WO2021104192A1 - 一种通信方法与通信装置 - Google Patents

一种通信方法与通信装置 Download PDF

Info

Publication number
WO2021104192A1
WO2021104192A1 PCT/CN2020/130774 CN2020130774W WO2021104192A1 WO 2021104192 A1 WO2021104192 A1 WO 2021104192A1 CN 2020130774 W CN2020130774 W CN 2020130774W WO 2021104192 A1 WO2021104192 A1 WO 2021104192A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
user identity
measurement configuration
terminal
configuration
Prior art date
Application number
PCT/CN2020/130774
Other languages
English (en)
French (fr)
Inventor
王洲
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021104192A1 publication Critical patent/WO2021104192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and communication device.
  • dual card dual standby means that two subscriber identity module (SIM) cards are installed in a mobile phone at the same time, and the two SIM cards can be on standby at the same time on the network.
  • SIM subscriber identity module
  • the two SIM cards perform the neighbor cell measurement process separately.
  • the neighbor cell measurement process of the two SIM cards is related and independent, which leads to the efficiency of neighbor cell measurement. Low, and produce larger signaling overhead.
  • the present application provides a communication method and communication device for providing a new neighbor cell measurement mechanism for dual-card terminals.
  • a communication method which can be executed by a communication device that supports a first user identity and a second user identity.
  • the method includes: receiving a measurement configuration sent by a network device, the measurement configuration carrying a first measurement configuration and a second measurement configuration, the first measurement configuration is used to indicate that the first user identity is based on the first measurement configuration Perform measurement, and the second measurement configuration is used to instruct the second user identity to perform measurement based on the second measurement configuration; and perform coordinated measurement based on the first measurement configuration and the second measurement configuration.
  • the first user identity is SIM card 1 and the second user identity is SIM card 2 as an example.
  • the SIM card 1 and the SIM card 2 in the terminal can perform cooperative measurement (cooperative measurement or collaborative measurement) to improve measurement efficiency, and can measure more frequency points and have a wider measurement range.
  • the terminal may be Method 1 or Method 2 as follows.
  • Manner 1 The terminal receives the first measurement configuration through the first user identity, and receives the second measurement configuration through the second user identity.
  • the SIM card 1 and the SIM card 2 in the terminal can respectively receive configuration information.
  • Manner 2 The terminal receives the measurement configuration through the first user identity or the second user identity.
  • the SIM card 1 or the SIM card 2 in the terminal can simultaneously receive the configuration information of the dual cards, which helps to improve efficiency and save signaling overhead.
  • the communication device before the receiving the measurement configuration sent by the network device, the communication device further instructs the network device to perform coordinated measurement of the first user identity and the second user identity.
  • the terminal may be implemented in the following manner 1 and manner 2.
  • Manner 1 The terminal sends first indication information and related information of the second user identity to the network device through the first user identity, and the first indication information is used to indicate the first user identity and the The second user identity collaborative measurement.
  • Manner 2 The terminal sends second indication information and related information about the first user identity to the network device through the second user identity, and the second indication information is used to indicate the first user identity and the first user identity.
  • the second user identity collaborative measurement The second user identity collaborative measurement.
  • SIM card 1 and SIM card 2 are identified as different UEs, and the terminal can report related information of SIM card 2 and indication information used to indicate the cooperative measurement of SIM card 1 and SIM card 2 .
  • the network device can determine that the SIM card 1 and the SIM card 2 cooperate in the measurement.
  • the information related to the second user identity may be carried in the first indication information, or may be sent through separate signaling before or after the first indication information, which is not limited in the embodiment of the present application.
  • the related information of the first user identity is carried in the second indication information; or, it may be sent through separate signaling before or after the second indication information, which is not limited in the embodiment of the present application.
  • the second user identity or related information of the second user identity includes at least one of the following information: International Mobile Equipment Identity (IMEI), Mobile Equipment Identity (MEID), International Mobile Subscriber Identity (IMSI), Temporary Mobile User Identity TMSI, packet domain temporary mobile user identity mark P-TMSI, integrated circuit card identification code ICCID, international mobile subscriber integrated services digital network MSISDN, mobile station roaming number MSRN, serial number SN or wireless network temporary identification RNTI.
  • IMEI International Mobile Equipment Identity
  • MEID Mobile Equipment Identity
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporary Mobile User Identity
  • P-TMSI packet domain temporary mobile user identity mark P-TMSI
  • integrated circuit card identification code ICCID integrated circuit card identification code ICCID
  • ICCID international mobile subscriber integrated services digital network MSISDN
  • MSRN mobile station roaming number MSRN
  • serial number SN serial number SN or wireless network temporary identification RNTI.
  • the coordinated measurement based on the first measurement configuration and the second measurement configuration includes: the first measurement configuration includes a first measurement gap, and the Measure in the first measurement gap to obtain a first measurement result; the second measurement configuration includes a second measurement gap, and measure in the second measurement gap by the second user identity to obtain a second measurement result .
  • the SIM card 1 in the terminal measures in the first measurement gap
  • the SIM card 2 measures in the second measurement gap.
  • the dual-card cooperative measurement can improve measurement efficiency, and can measure more frequency points and measurement ranges. Wider.
  • the coordinated measurement based on the first measurement configuration and the second measurement configuration includes: the first measurement configuration includes a first measurement gap, based on the first system frame number and frame The timing deviation SFTD adjusts the time position of the first measurement gap to obtain a third measurement gap.
  • the first SFTD is used to indicate the timing deviation between the network device and the first target network device; through the first user The identity is measured in the adjacent cell in the third measurement gap to obtain the first measurement result; the second measurement configuration includes a second measurement gap, and the time position of the second measurement gap is adjusted based on the second SFTD to obtain the first measurement result.
  • the fourth measurement gap, the second SFTD is used to indicate the timing deviation between the network device and the second target network device; the neighbor cell measurement is performed in the fourth measurement gap through the second user identity, and the second SFTD is obtained 2. Measurement results.
  • the terminal can also receive the SFTD between the current serving cell and different neighboring cells, and the SIM card 1 in the terminal is in the third measurement gap (adjusting the time position of the first measurement gap based on the first SFTD to obtain the third measurement gap). Measurement in the measurement gap), the SIM card 2 performs measurement in the fourth measurement gap (the time position of the second measurement gap is adjusted based on the second SFTD to obtain the fourth measurement gap).
  • the dual-card cooperative measurement can improve the measurement efficiency and can Measure more frequency points, and the measurement range is wider.
  • the communication device further sends the first measurement result to the network device through the first user identity, and sends the second measurement result to the network device through the second user identity Or, obtain a final neighbor cell measurement report according to the first measurement result and the second measurement result; send the final measurement report to the first user identity or the second user identity Internet equipment.
  • the SIM card 1 and the SIM card 2 in the terminal can report their own measurement reports, or they can report the measurement reports of the SIM card 1 and the SIM card 2 together, which improves efficiency and saves signaling overhead.
  • the coordinated measurement based on the first measurement configuration and the second measurement configuration includes multiple situations: for example, the service is paired based on the first measurement configuration and the second measurement configuration.
  • the dual-card coordinated measurement may include coordinated measurement of the primary cell and the neighboring cell, or, one SIM card performs the primary cell measurement and the other SIM card performs the neighboring cell measurement, etc., which is not limited in the embodiment of the present application.
  • a communication method which can be executed by a communication device such as a network device, the method includes: determining a first user identity and a second user identity supported by a terminal to perform collaborative measurement; sending a measurement configuration to the terminal , The measurement configuration carries a first measurement configuration and a second measurement configuration, the first measurement configuration is used for instructing the first user identity to perform measurement based on the first measurement configuration, and the second measurement configuration is used for Instruct the second user identity to perform measurement based on the second measurement configuration.
  • the first user identity is SIM card 1 and the second user identity is SIM card 2 as an example.
  • the SIM card 1 and the SIM card 2 in the terminal can perform coordinated measurement to improve measurement efficiency, and can measure more frequency points and have a wider measurement range.
  • the network device sends the measurement configuration to the terminal.
  • the network device may use the following method 1 or method 2 to send the measurement configuration to the two playing devices.
  • Manner 1 The network device sends the first measurement configuration to the first user identity, and sends the second measurement configuration to the second user identity.
  • the network device can send configuration information to the SIM card 1 and the SIM card 2 in the terminal respectively.
  • the network device sends the measurement configuration to the first user identity or the second user identity. That is, the network device can send the configuration information to the SIM card 1 or the SIM card 2 together, which helps to improve efficiency and save signaling overhead.
  • the determining the first user identity and the second user identity supported by the terminal to perform cooperative measurement includes: receiving the first indication information and the first indication information sent by the terminal through the first user identity. 2. Information related to the user identity, the first indication information is used to indicate the first user identity and the second user identity to perform collaborative measurement; or, to receive a second indication sent by the terminal through the second user identity Information and related information of the first user identity, and the second indication information is used to indicate coordinated measurement of the first user identity and the second user identity.
  • SIM card 1 and SIM card 2 are identified as different UEs, and the terminal can report related information of SIM card 2 and indication information used to indicate the cooperative measurement of SIM card 1 and SIM card 2 .
  • the network device can determine that the SIM card 1 and the SIM card 2 cooperate in the measurement.
  • the information related to the second user identity is carried in the first indication information, or may be sent through separate signaling before or after the first indication information, which is not limited in the embodiment of the present application.
  • the related information of the first user identity is carried in the second indication information, or may be sent through separate signaling before or after the second indication information, which is not limited in the embodiment of the present application.
  • the information related to the second user identity or the first user identity includes at least one of the following information: International Mobile Equipment Identity (IMEI), Mobile Equipment Identity (MEID), International Mobile Subscriber Identity (IMSI), Temporary Mobile User Identity TMSI, packet domain temporary mobile user identity mark P-TMSI, integrated circuit card identification code ICCID, international mobile user integrated services digital network MSISDN, mobile station roaming number MSRN, serial number SN or wireless network temporary identification RNTI;
  • IMEI International Mobile Equipment Identity
  • MEID Mobile Equipment Identity
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporary Mobile User Identity
  • P-TMSI packet domain temporary mobile user identity mark P-TMSI
  • integrated circuit card identification code ICCID integrated circuit card identification code ICCID
  • international mobile user integrated services digital network MSISDN mobile station roaming number MSRN
  • serial number SN serial number SN or wireless network temporary identification RNTI
  • the communication device further receives a first measurement report sent by the terminal through the first user identity, and receives a second measurement report sent by the terminal through the second user identity; or, receives A measurement report sent by the terminal through the first user identity or the second user identity, the measurement report including the first measurement report obtained by the first user identity detection and the measurement report obtained by the second user identity detection The second measurement report.
  • the SIM card 1 and the SIM card 2 in the terminal can report their own measurement reports, or they can report the measurement reports of the SIM card 1 and the SIM card 2 together, which improves efficiency and saves signaling overhead.
  • the communication device also obtains one or more system frame numbers and frame timing deviation SFTD, and the one or more SFTDs are respectively used to indicate the timing deviation between different communication devices and the communication device; Sending the one or more SFTDs to the terminal.
  • the network device can also send the SFTD between the current serving cell and different neighboring cells to the terminal, so that the SIM card 1 in the terminal is in the third measurement gap (adjust the time position of the first measurement gap based on the first SFTD). , The obtained third measurement gap), the SIM card 2 performs measurement in the fourth measurement gap (adjust the time position of the second measurement gap based on the second SFTD, and obtain the fourth measurement gap).
  • the dual-card cooperative measurement can improve Measurement efficiency, more frequency points can be measured, and the measurement range is wider.
  • the first measurement configuration is used to indicate that the first user identity measures the serving cell based on the first measurement configuration
  • the second measurement configuration is used to indicate the second user identity Measure the serving cell based on the second measurement configuration
  • the first measurement configuration is used to indicate that the first user identity is used to measure neighboring cells based on the first measurement configuration
  • the second measurement configuration is used to indicate The second user identity measures the neighboring cell based on the second measurement configuration
  • the first measurement configuration is used to indicate that the first user identity measures the serving cell based on the first measurement configuration
  • the second The second measurement configuration is used to instruct the second user identity to measure the neighboring cell based on the second measurement configuration.
  • the dual-card coordinated measurement may include coordinated primary cell measurement, coordinated neighboring cell measurement, or, one SIM card performs primary cell measurement and the other SIM card performs neighboring cell measurement, etc., which is not limited in the embodiment of the present application.
  • a communication device that supports a first user identity and a second user identity; the communication device further includes: a communication module for receiving a measurement configuration sent by a network device, in the measurement configuration Carrying a first measurement configuration and a second measurement configuration, the first measurement configuration is used to indicate that the first user identity performs measurement based on the first measurement configuration, and the second measurement configuration is used to indicate the second user The identity performs measurement based on the second measurement configuration; the processing module is configured to perform coordinated measurement based on the first measurement configuration and the second measurement configuration.
  • a communication device including: a processing module for determining a first user identity and a second user identity supported by the terminal to perform coordinated measurement; a communication module for sending a measurement configuration to the terminal, the The measurement configuration carries a first measurement configuration and a second measurement configuration, the first measurement configuration is used to indicate that the first user identity performs measurement based on the first measurement configuration, and the second measurement configuration is used to indicate the The second user identity performs measurement based on the second measurement configuration.
  • a communication device including: a communication interface for communicating with other devices;
  • One or more processors are One or more processors;
  • One or more memories are One or more memories
  • a computer program is stored in the one or more memories, and when the computer program is executed by the one or more processors, the communication device realizes the method steps of the above-mentioned first aspect.
  • a communication device including: a communication interface for communicating with other devices;
  • One or more processors are One or more processors;
  • One or more memories are One or more memories
  • a computer program is stored in the one or more memories, and when the computer program is executed by the one or more processors, the communication device realizes the method steps of the second aspect.
  • a computer-readable storage medium stores a computer program.
  • the computer program runs on an electronic device, the electronic device realizes the method.
  • a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium.
  • the computer program runs on an electronic device, the electronic device realizes the method provided in the second aspect. method.
  • a computer program including instructions, which when the instructions run on a computer, cause the computer to implement the method provided in the above-mentioned first aspect.
  • a computer program including instructions, which when the instructions run on a computer, cause the computer to implement the method provided in the above second aspect.
  • a chip is also provided, which is used to read a computer program stored in a memory to implement the method described in the first aspect.
  • a chip is also provided, which is used to read a computer program stored in a memory to implement the method described in the second aspect.
  • Figure 1 is a schematic diagram of switching between idle state, inactive state, and connected state
  • FIG. 2 is a schematic diagram of a gap provided by an embodiment of the application.
  • Figure 3 is a schematic diagram of an existing communication system
  • FIG. 4 is a schematic diagram of the hardware structure of a dual-card terminal provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the hardware structure of another dual-card terminal provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the hardware structure of another dual-card terminal provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a communication system provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of gaps corresponding to dual cards provided in an embodiment of the application.
  • FIG. 10 is a schematic diagram of an SSB in an NR neighboring cell provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of each dual card provided in an embodiment of the application for neighboring cell measurement
  • FIG. 12 is a schematic diagram of the logical structure of a first communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of a logical structure of a second communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram of the logical structure of a third communication device provided by an embodiment of this application.
  • 15 is a schematic diagram of the logical structure of a fourth communication device provided by an embodiment of this application.
  • 16 is a schematic diagram of the hardware structure of a fifth communication device provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of the hardware structure of a sixth communication device according to an embodiment of the application.
  • FIG. 18 is a schematic diagram of the hardware structure of a seventh communication device provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of the hardware structure of an eighth communication device provided by an embodiment of this application.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminals through one or more cells on the air interface in the access network, Or, for example, a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the terminal and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution-advanced (LTE-A) system, Or it may also include the downlink of the evolved packet core network (EPC), the fifth generation mobile communication technology (the 5th generation, 5G), and the new radio (NR) system (also referred to as the NR system for short).
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • EPC evolved packet core network
  • 5G fifth generation mobile communication technology
  • NR new radio
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF).
  • AMF access and mobility management functions
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Terminals including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity device of.
  • the terminal can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal may include user equipment (UE), wireless terminal, mobile terminal, device-to-device communication (device-to-device, D2D) terminal, vehicle to everything (V2X) terminal, machine-to-machine/ Machine-to-machine/machine-type communications (M2M/MTC) terminals, internet of things (IoT) terminals, subscriber units, subscriber stations, mobile stations station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or User equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/ Machine-to-machine/machine-type communications
  • IoT internet of things
  • subscriber units subscriber stations, mobile stations station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access
  • a mobile phone or called a "cellular" phone
  • a computer with a mobile terminal, portable, pocket-sized, hand-held, and a mobile device with a built-in computer, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is the general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, bracelets, Clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals introduced above if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be regarded as a vehicle-mounted terminal, and the vehicle-mounted terminal is, for example, also called an on-board unit (OBU).
  • OBU on-board unit
  • the terminal may also include a relay. Or it can be understood that all that can communicate with the base station can be regarded as a terminal.
  • the device used to implement the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is an example to describe the technical solutions provided in the embodiments of the present application.
  • RRC Radio resource control
  • RRC_IDLE RRC idle state
  • RRC_CONNECTED RRC connected state
  • RRC_INACTIVE RRC inactive state
  • RRC_CONNECTED three states are supported in NR, RRC idle state (RRC_IDLE), RRC inactive state (RRC_INACTIVE), and RRC connected state (RRC_CONNECTED).
  • RRC_CONNECTED RRC idle state
  • RRC_CONNECTED RRC connected state
  • different RRC states can be switched.
  • the UE When the UE is in the RRC_IDLE state, it can switch to the RRC_CONNECTED state through an establish mechanism, and then fall back to the RRC_IDLE state through a Release mechanism.
  • the UE is in the RRC_CONNECTED state, and can switch to RRC_INACTIVE through the Release with Suspend mechanism, and then back to the RRC_CONNECTED state through the Resume mechanism.
  • RRC_INACTIVE When the UE is in the RRC_INACTIVE state, it can switch to the RRC_IDLE state through the Release mechanism.
  • the mobility management mechanism of the terminal through cell handover or cell reselection with different coverage areas, so as to obtain continuous service of the wireless network.
  • the terminal is in the RRC_IDLE state and the RRC_INACTIVE state, there is no RRC link with the base station.
  • the signal quality of the serving cell where the terminal resides is lower than a certain threshold, the signal quality of the neighboring cell can be measured according to the neighboring cell information of the same frequency, different frequency and/or different system configured by the base station in the system message. If the conditions are met, switch to the neighboring cell and stay in the neighboring cell.
  • the process of switching from the serving cell to other cells is a cell reselection process.
  • the cell reselection (Reselection) is mainly implemented by the terminal itself. After certain trigger conditions and access criteria are met, the UE completes the cell reselection.
  • the terminal When the terminal is in the RRC_CONNECTED state, there is an RRC connection between the terminal and the base station.
  • the base station can configure the terminal to perform intra-frequency, inter-frequency and/or inter-system neighbor cell measurement through RRC signaling.
  • the terminal reports the measurement result of the neighboring cell to the serving cell, and the serving cell switches the terminal to a cell with better signal quality according to the measurement result.
