WO2024007263A1 - 一种测量方法、装置、设备及可读存储介质 - Google Patents

一种测量方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2024007263A1
WO2024007263A1 PCT/CN2022/104443 CN2022104443W WO2024007263A1 WO 2024007263 A1 WO2024007263 A1 WO 2024007263A1 CN 2022104443 W CN2022104443 W CN 2022104443W WO 2024007263 A1 WO2024007263 A1 WO 2024007263A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configurations
sets
measurement interval
interval
Prior art date
Application number
PCT/CN2022/104443
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002539.3A priority Critical patent/CN117678206A/zh
Priority to PCT/CN2022/104443 priority patent/WO2024007263A1/zh
Publication of WO2024007263A1 publication Critical patent/WO2024007263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a measurement method, device, equipment and readable storage medium.
  • Some user equipment can support multiple card slots to support Multi-Universal Subscriber Identity Module (Multi-SIM).
  • Multi-SIM Multi-Universal Subscriber Identity Module
  • User devices that support Multi-SIM can connect to multiple different networks at the same time.
  • User equipment can be divided into the following three types according to different communication capabilities: single TX/single RX, single TX/single RX and dual TX/dual RX. .
  • User equipment that supports Multi-SIM can support two networks at the same time, for example, it supports the first network NW A and the second network NW B at the same time.
  • the first network is a new radio (NR) network
  • the second network is another network.
  • NR Long Term Evolution
  • LTE Long Term Evolution
  • the research of Rel-17 is based on single-transmit single-receive/single-transmit dual-receive terminal. Since it only has 1TX capability, the terminal cannot maintain RRC connections of two networks at the same time. Therefore, the research scenario is that NW A is in the connected state and NW B is in the idle state/not Activated state.
  • the 3rd Generation Partner Project (3GPP) introduced a measurement gap (MG, Measurement Gap) specifically for MUSIM measurement purposes for the measurement of NW B. NW A can configure up to two periodic MGs and one aperiodic MG at the same time.
  • the research on Rel-18 is based on dual-transmit and dual-receive terminals, which can support RRC connections of NW A and NW B at the same time.
  • the measurement interval configuration scheme in this research scenario has yet to be discussed.
  • the present disclosure provides a measurement method, device, equipment and readable storage medium.
  • a measurement method which is performed by user equipment.
  • the method includes:
  • the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is For measuring the first network, the second measurement interval MG is configured to measure the second network based on the measurement interval MG, and the first network is the network to which the network device belongs;
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts; the N, K and M are all integers greater than zero, and N is greater than M, N is greater than K;
  • determining K sets of measurement interval configurations from measurement interval configurations with measurement conflicts includes:
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, and the priority of the K sets of measurement interval configurations is lower than the measurement with measurement conflicts.
  • the M sets of first measurement configurations include at least one set of third measurement interval MG configurations
  • the third measurement interval MG configuration is a traditional measurement interval configuration
  • the N-M sets of second measurement configurations There is a measurement conflict between the interval MG configuration and the at least one set of third measurement interval MG configurations
  • Determining K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts based on the priorities of the measurement interval configurations with measurement conflicts including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method further includes:
  • the M sets of first measurement configurations include at least one set of fourth SMTC measurement configurations, and at least one set of fourth SMTC measurement configurations has a measurement conflict with the N-M sets of second measurement interval MG configurations. ;
  • Determining K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts based on the priorities of the measurement interval configurations with measurement conflicts including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method further includes:
  • the N-M sets of second measurement interval MG configurations include at least one set of aperiodic second measurement interval MG configurations and at least one set of periodic second measurement interval MG configurations, and at least There is a measurement conflict between a set of aperiodic second measurement interval MG configurations and the at least one set of periodic second measurement interval MG configurations.
  • determining K sets of measurement interval configurations from measurement interval configurations with measurement conflicts includes:
  • the K sets of measurement intervals are configured as the at least one set of periodic second measurement intervals MG.
  • determining K sets of measurement interval configurations from measurement interval configurations with measurement conflicts includes:
  • the K sets of measurement intervals are configured as the at least one A set of periodic second measurement intervals MG.
  • the method further includes:
  • the N-M sets of second measurement interval MG configurations include at least two sets of periodic second measurement interval MG configurations, and one of the at least two sets of periodic second measurement interval MG configurations There is a measurement conflict between;
  • Determining K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts based on the priorities of the measurement interval configurations with measurement conflicts including:
  • the K sets of measurement interval configurations are determined to be the second measurement interval MG configurations with the lowest priority.
  • the method further includes:
  • modifying the K sets of measurement interval configurations includes: increasing the measurement period in the K sets of measurement interval configurations.
  • a measurement method is provided, which is performed by a network device.
  • the method includes:
  • the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to Measure the first network
  • the second measurement interval MG is configured to measure the second network based on the measurement interval MG.
  • the first network is the network to which the network device belongs.
  • the method further includes:
  • a measurement device configured in user equipment, and the device includes:
  • the transceiver module is configured to receive measurement configuration information sent by the network device.
  • the measurement configuration information includes N sets of measurement configurations, and the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations, so
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG is configured to measure the second network based on the measurement interval MG
  • the first network is the network to which the network device belongs;
  • the processing module is configured to determine K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts in response to the existence of measurement conflicts in the N sets of measurement configurations; the N, K and M are all integers greater than zero, Moreover, N is greater than M, and N is greater than K; it is also configured not to perform measurements corresponding to the K sets of measurement interval configurations, or to perform measurements after modifying the K sets of measurement interval configurations.
  • a measurement device configured on network equipment, and the device includes:
  • the transceiver module is configured to send measurement configuration information to the user equipment.
  • the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG is configured to measure the second network based on the measurement interval MG.
  • the first network is the network to which the network device belongs.
  • an electronic device including a processor and a memory, wherein,
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program to implement the first aspect or any possible design of the first aspect.
  • a communication device including a processor and a memory, wherein,
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program to implement the second aspect or any possible design of the second aspect.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are called and executed on a computer, the computer is caused to execute the first aspect or the method of the first aspect. Any possible design.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are called and executed on a computer, the computer is caused to execute the second aspect or the method of the second aspect. Any possible design.
  • the user equipment when configured with multiple sets of measurement configurations for different networks, and there are measurement conflicts in the multiple sets of measurement configurations, corresponding measurements are not performed on part of the measurement configurations in the measurement configurations with measurement conflicts, or Modify the configuration before performing measurement so that the measurement process is conflict-free.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 3 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 4 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 5 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 6 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 7 is a flow chart of a measurement method according to an exemplary embodiment
  • Figure 8 is a structural diagram of a measuring device according to an exemplary embodiment
  • Figure 9 is a structural diagram of a measuring device according to an exemplary embodiment
  • Figure 10 is a structural diagram of a measuring device according to an exemplary embodiment
  • Figure 11 is a structural diagram of a measuring device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a measurement method provided by an embodiment of the present disclosure can be applied to a wireless communication system 100 , which may include but is not limited to a network device 101 and a user equipment 102 .
  • the user equipment 102 is configured to support carrier aggregation, and the user equipment 102 can be connected to multiple carrier units of the network device 101, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 102 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices 101 of one or more communication systems, and accept network services provided by the network device 101.
  • the network device 101 Including but not limited to the base station shown in the figure.
  • the user equipment 102 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • Network equipment may specifically include base station (BS) equipment, or include base station equipment and wireless resource management equipment used to control base station equipment, etc.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network devices can be wearable devices or vehicle-mounted devices.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • gnodeB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • Figure 2 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S203:
  • Step S201 The network device sends measurement configuration information to the user equipment, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • Two networks perform measurements based on the measurement interval MG, and the first network is the network to which the network device belongs; both N and M are integers greater than zero, and N is greater than M.
