WO2020015715A1 - 一种数据发送的方法和装置 - Google Patents

一种数据发送的方法和装置 Download PDF

Info

Publication number
WO2020015715A1
WO2020015715A1 PCT/CN2019/096626 CN2019096626W WO2020015715A1 WO 2020015715 A1 WO2020015715 A1 WO 2020015715A1 CN 2019096626 W CN2019096626 W CN 2019096626W WO 2020015715 A1 WO2020015715 A1 WO 2020015715A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
network device
communication capability
transmission
srs resource
Prior art date
Application number
PCT/CN2019/096626
Other languages
English (en)
French (fr)
Inventor
李晓翠
薛祎凡
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020015715A1 publication Critical patent/WO2020015715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a method and an apparatus for sending data.
  • a terminal when a terminal sends a signal, after the baseband generates a baseband signal, it generates a radio frequency signal through a radio frequency transmission link (hereinafter referred to as a transmission link), and then sends it out through an antenna.
  • a transmission link When the terminal receives a signal, there will also be a corresponding radio frequency receiving link (hereinafter simply referred to as a receiving link) (not shown in FIG. 1).
  • a receiving link hereinafter simply referred to as a receiving link
  • the terminal can support multiple transmission links.
  • the terminal supports one transmit link and two receive links, which can be expressed as:
  • the terminal supports 1T (Transmit) 2R (Receive).
  • a terminal when it sends uplink data to a cell, it usually selects an SRS closest to the current time from one or more sent sounding reference signals (SRSs) that have been sent before the current time. Send uplink data according to the antenna port (port number) used by the selected SRS.
  • SRSs sent sounding reference signals
  • the number of antenna ports used by the terminal to send uplink data may change. In this way, the number of sending ports that the terminal can use to send uplink data to a cell and the number of ports used by the selected SRS may occur. The number of antenna ports does not match.
  • the embodiments of the present application provide a data sending method and device, which are used to solve the problem that the number of sending ports that can be used to send uplink data in the prior art does not match the number of the closest SRS resource ports that have been sent.
  • an embodiment of the present application provides a data sending method, including: a terminal obtaining first instruction information, where the first instruction information is used to instruct the terminal to communicate a network device with uplink data communication capabilities; the terminal Receive first scheduling information at a first moment, the first scheduling information is used to schedule the terminal to send the uplink data; and the terminal sends the uplink data using the communication capability according to a first sounding reference signal SRS resource set
  • the first sounding reference signal SRS resource set is an SRS resource set sent before the terminal at the first time, and the communication capability associated with the first SRS resource set is the same as the communication capability indicated by the first indication information .
  • An embodiment of the present application provides a method for sending data.
  • a terminal obtains first instruction information for determining a communication capability used by the terminal when sending uplink data to a network device, and determines the sent information associated with sending the uplink data according to the first instruction information.
  • the SRS resource set in the one or more SRS resource sets is closest to the downlink control channel carrying the uplink data's authorization information and has the same communication capability as indicated by the first indication information. This not only improves transmission link utilization and uplink transmission rate in the case of transmission link sharing, but also prevents the communication capabilities used by the PUSCH from mismatching with the communication capabilities corresponding to the closest set of transmitted SRS resources. problem.
  • the method provided in the embodiment of the present application further includes: obtaining, by the terminal, second instruction information for instructing the terminal to use the communication capability to send the uplink data to the network device in multiple time resources The second indication information of the time resource. This facilitates determining the time resource for sending uplink data to the network device using the communication capability.
  • the communication capability includes one or more of the following parameters: the maximum number of transmission links, the maximum number of transmission layers, the maximum number of transmission ranks, and the maximum number of antenna ports.
  • the method provided in the embodiment of the present application further includes: the first indication information indicates that the maximum number of transmission links when the terminal communicates with the network device is multiple, and the terminal determines to use the first communication capability to send uplink data.
  • the first instruction information indicates that the maximum number of transmission links when the terminal communicates with the network device is a single, and the terminal determines to use the first communication capability to send uplink data.
  • the first communication capability is greater than the second communication capability. Further avoiding the problem that the number of sending ports that the PUSCH can use does not match the number of the closest SRS resource ports that have been sent.
  • the first instruction information indicates that the maximum number of transmission links when the terminal communicates with the network device is multiple, the maximum number of antenna ports determined by the terminal is multiple, and the first instruction information indicates the maximum transmission when the terminal communicates with the network device.
  • the number of links is single, and the maximum number of antenna ports determined by the terminal is single.
  • At least one of the first indication information and the second indication information is carried in the downlink control information. You can avoid signaling overhead.
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals. In this way, other terminals in the same group as the terminal can determine to use the same number of antenna ports.
  • the first SRS resource set includes one or more SRS resources
  • the first scheduling information further includes an SRI
  • the method further includes: the terminal selects an SRS resource using the The communication capability described above sends uplink data.
  • the terminal determines that the communication capability is the first communication capability, and the terminal sends the uplink data to the network device using the first communication capability according to the first sounding reference signal SRS resource set.
  • the terminal determines that the communication capability is the second communication capability, and the terminal sends the uplink data to the network device using the second communication capability according to the first sounding reference signal SRS resource set.
  • the terminal determines that the maximum number of antenna ports is a single, and then the terminal sends a single antenna port to the network device according to the first sounding reference signal SRS resource set. Specifically, the terminal determines that the maximum number of antenna ports is multiple, and then the terminal uses multiple antenna ports to send uplink data to the network device according to the first sounding reference signal SRS resource set.
  • an embodiment of the present application provides a method for instructing uplink transmission, including: a network device sends first instruction information to a terminal, where the first instruction information is used for a terminal's communication capability for sending uplink data to the network device, Sending first scheduling information to the terminal at a first moment, the first scheduling information is used to schedule the terminal to send uplink data.
  • the network device receives the uplink data sent by the terminal according to the indicated communication capability.
  • the method for instructing uplink transmission further includes: the network device sends second instruction information to the terminal, where the second instruction information is used to instruct the terminal to use the communication in multiple time resources Ability to send time resources of the uplink data to the network device.
  • the first indication information indicates that a communication capability when the terminal communicates with the network device is a first communication capability.
  • the first indication information indicates that the communication capability when the terminal communicates with the network device is a second communication capability.
  • the first communication capability is greater than the second communication capability.
  • At least one of the first indication information and the second indication information is carried in the downlink control information.
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals.
  • the communication capability includes one or more of the following parameters: the maximum number of transmission links, the maximum number of transmission layers, the maximum number of transmission ranks, and the maximum number of antenna ports.
  • the network device receives the uplink data sent by the terminal according to the indicated communication capability, including: the maximum number of transmission links indicated by the first instruction information is a single, and the network device transmits data in a single transmission according to the indicated communication capability. Receive the uplink data sent by the terminal on the number of links. Or the communication capability indicated by the first instruction information is that the maximum number of transmission links is multiple, then the network device receives uplink data sent by the terminal on the multiple number of transmission links according to the indicated communication capability.
  • the number of transmission Ranks indicated by the first indication information is the number of first transmission rank Ranks, and the network device receives uplink data sent by the terminal according to the indicated number of first transmission Ranks.
  • the number of transmission Ranks indicated by the first instruction information is the number of second transmission Ranks, and the network device receives the uplink data sent by the terminal according to the second number of transmission Ranks indicated.
  • the network device receiving the uplink data sent by the terminal according to the indicated communication capability includes: within the time resource indicated by the second instruction information, the network device receives the terminal transmission according to the communication capability indicated by the first instruction information. Uplink data.
  • an embodiment of the present application provides a device for sending data.
  • the device for sending data may implement the method described in the first aspect or any possible implementation manner of the first aspect, and therefore may also implement the first aspect. Or the beneficial effect in any possible implementation manner of the first aspect.
  • the device for sending data may be a terminal, or may be a device that can support the terminal to implement the first aspect or the method in any possible implementation manner of the first aspect, such as a chip applied to the terminal.
  • the device for sending data may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An apparatus for sending data includes: a receiving unit, configured to obtain first indication information, where the first indication information is used to instruct the terminal to send a communication capability of uplink data to a network device; A scheduling information, the first scheduling information is used to schedule the terminal to send the uplink data; and a sending unit is configured to send the uplink data using the communication capability according to a first sounding reference signal SRS resource set, the first A sounding reference signal SRS resource set is an SRS resource set sent before the first time, and the communication capability associated with the first SRS resource set is the same as the communication capability indicated by the first indication information.
  • the receiving unit is further configured to obtain second instruction information, where the second instruction information is used to instruct the terminal to use the communication capability to send the network device to the network device in multiple time resources. Time resources for uplink data.
  • the communication capability includes one or more of the following parameters:
  • the maximum number of transmission links the maximum number of transmission layers, the maximum number of transmission Ranks, and the maximum number of antenna ports.
  • At least one of the first indication information and the second indication information is carried in downlink control information (Downlink Control Information) (DCI).
  • DCI Downlink Control Information
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals.
  • the first SRS resource set includes one or more SRS resources
  • the first scheduling information includes SRI
  • a determining unit is configured to select an SRS resource from the first SRS resource set to associate with the uplink data.
  • the sending unit of the apparatus is specifically configured to: when determining that the unit communication capability is the first communication capability, use the first communication capability to send uplink data to the network device according to the first SRS resource set. .
  • the sending unit is specifically configured to: when it is determined that the communication capability of the unit is the second communication capability, use the second communication capability to send uplink data to the network device according to the first SRS resource set.
  • an embodiment of the present application further provides a device for sending data.
  • the device for sending data may be a terminal or a chip applied to the terminal.
  • the device for sending data includes at least one processor and an interface.
  • a circuit, wherein the interface circuit is configured to support a device for sending data to obtain first instruction information, where the first instruction information is used to instruct the terminal to communicate with a network device for uplink data; First scheduling information for scheduling the terminal to send the uplink data; and for sending the uplink data using the communication capability according to a first sounding reference signal SRS resource set, the first scheduling information
  • the sounding reference signal SRS resource set is an SRS resource set sent before the first time, and the communication capability associated with the first SRS resource set is the same as the communication capability indicated by the first indication information.
  • the interface circuit is further configured to obtain second instruction information, where the second instruction information is used to instruct the terminal to use the communication capability to send the network device to the network device in multiple time resources. Time resources for uplink data.
  • the communication capability includes one or more of the following parameters:
  • the maximum number of transmission links the maximum number of transmission layers, the maximum number of transmission Ranks, and the maximum number of antenna ports.
  • At least one of the first indication information and the second indication information is carried in downlink control information (Downlink Control Information) (DCI).
  • DCI Downlink Control Information
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals.
  • the first SRS resource set includes one or more SRS resources
  • the first scheduling information includes an SRI
  • at least one processor configured to select an SRS resource from the first SRS resource set to be associated with uplink data.
  • the interface circuit provided in the embodiment of the present application is specifically configured to determine that the communication capability is the first communication capability on at least one processor, and then use the first communication capability to send uplink to the network device according to the first SRS resource set. data.
  • the interface circuit is specifically configured to determine that the communication capability is the second communication capability on at least one processor, and then use the second communication capability to send uplink data to the network device according to the first SRS resource set.
  • an interface circuit of the data sending device and at least one processor are coupled to each other.
  • the apparatus for sending data may further include a memory for storing code and data, and at least one processor, the interface circuit, and the memory are coupled to each other.
  • an embodiment of the present application provides a device for indicating uplink transmission.
  • the device for indicating uplink transmission may implement the method described in the second aspect or any one of the possible implementation manners of the second aspect, and therefore may also implement the first Beneficial effects in the second aspect or any one of the possible implementation manners of the second aspect.
  • the apparatus for instructing uplink transmission may be a network device, or may be an apparatus that can support the network device to implement the second aspect or the method in any possible implementation manner of the second aspect, such as a chip applied to a network device.
  • the apparatus for instructing uplink transmission may implement the foregoing method by using software, hardware, or executing corresponding software by hardware.
  • An apparatus for instructing uplink transmission includes: a sending unit, configured to send first indication information to a terminal, the first indication information being used for a terminal's communication capability for sending uplink data to a network device, and used for transmitting a first time to the terminal.
  • Send first scheduling information where the first scheduling information is used to schedule a terminal to send uplink data.
  • the receiving unit is configured to receive uplink data sent by the terminal according to the indicated communication capability.
  • the sending unit is further configured to send second instruction information to the terminal, where the second instruction information is used to instruct the terminal to use a communication capability indicated by the first instruction information to send to the network device in multiple time resources. Time resources for uplink data.
  • the first indication information indicates that the communication capability when the terminal communicates with the network device is the first communication capability.
  • the first indication information indicates that the communication capability when the terminal communicates with the network device is the second communication capability. The first communication capability is greater than the second communication capability.
  • At least one of the first indication information and the second indication information is carried in the downlink control information.
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals.
  • the communication capability includes one or more of the following parameters: the maximum number of transmission links, the maximum number of transmission layers, the maximum number of transmission Ranks, and the maximum number of antenna ports.
  • the communication capability indicated by the first indication information is a first communication capability
  • the receiving unit is specifically configured to receive uplink data sent by the terminal based on the first communication capability.
  • the communication capability indicated by the first instruction information is a second communication capability, and the receiving unit is specifically configured to receive uplink data sent by the terminal based on the second communication capability indicated by the first instruction information.
  • the first communication capability includes one or more of the following: a maximum number of transmission links, a maximum number of transmission layers, a maximum number of transmission ranks, and a maximum number of antenna ports Each.
  • the second communication capability includes one or more of the following: the maximum number of transmission links is single, the maximum number of transmission layers is single, the maximum number of transmission ranks is single, and the maximum number of antenna ports is single.
  • the communication capability indicated by the first indication information is the first communication capability
  • the receiving unit is specifically configured to be based on a maximum number of transmission links / multiple transmission layers / multiple / maximum transmission ranks as The number of multiple / maximum antenna ports is uplink data sent by multiple receiving terminals.
  • the communication capability indicated by the first instruction information is the second communication capability, and the receiving unit is specifically configured to receive a single receiver based on a maximum number of transmission links, a single maximum transmission layer number, a single maximum transmission rank number, and a maximum antenna port number. Uplink data sent by the terminal.
  • the receiving unit is specifically configured to receive uplink data sent by the terminal within the time resource indicated by the second instruction information according to the communication capability indicated by the first instruction information.
  • an embodiment of the present application further provides a device for indicating uplink transmission.
  • the device for indicating uplink transmission may be a network device or a chip applied to a network device.
  • the device for indicating uplink transmission includes: at least A processor and an interface circuit, where the interface circuit is configured to support the apparatus for indicating uplink transmission to perform a message on the apparatus side for indicating uplink transmission as described in any one of the possible implementation manners of the second aspect to the second aspect. / Data receiving and sending steps.
  • At least one processor is configured to support the apparatus for instructing uplink transmission to perform the steps of performing message / data processing on the apparatus for instructing uplink transmission as described in any one of the possible implementation manners of the second aspect to the second aspect.
  • the interface circuit is configured to send the first indication information to the terminal, where the first indication information is used for the communication capability of the terminal to send uplink data to the network device, and is used to send the first information to the terminal at the first moment. Scheduling information, where the first scheduling information is used to schedule a terminal to send uplink data.
  • the interface circuit is configured to receive uplink data sent by the terminal according to the indicated communication capability.
  • the interface circuit is further configured to send the second instruction information to the terminal, where the second instruction information is used to instruct the terminal to send, to the network device, the communication capability indicated by the first instruction information in multiple time resources. Time resources for uplink data.
  • the first indication information indicates that the communication capability when the terminal communicates with the network device is the first communication capability.
  • the first indication information indicates that the communication capability when the terminal communicates with the network device is the second communication capability. The first communication capability is greater than the second communication capability.
  • At least one of the first indication information and the second indication information is carried in the downlink control information.
  • At least one of the first indication information and the second indication information is carried in a group common downlink control channel shared by the terminal and other terminals.
  • the communication capability includes one or more of the following parameters: the maximum number of transmission links, the maximum number of transmission layers, the maximum number of transmission Ranks, and the maximum number of antenna ports.
  • the communication capability indicated by the first instruction information is the first communication capability
  • the interface circuit is specifically configured to receive uplink data sent by the terminal based on the first communication capability.
  • the communication capability indicated by the first instruction information is the second communication capability
  • the interface circuit is specifically configured to receive uplink data sent by the terminal based on the second communication capability indicated by the first instruction information.
  • the first communication capability includes one or more of the following: a maximum number of transmission links, a maximum number of transmission layers, a maximum number of transmission ranks, and a maximum number of antenna ports Each.
  • the second communication capability includes one or more of the following: the maximum number of transmission links is single, the maximum number of transmission layers is single, the maximum number of transmission ranks is single, and the maximum number of antenna ports is single.
  • the communication capability indicated by the first instruction information is the first communication capability
  • the interface circuit is specifically configured to be based on a maximum number of transmission links / multiple transmission layers / multiple / maximum transmission ranks as The number of multiple / maximum antenna ports is uplink data sent by multiple receiving terminals.
  • the communication capability indicated by the first instruction information is the second communication capability, and the interface circuit is specifically used for receiving based on the maximum number of transmission links being single, the maximum number of transmission layers being single, the maximum number of transmitting Ranks being single, and the maximum number of antenna ports being single reception. Uplink data sent by the terminal.
  • the interface circuit and the at least one processor of the device for indicating uplink transmission are coupled to each other.
  • the apparatus for instructing uplink transmission may further include a memory, configured to store code and data, and the processor, the interface circuit, and the memory are coupled to each other.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the computer is caused to execute the first aspect or various possible implementations of the first aspect. A method of data transmission described in the method.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the second aspect or various possible implementations of the second aspect.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the first aspect or one of the data transmission methods described in various possible implementation manners of the first aspect. method.
  • the present application provides a computer program product including instructions.
  • the instructions When the instructions are run on a computer, the computer is caused to execute the second aspect or one of the various possible implementation manners of the second aspect to instruct uplink transmission. Methods.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor.
  • the processor is configured to run a computer program or instruction to implement the first aspect or various aspects of the first aspect.
  • the interface circuit is used to communicate with other modules than the chip.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and an interface circuit.
  • the interface circuit is coupled to the processor.
  • the processor is configured to run a computer program or an instruction to implement various aspects of the second aspect or the second aspect A method for indicating uplink transmission described in a possible implementation manner.
  • the interface circuit is used to communicate with other modules than the chip.
  • the chip provided in the embodiment of the present application further includes a memory for storing a computer program or an instruction.
  • a communication system is provided in an embodiment of the present application.
  • the communication system includes the data transmission device provided by the third aspect or various possible implementation manners of the third aspect, and various aspects of the fourth aspect or the fourth aspect.
  • An apparatus for indicating uplink transmission provided by a possible implementation manner.
  • the communication system provided in the eleventh aspect may further include other equipment, which is not limited in the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a radio frequency transmission link according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another communication system according to an embodiment of the present application.
  • FIG. 4 is a first schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 6 is a first schematic flowchart of a data sending method interaction according to an embodiment of the present application.
  • FIG. 7 is a second schematic flowchart of a data sending method interaction according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of switching of a maximum number of transmission links according to an embodiment of the present application.
  • FIG. 9 is a first schematic structural diagram of a data sending apparatus according to an embodiment of the present application.
  • FIG. 10 is a second schematic structural diagram of a data sending apparatus according to an embodiment of the present application.
  • FIG. 11 is a third structural schematic diagram of a data sending apparatus according to an embodiment of the present application.
  • FIG. 12 is a first schematic structural diagram of a device for indicating uplink transmission according to an embodiment of the present application.