  • the process of handover from the serving cell to the neighboring cell is a cell handover (Handover) process.
  • Neighboring cell measurement which measures related information (such as signal quality) of the neighboring cell to serve as a basis for cell handover or cell renewal.
  • Currently supported neighbor cell measurement mechanisms include measurement mechanisms based on measurement gaps.
  • the terminal is configured with a measurement gap.
  • the terminal detects the synchronization signals of other cells, uses the synchronization signals of other cells to synchronize with other cells, and then performs related measurements on the reference signals sent by other cells to complete the measurement of other cells.
  • the measurement gap can be pre-configured or configured by the base station.
  • FIG. 2 shows a schematic diagram of measuring gap.
  • the measurement gap includes: a measurement gap length (MGL), a measurement gap repetition period (MGRP), and a gap offset (Offset) used to configure the starting position of the measurement gap.
  • the terminal can determine the system frame number (SFN) and subframe (subframe) corresponding to the start position of the measurement gap according to these three parameters. Among them, the system frame number (SFN) and subframe (subframe) corresponding to the start position of the measurement gap meet the following conditions:
  • subframe gap Offset mod 10
  • the maximum MGL can be 6ms.
  • “user identity” (for example, the first user identity or the second user identity, etc.) is a logical concept.
  • “user identity” can correspond to SIM card or subscriber information or virtual SIM card or user identity (such as international mobile subscriber identity (IMSI) or temporary mobile subscriber identity (TMSI), etc.) .
  • IMSI international mobile subscriber identity
  • TMSI temporary mobile subscriber identity
  • different "user identities” logically correspond to different communication entities served by the network side, such as UEs in 4G and 5G systems, such as a terminal that supports two user identities, for the network side , Can be regarded as two communicating entities.
  • the network side will recognize two terminals that support different SIM cards or different subscriber information as two different communication entities, and will also support multiple different SIMs.
  • the same terminal with card or multiple subscriber information is identified as multiple different communication entities, even in reality, a terminal supporting multiple different SIM cards or multiple subscriber information is just one physical entity.
  • description will be made mainly by taking the "user identity" corresponding to the SIM card as an example.
  • the SIM card can be understood as the key for the terminal to access the mobile network.
  • the SIM card and its evolution are collectively referred to as the SIM card in the embodiments of the present application.
  • the SIM card can be an identification card for a global system for mobile communications (GSM) digital mobile phone user, which is used to store the user's identification code and key, and support the authentication of the user by the GSM system; and
  • the SIM card may also be a universal subscriber identity module (USIM), which may also be referred to as an upgraded SIM card.
  • GSM global system for mobile communications
  • USB universal subscriber identity module
  • the communication method provided in the embodiment of the present application is applicable to a terminal that supports at least two user identities.
  • a terminal supporting two user identities (referred to as a dual-card terminal) is taken as an example for description. It is understandable that the terminal that supports two user identities is, for example, a terminal that supports dual SIM dual active (DSDA), or dual receive-DSDS (DR-DSDS).
  • DSDS dual SIM dual active
  • DR-DSDS dual receive-DSDS
  • DSDS dual receive-DSDS
  • the DSDA terminal has two sets of transceiver radio frequency, that is, each SIM card has an independent transceiver radio frequency.
  • the DR-DSDS terminal has only one radio frequency transmit (Tx) channel and two radio frequency receive (receive, Rx) channels, so two SIM cards need to share one radio frequency Tx channel.
  • the communication method provided in the embodiments of the present application may be applicable to terminals supporting DSDA, and may also be applicable to terminals supporting DR-DSDS.
  • FIG. 3 is a schematic flow chart of the neighbor cell measurement process performed by the dual-card terminal in the existing mechanism.
  • the current serving base station of SIM card 1 and SIM card 2 is the same base station.
  • the current serving cell sends the first neighbor cell measurement configuration (including the first gap) to the SIM card 1, and the SIM card 1 performs neighbor cell measurement based on the first neighbor cell measurement configuration. Then, the SIM card 1 reports the measurement result to the current serving base station.
  • the current serving base station sends the second neighbor cell measurement configuration (including the second gap) to the SIM card 2, and the SIM card 2 performs neighbor cell measurement based on the second neighbor cell measurement configuration, and then the SIM card 2 sends the measurement result to the serving base station. Therefore, the SIM card 1 and the SIM card 2 independently perform the neighbor cell measurement process, which has low efficiency and high signaling overhead.
  • the serving base station needs to send the neighbor cell measurement configuration to the SIM card 1 and the SIM card 2 respectively, or the SIM card 1 and the SIM card 2 need to respectively report the measurement results to the serving base station and so on.
  • SIM card 1 and SIM card 2 since only one radio frequency Tx channel is provided, if SIM card 1 and SIM card 2 perform adjacent cell measurement at the same time, there may be simultaneous use of SIM card 1 and SIM card 2.
  • SIM card 1 and SIM card 2 In the case of uplink transmission on one radio frequency Tx channel, for example, SIM card 1 and SIM card 2 simultaneously use the radio frequency Tx channel to send a measurement report to the current serving cell, thereby causing resource conflicts.
  • an embodiment of the present application provides a communication method.
  • the serving base station can send the SIM card 1 and the SIM card 2 measurement configuration to the terminal together, and the SIM card 1 and the SIM card 2 can perform coordinated neighbor cell measurement.
  • SIM card 1 and SIM card 2 can share their respective measurement results
  • the terminal integrates the measurement results of SIM card 1 and SIM card 2 to obtain a final measurement report, and reports the final measurement report to the serving base station, which improves efficiency and saves signaling overhead.
  • the dual-card cooperative measurement may include multiple situations.
  • SIM card 1 and SIM card 2 perform coordinated primary cell measurement, or SIM card 1 and SIM card 2 Perform coordinated neighbor cell measurement, or SIM card 1 performs primary cell measurement and SIM card 2 performs neighbor cell measurement, or SIM card 1 performs neighbor cell measurement and SIM card 2 performs primary cell measurement.
  • the measurement configuration delivered by the serving cell to the terminal includes a first measurement configuration and a second measurement configuration, where the first measurement configuration is used to instruct the SIM card 1 to perform measurements on the serving cell based on the first measurement configuration.
  • the second measurement configuration is used to instruct the SIM card 2 to perform measurement of the serving cell based on the second measurement configuration; or the first measurement configuration is used to instruct the SIM card 1 to perform neighbor cell measurement based on the first measurement configuration ,
  • the second measurement configuration is used to instruct the SIM card 2 to perform neighbor cell measurement based on the second measurement configuration; or the first measurement configuration is used to instruct the SIM card 1 to perform a serving cell based on the first measurement configuration
  • the second measurement configuration is used to instruct the SIM card 2 to perform neighbor cell measurement based on the second measurement configuration.
  • the terminal 100 may include: a first SIM card interface 110, a second SIM card interface 120, a manager 140 respectively coupled to the first SIM card interface 110 and the second SIM card interface 120, and a manager 140
  • the processor 130 is coupled, and the processor 130 is connected to the transceiver 150.
  • the above-mentioned processor 130 may be a baseband processor (baseband processor, BBP).
  • BBP baseband processor
  • the transceiver 150 includes a radio frequency Rx1 path, a radio frequency Rx2 path, and a radio frequency Tx path.
  • the first SIM card interface 110 is used to install the SIM card 1 and communicate with the SIM card 1
  • the second SIM card interface 120 is used to install the SIM card 2 and communicate with the SIM card 2.
  • the manager 140 may send an uplink data packet related to the service of the SIM card 1 and an uplink data packet related to the service of the SIM card 2 to the processor 130.
  • the processor 130 may send each uplink data packet (for example, a measurement report) of the SIM card 1 and the SIM card 2 to the network side device on the radio frequency Tx path.
  • the radio frequency Tx path in the embodiments of the present application may also be referred to as a Tx radio frequency resource or transmitter (transmitter), and the radio frequency Rx path may also be referred to as an Rx radio frequency resource or receiver (receiver).
  • the above radio frequency Tx path and radio frequency Rx1 path may also be referred to as the RF main channel, and the above radio frequency Rx2 path may be referred to as the RF secondary channel.
  • the uplink and downlink RF devices (such as the radio frequency Tx channel and the radio frequency Rx1 channel) in the RF main channel are multiplexed, and the RF secondary channel has only the downlink RF device (such as the radio frequency Rx2 channel).
  • each of the two SIM cards of the terminal supporting DR-DSDS may be a global system for mobile communication (GSM) standard or universal mobile communication system.
  • GSM global system for mobile communication
  • UMTS universal mobile telecommunications system
  • TD-SCDMA time division-synchronous code division multiple access
  • LTE long term evolution
  • CDMA code division multiple access
  • the SIM card 1 in the terminal 100 may be the primary card of the terminal 100, and the SIM card 2 may be the secondary card of the terminal 100, or the SIM card 2 in the terminal 100 may be the primary card of the terminal 100, and the SIM card 1 may be The secondary card of the terminal 100 is not limited in the embodiment of the present application.
  • FIG. 5 shows a schematic structural composition diagram of another terminal supporting DR-DSDS provided in an embodiment of the present application.
  • the terminal 300 may include: a first SIM card interface 310, a second SIM card interface 320, a manager 340 respectively coupled to the first SIM card interface 310 and the second SIM card interface 320, and a manager 340 is coupled to the BBP330 (ie, the processor), and the BBP330 is connected to the transceiver 350.
  • the transceiver 350 includes a radio frequency Rx1 path, a radio frequency Rx2 path, and a radio frequency Tx path.
  • the aforementioned first SIM card interface 310 is used to install the SIM card 1 and communicate with the SIM card 1.
  • the aforementioned second SIM card interface 320 is used to install the SIM card 2 and communicate with the SIM card 2.
  • the BBP330 includes a common time unit (CTU).
  • the CTU includes an arbiter for judging the transmission priority of uplink data packets.
  • the terminal 300 may use a hybrid automatic repeat request (HARQ) protocol to send uplink data packets to the network side device. In this way, even if the uplink data packet of the SIM card (such as SIM card 2) sent by the manager 340 to the BBP 330 is not immediately transmitted, the uplink data packet can be retransmitted according to the HARQ protocol. As shown in FIG.
  • HARQ hybrid automatic repeat request
  • the manager 340 may use the HARQ protocol to send uplink data packets (prio) in the radio link control protocol (radio link control, RLC) queues of the SIM card 1 and the SIM card 2 to the BBP 330.
  • the BBP 330 can receive various data packets sent by the manager 340, such as an uplink voice packet sent by the SIM card 1, an uplink signaling packet sent by the SIM card 2, and so on.
  • FIG. 6 shows a schematic structural composition diagram of another terminal supporting DR-DSDS provided in an embodiment of the present application.
  • Fig. 6 takes the terminal supporting DR-DSDS as an example of a mobile phone.
  • the illustrated mobile phone 400 is only an example of a terminal supporting DR-DSDS, and the mobile phone 400 may have a higher value than that shown in the figure. Or fewer parts, two or more parts can be combined, and so on.
  • the various components shown in FIG. 6 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits. As shown in FIG.
  • the mobile phone 400 includes a processor 410, a system-on-chip device 420, a display controller 430, a codec (CODEC) 440, a manager 450, a memory 460, an input device 470, a modem 480, a transceiver 490, and Power 491 and so on.
  • CDEC codec
  • the structure of the mobile phone shown in FIG. 6 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the mobile phone 400 may further include a first SIM card interface 451 and a second SIM card interface 452.
  • the first SIM card interface 451 is used to communicate with the SIM card 1
  • the second SIM card interface 452 is used to communicate with the SIM card 2.
  • the first SIM card interface 451 and the second SIM card interface 452 may be SIM card connectors, which include a main body with a SIM card accommodating space, and a plurality of connected plugs for receiving conductive terminals of the received SIM card. groove.
  • the electrical signaling connection with the SIM card can be made through the conductive terminal and the slot.
  • Example interfaces may include serial or parallel (e.g., 6-pin or 8-pin) connections.
  • the mobile phone 400 may not include multiple SIM card interfaces.
  • the manager 450 is used to manage the SIM card 1 and the SIM card 2.
  • the mobile phone 400 may further include a speaker 441 and a microphone 442 coupled to the codec CODEC440.
  • FIG. 6 also indicates that the CODEC 440 440 can be coupled to the processor 410 and to the modem 480 that communicates with the transceiver 490.
  • the transceiver 490 is connected to one or more antennas. Only one example of an antenna is shown in FIG. 6.
  • the transceiver 490 is connected to multiple antennas, and the modem 480 supports diversity, where one antenna of the multiple antennas is the main antenna, and the other antenna is the auxiliary antenna.
  • the transceiver 490 may be an RF circuit, and the RF circuit may be used to send and receive information. For example, after receiving the downlink information of the base station, it may be processed by the processor 410; it may also send uplink data to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a combiner, a low-noise amplifier, a duplexer, and other devices.
  • the RF circuit can also communicate with the network and other mobile devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global system for mobile communications, general packet radio service, code division multiple access, wideband code division multiple access, long-term evolution, email, short message service, etc.
  • the transceiver 490 shown in FIG. 6 may include two radio frequency Rx paths and one radio frequency Tx path (the radio frequency Tx path, the radio frequency Rx1 path, and the radio frequency Rx2 path shown in FIG. 6).
  • the memory 460 can be used to store software programs and data.
  • the processor 410 executes various functions and data processing of the mobile phone 400 by running software programs and data stored in the memory 460. For example, as shown in FIG. 6, an instruction 461 and transmission priority information 462 are stored in the memory 460.
  • the instructions 461 may be executed by the processor 410.
  • the instructions 461 may include instructions executable by the processor 410 to receive communication data related to the SIM card 1 at the main signal input terminal of the modem 480.
  • the above-mentioned "communication data related to the SIM card 1" can be routed to the main signal input end of the modem 480 (not shown in FIG. 6) via the main RF path of the transceiver 490, namely Rx1.
  • the instructions 461 include instructions that can be executed by the processor 410 to receive communication data related to the SIM card 2 at the auxiliary signal input end of the modem 480.
  • the above-mentioned "communication data related to the SIM card 2" can be routed to the auxiliary signal input end of the modem 480 (not shown in FIG. 6) via the auxiliary RF path of the transceiver 490, namely Rx2.
  • the above-mentioned memory 460 may include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the data created by the use of the mobile phone 400 for example, audio data, phone book, etc.).
  • the memory 460 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 460 stores an operating system that enables the mobile phone 400 to run, such as iOS@ operating system developed by Apple, Android@ open source operating system developed by Google, and Windows@ developed by Microsoft Corporation. Operating system, etc.
  • the input device 470 (such as a touch screen) may be used to receive inputted digital or character information, and generate signal input related to user settings and function control of the mobile phone 400.
  • the input device 470 may include a touch panel provided on the front of the mobile phone 400, which can collect user touch operations on or near it (for example, the user uses a finger, a stylus, or any other suitable object or accessory on the touch panel or Operation near the touch panel), and drive the corresponding connection device according to the preset program.
  • the touch panel may include two parts: a touch detection device and a touch controller. Among them, the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, and can receive instructions sent by the processor 410 and execute them.
  • the display 431 may be used to display information input by the user or information provided to the user, as well as a graphical user interface (GUI) of various menus of the mobile phone 400.
  • the display 431 may include a display panel provided on the front of the mobile phone 400. Among them, the display panel can be in the form of a liquid crystal display, a light emitting diode, etc. After the touch panel detects a touch operation on or near it, it is transmitted to the processor 410 to determine the touch event, and then the processor 410 provides a corresponding visual output on the display panel according to the type of the touch event.
  • the touch panel and the display panel are used as two independent components to realize the input and output functions of the mobile phone 400
  • the touch panel and the display panel can be integrated to realize the mobile phone 400.
  • the input and output functions of the integrated touch panel and display panel can be referred to as a touch screen for short.
  • the touch panel may also be provided with a pressure sensor, so that when the user performs a touch operation on the touch panel, the touch panel can also detect the pressure of the touch operation, and the mobile phone 400 can The touch operation is detected more accurately.
  • the mobile phone 400 may also include at least one sensor 443, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel according to the brightness of the ambient light.
  • the proximity light sensor is arranged on the front of the mobile phone 400. When the mobile phone 400 is moved to the ear At this time, according to the detection of the proximity light sensor, the mobile phone 400 turns off the power of the display panel, so that the mobile phone 400 can further save power.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify mobile phone posture (such as horizontal and vertical screen conversion, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for the mobile phone 400, it may also include other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., which will not be repeated here.
  • the CODEC 440, the speaker 441, and the microphone 442 can provide an audio interface between the user and the mobile phone 400.
  • the CODEC440 can transmit the electrical signal after the received audio data conversion to the speaker 441, which is converted into a sound signal for output by the speaker 441; on the other hand, the microphone 442 converts the collected sound signal into an electrical signal, which is converted into an electrical signal after being received by the CODEC440
  • the audio data is then output to the RF circuit 410 to be sent to, for example, another mobile phone, or the audio data is output to the memory 460 for further processing.
  • the processor 410 is the control center of the mobile phone 400. It uses various interfaces and lines to connect the various parts of the entire mobile phone. It executes the operation of the mobile phone 400 by running or executing software programs stored in the memory 460 and calling data stored in the memory 460.
  • the processor 410 may include one or more processing units; the processor 410 may also integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the aforementioned mobile phone 400 may also include a Bluetooth module and a Wi-Fi module. The Bluetooth module is used to exchange information with other devices through the short-distance communication protocol of Bluetooth.
  • the mobile phone 400 can establish a Bluetooth connection with a wearable electronic device (such as a smart watch) that also has a Bluetooth module through a Bluetooth module, so as to perform data interaction.
  • Wi-Fi is a short-distance wireless transmission technology.
  • the mobile phone 400 can help users send and receive emails, browse web pages, and access streaming media through the Wi-Fi module. It provides users with wireless broadband Internet access.
  • the mobile phone 400 also includes a power source 491 (for example, a battery) for supplying power to various components.
  • the power supply may be logically connected to the processor 410 through a power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system. It can be understood that, in the following embodiments, the power supply 491 can be used to supply power to the display panel and the touch panel.
  • the methods in the following embodiments can all be implemented in the mobile phone 400 having the above-mentioned hardware structure.
  • the mobile phone 400 can use the communication method provided in the embodiment of the present application to perform neighbor cell measurement.
  • FIG. 7 shows a schematic diagram of a possible communication system provided by an embodiment of the present application.
  • the user’s terminal shown in Fig. 7 may be the terminal shown in Fig. 4, Fig. 5 or Fig. 6 above, and two or more SIM cards can be installed in the terminal, with two SIM cards (SIM card 1 and Take SIM card 2) as an example.
  • SIM card 1 and the SIM card 2 belong to the same operator, the SIM card 1 and the SIM card 2 are connected to the same base station, that is, the current serving cells of the SIM card 1 and the SIM card 2 are the same. If the SIM card 1 and the SIM card 2 respectively execute the neighbor cell measurement process, the efficiency is low.
  • the serving base station may simultaneously send the neighbor cell measurement configuration of the SIM card 1 and the SIM card 2 to the terminal, and the SIM card 1 and the SIM card 2 perform coordinated neighbor cell measurement based on the neighbor cell measurement configuration.
  • the SIM card 1 and the SIM card 2 can share their neighboring cell measurement results
  • the terminal integrates the measurement results of the SIM card 1 and the SIM card 2 to obtain a final measurement report, and reports the final measurement report to the serving base station.
  • FIG. 8 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • This method can be executed by any terminal that supports at least two user identities.
  • a terminal supporting a first user identity (such as SIM card 1) and a second user identity (such as SIM card 2) is taken as an example.
  • the flow of the communication method provided by the embodiment of the present application includes the following steps:
  • the terminal can inform the serving base station that the dual cards in the terminal need to perform coordinated neighbor cell measurement.
  • Manner 1 The terminal sends first indication information to the serving base station.
  • the first indication information is used to indicate that the dual cards in the terminal need to perform coordinated neighbor cell measurement.
  • the terminal can report information about the dual cards that need to perform neighbor cell measurement.
  • the terminal after the terminal sends the first indication information to the serving base station through the SIM card 1, it also reports related information of the SIM card 2 through the SIM card 1. Or, the related information of the SIM card 2 is carried in the first indication information.
  • SIM card 1 or SIM card 2 includes at least one of the following information: international mobile equipment identity (IMEI), mobile equipment identifier (MEID), International mobile subscriber identity (IMSI), temporary mobile subscriber identity (TMSI), packet-temporary mobile subscriber identity (P-TMSI), integrated circuit card Identification code (integrate circuit card identity, ICCID), International Mobile Subscriber International ISDN (MSISDN), mobile station roaming number (MSRN), serial number (serial number, SN), or wireless Network temporary identity (radio network temporary identity, RNTI).
  • IMEI international mobile equipment identity
  • MEID mobile equipment identifier
  • IMSI International mobile subscriber identity
  • TMSI temporary mobile subscriber identity
  • P-TMSI packet-temporary mobile subscriber identity
  • integrated circuit card Identification code integrated circuit card identity, ICCID
  • MSISDN International Mobile Subscriber International ISDN
  • MSRN mobile station roaming number
  • serial number serial number
  • SN serial number
  • wireless Network temporary identity radio network temporary identity
  • the SIM card 1 may send the first indication information to the serving base station when it is initially connected or reconnected to the serving base station, or when the SIM card 1 determines that cell reselection or cell handover is required, it may send the first indication to the serving base station.
  • One indication information, etc. is not limited in the embodiment of the present application.
  • the serving base station Before each time the serving base station delivers the neighbor cell measurement configuration to the SIM card 1 or the SIM card 2 in the terminal, it may first send an inquiry message to inquire whether a coordinated neighbor cell measurement is required. If necessary, the terminal sends to the serving base station first indication information for indicating that coordinated neighbor cell measurement is required. Of course, the terminal may also report the relevant information of the dual card that requires coordinated neighbor cell measurement.
