WO2023178623A1 - 一种监听唤醒信号的方法、装置及可读存储介质 - Google Patents

一种监听唤醒信号的方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2023178623A1
WO2023178623A1 PCT/CN2022/082876 CN2022082876W WO2023178623A1 WO 2023178623 A1 WO2023178623 A1 WO 2023178623A1 CN 2022082876 W CN2022082876 W CN 2022082876W WO 2023178623 A1 WO2023178623 A1 WO 2023178623A1
Authority
WO
WIPO (PCT)
Prior art keywords
wus
opportunity
listening
opportunities
user equipment
Prior art date
Application number
PCT/CN2022/082876
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000853.8A priority Critical patent/CN117121565A/zh
Priority to PCT/CN2022/082876 priority patent/WO2023178623A1/zh
Publication of WO2023178623A1 publication Critical patent/WO2023178623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a method, device and readable storage medium for monitoring a wake-up signal.
  • a low power (lower power, LP) wakeup signal (wakeupsignal, WUS) can be applied.
  • the wake-up signal WUS corresponds to a separate receiver, which may be called a secondary transceiver.
  • UE uses a main transceiver to process uplink data and downlink data, and uses a separate receiver to receive the wake-up signal WUS.
  • the main transceiver of the user equipment when the main transceiver of the user equipment is in the dormant state, after receiving the WUS through the separate receiver corresponding to WUS, the main transceiver will be turned on, so that the main transceiver is in the working state; when the main transceiver of the user equipment is in the dormant state , the independent receiver corresponding to WUS does not receive WUS, or receives WUS but the WUS instruction does not wake up, it will continue to maintain the sleep state of the main transceiver.
  • the present disclosure provides a method, device and readable storage medium for monitoring a wake-up signal.
  • the first aspect provides a method for monitoring wake-up signals, which is executed by user equipment. This method includes:
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • each WUS listening opportunity corresponds to one SSB beam, so that the user equipment can accurately monitor the monitoring opportunity of the wake-up signal.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the method further includes:
  • the WUS timing corresponding to the user equipment is determined according to the identification of the user equipment and the wake-up signal WUS cycle.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • the method further includes:
  • first configuration information sent by the network device, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • the method further includes:
  • the method further includes:
  • the starting time domain position of the WUS listening opportunity is updated to the starting point of the nearest downlink symbol after the uplink symbol. starting position.
  • the method further includes:
  • Receive fourth configuration information from the network device the fourth configuration information is used to configure downlink resources, and the downlink resources are synchronization signals or SSB or CORESET0;
  • the starting time domain position of the WUS listening opportunity is updated to the start of the latest downlink symbol after the downlink resource. Location.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the second aspect provides a method of sending a wake-up signal, which is executed by the network device. This method includes:
  • each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to 1 SSB beam;
  • each WUS listening opportunity corresponds to one SSB beam, so that the user equipment can accurately monitor the monitoring opportunity of the wake-up signal.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS timing corresponding to the user equipment is determined according to the identification of the user equipment and the wake-up signal WUS cycle.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • the number of time domain symbols included in the WUS listening opportunity is determined based on the protocol agreement
  • first configuration information to the user equipment, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • the time domain position of each WUS listening opportunity within the WUS opportunity is determined based on the protocol agreement
  • the starting time domain position of the WUS listening opportunity is updated to the starting point of the nearest downlink symbol after the uplink symbol. starting position.
  • fourth configuration information is sent to the user equipment, where the fourth configuration information is used to configure downlink resources, and the downlink resources are synchronization signals or SSB or CORESET0;
  • the starting time domain position of the WUS listening opportunity is updated to the start of the latest downlink symbol after the downlink resource. starting position.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • a communication device may be used to perform the steps performed by the user equipment in the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module.
  • the transceiver module is configured to monitor the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening timings, and each WUS listening timing corresponds to 1 SSB beam.
  • a fourth aspect provides a communication device.
  • the communication device may be used to perform the steps performed by the network device in the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a processing module and a transceiver module.
  • the processing module is configured to determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to 1 SSB beam;
  • the transceiver module is configured to send a wake-up signal WUS to the user equipment at the WUS opportunity.
  • a communication device including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to realize the first aspect or any possibility of the first aspect. the design of.
  • a sixth aspect provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any possibility of the first aspect. the design of.
  • a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the first aspect. or any possible design of the first aspect.
