行周期化测量,按照预配置的门限,确定是否上报测量结果。基站根据接收到的测量结果,决定是否让终端进行切换。如果当前服务基站决定让终端切换,会向目标基站发送切换请求,切换请求中包括终端的测量结果。目标基站根据服务终端的源基站转发的终端测量结果,配置PRACH资源,用于终端进行非竞争的随机接入(相比竞争的随机接入,非竞争的随机接入可以避免多个终端使用相同资源从而导致随机接入失败)。或者进一步地,基站为终端配置一个或多个小区,作为条件切换的目标小区,该条件可以包括一个或两个测量结果,当终端发现满足其中至少一个条件,就可以进行切换。
但是对于DU而言,目前还没有对应的切换方案。假设DU沿用目前终端的切换机制,可能会导致资源冲突。例如IAB节点的DU可以为一个或多个终端服务,充当基站的功能。通常DU会发送SSB,用于服务终端,为了不影响终端,SSB的资源位置一般不会改变。然而如果IAB节点跨宿主节点迁移时,被迁移的IAB节点的新的上级节点会发送SSB,用于服务被迁移的IAB节点(例如被迁移的IAB节点的MT需要在SSB的资源位置接收或者测量SSB)。由于受半双工的约束,IAB节点不可能在同一时间既发送SSB,又接收来自其他设备发送的SSB。如果被迁移的IAB节点的新的上级节点发送SSB的资源位置与该IAB节点自身的DU发送SSB的资源位置存在重叠,就会造成资源冲突。
又例如,为了保证某个小区内的随机接入信道(random access channel,RACH)不会干扰到邻区,往往让相邻小区采用不同的ZC根序列。一个小区的PRACH需要使用一个或多个ZC根序列生成前导序列。目前ZC根序列在(frequency range 1,FR1)有839个,在(frequency range 2,FR2)有139个,FR1可以认为是低频频段,通常指410MHz到7125MHz的频段范围,相对而言,FR2频段为高频频段,通常指24.25GHz到52.6GHz的频段范围。随着IAB节点的移动,IAB节点所在的小区使用的ZC根序列,可能会与其他小区使用的ZC根序列产生冲突,即造成资源冲突。
另外,由于IAB节点可以为多个终端服务,网络侧为这多个终端配置的信息会保存在该IAB节点当前所连接的宿主节点,也就是终端的移动性锚点宿主在宿主基站。如果IAB节点跨宿主节点发生迁移,则这多个终端需要重配置,例如这多个终端需要接收网络侧的高层配置,可包括例如新的宿主节点下的密钥,传输资源配置,导频或参考信号配置,测量配置等。由于网络侧需要为多个终端发送高层配置,这就需要网络侧短时间内发送大量的信令,增加了网络侧和回传链路的负担。再者,高层配置在新的宿主节点生成,经由一跳或多跳转发到终端,存在较严重的时延。如果终端正在运行对时延要求较高的业务,例如游戏业务,那么可能会造成游戏卡顿,降低用户体验质量。
鉴于此,本申请实施例提供了一种通信方法,该方法中,IAB节点的DU在IAB节点的MT满足特定条件的情况下,IAB节点的DU才应用来自目标宿主基站为IAB节点配置的某个DU的配置信息。也就是明确IAB节点应用来自目标宿主基站的某个DU的配置信息的时机,该时机即IAB节点的MT满足特定条件。由于IAB节点的DU应用新的配置信息是以MT满足特定条件为前提的,所以在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如同步信号块(synchronization signal block,SSB)的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。另外,在该方法中,即IAB节点预存P个终端的配置信息,这样IAB节点的MT切换回传链路的上级节点时,IAB节点的DU再向P个终端发送配置信息,可降低终端的切换时延。
下面结合附图对本申请实施例提供的通信方法进行详细介绍。
请参见图10,为本申请实施例提供的通信方法的流程图。在下文的介绍过程中,以该方法应用于图4和图5所示的通信系统为例。另外,该方法可由三个通信装置执行,这三个通信装置例如为第一通信装置、第二通信装置和第三通信装置。为了便于介绍,在下文中,以该方法由IAB节点、源宿主基站和目标节点执行为例,也就是,以第一通信装置是IAB节点、第二通信装置是源宿主基站,第三通信装置是目标节点为例。目标节点可以是目标宿主基站,也可以是其他IAB节点,在下文中以目标节点是目标宿主基站为例。例如,下文中IAB节点可以是图4中的中继节点,可以是图5中的任意一个IAB节点。需要说明的是,本申请实施例只是以通过图4和图5的通信系统为例,并不限制于这种场景。
应理解,源宿主基站指的是IAB节点当前所连接的宿主基站。这里的IAB节点指的是待迁移的IAB节点,也可以称为待切换的IAB节点,也就是要切换当前所连接的源宿主基站的IAB节点。目标宿主基站指的是IAB节点将要迁移或切换到的基站。在下文中,源宿主基站也可称为源IAB Donor,目标宿主基站可称为目标IAB Donor,终端以UE为例。
具体的,本申请实施例提供的通信方法的流程描述如下。
S1001、源宿主基站向N个目标宿主基站发送配置请求消息,该配置请求消息包括IAB节点的身份标识信息和该IAB节点的一个或多个小区信息,N大于或等于1。
源宿主基站可以为IAB节点配置测量配置,也就是测量相关信息,可包括例如对多个目标宿主基站的进行测量的参数。IAB节点根据该测量配置对多个目标宿主基站进行测量,并将测量结果上报给源宿主基站。源宿主基站根据测量结果可从这多个目标宿主基站中确定IAB节点待迁移的N个目标宿主基站。
应理解,在S1001之前,IAB节点可执行S1001a、IAB节点向源宿主基站发送IAB节点的测量结果。在一些实施例中,源宿主基站可不必根据IAB节点的测量结果确定N个目标宿主基站,例如源宿主基站可根据历史信息或者网络规定的信息,确定N个目标宿主基站。可见S1001a是可选的步骤,不是必不可少的,因此在图10中采用虚线进行示意。
源宿主基站确定N个目标宿主基站之后,可以分别向这N个目标宿主基站发送配置请求消息,该配置请求消息用于请求N个目标宿主基站为IAB节点配置的配置信息,例如可包括MT的配置信息和DU的配置信息。应理解,该配置请求消息用于请求N个目标宿主基站为IAB节点配置的配置信息,目的之一是用于IAB节点的切换,所以在一些实施例中,该配置请求消息也可以成为切换请求消息,示意IAB节点需要进行切换,目标宿主基站收到该切换请求消息,为IAB节点配置信息。应理解,该配置请求消息可以承载在Xn接口信令,当然也可以承载在其他基站间接口信令。
该配置请求消息可包括用于表示IAB节点的标识信息,例如IAB节点自身的ID,又例如E-UTRAN小区全局标识符(E-UTRAN cell global identifier,ECGI)等。这样目标宿主基站可根据IAB节点的标识信息知晓为哪个IAB节点配置信息。另外,该配置请求消息还可包括该IAB节点的一个或多个小区(cell)信息,也就是该IAB节点的DU的小区信息,例如该IAB节点的DU的cell ID信息,例如为物理小区标识(physical cell identity,PCI)。由于IAB节点的DU有一个或多个小区,通过配置请求消息可以提前告知目标宿主基站,该IAB节点使用了哪些PCI,以便于目标宿主基站基于IAB节点上报的PCI为IAB节点生成配置信息,例如生成SSB。
该配置请求消息还可包括IAB节点的测量结果、该IAB节点的MT的配置信息和DU的配置信息中的至少一种。IAB节点的测量结果可以是该IAB节点对目标宿主基站的SSB的测量结果,可以携带在MT的配置信息中。由于配置请求消息包括AB节点的MT的配置信息和DU的配置信息,所以目标宿主基站可以基于IAB节点的MT的配置信息和DU的配置信息,重新为该IAB节点配置MT的配置信息和DU的配置信息。例如目标宿主基站不必配置与该IAB节点重复的MT的配置信息和DU的配置信息,可减轻目标宿主基站的负担,且可降低后续目标宿主基站发送为IAB节点配置的信息的开销。又例如如果IAB节点的MT的配置信息指示修改了SSB的配置,那么目标宿主基站可确定该IAB节点下的终端都需要重新配置。
需要说明的是,该IAB节点对目标宿主基站的SSB的测量结果,可以是该IAB节点对目标宿主基站的小区定义(cell defining)SSB的测量结果,也可以是该IAB节点对目标宿主基站的非小区定义(non-cell defining)SSB的测量结果,或者也可以是该IAB节点对目标宿主基站在同步信号栅格频点(off-sync raster)SSB的测量结果。IAB节点的MT在接入网络后,可以被配置测量上述的cell defining SSB、non-cell defining SSB或off-sync raster SSB。
DU的配置信息可包括DU当前运行cell的小区特定(cell-specific)信号以及信道配置,cell-specific信号例如可包括同步信息,信道状态信息参考信号(channel state information reference signal,CSI-RS)、PRACH资源配置等。进一步地,DU的配置信息还可包括DU的至少一个cell的SSB发送配置信息,例如同步信号传输配置(synchronization signal transmission configuration,STC)等。该SSB可以是cell defining SSB、non-cell defining SSB或off-sync raster SSB。