  • the first measurement configuration may include measurement interval MG configuration, or may include RRM measurement time configuration (SSB-based RRM Measurement Timing Configuration, SMTC) based on synchronization signal block (Synchronzation Signal Block, SSB), where the corresponding window of SMTC is called is the SMTC window.
  • RRM measurement time configuration SSB-based RRM Measurement Timing Configuration, SMTC
  • SSB synchronization signal block
  • Step S202 In response to the presence of measurement conflicts in the N sets of measurement configurations, the user equipment determines K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts.
  • measurement conflict means that the user equipment can only perform one measurement within the overlapping area of the measurement windows in different measurement configurations.
  • measurement conflicts in multiple measurement configurations may include measurement conflicts between the measurement interval MG configuration and SMTC, and the user equipment can only perform one method at the same time.
  • measurement conflicts in multiple measurement configurations may include conflicts between MG configurations with different measurement intervals.
  • the K sets of measurement interval configurations are: the measurement intervals included in the measurement conflict configuration for the second network are The second measurement interval MG configuration of the network. That is, when a measurement conflict exists, the measurement configuration for the second network is discarded or modified.
  • the K sets of measurement interval configurations are determined to be: Among the measurement interval configurations with measurement conflicts Included are all or part of a first measurement configuration for the first network. That is, when a measurement conflict exists, the measurement configuration for the first network is discarded or modified.
  • the priorities of different configurations are not determined at the network granularity, and different configurations for different networks may correspond to different priorities. For example: the priority of part of the first measurement configuration in the M sets of first measurement configurations is higher than the priority of part of the second measurement interval MG configuration in the N-M sets of second measurement interval MG configurations. At the same time, the priority of part of the M sets of first measurement configurations The priority of the partial first measurement configuration is lower than the priority of the partial second measurement interval MG configuration in the N-M set of second measurement interval MG configurations. In this case, K sets of measurement interval configurations are determined according to the priorities of different configurations. That is, when there is a measurement conflict, the measurement configuration with low priority is discarded or modified.
  • Step S203 The user equipment does not perform measurements corresponding to the K sets of measurement interval configurations, or the user equipment performs measurements after modifying the K sets of measurement interval configurations.
  • modifying the K sets of measurement interval configurations may be to relax the measurement requirements corresponding to the K sets of measurement interval configurations. For example: increase the measurement period in the K sets of measurement interval configurations.
  • modifying the measurement interval configuration of the K sets may also be to tighten the measurement requirements corresponding to the measurement interval configuration of the K sets. For example: reduce the measurement period in the K sets of measurement interval configurations.
  • modifying the measurement interval configuration of the K sets may also be to tighten the measurement requirements corresponding to the measurement interval configuration of the K sets. For example: reduce the measurement period in the K sets of measurement interval configurations.
  • Figure 3 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S304:
  • Step S301 The network device sends measurement configuration information to the user equipment, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • Two networks perform measurements based on the measurement interval MG, and the first network is the network to which the network device belongs; both N and M are integers greater than zero, and N is greater than M.
  • Step S302 The network device sends information indicating the priority of each set of measurement configurations to the user equipment.
  • Step S303 In response to the existence of measurement conflicts among the N sets of measurement configurations, the user equipment determines K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts based on the priorities of the measurement interval configurations with measurement conflicts, so The priority of the K sets of measurement interval configurations is lower than the priority of other measurement interval configurations except the K sets of measurement interval configurations in the measurement interval configurations with measurement conflicts.
  • the K is an integer greater than zero, and N is greater than K.
  • Type 1 The second measurement interval MG configuration conflicts with the measurement interval MG configuration in the first measurement configuration.
  • the M sets of first measurement configurations include at least one set of third measurement interval MG configurations
  • the third measurement interval MG configuration is a traditional measurement interval configuration
  • the N-M sets of second measurement interval MG configurations There is a measurement conflict with the at least one set of third measurement interval MG configurations.
  • the priority of N-M sets of second measurement interval MG configurations is determined by the priority of at least one set of third measurement interval MG configurations, and determine the low-priority measurement interval configuration as K sets of measurement interval configurations .
  • the priority of the second measurement interval configuration is lower than that of the third measurement interval MG configuration in the first measurement configuration. priority.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method of determining priority is one of the following:
  • Method 1 Based on the protocol agreement, it is determined that the priority of the N-M sets of second measurement interval MG configurations is lower than the priority of the at least one set of third measurement interval MG configurations.
  • Method 2 Receive information sent by the network device indicating the priority of the N-M sets of second measurement intervals MG configuration and information indicating the priority of the at least one set of third measurement intervals MG.
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the second measurement interval MG configuration conflicts with the SMTC configuration in the first measurement configuration.
  • the M sets of first measurement configurations include at least one set of fourth SMTC measurement configurations, and at least one set of fourth SMTC measurement configurations has a measurement conflict with the N-M sets of second measurement interval MG configurations.
  • the priority of at least one set of fourth SMTC measurement configurations is determined, and determine the low-priority measurement interval configuration as K sets of measurement interval configurations.
  • the priority of the N-M sets of second measurement interval configurations is lower than the fourth measurement interval MG in the first measurement configuration. Configured priority.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method of determining priority is one of the following:
  • Method 1 Based on the protocol agreement, it is determined that the priority of the N-M sets of second measurement interval MG configurations is lower than the priority of at least one set of fourth SMTC measurement configurations.
  • Method 2 Receive information sent by the network device for indicating the priority of the N-M sets of second measurement interval MG configurations and information for indicating the priority of the at least one set of fourth SMTC measurement configurations.
  • the K set of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the third type is that there is a conflict in the second measurement interval MG configuration.
  • This third category also includes two situations.
  • N-M sets of second measurement interval MG configurations include at least one set of aperiodic second measurement interval MG configurations and at least one set of periodic second measurement interval MG configurations, and at least one set of aperiodic second measurement interval MG configurations There is a measurement conflict between the second measurement interval MG configuration and the at least one set of periodic second measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement intervals are configured as the at least one set of periodic second measurement intervals MG.
  • the K sets of measurement intervals are configured as The at least one set of periodic second measurement intervals MG.
  • the method of determining priority is one of the following:
  • Method 1 Determine the priority of the at least one set of aperiodic second measurement interval MG configurations and the priority of the at least one set of periodic second measurement interval MG configurations based on protocol agreement.
  • Method 2 Receive information sent by the network device indicating the priority of the at least one set of aperiodic second measurement intervals MG and indicating the at least one set of periodic second measurement intervals MG. Configuration priority information.
  • the N-M sets of second measurement interval MG configurations include at least two sets of periodic second measurement interval MG configurations, and there is a measurement conflict between the at least two sets of periodic second measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are determined to be the second measurement interval MG configurations with the lowest priority.
  • the method of determining priority is one of the following:
  • Method 1 Determine the priority of at least two sets of periodic second measurement interval MG configurations based on protocol agreement.
  • Method 2 Receive information sent by the network device indicating the priority of the at least two sets of periodic second measurement intervals MG configuration.
  • Step S304 The user equipment does not perform measurements corresponding to the K sets of measurement interval configurations, or the user equipment performs measurements after modifying the K sets of measurement interval configurations.
  • modifying the K sets of measurement interval configurations may be to relax the measurement requirements corresponding to the K sets of measurement interval configurations. For example: increase the measurement period in the K sets of measurement interval configurations.