  • FIG. 13 is a second schematic structural diagram of a device for indicating uplink transmission according to an embodiment of the present application.
  • FIG. 14 is a third structural schematic diagram of an apparatus for indicating uplink transmission according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the network The evolution of the architecture and the emergence of new business scenarios. The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship between related objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish between the same or similar items having substantially the same functions and functions. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first” and “second” are not necessarily different.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • TDMA frequency division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • system is used interchangeably with "network.”
  • the CDMA system can implement wireless technologies such as universal wireless terrestrial access (UTRA) and CDMA2000.
  • UTRA may include Wideband CDMA (WCDMA) technology and other CDMA modified technologies.
  • CDMA2000 can cover the Interim Standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • the TDMA system can implement wireless technologies such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • OFDMA system can implement such as evolved universal wireless land access (evolved UTRA, E-UTRA), ultra mobile broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDMA And other wireless technologies.
  • UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP is a new version of UMTS using E-UTRA in long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • NR New Radio
  • the communication system may also be applicable to future-oriented communication technologies, and both are applicable to the technical solutions provided in the embodiments of the present application.
  • FIG. 2 shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes: one or more terminals (FIG. 2 In this example, one terminal is used, that is, terminal 101), and the first network device 102 and the second network device 103 that communicate with one or more terminals.
  • the first network device 102 and the second network device 103 communicate through a first interface.
  • the first network device 102 and the second network device 103 communicate with one or more terminals through a second interface, respectively.
  • the cell covered by the network device may be one or more cells, which is not specifically limited in this application.
  • the cell covered by the first network device 102 is the first cell 1
  • the cell covered by the second network device 103 is the second cell 2. It can be understood that, the embodiment of the present application is described by using a network device covering a cell as an example.
  • the first network device 102 and the second network device 103 are configured to provide wireless resources for one or more terminals 101.
  • One of the first network device 102 and the second network device 103 is used as a primary network device, and the other network device is used as a secondary network device.
  • the first network device 102 is a primary network device
  • the second network device 103 is a secondary network device.
  • the primary network device refers to the first network device that the terminal 101 accesses during the random access process.
  • the primary network device is responsible for establishing a control plane connection with the control plane entity of the core network, transmitting signaling messages, and determining whether to create a secondary base station for the terminal 101, and selecting a secondary network device for the terminal 101.
  • the secondary network device which is a second network device other than the primary network device, is a node that provides additional wireless resources for the terminal 101, and there may be no direct control plane connection with the core network control plane entity.
  • the first network device 102 and the second network device 103 may be network devices of the same network standard.
  • the corresponding network standards of the first network device 102 and the second network device 103 are evolved base stations (evolved NodeB, eNB, or eNodeB) in a 4G scenario.
  • the first interface is an X2 interface.
  • the respective network standards corresponding to the first network device 102 and the second network device 103 may be base stations (for example, gNB) in an NR scenario.
  • the first network device 102 and the second network device 103 in the embodiment of the present application may be network devices of different network standards.
  • the network standard corresponding to the first network device 102 is an eNB in a 4G scenario
  • the network standard corresponding to the second network device 103 is a gNB in an NR scenario.
  • the network standard corresponding to the first network device 102 is gNB in the NR scenario
  • the network standard corresponding to the second network device 103 is the eNB in the 4G scenario.
  • the first network device 102 is a 3rd Generation Partnership Project (3GPP) protocol base station
  • the second network device 103 is a non-3GPP base station.
  • 3GPP 3rd Generation Partnership Project
  • first network device 102 and the second network device 103 have different network systems, the names of the first interfaces also differ. Therefore, the following will be introduced separately:
  • the first interface is an Xn interface, which supports signaling interaction between the first network device 102 and the second network device 103.
  • the first interface is an X2 interface.
  • the network standard corresponding to the first network device 102 and the second network device 103 is an eNB
  • the first interface is an X2 interface.
  • the network standard corresponding to the first network device 102 is gNB under NR
  • the network standard corresponding to the second network device 103 is eNB under LTE
  • the first interface is an X2 interface.
  • the name of the first interface is just an example, and the name of the interface between the first base station and the second base station is not limited in this embodiment of the present application.
  • a wireless Uu port is established between the primary network device and the terminal.
  • the first network device 102 can communicate with User plane data and control plane signaling are transmitted between the terminals.
  • the second network device 103 serves as a secondary network device.
  • a wireless Uu port is also established between the second network device 103 and the terminal, and can transmit user plane data with the terminal. That is, the terminal is in a dual connectivity architecture mode (Dual Connectivity, DC).
  • DC Dual Connectivity
  • the user plane of the Uu interface mainly transmits user data; the control plane transmits related signaling, and establishes, reconfigures, and releases various mobile communication radio bearer services.
  • any one of the one or more terminals has at least two transmission links (that is, the transmission links in the following embodiments, that is, the transmission links described later in this application refer to the terminals and the first cell / A transmission link used by the two cells for uplink transmission) and at least two reception links.
  • the terminal uses at least one transmission link among at least two transmission links to send uplink data or uplink signaling to the first cell / second cell.
  • the terminal may receive downlink data or downlink signaling sent by network devices to which the first cell / second cell respectively belong, through at least one of the at least two receiving links.
  • the terminal 101 has multiple transmission links, and the multiple transmission links are used for the first cell 1 covered by the terminal 101 and the first network device 102 and the first cell covered by the second network device 103.
  • Two cells 2 communicate.
  • This embodiment of the present application does not limit the mapping relationship between each transmission link in a plurality of transmission links and each cell. That is, when the terminal 101 needs to communicate with a certain cell, the terminal 101 can arbitrarily select at least one transmission link from a plurality of transmission links to communicate with the cell. Of course, a mapping relationship between each cell and at least one transmission link may also be established in advance. When the terminal 101 needs to communicate with a certain cell, communication is performed using a transmission link having a mapping relationship with the cell.
  • the following embodiment uses a mapping relationship between each cell and at least one transmission link.
  • the terminal 101 uses at least one transmission link (for example, the first transmission link 104) from among multiple transmission links and The first cell 1 covered by the first network device 102 communicates, and the terminal 101 uses at least one other transmission link (for example, the second transmission link 105) among the plurality of transmission links with the second cell covered by the second network device 103 2 communication as an example.
  • each of the first transmission link and the second transmission link in the embodiment of the present application includes at least one transmission link.
  • FIG. 3 illustrates another communication system provided by an embodiment of the present application.
  • the communication system includes: one or more terminals (a terminal is taken as an example in FIG. 3, that is, terminal 101), and communication is performed with one or more terminals.
  • Network equipment 106 a terminal is taken as an example in FIG. 3, that is, terminal 101
  • Network equipment 106 there are two or more cells covered by the network device 106, which is not limited in the embodiment of the present application.
  • the cells covered by the network device 106 are the first cell 1 and the second cell 2 as an example.
  • the terminal 101 can communicate with the first cell 1 and the second cell 2.
  • the terminal 101 uses the first transmission link 104 to communicate with the first cell 1, and the terminal uses the second transmission link 105 to communicate with the second cell 2.
  • the manner in which the terminal communicates with multiple cells included in any one network device can refer to the architecture shown in FIG. 3 This is not limited in the embodiments of the present application.
  • the first network device 102, the network device 106, or the second network device 103 in this application may be a base station capable of communicating with a terminal.
  • a base station capable of communicating with a terminal.
  • it can be an access point (AP) in a Wireless Local Area Network (WLAN), a Global System for Mobile Communications (GSM), or a Code Division Multiple Access (Code Division Multiple Access) Access (CDMA) Base Station (Base Transceiver Station (BTS)
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • NodeB, NB NodeB
  • Evolved NodeB, eNB or eNodeB LTE evolved base station
  • relay station or access point or an in-vehicle device, a wearable device, and a base station (gNB) or a public land mobile network (PLMN) in the future 5G network Network devices in the network, etc.
  • gNB base station
  • PLMN public land mobile network
  • the primary network device can be called a primary base station
  • the secondary network device can be called a secondary base station
  • a terminal is a device that provides voice and / or data connectivity to users.
  • the terminal can also be called User Equipment (UE), Access Terminal (Access Terminal), User Unit (User Nnit), User Station (Mobile Station), Mobile Station (Mobile Station), Mobile Station (mobile), Remote Station (Remote Station), remote terminal (remote terminal), mobile device (Mobile equipment), user terminal (User terminal), wireless communication equipment (wirelesscomeequipment), user agent (User Agent), user equipment (User equipment) or User device.
  • UE User Equipment
  • Access Terminal Access Terminal
  • User Unit User Unit
  • User Station Mobile Station
  • Mobile Station Mobile Station
  • Mobile Station Mobile Station
  • Mobile Station mobile Station
  • Remote Station Remote Station
  • remote terminal remote terminal
  • mobile device Mobile equipment
  • user terminal User terminal
  • wireless communication equipment wirelesscomeequipment
  • user agent User Agent
  • User equipment User equipment
  • the terminal can be a station (STA) in a Wireless Local Area Networks (WLAN), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop) , WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems (such as , A terminal in a fifth-generation (5G) communication network) or a terminal in a future evolved Public Land Mobile Network (PLMN) network.
  • 5G can also be called New Radio (NR).
  • NR New Radio
  • the terminal may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • the future access network can be implemented using the Cloud Radio Access Network (C-RAN) architecture
  • C-RAN Cloud Radio Access Network
  • one possible way is to divide the protocol stack architecture and functions of the traditional base station into two parts, one part is called centralized Central unit (CU), another part is called distributed unit (DU), and the actual deployment of CU and DU is more flexible.
  • the CU parts of multiple base stations are integrated to form a larger function. entity.
  • FIG. 4 it is a schematic diagram of a network architecture according to an embodiment of the present application.
  • the network architecture includes a core network (CN) device and an access network (taking a Radio Access Network (RAN) as an example) device.
  • the RAN device includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or multiple nodes.
  • the radio frequency device can be implemented independently from the baseband device remotely, can also be integrated into the baseband device, or part of the remote part Integrated in the baseband device.
  • a RAN device eNB
  • eNB includes a baseband device and a radio frequency device, where the radio frequency device can be remotely arranged relative to the baseband device (for example, a radio remote unit (RRU) relative to the baseband processing unit ( Building, Base Band, and Unit (BBU)), the RAN device is implemented by a node, which is used to implement Radio Resource Control (RRC), Packet Data Convergence Layer Protocol (PDCP), and radio link control (radio link control (RLC)), media access control (Medium access control (MAC)) and other protocol layer functions.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Layer Protocol
  • RLC radio link control
  • MAC Medium access control
  • the baseband device may include a Centralized Unit (CU) and a Distributed Unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the protocol layer and above in the packet data convergence layer are set in the CU and the protocol layers below PDCP, such as radio link control (Radio Link Control). , RLC) and media access control layer functions are set in the DU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the protocol layer and above in the packet data convergence layer are set in the CU and the protocol layers below PDCP, such as radio link control (Radio Link Control). , RLC) and media access control layer functions are set in the DU.
  • Radio Link Control Radio Link Control
  • This division of the protocol layer is only an example. It can also be divided at other protocol layers, for example, at the RLC layer.
  • the functions of the RLC layer and above are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU.
  • it is divided in a certain protocol layer, for example, setting some functions of the RLC layer and functions of the protocol layer above the RLC layer in the CU, and setting the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer in the DU.
  • it can also be divided in other ways, for example, by delay, and the function that needs to meet the delay requirement in processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or part of the remote can be integrated in the DU, without any restrictions here.
  • control plane Control Plane, CP
  • UP user plane
  • the downlink data transmission process is as follows: After receiving the downlink data sent by the core network, the CU distributes the downlink data to the DU, and the DU sends the received downlink data to the terminal.
  • the uplink data transmission process is: the terminal sends uplink data to the DU, the DU sends the received uplink data to the CU, and after receiving the uplink data sent by the DU, the CU sends the received uplink data to the core network.
  • data generated by the CU can be sent to the terminal through the DU, or data generated by the terminal can be sent to the CU through the DU.
  • the DU can pass the protocol layer to the terminal or the CU without parsing the data.
  • the data of the RRC or PDCP layer is finally processed as data of the physical layer (PHY) and sent to the terminal, or it is transformed from the data of the received PHY layer.
  • the RRC or PDCP layer data can also be considered to be sent by the DU.
  • the CU is divided into network devices in the RAN.
  • the CU may also be divided into network devices in the CN, which is not limited herein.
  • the devices in the following embodiments of the present application may be located in a terminal or a network device according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a RAN device including the functions of the CU node and the DU node.
  • the terminal can usually use different communication capabilities when communicating with different cells.
  • the terminal has communication capability 1 when communicating with the first cell, and has communication capability 2 when communicating with the second cell.
  • the terminal does not use the communication capability 2 to communicate with the second cell at all times. Therefore, when the terminal does not have uplink transmission on the communication capability 2, the communication capability 2 is in an idle state.
  • a terminal when a terminal performs uplink transmission with a cell covered by each network device, it corresponds to a transmission link / antenna port / transmission rank / transport layer, that is, N cells, and the terminal usually has N transmission link / antenna ports. / Transmission Rank / Transport Layer. Therefore, when multiple transmission links / antenna ports / transmission ranks / transmission layers are instructed when the terminal communicates with the cell, the terminal can use all transmission links / antenna ports / transmission ranks in the idle state among the N transmission links. / The transmission layer performs uplink transmission with the cell.
  • the N transmission links / antenna ports / transmission Rank / transport layer include not only the transmission link / antenna port / transmission Rank / transport layer between the terminal and the cell, but also the transmission links / terminals and other cells. At least one of one or more transmission links / antenna ports / transmission Ranks / transmission layers.
  • the terminal 101 can use the idle state.
  • the first transmission link 104 in the state and the second transmission link 105 between the terminal 101 and the second cell perform uplink transmission with the second cell (that is, the maximum number of transmission links between the terminal 101 and the second cell is multiple (Referred to as 2T)).
  • the terminal 101 uses the second transmission link between the terminal 101 and the second cell to perform uplink transmission with the second cell ( That is, the maximum number of transmission links between the terminal 101 and the second cell is a single (1T for short).
  • the network device can determine the state of the transmission link between the terminal and a cell on at least two time resources (idle state or non-idle state), and send an instruction to the terminal to instruct the terminal to perform 1T / when communicating with another cell. 2T dynamic switching. That is, when the first transmission link 104 is in an idle state, the network device may instruct the terminal to perform uplink transmission with the second cell using 2T. When the network device determines that the first transmission link 104 is in a non-idle state, the network device may instruct the terminal to perform uplink transmission with the second cell using 1T.
  • the “2T” in the embodiment of the present application refers to: when a terminal communicates with a cell 1, the communication capability used includes not only the communication capability between the terminal and cell 1, but also the communication capability between the terminal and other cells.
  • “1T” in the embodiment of the present application refers to: when a terminal communicates with a cell 1, the communication capability used only includes the communication capability between the terminal and cell 1, and does not include the communication capability between the terminal and other cells .
  • the following descriptions of communication capabilities include: the maximum number of transmission layers, the maximum transmission Rank, or the maximum number of antenna ports is 2T or 1T, you can refer to the description here, and will not repeat them later.
  • the communication effect that the terminal can achieve when using the "2T" communication capability for uplink transmission is greater than the communication effect that the terminal can achieve when using the "1T" communication capability for uplink transmission.
  • the terminal usually has different communication links when performing uplink transmission with different cells.
  • the terminal has at least two transmission links when communicating with at least two cells.
  • the terminal uses different transmission chains with the first cell and the second cell, respectively. Communication (for example, Tx1 and Tx2, where Tx1 is used to communicate with the first cell and Tx2 is used to communicate with the second cell). Because the terminal does not perform uplink transmission with the first cell or the second cell at all times. Therefore, when the terminal does not perform uplink transmission with the first cell, Tx1 between the terminal and the first cell is usually in an idle state.
  • the terminal does not perform uplink transmission with the first cell, if the terminal can perform uplink transmission with the first cell by using Tx1 and Tx2, the data transmission rate between the terminal and the second cell can be improved. Based on this, if the terminal can dynamically switch the transmission link with the second cell based on whether uplink transmission is performed on Tx1 with the first cell, that is, when there is uplink transmission between the terminal and the first cell, the terminal and Tx2 performs uplink transmission with the second cell, that is, 1T. When there is no uplink transmission between the terminal and the first cell, the terminal and the second cell use Tx1 and Tx2 for uplink transmission, that is, 2T.
  • a terminal when it sends uplink data to a cell, it can usually determine the physical uplink shared channel by using the sounding reference signal (SRS) resourceindicator field in the downlink control information (DCI) format (Format) 0_1.
  • SRS sounding reference signal
  • DCI downlink control information
  • Form Format
  • PUSCH Physical UplinkShared Channel
  • SRS resource index in the SRS resource set (resource set) the SRI field in subframe n is associated with the set of SRS resources that have been sent before subframe n closest to subframe n . Therefore, the terminal may send the uplink data to the cell by using the number of ports configured with the SRS resource indicated by the SRS resource index in the transmitted SRS resource set.
  • the terminal uses 2T to send uplink data. If the number of ports configured in the recently sent SRS resource set is 1T, the terminal sends uplink data using 1T.
  • the network device instructs the terminal to perform a 1T / 2T dynamic handover, the network device may instruct the terminal to use 2T to send uplink data, but the number of antenna ports that the terminal can use to send uplink data determined by the SRI field is 1T. That is, the network device instructs the terminal to send 2T uplink data, and the number of ports of the SRS resource determined by the terminal according to the SRI field does not match with 1T.
  • an embodiment of the present application provides a method for sending data.
  • a terminal acquires a communication capability for determining communication with a network device through a terminal, and then determines a distance from the sent SRS resource set to carry the uplink data authorization information.
  • the SRS resource set with the latest downlink control channel and the same number of communication capabilities as used when sending the uplink data. This can avoid the problems existing in the prior art.
  • the communication capability in an idle state refers to: a cell covered by a terminal and a network device does not use the communication capability for uplink transmission within a certain time resource, or the communication capability does not have uplink transmission on a certain time resource.
  • the communication capability in the non-idle state refers to: In a certain time resource, a cell covered by a terminal and a network device uses the communication capability for uplink transmission or the communication capability has uplink transmission.
  • a cell covered by a terminal and a network device uses the communication capability for uplink transmission or the communication capability has uplink transmission.
  • An embodiment of the method for transmitting data in the embodiment of the present application may be a terminal or a device applied to the terminal, such as a chip.
  • An execution subject of a method for indicating uplink transmission may be a network device, or may be an apparatus applied to the network device, for example, a chip.
  • the following embodiments only use the terminal as the execution subject of the method for sending data, and the network device as the execution subject of another method for instructing uplink transmission.
  • an embodiment of the present application provides a schematic flowchart of interaction between a method for sending data and a method for indicating uplink transmission.
  • the method includes:
  • the network device sends first instruction information to the terminal, where the first instruction information is used to indicate the terminal's communication capability for sending uplink data to the network device.
  • the network device that sends the first indication information to the terminal here may be the network device to which the first cell belongs, and the terminal sends the network device to the network device.
  • the network device in the communication capability for sending uplink data may be a network device to which the second cell belongs.
  • the network device that sends the first indication information may be the first network device 102
  • the network device in the communication capability that the terminal sends uplink data to the network device may be the second network device 103.
  • the network device that sends the first instruction information here and the network device that the terminal can use to communicate uplink data to the network device may also be the same network device.
  • both may be the network device to which the second cell belongs.
  • the second network device 103 shown in FIG. 2 is not limited in this embodiment of the present application.
  • the network device here may be a network device to which the first cell and the second cell belong together.
  • the network device here is the network device 106 shown in FIG. 3.
  • the communication capability includes one or more of the following parameters: the maximum number of transmission links, the maximum number of transmission layers, the maximum number of transmission Ranks, and the maximum number of antenna ports.
  • the first indication information may be configured by the network device to the terminal in a dynamic configuration manner.
  • the first indication information may be carried in Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the network equipment adds new signaling (for example, first indication information) to the downlink control information delivered to the terminal, and is used to instruct the terminal to determine the communication capability used when sending uplink data.
  • new signaling for example, first indication information
  • the first indication information is used to indicate that the maximum number of antenna ports used by the terminal is 2T or the maximum number of antenna ports used is 1T.
  • the data rate when the terminal uses the maximum number of antenna ports for uploading and transmitting is 2T is greater than the data rate when the terminal uses the maximum number of antenna ports for uploading and transmitting.
  • the first indication information may be carried in a group common downlink control channel shared by the terminal and other terminals.
  • the network device may add the first indication information by using a common downlink control channel of a common group.
  • the first indication information is carried in a common group common downlink control channel
  • all terminals in the group use the communication capability indicated by the network device for uplink transmission on the corresponding time resource (for example, a slot). .
  • a group includes a terminal 1 and a terminal 2.
  • the first indication information is used to instruct the terminal to use the communication capability 1 for uplink transmission on the time resource 1.
  • the terminal 1 and the terminal 2 respectively use the communication capability 1 on the time resource 1 to perform uplink transmission with their corresponding cells.
  • Terminal 1 and terminal 2 use the communication capability 2 on the time resource 2 to perform uplink transmission with their corresponding cells.
  • the downlink control channel may be a physical downlink control channel (PDCCH). Therefore, the first indication information may be carried in the group common PDCCH and sent to the terminal.
  • PDCH physical downlink control channel
  • the network device may also configure the first indication information to the terminal in other manners, which is not limited in the embodiment of the present application.
  • the size of the first indication information is not limited in the embodiment of the present application.
  • the size of the first indication information may be 1 bit.