  • a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the first aspect. or any possible design of the first aspect.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a method of transmitting a wake-up signal according to an exemplary embodiment
  • Figure 3 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 4 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 5 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 6 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 7 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 8 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 9 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 10 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 11 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 12 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 13 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 14 is a flow chart of a method of sending a wake-up signal according to an exemplary embodiment
  • Figure 15 is a structural diagram of a device for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 16 is a structural diagram of a device for monitoring a wake-up signal according to an exemplary embodiment
  • Figure 17 is a structural diagram of a device for sending a wake-up signal according to an exemplary embodiment
  • Figure 18 is a structural diagram of a device for sending a wake-up signal according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for monitoring a wake-up signal can be applied to a wireless communication system 100 , which may include but is not limited to a network device 101 and a user equipment 102 .
  • the user equipment 102 is configured to support carrier aggregation, and the user equipment 102 can be connected to multiple carrier units of the network device 101, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 102 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices 101 of one or more communication systems, and accept network services provided by the network device 101.
  • the network device 101 Including but not limited to the base station shown in the figure.
  • the user equipment 102 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • Network equipment may specifically include base station (BS) equipment, or include base station equipment and wireless resource management equipment used to control base station equipment, etc.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network devices can be wearable devices or vehicle-mounted devices.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • gnodeB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • FIG. 2 is a flow chart of a method for monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 2, the method includes:
  • step S201 the user equipment 102 and the network equipment 101 determine the WUS opportunity corresponding to the user equipment 102.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • the WUS timing corresponding to the user equipment 102 is determined according to the identification of the user equipment 102 and the WUS period of the wake-up signal.
  • Step S202 The network device 101 sends a wake-up signal to the user device 102 at the WUS opportunity.
  • Step S203 The user equipment 102 monitors its corresponding wake-up signal WUS timing.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the number of time domain symbols included in the WUS listening opportunity is determined based on protocol agreement.
  • the time domain position of each WUS listening opportunity within the WUS opportunity is determined based on the protocol agreement.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the UE can distinguish the wake-up signal through the wake-up signal.
  • the WUS signal and PSS/SSS can be combined to support the WUS receiver to complete the synchronization function.
  • each WUS listening opportunity corresponds to one SSB beam, so that the user equipment can accurately monitor the monitoring opportunity of the wake-up signal.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 3 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 3, the method includes:
  • Step S301 Monitor wake-up signal WUS opportunities corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the UE can distinguish the beam corresponding to the wake-up signal through the wake-up signal, and the WUS signal and PSS/SSS can be combined to support the WUS receiver to complete the synchronization function.
  • the user equipment monitors the corresponding wake-up signal WUS timing, where each WUS timing includes multiple WUS listening timings, and each WUS listening timing corresponds to one SSB beam. Under this multi-beam coverage network, user equipment can accurately determine the monitoring timing of wake-up signals and save energy consumption of user equipment.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 4 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 4, the method includes:
  • Step S401 Determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle;
  • Step S402 monitor the wake-up signal WUS opportunity corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • each WUS opportunity has a corresponding time domain position in the wake-up signal WUS cycle.
  • the user equipment determines the WUS opportunity corresponding to the user equipment based on the result of taking modulo K based on the identifier UE_ID of the user equipment.
  • the user equipment determines the radio frame number SFN where the WUS opportunity corresponding to the user equipment is based on formula (1):
  • WUS_offset is the time domain offset value related to the WUS signal configured by the network device
  • UE_ID is the identifier of the user equipment.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the number of time domain symbols included in the WUS listening opportunity is determined based on protocol agreement.
  • the time domain position of each WUS listening opportunity within the WUS opportunity is determined based on the protocol agreement.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 5 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 5, the method includes:
  • Step S501 Receive first configuration information sent by the network device, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • Step S502 Determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • Step S503 Monitor wake-up signal WUS opportunities corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • Each WUS listening opportunity contains 2 OFDM symbols, which are used to carry the wake-up signal WUS sequence.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 6 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 6, the method includes:
  • Step S601 Receive second configuration information sent by the network device, where the second configuration information is used to indicate the time domain position of the WUS listening opportunity within the WUS opportunity.
  • the time domain position of the WUS listening opportunity within the WUS opportunity includes the starting position of the first WUS listening opportunity in the WUS opportunity and the time domain position interval between two adjacent WUS listening opportunities.
  • Step S602 Determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • Step S603 Monitor wake-up signal WUS opportunities corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • K can be equal to 0 or take other values.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same;
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 7 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 7, the method includes:
  • Step S701 Receive third configuration information from the network device, where the third configuration information is used to configure uplink resources;
  • Step S702 Determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • Step S702 In response to any symbol in the WUS listening opportunity overlapping with an uplink symbol in the uplink resource, update the starting time domain position of the WUS listening opportunity to the nearest downlink after the uplink symbol. The starting position of the symbol.