  • modifying the measurement interval configuration of the K sets may also be to tighten the measurement requirements corresponding to the measurement interval configuration of the K sets. For example: reduce the measurement period in the K sets of measurement interval configurations.
  • modifying the K sets of measurement interval configurations includes: increasing the measurement period in the K sets of measurement interval configurations.
  • the multiple sets of measurement configurations with measurement conflicts are selected based on the priority of the measurement configurations. Select multiple measurement configurations, and do not perform corresponding measurements on the selected measurement configurations or modify the configurations before performing measurements, so that the measurement process is conflict-free.
  • FIG. 4 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 4, the method includes steps S401 to S403:
  • Step S401 Receive measurement configuration information sent by the network device, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • Two networks perform measurements based on the measurement interval MG, and the first network is the network to which the network device belongs; both N and M are integers greater than zero, and N is greater than M.
  • Step S402 In response to the existence of measurement conflicts in the N sets of measurement configurations, determine K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts.
  • measurement conflict means that the user equipment can only perform one measurement within the overlapping area of the measurement windows in different measurement configurations.
  • measurement conflicts in multiple measurement configurations may include measurement conflicts between the measurement interval MG configuration and SMTC, and the user equipment can only perform one method at the same time.
  • measurement conflicts in multiple measurement configurations may include conflicts between MG configurations with different measurement intervals.
  • the K sets of measurement interval configurations are: the measurement intervals included in the measurement conflict configuration for the second network are The second measurement interval MG configuration of the network. That is, when a measurement conflict exists, the measurement configuration for the second network is discarded or modified.
  • the K sets of measurement interval configurations are determined to be: Among the measurement interval configurations with measurement conflicts Included are all or part of a first measurement configuration for the first network. That is, when a measurement conflict exists, the measurement configuration for the first network is discarded or modified.
  • the priorities of different configurations are not determined at the network granularity, and different configurations for different networks may correspond to different priorities. For example: the priority of part of the first measurement configuration in the M sets of first measurement configurations is higher than the priority of part of the second measurement interval MG configuration in the N-M sets of second measurement interval MG configurations. At the same time, the priority of part of the M sets of first measurement configurations The priority of the partial first measurement configuration is lower than the priority of the partial second measurement interval MG configuration in the N-M set of second measurement interval MG configurations. In this case, K sets of measurement interval configurations are determined according to the priorities of different configurations. That is, when there is a measurement conflict, the measurement configuration with low priority is discarded or modified.
  • Step S403 Do not perform measurements corresponding to the K sets of measurement interval configurations, or perform measurements after modifying the K sets of measurement interval configurations.
  • modifying the K sets of measurement interval configurations may be to relax the measurement requirements corresponding to the K sets of measurement interval configurations. For example: increase the measurement period in the K sets of measurement interval configurations.
  • modifying the measurement interval configuration of the K sets may also be to tighten the measurement requirements corresponding to the measurement interval configuration of the K sets. For example: reduce the measurement period in the K sets of measurement interval configurations.
  • the user equipment when the user equipment is configured with multiple sets of measurement configurations for different networks, and there are measurement conflicts in the multiple sets of measurement configurations, no response is performed to some of the measurement configurations in the measurement configurations that have measurement conflicts. Measure or modify the configuration before performing the measurement, so that the measurement process is conflict-free.
  • FIG. 5 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S504:
  • Step S501 Receive measurement configuration information sent by the network device, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • Two networks perform measurements based on the measurement interval MG, and the first network is the network to which the network device belongs; both N and M are integers greater than zero, and N is greater than M.
  • Step S502 Receive information sent by the network device indicating the priority of each set of measurement configurations.
  • Step S503 In response to the existence of measurement conflicts in the N sets of measurement configurations, based on the priority of the measurement interval configurations with measurement conflicts, determine K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts, the K sets of measurement interval configurations.
  • the priority of the set of measurement interval configurations is lower than the priority of other measurement interval configurations except the K sets of measurement interval configurations in the measurement interval configurations with measurement conflicts.
  • the K is an integer greater than zero, and N is greater than K.
  • the second measurement interval MG configuration conflicts with the measurement interval MG configuration in the first measurement configuration.
  • the M sets of first measurement configurations include at least one set of third measurement interval MG configurations
  • the third measurement interval MG configuration is a traditional measurement interval configuration
  • the N-M sets of second measurement interval MG configurations There is a measurement conflict with the at least one set of third measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method of determining priority is one of the following:
  • Method 1 Based on the protocol agreement, it is determined that the priority of the N-M sets of second measurement interval MG configurations is lower than the priority of the at least one set of third measurement interval MG configurations,
  • Method 2 Receive information sent by the network device indicating the priority of the N-M sets of second measurement intervals MG configuration and information indicating the priority of the at least one set of third measurement intervals MG.
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the second measurement interval MG configuration conflicts with the SMTC configuration in the first measurement configuration.
  • the M sets of first measurement configurations include at least one set of fourth SMTC measurement configurations, and at least one set of fourth SMTC measurement configurations has a measurement conflict with the N-M sets of second measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the method of determining priority is one of the following:
  • Method 1 Based on the protocol agreement, it is determined that the priority of the N-M sets of second measurement interval MG configurations is lower than the priority of at least one set of fourth SMTC measurement configurations.
  • Method 2 Receive information sent by the network device for indicating the priority of the N-M sets of second measurement interval MG configurations and information for indicating the priority of the at least one set of fourth SMTC measurement configurations.
  • the K set of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • the third type is that there is a conflict in the second measurement interval MG configuration.
  • This third category also includes two situations.
  • N-M sets of second measurement interval MG configurations include at least one set of aperiodic second measurement interval MG configurations and at least one set of periodic second measurement interval MG configurations, and at least one set of aperiodic second measurement interval MG configurations There is a measurement conflict between the second measurement interval MG configuration and the at least one set of periodic second measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement intervals are configured as the at least one set of periodic second measurement intervals MG.
  • the K sets of measurement intervals are configured as The at least one set of periodic second measurement intervals MG.
  • the method of determining priority is one of the following:
  • Method 1 Determine the priority of the at least one set of aperiodic second measurement interval MG configurations and the priority of the at least one set of periodic second measurement interval MG configurations based on protocol agreement.
  • Method 2 Receive information sent by the network device indicating the priority of the at least one set of aperiodic second measurement intervals MG and indicating the at least one set of periodic second measurement intervals MG. Configuration priority information.
  • the N-M sets of second measurement interval MG configurations include at least two sets of periodic second measurement interval MG configurations, and there is a measurement conflict between the at least two sets of periodic second measurement interval MG configurations.
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, including:
  • the K sets of measurement interval configurations are determined to be the second measurement interval MG configurations with the lowest priority.
  • the method of determining priority is one of the following:
  • Method 1 Determine the priority of at least two sets of periodic second measurement interval MG configurations based on protocol agreement.
  • Method 2 Receive information sent by the network device indicating the priority of the at least two sets of periodic second measurement intervals MG configuration.
  • Step S504 Do not perform measurements corresponding to the K sets of measurement interval configurations, or perform measurements after modifying the K sets of measurement interval configurations.
  • modifying the K sets of measurement interval configurations may be to relax the measurement requirements corresponding to the K sets of measurement interval configurations. For example: increase the measurement period in the K sets of measurement interval configurations.
  • modifying the measurement interval configuration of the K sets may also be to tighten the measurement requirements corresponding to the measurement interval configuration of the K sets. For example: reduce the measurement period in the K sets of measurement interval configurations.