  • the terminal has at least two communication capabilities, for example, a first communication capability and a second communication capability.
  • the terminal may use different communication capabilities to send uplink data to the network device at different time resources.
  • the first communication capability is greater than the second communication capability.
  • the first communication capability is greater than the second communication capability means that the effect that the terminal can achieve when sending uplink data to the network device using the first communication capability (for example, sending data rate) is greater than the terminal using the second communication capability to send uplink data to the network device. What you can achieve. For example, the data rate when using the first communication capability is greater than the communication rate when using the second communication capability.
  • the first indication information is used to indicate that the communication capability when the terminal communicates with the network device is the first communication capability.
  • the first communication capability means that the maximum number of transmission links / the maximum number of transmission layers / the maximum number of transmission ranks / the maximum number of antenna ports is 2T.
  • the maximum number of transmission links is two or more, and the two or more transmission links include at least the information between the terminal and cell 1.
  • the first indication information may be a first indicator, and the first indicator is used to indicate that the maximum number of transmission links when the terminal communicates with the network device is 2T.
  • the first indicator is "1".
  • the first indication information is used to indicate that the communication capability used when the terminal sends uplink data is the second communication capability.
  • the second communication capability means that the maximum number of transmission links / the maximum number of transmission layers / the maximum number of transmission ranks / the maximum number of antenna ports is 1T.
  • the maximum number of antenna ports is 1T.
  • the first indication information is a second indicator, and the second indicator may be "0".
  • the maximum antenna port includes at least one antenna port, and the at least one antenna port includes at least the largest antenna port between the terminal and cell 1, and does not include the terminal and other cells Have at least one antenna port in between.
  • the maximum number of transmission layers / the maximum number of transmission ranks / the maximum number of transmission links of 1T refer to the description of the maximum number of transmission links of 1T, which will not be repeated here.
  • the terminal obtains first indication information sent by the network device.
  • the network device sends first scheduling information to the terminal at a first moment, and the first scheduling information is used to schedule the terminal to send uplink data.
  • the first scheduling information may be sent to the terminal by a network device to which a cell in communication with the terminal belongs, or may be sent to the terminal by a network device to which other cells belong.
  • the terminal receives the first scheduling information at a first moment.
  • the terminal determines, from the SRS resource set sent before the first time, an SRS resource set having the same communication capability as indicated by the first instruction information, as the first SRS resource set.
  • step S105 may be implemented in the following manner: the terminal determines that the communication capability used for sending uplink data is the first communication capability, and the terminal selects from the set of SRS resources that have been transmitted before the first moment to be the same as the first communication capability The set of SRS resources is used as the first SRS resource set, and uplink data is sent to the network device using the first communication capability according to the first sounding reference signal SRS resource set. The terminal determines that the communication capability used for sending uplink data is the second communication capability.
  • the terminal selects an SRS resource set with the same second communication capability as the first SRS resource set from the SRS resource set that has been transmitted before the first moment, and according to the first
  • the sounding reference signal SRS resource set uses the second communication capability to send uplink data to the network device.
  • the terminal determines that the maximum number of antenna ports for transmitting uplink data is 2T, and the terminal searches for and carries the uplink data authorization from the SRS resource set sent before the first moment.
  • the information downlink control channel is the closest, and the maximum number of antenna ports in the SRS resource set is 2T as the first SRS resource set.
  • the resource may be related to other parameters of uplink data transmission, such as power control and uplink beam indication, so it can be determined according to the number of indicated antenna ports Which SRS resource set is associated with the uplink data, which facilitates subsequent determination of the SRS resource indicated by the SRI from the SRS resource set associated with the uplink data according to the SRI indication.
  • the terminal sends uplink data using a communication capability according to the first sounding reference signal SRS resource set.
  • the terminal may send uplink data to a network device using an uplink data channel.
  • the uplink data channel may be a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the network device receives uplink data sent by the terminal according to the communication capability indicated by the first instruction information.
  • the network device receives uplink data sent by the terminal based on the maximum number of antenna ports of 2T.
  • the terminal network device receives the uplink data sent by the terminal based on the maximum antenna port number of 1T.
  • the network device receives the uplink data sent by the terminal based on the maximum transmission Rank of 2T.
  • the D2D communication system includes multiple terminals.
  • the first indication information, the second indication information, and the first scheduling information may also be determined by Other terminals that communicate with the terminal send it to the terminal, which is not limited in this embodiment of the present application.
  • An embodiment of the present application provides a method for sending data.
  • a terminal obtains first instruction information for determining a communication capability used by the terminal when sending uplink data to a network device, and determines the sent information associated with sending the uplink data according to the first instruction information.
  • the SRS resource set in the one or more SRS resource sets is closest to the downlink control channel carrying the uplink data's authorization information and has the same communication capability as indicated by the first indication information. This not only improves transmission link utilization and uplink transmission rate in the case of transmission link sharing, but also prevents the communication capabilities used by the PUSCH from mismatching with the communication capabilities corresponding to the closest set of transmitted SRS resources. problem.
  • the method provided in the embodiment of the present application further includes: the first indication information indicates that the number of transmission links / the number of antenna ports / the number of transmission ranks / the number of transmission layers when the terminal communicates with the network device is 2T.
  • the terminal determines that the communication capability associated with the first SRS resource set includes any of the following: the maximum number of transmission links / the maximum number of antenna ports / the maximum number of transmission Ranks / the number of maximum transmission layers is 2T. In this way, the terminal can use the indicated communication capability to communicate with the network device, thereby improving the transmission rate of uplink data.
  • network device when the network device is a first network device 102 having a connection with a terminal, other network devices may be a second network device 103 having a connection with the terminal.
  • the transmission link between the terminal and the network device 1 includes: a transmission link 1, a transmission link 2, and a transmission link 3.
  • the transmission link between the terminal and the network device 2 includes: a transmission link 4 and a transmission link 5.
  • the terminal can use the transmission link 1, transmission link 2, transmission link 3, and transmission link 4 to cover the network device 1.
  • Cell sends uplink data.
  • the terminal sends uplink data to the cell covered by the network device 1 by using the transmission link 1, transmission link 2, transmission link 3, transmission link 4, and transmission link 5.
  • a terminal has two transmission links, that is, a first transmission link 104 and a second transmission link 105, and a network device is a second network device 103 as an example.
  • a network device is a second network device 103 as an example.
  • the terminal and the second network device 103 use the first transmission link 104 or the second transmission link 105.
  • the maximum transmission link during uplink transmission includes: at least one of one or more transmission links between the terminal and the cell, and transmission in an idle state among one or more transmission links between the terminal and other cells link.
  • the method provided in the embodiment of the present application further includes: the first instruction information indicates the maximum number of transmission links / the maximum number of antenna ports / the maximum transmission Rank / the maximum when the terminal communicates with the network device
  • the terminal determines that the maximum number of transmission links / number of maximum antenna ports / maximum transmission Rank / number of maximum transmission layers included in the communication capability associated with the first SRS resource set is single or 1T. In this way, when the terminal needs to send uplink data in the future, it can determine that the maximum number of transmission links is a single SRS resource set from the set of transmitted SRS resources as the first SRS resource set, and send uplink data for a single according to the maximum number of transmission links. .
  • the terminal when the first instruction information indicates that the number of transmission links when the terminal communicates with the cell covered by network device 1 is single, the terminal may use transmission link 1, transmission link 2, transmission link 3, and The cell covered by the network device 1 performs uplink transmission. Or the terminal uses the transmission link 1, the transmission link 2, and the cell covered by the network device 1 to perform uplink transmission.
  • the terminal determines that the maximum number of transmission layers / the maximum number of transmission ranks / the maximum number of antenna ports / the maximum number of transmission links included in the communication capability are multiple.
  • the first indication information is the second indicator, and the terminal determines that the maximum number of transmission layers / the maximum number of transmission Ranks / the maximum number of antenna ports / the maximum number of transmission links included in the communication capability are single.
  • the method provided in the embodiment of the present application further includes:
  • the network device sends second instruction information to the terminal, where the second instruction information is used to indicate a time resource for sending the uplink data by using the communication capability indicated by the first instruction information among multiple time resources.
  • the second indication information is used to indicate that the maximum number of transmission links in the multiple time resources is used for multiple time resources for sending uplink data.
  • the terminal can determine that among the multiple time resources, the maximum number of transmission links is used to send uplink data in a single time resource other than the time resources that use the maximum number of transmission links to send multiple uplink data.
  • the second indication information in step S107 may also be used to indicate a time resource for sending the uplink data by using a single transmission link among multiple time resources, so that the terminal can determine that a single transmission link is used among the multiple time resources. Time resources other than time resources for sending uplink data use multiple transmission links to send uplink data.
  • multiple time resources may be time slots or symbols.
  • the second indication information and the first indication information may be carried in the same message or the same downlink control channel and sent to the terminal.
  • the terminal obtains the second instruction information.
  • the terminal may determine a time resource for sending uplink data by using the communication capability indicated by the first indication information among multiple time resources.
  • the terminal may determine a time resource for sending uplink data using the first communication capability indicated by the first indication information among multiple time resources. In addition to the time resource for sending uplink data using the first communication capability among multiple time resources, the time resource for sending uplink data using other communication capabilities.
  • step S106 in the embodiment of the present application may also be implemented in the following manner:
  • the terminal uses the first SRS resource set according to the first SRS resource set within the time resource indicated by the second instruction information.
  • a communication capability sends uplink data to a network device.
  • a time resource other than the time resource indicated by the second indication information among the multiple time resources uses the second communication capability to send uplink data to the network device according to the first SRS resource set.
  • the second indication information may be duration or bitmap information (including at least one first bit or second bit, where the first bit is used to indicate that multiple transmissions are used).
  • Link the second bit is used to indicate the use of a single transmission link.
  • the first bit is 1 and the second bit is 0.
  • a DCI schedules 4 slots at a time (slot 1 to slot 4 shown in FIG. 8)
  • the network device needs to indicate to the terminal in which of the four slots which uplink data is sent to the network device.
  • bitmap information 1010 may be added to the downlink control information to indicate the terminal. Then the terminal can determine that the uplink data is sent to the network device in timeslots 1 and 3 using the first communication capability (ie, 2T in FIG. 8), and the uplink data is sent to the network device in timeslots 2 and 4 using the second Communication capabilities (ie, 1T in Figure 8).
  • the first SRS resource set includes one or more SRS resources, and each SRS resource in the one or more SRS resources has the same communication capability.
  • the first scheduling information further includes SRI.
  • the method provided in the embodiment of the present application further includes: the terminal selects the SRI location from the first SRS resource set according to the SRI included in the first scheduling information.
  • the indicated SRS resource sends uplink data.
  • the terminal may determine the resource index in the first SRS resource set according to the SRS resource indicator (SRI), and select the SRS resource indicated by the SRI from the first SRS resource set according to the resource index to send uplink data.
  • SRI SRS resource indicator
  • the SRI may be carried in a DCI with a format of 0 or a format of 1 and sent to the terminal.
  • step S107 may be implemented in the following manner: the communication capability indicated by the first instruction information is the first communication capability, and the network device receives the uplink data sent by the terminal according to the first communication capability. Or the communication capability indicated by the first instruction information is the second communication capability, and the network device receives the uplink data sent by the terminal according to the second communication capability.
  • step S107 may also be implemented in the following manner: the network device receives the uplink data sent by the terminal according to the first communication capability within the time resource indicated by the second instruction information.
  • the network device receives uplink data sent by the terminal at multiple time resources other than the time resource indicated by the second indication information according to the second communication capability.
  • each network element such as a device for sending data and a device for instructing uplink transmission, includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • functional units may be divided according to the above-mentioned method for example, a device for sending data and a device for instructing uplink transmission.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one.
  • Processing unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. There may be another division manner in actual implementation.
  • FIG. 9 shows a possible structure diagram of a data sending device involved in the foregoing embodiment.
  • the data sending device may be a terminal, or may be applied to a terminal. Chip.
  • the device for sending data includes a receiving unit 201, a determining unit 202, and a sending unit 203.
  • the receiving unit 201 is configured to support a device for sending data to perform steps S102, S104, and S109 in the foregoing embodiment.
  • the determining unit 202 is configured to support a device for transmitting data to perform step S105 in the foregoing embodiment.
  • the sending unit 203 is configured to support the device for sending data to perform step S106 in the above embodiment.
  • FIG. 10 shows a schematic diagram of a possible logical structure of the data sending device involved in the foregoing embodiment.
  • the data sending device may be a terminal in the foregoing embodiment, or Chips used in terminals.
  • the device for sending data includes a processing module 212 and a communication module 213.
  • the processing module 212 is used to control and manage the actions of the data sending device. For example, the processing module 212 is used to perform the steps of performing message or data processing on the device side of the data sending, and the communication module 213 is used to perform the processing on the device side of the data sending Message or data processing steps.
  • the device for supporting data transmission by the communication module 213 executes S102, S104, S106, and S109 in the foregoing embodiment. And / or other processes performed by the data sending device for the techniques described herein.
  • the processing module 212 is configured to support the device for sending data to execute S105 in the foregoing embodiment.
  • the device for sending data may further include a storage module 211 for storing program code and data of the device for sending data.
  • the processing module 212 may be a processor or a controller, for example, a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 213 may be a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 211 may be a memory.
  • the processing module 212 is the processor 220
  • the communication module 213 is the interface circuit 230 or the transceiver
  • the storage module 211 is the memory 240
  • the device for sending data involved in this application may be the device shown in FIG. 11.
  • the interface circuit 230, one or more (including two) processors 220, and the memory 240 are connected to each other through a bus 210.
  • the bus 210 may be a PCI bus, an EISA bus, or the like.
  • the bus 210 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the memory 240 is configured to store program code and data of a device for transmitting data.
  • the interface circuit 230 is used for a device that supports data transmission to communicate with other equipment (for example, a device that instructs uplink transmission).
  • the processor is configured to execute the program code and data stored in the memory 240 by the device supporting the data transmission, so as to control and manage the operation of the device for data transmission.
  • the device that the interface circuit 230 supports data transmission executes S102, S104, S106, and S109. S102, S104, S106, and S109. And / or other processes performed by the data sending device for the techniques described herein.
  • the processor 220 is configured to support a device for transmitting data to execute S105 in the foregoing embodiment.
  • FIG. 12 shows a possible structural schematic diagram of the device for indicating uplink transmission involved in the foregoing embodiment.
  • the device for indicating uplink transmission may be a network device, or may be applied to a network. Chips in the device.
  • the apparatus for indicating uplink transmission includes: a sending unit 301 and a receiving unit 302.
  • the sending unit 301 is configured to support a device that instructs uplink transmission to perform steps S101, S103, and S108 in the foregoing embodiment.
  • the receiving unit 302 is configured to support a device that instructs uplink transmission to execute S107 in the foregoing embodiment.
  • FIG. 13 shows a schematic diagram of a possible logical structure of the device for indicating uplink transmission involved in the foregoing embodiment, and the device for indicating uplink transmission may be a network device in the foregoing embodiment. , Or a chip used in a network device.
  • the apparatus for indicating uplink transmission includes a processing module 312 and a communication module 313.
  • the processing module 312 is configured to control and manage the action of the device that instructs uplink transmission
  • the communication module 313 is configured to perform steps of performing message or data processing on the device that instructs uplink transmission.
  • the communication module 313 is configured to support the apparatus that instructs uplink transmission to perform S101, S103, S107, and S108 in the foregoing embodiment. And / or other processes performed by a device that indicates uplink transmissions for the techniques described herein.
  • the apparatus for instructing uplink transmission may further include a storage module 311 for storing program code and data of the apparatus for instructing uplink transmission.
  • the processing module 312 may be a processor or a controller, for example, it may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication module 313 may be a transceiver, a transceiver circuit, or an interface circuit.
  • the storage module 311 may be a memory.
  • the processing module 312 is the processor 320
  • the communication module 313 is the interface circuit 330 or the transceiver
  • the storage module 311 is the memory 340
  • the device for indicating uplink transmission involved in this application may be the device shown in FIG.
  • the interface circuit 330, one or more (including two) processors 320, and the memory 340 are connected to each other through a bus 310.
  • the bus 310 may be a PCI bus, an EISA bus, or the like.
  • the bus 310 may be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only a thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the memory 340 is configured to store program code and data of the device that instructs uplink transmission.
  • the interface circuit 330 is configured to support the device that instructs the uplink transmission to communicate with other devices (for example, a terminal), and the processor 320 is configured to support the device that instructs the uplink transmission to execute program code and data stored in the memory 340 to implement the uplink transmission of the instruction
  • the device side performs message / data control operations.
  • the interface circuit 330 is configured to support the device that instructs uplink transmission to execute S101, S103, S107, and S108 in the foregoing embodiment. And / or other processes performed by a device that indicates uplink transmissions for the techniques described herein.
  • FIG. 15 is a schematic structural diagram of a chip 150 according to an embodiment of the present application.
  • the chip 150 includes one or more (including two) processors 1510 and an interface circuit 1530.
  • the chip 150 further includes a memory 1540.
  • the memory 1540 may include a read-only memory and a random access memory, and provide an operation instruction and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540 stores the following elements, executable modules or data structures, or their subsets, or their extended sets:
  • a corresponding operation is performed by calling an operation instruction stored in the memory 1540 (the operation instruction may be stored in an operating system).
  • a possible implementation manner is: a device for sending data and a device for instructing uplink transmission have similar chip structures, and different devices may use different chips to implement their respective functions.
  • the processor 1510 controls operations of a device for sending data and a device for instructing uplink transmission.
  • the processor 1510 may also be referred to as a central processing unit (CPU).
  • the memory 1540 may include a read-only memory and a random access memory, and provide instructions and data to the processor 1510.
  • a part of the memory 1540 may further include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1540, the interface circuit 1530, and the memory 1540 are coupled through a bus system 1520.
  • the bus system 1520 may include a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 1520 in FIG. 15.
  • the methods disclosed in the foregoing embodiments of the present application may be applied to the processor 1510, or implemented by the processor 1510.
  • the processor 1510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by using an integrated logic circuit of hardware in the processor 1510 or an instruction in the form of software.
  • the processor 1510 may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or an off-the-shelf programmable gate array (FPGA), or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1540, and the processor 1510 reads the information in the memory 1540 and completes the steps of the foregoing method in combination with its hardware.
  • the interface circuit 1530 is configured to perform the steps of receiving and sending by the terminal and the network device in the embodiments shown in FIG. 6 and FIG. 7.
  • the processor 1510 is configured to execute the processing steps of the terminal and the network device in the embodiments shown in FIG. 6 and FIG. 7.
  • the instructions stored in the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product may be written in the memory in advance, or may be downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • a wired e.g., Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server, a data center, and the like including one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • a computer-readable storage medium stores instructions.
  • the terminal or a chip applied to the terminal executes S102, S104, S105, and S108 in the embodiment. And / or other processes performed by a terminal or a chip applied in a terminal for the techniques described herein.
  • a computer-readable storage medium stores instructions.
  • a network device or a chip applied to the network device executes S101, S103, and S106 in the embodiment. And S107. And / or other processes performed by a network device or a chip used in a network device for the techniques described herein.
  • the foregoing readable storage medium may include: various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk, or an optical disk.
  • a computer program product including instructions
  • the computer program product stores instructions.
  • the terminal or a chip applied to the terminal executes S102, S104, S105, S106, and S109 in the embodiment. .
  • a computer program product including instructions.
  • the computer program product stores instructions.
  • a network device or a chip applied to the network device executes S101, S103, S107, and S108. And / or other processes performed by a network device or a chip applied in a network device for the techniques described herein.
  • a chip is provided.
  • the chip is used in a terminal.
  • the chip includes one or more (including two) processors and an interface circuit.
  • the interface circuit and the one or more (including two) processors pass The lines are interconnected, and the processor is used to execute instructions to execute S102, S104, S105, S106, and S109 in the embodiment. And / or other terminal-performed processes for the techniques described herein.
  • a chip for use in a network device.
  • the chip includes one or two or more (including two) processors and an interface circuit, and the interface circuit and the one or more (including two) processors
  • the processors are interconnected through lines, and the processor is used to run instructions to execute S101, S103, S107, and S108 in the embodiments. And / or other processes performed by network devices for the techniques described herein.
  • the present application also provides a communication system including a device for transmitting data as shown in FIG. 9 to FIG. 11 and a device for indicating uplink transmission as shown in FIGS. 12 to 14.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) for transmission to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (solid state disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请施例提供一种数据发送的方法和装置,涉及通信技术领域,用以解决现有技术中存在的发送上行数据所能采用的发送port数目与最接近的已发送的SRS资源port数目不匹配的问题。该方法包括:终端获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;所述终端在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;所述终端根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为所述终端在第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示的通信能力相同。