  • the terminal After the terminal receives through the SIM card 1 an inquiry message sent by the serving base station for inquiring whether coordinated neighbor cell measurement is required, the terminal reports the first indication information and related information of the SIM card 2 through the SIM card 1. Or, the related information of the SIM card 2 is carried in the first indication information. Alternatively, the first indication information may not be reported, but only the related information of the SIM card 2 may be reported.
  • the serving base station after sending the inquiry message to the SIM card 1, and receiving the relevant information of the SIM card 2 reported by the SIM card 1, it is considered that the SIM card 1 and the SIM card 2 need to coordinate neighbor cell measurement.
  • a terminal receives a measurement configuration sent by a serving base station, the measurement configuration includes a first measurement configuration and a second measurement configuration, the first measurement configuration includes configuration information when the SIM card 1 performs neighbor cell measurement, and the second measurement configuration includes the SIM card 2 Configuration information for neighboring cell measurement.
  • the neighborhood measurement is based on the neighborhood measurement mechanism of the measurement gap. Therefore, the first measurement configuration issued by the serving base station may include the configuration information of the first gap, and the second measurement configuration may include the configuration information of the second gap. Wherein, the first gap and the second gap may be different in time and location, and/or different in type.
  • the first measurement configuration may include: the measurement time slot length of the first gap, the repetition period of the second gap, the gap Offset used to configure the starting position of the first gap, and so on.
  • the terminal can determine the system frame number and subframe corresponding to the start position of the first gap according to these three parameters.
  • the second measurement configuration may include: the measurement time slot length of the second gap, the repetition period of the second gap, the gap Offset used to configure the start position of the second gap, and so on.
  • the terminal can determine the system frame number and subframe corresponding to the start position of the second gap according to these three parameters.
  • FIG. 9, is a schematic diagram of the first gap and the second gap.
  • the first measurement configuration and the second measurement configuration may be dynamically indicated by the base station, or may be pre-configured. If it is pre-configured, there is no need to perform 801, and the terminal may perform neighbor cell measurement based on the pre-configured first measurement configuration and second measurement configuration. Alternatively, it is not necessary to execute 800, and the terminal performs neighbor cell measurement based on the respective pre-configured measurement configuration corresponding to the dual cards by default.
  • 801 can be implemented in multiple ways.
  • the measurement configuration in mode 1, 801 includes the first measurement configuration and the second measurement configuration. That is, after the serving base station determines that the SIM card 1 and the SIM card 2 need to coordinate the neighbor cell measurement, it simultaneously issues the respective measurement configurations of the SIM card 1 and the SIM card 2 to the SIM card 1 or the SIM card 2.
  • “simultaneously issue the measurement configuration corresponding to SIM card 1 and SIM card 2" can be the measurement configuration of two SIM cards issued through one signaling, or the measurement configuration of two SIM cards is issued through two signalings. Measurement configuration.
  • the difference from the existing mechanism is that in the existing mechanism, the dual-card implementation of the neighbor cell measurement is a mutually independent process.
  • the serving base station determines that the SIM card 1 and the SIM card 2 can cooperate in the neighbor cell measurement, it automatically issues the measurement configuration corresponding to the SIM card 1 and the SIM card 2 respectively.
  • the serving base station may identify which of the first measurement configuration and the second measurement configuration is the measurement configuration of SIM card 1, assuming that SIM card 1 receives the measurement configuration corresponding to each of SIM card 1 and SIM card 2 issued by the serving base station , SIM card 1 can send the measurement configuration corresponding to SIM card 2 to SIM card 2.
  • the serving base station in 801 delivers the first measurement configuration to SIM card 1 and the second measurement configuration to SIM card 2 respectively.
  • the serving base station determines that the dual-card of the terminal needs to perform coordinated neighbor cell measurement, it sends respective measurement configurations to SIM card 1 and SIM card 2 respectively.
  • step 800 can trigger the serving base station to deliver respective measurement configurations to SIM card 1 and SIM card 2 respectively.
  • the serving base station may deliver the measurement configuration to the SIM card 1 and the SIM card 2 at the same time or at different times. In the existing mechanism, on the side of the serving base station, SIM card 1 and SIM card 2 are identified as two unrelated terminals, and the process of sending configuration information to SIM card 1 and SIM card 2 by the serving base station is irrelevant.
  • the process of the terminal sending configuration information to the SIM card 1 and the SIM card 2 is related to each other.
  • the serving base station first delivers the measurement configuration to the SIM card 1, and then triggers the serving base station to deliver the measurement configuration to the SIM card 2.
  • the SIM card 1 in the terminal performs neighbor cell measurement based on the first measurement configuration.
  • the SIM card 1 performs the neighbor cell measurement in the first gap indicated by the first measurement configuration.
  • the SIM card 2 in the terminal performs neighbor cell measurement based on the second measurement configuration.
  • the SIM card 2 performs the neighbor cell measurement in the second gap indicated by the second measurement configuration.
  • the measurement of the LTE cell can be performed based on the cell reference signal (CRS). Since the CRS is evenly distributed on each subframe, the CRS can be detected in the gap at any position. Therefore, for a neighboring cell that is an LTE cell, when the serving base station configures the first gap and the second gap, there is no need to consider whether the first gap and the second gap can include the transmission time of the CRS.
  • CRS cell reference signal
  • the measurement of the NR cell can be performed based on a synchronization signal block (SSB).
  • SSB synchronization signal block
  • the SSB is not evenly distributed on each subframe, but is sent periodically.
  • the period can be 5ms, 10ms, 20ms, 40ms, 80ms, or 160ms.
  • Figure 10 which is the sending mechanism of the SSB of the NR cell. As shown in the figure, multiple SSBs can be sent in one cycle, and the multiple SSBs are sent together in one 5ms to form an SSB set or cluster (SSB burst).
  • the SSB cycle is 20ms, there are 4 5ms in a cycle, and all SSBs are sent in one 5ms, and no SSB is sent in the other 3 5ms. Therefore, for the neighboring cell is an NR cell, when the serving base station is configured to measure the first gap and the second gap, the first gap and the second gap need to include the transmission time of the SSB of the neighboring cell, otherwise the terminal is in the first gap or the second gap.
  • the SSB sent by the neighboring cell of the NR cannot be detected within the gap, so the NR cell cannot be measured.
  • the following embodiment introduces the measurement process for a neighboring cell that is an NR cell.
  • the serving base station determines the system frame number and frame timing difference (SFN and frame timing difference, SFTD) between each NR neighboring cell and the serving base station in one or more NR neighboring cells.
  • the coverage of the service mechanism includes multiple UEs, and a certain UE can perform SFTD measurement, for example, perform SFTD measurement on the serving cell and a certain NR neighboring cell, obtain the SFTD measurement result and report it to the serving base station.
  • the SFTD measurement result includes the SFN deviation between the serving cell and the certain NR neighboring cell and the timing deviation of the frame boundary.
  • Different UEs in the coverage of the serving cell may detect SFTD measurement results between the serving cell and different NR neighboring cells.
  • the serving cell can obtain multiple SFTD measurement results, and different SFTD measurement results include SFN deviations between neighboring cells of different NRs and the serving cell and timing deviations of frame boundaries. Among them, the deviation of the SFN and the timing deviation of the frame boundary can be used to synchronize with the neighboring cell to realize the neighboring cell measurement.
  • the SFTD measurement between the serving cell and the NR neighboring cell may be performed by a UE that supports dual connectivity (DC), or a UE that supports non-dual connectivity.
  • the SFTD measurement between the serving cell and the NR neighboring cell performed by the DC-supporting UE may include: EUTRA-NR dual connectivity (EUTRA-NR Dual Connectivity, EN-DC) between the LTE primary cell and the NR primary and secondary cell , Or, between the NR primary cell and the LTE primary and secondary cell under NR-EUTRA Dual Connectivity (NE-DC), or between the NR primary cell and the NR primary cell under NR Dual Connectivity (NR-DC) SFTD measurement between NR primary and secondary cells.
  • the SFTD measurement between the serving cell and the NR neighboring cell performed by the non-DC-enabled UE may include: the SFTD measurement between the LTE primary cell and the NR neighboring cell under non-dual connectivity.
  • the process in which the UE in the serving cell performs SFTD measurement may include that the UE receives a signal of another measured cell except the serving cell to obtain timing information of the cell, and thereby obtain the SFTD measurement result.
  • the UE can support simultaneous operation on the primary cell and the primary and secondary cells, that is, the UE knows the timing information of the primary cell and the primary and secondary cells at any time, so the UE can determine the SFTD between the primary cell and the primary and secondary cells.
  • the UE can implement SFTD measurement based on the following two methods: for example, gap-based SFTD measurement, namely SFTD measurement is performed in this gap.
  • the gap may be a pre-configured or a gap configured by the base station specifically for performing SFTD measurement.
  • the serving cell After the serving cell obtains one or more SFTDs, it can deliver one or more SFTDs to the terminal.
  • An SFTD includes the timing deviation between the serving base station and an NR neighboring cell.
  • the terminal After receiving one or more SFTDs, the terminal may establish synchronization with one or more neighboring cells based on the one or more SFTDs, and then perform neighboring cell measurement.
  • the serving base station issues 3 SFTDs, SFTD1-SFTD3, where SFTD1 includes the timing deviation between the serving cell and the neighboring cell 1, SFTD2 includes the timing deviation between the serving base station and the neighboring cell 2, and SFTD3 includes the serving base station and the neighboring cell.
  • SIM card 1 establishes synchronization with neighboring cell 1 based on SFTD1, and performs measurement on neighboring cell 1.
  • the SIM card 1 can determine a third gap based on the first gap and SFTD1, and perform neighbor cell measurement on the third gap. As shown in FIG. 11, after the first gap delays the timing deviation 1 included in SFTD1, the third gap is obtained.
  • the third gap includes the transmission time of the SSB of neighboring cell 1. Therefore, SIM card 1 can detect in the third gap
  • the SSB sent by the neighboring cell 1 realizes the measurement of the neighboring cell 1.
  • SIM card 2 can establish synchronization with neighboring cell 2 based on SFTD2, and measure neighboring cell 2. Specifically, the SIM card 2 can determine the fourth gap based on the second gap and SFTD2, and perform neighbor cell measurement on the fourth gap. Continuing to refer to Figure 11, after the second gap delays the timing deviation 2 included in SFTD2, the fourth gap is obtained. The fourth gap includes the transmission time of the SSB of the neighboring cell 2. Therefore, the SIM card 2 can detect in the fourth gap The SSB sent to the neighboring cell 2 realizes the measurement of the neighboring cell 2.
  • the SIM card 1 or the SIM card 2 can measure the neighboring cell 3 in a similar manner, and the details will not be repeated.
  • N SFTDs (N is an integer greater than or equal to 2) issued by the serving base station
  • SIM card 1 can perform neighbor cell measurement based on M SFTDs out of N SFTDs
  • SIM card 2 can be based on the remaining NMs.
  • One SFTD is used for neighboring cell measurement, where the value of M can be set by default or determined according to the current business volume of SIM card 1 and SIM card 2. For example, SIM card 1 has less business volume, and SIM card 2 has less business volume. When it is large, the value of M is greater than the value of NM.
  • SIM card 1 and SIM card 2 can perform blind detection. For example, the SIM card 1 is blindly checked in the first gap, and the SIM card 2 is blindly checked in the second gap.
  • the above method 1 or method 2 can be selected.
  • the above method 1 can be used.
  • the above method 2 can be used, or when the serving cell receives the measurement report reported by the terminal and determines that the measurement report is incorrect, the above method 2 can be used.
  • the current serving cell issues an SFTD
  • SIM card 1 performs neighbor cell measurement based on the SFTD and the first gap
  • SIM card 2 performs blind detection in the second gap.
  • the terminal reports a final measurement report to the serving base station.
  • the final measurement report includes the measurement report of the SIM card 1 and the measurement report of the SIM card 2.
  • Exemplarily, 804 can be implemented in multiple ways.
  • Method 1, before 804, SIM card 1 and SIM card 2 can share their respective measurement reports.
  • the second measurement report is sent to the SIM card 1.
  • the SIM card 1 integrates its own first measurement report and the second measurement report sent by the SIM card 2 to obtain the final measurement report and report it to the serving cell.
  • the first measurement report is sent to the SIM card 2, the second measurement report of the entire SIM card 2 and the first measurement report sent by the SIM card 1, to obtain the final measurement report, and report it to the serving cell.
  • the SIM card 1 and the SIM card 2 respectively report their respective measurement reports to the serving base station. For example, after the measurement of the SIM card 1 ends, the first measurement report is sent to the serving cell, and after the measurement of the SIM card 2 ends, the second measurement report is sent to the serving cell.
  • the communication method provided in the embodiments of the present application may be applicable to a variety of application scenarios. For example, cell handover, adding SCC, adding secondary cell group (SCG) and any other scenarios that require neighboring cell measurement.
  • cell handover For example, cell handover, adding SCC, adding secondary cell group (SCG) and any other scenarios that require neighboring cell measurement.
  • SCG secondary cell group
  • the dual-cards in the terminal cooperate to perform neighbor cell measurement.
  • the measurement efficiency can be improved, and the dual-card coordinated measurement can complete the measurement of multiple neighboring cells as soon as possible;
  • dual-card measurement can also obtain more frequency points to be measured and obtain more comprehensive measurement results.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the application.
  • the communication device 1200 may be the aforementioned terminal supporting the first user identity and the second user identity. As shown in FIG. 12, the communication device 1200 includes:
  • the communication module 1210 is configured to receive a measurement configuration sent by a network device, the measurement configuration carries a first measurement configuration and a second measurement configuration, and the first measurement configuration is used to indicate that the first user identity is based on the first A measurement configuration to perform measurement, where the second measurement configuration is used to instruct the second user identity to perform measurement based on the second measurement configuration;
  • the processing module 1212 is configured to perform coordinated measurement based on the first measurement configuration and the second measurement configuration.
  • the communication module 1210 is specifically configured to: receive the first measurement configuration through the first user identity, and receive the second measurement configuration through the second user identity; or,
  • the communication module 1210 is further configured to: send first indication information and information related to the second user identity to the network device through the first user identity, and the first indication information is used to indicate the The first user identity and the second user identity are measured cooperatively.
  • the processing module 1212 is specifically configured to: adjust the time position of the first measurement gap included in the first measurement configuration based on the first system frame number and the frame timing deviation SFTD to obtain a third measurement gap.
  • SFTD is used to indicate the timing deviation between the network device and the first target network device;
  • the communication module 1210 is further configured to: send the first measurement result to the network device through the first user identity, and send the second measurement result to the network device through the second user identity ;
  • the communication module uses the first user identity or the second user identity to convert the final The measurement report is sent to the network device.
  • the processing module 1212 in the embodiment of the present application may be implemented by a processor or processor-related circuit components.
  • the communication module 1210 may include a receiving module and a sending module.
  • the communication module 1210 may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device 1200 in the foregoing embodiment may be a terminal device, or a chip applied to a terminal device or other combination devices or components that can realize the foregoing terminal functions.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application further provides a communication device 1300, and the communication device 1300 may be the above terminal.
  • the communication device 1300 includes a processor 1310, a memory 1320, and a transceiver 1330.
  • the memory 1320 stores instructions or programs
  • the processor 1310 is configured to execute instructions or programs stored in the memory 1320.
  • the processor 1310 is used to perform the operations performed by the processing module 1212 in the foregoing embodiment
  • the transceiver 1330 is used to perform the operations performed by the communication module 1210 in the foregoing embodiment.
  • the communication device 1200 or the communication device 1300 of the embodiment of the present application may correspond to the terminal in the communication method shown in FIG. 8 of the embodiment of the present application, and the operation and/or operation of each module in the communication device 1200 or the communication device 1300 The functions are to implement the corresponding procedures of the various methods of the terminal in FIG. 8 respectively. For the sake of brevity, details are not described herein again.
  • FIG. 14 is a schematic block diagram of a communication device 1400 according to an embodiment of the application.
  • the communication device 1400 may be the aforementioned network device.
  • the communication device 1400 includes:
  • the processing module 1410 is configured to determine the first user identity and the second user identity supported by the terminal to perform collaborative measurement;
  • the communication module 1412 is configured to send a measurement configuration to the terminal, where the measurement configuration carries a first measurement configuration and a second measurement configuration, and the first measurement configuration is used to indicate that the first user identity is based on the first The measurement configuration performs measurement, and the second measurement configuration is used to instruct the second user identity to perform measurement based on the second measurement configuration.
  • the communication module 1412 is specifically configured to: send the first measurement configuration to the first user identity, and send the second measurement configuration to the second user identity; or,
  • the communication module 1412 is further configured to: receive first indication information sent by the terminal through the first user identity and information related to the second user identity, where the first indication information is used to indicate the The first user identity and the second user identity are measured cooperatively.
  • the communication module 1412 is further configured to: receive a first measurement report sent by the terminal through the first user identity, and receive a second measurement report sent by the terminal through the second user identity; or,
  • the processing module 1410 in the embodiment of the present application may be implemented by a processor or processor-related circuit components.
  • the communication module 1412 may include a receiving module and a sending module.
  • the communication module 1412 may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device 1400 in the foregoing embodiment may be a network device such as a base station, or may be a chip applied to the network device or other combination devices or components that can realize the functions of the foregoing network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application further provides a communication device 1500, which may be the aforementioned network equipment such as a base station.
  • the communication device 1500 includes a processor 1510, a memory 1520, and a transceiver 1530.
  • the memory 1520 stores instructions or programs, and the processor 1510 is configured to execute instructions or programs stored in the memory 1520.
  • the processor 1510 may perform the operations performed by the processing module 1410 in the foregoing embodiment, and the transceiver 1530 is configured to perform the operations performed by the communication module 1412 in the foregoing embodiment.
  • the communication device 1400 or the communication device 1500 in the embodiment of the present application may correspond to the base station in the communication method shown in FIG. 8 in the embodiment of the present application, and the operation and/or operation of each module in the communication device 1400 or the communication device 1500 Or the function is to realize the corresponding process of each method of the base station in FIG. 8. For the sake of brevity, it will not be repeated here.
  • FIG. 16 shows a simplified schematic diagram of the structure of the terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 16. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit of the terminal, and the processor with the processing function may be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1610 and a processing unit 1620.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1610 as the sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1610 is configured to perform sending and receiving operations on the terminal side in the foregoing method embodiment
  • processing unit 1620 is configured to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the transceiving unit 1610 is used to perform step 801, step 804, etc. in FIG. 8.
  • the transceiving unit 1310 is also used to perform other transceiving steps on the terminal side in the embodiment of the present application.
  • the processing unit 1620 is configured to execute steps 802, 803, etc. in FIG. 8, and/or the processing unit 1620 is also configured to execute other processing steps on the terminal side in the embodiment of the present application.
  • the device shown in FIG. 17 can be referred to.
  • the device can perform functions similar to the processor 1310 in FIG. 13.
  • the device includes a processor 1710, a sending data processor 1720, and a receiving data processor 1730.
  • the processing module 1212 in the foregoing embodiment may be the processor 1710 in FIG. 17, and completes corresponding functions.
  • the communication module 1210 in the foregoing embodiment may be the sending data processor 1720 and/or the receiving data processor 1730 in FIG. 17.
  • FIG. 17 shows a channel encoder and a channel decoder, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • FIG. 18 shows another form of the terminal of this embodiment.
  • the terminal 1800 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the terminal in this embodiment may be the modulation subsystem therein.
  • the modulation subsystem may include a processor 1803 and an interface 1804.
  • the processor 1803 completes the function of the aforementioned processing module 1212
  • the interface 1804 completes the function of the aforementioned communication module 1210.
  • the modulation subsystem includes a memory 1806, a processor 1803, and a program stored on the memory 1806 and running on the processor.
  • the processor 1803 implements the method of the terminal in the foregoing method embodiment when the program is executed.
  • the memory 1806 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1800, as long as the memory 1806 can be connected to the The processor 1803 is fine.
  • the network equipment 1900 includes one or more radio frequency units, such as a remote radio unit (RRU) 1910 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1920.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 1910 may be called a transceiver module, which corresponds to the communication module 1412 in FIG. 4.
  • the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1911 And radio frequency unit 1912.
  • the RRU 1910 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to the terminal.
  • the BBU 1910 part is mainly used for baseband processing, control of base stations, and so on.
  • the RRU 1910 and the BBU 1920 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1920 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 1410 in FIG. 14, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1920 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1920 also includes a memory 1921 and a processor 1922.
  • the memory 1921 is used to store necessary instructions and data.
  • the processor 1922 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1921 and the processor 1922 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), and a Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