S1002、N个目标宿主基站向源宿主节点发送配置信息,每个目标宿主基站发送的配置信息包括该目标宿主基站为IAB节点配置的MT的配置信息和DU的配置信息。
应理解,MT用于与该IAB节点的上级节点或者源宿主基站通信,DU用于与该IAB节点的下级节点或者终端通信。每个目标宿主基站为该IAB节点生成配置信息,并将配置信息发送给源宿主基站,由源宿主基站转发给IAB节点。
S1003、源宿主基站向IAB节点发送第一配置信息,该第一配置信息包括N个目标宿主基站为IAB节点配置的N个MT的配置信息和N个DU的配置信息。
应理解,第一配置信息是由N个目标宿主基站生成并发送给源宿主基站的。每个目标宿主基站均为该IAB节点生成MT的配置信息和DU的配置信息。源宿主基站可以通过RRC信令向IAB节点发送MT的配置信息,通过F1-AP消息向IAB节点发送DU的配置信息。在一些实施例中,F1-AP消息也可以被承载在RRC信令中进行发送。
在可能的实现方式中,MT的配置信息可包括多种信息,示例性的,MT的配置信息可包括回传适配协议层(backhaul adaption protocol,BAP)配置,例如IAB节点的MT的回传路由信息。BAP配置可以理解为是IAB节点的MT的回传链路适配层配置,用于路由。IAB节点迁移之前接收的来自终端的数据,在迁移之后可按照BAP配置指示的路径传输,在IAB节点切换后,可降低IAB节点的MT的重配置时延,降低IAB节点切换上级节点对回传吞吐造成的影响。又一示例性的,MT的配置信息可包括MT的数据承载映射信息。再一示例性的,MT的配置信息可包括MT的服务质量(quality of service,QoS)配置信息。
由于IAB节点有可能空分,在可能的实现方式中,MT的配置信息还可包括MT的时隙格式配置,例如IAB节点的TDD上行时隙配置和TDD下行时隙配置(TDD-UL-DL-ConfigDedicated-IAB-MT),主要用于配置传输方向。IAB节点的MT根据该MT的时隙格式配置与该IAB节点的上级节点的DU进行通信。
DU的配置信息也可包括多种信息,示例性的,DU的配置信息可包括DU上的至少一个cell的STC。DU配置还可包括DU为下级节点提供服务的PRACH资源配置。例如DU的配置信息可包括两套PRACH资源配置,分别为第一套PRACH资源配置和第二套PRACH资源配置。第一套PRACH资源配置可用于终端发起随机接入,第二套PRACH资源配置可用于下级IAB节点发起随机接入,可避免IAB节点切换上级节点可能导致的ZC根序列重复,进而避免PRACH干扰。另外,通常来说,IAB节点因为天线高等原因,所以该IAB节点的MT能够接收到距离较远(例如距离该IAB节点5Km)的上级IAB节点的PRACH资源,发起随机接入。但是IAB节点为终端配置的PRACH资源覆盖范围较窄,例如覆盖直径为3Km。所以如果IAB节点采用为终端配置的PRACH资源,即覆盖3Km范围的PRACH资源接入距离5Km远的上级节点,也就是超范围接入,会导致接入失败。所以第二套PRACH资源配置的存在,可避免下级IAB节点由于接收终端的随机接入请求导致该下级IAB节点的MT没法发送随机接入请求。考虑到IAB接入网络的频率没有终端接入网络的频率高,所以第二套PRACH资源配置的PRACH资源周期大于第一套PRACH资源配置的PRACH资源周期。需要说明的是,第二套PRACH资源配置可以认为是IAB节点专用的,IAB节点既可以使用第二套PRACH资源配置,也可以使用第一套PRACH资源配置,但是终端只能使用第一套PRACH资源配置,不能使用第二套PRACH资源配置。
第一套PRACH资源配置也沿用现有技术中用于终端生成前导序列的PRACH资源配置,这里不再赘述。第二套PRACH资源配置为IAB节点专用,可包括用于随机接入的配置信息,例如周期缩放信息、系统帧偏移配置,子帧/时隙偏移配置等。具体的,第二套PRACH资源配置可包括ZC根序列索引、PRACH配置索引、每个SSB关联的RACH时机数,或者对拥有RACH时机的时隙/子帧的偏移量配置中的至少一项。与现有技术不同之处在于,在IAB节点跨宿主基站迁移的场景中,第二套PRACH资源配置还可包括周期缩放因子,该周期缩放因子与PRACH配置索引结合用于确定PRACH资源的周期。换句话来说,第二套PRACH资源配置在现有实现方式的基础上,可新增加周期缩放因子,更利于兼容现有实现方式中的PRACH资源配置。
在可能的实现方式中,DU的配置信息还可包括TDD上行时隙配置和TDD下行时隙配置,用于DU与下级节点或终端进行通信。DU的配置信息还可包括IAB节点的DU的可用资源、不可用资源、hard类型资源,soft类型资源等。在一些实施例中,DU的配置信 息也可包括周期性小区下行参考信号配置,例如CSI-RS配置。
应理解,目标宿主基站可生成IAB节点的MT的部分配置信息,对于MT的另一部分配置信息可通过网络侧指示为该IAB节点的MT原始的配置信息。也就是网络侧通过信令指示该IAB节点迁移时,应用接收的MT的部分配置信息,以及应用MT已有的另一部分配置信息。当然网络侧不一定发送信令,也可以是系统或者协议约定,IAB节点迁移时,应用接收的MT的部分配置信息,以及应用MT已有的另一部分配置信息。也就是对于没有在接收的配置信息中的配置,MT默认沿用已有的配置。
需要说明的是,MT应用配置信息,也可以认为该配置信息生效,或者使能该配置信息。同样下文中,DU应用配置信息指的是DU所要应用的配置信息生效或者DU要使用配置信息时,使能该配置信息。
S1004、当IAB节点的MT满足特定条件,IAB节点的MT向目标宿主基站发起随机接入。
S1005、当IAB节点的MT满足特定条件时,DU应用N个DU的配置信息中的一个配置信息。
由于IAB节点包括MT和DU,如果MT和DU接收各自的配置信息后,应用配置信息,那么可能导致IAB节点迁移后可能产生资源冲突。为此,本申请实施例给出MT和DU应用配置信息的时机,以避免IAB节点迁移后可能产生的资源冲突。也就是本申请实施例提供了IAB节点跨宿主基站迁移的一种机制,该机制限定了MT和DU应用配置信息的时机。
具体的,源宿主基站向IAB节点转发接收的MT的配置信息和DU的配置信息后,还可以向IAB节点发送MT应用接收的配置信息的一个或多个条件。需要说明的是,本申请实施例对源宿主基站向IAB节点转发接收的MT的配置信息和DU的配置信息,以及向IAB节点发送MT应用接收的配置信息的一个或多个条件的先后顺序不作限制。例如二者可以同时发送给IAB节点。源宿主基站可以通过一条信令,例如RRC信令向IAB节点发送MT应用接收的配置信息的一个或多个条件,也可以通过多条RRC信令向IAB节点发送MT应用接收的配置信息的多个条件,例如每个条件承载在一条RRC信令中。
应理解,MT应用接收的配置信息的一个或多个条件可用于指示MT满足该一个或多个条件后,再向目标宿主基站发起随机接入过程。应理解,向目标宿主基站发起随机接入过程可以是直接向目标宿主基站发起随机接入过程,也可以是向与目标宿主基站连接的下级节点的发起随机接入过程。为了便于描述,下文中将MT向目标宿主基站发起随机接入过程之前需要满足的条件称为特定条件。示例性的,特定条件可以包括如下条件中的一种或多种,下面分别介绍这几种特定条件。
条件一,该IAB节点的MT对第一信号的测量结果小于第一预设阈值,其中,第一信号是该IAB节点的当前服务节点,也就是IAB节点当前连接的上级节点或者源宿主基站发送的。当IAB节点的MT对第一信号的测量结果小于第一预设阈值,可以认为该IAB节点当前回传链路的通信质量较差,此时该IAB节点可以切换到例如目标宿主基站,以尽量保证该IAB节点的回传链路的通信质量。此时该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。
应理解,第一预设阈值可以是预先设置的值或者系统定义的值或者协议约定的值。在一些实施例中,第一预设阈值也可以是条件一的一部分,也就是条件一为该IAB节点的 MT对第一信号的测量结果小于第一预设阈值,且第一预设阈值由源宿主基站作为条件一发送给IAB节点。
条件二,该IAB节点的MT对第二信号的测量结果大于第二预设阈值,其中,第二信号不是该IAB节点当前连接的上级节点或者源宿主基站发送的。当IAB节点的MT对第二信号的测量结果大于第二预设阈值,可以认为存在比该IAB节点当前连接的上级节点或者源宿主基站的测量结果更好的上级节点(例如目标宿主基站),此时该IAB节点可以切换到目标宿主基站,以尽量提高该IAB节点的回传链路的通信质量,且该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。示例性的,第二预设阈值也可以是预先设置的值或者系统定义的值或者协议约定的值。又一示例性的,第二预设阈值可与第二信号测量结果相关,例如第二预设阈值为第二信号测量结果与某个固定值的之和。在一些实施例中,第二预设阈值也可以是条件二的一部分,也就是条件二为该IAB节点的MT对第一信号的测量结果小于第二预设阈值,且第二预设阈值由源宿主基站作为条件二发送给IAB节点。