Description

一种数据发送的方法和装置 技术领域
本申请施例涉及通信技术领域,尤其涉及一种数据发送的方法和装置。
背景技术
如图1所示,终端发送信号时,在基带生成基带信号后,会经过射频发射链路(下文中将简称为发射链路)生成射频信号,然后经过天线发送出去。终端在接收信号的时候,也会有对应的射频接收链路(下文中将简称为接收链路)(图1中未示出)。在长期演进(Long Term Evolution,LTE)和新空口(New Radio,NR)中,终端可以支持多个发射链路。比如,终端支持一个发射链路和两个接收链路,可以表示为:终端支持1T(Transmit)2R(Receive)。
现有技术中,终端向小区发送上行数据时,通常从当前时刻之前已发送的一个或者多个已发送的探测参考信号(Sounding Reference Signal,SRS)中选择距离当前时刻最近的一个SRS。并根据所选择的SRS所使用的天线端口(port数目)发送上行数据。
但是,在实际过程中,终端发送上行数据所使用的天线端口数量可能会发生变化,这样便可能出现终端向某个小区发送上行数据所能采用的发送port数目与根据所选择的SRS所使用的天线端口数目不匹配的问题。
发明内容
本申请施例提供一种数据发送的方法和装置,用以解决现有技术中存在的发送上行数据所能采用的发送port数目与最接近的已发送的SRS资源port数目不匹配的问题。
为了解决上述技术问题,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种数据发送的方法,包括:终端获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;所述终端在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;所述终端根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为所述终端第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示的通信能力相同。
本申请实施例提供一种数据发送的方法,通过终端获取用于确定终端向网络设备发送上行数据时使用的通信能力的第一指示信息,并根据第一指示信息确定发送上行数据关联的已发送的一个或者多个SRS资源集合中与距离承载上行数据的授权信息的下行控制信道最近且与第一指示信息所指示的通信能力相同的SRS资源集合。这样不仅在实现传输链路共享的情况下,提高传输链路使用率,提升上行传输速率,且可以避免PUSCH所采用的通信能力与最接近的已发送的SRS资源集合对应的通信能力不匹配的问题。
一种可能的实现方式,本申请实施例提供的方法还包括:终端获取第二指示信息用于指示所述终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源的第二指示信息。这样便于确定向网络设备采用通信能力发送上行数据的时间资源。
一种可能的实现方式,通信能力包括以下参数中的一项或者多项:最大传输链路数量、最大传输层数、最大传输秩Rank数和最大天线端口数目。
一种可能的实现方式,本申请实施例提供的方法还包括:第一指示信息指示终端与网络设备通信时的最大传输链路数量为多个,终端确定使用第一通信能力发送上行数据。第一指示信息指示终端与网络 设备通信时的最大传输链路数量为单个,终端确定使用第一通信能力发送上行数据。第一通信能力大于第二通信能力。进一步避免了PUSCH所能采用的发送port数目与最接近的已发送的SRS资源port数目不匹配的问题。具体的,第一指示信息指示终端与网络设备通信时的最大传输链路数量为多个,终端确定使用的最大天线端口数量为多个,第一指示信息指示终端与网络设备通信时的最大传输链路数量为单个,终端确定使用的最大天线端口数量为单个。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息中。可以避免信令开销。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在终端和其他终端共用的组公共下行控制信道中。这样与该终端在同一个组内的其他终端便可以确定使用相同的天线端口数目。
一种可能的实现方式,第一SRS资源集合包括一个或者多个SRS资源,第一调度信息还包括SRI,所述方法还包括:终端根据SRI从第一SRS资源集合中选择一个SRS资源使用所述通信能力发送上行数据。
一种可能的实现方式,终端确定通信能力为第一通信能力,终端根据第一探测参考信号SRS资源集合使用第一通信能力向网络设备发送上行数据。终端确定通信能力为第二通信能力,终端根据第一探测参考信号SRS资源集合使用第二通信能力向网络设备发送上行数据。
具体的,终端确定最大天线端口的数量为单个,则终端根据第一探测参考信号SRS资源集合使用单个天线端口向网络设备发送上行数据。具体的,终端确定最大天线端口的数量为多个,则终端根据第一探测参考信号SRS资源集合使用多个天线端口向网络设备发送上行数据。
第二方面,本申请实施例提供一种指示上行传输的方法,包括:网络设备向终端发送第一指示信息,该第一指示信息用于终端向网络设备发送上行数据的通信能力,网络设备在第一时刻向终端发送第一调度信息,该第一调度信息用于调度终端发送上行数据。网络设备按照所指示的通信能力接收终端发送的上行数据。
一种可能的实现方式,本申请实施例提供的指示上行传输的方法还包括:网络设备向终端发送第二指示信息,该第二指示信息用于指示终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源。
一种可能的实现方式,第一指示信息指示所述终端与所述网络设备通信时的通信能力为第一通信能力。或者第一指示信息指示终端与所述网络设备通信时的通信能力为第二通信能力。其中,第一通信能力大于第二通信能力。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息中。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信道中。
一种可能的实现方式,通信能力包括以下参数中的一项或者多个:最大传输链路数量、最大传输层数、最大传输Rank数和最大天线端口数目。
一种可能的实现方式,网络设备按照所指示的通信能力接收终端发送的上行数据,包括:第一指示信息指示的最大传输链路数量为单个,网络设备根据所指示的通信能力,在单个传输链路数量上接收终端发送的上行数据。或者第一指示信息指示的通信能力为最大传输链路数量为多个,则网络设备根据所指示的通信能力,在多个传输链路数量上接收终端发送的上行数据。
或者,第一指示信息指示的传输Rank数为第一传输秩Rank数,网络设备根据所指示的第一传输Rank数接收终端发送的上行数据。第一指示信息指示的传输Rank数为第二传输Rank数,网络设备根据所指示的第二传输Rank数接收终端发送的上行数据。
一种可能的实现方式,网络设备按照所指示的通信能力接收终端发送的上行数据,包括:在第二指示信息指示的时间资源内,网络设备根据第一指示信息所指示的通信能力接收终端发送的上行数据。
第三方面,本申请实施例提供一种数据发送的装置,该数据发送的装置可以实现第一方面或第一方面的任意一种可能的实现方式中描述的方法,因此也可以实现第一方面或第一方面任意一种可能的实现方式中的有益效果。该数据发送的装置可以为终端,也可以为可以支持终端实现第一方面或第一方面的任意一种可能的实现方式中的方法的装置,例如应用于终端中的芯片。该数据发送的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种数据发送的装置,包括:接收单元,用于获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;用于在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;发送单元,用于根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为在第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示通信能力相同。
一种可能的实现方式,接收单元,还用于获取第二指示信息,所述第二指示信息用于指示所述终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源。
一种可能的实现方式,通信能力包括以下参数中的一项或者多项:
最大传输链路数量、最大传输层数、最大传输Rank数和最大天线端口数目。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息(Downlink Control Information,DCI)中。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信道中。
一种可能的实现方式,第一SRS资源集合包括一个或者多个SRS资源,第一调度信息包括SRI,确定单元,用于从第一SRS资源集合中选择一个SRS资源与上行数据关联。
一种可能的实现方式,本申请实施例提供的装置的发送单元,具体用于在确定单元通信能力为第一通信能力,则根据第一SRS资源集合使用第一通信能力向网络设备发送上行数据。发送单元,具体用于在确定单元通信能力为第二通信能力,则根据第一SRS资源集合使用第二通信能力向网络设备发送上行数据。
一种可能的实现方式,本申请实施例还提供一种数据发送的装置,该数据发送的装置可以为终端或者为应用于终端中的芯片,该数据发送的装置包括:至少一个处理器和接口电路,其中,接口电路用于支持该数据发送的装置执行获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;用于在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;以及用于根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为在第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示通信能力相同。
一种可能的实现方式,接口电路,还用于获取第二指示信息,所述第二指示信息用于指示所述终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源。
一种可能的实现方式,通信能力包括以下参数中的一项或者多项:
最大传输链路数量、最大传输层数、最大传输Rank数和最大天线端口数目。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息(Downlink Control Information,DCI)中。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用 的组公共下行控制信道中。
一种可能的实现方式,第一SRS资源集合包括一个或者多个SRS资源,第一调度信息包括SRI,至少一个处理器,用于从第一SRS资源集合中选择一个SRS资源与上行数据关联。
一种可能的实现方式,本申请实施例提供的接口电路,具体用于在至少一个处理器确定通信能力为第一通信能力,则根据第一SRS资源集合使用第一通信能力向网络设备发送上行数据。接口电路,具体用于在至少一个处理器确定通信能力为第二通信能力,则根据第一SRS资源集合使用第二通信能力向网络设备发送上行数据。
可选的,该数据发送的装置的接口电路和至少一个处理器相互耦合。
可选的,该数据发送的装置还可以包括存储器,用于存储代码和数据,至少一个处理器、接口电路和存储器相互耦合。
第四方面,本申请实施例提供一种指示上行传输的装置,该指示上行传输的装置可以实现第二方面或第二方面的任意一种可能的实现方式中描述的方法,因此也可以实现第二方面或第二方面任意一种可能的实现方式中的有益效果。该指示上行传输的装置可以为网络设备,也可以为可以支持网络设备实现第二方面或第二方面的任意一种可能的实现方式中的方法的装置,例如应用于网络设备中的芯片。该指示上行传输的装置可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
一种指示上行传输的装置,包括:发送单元,用于向终端发送第一指示信息,该第一指示信息用于终端向网络设备发送上行数据的通信能力,以及用于在第一时刻向终端发送第一调度信息,该第一调度信息用于调度终端发送上行数据。接收单元,用于按照所指示的通信能力接收终端发送的上行数据。
一种可能的实现方式,发送单元,还用于向终端发送第二指示信息,该第二指示信息用于指示终端在多个时间资源中采用第一指示信息所指示的通信能力向网络设备发送上行数据的时间资源。
一种可能的实现方式,第一指示信息指示终端与网络设备通信时的通信能力为第一通信能力。或者第一指示信息指示终端与网络设备通信时的通信能力为第二通信能力。其中,第一通信能力大于第二通信能力。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息中。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信道中。
一种可能的实现方式,通信能力包括以下参数中的一项或者多项:最大传输链路数量、最大传输层数、最大传输Rank数和最大天线端口数目。
一种可能的实现方式,第一指示信息指示的通信能力为第一通信能力,接收单元,具体用于基于第一通信能力接收终端发送的上行数据。或第一指示信息指示的通信能力为第二通信能力,接收单元,具体用于基于第一指示信息指示的第二通信能力接收终端发送的上行数据。
一种可能的实现方式,第一通信能力包括以下一项或者多项:最大传输链路数量为多个、最大传输层数为多个、最大传输Rank数为多个和最大天线端口数目为多个。第二通信能力包括以下一项或者多项:最大传输链路数量为单个、最大传输层数为单个、最大传输Rank数为单个和最大天线端口数目为单个。
一种可能的实现方式,第一指示信息指示的通信能力为第一通信能力,接收单元,具体用于基于最大传输链路数量为多个/最大传输层数为多个/最大传输Rank数为多个/最大天线端口数目为多个接收终端发送的上行数据。第一指示信息指示的通信能力为第二通信能力,接收单元,具体用于基于最大传输链路数量为单个、最大传输层数为单个、最大传输Rank数为单个和最大天线端口数目为单个接收终端发送的上行数据。
一种可能的实现方式,接收单元,具体用于在第二指示信息指示的时间资源内,根据第一指示信息所指示的通信能力接收终端发送的上行数据。
一种可能的实现方式,本申请实施例还提供一种指示上行传输的装置,该指示上行传输的装置可以为网络设备或者为应用于网络设备中的芯片,该指示上行传输的装置包括:至少一个处理器和接口电路,其中,接口电路用于支持该指示上行传输的装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该指示上行传输的装置侧进行消息/数据接收和发送的步骤。至少一个处理器用于支持该指示上行传输的装置执行第二方面至第二方面的任意一种可能的实现方式中所描述的在该指示上行传输的装置侧进行消息/数据处理的步骤。具体相应的步骤可以参考第二方面至第二方面的任意一种可能的实现方式中的描述,在此不再赘述。
一种可能的实现方式,接口电路,用于向终端发送第一指示信息,该第一指示信息用于终端向网络设备发送上行数据的通信能力,以及用于在第一时刻向终端发送第一调度信息,该第一调度信息用于调度终端发送上行数据。接口电路,用于按照所指示的通信能力接收终端发送的上行数据。
一种可能的实现方式,接口电路,还用于向终端发送第二指示信息,该第二指示信息用于指示终端在多个时间资源中采用第一指示信息所指示的通信能力向网络设备发送上行数据的时间资源。
一种可能的实现方式,第一指示信息指示终端与网络设备通信时的通信能力为第一通信能力。或者第一指示信息指示终端与网络设备通信时的通信能力为第二通信能力。其中,第一通信能力大于第二通信能力。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在下行控制信息中。
一种可能的实现方式,第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信道中。
一种可能的实现方式,通信能力包括以下参数中的一项或者多项:最大传输链路数量、最大传输层数、最大传输Rank数和最大天线端口数目。
一种可能的实现方式,第一指示信息指示的通信能力为第一通信能力,接口电路,具体用于基于第一通信能力接收终端发送的上行数据。或第一指示信息指示的通信能力为第二通信能力,接口电路,具体用于基于第一指示信息指示的第二通信能力接收终端发送的上行数据。
一种可能的实现方式,第一通信能力包括以下一项或者多项:最大传输链路数量为多个、最大传输层数为多个、最大传输Rank数为多个和最大天线端口数目为多个。第二通信能力包括以下一项或者多项:最大传输链路数量为单个、最大传输层数为单个、最大传输Rank数为单个和最大天线端口数目为单个。
一种可能的实现方式,第一指示信息指示的通信能力为第一通信能力,接口电路,具体用于基于最大传输链路数量为多个/最大传输层数为多个/最大传输Rank数为多个/最大天线端口数目为多个接收终端发送的上行数据。第一指示信息指示的通信能力为第二通信能力,接口电路,具体用于基于最大传输链路数量为单个、最大传输层数为单个、最大传输Rank数为单个和最大天线端口数目为单个接收终端发送的上行数据。
可选的,该指示上行传输的装置的接口电路和至少一个处理器相互耦合。
可选的,该指示上行传输的装置还可以包括存储器,用于存储代码和数据,处理器、接口电路和存储器相互耦合。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种数据发送的方法。
第六方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种指示上行传输的方法。
第七方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面或第一方面的各种可能的实现方式中所描述的一种数据发送的方法。
第八方面,本申请提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第二方面或第二方面的各种可能的实现方式中所描述的一种指示上行传输的方法。
第九方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第一方面或第一方面的各种可能的实现方式中所描述的一种数据发送的方法。接口电路用于与所述芯片之外的其它模块进行通信。
第十方面,本申请实施例提供一种芯片,该芯片包括处理器和接口电路,接口电路和处理器耦合,处理器用于运行计算机程序或指令,以实现第二方面或第二方面的各种可能的实现方式中所描述的一种指示上行传输的方法。接口电路用于与所述芯片之外的其它模块进行通信。
具体的,本申请实施例中提供的芯片还包括存储器,用于存储计算机程序或指令。
第十一方面,本申请实施例一种通信系统,该通信系统包括第三方面或第三方面的各种可能的实现方式提供的数据发送的装置,以及第四方面或第四方面的各种可能的实现方式所提供的指示上行传输的装置。
可以理解的是,在第十一方面提供的通信系统,还可以包括其他设备,本申请实施例对此不作限定。
附图说明
图1为本申请实施例提供的一种射频发射链路的结构示意图;
图2为本申请实施例提供的一种通信系统示意图;
图3为本申请实施例提供的另一种通信系统示意图;
图4为本申请实施例提供的一种基站的结构示意图一;
图5为本申请实施例提供的一种基站的结构示意图二;
图6为本申请实施例提供的一种数据发送的方法交互的流程示意图一;
图7为本申请实施例提供的一种数据发送的方法交互的流程示意图二;
图8为本申请实施例提供的一种最大传输链路数量切换的示意图;
图9为本申请实施例提供的一种数据发送的装置的结构示意图一;
图10为本申请实施例提供的一种数据发送的装置的结构示意图二;
图11为本申请实施例提供的一种数据发送的装置的结构示意图三;
图12为本申请实施例提供的一种指示上行传输的装置的结构示意图一;
图13为本申请实施例提供的一种指示上行传输的装置的结构示意图二;
图14为本申请实施例提供的一种指示上行传输的装置的结构示意图三;
图15为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现 相关概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例的技术方案可以应用于各种数据处理的通信系统,例如:码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。CDMA系统可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA)、CDMA2000等无线技术。UTRA可以包括宽带CDMA(wideband CDMA,WCDMA)技术和其它CDMA变形的技术。CDMA2000可以覆盖过渡标准(interim standard,IS)2000(IS-2000),IS-95和IS-856标准。TDMA系统可以实现例如全球移动通信系统(global system for mobile communication,GSM)等无线技术。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、IEEE 802.11(Wi-Fi),IEEE 802.16(WiMAX),IEEE 802.20,Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的UMTS的新版本。5G通信系统、新空口(new radio,NR)是正在研究当中的下一代通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中的通信方法可适用于多种系统架构,如图2所示,图2示出了本申请实施例提供的一种通信系统示意图,该通信系统包括:一个或者多个终端(图2中以一个终端为例,即终端101),以及与一个或者多个终端通信的第一网络设备102和第二网络设备103。其中,第一网络设备102和第二网络设备103之间通过第一接口通信。第一网络设备102和第二网络设备103分别通过第二接口与一个或者多个终端通信。其中,网络设备覆盖的小区可以为一个或多个小区,本申请对此不做具体限定。