  • Step S703 Monitor wake-up signal WUS opportunities corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same;
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the starting position of the WUS listening opportunity is postponed to the latest downlink symbol.
  • the embodiment of the present disclosure provides a method for monitoring a wake-up signal. This method is executed by the user equipment. The method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 8 is a flow chart of monitoring a wake-up signal according to an exemplary embodiment. As shown in Figure 8, the method includes:
  • Step S801 Receive fourth configuration information from the network device.
  • the fourth configuration information is used to configure downlink resources.
  • the downlink resources are synchronization signals or SSB or CORESET0;
  • Step S802 Determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • Step S803 In response to at least one resource unit RE occupied by the WUS listening opportunity overlapping with the downlink resource, update the starting time domain position of the WUS listening opportunity to the latest downlink symbol after the downlink resource. starting position.
  • Step S804 Monitor wake-up signal WUS opportunities corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same;
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the starting position of the WUS listening opportunity is postponed to the nearest one after the downlink resource. on the descending symbol.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 9 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 9, the method includes:
  • Step S901 determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to one SSB beam;
  • Step S902 Send a wake-up signal WUS to the user equipment at the WUS timing.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the UE can distinguish the beam corresponding to the wake-up signal through the wake-up signal, and the WUS signal and PSS/SSS can be combined to support the WUS receiver to complete the synchronization function.
  • each WUS listening opportunity corresponds to one SSB beam, so that the user equipment can accurately monitor the monitoring opportunity of the wake-up signal.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 10 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 10, the method includes:
  • Step S1001 determine the WUS opportunity corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to one SSB beam;
  • Step S1002 Send a wake-up signal WUS to the user equipment at the WUS timing.
  • each WUS opportunity has a corresponding time domain position in the wake-up signal WUS cycle.
  • the network device determines the WUS opportunity corresponding to the user equipment based on the result of taking modulo K based on the identifier UE_ID of the user equipment.
  • the network device determines the radio frame number SFN where the WUS opportunity corresponding to the user equipment is based on formula (1):
  • WUS_offset is the time domain offset value related to the WUS signal configured by the network device
  • UE_ID is the identifier of the user equipment.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the number of time domain symbols included in the WUS listening opportunity is determined based on protocol agreement.
  • the time domain position of each WUS listening opportunity within the WUS opportunity is determined based on the protocol agreement.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 11 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 11, the method includes:
  • Step S1101 Send first configuration information to the user equipment, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • Step S1102 determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to one SSB beam;
  • Step S1103 Send a wake-up signal WUS to the user equipment at the WUS timing.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • Each WUS listening opportunity contains 2 OFDM symbols, which are used to carry the wake-up signal WUS sequence.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 12 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 12, the method includes:
  • Step S1201 Send second configuration information to the user equipment, where the second configuration information is used to indicate the time domain location of the WUS listening opportunity within the WUS opportunity;
  • the time domain position of the WUS listening opportunity within the WUS opportunity includes the starting position of the first WUS listening opportunity in the WUS opportunity and the time domain position interval between two adjacent WUS listening opportunities.
  • Step S1202 determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to one SSB beam;
  • Step S1203 Send a wake-up signal WUS to the user equipment at the WUS timing.
  • K can be equal to 0 or take other values.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 13 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 13, the method includes:
  • Step S1301 Send third configuration information to the user equipment, where the third configuration information is used to configure uplink resources;
  • Step S1302 determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to one SSB beam;
  • Step S1303 In response to any symbol in the WUS listening opportunity overlapping with an uplink symbol in the uplink resource, update the starting time domain position of the WUS listening opportunity to the nearest downlink after the uplink symbol. The starting position of the symbol.
  • Step S1304 Send a wake-up signal WUS to the user equipment at the WUS timing.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the starting position of the WUS listening opportunity is postponed to the latest downlink symbol.
  • the embodiment of the present disclosure provides a method for sending a wake-up signal.
  • This method is executed by a network device.
  • the method can be executed independently or in combination with any other embodiment of the embodiment of the present disclosure.
  • Figure 14 is a flow chart of sending a wake-up signal according to an exemplary embodiment. As shown in Figure 14, the method includes:
  • Step S1401 Send fourth configuration information to the user equipment.
  • the fourth configuration information is used to configure downlink resources.
  • the downlink resources are synchronization signals or SSB or CORESET0;
  • Step S1402 determine the wake-up signal WUS timing corresponding to the user equipment.