条件三,该IAB节点的MT在第一载波链路上发生波束失败,其中,第一载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。例如采用参考信号的强度表征链路质量(波束),终端对高层配置的参考信号集合中每一个参考信号进行测量,如果参考信号集合中的每一个参考信号的强度都小于某个阈值,那么发生波束失败。对于波束失败的解释,还可以参考3GPP标准的描述。
需要说明的是,IAB节点的MT在第一载波链路上发生波束失败还包括IAB节点的MT在第一载波链路上发生波束失败后,且恢复后波束还是失败的情况。波束失败恢复失败指的是终端检测到波束失败并尝试发现新的波束,用于恢复通信,但该过程也失败。
条件四,该IAB节点的MT在第二载波链路上发生无线链路失败,例如MT确定测量的RSRP较小,或者无法解码物理下行控制信道(physical downlink control channel,PDCCH)或者物理下行共享信道(physical downlink shared channel,PDSCH)等,其中,第二载波链路为该IAB节点与该IAB节点当前连接的上级节点或者源宿主基站之间的通信链路。对于无线链路失败的解释,还可以参考3GPP标准的描述。
上述的条件三和条件四可以认为是该IAB节点的回传链路发生中断或者被遮挡,此时该IAB节点可以切换当前连接的上级节点或源宿主基站,以尽量保证该IAB节点的回传链路的通信质量。且此时该IAB节点的DU应用新的配置信息,实现IAB节点的上级节点的切换。
条件五,该IAB节点的MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长。该条件可以认为预先配置一个时钟,当IAB节点的MT接收到配置信息后,在该时钟到期后,该IAB节点的DU应用新的配置信息,不需要IAB节点进行测量等,IAB节点的实现更为简单。
上述列举了可能的五种特定条件,具体选择哪种特定条件,可以通过基站配置或者通过协议规定,本申请实施例对指示选择哪种特定条件的方式不作限制。
进一步地,MT满足前述的五种条件中的任意一种时,可进行随机接入过程。由于存在多个目标服务节点,选择接入哪个目标服务节点,也可以基于一定的条件,也就是MT基于一定的条件确定要接入的目标服务节点。需要说明的是,目标服务节点包括目标宿主基站,也可以包括与目标宿主基站连接的IAB节点。
在可能的实现方式中,MT选择要接入的目标服务节点的规则可以包括但不限于以下几种:
例如,规则一,IAB节点的MT可以选择满足前述的五种特定条件的配置信息对应的目标服务节点进行随机接入。应理解,如果满足前述的五种特定条件的配置信息对应的目标服务节点有多个,该IAB节点的MT可以选择这多个目标服务节点中的任意一个目标服务节点。
规则二,IAB节点的MT选择发送参考信号的强度最大的目标服务节点,以尽量保证IAB节点切换后的回传链路的通信质量。参考信号的强度可以通过参考信号的接收功率来表征。例如MT对所有目标服务节点进行参考信号接收功率(reference signal receiving power,RSRP)测量,对所获得的测量结果进行降次排序,选择排序后的第一个目标服务节点。
规则三,IAB节点的MT选择工作频段与源宿主基站的工作频段相同的目标服务节点,可降低IAB节点的MT和DU资源重配置的复杂度,以及减少对终端的影响。应理解工作频段相同,可以是载波的中心频率相同,也可以是SSB的中心频率相同。
规则四,IAB节点的MT选择PRACH资源的随机接入时机最早到来的节点,这样可以让IAB节点的MT更早地发起随机接入,减少链路通信质量的下降或者链路异常造成的影响。
前述介绍了MT应用接收的配置信息需要满足的特定条件,下面介绍DU应用接收的配置信息的时机。DU可在MT满足前述的特定条件下,DU应用N个DU的配置信息中的一个配置信息。
除此之外,DU也可以在满足如下的特定条件下,应用N个DU的配置信息中的一个配置信息。
示例性的,DU在MT开始或完成随机接入过程时,应用N个DU的配置信息中的一个配置信息。通常来说,IAB节点的MT开始或完成随机接入过程,可以认为IAB节点切换回传链路,此时该IAB节点的DU应用新的配置信息,同样不需要IAB节点进行测量等,IAB节点的实现更为简单。
又一示例性的,DU在MT接收到来自源宿主基站的第一信令时,应用N个DU的配置信息中的一个配置信息。该第一信令用于指示该IAB节点切换到第一目标宿主基站。该特定条件下,IAB节点基于源宿主基站的指令切换当前所连接的上级节点,不需要自身判断切换时机,可降低IAB节点的计算负担,使得IAB节点的实现更为简单,同时更加有利于网络侧进行资源管理。
再一示例性的,DU在该IAB节点移出目标区域时,应用N个DU的配置信息中的一个配置信息。当IAB节点是可移动的,IAB节点有可能移出上级节点的覆盖范围或者移动到信号质量较差的区域。该特定条件,IAB节点位于目标区域可以认为是该IAB节点当前的回传链路的通信质量较高,当该IAB节点移出目标区域,则认为为了保证通信质量,可以切换IAB节点的上级节点,即IAB节点的DU应用新的配置信息。
在可能的实现方式中,判断该IAB节点是否移出目标区域的方式,包括但不限于以下几种:
方式一,该IAB节点接收的区域(area)的标识(identity,ID)与本地存储的区域的ID不一致,则该IAB节点移出目标区域。应理解,系统也可以预配置area ID,当IAB节点所在area的ID与预配置的area ID不一致,那么该IAB节点移出目标区域。
方式二,该IAB节点当前所在的小区的ID不在接收的小区列表中,则该IAB节点移出目标区域。应理解,系统也可以预配置小区列表,当IAB节点所在小区不在预配置的小区列表内,那么该IAB节点移出目标区域。
方式三,该IAB节点当前连接的节点所对应的宿主基站不在接收的宿主基站列表中,则该IAB节点移出目标区域。应理解,系统也可以预配置宿主基站列表,当IAB节点所对应的宿主基站不在预配置的宿主基站列表内,那么该IAB节点移出目标区域。
应理解,区域ID、小区列表或者宿主基站列表可以是系统预定义的,也可以是源宿主基站向IAB节点发送的。如上只是列举了三种判断该IAB节点是否移出目标区域的方式,通过上述的列举的任意一种方式可以判断该IAB节点是否移出目标区域,以进一步确定该IAB节点的DU应用新的配置信息的时机。
为了便于理解,下面以DU的配置信息包括PRACH资源配置为例,介绍DU应用接收的配置信息的时机。
系统或者网络侧可以通过区域ID、小区列表或者宿主基站列表等方式配置PRACH资源的有效区域。有效区域可以是系统预配置的,也可以是网络侧通知的,例如网络侧通过广播系统消息,实现有效区域的通知。当IAB节点位于有效区域内,不需要更新PRACH资源。
示例性的,当IAB节点连接到非有效区域对应的新上级节点,也就是该新上级节点不在例如前述的小区列表内或者该新上级节点连接的目标宿主基站不在宿主基站列表内,该IAB节点的DU应用接收的配置信息,也就是更新PRACH资源。或者,当IAB节点测量到非有效区域对应的新上级节点时,也就是该新上级节点不在例如前述的小区列表内或者该新上级节点连接的目标宿主基站不在宿主基站列表内,该IAB节点的DU应用新的PRACH资源。
又一示例性的,当IAB节点迁移或者移动,IAB节点所在区域ID不在有效区域,则应用新的PRACH资源。当IAB节点迁移,需要将该IAB节点当前的PRACH资源对应的区域ID与新的上级节点或目标宿主基站广播的区域ID进行对比,若不一致,则应用新的PRACH资源。
在可能的实现方式中,IAB节点也可以基于IAB节点的MT的测量结果来确定是否应用新的PRACH资源,即IAB节点应用新的PRACH资源的时机取决于IAB节点的MT的测量结果。例如IAB节点的MT基于测量配置,例如同步信号测量时间配置(synchronization signal measurement timing configuration,SMTC)和/或PCI信息等发现某个邻区,则触发IAB节点的DU使用新的PRACH资源。触发PRACH更新的Cell ID,以及与cell ID相对应的新配置信息可由源宿主基站通过RRC信令配置到该IAB节点的MT。
本申请实施例仅是以PRACH资源为例,应理解,本申请实施例不限于PRACH资源。例如上述IAB节点的DU应用新的PRACH资源的时机,也可以是IAB节点的DU应用STC配置和PCI配置的时机。相较于其他配置来说,由于IAB节点的DU上的小区为终端服务,为了保证相邻小区的PCI不同,避免小区间干扰,IAB节点发生迁移或者移动时,可能需要重新配置PCI或STC。
如上述,PRACH资源配置可以是源宿主基站向目标宿主基站请求获取的,例如源宿主基站向目标宿主基站发送的配置请求消息可以用于请求IAB节点的DU的PRACH资源配置。在一些实施例中,PRACH资源配置可以是源宿主基站向核心网设备(例如OAM服 务器,AMF实体)请求获取的,例如源宿主基站向核心网设备发送配置请求消息,该配置请求消息可以用于请求IAB节点的DU的PRACH资源配置。