示例性的,如图2所示,第一网络设备102覆盖的小区为第一小区1,第二网络设备103覆盖的小区为第二小区2。可以理解的是,本申请实施例以一个网络设备覆盖一个小区为例进行说明。
第一网络设备102和第二网络设备103用于为一个或者多个终端101提供无线资源。第一网络设备102和第二网络设备103中一个网络设备用作主网络设备,另一个网络设备用作辅网络设备。例如,第一网络设备102为主网络设备,第二网络设备103为辅网络设备。
其中,主网络设备是指终端101在随机接入过程中接入的第一个网络设备。主网络设备负责与核心网控制面实体之间建立控制面连接,传输信令消息,以及决定是否为终端101创建辅基站,并为终端101选择辅网络设备。
辅网络设备,主网络设备之外的第二网络设备,用于为终端101提供额外的无线资源的节点,与核心网控制面实体之间可以没有直接的控制面连接。
一种示例,本申请实施例中第一网络设备102和第二网络设备103可以相同网络制式的网络设备。例如,以网络设备为基站为例,第一网络设备102和第二网络设备103分别对应的网络制式为4G场景下的演进型基站(evolved Node B,eNB或eNodeB)。此时,第一接口为X2接口。
又例如,第一网络设备102和第二网络设备103分别对应的网络制式可以均为NR场景下的基站(例如,gNB)。
另一种示例,本申请实施例中的第一网络设备102和第二网络设备103可以为不同网络制式的网络设备。例如,第一网络设备102对应的网络制式为4G场景下的eNB,第二网络设备103对应的网络制式为NR场景下的gNB。
又例如,第一网络设备102对应的网络制式为NR场景下的gNB,第二网络设备103对应的网络制式为4G场景下的eNB。
又一种示例,第一网络设备102为第三代合作伙伴计划(3rd generation partnership project,3GPP)协议基站,第二网络设备103为非3GPP协议基站。
由于第一网络设备102和第二网络设备103对应的网络制式不同,第一接口的名称也存在差异,因此下述将分别介绍:
当第一网络设备102和第二网络设备103对应的网络制式均为NR下的gNB时,第一接口为Xn接口,支持第一网络设备102和第二网络设备103之间的信令交互。
当第一网络设备102对应的网络制式为4G场景下的eNB,第二网络设备103对应的网络制式为NR场景下的gNB时,第一接口为X2接口。当第一网络设备102和第二网络设备103分别对应的网络制式为eNB时,第一接口为X2接口。当第一网络设备102对应的网络制式为NR下的gNB,第二网络设备103对应的网络制式为LTE下的eNB时,第一接口为X2接口。
可以理解的是,上述第一接口的名称仅是个示例,本申请实施例对第一基站和第二基站之间的接口名称不作限定。
不论第一网络设备102和第二网络设备103采用哪种网络制式,主网络设备和终端之间建立有无线Uu口,当第一网络设备102作为主网络设备时,第一网络设备102可与终端之间传输用户面数据与控制面信令。第二网络设备103作为辅网络设备,第二网络设备103和终端之间也建立有无线Uu口,可与终端间传输用户面数据。也就是说,终端处于双连接架构模式(Dual Connectivity,DC)。其中,Uu接口的用户平面主要传输用户数据;控制平面传输相关信令,建立、重新配置和释放各种移动通信无线承载业务。
其中,一个或者多个终端中任一个终端具有至少两个发射链路(即下述实施例中的传输链路,也即本申请下文中描述的传输链路即指终端和第一小区/第二小区进行上行传输时所使用的发射链路)和至少两个接收链路。其中,终端使用至少两个发射链路中的至少一个发射链路向第一小区/第二小区发送上行数据或者上行信令。终端可以通过至少两个接收链路中的至少一个接收链路接收第一小区/第二小区分别所属的网络设备发送的下行数据或者下行信令。
示例性的,如图2所述,终端101具有多个传输链路,该多个传输链路用于终端101与第一网络设备102覆盖的第一小区1以及第二网络设备103覆盖的第二小区2通信。本申请实施例不限定多个 传输链路中每个传输链路与各个小区之间的映射关系。也即当终端101需要与某个小区通信时,该终端101可以从多个传输链路中任意选择至少一个传输链路与小区通信。当然,也可以预先建立每个小区和至少一个传输链路之间的映射关系,当终端101需要与某个小区通信时,使用与该小区具有映射关系的传输链路通信。
为了便于描述,下述实施例以每个小区和至少一个传输链路之间的映射关系,终端101使用多个传输链路中的至少一个传输链路(例如,第一传输链路104)与第一网络设备102覆盖的第一小区1通信,终端101使用多个传输链路中的其他至少一个传输链路(例如,第二传输链路105)与第二网络设备103覆盖的第二小区2通信为例。
需要说明的是,本申请实施例中的第一传输链路和第二传输链路分别包括至少一个传输链路。
图3示出了本申请实施例提供的另一种通信系统,该通信系统包括:一个或者多个终端(图3中以一个终端为例,即终端101),以及与一个或者多个终端通信的网络设备106。其中,网络设备106覆盖的小区为两个或两个以上,本申请实施例对此不作限定。
示例性的,图3中以网络设备106覆盖的小区为第一小区1和第二小区2为例。终端101可以与第一小区1和第二小区2通信。
例如,终端101使用第一传输链路104与第一小区1通信,终端使用第二传输链路105与第二小区2通信。
可以理解的是,当图2所示的通信系统中网络设备覆盖两个或两个以上的小区时,终端与任一个网络设备包括的多个小区进行通信的方式可以参考图3所示的架构,本申请实施例对此不作限定。
本申请中的第一网络设备102、网络设备106或第二网络设备103可以为能够与终端进行通信的基站。例如,可以是无线局域网(Wireless Local Area Network,WLAN)中的接入点(access point,AP),全球移动通信系统(Global System for Mobile Communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolved Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的基站(gNB)或者未来演进的公用陆地移动网(Public Land Mobile Network,PLMN)网络中的网络设备等。
可以理解的是,网络设备为基站时,主网络设备便可以称为主基站,辅网络设备便可以称为辅基站。
终端(terminal)是一种向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。终端也可以称为用户设备(User Equipment,UE)、接入终端(Access Terminal)、用户单元(User Nnit)、用户站(User Station)、移动站(Mobile Station)、移动台(mobile)、远方站(Remote Station)、远程终端(remote terminal)、移动设备(Mobile equipment)、用户终端(User Terminal)、无线通信设备(wireless telecom equipment)、用户代理(User Agent)、用户装备(User Equipment)或用户装置。终端可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统(例如,第五代(fifth-generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端等。其中,5G还可以被称为新空口(New Radio,NR)。
作为示例,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
由于未来接入网可以采用云无线接入网(Cloud Radio Access Network,C-RAN)架构来实现,一种可能的方式是将传统基站的协议栈架构和功能分割为两部分,一部分称为集中单元(Central Unit,CU),另一部分称为分布单元(Distributed Unit,DU),而CU和DU的实际部署方式比较灵活,例如多个基站的CU部分集成在一起,组成一个规模较大的功能实体。如图4所示,其为本申请实施例提供的一种网络架构的示意图。如图4所示,该网络架构包括核心网(Core Network,CN)设备和接入网(以无线接入网(Radio Access Network,RAN)为例)设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,在LTE通信系统中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置(例如射频拉远单元(Radio Remote Unit,RRU)相对于基带处理单元(Building Base Band Unit,BBU)),RAN设备由一个节点实现,该节点用于实现无线资源控制(Radio Resource Control,RRC)、分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)、无线链路控制(radio link control,RLC)、媒体接入控制(Medium Access Control,MAC)等协议层的功能。再如,在一种演进结构中,基带装置可以包括集中单元(Centralized Unit,CU)和分布单元(Distributed Unit,DU),多个DU可以由一个CU集中控制。如图4所示,CU和DU可以根据无线网络的协议层划分,例如分组数据汇聚层协议层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(Radio Link Control,RLC)和媒体接入控制层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
此外,请继续参考图5,相对于图4所示的架构,还可以将CU的控制面(Control Plane,CP)和用户面(User Plane,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
下行数据的传输流程为:CU收到核心网发送的下行数据后,将下行数据分发给DU,DU将接收到的下行数据发送给终端。上行数据的传输流程为:终端将上行数据发送给DU,DU将接收到的上行数据发送给CU,CU在收到DU发送的上行数据后,将接收到的上行数据发送给核心网。
在以上网络架构中,CU产生的数据可以通过DU发送给终端,或者终端产生的数据可以通过DU发送给CU。DU可以不对该数据进行解析而直接通过协议层封装后传给终端或CU。例如,RRC或PDCP层的数据最终会处理为物理层(Physical Layer,PHY)的数据发送给终端,或者,由接收到的PHY层的 数据转变而来。在这种架构下,该RRC或PDCP层的数据,即也可以认为是由DU发送的。
在以上实施例中CU划分为RAN中网络设备,此外,也可以将CU划分为CN中的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点功能的RAN设备。
在如图2或图3所示的架构中,终端与不同小区通信时通常可以使用不同的通信能力。例如,终端与第一小区通信时具有通信能力1,与第二小区进行通信时具有通信能力2。但是终端并非每时每刻均使用通信能力2与第二小区通信。因此,在终端未在通信能力2上具有上行传输时,通信能力2处于空闲状态。
通常情况下,终端与每个网络设备覆盖的小区进行上行传输时会对应一个传输链路/天线端口/传输Rank/传输层,即N个小区,终端通常会具有N个传输链路/天线端口/传输Rank/传输层。因此,当指示终端与小区通信时的传输链路/天线端口/传输Rank/传输层为多个时,终端可以使用N个传输链路中处于空闲状态的所有传输链路/天线端口/传输Rank/传输层与小区进行上行传输。也即该N个传输链路/天线端口/传输Rank/传输层中不仅包括终端与该小区之间的传输链路/天线端口/传输Rank/传输层,也包括终端与其他小区之间具有的一个或者多个传输链路/天线端口/传输Rank/传输层中的至少一个。
在如图2所示的架构中,以通信能力为最大传输链路数量为例,终端101和第一网络设备102之间的第一传输链路104处于空闲状态时,终端101可以使用处于空闲状态的第一传输链路104以及终端101和第二小区之间的第二传输链路105与第二小区进行上行传输(即终端101与第二小区之间的最大传输链路数量为多个(简称2T))。
在终端101和第一网络设备102之间的第一传输链路处于非空闲状态时,终端101则使用终端101和第二小区之间具有的第二传输链路与第二小区进行上行传输(即终端101与第二小区之间的最大传输链路数量为单个(简称1T))。
网络设备可以通过确定终端与一个小区之间的传输链路在至少两个时间资源上的状态(空闲状态或者非空闲状态),向终端发送指令,以指示终端与另一个小区通信时进行1T/2T动态切换。即在第一传输链路104处于空闲状态时,网络设备可以指示终端使用2T与第二小区进行上行传输。当网络设备确定第一传输链路104处于非空闲状态时,则网络设备可以指示终端使用1T与第二小区进行上行传输。
本申请实施例中的“2T”指:终端与一个小区1通信时,所使用的通信能力不仅包括终端与小区1之间具有的通信能力,还包括终端与其他小区之间具有的通信能力。
本申请实施例中的“1T”指:终端与一个小区1通信时,所使用的通信能力仅包括终端与小区1之间具有的通信能力,且不包括终端与其他小区之间具有的通信能力。下述但凡涉及到通信能力包括的:最大传输层数量、最大传输Rank或者最大天线端口数目为2T或者1T的描述,均可以参考此处的描述,后续不再赘述。
在同等条件下,本申请实施例中终端使用“2T”的通信能力进行上行传输时所能达到的通信效果大于终端使用“1T”的通信能力进行上行传输时所能达到的通信效果。
终端通常与不同小区进行上行传输时具有不同的通信链路,例如,终端与至少两个小区通信时会具有至少两个发射链路,终端与第一小区和第二小区分别使用不同的发射链路通信(例如,Tx1和Tx2,其中Tx1用于与第一小区通信,Tx2用于与第二小区通信)。由于终端并非每时每刻均与第一小区或者第二小区进行上行传输。因此,在终端未与第一小区进行上行传输时,终端与第一小区之间的Tx1通常处于空闲状态。在终端未与第一小区进行上行传输时,如果终端可以利用Tx1和Tx2与第一小区进行上行传输可以提升与第二小区之间的发送数据率。基于此,如果终端可以基于与第一小区之间的Tx1上是否 进行上行传输,动态切换与第二小区之间的发射链路,即当终端与第一小区之间具有上行传输时,终端与Tx2与第二小区进行上行传输,即1T。当终端与第一小区之间不具有上行传输时,终端与第二小区使用Tx1和Tx2进行上行传输,即2T。
但是,终端向小区发送上行数据时,通常可以利用下行控制信息(down control information,DCI)格式(Format)0_1中的探测参考信号(Sounding Reference Signal,SRS)resource indicator字段,确定物理上行共享信道(Physical UplinkShared Channel,PUSCH)关联的SRS资源集合(resource set)中的SRS resource索引(index),子帧n中的SRI字段与子帧n之前距离子帧n最近的已发送的SRS资源集合相关联。因此,终端可以采用与该已发送的SRS资源集合中SRS resource索引所指示的SRS resource配置的port数目向小区发送上行数据。即如果最近的已发送的SRS资源集合配置的port数目为2T,则终端使用2T发送上行数据。如果最近的已发送的SRS资源集合配置的port数目为1T,则终端使用1T发送上行数据。但是,在网络设备指示终端进行1T/2T动态切换过程中,可能会出现网络设备指示终端使用2T发送上行数据,但是终端根据SRI字段所确定的发送上行数据所能采用的天线port数目为1T,即网络设备指示终端使用2T发送上行数据,与终端根据SRI字段确定的SRS资源的port数量为1T不匹配的问题,此时终端不确定自己是采用1T或者2T进行上行数据的发送。基于此,本申请实施例提供一种数据发送的方法,通过终端获取用于确定与网络设备通信时所使用的通信能力,然后从已发送的SRS资源集合中确定距离承载所述上行数据授权信息的下行控制信道最近且与发送所述上行数据时使用的通信能力数量相同的SRS资源集合。这样可以避免现有技术中存在的问题。
其中,处于空闲状态的通信能力是指:在某一个时间资源内终端与网络设备覆盖的小区并未使用该通信能力进行上行传输,或者在某一个时间资源上该通信能力上未具有上行传输。
处于非空闲状态的通信能力是指:在某一个时间资源内终端与网络设备覆盖的小区使用该通信能力进行上行传输或者该通信能力上具有上行传输。下述但凡涉及到传输链路/天线端口/传输Rank/传输层处于空闲状态或者非空闲状态,均可以参考此处的描述,后续不再赘述。
本申请实施例中一种数据发送的方法的执行主体可以为终端,也可以为应用于终端中的装置,例如,芯片。一种指示上行传输的方法的执行主体可以为网络设备,也可以为应用于网络设备中的装置,例如,芯片。下述实施例仅以数据发送的方法的执行主体为终端,另一种指示上行传输的方法的执行主体为网络设备为例。
如图6所示,本申请实施例提供一种数据发送的方法和指示上行传输的方法交互的流程示意图,该方法包括:
S101、网络设备向终端发送第一指示信息,该第一指示信息用于指示终端向网络设备发送上行数据的通信能力。
一方面,在第一小区和第二小区为不同网络设备覆盖下的小区的情况下:此处的向终端发送第一指示信息的网络设备可以为第一小区所属的网络设备,终端向网络设备发送上行数据的通信能力中的网络设备可以为第二小区所属的网络设备。例如,在图2所示的系统架构中,发送第一指示信息的网络设备可以为第一网络设备102,终端向网络设备发送上行数据的通信能力中的网络设备可以为第二网络设备103。此处的发送第一指示信息的网络设备和终端向网络设备发送上行数据的通信能力的网络设备也可以为同一个网络设备,例如,均可以为第二小区所属的网络设备,例如,如图2所示的第二网络设备103,本申请实施例对此不作限定。
另一方面,当第一小区和第二小区为同一个网络设备覆盖下的小区的情况下:此处的网络设备可以为第一小区和第二小区共同所属的网络设备。例如,此处的网络设备为图3所示的网络设备106。
示例性的,通信能力包括以下参数中的一项或者多项:最大传输链路数量、最大传输层数、最大传 输Rank数和最大天线端口数目。
示例性的,该第一指示信息可以由网络设备以动态配置方式配置给终端。
一种可能的实现方式,该第一指示信息可以携带在下行控制信息(Down Control Information,DCI)中。
例如,网络设备在下发给终端的下行控制信息中增加新的信令(例如,第一指示信息),用于指示终端确定发送上行数据时使用的通信能力。
以通信能力为最大天线端口数目为例,即第一指示信息用于指示终端使用的最大天线端口数目为2T或者使用的最大天线端口数目为1T。其中,终端使用最大天线端口数目为2T进行上传传输时的数据率大于终端使用最大天线端口数目为1T进行上传传输时的数据率。
另一种可能的实现方式,该第一指示信息可以携带在终端和其他终端共用的组公共下行控制信道中。
例如,网络设备可以通过在共用的组(group)公共下行控制信道增加第一指示信息。当第一指示信息携带在共用的组公共下行控制信道中时,该group内的所有的终端在相应的时间资源(例如,时隙(slot))上采用网络设备所指示的通信能力进行上行传输。
例如,一个group内包括终端1和终端2,第一指示信息用于指示终端在时间资源1上使用通信能力1进行上行传输。在时间资源2上使用通信能力2进行上行传输。则终端1和终端2分别在时间资源1上使用通信能力1与各自对应的小区进行上行传输。终端1和终端2分别在时间资源2上使用通信能力2与各自对应的小区进行上行传输。
示例性的,下行控制信道可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH),因此,第一指示信息可以携带在group common PDCCH发送给终端。
此外,网络设备还可以使用其他方式向终端配置第一指示信息,本申请实施例对此不作限定。
本申请实施例中对第一指示信息的大小不作限定,示例性的,该第一指示信息的大小可以为1比特(bit)。
本申请实施例中终端具有至少两个通信能力,例如,第一通信能力和第二通信能力。其中,在不同时间资源上终端可以使用不同的通信能力向网络设备发送上行数据。其中,第一通信能力大于第二通信能力。
第一通信能力大于第二通信能力指:终端在使用第一通信能力向网络设备发送上行数据时所能达到的效果(例如,发送数据率)大于终端使用第二通信能力向网络设备发送上行数据时所能达到的效果。例如,使用第一通信能力时数据速率大于使用第二通信能力进行通信时的通信速率。
一种示例,该第一指示信息用于指示终端与网络设备通信时的通信能力为第一通信能力。
其中,第一通信能力指最大传输链路数量/最大传输层数量/最大传输秩Rank数量/最大天线端口数量为2T。
例如,以最大传输链路数量为2T为例,是指最大传输链路数量为两个或两个以上,该两个或两个以上的传输链路中至少包括终端与小区1之间具有的传输链路,以及至少一个终端与其他小区之间具有的传输链路。最大传输层数量/最大传输秩Rank数量/最大天线端口数量为2T的描述可以参考最大传输链路数量为2T的描述,此处不再赘述。