  • Each WUS timing includes multiple WUS listening opportunities, and each WUS listening timing corresponds to one SSB beam;
  • Step S1403 In response to at least one resource unit RE occupied by the WUS listening opportunity overlapping with the downlink resource, update the starting time domain position of the WUS listening opportunity to the latest downlink symbol after the downlink resource. the starting position;
  • Step S1404 Send a wake-up signal WUS to the user equipment at the WUS opportunity.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity within each WUS opportunity contains the same number of time domain symbols.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to the M WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the starting position of the WUS listening opportunity is postponed to the nearest one after the downlink resource. on the descending symbol.
  • embodiments of the present application also provide a communication device, which can have the functions of the user equipment 102 in the above method embodiments, and can be used to perform the user equipment provided by the above method embodiments.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1500 shown in Figure 15 can serve as the user equipment involved in the above method embodiment, and perform the steps performed by the user equipment in the above method embodiment.
  • the communication device 1500 may include a transceiver module 1501.
  • the transceiver module 1501 can be used to support the communication device 1500 to communicate.
  • the transceiver module 1501 can have a wireless communication function, for example, it can conduct wireless communication with other communication devices through a wireless air interface.
  • the transceiver module 1501 When performing the steps implemented by the user equipment 102, the transceiver module 1501 is configured to monitor the wake-up signal WUS opportunity corresponding to the user equipment.
  • Each WUS opportunity includes multiple WUS listening opportunities, and each WUS listening opportunity corresponds to 1 SSB beam.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the transceiver module 1501 is also configured to:
  • the WUS timing corresponding to the user equipment is determined according to the identification of the user equipment and the wake-up signal WUS cycle.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • each WUS listening opportunity in each WUS opportunity contains the same number of time domain symbols.
  • the transceiver module 1501 is also configured to:
  • first configuration information sent by the network device, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • the transceiver module 1501 is also configured to:
  • the transceiver module 1501 is also configured to:
  • the starting time domain position of the WUS listening opportunity is updated to the starting point of the nearest downlink symbol after the uplink symbol. starting position.
  • the transceiver module 1501 is also configured to:
  • Receive fourth configuration information from the network device the fourth configuration information is used to configure downlink resources, and the downlink resources are synchronization signals or SSB or CORESET0;
  • the starting time domain position of the WUS listening opportunity is updated to the start of the latest downlink symbol after the downlink resource. Location.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • FIG. 16 is a block diagram of a device 1600 for monitoring a wake-up signal according to an exemplary embodiment.
  • the device 1600 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1600 may include one or more of the following components: a processing component 1602, a memory 1604, a power component 1606, a multimedia component 1608, an audio component 1610, an input/output (I/O) interface 1612, a sensor component 1614, and communications component 1616.
  • a processing component 1602 a memory 1604, a power component 1606, a multimedia component 1608, an audio component 1610, an input/output (I/O) interface 1612, a sensor component 1614, and communications component 1616.
  • Processing component 1602 generally controls the overall operations of device 1600, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1602 may include one or more processors 1620 to execute instructions to complete all or part of the steps of the above method.
  • processing component 1602 may include one or more modules that facilitate interaction between processing component 1602 and other components.
  • processing component 1602 may include a multimedia module to facilitate interaction between multimedia component 1608 and processing component 1602.
  • Memory 1604 is configured to store various types of data to support operations at device 1600 . Examples of such data include instructions for any application or method operating on device 1600, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1604 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 1606 provides power to various components of device 1600.
  • Power components 1606 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1600 .
  • Multimedia component 1608 includes a screen that provides an output interface between the device 1600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 1608 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1610 is configured to output and/or input audio signals.
  • audio component 1610 includes a microphone (MIC) configured to receive external audio signals when device 1600 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1604 or sent via communications component 1616 .
  • audio component 1610 also includes a speaker for outputting audio signals.
  • the I/O interface 1612 provides an interface between the processing component 1602 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1614 includes one or more sensors that provide various aspects of status assessment for device 1600 .
  • the sensor component 1614 can detect the open/closed state of the device 1600, the relative positioning of components, such as the display and keypad of the device 1600, and the sensor component 1614 can also detect a change in position of the device 1600 or a component of the device 1600. , the presence or absence of user contact with device 1600 , device 1600 orientation or acceleration/deceleration and temperature changes of device 1600 .
  • Sensor component 1614 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1614 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communications component 1616 is configured to facilitate wired or wireless communications between device 1600 and other devices.