  • FIG. 6 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 6, the method includes step S601:
  • Step S601 Send measurement configuration information to the user equipment, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • Two networks perform measurements based on the measurement interval MG, and the first network is the network to which the network device belongs; both N and M are integers greater than zero, and N is greater than M.
  • FIG. 7 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 7, the method includes steps S701 to S702:
  • Step S701 Send measurement configuration information to the user equipment, where the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG configuration is used to measure the first network.
  • the second network performs measurement based on the measurement interval MG, and the first network is the network to which the network device belongs.
  • Step S702 Send information indicating the priority of each set of measurement configurations to the user equipment.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the user equipment 102 in the above method embodiments, and is used to perform the functions provided by the user equipment 102 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 800 shown in FIG. 8 can serve as the user equipment 102 involved in the above method embodiment, and perform the steps performed by the user equipment 102 in the above method embodiment.
  • the communication device 800 includes a transceiver module 801 and a processing module 802.
  • the transceiver module 801 is configured to receive measurement configuration information sent by the network device.
  • the measurement configuration information includes N sets of measurement configurations.
  • the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations.
  • the first measurement configuration is used to measure the first network
  • the second measurement interval MG is configured to measure the second network based on the measurement interval MG.
  • the first network is the network to which the network device belongs. ;
  • the processing module 802 is configured to determine K sets of measurement interval configurations from the measurement interval configurations with measurement conflicts in response to the existence of measurement conflicts in the N sets of measurement configurations; the N, K and M are all integers greater than zero. , and N is greater than M, and N is greater than K; it is also configured not to perform measurements corresponding to the K sets of measurement interval configurations, or to perform measurements after modifying the K sets of measurement interval configurations.
  • processing module 802 is further configured to:
  • K sets of measurement interval configurations are determined from the measurement interval configurations with measurement conflicts, and the priority of the K sets of measurement interval configurations is lower than the measurement with measurement conflicts.
  • the M sets of first measurement configurations include at least one set of third measurement interval MG configurations
  • the third measurement interval MG configuration is a traditional measurement interval configuration
  • the N-M sets of second measurement configurations There is a measurement conflict between the interval MG configuration and the at least one set of third measurement interval MG configurations
  • the processing module 802 is also configured to:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • processing module 802 is further configured to:
  • the M sets of first measurement configurations include at least one set of fourth SMTC measurement configurations, and at least one set of fourth SMTC measurement configurations has a measurement conflict with the N-M sets of second measurement interval MG configurations. ;
  • the processing module 802 is also configured to:
  • the K sets of measurement interval configurations are the N-M sets of second measurement interval configurations.
  • processing module 802 is further configured to:
  • the N-M sets of second measurement interval MG configurations include at least one set of aperiodic second measurement interval MG configurations and at least one set of periodic second measurement interval MG configurations, and at least There is a measurement conflict between a set of aperiodic second measurement interval MG configurations and the at least one set of periodic second measurement interval MG configurations.
  • processing module 802 is further configured to:
  • the K sets of measurement intervals are configured as the at least one set of periodic second measurement intervals MG.
  • processing module 802 is further configured to:
  • the K sets of measurement intervals are configured as the at least one A set of periodic second measurement intervals MG.
  • processing module 802 is further configured to:
  • the N-M sets of second measurement interval MG configurations include at least two sets of periodic second measurement interval MG configurations, and one of the at least two sets of periodic second measurement interval MG configurations There is a measurement conflict between;
  • the processing module 802 is also configured to:
  • the K sets of measurement interval configurations are determined to be the second measurement interval MG configurations with the lowest priority.
  • processing module 802 is further configured to:
  • the processing module 802 is further configured to increase the measurement period in the K sets of measurement interval configurations.
  • the communication device When the communication device is user equipment 102, its structure may also be as shown in Figure 9.
  • FIG. 9 is a block diagram of a measuring device 900 according to an exemplary embodiment.
  • the device 900 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 900 may include one or more of the following components: a processing component 902, a memory 904, a power component 906, a multimedia component 908, an audio component 910, an input/output (I/O) interface 912, a sensor component 914, and communications component 916.
  • Processing component 902 generally controls the overall operations of device 900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to complete all or part of the steps of the above method.
  • processing component 902 may include one or more modules that facilitate interaction between processing component 902 and other components.
  • processing component 902 may include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operations at device 900 . Examples of such data include instructions for any application or method operating on device 900, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 904 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 906 provides power to various components of device 900.
  • Power components 906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 900 .
  • Multimedia component 908 includes a screen that provides an output interface between the device 900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 908 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 910 is configured to output and/or input audio signals.
  • audio component 910 includes a microphone (MIC) configured to receive external audio signals when device 900 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 904 or sent via communications component 916 .
  • audio component 910 also includes a speaker for outputting audio signals.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 914 includes one or more sensors for providing various aspects of status assessment for device 900 .
  • the sensor component 914 may detect the open/closed state of the device 900, the relative positioning of components, such as the display and keypad of the device 900, and the sensor component 914 may also detect a change in position of the device 900 or a component of the device 900. , the presence or absence of user contact with the device 900 , device 900 orientation or acceleration/deceleration and temperature changes of the device 900 .
  • Sensor assembly 914 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between apparatus 900 and other devices.
  • Device 900 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 916 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 904 including instructions, which are executable by the processor 920 of the apparatus 900 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the network device 101 in the above method embodiments, and is used to perform the functions provided by the network device 101 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1000 shown in Figure 10 can serve as the network device 101 involved in the above method embodiment, and perform the steps performed by the network device 101 in the above method embodiment.
  • the communication device 1000 shown in FIG. 10 includes a transceiver module 1001.
  • the transceiver module 1001 is configured to send measurement configuration information to the user equipment, where the measurement configuration information includes N sets of measurement configurations, and the N sets of measurement configurations include M sets of first measurement configurations and N-M sets of second measurement interval MG configurations, so The first measurement configuration is used to measure the first network, and the second measurement interval MG is configured to measure the second network based on the measurement interval MG.
  • the first network is the network to which the network device belongs.
  • the transceiver module 1001 is further configured to:
  • the communication device When the communication device is a network device, its structure may also be as shown in Figure 11. Taking the network device 101 as a base station as an example, the structure of the communication device is described. As shown in Figure 11, the device 1100 includes a memory 1101, a processor 1102, a transceiver component 1103, and a power supply component 1106.
  • the memory 1101 is coupled to the processor 1102 and can be used to store programs and data necessary for the communication device 1100 to implement various functions.
  • the processor 1102 is configured to support the communication device 1100 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1101 .
  • the transceiver component 1103 may be a wireless transceiver, which may be used to support the communication device 1100 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1103 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1103 may include a radio frequency component 1104 and one or more antennas 1105.
  • the radio frequency component 1104 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1105 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1102 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1102.
  • the processor 1102 converts the baseband signal into data and processes the data. for processing.