示例性的,第一指示信息可以为第一指示符,该第一指示符用于指示终端与网络设备通信时的最大传输链路数量为2T。例如,第一指示符为“1”。
另一种示例,该第一指示信息用于指示终端发送上行数据时使用的通信能力为第二通信能力。
第二通信能力指最大传输链路数量/最大传输层数量/最大传输秩Rank数量/最大天线端口数量为1T。
其中,以最大天线端口的数量为1T。例如,第一指示信息为第二指示符,第二指示符可以为“0”。
例如,以最大天线端口的数量为1T为例,是指最大天线端口包括至少一个天线端口,该至少一个天线端口至少包括终端与小区1之间具有的最大天线端口,且不包括终端与其他小区之间具有的至少一个天线端口。最大传输层数量/最大传输秩Rank数量/最大传输链路数量为1T的描述可以参考最大传输链路数量为1T的描述,此处不再赘述。
S102、终端获取网络设备发送的第一指示信息。
S103、网络设备在第一时刻向终端发送第一调度信息,该第一调度信息用于调度终端发送上行数据。
其中,第一调度信息可以由与终端通信的小区所属的网络设备发送给终端,也可以由其他小区所属的网络设备发送给终端。
S104、终端在第一时刻接收第一调度信息。
S105、终端从第一时刻之前发送的SRS资源集合中,确定与第一指示信息所指示的通信能力相同的SRS资源集合,作为第一SRS资源集合。
一种可能的实现方式,步骤S105可以通过以下方式实现:终端确定发送上行数据使用的通信能力为第一通信能力,终端从第一时刻以前已发送的SRS资源集合中选择与第一通信能力相同的SRS资源集合作为第一SRS资源集合,并根据第一探测参考信号SRS资源集合使用第一通信能力向网络设备发送上行数据。终端确定发送上行数据使用的通信能力为第二通信能力,终端从第一时刻以前已发送的SRS资源集合中选择与第二通信能力相同的SRS资源集合作为第一SRS资源集合,并根据第一探测参考信号SRS资源集合使用第二通信能力向网络设备发送上行数据。
例如,第一通信能力包括最大传输链路数量为2T,则终端确定发送上行数据的最大天线端口的数量为2T,则终端从第一时刻之前已发送的SRS资源集合中寻找与承载上行数据授权信息的下行控制信道最近,且SRS资源集合具有的最大天线端口的数量为2T作为第一SRS资源集合。
由于SRI指示的SRS集合中的具体的某一个资源,该资源可以和上行数据发送的其他参数有关,比如功率控制,上行波束(beam)指示相关,因此,可以根据所指示的天线端口的数量确定上行数据与哪个SRS资源集合关联,便于后续根据SRI指示从与上行数据关联的SRS资源集合中确定SRI指示的SRS资源。
S106、终端根据第一探测参考信号SRS资源集合使用通信能力发送上行数据。
具体的,终端可以使用上行数据信道向网络设备发送上行数据。例如,上行数据信道可以为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
S107、网络设备根据第一指示信息所指示的通信能力接收终端发送的上行数据。
例如,第一指示信息所指示的通信能力包括的最大天线端口数目为2T,则网络设备基于最大天线端口数目为2T接收终端发送的上行数据。
又例如,第一指示信息所指示的通信能力包括的最大传输链路数量为1T,则终端网络设备基于最大天线端口数目为1T接收终端发送的上行数据。
又例如,第一指示信息所指示的通信能力包括的最大传输Rank数为2T,则网络设备基于最大传输Rank数为2T接收终端发送的上行数据。
需要说明的是,在设备到设备(device-to-device,D2D)通信系统下,该D2D通信系统包括多个终端,则第一指示信息、第二指示信息以及第一调度信息,还可以由与终端通信的其他终端发送给该终端,本申请实施例对此不作限定。
本申请实施例提供一种数据发送的方法,通过终端获取用于确定终端向网络设备发送上行数据时使用的通信能力的第一指示信息,并根据第一指示信息确定发送上行数据关联的已发送的一个或者多个SRS资源集合中与距离承载上行数据的授权信息的下行控制信道最近且与第一指示信息所指示的通信能 力相同的SRS资源集合。这样不仅在实现传输链路共享的情况下,提高传输链路使用率,提升上行传输速率,且可以避免PUSCH所采用的通信能力与最接近的已发送的SRS资源集合对应的通信能力不匹配的问题。
作为本申请的另一个实施例,在本申请实施例提供的方法还包括:第一指示信息指示终端与网络设备通信时的传输链路数量/天线端口数目/传输Rank数量/传输层数量为2T的任一个,终端确定第一SRS资源集合关联的通信能力包括以下任一项:最大传输链路数量/最大天线端口数目/最大传输Rank数量/最大传输层数量为2T。这样终端便可以使用所指示的通信能力和网络设备通信,从而提高上行数据的传输速率。
以图2所示的系统架构为例,当网络设备为与终端具有连接的第一网络设备102时,其他网络设备可以为与终端具有连接的第二网络设备103。
示例性的,终端与网络设备1之间的传输链路包括:传输链路1、传输链路2以及传输链路3。终端与网络设备2之间具有的传输链路包括:传输链路4和传输链路5。则第一指示信息指示终端与网络设备1通信时的最大传输链路数量为2T时,终端可以使用传输链路1、传输链路2、传输链路3以及传输链路4向网络设备1覆盖的小区发送上行数据。或者终端使用传输链路1、传输链路2、传输链路3、传输链路4以及传输链路5向网络设备1覆盖的小区发送上行数据。
又一示例,如图2所示,以终端具有两个传输链路,即第一传输链路104和第二传输链路105,网络设备为第二网络设备103为例,当第一指示信息指示终端向第二网络设备103覆盖的小区发送上行数据时的最大传输链路数量为1T时,终端和第二网络设备103使用第一传输链路104或第二传输链路105。
可以理解的是,为了使得终端与网络设备覆盖的小区之间进行上行传输时的最大传输链路数量为2T,不影响终端与其他小区之间进行的上行传输,则终端与小区之间的进行上行传输时的最大传输链路包括:终端与该小区之间的一个或者多个传输链路中的至少一个,以及终端与其他小区之间的一个或者多个传输链路中处于空闲状态的传输链路。
作为本申请的另一个实施例,在本申请实施例提供的方法还包括:第一指示信息指示终端与所述网络设备通信时的最大传输链路数量/最大天线端口数目/最大传输Rank/最大传输层数量为1T或者单个时,终端确定第一SRS资源集合关联的通信能力包括的最大传输链路数量/最大天线端口数目/最大传输Rank/最大传输层数量为单个或者1T。这样终端便可以在后续需要发送上行数据时,从已发送SRS资源集合中确定最大传输链路数量为单个的SRS资源集合作为第一SRS资源集合,并根据最大传输链路数量为单个发送上行数据。
示例性的,结合上例,第一指示信息指示终端与网络设备1覆盖的小区通信时的传输链路数量为单个时,终端可以使用传输链路1、传输链路2、传输链路3与网络设备1覆盖的小区进行上行传输。或者终端使用传输链路1、传输链路2、与网络设备1覆盖的小区进行上行传输。
示例性的,第一指示信息为第一指示符,则终端确定通信能力包括的最大传输层数量/最大传输Rank数量/最大天线端口数目/最大传输链路数量为多个。第一指示信息为第二指示符,则终端确定通信能力包括的最大传输层数量/最大传输Rank数量/最大天线端口数目/最大传输链路数量为单个。
由于目前可以通过时隙聚合(slot aggregation)的调度方式调度多个时隙,即一个DCI可以调度多个slot,该多个slot调度相同的数据,因为每次调度了多个slot,但并不能保证多个slot采用相同的天线端口数目发送,可选的,作为本申请的另一个实施例,如图7所示,本申请实施例提供的方法还包括:
S108、网络设备向终端发送第二指示信息,该第二指示信息用于指示多个时间资源中采用第一指示信息所指示的通信能力发送所述上行数据的时间资源。
可以理解的是,以通信能力包括的最大传输链路数量为多个为例,该第二指示信息用于指示多个时 间资源中采用最大传输链路数量为多个发送上行数据的时间资源以后,终端便可以确定多个时间资源中除采用最大传输链路数量为多个发送上行数据的时间资源以外的其他时间资源采用最大传输链路数量为单个发送上行数据。当然,步骤S107中的第二指示信息还可以用于指示多个时间资源中采用单个传输链路发送所述上行数据的时间资源,这样终端便可以确定多个时间资源中除采用单个传输链路发送上行数据的时间资源以外的其他时间资源采用多个传输链路发送上行数据。
需要说明的是,多个传输链路的含义与传输链路的数量为多个的含义等价。单个传输链路的含义与传输链路的数量为单个的含义等价。
其中,多个时间资源可以为时隙或者符号。
本申请实施例中第二指示信息和第一指示信息可以携带在同一个消息或者同一个下行控制信道中发送给终端。
S109、终端获取第二指示信息。
可选的,终端在步骤S108之后便可以确定多个时间资源中使用第一指示信息所指示的通信能力发送上行数据的时间资源。
例如,第一指示信息指示的通信能力为第一通信能力,则终端可以确定多个时间资源中使用第一指示信息所指示的第一通信能力发送上行数据的时间资源。以及在多个时间资源中处使用第一通信能力发送上行数据的时间资源以外,使用其他通信能力发送上行数据的时间资源。
在这种情况下,作为另一种可能的实现方式,本申请实施例中的步骤S106还可以通过以下方式实现:终端在第二指示信息所指示的时间资源内根据第一SRS资源集合使用第一通信能力向网络设备发送上行数据。终端在多个时间资源中除在第二指示信息所指示的时间资源以外的时间资源根据第一SRS资源集合采用第二通信能力向网络设备发送上行数据。
以该第二指示信息携带在下行控制信息中为例,该第二指示信息可以以duration或者bitmap信息(包括至少一个第一比特或者第二比特,其中,第一比特用于指示采用多个传输链路,第二比特用于指示采用单个传输链路。
例如,第一比特为1,第二比特为0形式存在。例如。比如一个DCI一次调度了4个slot(如图8所示的时隙1~时隙4),那么网络设备需要向终端指示在该4个slot中的哪几个slot中向网络设备发送上行数据时,使用多个第一通信能力,可以在下行控制信息中增加bitmap信息1010来指示终端。则终端便可以确定时隙1和时隙3中向网络设备发送上行数据使用第一通信能力(即图8中的2T),时隙2和时隙4中向网络设备发送上行数据使用第二通信能力(即图8中的1T)。
本申请实施例中第一SRS资源集合包括一个或者多个SRS资源,该一个或者多个SRS资源中每个SRS资源具有相同的通信能力。
可选的,第一调度信息还包括SRI,作为本申请的另一个实施例,本申请实施例提供的方法还包括:终端根据第一调度信息包括的SRI从第一SRS资源集合中选择SRI所指示的SRS资源发送上行数据。
具体的,终端可以根据SRS资源指示(SRS resource indicator,SRI)确定第一SRS资源集合中的resource index,并根据resource index从第一SRS资源集合中选择SRI所指示的SRS资源发送上行数据。
可选的,该SRI可以携带在格式为0或格式为1的DCI中发送给终端。
具体的,步骤S107可以通过以下方式实现:第一指示信息指示的通信能力为第一通信能力,网络设备按照第一通信能力接收终端发送的上行数据。或者第一指示信息指示的通信能力为第二通信能力,网络设备按照第二通信能力接收终端发送的上行数据。
此外,步骤S107还可以通过以下方式实现:网络设备在第二指示信息所指示的时间资源内按照第一通信能力接收终端发送的上行数据。网络设备在多个时间资源除第二指示信息所指示的时间资源以外 的时间资源按照第二通信能力接收终端发送的上行数据。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如数据发送的装置、指示上行传输的装置等为了实现上述功能,其包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例数据发送的装置、指示上行传输的装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面以采用对应各个功能划分各个功能模块为例进行说明:
在采用集成的单元的情况下,图9示出了上述实施例中所涉及的一种数据发送的装置的一种可能的结构示意图,该数据发送的装置可以为终端,或者为应用于终端中的芯片。该数据发送的装置包括:接收单元201、确定单元202以及发送单元203。
其中,接收单元201用于支持数据发送的装置执行上述实施例中的步骤S102、S104以及S109。确定单元202用于支持数据发送的装置执行上述实施例中的步骤S105。发送单元203用于支持数据发送的装置执行上述实施例中的步骤S106。
上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的数据发送的装置的一种可能的逻辑结构示意图,该数据发送的装置可以为上述实施例中的终端,或者为应用于终端中的芯片。数据发送的装置包括:处理模块212和通信模块213。处理模块212用于对数据发送的装置的动作进行控制管理,例如,处理模块212用于执行在数据发送的装置侧进行消息或数据处理的步骤,通信模块213用于在数据发送的装置侧进行消息或数据处理的步骤。
例如,作为一种可能的实现方式,通信模块213用于支持数据发送的装置执行上述实施例中的S102、S104、S106以及S109。和/或用于本文所描述的技术的其他由数据发送的装置执行的过程。处理模块212用于支持数据发送的装置执行上述实施例中的S105。
可选的,数据发送的装置还可以包括存储模块211,用于存储数据发送的装置的程序代码和数据。
其中,处理模块212可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块213可以是收发器、收发电路或接口电路等。存储模块211可以是存储器。
当处理模块212为处理器220,通信模块213为接口电路230或收发器时,存储模块211为存储器240时,本申请所涉及的数据发送的装置可以为图11所示的设备。
其中,接口电路230、一个或两个以上(包括两个)处理器220以及存储器240通过总线210相互连接。总线210可以是PCI总线或EISA总线等。总线210可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器240用于存储数据发送的装置的程序代码和数据。接口电路230用于支持数据发送的装置与其他设备 (例如,指示上行传输的装置)通信。处理器用于支持数据发送的装置执行存储器240中存储的程序代码和数据,从而对数据发送的装置的动作进行控制管理。
例如,一种可能的实现方式中,接口电路230支持数据发送的装置执行S102、S104、S106以及S109。S102、S104、S106以及S109。和/或用于本文所描述的技术的其他由数据发送的装置执行的过程。处理器220用于支持数据发送的装置执行上述实施例中的S105。
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的指示上行传输的装置的一种可能的结构示意图,该指示上行传输的装置可以为网络设备,或者为应用于网络设备中的芯片。该指示上行传输的装置包括:发送单元301和接收单元302。
其中,发送单元301用于支持指示上行传输的装置执行上述实施例中的步骤S101以及S103、S108。接收单元302用于支持指示上行传输的装置执行上述实施例中的S107。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的指示上行传输的装置的一种可能的逻辑结构示意图,该指示上行传输的装置可以为上述实施例中的网络设备,或者为应用于网络设备中的芯片。该指示上行传输的装置包括:处理模块312和通信模块313。处理模块312用于对该指示上行传输的装置的动作进行控制管理,通信模块313用于执行在指示上行传输的装置侧进行消息或数据处理的步骤。
例如,一种可能的实现方式中,通信模块313用于支持该指示上行传输的装置执行上述实施例中的S101、S103、S107以及S108。和/或用于本文所描述的技术的其他由指示上行传输的装置执行的过程。
可选的,该指示上行传输的装置还可以包括存储模块311,用于存储该指示上行传输的装置的程序代码和数据。
其中,处理模块312可以是处理器或控制器,例如可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信模块313可以是收发器、收发电路或接口电路等。存储模块311可以是存储器。
当处理模块312为处理器320,通信模块313为接口电路330或收发器时,存储模块311为存储器340时,本申请所涉及的该指示上行传输的装置可以为图14所示的设备。
其中,接口电路330、一个或两个以上(包括两个)处理器320以及存储器340通过总线310相互连接。总线310可以是PCI总线或EISA总线等。总线310可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中,存储器340用于存储该指示上行传输的装置的程序代码和数据。接口电路330用于支持该指示上行传输的装置与其他设备(例如,终端)通信,处理器320用于支持该指示上行传输的装置执行存储器340中存储的程序代码和数据以实现在指示上行传输的装置侧进行消息/数据控制的动作。
作为一种可能的实现方式,接口电路330用于支持该指示上行传输的装置执行上述实施例中的S101、S103、S107以及S108。和/或用于本文所描述的技术的其他由指示上行传输的装置执行的过程。
图15是本申请实施例提供的芯片150的结构示意图。芯片150包括一个或两个以上(包括两个)处理器1510和接口电路1530。
可选的,该芯片150还包括存储器1540,存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供操作指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1540存储了如下的元素,可执行模块或者数据结构,或者他们的子集, 或者他们的扩展集:
在本申请实施例中,通过调用存储器1540存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式为:数据发送的装置和指示上行传输的装置,所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1510控制数据发送的装置和指示上行传输的装置的操作,处理器1510还可以称为中央处理单元(central processing unit,CPU)。存储器1540可以包括只读存储器和随机存取存储器,并向处理器1510提供指令和数据。存储器1540的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1540、接口电路1530以及存储器1540通过总线系统1520耦合在一起,其中总线系统1520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图15中将各种总线都标为总线系统1520。
上述本申请实施例揭示的方法可以应用于处理器1510中,或者由处理器1510实现。处理器1510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1510可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1540,处理器1510读取存储器1540中的信息,结合其硬件完成上述方法的步骤。
可选地,接口电路1530用于执行图6、图7所示的实施例中的终端和网络设备的接收和发送的步骤。
处理器1510用于执行图6、图7所示的实施例中的终端和网络设备处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk,SSD)等。
一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S102、S104、S105以及S108。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
又一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得网络设备或者应用于网络设备中的芯片执行实施例中的S101、S103、S106以及S107。和/或用于本 文所描述的技术的其他由网络设备或者应用于网络设备中的芯片执行的过程。
前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行实施例中的S102、S104、S105、S106以及S109。和/或用于本文所描述的技术的其他由终端或者应用于终端中的芯片执行的过程。
另一方面,提供一种包括指令的计算机程序产品,计算机程序产品中存储有指令,当指令被运行时,使得网络设备或者应用于网络设备中的芯片执行实施例中的S101、S103、S107以及S108。和/或用于本文所描述的技术的其他由网络设备或者应用于网络设备中的芯片执行的过程。
一方面,提供一种芯片,该芯片应用于终端中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中的S102、S104、S105、S106以及S109。和/或用于本文所描述的技术的其他由终端执行的过程。
另一方面,提供一种芯片,该芯片应用于网络设备中,芯片包括一个或两个以上(包括两个)处理器和接口电路,接口电路和该一个或两个以上(包括两个)处理器通过线路互联,处理器用于运行指令,以执行实施例中实施例中的S101、S103、S107以及S108。和/或用于本文所描述的技术的其他由网络设备执行的过程。
此外,本申请还提供一种通信系统,该通信系统包括如图9~图11所示的数据发送的装置,图12-图14所示的指示上行传输的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (19)