  • Device 1600 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 1616 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1616 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1600 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1604 including instructions, executable by the processor 1620 of the device 1600 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the embodiment of the present application also provides a communication device, which can have the functions of the network device 101 in the above method embodiment, and can be used to execute the network device provided by the above method embodiment. Steps performed by device 101.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1700 shown in Figure 17 can serve as the user equipment involved in the above method embodiment, and perform the steps performed by the user equipment in the above method embodiment.
  • the communication device 1700 may include a transceiver module 1701 and a processing module 1702, and the transceiver module 1701 and the processing module 1702 are coupled to each other.
  • the transceiver module 1701 can be used to support the communication device 1700 to communicate.
  • the transceiver module 1701 can have a wireless communication function, for example, it can conduct wireless communication with other communication devices through a wireless air interface.
  • the processing module 1702 can be used to support the communication device 1700 to perform the processing actions in the above method embodiments, including but not limited to: generating information and messages sent by the transceiver module 1701, and/or demodulating signals received by the transceiver module 1701 decoding and so on.
  • the processing module 1702 is configured to determine a wake-up signal WUS opportunity corresponding to the user equipment, each WUS opportunity includes a plurality of WUS listening opportunities, and each WUS listening opportunity corresponds to 1 SSB beam;
  • the transceiver module 1701 is configured to send a wake-up signal WUS to the user equipment at the WUS opportunity.
  • each WUS opportunity includes a product of M and N WUS listening opportunities, where M is the number of SSB beams for data transmission, and N is an integer greater than or equal to 1.
  • M is the number of SSB beams for data transmission
  • N is an integer greater than or equal to 1.
  • Each SSB beam Corresponds to N WUS monitoring opportunities.
  • the processing module 1702 is further configured to determine the WUS timing corresponding to the user equipment according to the identification of the user equipment and the wake-up signal WUS cycle.
  • the WUS listening opportunity includes at least one time domain symbol; each WUS listening opportunity within the same WUS opportunity includes the same number of time domain symbols.
  • the processing module 1702 is further configured to determine the number of time domain symbols included in the WUS listening opportunity based on the protocol agreement,
  • first configuration information to the user equipment, where the first configuration information is used to indicate the number of time domain symbols included in the WUS listening opportunity.
  • the processing module 1702 is further configured to determine the time domain position of each WUS listening opportunity within the WUS opportunity based on the protocol agreement,
  • the transceiver module 1701 is further configured to send third configuration information to the user equipment, where the third configuration information is used to configure uplink resources;
  • the processing module 1702 is further configured to, in response to any symbol in the WUS listening opportunity overlapping with an uplink symbol in the uplink resource, update the starting time domain position of the WUS listening opportunity to the uplink symbol. The starting position of the next descending symbol.
  • the transceiver module 1701 is further configured to send fourth configuration information to the user equipment.
  • the fourth configuration information is used to configure downlink resources.
  • the downlink resources are synchronization signals or SSB or CORESET0;
  • the processing module 1702 is further configured to, in response to at least one resource unit RE occupied by the WUS listening opportunity overlap with the downlink uplink resource, update the starting time domain position of the WUS listening opportunity to the downlink resource. The starting position of the next descending symbol.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities are the same.
  • the WUS signals corresponding to multiple WUS listening opportunities in the WUS opportunities respectively carry the index of the SSB beam corresponding to the WUS listening opportunity.
  • the communication device When the communication device is a network device, its structure may also be as shown in Figure 18. Taking the network device 101 as a base station as an example, the structure of the communication device is described. As shown in Figure 18, the device 1800 includes a memory 1801, a processor 1802, a transceiver component 1803, and a power supply component 1806.
  • the memory 1801 is coupled to the processor 1802 and can be used to store programs and data necessary for the communication device 1800 to implement various functions.
  • the processor 1802 is configured to support the communication device 1800 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1801 .
  • the transceiver component 1803 may be a wireless transceiver, which may be used to support the communication device 1800 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1803 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1803 may include a radio frequency component 1804 and one or more antennas 1805.
  • the radio frequency component 1804 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1805 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1802 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1802.
  • the processor 1802 converts the baseband signal into data and processes the data. for processing.