  • the user equipment When the user equipment is configured with multiple sets of measurement configurations for different networks, and there are measurement conflicts in the multiple sets of measurement configurations, corresponding measurements are not performed on some of the measurement configurations in the measurement configurations that have measurement conflicts or after the measurement configurations are modified. The measurement is then performed so that the measurement process is conflict-free.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本公开提供一种测量方法、装置、设备及可读存储介质,应用于无线通信技术领域,测量方法包括:由用户设备接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。

Description

一种测量方法、装置、设备及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种测量方法、装置、设备及可读存储介质。
背景技术
一些用户设备(User Equipment,UE)可以支持多个卡槽,以支持多通用用户标识模块(Multi-Universal Subscriber Identity Module,Multi-SIM)。支持Multi-SIM的用户设备可以同时连接至多个不同的网络。用户设备可以根据通信能力的不同分为以下三种类型:单发单收(single TX/single RX),单发双收(single TX/single RX)和双发双收(dual TX/dual RX)。
支持Multi-SIM的用户设备可以同时支持两个网络,例如同时支持第一网络NW A和第二网络NW B,第一网络是一新无线(new radio,NR)网络,第二网络是另一NR或长期演进(Long Term Evolution,LTE)网络。并且,可以同时支持两个网络的RRC连接。
Rel-17的研究基于单发单收/单发双收终端,由于只有1TX能力,终端不能同时保持两个网络的RRC连接,因此研究场景为NW A处于连接态,NW B处于空闲态/非激活态。第三代合作伙伴计划(The 3rd Generation Partner Project,3GPP)引入了专门用于MUSIM测量目的的测量间隔(MG,Measurement Gap),用于对NW B的测量。NW A最多可以同时配置2个周期性MG和一个非周期性MG。
Rel-18的研究基于双发双收终端,可以同时支持NW A和NW B的RRC连接,在该研究场景下的测量间隔配置方案还有待讨论。
发明内容
本公开提供一种测量方法、装置、设备及可读存储介质。
第一方面,提供一种测量方法,由用户设备执行,所述方法包括:
接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;
响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;
不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,所述K套测量间隔配置的优先级低于所述存在测量冲突的测量间隔配置中除所述K套测量间隔配置之外的其它测量间隔配置的优先级。
在一些可能的实施方式中,所述M套第一测量配置包括至少一套第三测量间隔MG配置,所述第三测量间隔MG配置为传统测量间隔配置,并且,所述N-M套第二测量间隔MG配置与所述至少一套第三测量间隔MG配置存在测量冲突;
所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,
或者,
接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第三测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述M套第一测量配置包括至少一套第四SMTC测量配置,并且,至少一套第四SMTC测量配置与所述N-M套第二测量间隔MG配置存在测量冲突;
所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少一套第四SMTC测量配置的优先级和所述N-M套第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于至少一套第四SMTC测量配置的优先级,
或者,
接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第四SMTC测量配置的优先级的信息。
在一些可能的实施方式中,所述N-M套第二测量间隔MG配置中包括至少一套非周期性的第二测量间隔MG配置和至少一套周期性的第二测量间隔MG配置,并且,至少一套非周期性的第二测量间隔MG配置与所述至少一套周期性的第二测量间隔MG配置存在测量冲突。
在一些可能的实施方式中,所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
在一些可能的实施方式中,所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级;
或者,
接收所述网络设备发送的用于指示所述至少一套非周期性的第二测量间隔MG配置的优先级的信息和用于指示所述至少一套周期性的第二测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述N-M套第二测量间隔MG配置中包括至少两套周期性的第二测量间隔MG配置,并且,所述至少两套周期性的第二测量间隔MG配置之间存在测量冲突;
所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少两套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为优先级最低的第二测量间隔MG配置。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级;
或者,
接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述修改所述K套测量间隔配置,包括:增大所述K套测量间隔配置中的测量周期。
第二方面,提供一种测量方法,由网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送用于指示各套测量配置的优先级的信息。
第三方面,提供一种测量装置,被配置于用户设备,所述装置包括:
收发模块,被配置为接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;
处理模块,被配置为响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;还被配置为不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
第四方面,提供一种测量装置,被配置于网络设备,所述装置包括:
收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
第五方面,提供一种电子设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,提供一种通信设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行第一方面或第一方面的任意一种可能的设计。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行第二方面或第二方面的任意一种可能的设计。
本公开中,在用户设备被配置了针对不同网络的多套测量配置,并且,所述多套测量配置中存在测量冲突时,对存在测量冲突的测量配置中的部分测量配置不执行相应测量或者修改配置后再执行测量,从而使测量过程无冲突。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种测量方法的流程图;
图3是根据一示例性实施例示出的一种测量方法的流程图;
图4是根据一示例性实施例示出的一种测量方法的流程图;
图5是根据一示例性实施例示出的一种测量方法的流程图;
图6是根据一示例性实施例示出的一种测量方法的流程图;
图7是根据一示例性实施例示出的一种测量方法的流程图;
图8是根据一示例性实施例示出的一种测量装置的结构图;
图9是根据一示例性实施例示出的一种测量装置的结构图;
图10是根据一示例性实施例示出的一种测量装置的结构图;
图11是根据一示例性实施例示出的一种测量装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种测量方法可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双 工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例提供了一种测量方法,图2是根据一示例性实施例示出的一种测量方法 的流程图,如图2所示,该方法包括步骤S201~S203:
步骤S201,网络设备向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;所述N和M均为大于零的整数,并且,N大于M。
第一测量配置中可以包括测量间隔MG配置,也可以包括基于同步信号块(Synchronzation Signal Block,SSB)的RRM测量时间配置(SSB-based RRM Measurement Timing Configuration,SMTC),其中,SMTC相应的窗口称为SMTC窗口。
步骤S202,用户设备响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置。
在一些可能的实施方式中,测量冲突是指用户设备在不同的测量配置中测量窗口的重叠区域内只能执行一种测量。具体的,鉴于测量间隔MG配置和SMTC对应的频点不同,多个测量配置中存在测量冲突可以包括测量间隔MG配置和SMTC之间的测量冲突,以及,用户设备在同一时刻只能执行一种MG配置下的测量,多个测量配置中存在测量冲突可以包括不同测量间隔MG配置之间的冲突。
在一些可能的实施方式中,鉴于一般情况下认为第一网络为主网络以及第二网络为次网络,确定所述K套测量间隔配置为:存在测量冲突的测量间隔配置中包括的针对第二网络的第二测量间隔MG配置。即,在存在测量冲突时,舍弃或修改针对第二网络的测量配置。
在一些可能的实施方式中,在一些使用场景下,可以认为第二网络的重要性高于第一网络的重要性,从而确定所述K套测量间隔配置为:存在测量冲突的测量间隔配置中包括的针对第一网络的全部或部分第一测量配置。即,在存在测量冲突时,舍弃或修改针对第一网络的测量配置。
在一些可能的实施方式中,不以网络为粒度决定不同配置的优先级,对于不同网络的不同配置可以对应于不同的优先级。例如:M套第一测量配置中部分的第一测量配置的优先级高于N-M套第二测量间隔MG配置中部分的第二测量间隔MG配置的优先级,同时,M套第一测量配置中部分的第一测量配置的优先级低于N-M套第二测量间隔MG配置中部分的第二测量间隔MG配置的优先级。在这种情况下,根据不同配置的优先级确定K套测量间 隔配置。即,在存在测量冲突时,舍弃或修改优先级低的测量配置。