在本申请实施例中,由于IAB节点的DU应用新的配置信息是以MT满足特定条件为前提的,所以在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如同步信号块(synchronization signal block,SSB)的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。DU的配置信息例如可包括PRACH资源配置,针对可移动的IAB节点,应用新的PRACH资源配置也是基于MT满足特定条件,可避免由于IAB节点的移动在切换过程中可能导致的ZC根序列重复,进而避免由于ZC根序列的重复导致的PRACH干扰,自然也就避免了主同步信号(primary synchronization signal,PSS)、辅同步信号(second synchronization signal,SSS)或PCI等冲突导致的干扰以及终端通信异常。
请参见图11,为本申请实施例提供的一种应用场景示意图。图11所示的场景以包括待迁移的IAB节点、IAB节点1、IAB节点2、以及IAB节点1的宿主基站和IAB节点2的宿主基站为例。当前待迁移的IAB节点的上级节点即IAB节点1,应理解,待迁移的IAB节点与IAB节点1之间的回传链路中断或者通信质量较差,待迁移的IAB节点可切换与其连接的上级节点。但是,待迁移的IAB节点可能为多个终端服务,如图11以待迁移的IAB节点为2个终端服务为例。网络侧为这多个终端配置的信息会保存在该待迁移的IAB节点当前所连接的宿主节点。如果待迁移的IAB节点跨宿主节点发生迁移,则这多个终端需要重配置,网络侧通过高层配置为这多个终端重新配置,例如高层配置可包括例如新的宿主节点下的密钥,传输资源配置,导频或参考信号配置,测量配置等。由于网络侧需要为多个终端发送高层配置,这就需要网络侧短时间内发送大量的信令,增加了网络侧和回传链路的负担。再者,高层配置在新的宿主节点生成,经由一跳或多跳转发到终端,存在较严重的时延。如果终端正在运行对时延要求较高的业务,例如游戏业务,那么可能会造成游戏卡顿,降低用户体验质量。
为此,本申请实施例中,待迁移的IAB节点可预存P个终端的配置信息,这样待迁移的IAB节点的MT切换回传链路的上级节点时,待迁移的IAB节点的DU再向P个终端发送配置信息,可降低终端的切换时延。应理解,P大于或等于1。
具体的,请继续参见图10,S1006、源宿主基站向该迁移的IAB节点的MT发送第二配置信息,该第二配置信息为待迁移的IAB节点的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识。
在S1006之前,待迁移的IAB节点当前连接的源宿主基站可以向目标宿主基站发送请求消息,该请求消息用于向目标宿主基站请求待迁移的IAB节点服务的P个终端的配置信息。应理解,该请求消息包括终端的ID。目标宿主基站响应该请求消息,通过高层配置信令向源宿主基站发送P个终端的配置信息。应理解,高层配置信令包括服务小区通用配置(ServingCellConfigCommon)、终端的ID(例如小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI))以及SSB测量配置。当待迁移的IAB节点切换上级节点后,该IAB节点的DU将P个终端的配置信息分别发送给对应的终端,可降低终端的切换时延。
由于可能存在多个目标宿主基站,每个目标宿主基站都可以向源宿主基站发送P个终端的配置信息。对于源宿主基站而言,接收的是每个终端的多套配置信息,那么待迁移的IAB节点最终接收的也是每个终端的多套配置信息。待迁移的IAB节点的DU可以根据 MT迁移后的上级节点,确定向终端发送哪套配置信息。实质上,每个终端有一个或多个配置,每个配置对应一个IAB的上级节点或小区标识,由于配置信息预存在IAB DU,所以可以对终端透明。
本申请实施例提供的方案,即IAB节点的DU在IAB节点的MT满足特定条件的情况下,IAB节点的DU才应用来自目标宿主基站为IAB节点配置的某个DU的配置信息。由于IAB节点的DU应用新的配置信息是以MT满足特定条件为前提的,所以在实现IAB节点的跨宿主基站的切换的过程中,可避免IAB节点的DU发送例如SSB的资源与IAB节点的MT发送SSB的资源发生冲突,进而尽量避免终端的通信异常。另外,在该方法中,即IAB节点预存P个终端的配置信息,这样IAB节点的MT切换回传链路的上级节点时,IAB节点的DU再向P个终端发送配置信息,可降低终端的切换时延。
上述本申请提供的实施例中,分别从待迁移的IAB节点、源宿主基站、目标宿主基站,以及待迁移的IAB节点、源宿主基站和目标宿主基站之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,待迁移的IAB节点、源宿主基站、目标宿主基站可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图12示出了一种通信装置1200的结构示意图。该通信装置1200可以对应实现上述各个方法实施例中由IAB节点或源宿主基站或目标宿主基站实现的功能或者步骤。该通信装置可以包括发送单元1210和接收单元1220,可选的,还可以包括处理单元1230,在图12中以虚线进行示意。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。发送单元1210、接收单元1220和处理单元1230可以与该存储单元耦合,例如,处理单元1230可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成,例如发送单元1210和接收单元1220可集成,称为收发单元。
在一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中IAB节点的行为和功能。例如通信装置1200可以为IAB节点,也可以为应用于IAB节点中的部件(例如芯片或者电路)。发送单元1210和接收单元1220可以用于执行图10所示的实施例中由IAB节点所执行的全部接收或发送操作,例如图10所示的实施例中的S1003和S1004,或S1001a、S1003和S1004,和/或用于支持本文所描述的技术的其它过程。其中,处理单元1230用于执行如图10所示的实施例中由IAB节点所执行的除了收发操作之外的全部操作,例如图10所示的实施例中的S1005,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,接收单元1220用于接收来自源宿主基站的第一配置信息,该第一配置信息包括N个目标宿主基站为该通信装置配置的N个MT的配置信息和N个DU的配置信息,N大于或等于1,MT用于与该通信装置的上级节点或者源宿主基站或者目标宿主基站通信,DU用于与该通信装置的下级节点或者终端通信;
处理单元1230用于当该通信装置的所述MT满足特定条件时,该通信装置的DU应用N个DU的配置信息中的一个配置信息。
作为一种可能的实施方式,所述特定条件包括:
该通信装置的MT对第一信号的测量结果小于第一预设阈值,所述第一信号是该通信 装置当前连接的上级节点或者源宿主基站发送的;或者,
该通信装置的MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是该通信装置当前连接的上级节点或者源宿主基站发送的;或者,
该通信装置的MT在第一载波链路上发生波束失败,所述第一载波链路为该通信装置与该通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
该通信装置的MT在第二载波链路上发生无线链路失败,所述第二载波链路为该通信装置与该通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
该通信装置的MT从接收到来自所述源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
该通信装置的MT开始或完成随机接入过程;或者,
该通信装置的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示该通信装置切换到第一目标宿主基站;或者,
该通信装置移出目标区域。
作为一种可能的实施方式,该通信装置移出目标区域,包括:
该通信装置接收的区域的标识ID与本地存储的区域的ID不一致;或者,
该通信装置当前所在的小区的ID不在接收的小区列表中;或者,
该通信装置当前连接的节点所对应的宿主基站不在接收的宿主基站列表中。
作为一种可能的实施方式,当N大于1时,该通信装置的DU应用N个DU的配置信息中的一个配置信息,包括:
从N个DU的配置信息任意选择一个配置信息;或者,
从N个DU的配置信息中选择与第一目标服务节点对应的DU配置信息,第一目标服务节点为N个目标宿主基站中的第一目标宿主基站,或者第一目标服务节点为N个目标宿主基站中的第一目标宿主基站连接的IAB节点,其中:
第一目标服务节点发送的参考信号的强度最大;或者,
第一目标服务节点与源宿主基站的工作频段相同;或者,
第一目标服务节点的PRACH资源的随机接入时机最早到来。
作为一种可能的实施方式,DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于IAB节点发起随机接入。
作为一种可能的实施方式,第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,周期缩放因子和PRACH配置索引用于确定PRACH资源的周期。