  • each WUS listening opportunity corresponds to one SSB beam, so that the user equipment can accurately monitor the listening time of the wake-up signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种一种传输唤醒信号的方法、装置及可读存储介质,应用于无线通信技术领域,此方法包括:监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。本公开中,在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。

Description

一种监听唤醒信号的方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种监听唤醒信号的方法、装置及可读存储介质。
背景技术
在一些无线通信技术中,可以应用低功耗的(lower power,LP)唤醒信号(wakeupsignal,WUS)。在应用唤醒信号WUS时,唤醒信号WUS对应于单独的接收机可称为副收发机。用户设备(user equipment,UE)使用主收发机处理上行数据和下行数据,使用单独的接收机接收唤醒信号WUS。例如:用户设备的主收发机处于休眠状态时,通过WUS对应的单独的接收机接收到WUS后,将开启主收发机,使主收发机处于工作状态;用户设备的主收发机处于休眠状态时,WUS对应的单独的接收机未接收到WUS,或者,接收到WUS但WUS指示不唤醒,将继续保持主收发机的休眠状态。
在部署多波束覆盖的网络下,UE如何确定UE对应的唤醒信号的监听时机。
发明内容
本公开提供一种监听唤醒信号的方法、装置及可读存储介质。
第一方面,提供一种监听唤醒信号的方法,由用户设备执行,此方法包括:
监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
本方法中,在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述方法还包括:
根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
或者,接收网络设备发送的第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,所述方法还包括:
基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
或者,接收网络设备发送的第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
在一些可能的实施方式中,所述方法还包括:
从网络设备接收第三配置信息,所述第三配置信息用于配置上行资源:
响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将 所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述方法还包括:
从网络设备接收第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
第二方面,提供一种发送唤醒信号的方法,由网络设备执行,此方法包括:
确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
在所述WUS时机向所述用户设备发送唤醒信号WUS。
本方法中,在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一些可能的实施方式中,基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
或者,向所述用户设备发送第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
或者,向所述用户设备发送第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
在一些可能的实施方式中,向所述用户设备发送第三配置信息,所述第三配置信息用于配置上行资源;
响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,向所述用户设备发送第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行上行资源重叠,将 所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
第三方面,提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第一方面所示的方法时,该通信装置可包括收发模块。
在执行上述第一方面所述步骤时,收发模块,被配置为监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
第四方面,提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由网络设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第二方面所示的方法时,该通信装置可包括处理模块和收发模块。
在执行上述第二方面所述步骤时,处理模块,被配置为确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
收发模块,被配置为在所述WUS时机向所述用户设备发送唤醒信号WUS。
第五方面,提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种传输唤醒信号的方法的流程图;
图3是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图4是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图5是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图6是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图7是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图8是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图;
图9是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图10是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图11是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图12是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图13是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图14是根据一示例性实施例示出的一种发送唤醒信号的方法的流程图;
图15是根据一示例性实施例示出的一种监听唤醒信号的装置的结构图;
图16是根据一示例性实施例示出的一种监听唤醒信号的装置的结构图;
图17是根据一示例性实施例示出的一种发送唤醒信号的装置的结构图;
图18是根据一示例性实施例示出的一种发送唤醒信号的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种监听唤醒信号的方法可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例提供了一种监听唤醒信号的方法,图2是根据一示例性实施例示出的一种监听唤醒信号的方法的流程图,如图2所示,该方法包括:
步骤S201,用户设备102和网络设备101确定用户设备102对应的WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一示例中,根据用户设备102的标识和唤醒信号WUS周期确定用户设备102对应的WUS时机。
步骤S202,网络设备101在WUS时机向用户设备102发送唤醒信号。
步骤S203,用户设备102监听其对应的唤醒信号WUS时机。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS 监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,基于协议约定确定所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引,这样,UE可以通过唤醒信号来区分该唤醒信号对应的波束,该WUS信号与PSS/SSS可以联合起来支持WUS接收机完成同步功能。
本公开实施例中,在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图3所示,该方法包括:
步骤S301,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。这样,UE可以通过唤醒信号来区分该唤醒信号对应的波束,该WUS信号与PSS/SSS可以联合起来支持WUS接收机完成同步功能。
本公开实施例中,用户设备监听对应的唤醒信号WUS时机,其中每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。在此多波束覆盖的网络下,使得用户设备能够准确确定唤醒信号的监听时机,节省用户设备能耗。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图4所示,该方法包括:
步骤S401,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机;
步骤S402,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多 个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,一个唤醒信号WUS周期中有K个WUS时机,每个WUS时机在此唤醒信号WUS周期有对应的时域位置。
在一示例中,用户设备根据用户设备的标识UE_ID对K取模的结果来判断该用户设备对应的WUS时机。