步骤S203,用户设备不执行所述K套测量间隔配置对应的测量,或者,用户设备修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,修改所述K套测量间隔配置可以为放松所述K套测量间隔配置对应的测量要求。例如:增大所述K套测量间隔配置中的测量周期。
在一些可能的实施方式中,修改所述K套测量间隔配置也可以为收紧所述K套测量间隔配置对应的测量要求。例如:减小所述K套测量间隔配置中的测量周期。本公开实施例中,在用户设备被配置了针对不同网络的多套测量配置,并且,所述多套测量配置中存在测量冲突时,对存在测量冲突的测量配置中的部分测量配置不执行相应测量或者修改配置后再执行测量,从而使测量过程无冲突。
本公开实施例提供了一种测量方法,图3是根据一示例性实施例示出的一种测量方法的流程图,如图3所示,该方法包括步骤S301~S304:
步骤S301,网络设备向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;所述N和M均为大于零的整数,并且,N大于M。
步骤S302,网络设备向用户设备发送用于指示各套测量配置的优先级的信息。
步骤S303,用户设备响应于所述N套测量配置中存在测量冲突,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,所述K套测量间隔配置的优先级低于所述存在测量冲突的测量间隔配置中除所述K套测量间隔配置之外的其它测量间隔配置的优先级。
所述K为大于零的整数,并且N大于K。
下面基于三种不同的冲突类型进行详细说明。
第一种:第二测量间隔MG配置与第一测量配置中的测量间隔MG配置产生冲突。
在一示例中,所述M套第一测量配置包括至少一套第三测量间隔MG配置,所述第三测量间隔MG配置为传统测量间隔配置,并且,所述N-M套第二测量间隔MG配置与所述至少一套第三测量间隔MG配置存在测量冲突。
此时需要确定N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级之间的关系,将低优先级的测量间隔配置确定为K套测量间隔配置。其中,鉴于一般情况下认为第一网络为主网络以及第二网络为次网络,在设置优先级时使第二测量间隔配置的优先级低于第一测量配置中的第三测量间隔MG配置的优先级。
则步骤S303中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级。
方式二,接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第三测量间隔MG配置的优先级的信息。
由于N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,因此,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
第二种,第二测量间隔MG配置与第一测量配置中的SMTC配置产生冲突。
在一示例中,所述M套第一测量配置包括至少一套第四SMTC测量配置,并且,至少一套第四SMTC测量配置与所述N-M套第二测量间隔MG配置存在测量冲突。
此时需要确定至少一套第四SMTC测量配置的优先级与所述N-M套第二测量间隔MG配置的优先级之间的关系,将低优先级的测量间隔配置确定为K套测量间隔配置。其中,鉴于一般情况下认为第一网络为主网络以及第二网络为次网络,在设置优先级时使N-M套第二测量间隔配置的优先级低于第一测量配置中的第四测量间隔MG配置的优先级。
则步骤S303中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少一套第四SMTC测量配置的优先级和所述N-M套第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于至少一 套第四SMTC测量配置的优先级。
方式二,接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第四SMTC测量配置的优先级的信息。
由于所述至少一套第四SMTC测量配置的优先级高于所述N-M套第二测量间隔MG配置的优先级,因此,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
第三种,第二测量间隔MG配置中存在冲突。
此第三种中还包括两种情况。
第一情况,N-M套第二测量间隔MG配置中包括至少一套非周期性的第二测量间隔MG配置和至少一套周期性的第二测量间隔MG配置,并且,至少一套非周期性的第二测量间隔MG配置与所述至少一套周期性的第二测量间隔MG配置存在测量冲突。
则步骤S303中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
或者,基于所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级。
方式二,接收所述网络设备发送的用于指示所述至少一套非周期性的第二测量间隔MG配置的优先级的信息和用于指示所述至少一套周期性的第二测量间隔MG配置的优先级的信息。
第二情况,N-M套第二测量间隔MG配置中包括至少两套周期性的第二测量间隔MG配置,并且,所述至少两套周期性的第二测量间隔MG配置之间存在测量冲突。
此时需要确定至少两套周期性的第二测量间隔配置之间的优先级关系,将最低优先级的第二测量间隔配置确定为K套测量间隔配置。
则步骤S303中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少两套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔 配置为优先级最低的第二测量间隔MG配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级。
方式二,接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
步骤S304,用户设备不执行所述K套测量间隔配置对应的测量,或者,用户设备修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,修改所述K套测量间隔配置可以为放松所述K套测量间隔配置对应的测量要求。例如:增大所述K套测量间隔配置中的测量周期。
在一些可能的实施方式中,修改所述K套测量间隔配置也可以为收紧所述K套测量间隔配置对应的测量要求。例如:减小所述K套测量间隔配置中的测量周期。
在一些可能的实施方式中,所述修改所述K套测量间隔配置,包括:增大所述K套测量间隔配置中的测量周期。
本公开实施例中,在用户设备被配置了针对不同网络的多套测量配置,并且,所述多套测量配置中存在测量冲突时,基于测量配置的优先级从存在测量冲突的多套测量配置选择出多个测量配置,对选择出的测量配置不执行相应测量或者修改配置后再执行测量,从而使测量过程无冲突。
本公开实施例提供了一种测量方法,由用户设备执行,图4是根据一示例性实施例示出的一种测量方法的流程图,如图4所示,该方法包括步骤S401~S403:
步骤S401,接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;所述N和M均为大于零的整数,并且,N大于M。
步骤S402,响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置。
在一些可能的实施方式中,测量冲突是指用户设备在不同的测量配置中测量窗口的重叠区域内只能执行一种测量。具体的,鉴于测量间隔MG配置和SMTC对应的频点不同, 多个测量配置中存在测量冲突可以包括测量间隔MG配置和SMTC之间的测量冲突,以及,用户设备在同一时刻只能执行一种MG配置下的测量,多个测量配置中存在测量冲突可以包括不同测量间隔MG配置之间的冲突。
在一些可能的实施方式中,鉴于一般情况下认为第一网络为主网络以及第二网络为次网络,确定所述K套测量间隔配置为:存在测量冲突的测量间隔配置中包括的针对第二网络的第二测量间隔MG配置。即,在存在测量冲突时,舍弃或修改针对第二网络的测量配置。
在一些可能的实施方式中,在一些使用场景下,可以认为第二网络的重要性高于第一网络的重要性,从而确定所述K套测量间隔配置为:存在测量冲突的测量间隔配置中包括的针对第一网络的全部或部分第一测量配置。即,在存在测量冲突时,舍弃或修改针对第一网络的测量配置。
在一些可能的实施方式中,不以网络为粒度决定不同配置的优先级,对于不同网络的不同配置可以对应于不同的优先级。例如:M套第一测量配置中部分的第一测量配置的优先级高于N-M套第二测量间隔MG配置中部分的第二测量间隔MG配置的优先级,同时,M套第一测量配置中部分的第一测量配置的优先级低于N-M套第二测量间隔MG配置中部分的第二测量间隔MG配置的优先级。在这种情况下,根据不同配置的优先级确定K套测量间隔配置。即,在存在测量冲突时,舍弃或修改优先级低的测量配置。
步骤S403,不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,修改所述K套测量间隔配置可以为放松所述K套测量间隔配置对应的测量要求。例如:增大所述K套测量间隔配置中的测量周期。
在一些可能的实施方式中,修改所述K套测量间隔配置也可以为收紧所述K套测量间隔配置对应的测量要求。例如:减小所述K套测量间隔配置中的测量周期。
本公开实施例中,在用户设备被配置了针对不同网络的多套测量配置,并且,所述多套测量配置中存在测量冲突时,对存在测量冲突的测量配置中的部分测量配置不执行相应测量或者修改配置后再执行测量,从而使测量过程无冲突。
本公开实施例提供了一种测量方法,由用户设备执行,图5是根据一示例性实施例示出的一种测量方法的流程图,如图5所示,该方法包括步骤S501~S504:
步骤S501,接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配 置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;所述N和M均为大于零的整数,并且,N大于M。
步骤S502,接收网络设备发送的用于指示各套测量配置的优先级的信息。
步骤S503,响应于所述N套测量配置中存在测量冲突,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,所述K套测量间隔配置的优先级低于所述存在测量冲突的测量间隔配置中除所述K套测量间隔配置之外的其它测量间隔配置的优先级。
所述K为大于零的整数,并且N大于K。
下面基于三种不同的冲突类型进行详细说明。
第一种:
第二测量间隔MG配置与第一测量配置中的测量间隔MG配置产生冲突。
在一示例中,所述M套第一测量配置包括至少一套第三测量间隔MG配置,所述第三测量间隔MG配置为传统测量间隔配置,并且,所述N-M套第二测量间隔MG配置与所述至少一套第三测量间隔MG配置存在测量冲突。
此时需要确定N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级之间的关系,将低优先级的测量间隔配置确定为K套测量间隔配置。
则步骤S503中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,
方式二,接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第三测量间隔MG配置的优先级的信息。
由于N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,因此,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
第二种,第二测量间隔MG配置与第一测量配置中的SMTC配置产生冲突。
在一示例中,所述M套第一测量配置包括至少一套第四SMTC测量配置,并且,至少一套第四SMTC测量配置与所述N-M套第二测量间隔MG配置存在测量冲突。
此时需要确定至少一套第四SMTC测量配置的优先级与所述N-M套第二测量间隔MG配置的优先级之间的关系,将低优先级的测量间隔配置确定为K套测量间隔配置。
则步骤S503中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少一套第四SMTC测量配置的优先级和所述N-M套第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于至少一套第四SMTC测量配置的优先级。