在可能的实现方式中,MT的配置信息还包括如下信息的一项或多项:
回传适配协议层BAP配置信息;或者,
MT的数据承载映射信息;或者,
MT的服务质量配置信息。
作为一种可能的实施方式,接收单元1220还用于:
接收来自源宿主基站的第二配置信息,该第二配置信息为该通信装置的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识,P大于或等于1。
在另一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中源宿主基站的行为和功能。例如通信装置1200可以为源宿主基站,也可以为应用于源宿主基站节点中的部件(例如芯片或者电路)。发送单元1210和接收单元1220可以用于执行图10所示的实施例中由源宿主基站所执行的全部接收或发送操作,例如图10所示的实施例中的、S1001、S1002和S1003,或S1001a、S1001、S1002和S1003,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,发送单元1210用于向N个目标宿主基站发送配置请求消息,该配置请求消息包括IAB节点的身份标识信息和IAB节点的一个或多个小区信息,N大于或等于1;接收单元1220用于接收N个目标宿主基站发送的配置信息,其中,每个目标宿主基站发送的配置信息包括目标宿主基站为IAB节点配置的MT的配置信息和DU的配置信息,MT用于与IAB节点的上级节点或者该通信装置通信,DU用于与IAB节点的下级节点或者终端通信。
作为一种可能的实施方式,该配置请求消息还包括IAB节点的MT对多个目标宿主基站的同步信号块SSB的测量结果。
作为一种可能的实施方式,该配置请求消息还包括IAB节点的DU的小区信息、物理随机接入信道PRACH资源配置以及同步信号配置信息中的至少一种信息。
在另一些可能的实施方式中,通信装置1200能够对应实现上述方法实施例中目标宿主基站的行为和功能。例如通信装置1200可以为目标宿主基站,也可以为应用于目标宿主基站节点中的部件(例如芯片或者电路)。发送单元1210和接收单元1220可以用于执行图10所示的实施例中由目标宿主基站所执行的全部接收或发送操作,例如图10所示的实施例中的、S1001、S1002和S1004,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,接收单元1220用于接收来自源宿主基站的配置请求消息,该配置请求消息包括IAB节点的身份标识信息和IAB节点的一个或多个小区信息,N大于或等于1;发送单元1210用于向源宿主基站发送配置信息,其中配置信息包括该通信装置为IAB节点配置的MT的配置信息和DU的配置信息,MT用于与IAB节点的上级节点或者源宿主基站通信,DU用于与IAB节点的下级节点或者终端通信。
作为一种可能的实施方式,DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,第一套PRACH资源配置用于终端发起随机接入,第二套PRACH资源配置用于IAB节点发起随机接入。
作为一种可能的实施方式,第二套PRACH资源配置包括如下配置的一项或多项:
ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,周期缩放因子和PRACH配置索引用于确定PRACH资源的周期。
作为一种可能的实施方式,发送单元还用于向源宿主基站发送特定条件,其中,特定条件包括:
IAB节点的MT对第一信号的测量结果小于第一预设阈值,第一信号是IAB节点的当前服务节点发送的;或者,
IAB节点的MT对第二信号的测量结果大于第二预设阈值,第二信号不是IAB节点的当前服务节点发送的;或者,
IAB节点的MT在第一载波链路上发生波束失败,第一载波链路为IAB节点与IAB节 点的当前服务节点之间的通信链路;或者,
IAB节点的MT在第一载波链路上发生无线链路失败,第一载波链路为IAB节点与IAB节点的当前服务节点之间的通信链路;或者,
IAB节点的MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
IAB节点的MT开始或完成随机接入过程;或者,
IAB节点的MT接收到来自源宿主基站的第一信令,第一信令用于指示IAB节点切换到第一目标宿主基站;或者,
区域标识ID;或者,
小区列表;或者;
宿主基站列表。
如图13所示为本申请实施例提供的通信装置1300,其中,通信装置1300可以是IAB节点,能够实现本申请实施例提供的方法中IAB节点的功能,或者,通信装置1300可以是基站,能够实现本申请实施例提供的方法中源宿主基站或目标宿主基站的功能;通信装置1300也可以是能够支持IAB节点实现本申请实施例提供的方法中对应的功能的装置,或者能够支持源宿主基站或目标宿主基站实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1300可以为芯片系统或者IAB节点。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述发送单元1210和接收单元1220可以为收发器,收发器集成在通信装置1300中构成通信接口1310。
通信装置1300包括至少一个处理器1320,用于实现或用于支持通信装置1300实现本申请实施例提供的方法中IAB节点或源宿主基站或目标宿主基站的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1300还可以包括至少一个存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令和/或数据,以使得通信装置1300实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1300还可以包括通信接口1310,用于通过传输介质和其它设备进行通信,从而用于通信装置1300中的装置可以和其它设备进行通信。示例性地,当该通信装置为IAB节点时,该其它设备为源宿主基站和/或目标宿主基站;或者,当该通信装置为源宿主基站时,该其它设备为IAB节点和/或目标宿主基站;或者,当该通信装置为目标宿主基站时,该其它设备为IAB节点和/或源宿主基站。处理器1320可以利用通信接口1310收发数据。通信接口1310具体可以是收发器。
本申请实施例中不限定上述通信接口1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及通信接口1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1320可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1330可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
应理解,通信装置1300为IAB节点时,图14示出了通信装置1300的另一种形式。图14中,通信装置1300是IAB节点,应理解,IAB节点包括MT和DU,MT可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口可用于与该IAB节点的上级节点或源宿主基站或目标宿主基站进行通信。DU也可包括通信接口、处理器以及存储器,以及连接通信接口、处理器以及存储器的总线,其中通信接口用于与该IAB节点的下级节点或终端进行通信。
图15示出了一种通信装置的另一种形式。便于理解和图示方便,图15中,通信装置是源宿主基站或目标宿主基站作为例子。该通信装置1500可应用于如图3或图4所示的系统中,可以为图3和图4中的宿主节点,执行上述方法实施例中源宿主基站或目标宿主基站的功能。通信装置1500可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为通信模块,与图12中的发送单元1210和接收单元1220对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如该通信装置1500是源宿主基站用于向IAB节点转发从目标宿主基站接收的目标宿主基站为IAB节点配置的MT的配置信息和DU的配置信息。所述BBU 1520部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图12中的处理单元1230对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于IAB节点或源宿主基站或目标宿主基站的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每 个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括IAB节点、源宿主基站和目标宿主基站,或者还可以包括更多个IAB节点、源宿主基站和目标宿主基站。