  1. 一种数据发送的方法,其特征在于,包括:
    终端获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;
    所述终端在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;
    所述终端根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为在第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示通信能力相同。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    所述终端获取第二指示信息,所述第二指示信息用于指示所述终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述通信能力包括以下参数中的一项或者多项:
    最大传输链路数量、最大传输层数量、最大传输秩Rank数量和最大天线端口数量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一指示信息和第二指示信息中的至少一项携带在下行控制信息DCI中。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信息中。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一SRS资源集合包括一个或者多个SRS资源,第一调度信息还包括SRS资源指示SRI,所述方法还包括:
    所述终端根据所述SRI从所述第一SRS资源集合中选择一个SRS资源使用所述通信能力发送上行数据。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,
    当所述终端的最大天线端口的数量为单个,则所述终端根据第一探测参考信号SRS资源集合使用单个天线端口向所述网络设备发送上行数据;
    当所述终端的最大天线端口的数量为多个,则所述终端根据第一探测参考信号SRS资源集合使用多个天线端口向网络设备发送上行数据。
  8. 一种数据发送的装置,其特征在于,包括:
    接收单元,用于获取第一指示信息,所述第一指示信息用于指示所述终端向网络设备发送上行数据的通信能力;
    接收单元,用于在第一时刻接收第一调度信息,所述第一调度信息用于调度所述终端发送所述上行数据;
    发送单元,用于根据第一探测参考信号SRS资源集合使用所述通信能力发送所述上行数据,所述第一探测参考信号SRS资源集合为在第一时刻前发送的SRS资源集合,且所述第一SRS资源集合关联的通信能力与所述第一指示信息所指示通信能力相同。
  9. 根据权利要求8所述的一种数据发送的装置,其特征在于,所述接收单元,还用于获取第二指示信息,所述第二指示信息用于指示所述终端在多个时间资源中采用所述通信能力向所述网络设备发送所述上行数据的时间资源。
  10. 根据权利要求8或9所述的一种数据发送的装置,其特征在于,所述通信能力包括以下参数中的一项或者多项:
    最大传输链路数量、最大传输层数、最大传输秩Rank数和最大天线端口数目。
  11. 根据权利要求8-10任一项所述的一种数据发送的装置,其特征在于,所述第一指示信息和第二指示信息中的至少一项携带在下行控制信息DCI中。
  12. 根据权利要求8-10任一项所述的一种数据发送的装置,其特征在于,所述第一指示信息和第二指示信息中的至少一项携带在所述终端和其他终端共用的组公共下行控制信息中。
  13. 根据权利要求8-12任一项所述的一种数据发送的装置,其特征在于,所述第一SRS资源集合包括一个或者多个SRS资源,第一调度信息还包括SRS资源指示SRI,发送单元具体用于:
    根据所述SRI从所述第一SRS资源集合中选择一个SRS资源使用所述通信能力发送上行数据。
  14. 根据权利要求8-13任一项所述的一种数据发送的装置,其特征在于,发送单元具体用于:
    当所述终端的最大天线端口的数量为单个,则根据第一探测参考信号SRS资源集合使用单个天线端口向所述网络设备发送上行数据;
    当所述终端的最大天线端口的数量为多个,则根据第一探测参考信号SRS资源集合使用多个天线端口向网络设备发送上行数据。
  15. 根据权利要求8-14任一项所述的一种数据发送的装置,其特征在于,所述装置为终端或者为应用于终端中的芯片.
  16. 一种数据发送的装置,其特征在于,包括:至少一个处理器和接口电路,所述至少一个处理器与所述接口电路配合,以使所述通信装置执行如权利要求1-7任一项所述的方法。
  17. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,以实现如权利要求1-7任一项所述的方法,所述接口电路用于与所述芯片之外的其它模块进行通信。
  18. 一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得终端或者应用于终端中的芯片执行如权利要求1-7任一项所述的方法。
  19. 一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令被运行时,使得网络设备或者应用于网络设备中的芯片执行如权利要求1-7任一项所述的方法。
PCT/CN2019/096626 2018-07-20 2019-07-19 一种数据发送的方法和装置 WO2020015715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810805807.0 2018-07-20
CN201810805807.0A CN110740022B (zh) 2018-07-20 2018-07-20 一种数据发送的方法和装置