方式二,接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第四SMTC测量配置的优先级的信息。
由于所述至少一套第四SMTC测量配置的优先级高于所述N-M套第二测量间隔MG配置的优先级,因此,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
第三种,第二测量间隔MG配置中存在冲突。
此第三种中还包括两种情况。
第一情况,N-M套第二测量间隔MG配置中包括至少一套非周期性的第二测量间隔MG配置和至少一套周期性的第二测量间隔MG配置,并且,至少一套非周期性的第二测量间隔MG配置与所述至少一套周期性的第二测量间隔MG配置存在测量冲突。
则步骤S503中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
或者,基于所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级。
方式二,接收所述网络设备发送的用于指示所述至少一套非周期性的第二测量间隔MG配置的优先级的信息和用于指示所述至少一套周期性的第二测量间隔MG配置的优先级的信息。
第二情况,N-M套第二测量间隔MG配置中包括至少两套周期性的第二测量间隔MG配置,并且,所述至少两套周期性的第二测量间隔MG配置之间存在测量冲突。
此时需要确定至少两套周期性的第二测量间隔配置之间的优先级关系,将最低优先级的第二测量间隔配置确定为K套测量间隔配置。
则步骤S503中,基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
基于所述至少两套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为优先级最低的第二测量间隔MG配置。
其中,确定优先级的方式为以下中的一种:
方式一,基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级。
方式二,接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
步骤S504,不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,修改所述K套测量间隔配置可以为放松所述K套测量间隔配置对应的测量要求。例如:增大所述K套测量间隔配置中的测量周期。
在一些可能的实施方式中,修改所述K套测量间隔配置也可以为收紧所述K套测量间隔配置对应的测量要求。例如:减小所述K套测量间隔配置中的测量周期。
本公开实施例提供了一种测量方法,由网络设备执行,图6是根据一示例性实施例示出的一种测量方法的流程图,如图6所示,该方法包括步骤S601:
步骤S601,向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;所述N和M均为大于零的整数,并且,N大于M。
本公开实施例提供了一种测量方法,由网络设备执行,图7是根据一示例性实施例示出的一种测量方法的流程图,如图7所示,该方法包括步骤S701~S702:
步骤S701,向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置。
所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
步骤S702,向用户设备发送用于指示各套测量配置的优先级的信息。
以使用户设备根据各套测量配置的优先级的信息确定各套测量配置的优先级,从而确定出低优先级的测量配置。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备102的功能,并用于执行上述实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图8所示的通信装置800可作为上述方法实施例所涉及的用户设备102,并执行上述一种方法实施例中由用户设备102执行的步骤。
所述通信装置800包括收发模块801、处理模块802。
收发模块801,被配置为接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;
处理模块802,被配置为响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;还被配置为不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,所述K套测量间隔配置的优先级低于所述存在测量冲突的测量间隔配置中除所述K套测量间隔配置之外的其它测量间隔配置的优先级。
在一些可能的实施方式中,所述M套第一测量配置包括至少一套第三测量间隔MG配 置,所述第三测量间隔MG配置为传统测量间隔配置,并且,所述N-M套第二测量间隔MG配置与所述至少一套第三测量间隔MG配置存在测量冲突;
所述处理模块802还被配置为:
基于所述N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,
或者,
接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第三测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述M套第一测量配置包括至少一套第四SMTC测量配置,并且,至少一套第四SMTC测量配置与所述N-M套第二测量间隔MG配置存在测量冲突;
所述处理模块802还被配置为:
基于所述至少一套第四SMTC测量配置的优先级和所述N-M套第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于至少一套第四SMTC测量配置的优先级,
或者,
接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第四SMTC测量配置的优先级的信息。
在一些可能的实施方式中,所述N-M套第二测量间隔MG配置中包括至少一套非周期性的第二测量间隔MG配置和至少一套周期性的第二测量间隔MG配置,并且,至少一套非周期性的第二测量间隔MG配置与所述至少一套周期性的第二测量间隔MG配置存在测量冲突。
在一些可能的实施方式中,所述处理模块802还被配置为:
确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级;
或者,
接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述N-M套第二测量间隔MG配置中包括至少两套周期性的第二测量间隔MG配置,并且,所述至少两套周期性的第二测量间隔MG配置之间存在测量冲突;
所述处理模块802还被配置为:
基于所述至少两套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为优先级最低的第二测量间隔MG配置。
在一些可能的实施方式中,所述处理模块802还被配置为:
基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级;
或者,
接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
在一些可能的实施方式中,所述处理模块802还被配置为:增大所述K套测量间隔配置中的测量周期。
当该通信装置为用户设备102时,其结构还可如图9所示。
图9是根据一示例性实施例示出的一种测量装置900的框图。例如,装置900可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电力组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指 令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在设备900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件906为装置900的各种组件提供电力。电力组件906可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当设备900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到设备900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置 900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并用于执行上述实施例提供的由网络设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图10所示的通信装置1000可作为上述方法实施例所涉及的网络设备101,并执行上述方法实施例中由网络设备101执行的步骤。
如图10所示的通信装置1000包括收发模块1001。
收发模块1001,被配置为向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
在一些可能的实施方式中,所述收发模块1001还被配置为:
向所述用户设备发送用于指示各套测量配置的优先级的信息。
当该通信装置为网络设备时,其结构还可如图11所示。以网络设备101为基站为例说明通信装置的结构。如图11所示,装置1100包括存储器1101、处理器1102、收发组件1103、电源组件1106。其中,存储器1101与处理器1102耦合,可用于保存通信装置1100实现各功能所必要的程序和数据。该处理器1102被配置为支持通信装置1100执行上述方法中相应的功能,此功能可通过调用存储器1101存储的程序实现。收发组件1103可以是无线收发器,可用于支持通信装置1100通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1103也可被称为收发单元或通信单元,收发组件1103可包括射频组件1104以及一个或多个天线1105,其中,射频组件1104可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1105具体可用于进行射频信号的辐射和接收。
当通信装置1100需要发送数据时,处理器1102可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1100时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1102,处理器1102将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
在用户设备被配置了针对不同网络的多套测量配置,并且,所述多套测量配置中存在测量冲突时,对存在测量冲突的测量配置中的部分测量配置不执行相应测量或者修改测量配置后再执行测量,从而使测量过程无冲突。

Claims (22)

  1. 一种测量方法,由用户设备执行,所述方法包括:
    接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;
    响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;
    不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
  2. 如权利要求1所述的方法,其中,所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    确定所述K套测量间隔配置为:存在测量冲突的测量间隔配置中包括的针对第二网络的第二测量间隔MG配置。
  3. 如权利要求1所述的方法,其中,所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,所述K套测量间隔配置的优先级低于所述存在测量冲突的测量间隔配置中除所述K套测量间隔配置之外的其它测量间隔配置的优先级。