一种通信方法与通信装置,用于提供一种双卡终端的协作测量机制。终端接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示终端支持的第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示终端支持的第二用户身份基于所述第二测量配置进行测量;终端基于所述第一测量配置和所述第二测量配置协作测量。

Description

一种通信方法与通信装置
相关申请的交叉引用
本申请要求在2019年11月30日提交中国专利局、申请号为201911208718.9、申请名称为“一种通信方法与通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法与通信装置。
背景技术
随着通信技术的发展,很多移动终端(如手机)都具备双卡双待功能。其中,双卡双待是指一个手机中同时安装两张用户识别模块(subscriber identity module,SIM)卡,这两张SIM卡可以同时在网待机。
现有机制中,双卡终端执行邻区测量时,两张SIM卡各自进行邻区测量过程,或者说,两张SIM卡的邻区测量过程是相关独立、不相关的,导致邻区测量效率低,且产生较大的信令开销。
因此,如何改善双卡终端的邻区测量机制是需要考虑的问题。
发明内容
本申请提供了一种通信方法与通信装置,用于提供一种针对双卡终端的新的邻区测量机制。
第一方面,提供一种通信方法,该方法可以由支持第一用户身份和第二用户身份的通信装置执行。该方法包括:接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量;基于所述第一测量配置和所述第二测量配置协作测量。
因此,以第一用户身份是SIM卡1,第二用户身份是SIM卡2为例。终端中SIM卡1和SIM卡2可以协作测量(cooperative measurement或者collaborative measurement),提升测量效率,而且可以测量更多频点,测量范围更广。
在一种可能的设计中,终端接收网络设备发送的测量配置的方式有多种。示例性的,可以是如下方式1或方式2。
方式1,终端通过所述第一用户身份接收所述第一测量配置,通过所述第二用户身份接收所述第二测量配置。也就是说,终端中SIM卡1和SIM卡2可以分别接收配置信息。
方式2,终端通过所述第一用户身份或所述第二用户身份接收所述测量配置。也就是说,终端中SIM卡1或SIM卡2可以一并接收双卡的配置信息,有助于提升效率,节省信令开销。
在一种可能的设计中,在所述接收网络设备发送的测量配置之前,通信装置还指示网 络设备第一用户身份和第二用户身份协作测量。示例性的,终端可以通过如下方式1和方式2实现。
方式1,终端通过所述第一用户身份向所述网络设备发送第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
方式2,终端通过所述第二用户身份向所述网络设备发送第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
可以理解的是,在网络设备侧,SIM卡1和SIM卡2被识别为不同的UE,终端可以上报SIM卡2的相关信息,以及用于指示SIM卡1和SIM卡2协作测量的指示信息。这样的话,网络设备可以确定SIM卡1和SIM卡2协作测量。
应理解,所述第二用户身份的相关信息可以携带于所述第一指示信息中,或者,可以是在第一指示信息之前或之后通过单独信令发送,本申请实施例不作限定。
或者,所述第一用户身份的相关信息携带于所述第二指示信息中;或者,可以是在第二指示信息之前或之后通过单独信令发送,本申请实施例不作限定。
其中,所述第二用户身份或所述第二用户身份的相关信息,包括如下信息的至少一种:国际移动设备识别码IMEI、移动设备识别码MEID、国际移动用户识别码IMSI、临时移动用户身份TMSI、分组域临时移动用户身份标示P-TMSI、集成电路卡识别码ICCID、国际移动用户综合业务数字网MSISDN、移动台漫游号码MSRN、序列号SN或无线网络临时标识RNTI。
应理解,上面列举的几种第二用户身份的相关信息仅是举例,不是限定。
在一种可能的设计中,所述基于所述第一测量配置和所述第二测量配置协作测量,包括:所述第一测量配置中包括第一测量间隙,通过所述第一用户身份在所述第一测量间隙内测量,得到第一测量结果;所述第二测量配置中包括第二测量间隙,通过所述第二用户身份在所述第二测量间隙内测量,得到第二测量结果。
需要说明的是,终端中的SIM卡1在第一测量间隙内测量,SIM卡2在第二测量间隙内测量,双卡协作测量,可以提升测量效率,而且可以测量更多频点,测量范围更广。
在一种可能的设计中,所述基于所述第一测量配置和所述第二测量配置协作测量,包括:所述第一测量配置中包括第一测量间隙,基于第一系统帧号和帧定时偏差SFTD调整所述第一测量间隙的时间位置,得到第三测量间隙,所述第一SFTD用于指示所述网络设备与第一目标网络设备之间的定时偏差;通过所述第一用户身份在所述第三测量间隙内进行邻区测量,得到第一测量结果;所述第二测量配置中包括第二测量间隙,基于第二SFTD调整所述第二测量间隙的时间位置,得到第四测量间隙,所述第二SFTD用于指示所述网络设备与第二目标网络设备之间的定时偏差;通过所述第二用户身份在所述第四测量间隙内进行邻区测量,得到第二测量结果。
需要说明的是,终端还可以接收当前服务小区与不同邻区之间的SFTD,终端中的SIM卡1在第三测量间隙(基于第一SFTD调整第一测量间隙的时间位置,得到的第三测量间隙)内测量,SIM卡2在第四测量间隙(基于第二SFTD调整第二测量间隙的时间位置,得到的第四测量间隙)内测量,双卡协作测量,可以提升测量效率,而且可以测量更多频点,测量范围更广。
在一种可能的设计中,通信装置还通过所述第一用户身份将所述第一测量结果发送所述网络设备,通过所述第二用户身份将所述第二测量结果发送所述网络设备;或者,根据所述第一测量结果和所述第二测量结果,得到最终的邻区测量报告;通过所述第一用户身份或所述第二用户身份将所述最终测量报告发送给所述网络设备。
因此,终端中SIM卡1和SIM卡2可以上报自身的测量报告,也可以综合SIM卡1和SIM卡2的测量报告一并上报,提升效率,节省信令开销。
在一种可能的设计中,所述基于所述第一测量配置和所述第二测量配置协作测量,包括多种情况:例如,基于所述第一测量配置和所述第二测量配置对服务小区协作测量;或者,基于所述第一测量配置和所述第二测量配置对邻区协作测量;或者,基于所述第一测量配置对主小区测量,基于所述第二测量配置对邻区测量。
因此,双卡协作测量可以包括对主小区、邻区的协作测量,或者,一个SIM卡进行主小区测量,另一个SIM卡进行邻区测量,等等,本申请实施例不作限定。
第二方面,还提供一种通信方法,该方法可以由通信装置例如网络设备执行,该方法包括:确定终端支持的第一用户身份和第二用户身份执行协作测量;向所述终端发送测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量。
因此,以第一用户身份是SIM卡1,第二用户身份是SIM卡2为例。终端中SIM卡1和SIM卡2可以协作测量,提升测量效率,而且可以测量更多频点,测量范围更广。
在一种可能的设计中,网络设备向所述终端发送测量配置包括多种方式。示例性的,网络设备可以使用如下方式1或方式2向玩两个设备发送测量配置。
方式1,网络设备向所述第一用户身份发送所述第一测量配置,向所述第二用户身份发送所述第二测量配置。也就是说,网络设备可以分别向终端中SIM卡1和SIM卡2发送配置信息。
方式2,网络设备向所述第一用户身份或所述第二用户身份发送所述测量配置。也就是说,网络设备可以一并将配置信息发送给SIM卡1或SIM卡2,有助于提升效率,节省信令开销。
在一种可能的设计中,所述确定终端支持的第一用户身份和第二用户身份执行协作测量,包括:接收所述终端通过所述第一用户身份发送的第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量;或者,接收所述终端通过所述第二用户身份发送的第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
可以理解的是,在网络设备侧,SIM卡1和SIM卡2被识别为不同的UE,终端可以上报SIM卡2的相关信息,以及用于指示SIM卡1和SIM卡2协作测量的指示信息。这样的话,网络设备可以确定SIM卡1和SIM卡2协作测量。
应理解,所述第二用户身份的相关信息携带于所述第一指示信息中,或者,可以是在第一指示信息之前或之后通过单独信令发送,本申请实施例不作限定。
或者,所述第一用户身份的相关信息携带于所述第二指示信息中,或者,可以是在第二指示信息之前或之后通过单独信令发送,本申请实施例不作限定。
其中,所述第二用户身份或所述第一用户身份的相关信息,包括如下信息的至少一种: 国际移动设备识别码IMEI、移动设备识别码MEID、国际移动用户识别码IMSI、临时移动用户身份TMSI、分组域临时移动用户身份标示P-TMSI、集成电路卡识别码ICCID、国际移动用户综合业务数字网MSISDN、移动台漫游号码MSRN、序列号SN或无线网络临时标识RNTI;
在一种可能的设计中,通信装置还接收所述终端通过所述第一用户身份发送的第一测量报告,接收所述终端通过所述第二用户身份发送的第二测量报告;或者,接收所述终端通过所述第一用户身份或所述第二用户身份发送的测量报告,所述测量报告包括所述第一用户身份检测得到的第一测量报告和所述第二用户身份检测得到的第二测量报告。
因此,终端中SIM卡1和SIM卡2可以上报自身的测量报告,也可以综合SIM卡1和SIM卡2的测量报告一并上报,提升效率,节省信令开销。
在一种可能的设计中,通信装置还获取一个或多个系统帧号和帧定时偏差SFTD,所述一个或多个SFTD分别用于指示不同通信装置与所述通信装置之间的定时偏差;向所述终端发送所述一个或多个SFTD。
需要说明的是,网络设备还可以向终端发送当前服务小区与不同邻区之间的SFTD,以使终端中的SIM卡1在第三测量间隙(基于第一SFTD调整第一测量间隙的时间位置,得到的第三测量间隙)内测量,SIM卡2在第四测量间隙(基于第二SFTD调整第二测量间隙的时间位置,得到的第四测量间隙)内测量,双卡协作测量,可以提升测量效率,而且可以测量更多频点,测量范围更广。
在一种可能的设计中,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对服务小区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对服务小区测量;或者,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对邻区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对邻区测量;或者,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对服务小区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对邻区测量。
因此,双卡协作测量可以包括协作主小区测量,协作邻区测量,或者,一个SIM卡进行主小区测量,另一个SIM卡进行邻区测量,等等,本申请实施例不作限定。
第三方面,还提供一种通信装置,该通信装置支持第一用户身份和第二用户身份;所述通信装置还包括:通信模块,用于接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量;处理模块,用于基于所述第一测量配置和所述第二测量配置协作测量。
第四方面,还提供一种通信装置,包括:处理模块,用于确定终端支持的第一用户身份和第二用户身份执行协作测量;通信模块,用于向所述终端发送测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量。
第五方面,还提供一种通信装置,包括:通信接口,用于与其他装置通信;
一个或多个处理器;
一个或多个存储器;
所述一个或多个存储器中存储有计算机程序,当所述计算机程序被所述一个或多个处理器执行时,使得所述通信装置实现上述第一方面的方法步骤。
第六方面,还提供一种通信装置,包括:通信接口,用于与其他装置通信;
一个或多个处理器;
一个或多个存储器;
所述一个或多个存储器中存储有计算机程序,当所述计算机程序被所述一个或多个处理器执行时,使得所述通信装置实现上述第二方面的方法步骤。
第七方面,还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备实现如上述第一方面提供的方法。
第八方面,还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备实现如上述第二方面提供的方法。
第九方面,还提供一种计算机程序,包括指令,当所述指令在计算机上运行时,使得所述计算机实现如上述第一方面提供的方法。
第十方面,还提供一种计算机程序,包括指令,当所述指令在计算机上运行时,使得所述计算机实现如上述第二方面提供的方法。
第十一方面,还提供一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现如上述第一方面所述的方法。
第十二方面,还提供一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现如上述第二方面所述的方法。
附图说明
图1为空闲态、非激活态、连接态之间的切换示意图;
图2为本申请实施例提供的间隙gap的示意图;
图3为现有的通信系统的示意图;
图4为本申请实施例提供的一种双卡终端的硬件结构示意图;
图5为本申请实施例提供的又一种双卡终端的硬件结构示意图;
图6为本申请实施例提供的另一种双卡终端的硬件结构示意图;
图7为本申请实施例提供的一种通信系统的示意图;
图8为本申请实施例提供的一种通信方法的流程示意图;
图9为本申请实施例提供的双卡各自对应的gap的示意图;
图10为本申请实施例提供的NR邻区的SSB的示意图;
图11为本申请实施例提供的双卡各自进行邻区测量的示意图;
图12为本申请实施例提供的第一种通信装置的逻辑结构示意图;
图13为本申请实施例提供的第二种通信装置的逻辑结构示意图;
图14为本申请实施例提供的第三种通信装置的逻辑结构示意图;
图15为本申请实施例提供的第四种通信装置的逻辑结构示意图;
图16为本申请实施例提供的第五种通信装置的硬件结构示意图;
图17为本申请实施例提供的第六种通信装置的硬件结构示意图;
图18为本申请实施例提供的第七种通信装置的硬件结构示意图;
图19为本申请实施例提供的第八种通信装置的硬件结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括演进的分组核心网络(evolved packet core,EPC)、第五代移动通信技术(the 5th generation,5G)、新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
2)终端,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle to everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless  local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、手环、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端。
本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
3)无线资源控制(radio resource control,RRC),在LTE中,支持两种RRC状态,即RRC空闲态(RRC_IDLE)、RRC连接态(RRC_CONNECTED)。在NR中,引入RRC非激活态(RRC_INACTIVE),即NR中支持三种状态,RRC空闲态(RRC_IDLE)、RRC非激活态(RRC_INACTIVE)、RRC连接态(RRC_CONNECTED)。参见图1所示,不同的RRC状态之间可以切换。UE处于RRC_IDLE状态时可以通过建立(establish)机制切换至RRC_CONNECTED状态,然后通过释放(Release)机制回退到RRC_IDLE状态。UE处于RRC_CONNECTED状态,可以通过释放与暂停(Release with Suspend)机制切换到RRC_INACTIVE,然后通过重建(Resume)机制回退到RRC_CONNECTED状态。UE处于RRC_INACTIVE状态时,可以通过Release机制切换至RRC_IDLE状态。
4)终端的移动性管理机制,通过在具有不同的覆盖范围的小区切换或小区重选,从而获得无线网络持续不断的服务。终端在RRC_IDLE态和RRC_INACTIVE态时,与基站之间没有RRC链接。当终端驻留的服务小区的信号质量低于一定门限时,可以根据基站在系统消息中配置的同频、异频和/或异系统邻区信息,测量邻区的信号质量,若该信号质量满足条件,则切换到邻区并在邻区驻留。终端在RRC_IDLE态和RRC_INACTIVE态时,从服务小区切换到其它小区的过程为小区重选过程。小区的重选(Reselection)主要由终端本身实现,在满足一定的触发条件和接入准则之后,UE完成小区重选。
终端在RRC_CONNECTED态时,终端和基站之间存在RRC连接。基站可以通过RRC信令配置终端进行同频、异频和/或异系统邻区测量。终端将邻区的测量结果上报服务小区,服务小区根据测量结果将终端切换到信号质量更好的小区上。终端在RRC_CONNECTED态时,从服务小区切换到邻区的过程为小区切换(Handover)过程。
因此,无论是RRC_IDLE态或RRC_INACTIVE态的小区重选,还是RRC_CONNECTED态的小区切换,都是基于对邻区的测量结果。
5)邻区测量,对邻区的相关信息(例如信号质量)进行测量,以便作为小区切换或小区重新的依据。目前支持的邻区测量机制包括基于测量间隙(Measurement gap)的测量机制。具体而言,终端配置有测量gap。在测量gap内,终端探测其他小区的同步信号,以其他小区的同步信号和其他小区同步,再对其他小区发送的参考信号进行相关测量,从而完成对其他小区的测量。其中,测量gap可以是预配置或由基站配置。