所述IAB节点、源宿主基站和目标宿主基站分别用于实现上述图10相关设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图10中IAB节点、源宿主基站或目标宿主基站执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图10中IAB节点、源宿主基站或目标宿主基站执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中IAB节点、源宿主基站或目标宿主基站的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一消息和第二消息,只是为了区分不同的消息,而并不是表示这两种消息的优先级、发送顺序或者重要程度等的不同。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    IAB节点接收来自源宿主基站的第一配置信息,所述第一配置信息包括N个目标宿主基站为所述IAB节点配置的N个MT的配置信息和N个DU的配置信息,其中,所述N大于或等于1,所述MT用于与所述IAB节点的上级节点或者所述源宿主基站或者所述目标宿主基站通信,所述DU用于与所述IAB节点的下级节点或者终端通信;
    当所述IAB节点的所述MT满足特定条件时,所述DU应用所述N个DU的配置信息中的一个配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述特定条件包括:
    所述IAB节点的所述MT对第一信号的测量结果小于第一预设阈值,所述第一信号是所述IAB节点当前连接的上级节点或者源宿主基站发送的;或者,
    所述IAB节点的所述MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是所述IAB节点当前连接的上级节点或者源宿主基站发送的;或者,
    所述IAB节点的所述MT在第一载波链路上发生波束失败,所述第一载波链路为所述IAB节点与所述IAB节点当前连接的上级节点或者源宿主基站之间的通信链路;或者,
    所述IAB节点的所述MT在第二载波链路上发生无线链路失败,所述第二载波链路为所述IAB节点与所述IAB节点当前连接的上级节点或者源宿主基站之间的通信链路;或者,
    所述IAB节点的所述MT从接收到来自所述源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
    所述IAB节点的所述MT开始或完成随机接入过程;或者,
    所述IAB节点的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示所述IAB节点切换到第一目标宿主基站;或者,
    所述IAB节点移出目标区域。
  3. 如权利要求2所述的方法,其特征在于,所述IAB节点移出目标区域,包括:
    所述IAB节点接收的区域的标识ID与本地存储的区域的ID不一致;或者,
    所述IAB节点当前所在的小区的ID不在接收的小区列表中;或者,
    所述IAB节点当前连接的节点所对应的宿主基站不在接收的宿主基站列表中。
  4. 如权利要求1-3任一所述的方法,其特征在于,当N大于1时,所述DU应用所述N个DU的配置信息中的一个配置信息,包括:
    从所述N个DU的配置信息任意选择一个配置信息;或者,
    从所述N个DU的配置信息中选择与第一目标服务节点对应的DU配置信息,所述第一目标服务节点为所述N个目标宿主基站中的第一目标宿主基站,或者所述第一目标服务节点为所述N个目标宿主基站中的第一目标宿主基站连接的IAB节点,其中:
    所述第一目标服务节点发送的参考信号的强度最大;或者,
    所述第一目标服务节点与所述源宿主基站的工作频段相同;或者,
    所述第一目标服务节点的物理随机接入信道PRACH资源的随机接入时机最早到来。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,所述第一套PRACH资源配置用于终端发起随机接入,所述第二套PRACH资源配置用于IAB节点发起随机接入。
  6. 如权利要求5所述的方法,其特征在于,所述第二套PRACH资源配置包括如下配置的一项或多项:
    ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,所述周期缩放因子和所述PRACH配置索引用于确定PRACH资源的周期。
  7. 如权利要求5或6所述的方法,其特征在于,所述MT的配置信息还包括如下信息的一项或多项:
    回传适配协议层BAP配置信息;或者,
    所述MT的数据承载映射信息;或者,
    所述MT的服务质量配置信息。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    所述IAB节点的MT接收来自所述源宿主基站的第二配置信息,所述第二配置信息为所述IAB节点的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识,P大于或等于1。
  9. 一种通信方法,其特征在于,包括:
    源宿主基站向N个目标宿主基站发送配置请求消息,所述配置请求消息包括IAB节点的身份标识信息和所述IAB节点的一个或多个小区信息,所述N大于或等于1;
    所述源宿主节点接收所述N个目标宿主基站发送的配置信息,其中每个所述目标宿主基站发送的配置信息包括所述目标宿主基站为所述IAB节点配置的MT的配置信息和DU的配置信息,所述MT用于与所述IAB节点的上级节点或者所述源宿主基站通信,所述DU用于与所述IAB节点的下级节点或者终端通信。
  10. 如权利要求9所述的方法,其特征在于,所述配置请求消息还包括所述IAB节点的MT对多个目标宿主基站的同步信号块SSB的测量结果。
  11. 如权利要求9或10所述的方法,其特征在于,所述配置请求消息还包括所述IAB节点的DU的小区信息、物理随机接入信道PRACH资源配置以及同步信号配置信息中的至少一种信息。
  12. 一种通信方法,其特征在于,包括:
    目标宿主基站接收来自源宿主基站的配置请求消息,所述配置请求消息包括IAB节点的身份标识信息和所述IAB节点的一个或多个小区信息,所述N大于或等于1;
    所述目标宿主基站向所述源宿主基站发送配置信息,所述配置信息包括所述目标宿主基站为所述IAB节点配置的MT的配置信息和DU的配置信息,所述MT用于与所述IAB节点的上级节点或者所述源宿主基站通信,所述DU用于与所述IAB节点的下级节点或者终端通信。
  13. 如权利要求12所述的方法,其特征在于,所述DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,所述第一套PRACH资源配置用于终端发起随机接入,所述第二套PRACH资源配置用于IAB节点发起随机接入。
  14. 如权利要求13所述的方法,其特征在于,所述第二套PRACH资源配置包括如下配置的一项或多项:
    ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,所述周期缩放因子和所述PRACH配置索引用于 确定PRACH资源的周期。
  15. 如权利要求12-14任一所述的方法,其特征在于,所述方法还包括:
    所述目标宿主基站向所述源宿主基站发送特定条件,其中,所述特定条件包括:
    所述IAB节点的所述MT对第一信号的测量结果小于第一预设阈值,所述第一信号是所述IAB节点的当前服务节点发送的;或者,
    所述IAB节点的所述MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是所述IAB节点的当前服务节点发送的;或者,
    所述IAB节点的所述MT在第一载波链路上发生波束失败,所述第一载波链路为所述IAB节点与所述IAB节点的当前服务节点之间的通信链路;或者,
    所述IAB节点的所述MT在第一载波链路上发生无线链路失败,所述第一载波链路为所述IAB节点与所述IAB节点的当前服务节点之间的通信链路;或者,
    所述IAB节点的所述MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
    所述IAB节点的所述MT开始或完成随机接入过程;或者,
    所述IAB节点的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示所述IAB节点切换到第一目标宿主基站;或者,
    区域标识ID;或者,
    小区列表;或者;
    宿主基站列表。
  16. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自源宿主基站的第一配置信息,所述第一配置信息包括N个目标宿主基站为所述通信装置配置的N个MT的配置信息和N个DU的配置信息,其中,所述N大于或等于1,所述MT用于与所述通信装置的上级节点或者所述源宿主基站或者所述目标宿主基站通信,所述DU用于与所述通信装置的下级节点或者终端通信;
    处理单元,用于当所述通信装置的所述MT满足特定条件时,所述通信装置的DU应用所述N个DU的配置信息中的一个配置信息。