在另一示例中,用户设备根据公式(1)确定用户设备对应的WUS时机所在的无线帧号SFN:
(SFN+WUS_offset)mod T=(T div K)*(UE_ID mod K)(1)
其中T是唤醒信号WUS周期的时长,WUS_offset是网络设备配置的与WUS信号相关的时域偏移值,UE_ID是用户设备的标识。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,基于协议约定确定所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图5是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图5所示,该方法包括:
步骤S501,接收网络设备发送的第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
步骤S502,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
步骤S503,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
例如:每个WUS监听时机包含2个OFDM符号,用于承载唤醒信号WUS序列。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图6是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图6所示,该方法包括:
步骤S601,接收网络设备发送的第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
在一示例中,所述WUS时机内的WUS监听时机的时域位置包括WUS时机中第一个WUS监听时机的起始位置,和相邻的两个WUS监听时机之间的时域位置间隔。
步骤S602,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
步骤S603,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,根据协议约定确定多个监听时机从WUS时机所对应的无线帧的第一个时隙的第一个符号开始映射,两个WUS监听时机之间间隔K个符号,K可以等于0,也可以取其他值。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同;
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图7是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图7所示,该方法包括:
步骤S701,从网络设备接收第三配置信息,所述第三配置信息用于配置上行资源;
步骤S702,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
步骤S702,响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
步骤S703,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同;
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例中,在所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠时,为了避免发生重叠,将WUS监听时机的起始位置推迟到最近一个下行符号上。
本公开实施例提供了一种监听唤醒信号的方法,此方法被用户设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图8是根据一示例性实施例示出的一种监听唤醒信号的流程图,如图8所示,该方法包括:
步骤S801,从网络设备接收第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
步骤S802,根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
步骤S803,响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
步骤S804,监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同;
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例中,在所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠时,为了避免发生重叠,将WUS监听时机的起始位置推迟到下行资源之后的最近的一个下行符号上。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图9是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图9所示,该方法包括:
步骤S901,确定与用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S902,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。这样,UE可以通过唤醒信号来区分该唤醒信号对应的波束,该WUS信号与PSS/SSS可以联合起来支持WUS接收机完成同步功能。
本公开实施例中,在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图10是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图10所示,该方法包括:
步骤S1001,根据用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S1002,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,一个唤醒信号WUS周期中有K个WUS时机,每个WUS时机在此唤醒信号WUS周期有对应的时域位置。
在一示例中,网络设备根据用户设备的标识UE_ID对K取模的结果来判断该用户设备对应的WUS时机。
在另一示例中,网络设备根据公式(1)确定用户设备对应的WUS时机所在的无线帧号SFN:
(SFN+WUS_offset)mod T=(T div K)*(UE_ID mod K)(1)
其中T是唤醒信号WUS周期的时长,WUS_offset是网络设备配置的与WUS信号相关的时域偏移值,UE_ID是用户设备的标识。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,基于协议约定确定所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图11是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图11所示,该方法包括:
步骤S1101,向所述用户设备发送第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
步骤S1102,确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S1103,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
例如:每个WUS监听时机包含2个OFDM符号,用于承载唤醒信号WUS序列。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图12是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图12所示,该方法包括:
步骤S1201,向所述用户设备发送第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置;
在一示例中,所述WUS时机内的WUS监听时机的时域位置包括WUS时机中第一个WUS监听时机的起始位置,和相邻的两个WUS监听时机之间的时域位置间隔。
步骤S1202,确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S1203,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,根据协议约定确定多个监听时机从WUS时机所对应的无线帧的第一个时隙的第一个符号开始映射,两个WUS监听时机之间间隔K个符号,K可以等于0,也可以取其他值。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机 内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图13是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图13所示,该方法包括:
步骤S1301,向用户设备发送第三配置信息,所述第三配置信息用于配置上行资源;
步骤S1302,确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S1303,响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
步骤S1304,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例中,在所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠时,为了避免发生重叠,将WUS监听时机的起始位置推迟到最近一个下行符号上。
本公开实施例提供了一种发送唤醒信号的方法,此方法被网络设备执行,该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图14是根据一示例性实施例示出的一种发送唤醒信号的流程图,如图14所示,该方法包括:
步骤S1401,向用户设备发送第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
步骤S1402,确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
步骤S1403,响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置;