图2示出测量gap的示意图。测量gap包括:测量时隙长度(measurement gap length,MGL)、测量时隙重复周期(measurement gap repetition period,MGRP)、用于配置测量gap的起始位置的gap偏移量(Offset)。终端可根据这3个参数确定测量gap的起始位置对应的系统帧号(system frame number,SFN)和子帧(subframe)。其中,测量gap的起始位置对应的系统帧号(system frame number,SFN)和子帧(subframe)满足以下条件:
SFN mod T=FLOOR(gap Offset/10);
subframe=gap Offset mod 10;
T=MGRP/10;
示例性的,MGL最大可以为6ms。
6)本申请实施例中,“用户身份”(例如第一用户身份或第二用户身份等)为逻辑概念。例如,“用户身份”可以对应SIM卡或签约用户信息或虚拟SIM卡或用户标识(如国际移动用户标识(international mobile subscriber identity,IMSI)或临时移动用户标识(temporary mobile subscriber identity,TMSI)等)。从网络侧的角度来看,不同的“用户身份”在逻辑上对应网络侧服务的不同通信实体,比如4G和5G系统中的UE,例如一个支持两个用户身份的终端,对于网络侧来说,可以看作两个通信实体。再例如,“用户身份”对应SIM卡或签约用户信息时,网络侧会将支持不同SIM卡或不同签约用户信息的两个终端识别为两个不同的通信实体,也会将支持多个不同SIM卡或多个签约用户信息的同一终端识别为多个不同的通信实体,即使在实际上,支持多个不同SIM卡或多个签约用户信息的终端只是一个物理实体。本申请实施例中将主要以“用户身份”对应SIM卡为例进行说明。
示例性地,SIM卡可以理解为终端接入移动网络的钥匙,为了便于描述,本申请实施例中将SIM卡以及其演进都统称为SIM卡。例如SIM卡可以是全球移动通信系统(global system for mobile communications,GSM)数字移动电话用户的身份识别卡,用于存储用户的身份识别码和密钥,并支持GSM系统对用户的鉴权;又例如,SIM卡也可以是全球用户识别卡(universal subscriber identity module,USIM),也可以称为升级SIM卡。
需要说明的是,本申请实施例提供的通信方法适用于支持至少两个用户身份的终端。下文中,以支持两个用户身份的终端(简称双卡终端)为例进行说明。可以理解的是,所述支持两个用户身份的终端例如为支持双卡双待双通(dual SIM dual active,DSDA)的终端,或者支持双卡双收单发(dual receive-DSDS,DR-DSDS)的终端,其中,DSDA终端中自己有两套收发射频,即每个SIM卡都有一套独立的收发射频。与DSDA终端相比,DR-DSDS终端中仅有一路射频发射(transmit,Tx)通路和两路射频接收(receive,Rx)通路,因此两个SIM卡需要共用一路射频Tx通路。本申请实施例提供的通信方法可以适用于支持DSDA的终端,也可适用于支持DR-DSDS的终端。
以终端中安装有SIM卡1和SIM卡2为例。现有机制中,双卡终端进行邻区测量时,SIM卡1和SIM卡2各自独立进行测量。参见图3所示,为现有机制中双卡终端进行邻区测量过程的流程示意图。以SIM卡1和SIM卡2属于同一运营商为例,SIM卡1和SIM卡2当前服务基站为同一基站。如图3所示,当前服务小区向SIM卡1发送第一邻区测量配置(包括第一gap),SIM卡1基于第一邻区测量配置进行邻区测量。然后,SIM卡1向当前服务基站上报测量结果。当前服务基站向SIM卡2发送第二邻区测量配置(包括第二gap),SIM卡2基于第二邻区测量配置进行邻区测量,然后SIM卡2将测量结果发送服务基站。因此,SIM卡1和SIM卡2各自独立进行邻区测量过程,效率较低,且信令开销较大。例如,服务基站需要分别向SIM卡1和SIM卡2发送邻区测量配置,或者,SIM卡1和SIM卡2需要各自向服务基站上报测量结果等等。此外,对于支持DR-DSDS的终端来说,由于仅设置有一路射频Tx通路,若SIM卡1和SIM卡2同时进行邻区测量的话,可能会存在SIM卡1和SIM卡2同时使用所述一路射频Tx通路进行上行传输的情况,例如,SIM卡1和SIM卡2同时使用所述一路射频Tx通路向当前服务小区发送测量报告,进而导致资源冲突。
基于上述技术问题,本申请实施例提供一种通信方法。该方法中,服务基站可以一并向终端发送SIM卡1和SIM卡2测量配置,SIM卡1和SIM卡2可以进行协作邻区测量。例如,SIM卡1和SIM卡2可以分享各自的测量结果,终端整合SIM卡1和SIM卡2的测量结果得到最终测量报告,向服务基站上报该最终测量报告,提升效率,节省信令开销。
需要说明的是,本申请实施例提供的通信方法中,双卡的协作测量可以包括多种情况,例如,SIM卡1和SIM卡2执行协作主小区测量,或者,SIM卡1和SIM卡2执行协作邻区测量,或者,SIM卡1执行主小区测量SIM卡2执行邻区测量,或,SIM卡1执行邻区测量SIM卡2执行主小区测量。也就是说,服务小区向终端下发的测量配置包括第一测量配置和第二测量配置,其中,第一测量配置用于指示SIM卡1基于所述第一测量配置进行服务小区的测量,所述第二测量配置用于指示SIM卡2基于所述第二测量配置进行服务小区的测量;或者,所述第一测量配置用于指示SIM卡1基于所述第一测量配置进行邻区的测量,所述第二测量配置用于指示SIM卡2基于所述第二测量配置进行邻区的测量;或者,所述第一测量配置用于指示SIM卡1基于所述第一测量配置进行服务小区的测量,所述第二测量配置用于指示SIM卡2基于所述第二测量配置进行邻区的测量。
以下实施例介绍本申请实施例提供的终端的结构。
示例性的,以支持DR-DSDS的终端为例,请参考图4,示出了本申请实施例提供的一种支持DR-DSDS的终端的结构示意图。如图4所示,终端100可以包括:第一SIM卡接口110、第二SIM卡接口120、与第一SIM卡接口110和第二SIM卡接口120分别耦合的管理器140、与管理器140耦合的处理器130,处理器130连接收发器150。其中,上述处理器130可以为基带处理器(base band processor,BBP)。如图l所示,收发器150中包括射频Rx1通路、射频Rx2通路和射频Tx通路。其中,上述第一SIM卡接口110用于安装SIM卡1,与SIM卡l通信,上述第二SIM卡接口120用于安装SIM卡2,与SIM卡2通信。管理器140可以向处理器130发送与SIM卡1的业务相关的上行数据包以及发送与SIM卡2的业务相关的上行数据包。处理器130可以在射频Tx通路上向网络侧设备发送SIM卡1和SIM卡2的各个上行数据包(例如测量报告)。
应注意,本申请实施例中的射频Tx通路也可以称为Tx射频资源或发射器(transmitter), 射频Rx通路也可以称为Rx射频资源或接收器(receiver)。其中,本申请实施例中还可以将上述射频Tx通路和射频Rx1通路称为RF主通道,将上述射频Rx2通路称为RF副通道。即该RF主通道中的上下行RF器件(如射频Tx通路和射频Rx1通路)复用,RF副通道只有下行RF器件(如射频Rx2通路)。
示例性的,本申请实施例提供的支持DR-DSDS的终端的两张SIM卡中的每张SIM卡均可以为支持全球移动通信系统(global system for mobi1e communication,GSM)制式、通用移动通信系统(universal mobi1e telecommunications system,UMTS)制式、时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)制式、长期演进(long term evolution,LTE)制式、码分多址(code division multiple access,CDMA)制式等制式中的任意一种制式的SIM卡。
应理解,终端100中的SIM卡l可以为终端100的主卡,SIM卡2可以为终端100的副卡,或者终端100中的SIM卡2可以为终端100的主卡,SIM卡l可以为终端100的副卡,本申请实施例不作限定。
示例性的,以支持DR-DSDS的终端为例,请参考图5,示出了本申请实施例提供的另一种支持DR-DSDS的终端的结构组成示意图。如图5所示,该终端300可以包括:第一SIM卡接口310、第二SIM卡接口320、与第一SIM卡接口310和第二SIM卡接口320分别耦合的管理器340、与管理器340耦合的BBP330(即处理器),BBP330连接收发器350。如图5所示,收发器350中包括射频Rx1通路、射频Rx2通路和射频Tx通路。上述第一SIM卡接口310用于安装SIM卡1,与SIM卡l通信。上述第二SIM卡接口320用于安装SIM卡2,与SIM卡2通信。其中,BBP330中包括常用时间单元(common time unit,CTU)。该CTU中包括用于判断上行数据包的发射优先级的仲裁器。作为示例,在LTE网络中,终端300可以采用混合自动重传请求(hybrid automatic repeat request,HARQ)协议向网络侧设备发送上行数据包。这样,即使管理器340向BBP330发送的SIM卡(如SIM卡2)的上行数据包没有即时传输,也可以按照HARQ协议重传该上行数据包。如图3所示,管理器340可以采用HARQ协议,向BBP330发送SIM卡1和SIM卡2的无线链路层控制协议(radio link control,RLC)队列中的上行数据包(prio)。BBP330可以接收到管理器340发送的各种数据包,如SIM卡1发送的上行语音包,SIM卡2发送的上行信令包等。
示例性的,以支持DR-DSDS的终端为例,请参考图6所示,示出了本申请实施例提供的又一种支持DR-DSDS的终端的结构组成示意图。图6以支持DR-DSDS的终端是手机为例,应该理解的是,图示手机400仅仅是支持DR-DSDS的终端的一个范例,并且手机400可以具有比图中所示出的更过的或者更少的部件,可以组合两个或更多的部件等等。图6中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。如图6所示,手机400包括:处理器410、片上系统设备420、显示控制器430、编解码器(CODEC)440、管理器450、存储器460、输入设备470、调制解调器480、收发器490和电源491等。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图6所示,手机400中还可以包括第一SIM卡接口451和第二SIM卡接口452。第一SIM卡接口451用于与SIM卡1通信,第二SIM卡接口452用于与SIM卡2通信。例 如,第一SIM卡接口451和第二SIM卡接口452可以为SIM卡连接器,其包括具有SIM卡收容空间的主体,以及用于对接收的SIM卡的导电端子进行接收的多个联通插槽。可以通过导电端子和插槽进行与SIM卡的电信令联系。示例接口可以包括串行或并行(例如6针或8针)连接。此外,可以提供多种SIM卡尺寸(例如,全尺寸SIM、迷你SIM或者微型SIM)。在其他实施例中,当多种签约与通用身份模块相关联(例如,通用SIM)时,手机400可以不包括多个SIM卡接口。管理器450用于管理SIM卡1和SIM卡2。如图6所示,手机400还可以包括耦合到编解码器CODEC440的扬声器441和麦克风442。图6还指明了CODEC440440可以耦合到处理器410,且耦合到与收发器490进行通信的调制解调器480。其中,收发器490与一个或多个天线连接。图6中仅示出了一个天线的实例。在特定的实施例中,收发器490与多个天线连接,调制解调器480支持分集,其中多个天线中的一个天线是主天线,另外的天线是辅天线。收发器490可以为RF电路,该RF电路可用于收发信息,例如,接收到的基站的下行信息后,可以给处理器410处理;还可以将上行数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、相合器、低噪声放大器、双工器等器件。此外,RF电路还可以通过无线通信与网络和其他移动设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。在本申请实施例中,图6所示的收发器490中可以包括两路射频Rx通路和一路射频Tx通路(图6所示的射频Tx通路、射频Rx1通路和射频Rx2通路)。其中,存储器460可用于存储软件程序及数据。处理器410通过运行存储在存储器460的软件程序及数据,从而执行手机400的各种功能以及数据处理。例如,如图6所示,存储器460中保存有指令461和发射优先级信息462。指令461可以由处理器410执行。例如,指令461可以包括可由处理器410执行,以在调制解调器480的主信号输入端接收与SIM卡1相关的通信数据的指令。其中,可以经由收发器490的主RF路径,即Rx1,将上述“与SIM卡1相关的通信数据”路由到调制解调器480的主信号输入端(图6中未示出)。指令461包括可由处理器410执行,以在调制解调器480的辅信号输入端接收与SIM卡2相关的通信数据的指令。其中,可以经由收发器490的辅RF路径,即Rx2,将上述“与SIM卡2相关的通信数据”路由到调制解调器480的辅信号输入端(图6中未示出)。上述存储器460可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机400的使用所创建的数据(例如音频数据、电话本等)。此外,存储器460可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。在以下实施例中,存储器460存储有使得手机400能运行的操作系统,例如苹果公司所开发的iOS@操作系统,谷哥大公司所开发的Android@开源操作系统,微软公司所开发的Windows@操作系统等。输入设备470(例如触摸屏)可用于接收输入的数字或字符信息,以及产生与手机400的用户设置以及功能控制有关的信号输入。具体地,输入设备470可以包括设置在手机400正面的触控面板,可收集用户在其上或附近的触摸操作(例如用户使用手指、触笔等任何适合的物体或附件在触控面板上或在触控面板附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息, 并将它转换成触点坐标,再送给处理器410,并能接收处理器410发送的指令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板。显示器431(即显示屏)可用于显示由用户输入的信息或提供给用户的信息以及手机400的各种菜单的图形用户界面(graphical user inter face,GUI)。显示器431可包括设置在手机400正面的显示面板。其中,显示面板可以采用液晶显示器、发光二极管等形式。当触控面板检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件,随后处理器410根据触摸事件的类型在显示面板上提供相应的视觉输出。虽然在图6中,触控面板与显示面板是作为两个独立的部件来实现手机400的输入和输出功能,但是在某些实施例中,可以将触控面板与显示面板集成而实现手机400的输入和输出功能,集成后的触控面板与显示面板可以简称为触摸显示屏。在另外的一些实施例中,上述触控面板还可以设置有压力感应传感器,这样用户在上述触控面板上进行触摸操作时,触控面板还能检测到该触摸操作的压力,进而手机400能够更准确地检测该触摸操作。手机400还可以包括至少一种传感器443,例如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板的亮度,接近光传感器设置在手机400的正面,当在手机400移动到耳边时,根据接近光传感器的检测,手机400关闭显示面板的电源,这样手机400可以进一步节省电量。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态(比如横竖屏转化、相关游戏、磁力计姿态校准)、振动识别相关功能(例如计步器、敲击)等;至于手机400还可包括陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。CODEC440、扬声器441,麦克风442可提供用户与手机400之间的音频接口。CODEC440可将接收到的音频数据转换后的电信号,传输到扬声器441,由扬声器441转换为声音信号输出;另一方面,麦克风442将收集的声音信号转换为电信号,由CODEC440接收后转换为音频数据,再将音频数据输出至RF电路410以发送给比如另一手机,或者将音频数据输出至存储器460以便进一步处理。处理器410是手机400的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器460内的软件程序,以及调用存储在存储器460内的数据,执行手机400的各种功能和处理数据,从而对手机进行整体监控。在一些实施例中,处理器410可包括一个或多个处理单元;处理器410还可以集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。上述手机400还可以包括蓝牙模块和Wi-Fi模块。蓝牙模块用于通过蓝牙这种短距离通讯协议来与其他设备进行信息交互。例如,手机400可以通过蓝牙模块与同样具备蓝牙模块的可穿戴电子设备(例如智能手表)建立蓝牙连接,从而进行数据交互。Wi-Fi属于短距离无线传输技术,手机400可以通过Wi-Fi模块帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。手机400还包括给各个部件供电的电源491(例如电池)。电源可以通过电源管理系统与处理器410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。可以理解的是,在以下实施例中,电源491可以用于给显示面板及触控面板供电。以下实施例中的方法均可以在具有上述硬件结构的手机400中实现。
以手机400为例,示例性的介绍本申请实施例提供的通信方法适用的应用场景:
手机400在使用的过程中,可能出现一种情况,即当前服务小区服务质量差,例如,信号强度较低,或者,手机400移动位置,距离当前服务小区较远时,手机100需要执行小区切换,所以需要进行邻区测量。此时,手机400可以使用本申请实施例提供的通信方法进行邻区测量。
请参考图7,示出了本申请实施例提供的一种可能的通信系统的示意图。如图7所示的用户的终端可以为上述图4、图5或图6所示的终端,该终端中可以安装两个或两个以上的SIM卡,以两个SIM卡(SIM卡1和SIM卡2)为例。SIM卡1和SIM卡2属于同一运营商时,SIM卡1和SIM卡2接入同一基站,即SIM卡1和SIM卡2的当前服务小区是同一个。若SIM卡1和SIM卡2各自执行邻区测量过程,效率较低。本申请实施例提供的通信方法中,服务基站可以一并向终端发送SIM卡1和SIM卡2的邻区测量配置,SIM卡1和SIM卡2基于邻区测量配置进行协作邻区测量。例如,SIM卡1和SIM卡2可以分享各自的邻区测量结果,终端整合SIM卡1和SIM卡2的测量结果得到最终测量报告,向服务基站上报该最终测量报告。
以下实施例对本申请实施例提供的通信方法进行详细说明。请参考图8,示出了本申请实施例提供的通信方法的流程示意图。该方法可以由任何支持至少两个用户身份的终端执行。图8中以支持第一用户身份(如SIM卡1)和第二用户身份(如SIM卡2)的终端为例。如图8所示,本申请实施例提供的通信方法的流程包括如下步骤:
800,确定终端中双卡需要执行协作邻区测量。
可以理解的是,终端可以告知服务基站终端内双卡需要进行执行协作邻区测量。
方式1,终端向服务基站发送第一指示信息,该第一指示信息用于指示终端内双卡需要进行协作邻区测量,当然,终端可以上报需要进行邻区测量的双卡的相关信息。
例如,终端通过SIM卡1向服务基站发送第一指示信息之后,还通过SIM卡1上报SIM卡2的相关信息。或者,SIM卡2的相关信息携带于第一指示信息中。
需要说明的是,SIM卡1或SIM卡2的相关信息,包括如下信息的至少一种:国际移动设备识别码(international mobile equipment identity,IMEI)、移动设备识别码(mobile equipment identifier,MEID)、国际移动用户识别码(international mobile subscriber identity,IMSI)、临时移动用户身份(temporary mobile subscriber identity,TMSI)、分组域临时移动用户身份标示(packet-temporary mobile subscriber identity,P-TMSI)、集成电路卡识别码(integrate circuit card identity,ICCID)、国际移动用户综合业务数字网(Mobile Subscriber International ISDN,MSISDN)、移动台漫游号码(mobile station roaming number,MSRN)、序列号(serial number,SN)或无线网络临时标识(radio network temporary identity,RNTI)。
需要说明的是,SIM卡1可以在初次接入或重连接到服务基站时,向服务基站发送第一指示信息,或者,SIM卡1确定需要小区重选或小区切换时,向服务基站发送第一指示信息,等等,本申请实施例不限定。
方式2,服务基站每次向终端内SIM卡1或SIM卡2下发邻区测量配置之前,可以先发送询问信息,以询问是否需要进行协作邻区测量。若需要,终端向服务基站发送用于指示需要进行协作邻区测量的第一指示信息,当然,终端还可以上报需要进行协作邻区测量的双卡的相关信息。
例如,终端通过SIM卡1接收服务基站发送的用于询问是否需要协作邻区测量的询问消息之后,终端通过SIM卡1上报第一指示信息以及SIM卡2的相关信息。或者,SIM 卡2的相关信息携带于第一指示信息中。或者,也可以不上报第一指示信息仅上报SIM卡2的相关信息。对于服务基站而言,向SIM卡1发送询问消息之后,接收到SIM卡1上报的SIM卡2的相关信息,则认为SIM卡1和SIM卡2需要协作邻区测量。
需要说明的是,上述方式1和方式2是举例,不是限定,其它的用于服务基站确定终端中双卡需要执行协作邻区测量的方式也是可行的。
801,终端接收服务基站发送的测量配置,该测量配置中包括第一测量配置和第二测量配置,第一测量配置包括SIM卡1进行邻区测量时的配置信息,第二测量配置包括SIM卡2进行邻区测量时的配置信息。
如前文所述,邻区测量基于测量gap的邻区测量机制。所以,服务基站下发的第一测量配置中可以包括第一gap的配置信息,第二测量配置可以包括第二gap的配置信息。其中,第一gap和第二gap可以是时间位置不同,和/或类型不同。
具体而言,第一测量配置可以包括:第一gap的测量时隙长度、第二gap的重复周期、用于配置第一gap的起始位置的gap Offset等。终端可根据这3个参数确定第一gap的起始位置对应的系统帧号和子帧。同理,第二测量配置可以包括:第二gap的测量时隙长度、第二gap的重复周期、用于配置第二gap的起始位置的gap Offset等。终端可根据这3个参数确定第二gap的起始位置对应的系统帧号和子帧。示例性的,参见图9所示,为第一gap和第二gap的示意图。
需要说明的是,第一测量配置、第二测量配置可以是基站动态指示的,也可以预配置的。如果是预配置的,可以无需执行801,终端基于预先配置好的第一测量配置和第二测量配置进行邻区测量即可。或者,也可以无需执行800,终端默认基于双卡各自对应的、预配置好的测量配置进行邻区测量。
示例性的,801可以有多种实现方式。
方式1,801中的测量配置中包括第一测量配置和第二测量配置。也就是说,服务基站确定SIM卡1和SIM卡2需要协作邻区测量之后,向SIM卡1或SIM卡2一并下发SIM卡1和SIM卡2各自对应的测量配置。其中,“一并下发SIM卡1和SIM卡2各自对应的测量配置”可以是通过一个信令下发两个SIM卡的测量配置,或者,通过两个信令下发两个SIM卡的测量配置。与现有机制不同的是,现有机制中,双卡执行邻区测量是相互独立的过程。本申请实施例中,服务基站确定SIM卡1和SIM卡2可以协作邻区测量后,自动下发SIM卡1和SIM卡2各自对应的测量配置。
示例性的,服务基站可以标识第一测量配置和第二测量配置中哪个是SIM卡1的测量配置,假设SIM卡1接收到服务基站下发的SIM卡1和SIM卡2各自对应的测量配置,SIM卡1可以将SIM卡2对应的测量配置发送给SIM卡2。
方式2,801中服务基站分别向SIM卡1下发第一测量配置,向SIM卡2下发第二测量配置。在这种方式中,服务基站确定终端双卡需要执行协作邻区测量时,分别向SIM卡1和SIM卡2下发各自的测量配置。可以理解的是,步骤800可以触发服务基站分别向SIM卡1和SIM卡2下发各自的测量配置。服务基站可以同时或不同时向SIM卡1和SIM卡2下发测量配置。现有机制中,在服务基站侧,SIM卡1和SIM卡2被识别为两个不相关的终端,服务基站向SIM卡1和SIM卡2下发配置信息的过程不相关。与现有机制不同的是,本申请实施例中,终端向SIM卡1和SIM卡2下发配置信息的过程相互关联。例如,服务基站先向SIM卡1下发测量配置,然后触发服务基站向SIM卡2下发测量配置。
802,终端中SIM卡1基于第一测量配置进行邻区测量。
具体而言,SIM卡1在第一测量配置指示的第一gap内进行邻区测量。
803,终端中SIM卡2基于第二测量配置进行邻区测量。
具体而言,SIM卡2在第二测量配置指示的第二gap内进行邻区测量。
需要说明的是,对于不同类型的小区的测量方式不同。对LTE小区的测量可基于小区参考信号(cell reference signal,CRS)进行。由于CRS是均匀分布在每个子帧上的,因此,任意位置的gap内都能检测到CRS。因此,对于邻区是LTE小区,服务基站配置第一gap和第二gap时无需考虑第一gap和第二gap是否可以包含CRS的发送时间的问题。
对NR小区的测量可基于同步信号块(synchronization signal block,SSB)进行。与LTE小区不同的是,SSB不是均匀分布在每个子帧上的,而是周期性发送的,周期可为5ms、10ms、20ms、40ms、80ms或160ms等。参见图10所示,为NR小区的SSB的发送机制。如图所示,在一个周期内可发送多个SSB,所述多个SSB集中在1个5ms中发送,形成一个SSB集或簇(SSB burst)。例如:SSB周期为20ms时,一个周期内有4个5ms,而所有的SSB都集中在其中1个5ms中发送,其他3个5ms中没有SSB发送。因此,对于邻区是NR小区,服务基站在配置测量第一gap和第二gap时,需要使第一gap和第二gap包含邻区的SSB的发送时间,否则终端在第一gap或第二gap内检测不到NR邻区发送的SSB,从而测量不到该NR小区。
以下实施例介绍,对于邻区是NR小区的测量过程。
方式1,服务基站确定一个或多个NR邻区中每个NR邻区与服务基站的系统帧号和帧定时偏差(SFN and frame timing difference,SFTD)。示例性的,服务机制的覆盖范围内包括多个UE,其中某个UE可以进行SFTD测量,例如对服务小区与某个NR邻区进行SFTD测量,得到SFTD测量结果并上报服务基站。该SFTD测量结果包括所述服务小区与所述某个NR邻区之间的SFN的偏差和帧边界的定时偏差。服务小区覆盖范围内的不同UE可能检测到服务小区与不同NR邻区之间的SFTD测量结果。因此,服务小区可以得到多个SFTD测量结果,不同SFTD测量结果包括不同NR邻区与服务小区之间的SFN的偏差和帧边界的定时偏差。其中,SFN的偏差和帧边界的定时偏差可用于与邻区同步,进而实现邻区测量。
其中,服务小区和NR邻区之间的SFTD测量可以是支持双连接(dual connectivity,DC)的UE,或,支持非双连接的UE执行。其中,支持DC的UE执行的服务小区和NR邻区之间的SFTD测量可以包括:EUTRA-NR双连接(EUTRA-NR Dual Connectivity,EN-DC)下的LTE主小区和NR主辅小区之间,或,NR-EUTRA双连接(NR-EUTRA Dual Connectivity,NE-DC)下NR主小区和LTE主辅小区之间,或,NR双连接(NR Dual Connectivity,NR-DC)下NR主小区和NR主辅小区之间的SFTD测量。支持非DC的UE执行的服务小区和NR邻区之间的SFTD测量可以包括:非双连接下LTE主小区和NR邻区之间的SFTD测量。
示例性的,服务小区内的UE进行SFTD测量的过程可以包括,UE接收除去服务小区之外的另一被测小区的信号,以获取该小区的定时信息,进而得到SFTD测量结果。在DC下,由于UE能够支持在主小区和主辅小区上同时工作,即UE知道任意时刻主小区和主辅小区的定时信息,因此UE可以确定主小区和主辅小区之间的SFTD。在非DC下,由于UE的射频通路不支持在主小区上收发信号的同时在NR邻区上接收信号,所以UE可以基 于以下两种方式实现SFTD的测量:例如,基于gap的SFTD测量,即在该gap内进行SFTD测量。该gap可以是预配置的或基站配置的专门用于执行SFTD测量的gap。再例如,基于连接态非连续接收(CONNECTED discontinuous reception,CDRX)的SFTD测量。也就是说,处于连接态下的UE不连续接收服务小区的数据,在不接收服务小区的数据的期间可以执行SFTD测量。
服务小区得到一个或多个SFTD之后,可以向终端下发一个或多个SFTD。一个SFTD包括服务基站与一个NR邻区之间的定时偏差。终端接收到一个或多个SFTD之后,可以基于所述一个或多个SFTD建立与一个或多个邻区的同步,进而进行邻区测量。
例如,服务基站下发3个SFTD,SFTD1-SFTD3,其中SFTD1包括服务小区与邻区1之间的定时偏差,SFTD2包括服务基站与邻区2之间的定时偏差,SFTD3包括服务基站与邻区3之间的定时偏差。SIM卡1基于SFTD1与邻区1建立同步,对邻区1进行测量。具体而言,SIM卡1可以基于第一gap和SFTD1,确定第三gap,在第三gap上进行邻区测量。参见图11所示,第一gap推迟SFTD1包括的定时偏差1之后,得到第三gap,第三gap内包括邻区1的SSB的发送时间,所以,SIM卡1可以在第三gap内检测到邻区1发送的SSB,实现邻区1的测量。
SIM卡2可以基于SFTD2与邻区2建立同步,对邻区2进行测量。具体而言,SIM卡2可以基于第二gap和SFTD2,确定第四gap,在第四gap上进行邻区测量。继续参见图11所示,第二gap推迟SFTD2包括的定时偏差2之后,得到第四gap,第四gap内包括邻区2的SSB的发送时间,所以,SIM卡2可以在第四gap内检测到邻区2发送的SSB,实现对邻区2的测量。
SIM卡1或SIM卡2可以基于类似的方式对邻区3进行测量,不重复赘述。
在一些实施例中,服务基站下发的N个SFTD(N为大于等于2的整数),SIM卡1可以基于N个SFTD中的M个SFTD进行邻区测量,SIM卡2可以基于剩余的N-M个SFTD进行邻区测量,其中,M的取值可以是默认设置的,或者根据当前SIM卡1和SIM卡2当前的业务量确定,例如SIM卡1业务量较少,SIM卡2业务量较大时,M的取值大于N-M的取值。
方式2,服务基站无法确定SFTD时,SIM卡1和SIM卡2可以进行盲检。例如,SIM卡1在第一gap内盲检,SIM卡2在第二gap内盲检。
可以理解的是,当服务小区在不同条件下,可以选择使用上述方式1或方式2。例如,服务基站确定一个或对个SFTD的情况下,可以使用上述方式1。再例如,服务小区未确定出SFTD,或者没有准确的SFTD时,可以使用上述方式2,或者,服务小区接收终端上报的测量报告之后,确定测量报告错误时,可以使用上述方式2。
应当理解的是,上述方式1和方式2也可以结合使用。例如,当前服务小区下发一个SFTD,SIM卡1基于该SFTD和第一gap进行邻区测量,SIM卡2在第二gap内盲检。
804,终端向服务基站上报最终测量报告,该最终测量报告包括SIM卡1的测量报告和SIM卡2的测量报告。
示例性的,804可以有多种实现方式。
方式1,在804之前,SIM卡1和SIM卡2可以共享各自的测量报告。例如,SIM卡2测量结束后,将第二测量报告发送SIM卡1,SIM卡1整合自身的第一测量报告和SIM卡2发送的第二测量报告,得到最终测量报告,上报服务小区。或者,SIM卡1测量结束 后,将第一测量报告发送SIM卡2,SIM卡2整个自身的第二测量报告和SIM卡1发送的第一测量报告,得到最终测量报告,上报服务小区。
方式2,804中,SIM卡1和SIM卡2分别向服务基站上报各自的测量报告。例如,SIM卡1测量结束后,向服务小区发送第一测量报告,SIM卡2测量结束之后,向服务小区发送第二测量报告。
需要说明的是,本申请实施例提供的通信方法可以适用于多种应用场景。例如,小区切换、添加SCC、添加从小区簇(secondary cell group,SCG)等任何需要进行邻区测量的场景。
需要说明的是,本申请实施例提供的通信方法中,终端内的双卡协作执行邻区测量,一方面可以提升了测量效率,双卡协作测量可以尽快的完成多个邻区的测量;另一方面,双卡测量还可以获取更多待测频点,获得更全面的测量结果。
上文描述了本申请实施例提供的通信方法,下文将描述本申请实施例提供的通信装置。
图12为本申请实施例提供的通信装置1200的示意性框图,该通信装置1200可以是上文中的支持第一用户身份和第二用户身份的终端。如图12所示,通信装置1200包括:
通信模块1210,用于接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量;
处理模块1212,用于基于所述第一测量配置和所述第二测量配置协作测量。
可选的,通信模块1210具体用于:通过所述第一用户身份接收所述第一测量配置,通过所述第二用户身份接收所述第二测量配置;或者,
通过所述第一用户身份或所述第二用户身份接收所述测量配置。
可选的,通信模块1210还用于:通过所述第一用户身份向所述网络设备发送第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
可选的,处理模块1212具体用于:基于第一系统帧号和帧定时偏差SFTD调整所述第一测量配置中包括的第一测量间隙的时间位置,得到第三测量间隙,所述第一SFTD用于指示所述网络设备与第一目标网络设备之间的定时偏差;
通过所述第一用户身份在所述第三测量间隙内进行邻区测量,得到第一测量结果;
基于第二SFTD调整所述第二测量配置中包括的第二测量间隙的时间位置,得到第四测量间隙,所述第二SFTD用于指示所述网络设备与第二目标网络设备之间的定时偏差;
通过所述第二用户身份在所述第四测量间隙内进行邻区测量,得到第二测量结果。
可选的,通信模块1210还用于:通过所述第一用户身份将所述第一测量结果发送所述网络设备,通过所述第二用户身份将所述第二测量结果发送所述网络设备;
或者,
所述处理模块根据所述第一测量结果和所述第二测量结果,得到最终的邻区测量报告之后,所述通信模块通过所述第一用户身份或所述第二用户身份将所述最终测量报告发送给所述网络设备。
应理解,本申请实施例中的处理模块1212可以由处理器或处理器相关电路组件实现,可选的,通信模块1210可以包括接收模块和发送模块。例如,通信模块1210可以由收发器或收发器相关电路组件实现。
需要说明的是,上述实施例中的通信装置1200可以是终端设备,也可以是应用于终端设备中的芯片或者其他可实现上述终端功能的组合器件、部件等。当装置是终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
如图13所示,本申请实施例还提供一种通信装置1300,该通信装置1300可以是上文中的终端。该通信装置1300包括处理器1310,存储器1320与收发器1330,其中,存储器1320中存储指令或程序,处理器1310用于执行存储器1320中存储的指令或程序。存储器1320中存储的指令或程序被执行时,该处理器1310用于执行上述实施例中处理模块1212执行的操作,收发器1330用于执行上述实施例中通信模块1210执行的操作。
应理解,本申请实施例的通信装置1200或通信装置1300可对应于本申请实施例图8所示的通信方法中的终端,并且通信装置1200或通信装置1300中的各个模块的操作和/或功能分别为了实现图8中终端的各个方法的相应流程,为了简洁,在此不再赘述。