  17. 如权利要求16所述的通信装置,其特征在于,所述特定条件包括:
    所述通信装置的所述MT对第一信号的测量结果小于第一预设阈值,所述第一信号是所述通信装置当前连接的上级节点或者源宿主基站发送的;或者,
    所述通信装置的所述MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是所述通信装置当前连接的上级节点或者源宿主基站发送的;或者,
    所述通信装置的所述MT在第一载波链路上发生波束失败,所述第一载波链路为所述通信装置与所述通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
    所述通信装置的所述MT在第二载波链路上发生无线链路失败,所述第二载波链路为所述通信装置与所述通信装置当前连接的上级节点或者源宿主基站之间的通信链路;或者,
    所述通信装置的所述MT从接收到来自所述源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
    所述通信装置的所述MT开始或完成随机接入过程;或者,
    所述通信装置的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示所述通信装置切换到第一目标宿主基站;或者,
    所述通信装置移出目标区域。
  18. 如权利要求17所述的通信装置,其特征在于,所述通信装置移出目标区域,包括:
    所述通信装置接收的区域的标识ID与本地存储的区域的ID不一致;或者,
    所述通信装置当前所在的小区的ID不在接收的小区列表中;或者,
    所述通信装置当前连接的节点所对应的宿主基站不在接收的宿主基站列表中。
  19. 如权利要求16-18任一所述的通信装置,其特征在于,当N大于1时,所述通信装置的DU应用所述N个DU的配置信息中的一个配置信息,包括:
    从所述N个DU的配置信息任意选择一个配置信息;或者,
    从所述N个DU的配置信息中选择与第一目标服务节点对应的DU配置信息,所述第一目标服务节点为所述N个目标宿主基站中的第一目标宿主基站,或者所述第一目标服务节点为所述N个目标宿主基站中的第一目标宿主基站连接的IAB节点,其中:
    所述第一目标服务节点发送的参考信号的强度最大;或者,
    所述第一目标服务节点与所述源宿主基站的工作频段相同;或者,
    所述第一目标服务节点的物理随机接入信道PRACH资源的随机接入时机最早到来。
  20. 如权利要求16-19任一所述的通信装置,其特征在于,所述DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,所述第一套PRACH资源配置用于终端发起随机接入,所述第二套PRACH资源配置用于IAB节点发起随机接入。
  21. 如权利要求20所述的通信装置,其特征在于,所述第二套PRACH资源配置包括如下配置的一项或多项:
    ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,所述周期缩放因子和所述PRACH配置索引用于确定PRACH资源的周期。
  22. 如权利要求20或21所述的通信装置,其特征在于,所述MT的配置信息还包括如下信息的一项或多项:
    回传适配协议层BAP配置信息;或者,
    所述MT的数据承载映射信息;或者,
    所述MT的服务质量配置信息。
  23. 如权利要求16-22任一所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述源宿主基站的第二配置信息,所述第二配置信息为所述通信装置的DU为P个终端配置的P个配置信息,每个配置信息对应一个终端标识,P大于或等于1。
  24. 一种通信装置,其特征在于,包括:
    发送单元,用于向N个目标宿主基站发送配置请求消息,所述配置请求消息包括IAB节点的身份标识信息和所述IAB节点的一个或多个小区信息,所述N大于或等于1;
    接收单元,用于接收所述N个目标宿主基站发送的配置信息,其中,每个所述目标宿主基站发送的配置信息包括所述目标宿主基站为所述IAB节点配置的MT的配置信息和DU的配置信息,所述MT用于与所述IAB节点的上级节点或者所述通信装置通信,所述DU用于与所述IAB节点的下级节点或者终端通信。
  25. 如权利要求24所述的通信装置,其特征在于,所述配置请求消息还包括所述IAB节点的MT对多个目标宿主基站的同步信号块SSB的测量结果。
  26. 如权利要求24或25所述的通信装置,其特征在于,所述配置请求消息还包括所述IAB节点的DU的小区信息、物理随机接入信道PRACH资源配置以及同步信号配置信息中的至少一种信息。
  27. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自源宿主基站的配置请求消息,所述配置请求消息包括IAB节点的身份标识信息和所述IAB节点的一个或多个小区信息,所述N大于或等于1;
    发送单元,用于向所述源宿主基站发送配置信息,其中所述配置信息包括所述通信装置为所述IAB节点配置的MT的配置信息和DU的配置信息,所述MT用于与所述IAB节点的上级节点或者所述源宿主基站通信,所述DU用于与所述IAB节点的下级节点或者终端通信。
  28. 如权利要求27所述的通信装置,其特征在于,所述DU的配置信息包括第一套PRACH资源配置和第二套PRACH资源配置,所述第一套PRACH资源配置用于终端发起随机接入,所述第二套PRACH资源配置用于IAB节点发起随机接入。
  29. 如权利要求28所述的通信装置,其特征在于,所述第二套PRACH资源配置包括如下配置的一项或多项:
    ZC根序列索引、PRACH配置索引、周期缩放因子、子帧或时隙偏移,或每个同步信息块SSB关联的RACH时机数,其中,所述周期缩放因子和所述PRACH配置索引用于确定PRACH资源的周期。
  30. 如权利要求27-29任一所述的通信装置,其特征在于,所述发送单元还用于向所述源宿主基站发送特定条件,其中,所述特定条件包括:
    所述IAB节点的所述MT对第一信号的测量结果小于第一预设阈值,所述第一信号是所述IAB节点的当前服务节点发送的;或者,
    所述IAB节点的所述MT对第二信号的测量结果大于第二预设阈值,所述第二信号不是所述IAB节点的当前服务节点发送的;或者,
    所述IAB节点的所述MT在第一载波链路上发生波束失败,所述第一载波链路为所述IAB节点与所述IAB节点的当前服务节点之间的通信链路;或者,
    所述IAB节点的所述MT在第一载波链路上发生无线链路失败,所述第一载波链路为所述IAB节点与所述IAB节点的当前服务节点之间的通信链路;或者,
    所述IAB节点的所述MT从接收到来自源宿主基站的配置信息开始所累积的时长满足预设时长;或者,
    所述IAB节点的所述MT开始或完成随机接入过程;或者,
    所述IAB节点的所述MT接收到来自所述源宿主基站的第一信令,所述第一信令用于指示所述IAB节点切换到第一目标宿主基站;或者,
    区域标识ID;或者,
    小区列表;或者;
    宿主基站列表。
  31. 一种通信装置,其特征在于,包括:所述通信装置包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算机程序,使得所述通信装置实现如权利要求1~8或9~11或12~15中任一项所述的方法。
  32. 一种通信系统,其特征在于,所述通信系统包括如权利要求16~23任一所述的通信装置和如权利要求24~26任一所述的通信装置,以及如权利要求27~30任一所述的通信装置。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~8或9~11或12~15中任意一项所述的方法。
  34. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,使所述计算机执行如权利要求1~8或9~11或12~15中任意一项所述的方法。
PCT/CN2020/074937 2020-02-12 2020-02-12 一种通信方法及通信装置 WO2021159341A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20918995.0A EP4106403A4 (en) 2020-02-12 2020-02-12 COMMUNICATION METHOD AND COMMUNICATION APPARATUS
CN202080094489.7A CN115039443B (zh) 2020-02-12 2020-02-12 一种通信方法及通信装置
PCT/CN2020/074937 WO2021159341A1 (zh) 2020-02-12 2020-02-12 一种通信方法及通信装置