  4. 如权利要求3所述的方法,其中,
    所述M套第一测量配置包括至少一套第三测量间隔MG配置,所述第三测量间隔MG配置为传统测量间隔配置,并且,所述N-M套第二测量间隔MG配置与所述至少一套第三测量间隔MG配置存在测量冲突;
    所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    基于所述N-M套第二测量间隔MG配置的优先级和所述至少一套第三测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
  5. 如权利要求4所述的方法,其中,所述方法还包括:
    基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于所述至少一套第三测量间隔MG配置的优先级,
    或者,
    接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第三测量间隔MG配置的优先级的信息。
  6. 如权利要求3所述的方法,其中,
    所述M套第一测量配置包括至少一套第四SMTC测量配置,并且,至少一套第四SMTC测量配置与所述N-M套第二测量间隔MG配置存在测量冲突;
    所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    基于所述至少一套第四SMTC测量配置的优先级和所述N-M套第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述N-M套第二测量间隔配置。
  7. 如权利要求6所述的方法,其中,所述方法还包括:
    基于协议约定确定所述N-M套第二测量间隔MG配置的优先级低于至少一套第四SMTC测量配置的优先级,
    或者,
    接收所述网络设备发送的用于指示所述N-M套第二测量间隔MG配置的优先级的信息和用于指示所述至少一套第四SMTC测量配置的优先级的信息。
  8. 如权利要求1所述的测量方法,其中,
    所述N-M套第二测量间隔MG配置中包括至少一套非周期性的第二测量间隔MG配置和至少一套周期性的第二测量间隔MG配置,并且,至少一套非周期性的第二测量间隔MG配置与所述至少一套周期性的第二测量间隔MG配置存在测量冲突。
  9. 如权利要求8所述的测量方法,其中,
    所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
  10. 如权利要求8所述的测量方法,其中,
    所述从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    基于所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为所述至少一套周期性的第二测量间隔MG。
  11. 如权利要求10所述的测量方法,其中,所述方法还包括:
    基于协议约定确定所述至少一套非周期性的第二测量间隔MG配置的优先级和所述至少一套周期性的第二测量间隔MG配置的优先级;
    或者,
    接收所述网络设备发送的用于指示所述至少一套非周期性的第二测量间隔MG配置的优先级的信息和用于指示所述至少一套周期性的第二测量间隔MG配置的优先级的信息。
  12. 如权利要求3所述的测量方法,其中,
    所述N-M套第二测量间隔MG配置中包括至少两套周期性的第二测量间隔MG配置,并且,所述至少两套周期性的第二测量间隔MG配置之间存在测量冲突;
    所述基于所述存在测量冲突的测量间隔配置的优先级,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置,包括:
    基于所述至少两套周期性的第二测量间隔MG配置的优先级,确定所述K套测量间隔配置为优先级最低的第二测量间隔MG配置。
  13. 如权利要求12所述的方法,其中,所述方法还包括:
    基于协议约定确定至少两套周期性的第二测量间隔MG配置的优先级;
    或者,
    接收所述网络设备发送的用于指示所述至少两套周期性的第二测量间隔MG配置的优先级的信息。
  14. 如权利要求1所述的方法,其中,所述修改所述K套测量间隔配置,包括:增大所述K套测量间隔配置中的测量周期。
  15. 一种测量方法,由网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
  16. 如权利要求15所述的方法,其中,所述方法还包括:
    向所述用户设备发送用于指示各套测量配置的优先级的信息。
  17. 一种测量装置,被配置于用户设备,所述装置包括:
    收发模块,被配置为接收网络设备发送的测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络;
    处理模块,被配置为响应于所述N套测量配置中存在测量冲突,从存在测量冲突的测量间隔配置中确定出K套测量间隔配置;所述N、K和M均为大于零的整数,并且,N大于M,N大于K;还被配置为不执行所述K套测量间隔配置对应的测量,或者,修改所述K套测量间隔配置后进行测量。
  18. 一种测量装置,被配置于网络设备,所述装置包括:
    收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息包括N套测量配置,所述N套测量配置包括M套第一测量配置和N-M套第二测量间隔MG配置,所述第一测量配置用于对第一网络进行测量,所述第二测量间隔MG配置用于对第二网络进行基于测量间隔MG的测量,所述第一网络为所述网络设备所属的网络。
  19. 一种电子设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-14中任一项所述的方法。
  20. 一种通信设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求15-16中任一项所述的方法。
  21. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求15-16中任一项所述的方法。
PCT/CN2022/104443 2022-07-07 2022-07-07 一种测量方法、装置、设备及可读存储介质 WO2024007263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002539.3A CN117678206A (zh) 2022-07-07 2022-07-07 一种测量方法、装置、设备及可读存储介质
PCT/CN2022/104443 WO2024007263A1 (zh) 2022-07-07 2022-07-07 一种测量方法、装置、设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104443 WO2024007263A1 (zh) 2022-07-07 2022-07-07 一种测量方法、装置、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024007263A1 true WO2024007263A1 (zh) 2024-01-11

Family

ID=89454564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104443 WO2024007263A1 (zh) 2022-07-07 2022-07-07 一种测量方法、装置、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN117678206A (zh)
WO (1) WO2024007263A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314931A (zh) * 2019-01-18 2020-06-19 维沃软件技术有限公司 测量方法及设备
CN111586779A (zh) * 2020-05-08 2020-08-25 展讯通信(上海)有限公司 异频异系统测量的方法及装置、双卡双待终端及存储介质
US20210120524A1 (en) * 2019-12-10 2021-04-22 Intel Corporation User equipment operation with multiple subscriber identity modules
CN112887963A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 一种通信方法与通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314931A (zh) * 2019-01-18 2020-06-19 维沃软件技术有限公司 测量方法及设备
CN112887963A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 一种通信方法与通信装置
US20210120524A1 (en) * 2019-12-10 2021-04-22 Intel Corporation User equipment operation with multiple subscriber identity modules
CN111586779A (zh) * 2020-05-08 2020-08-25 展讯通信(上海)有限公司 异频异系统测量的方法及装置、双卡双待终端及存储介质

Also Published As

Publication number Publication date
CN117678206A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023193197A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2024000129A1 (zh) 一种传输资源配置信息的方法、装置以及可读存储介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2023184094A1 (zh) 一种传输下行控制信息的方法、装置及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2023178623A1 (zh) 一种监听唤醒信号的方法、装置及可读存储介质
WO2023070279A1 (zh) 一种传输能力指示信息的方法、装置、及可读存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2023201738A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2023178489A1 (zh) 一种传输能力信息的方法、装置及存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2023201569A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2023130469A1 (zh) 一个确定信道接入方式的方法、装置及存储介质
WO2024026862A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023130230A1 (zh) 一种配置上行间隔的方法、装置、设备及存储介质
WO2023151093A1 (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002539.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949847

Country of ref document: EP

Kind code of ref document: A1