图14为本申请实施例提供的通信装置1400的示意性框图,该通信装置1400可以是上文中的网络设备。该通信装置1400包括:
处理模块1410,用于确定终端支持的第一用户身份和第二用户身份执行协作测量;
通信模块1412,用于向所述终端发送测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量。
可选的,通信模块1412具体用于:向所述第一用户身份发送所述第一测量配置,向所述第二用户身份发送所述第二测量配置;或者,
向所述第一用户身份或所述第二用户身份发送所述测量配置。
可选的,通信模块1412还用于:接收所述终端通过所述第一用户身份发送的第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
可选的,通信模块1412还用于:接收所述终端通过所述第一用户身份发送的第一测量报告,接收所述终端通过所述第二用户身份发送的第二测量报告;或者,
接收所述终端通过所述第一用户身份或所述第二用户身份发送的测量报告,所述测量报告包括所述第一用户身份检测得到的第一测量报告和所述第二用户身份检测得到的第二测量报告。
应理解,本申请实施例中的处理模块1410可以由处理器或处理器相关电路组件实现,可选的,通信模块1412可以包括接收模块和发送模块。例如,通信模块1412可以由收发器或收发器相关电路组件实现。
需要说明的是,上述实施例中的通信装置1400可以是网络设备例如基站,也可以是应用于网络设备中的芯片或者其他可实现上述网络设备功能的组合器件、部件等。当装置是网络设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述网络设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
如图15所示,本申请实施例还提供一种通信装置1500,该通信装置1500可以是上文中的网络设备例如基站。该通信装置1500包括处理器1510,存储器1520与收发器1530,其中,存储器1520中存储指令或程序,处理器1510用于执行存储器1520中存储的指令或程序。存储器1520中存储的指令或程序被执行时,处理器1510可以执行上述实施例中处理模块1410执行的操作,收发器1530用于执行上述实施例中通信模块1412执行的操作。
应理解,本申请实施例的通信装置1400或通信装置1500可对应于本申请实施例的图8所示的通信方法中的基站,并且通信装置1400或通信装置1500中的各个模块的操作和/或功能分别为了实现图8中基站的各个方法的相应流程,为了简洁,在此不再赘述。
当通信装置是终端时,图16示出了一种简化的终端的结构示意图。便于理解和图示方便,图16中,终端以手机作为例子。如图16所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图16所示,终端包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1610用于执行图8中步骤801、步骤804等。当然,收发单元1310还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1620用于执行图8中的步骤802、803等,和/或处理单元1620还用于执行本申请实施例中终端侧的其他处理步骤。
当通信装置是终端时,可以参照图17所示的设备。作为一个例子,该设备可以完成类似于图13中处理器1310的功能。在图17中,该设备包括处理器1710,发送数据处理 器1720,接收数据处理器1730。上述实施例中的处理模块1212可以是图17中的处理器1710,并完成相应的功能。上述实施例中的通信模块1210可以是图17中的发送数据处理器1720,和/或接收数据处理器1730。虽然图17中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图18示出本实施例的终端的另一种形式。终端1800中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的终端可以是其中的调制子系统。具体的,该调制子系统可以包括处理器1803,接口1804。其中处理器1803完成上述处理模块1212的功能,接口1804完成上述通信模块1210的功能。作为另一种变形,该调制子系统包括存储器1806、处理器1803及存储在存储器1806上并可在处理器上运行的程序,该处理器1803执行该程序时实现上述方法实施例中终端的方法。需要注意的是,所述存储器1806可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1800中,只要该存储器1806可以连接到所述处理器1803即可。
如图19所示,为本申请实施例提供的一种网络设备的示意图,该网络设备例如基站。网络设备1900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1920。所述RRU 1910可以称为收发模块,与图4中的通信模块1412对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1911和射频单元1912。所述RRU 1910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送指示信息。所述BBU 1910部分主要用于进行基带处理,对基站进行控制等。所述RRU 1910与BBU 1920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1920为基站的控制中心,也可以称为处理模块,可以与图14中的处理模块1410对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1920还包括存储器1921和处理器1922。所述存储器1921用以存储必要的指令和数据。所述处理器1922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1921和处理器1922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,应用于支持第一用户身份和第二用户身份的通信装置,所述方法包括:
    接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量;
    基于所述第一测量配置和所述第二测量配置协作测量。
  2. 如权利要求1所述的方法,其特征在于,所述接收网络设备发送的测量配置,包括:
    通过所述第一用户身份接收所述第一测量配置,通过所述第二用户身份接收所述第二测量配置;或者,
    通过所述第一用户身份或所述第二用户身份接收所述测量配置。
  3. 如权利要求1或2所述的方法,其特征在于,在所述接收网络设备发送的测量配置之前,还包括:
    通过所述第一用户身份向所述网络设备发送第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量;或者
    通过所述第二用户身份向所述网络设备发送第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
  4. 如权利要求3所述的方法,其特征在于,所述第二用户身份的相关信息携带于所述第一指示信息中,或者所述第一用户身份的相关信息携带于所述第二指示信息中。
  5. 如权利要求3或4所述的方法,其特征在于,所述第二用户身份的相关信息,包括如下信息的至少一种:
    国际移动设备识别码IMEI、移动设备识别码MEID、国际移动用户识别码IMSI、临时移动用户身份TMSI、分组域临时移动用户身份标示P-TMSI、集成电路卡识别码ICCID、国际移动用户综合业务数字网MSISDN、移动台漫游号码MSRN、序列号SN或无线网络临时标识RNTI。
  6. 如权利要求1-5任一所述的方法,其特征在于,基于所述第一测量配置和所述第二测量配置协作测量,包括:
    通过所述第一用户身份在所述第一测量配置中包括的第一测量间隙内测量,得到第一测量结果;
    通过所述第二用户身份在所述第二测量配置中包括的第二测量间隙内测量,得到第二测量结果。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述基于所述第一测量配置和所述第二测量配置协作测量,包括:
    基于第一系统帧号和帧定时偏差SFTD调整所述第一测量配置中包括的第一测量间隙的时间位置,得到第三测量间隙,所述第一SFTD用于指示所述网络设备与第一目标网络设备之间的定时偏差;
    通过所述第一用户身份在所述第三测量间隙内进行邻区测量,得到第一测量结果;
    基于第二SFTD调整所述第二测量配置中包括的第二测量间隙的时间位置,得到第四测量间隙,所述第二SFTD用于指示所述网络设备与第二目标网络设备之间的定时偏差;
    通过所述第二用户身份在所述第四测量间隙内进行邻区测量,得到第二测量结果。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    通过所述第一用户身份将所述第一测量结果发送所述网络设备,通过所述第二用户身份将所述第二测量结果发送所述网络设备;
    或者,
    根据所述第一测量结果和所述第二测量结果,得到最终的邻区测量报告;
    通过所述第一用户身份或所述第二用户身份将所述最终测量报告发送给所述网络设备。
  9. 如权利要求1-8任一所述的方法,其特征在于,所述基于所述第一测量配置和所述第二测量配置协作测量,包括:
    基于所述第一测量配置和所述第二测量配置对服务小区协作测量;或者,
    基于所述第一测量配置和所述第二测量配置对邻区协作测量;或者,
    基于所述第一测量配置对主小区测量,基于所述第二测量配置对邻区测量。
  10. 一种通信方法,其特征在于,应用于通信装置,所述方法包括:
    确定终端包括的第一用户身份和第二用户身份协作测量;
    向所述终端发送测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量。
  11. 如权利要求10所述的方法,其特征在于,所述向所述终端发送测量配置,包括:
    向所述第一用户身份发送所述第一测量配置,向所述第二用户身份发送所述第二测量配置;或者,
    向所述第一用户身份或所述第二用户身份发送所述测量配置。
  12. 如权利要求10或11所述的方法,其特征在于,所述确定终端支持的第一用户身份和第二用户身份执行协作测量,包括:
    接收所述终端通过所述第一用户身份发送的第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量;或者,
    接收所述终端通过所述第二用户身份发送的第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
  13. 如权利要求12所述的方法,其特征在于,所述第二用户身份的相关信息携带于所述第一指示信息中,或者所述第一用户身份的相关信息携带于所述第二指示信息中。
  14. 如权利要求12或13所述的方法,其特征在于,所述第二用户身份的相关信息,包括如下信息的至少一种:
    国际移动设备识别码IMEI、移动设备识别码MEID、国际移动用户识别码IMSI、临时移动用户身份TMSI、分组域临时移动用户身份标示P-TMSI、集成电路卡识别码ICCID、国际移动用户综合业务数字网MSISDN、移动台漫游号码MSRN、序列号SN或无线网络临时标识RNTI。
  15. 如权利要求10-14任一所述的方法,其特征在于,所述方法还包括:
    接收所述终端通过所述第一用户身份发送的第一测量报告,接收所述终端通过所述第二用户身份发送的第二测量报告;或者,
    接收所述终端通过所述第一用户身份或所述第二用户身份发送的测量报告,所述测量报告包括所述第一用户身份检测得到的第一测量报告和所述第二用户身份检测得到的第二测量报告。
  16. 如权利要求10-15任一所述的方法,其特征在于,所述方法还包括:
    获取一个或多个系统帧号和帧定时偏差SFTD,所述一个或多个SFTD分别用于指示不同通信装置与所述通信装置之间的定时偏差;
    向所述终端发送所述一个或多个SFTD。
  17. 如权利要求10-16任一所述的方法,其特征在于,
    所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对服务小区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对服务小区测量;
    或者,
    所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对邻区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对邻区测量;
    或者,
    所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置对服务小区测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置对邻区测量。
  18. 一种通信装置,其特征在于,所述通信装置支持第一用户身份和第二用户身份;所述通信装置还包括:
    通信模块,用于接收网络设备发送的测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量;
    处理模块,用于基于所述第一测量配置和所述第二测量配置协作测量。
  19. 如权利要求18所述的通信装置,其特征在于,所述通信模块具体用于:
    通过所述第一用户身份接收所述第一测量配置,通过所述第二用户身份接收所述第二测量配置;或者,
    通过所述第一用户身份或所述第二用户身份接收所述测量配置。
  20. 如权利要求18或19所述的通信装置,其特征在于,所述通信模块还用于:
    通过所述第一用户身份向所述网络设备发送第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量;或者
    通过所述第二用户身份向所述网络设备发送第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
  21. 如权利要求18-20任一所述的通信装置,其特征在于,所述处理器具体用于:
    基于第一系统帧号和帧定时偏差SFTD调整所述第一测量配置中包括的第一测量间隙的时间位置,得到第三测量间隙,所述第一SFTD用于指示所述网络设备与第一目标网络设备之间的定时偏差;
    通过所述第一用户身份在所述第三测量间隙内进行邻区测量,得到第一测量结果;
    基于第二SFTD调整所述第二测量配置中包括的第二测量间隙的时间位置,得到第四 测量间隙,所述第二SFTD用于指示所述网络设备与第二目标网络设备之间的定时偏差;
    通过所述第二用户身份在所述第四测量间隙内进行邻区测量,得到第二测量结果。
  22. 如权利要求21所述的通信装置,其特征在于,所述通信模块还用于:
    通过所述第一用户身份将所述第一测量结果发送所述网络设备,通过所述第二用户身份将所述第二测量结果发送所述网络设备;
    或者,
    所述处理模块根据所述第一测量结果和所述第二测量结果,得到最终的邻区测量报告之后,所述通信模块通过所述第一用户身份或所述第二用户身份将所述最终测量报告发送给所述网络设备。
  23. 一种通信装置,其特征在于,包括:
    处理模块,用于确定终端支持的第一用户身份和第二用户身份执行协作测量;
    通信模块,用于向所述终端发送测量配置,所述测量配置中携带第一测量配置和第二测量配置,所述第一测量配置用于指示所述第一用户身份基于所述第一测量配置进行测量,所述第二测量配置用于指示所述第二用户身份基于所述第二测量配置进行测量。
  24. 如权利要求23所述的通信装置,其特征在于,所述通信模块具体用于:
    向所述第一用户身份发送所述第一测量配置,向所述第二用户身份发送所述第二测量配置;或者,
    向所述第一用户身份或所述第二用户身份发送所述测量配置。
  25. 如权利要求23或24所述的通信装置,其特征在于,所述通信模块还用于:
    接收所述终端通过所述第一用户身份发送的第一指示信息和所述第二用户身份的相关信息,所述第一指示信息用于指示所述第一用户身份和所述第二用户身份协作测量;或者,
    接收所述终端通过所述第二用户身份发送的第二指示信息和所述第一用户身份的相关信息,所述第二指示信息用于指示所述第一用户身份和所述第二用户身份协作测量。
  26. 如权利要求23-25任一所述的通信装置,其特征在于,所述通信模块还用于:
    接收所述终端通过所述第一用户身份发送的第一测量报告,接收所述终端通过所述第二用户身份发送的第二测量报告;或者,
    接收所述终端通过所述第一用户身份或所述第二用户身份发送的测量报告,所述测量报告包括所述第一用户身份检测得到的第一测量报告和所述第二用户身份检测得到的第二测量报告。
  27. 一种通信装置,其特征在于,包括:
    通信接口,用于与其他装置通信;
    一个或多个处理器;
    一个或多个存储器;
    所述一个或多个存储器中存储有计算机程序,当所述计算机程序被所述一个或多个处理器执行时,使得所述通信装置实现如权利要求1-9,或者权利要求10-17任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备实现如权利要求1-9,或者权利要求10-17任一项所述的方法。
  29. 一种计算机程序,其特征在于,包括指令,当所述指令在计算机上运行时,使得所述计算机实现如权利要求1-9,或者权利要求10-17任一项所述的方法。
PCT/CN2020/130774 2019-11-30 2020-11-23 一种通信方法与通信装置 WO2021104192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911208718.9A CN112887963B (zh) 2019-11-30 2019-11-30 一种通信方法与通信装置
CN201911208718.9 2019-11-30