Publications (1)

Publication Number Publication Date
WO2020015715A1 true WO2020015715A1 (zh) 2020-01-23

Family

ID=69165003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096626 WO2020015715A1 (zh) 2018-07-20 2019-07-19 一种数据发送的方法和装置

Country Status (2)

Country Link
CN (1) CN110740022B (zh)
WO (1) WO2020015715A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597001A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种信号接收方法、发送方法及对应装置
WO2023155707A1 (zh) * 2022-02-17 2023-08-24 华为技术有限公司 一种通信方法、网络设备及终端设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159493A1 (zh) * 2020-02-14 2021-08-19 华为技术有限公司 一种资源配置的方法和装置
CN114126004B (zh) * 2020-08-25 2023-04-07 大唐移动通信设备有限公司 一种终端接入的处理方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117239A1 (en) * 2012-05-15 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Scheduling Apparatus and Method Thereof for Setting Up Device-to-Device Communication
CN105144817A (zh) * 2013-03-28 2015-12-09 夏普株式会社 用于解调参考信号选择的系统和方法
CN105763304A (zh) * 2014-12-16 2016-07-13 北京信威通信技术股份有限公司 一种csi-rs可支持的最大天线端口数量的扩展方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752034A (zh) * 2008-11-04 2012-10-24 华为技术有限公司 用于无线通信系统中的方法
CN107579808B (zh) * 2016-07-05 2020-04-14 华为技术有限公司 无线通信的方法和装置
CN107889256A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种调度上行资源的方法及装置
CN113489577B (zh) * 2017-08-09 2023-03-24 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150117239A1 (en) * 2012-05-15 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Scheduling Apparatus and Method Thereof for Setting Up Device-to-Device Communication
CN105144817A (zh) * 2013-03-28 2015-12-09 夏普株式会社 用于解调参考信号选择的系统和方法
CN105763304A (zh) * 2014-12-16 2016-07-13 北京信威通信技术股份有限公司 一种csi-rs可支持的最大天线端口数量的扩展方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113597001A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 一种信号接收方法、发送方法及对应装置
WO2023155707A1 (zh) * 2022-02-17 2023-08-24 华为技术有限公司 一种通信方法、网络设备及终端设备

Also Published As

Publication number Publication date
CN110740022A (zh) 2020-01-31
CN110740022B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US20210006967A1 (en) Method and device for relay transmission
US10785824B2 (en) Information processing method and related apparatus
EP3661090B1 (en) Command instruction method and device, and information interaction method and device
WO2020015715A1 (zh) 一种数据发送的方法和装置
WO2020200034A1 (zh) 一种网络接入的方法和装置
US11026288B2 (en) Discontinuous reception method, terminal, and network device
WO2018000378A1 (zh) 频带处理方法及装置
US20230034200A1 (en) Frequency-band state processing method and frequency-band state processing device
TW201906443A (zh) 用於傳輸數據的方法、終端設備和網絡設備
WO2021047478A1 (zh) 一种通信方法及装置
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
CN112351460B (zh) 数据传输方法及相关设备
WO2020119615A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN111034242B (zh) 一种发送小区配置信息的方法及装置
WO2022188677A1 (zh) 通信方法和通信装置
WO2020015708A9 (zh) 一种通信方法及装置
CN114731544B (zh) 一种基于网络切片的数据传输方法、装置和系统
JP2022525820A (ja) ベアラの構成方法および装置、ネットワーク機器
EP4233449B1 (en) Dual connectivity like ul leg switching with carrier aggregation
WO2023179304A1 (zh) 载波切换方法、装置及终端设备
WO2024032300A1 (zh) 通信方法和通信装置
WO2018232724A1 (en) MULTIPLE CONNECTIVITY CONTROL
WO2021068109A1 (zh) 一种信号发送、接收方法、装置及系统
EP4416889A1 (en) Terminal device, network node, and methods therein for sidelink synchronization information transmission
JP2024534846A (ja) 向上されたサービス品質手順のための通信調整及び低減された処理技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838234

Country of ref document: EP

Kind code of ref document: A1