US17/885,634 US20220386187A1 (en) 2020-02-12 2022-08-11 Communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074937 WO2021159341A1 (zh) 2020-02-12 2020-02-12 一种通信方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/885,634 Continuation US20220386187A1 (en) 2020-02-12 2022-08-11 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021159341A1 true WO2021159341A1 (zh) 2021-08-19

Family

ID=77291357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074937 WO2021159341A1 (zh) 2020-02-12 2020-02-12 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20220386187A1 (zh)
EP (1) EP4106403A4 (zh)
CN (1) CN115039443B (zh)
WO (1) WO2021159341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077922A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Synchronization signal block forwarding
CN116033486B (zh) * 2023-03-29 2023-06-23 广州世炬网络科技有限公司 一种iab宿主节点的切换预处理方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076041A (zh) * 2011-01-30 2011-05-25 大唐移动通信设备有限公司 一种资源分配方法和设备
US20190394738A1 (en) * 2018-06-26 2019-12-26 Qualcomm Incorporated Timing alignment timer in a wireless communication network
WO2019242612A1 (en) * 2018-06-21 2019-12-26 Jrd Communication (Shenzhen) Ltd Transmission techniques in a cellular network
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149642B (zh) * 2018-02-12 2021-12-10 华为技术有限公司 一种中继节点同步信号的发送方法及装置
WO2020027491A1 (ko) * 2018-07-30 2020-02-06 주식회사 케이티 릴레이 노드에서 데이터를 처리하는 방법 및 그 장치
WO2021032905A1 (en) * 2019-08-16 2021-02-25 Nokia Solutions And Networks Oy Controlling operations of an integrated access and backhaul (iab) node

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076041A (zh) * 2011-01-30 2011-05-25 大唐移动通信设备有限公司 一种资源分配方法和设备
WO2019242612A1 (en) * 2018-06-21 2019-12-26 Jrd Communication (Shenzhen) Ltd Transmission techniques in a cellular network
US20190394738A1 (en) * 2018-06-26 2019-12-26 Qualcomm Incorporated Timing alignment timer in a wireless communication network
CN110662266A (zh) * 2018-06-29 2020-01-07 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: ""Study on Integrated Access and Backhaul; (Release 15)"", 3GPP TR 38.874 1.0.0, 31 December 2018 (2018-12-31), XP055712962 *
SAMSUNG: ""IAB failure recovery as part of route management"", 3GPP TSG-RAN WG3- AH 1807 R3-183865, 6 July 2018 (2018-07-06), XP051529747 *
See also references of EP4106403A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033512A (zh) * 2023-03-30 2023-04-28 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质
CN116033512B (zh) * 2023-03-30 2023-06-23 广州世炬网络科技有限公司 自回传iab网络中iab宿主节点切换方法、装置、设备及介质

Also Published As

Publication number Publication date
US20220386187A1 (en) 2022-12-01
CN115039443B (zh) 2024-05-14
EP4106403A4 (en) 2023-04-05
EP4106403A1 (en) 2022-12-21
CN115039443A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US10880799B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
US11399361B2 (en) V2X sidelink communication
WO2020143692A1 (zh) 通信方法和通信装置
WO2020200135A1 (zh) 一种资源配置方法及通信装置
US20230189091A1 (en) Iab node configuration method and communication apparatus
WO2021159341A1 (zh) 一种通信方法及通信装置
WO2020063959A1 (zh) 一种功率控制的方法和装置
US11019543B2 (en) Methods and system for managing handover procedure in a radio access network
WO2021104192A1 (zh) 一种通信方法与通信装置
WO2021018283A1 (zh) 通信方法和通信装置
WO2020216133A1 (zh) 一种通信方法及设备
US20210297901A1 (en) Wireless communication method, terminal device and network device
CN115398975A (zh) 用于侧链路中继通信的信令传输的系统和方法
CN116326161A (zh) 信号的接收和发送方法、装置和通信系统
CN114586318B (zh) 使用波束成形进行数据传输的网络节点、终端设备及其中的方法
WO2014045319A1 (ja) 無線通信方法、無線通信システム、無線局および無線端末
US11044701B2 (en) Communication method and communication apparatus
WO2020015715A1 (zh) 一种数据发送的方法和装置
JP2024502746A (ja) 測定報告のための端末デバイス、ネットワークノード、およびそれらにおける方法
WO2021208888A1 (zh) 一种通信方法和装置
WO2021258766A1 (zh) 一种配置终端设备的方法及设备
US11736184B2 (en) Cellular service improvement and extension by user equipment
TWI744442B (zh) 共享通訊媒體上的移動感知爭用程序
CN113455100A (zh) 用于中继通信的方法和装置
CN112770366B (zh) 一种通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918995

Country of ref document: EP

Effective date: 20220912