Publications (1)

Publication Number Publication Date
WO2021104192A1 true WO2021104192A1 (zh) 2021-06-03

Family

ID=76039722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130774 WO2021104192A1 (zh) 2019-11-30 2020-11-23 一种通信方法与通信装置

Country Status (2)

Country Link
CN (1) CN112887963B (zh)
WO (1) WO2021104192A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885362A (zh) * 2022-06-14 2022-08-09 中国电信股份有限公司 双卡终端主副卡性能的自动测试方法及系统、装置
CN115915103A (zh) * 2022-11-10 2023-04-04 中国联合网络通信集团有限公司 识别双卡槽终端双卡状态的方法、装置、设备及介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044824A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Measurement gap (mg) and interruption design for system information (si) reading in multiple universal subscriber identity module (musim)
CN114339918B (zh) * 2021-12-31 2023-11-03 紫光展锐(重庆)科技有限公司 一种测量方法、通信装置、芯片及其模组设备
WO2023164912A1 (en) * 2022-03-04 2023-09-07 Qualcomm Incorporated Framework and mechanism to support skipping cell detection and sib reading
WO2024007263A1 (zh) * 2022-07-07 2024-01-11 北京小米移动软件有限公司 一种测量方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900475A (zh) * 2014-01-07 2016-08-24 高通股份有限公司 用于无线广域网无线单元和无线局域网无线单元之间的协作的方法和装置
EP3166356A1 (en) * 2015-11-03 2017-05-10 Intel IP Corporation Methods for performing radio measurements and mobile terminal devices
CN110418383A (zh) * 2018-04-28 2019-11-05 展讯通信(上海)有限公司 双卡双lte终端的测量方法及装置、存储介质、终端
CN110495208A (zh) * 2019-07-10 2019-11-22 北京小米移动软件有限公司 信息发送方法、接收方法、装置、设备及存储介质
CN110521236A (zh) * 2019-07-16 2019-11-29 北京小米移动软件有限公司 信息处理方法、装置及计算机存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421129B (zh) * 2011-05-27 2014-05-07 展讯通信(上海)有限公司 多模多卡多待移动终端的邻区测量方法
CN102196487B (zh) * 2011-06-03 2014-07-09 展讯通信(上海)有限公司 多卡多模移动终端对3g系统邻区测量的方法
CN103369562B (zh) * 2012-03-31 2016-01-20 重庆重邮信科通信技术有限公司 一种基于多待机移动终端的小区测量系统及方法
CN103379540A (zh) * 2012-04-11 2013-10-30 马维尔国际有限公司 用于合并小区测量的方法和设备
US10104671B2 (en) * 2016-06-15 2018-10-16 Intel IP Corporation Device and method for performance improvement with plurality of subscriber identity module awareness
CN107548078B (zh) * 2016-06-29 2020-11-10 辰芯科技有限公司 一种测量间隙资源的控制方法及多模终端
CN109429304B (zh) * 2017-08-31 2023-02-21 北京三星通信技术研究有限公司 网络连接方法、装置及用户终端
WO2019194729A1 (en) * 2018-04-05 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Measurement gap communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900475A (zh) * 2014-01-07 2016-08-24 高通股份有限公司 用于无线广域网无线单元和无线局域网无线单元之间的协作的方法和装置
EP3166356A1 (en) * 2015-11-03 2017-05-10 Intel IP Corporation Methods for performing radio measurements and mobile terminal devices
CN110418383A (zh) * 2018-04-28 2019-11-05 展讯通信(上海)有限公司 双卡双lte终端的测量方法及装置、存储介质、终端
CN110495208A (zh) * 2019-07-10 2019-11-22 北京小米移动软件有限公司 信息发送方法、接收方法、装置、设备及存储介质
CN110521236A (zh) * 2019-07-16 2019-11-29 北京小米移动软件有限公司 信息处理方法、装置及计算机存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114885362A (zh) * 2022-06-14 2022-08-09 中国电信股份有限公司 双卡终端主副卡性能的自动测试方法及系统、装置
CN114885362B (zh) * 2022-06-14 2023-10-31 中国电信股份有限公司 双卡终端主副卡性能的自动测试方法及系统、装置
CN115915103A (zh) * 2022-11-10 2023-04-04 中国联合网络通信集团有限公司 识别双卡槽终端双卡状态的方法、装置、设备及介质

Also Published As

Publication number Publication date
CN112887963A (zh) 2021-06-01
CN112887963B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2021104192A1 (zh) 一种通信方法与通信装置
CN109315017B (zh) 一种实现双卡双待双通的通信方法及终端
CN109923912B (zh) 一种传输寻呼消息的方法及装置
EP3883281B1 (en) Method for allocating resources and communication apparatus
WO2021249001A1 (zh) 一种小区测量方法及装置
WO2021047436A1 (zh) 一种通信方法与装置
US20230134401A1 (en) Method for confuguring measurement gap, network device, and terminal device
US20230189026A1 (en) Method and device for measuring channel state information
US20230217327A1 (en) Communication method, device, and apparatus
WO2021000688A1 (zh) 一种发送、接收能力信息的方法及设备
US20220225273A1 (en) Paging method and apparatus
WO2021159341A1 (zh) 一种通信方法及通信装置
EP4054253A1 (en) Communication method and communication apparatus
US20240098771A1 (en) Request Information Sending Method Device and Non-Transitory Readable Storage Medium
WO2021027907A1 (zh) 通信方法和通信装置
CN112399494B (zh) 一种无线通信的方法和通信装置
WO2021088984A1 (zh) 一种小区切换方法、终端装置与基站
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
CN112770366B (zh) 一种通信方法与通信装置
WO2021244580A1 (zh) 一种测量配置方法及通信装置
EP4102877A1 (en) Communication method and apparatus
WO2021195847A1 (zh) 测量方法、用户终端和网络设备
US20230224866A1 (en) Improved beam management in cellular communication networks
CN116941262A (zh) 信息处理方法、设备、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892077

Country of ref document: EP

Kind code of ref document: A1