步骤S1404,在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的M个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
本公开实施例中,在所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠时,为了避免发生重叠,将WUS监听时机的起始位置推迟到下行资源之后的最近的一个下行符号上。
基于与以上方法实施例相同的构思,本申请实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备102的功能,并可用于执行上述方法实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图15所示的通信装置1500可作为上述方法实施例所涉及的用户设备,并执行上述方法实施例中由用户设备执行的步骤。如图15所示,该通信装置1500可包括收发模块1501。该收发模块1501可用于支持通信装置1500进行通信,收发模块1501可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。
在执行由用户设备102实施的步骤时,收发模块1501被配置为监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述收发模块1501还被配置为:
根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一示例中,每个WUS时机内的各WUS监听时机包含的时域符号的个数均相同。
在一些可能的实施方式中,所述收发模块1501还被配置为:
基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
或者,接收网络设备发送的第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,所述收发模块1501还被配置为:
基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
或者,接收网络设备发送的第二配置信息,其中,所述第二配置信息用于指示所述 WUS时机内的WUS监听时机的时域位置。
在一些可能的实施方式中,所述收发模块1501还被配置为:
从网络设备接收第三配置信息,所述第三配置信息用于配置上行资源:
响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述收发模块1501还被配置为:
从网络设备接收第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
图16是根据一示例性实施例示出的一种监听唤醒信号的装置1600的框图。例如,装置1600可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图16,装置1600可以包括以下一个或多个组件:处理组件1602,存储器1604,电力组件1606,多媒体组件1608,音频组件1610,输入/输出(I/O)的接口1612,传感器组件1614,以及通信组件1616。
处理组件1602通常控制装置1600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1602可以包括一个或多个处理器1620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1602可以包括一个或多个模块,便于处理组件1602和其他组件之间的交互。例如,处理组件1602可以包括多媒体模块,以方便多媒体组件1608和处理组件1602之间的交互。
存储器1604被配置为存储各种类型的数据以支持在设备1600的操作。这些数据的示例包括用于在装置1600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1606为装置1600的各种组件提供电力。电力组件1606可以包括电源管理系统,一个或多个电源,及其他与为装置1600生成、管理和分配电力相关联的组件。
多媒体组件1608包括在所述装置1600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1608包括一个前置摄像头和/或后置摄像头。当设备1600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1610被配置为输出和/或输入音频信号。例如,音频组件1610包括一个麦克风(MIC),当装置1600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1604或经由通信组件1616发送。在一些实施例中,音频组件1610还包括一个扬声器,用于输出音频信号。
I/O接口1612为处理组件1602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1614包括一个或多个传感器,用于为装置1600提供各个方面的状态评估。例如,传感器组件1614可以检测到设备1600的打开/关闭状态,组件的相对定位,例如所述组件为装置1600的显示器和小键盘,传感器组件1614还可以检测装置1600或装置1600一个组件的位置改变,用户与装置1600接触的存在或不存在,装置1600方位或加速/减速和装置1600的温度变化。传感器组件1614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1614还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1616被配置为便于装置1600和其他设备之间有线或无线方式的通信。装置1600可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件1616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1604,上述指令可由装置1600的处理器1620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本申请实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并可用于执行上述方法实施例提供的由网络设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图17所示的通信装置1700可作为上述方法实施例所涉及的用户设备,并执行上述方法实施例中由用户设备执行的步骤。如图17所示,该通信装置1700可包括收发模块1701以及处理模块1702,该收发模块1701以及处理模块1702之间相互耦合。该收发模块1701可用于支持通信装置1700进行通信,收发模块1701可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块1702可用于支持该通信装置1700执行上述方法实施例中的处理动作,包括但不限于:生成由收发模块1701发送的信息、消息,和/或,对收发模块1701接收的信号进行解调解码等等。
在执行由用户设备102实施的步骤时,处理模块1702被配置为确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机 对应于1个SSB波束;
收发模块1701被配置为在所述WUS时机向所述用户设备发送唤醒信号WUS。
在一些可能的实施方式中,每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
在一些可能的实施方式中,所述处理模块1702还被配置为根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
在一些可能的实施方式中,所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
在一些可能的实施方式中,所述处理模块1702还被配置为基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
或者,向所述用户设备发送第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
在一些可能的实施方式中,所述处理模块1702还被配置为基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
或者,向所述用户设备发送第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
在一些可能的实施方式中,所述收发模块1701还被配置为向所述用户设备发送第三配置信息,所述第三配置信息用于配置上行资源;
所述处理模块1702还被配置为响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述收发模块1701还被配置为向所述用户设备发送第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
所述处理模块1702还被配置为响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行上行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
在一些可能的实施方式中,所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
当该通信装置为网络设备时,其结构还可如图18所示。以网络设备101为基站为例说明通信装置的结构。如图18所示,装置1800包括存储器1801、处理器1802、收发组件1803、电源组件1806。其中,存储器1801与处理器1802耦合,可用于保存通信装置1800实现各功能所必要的程序和数据。该处理器1802被配置为支持通信装置1800执行上述方法中相应的功能,此功能可通过调用存储器1801存储的程序实现。收发组件1803可以是无线收发器,可用于支持通信装置1800通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1803也可被称为收发单元或通信单元,收发组件1803可包括射频组件1804以及一个或多个天线1805,其中,射频组件1804可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1805具体 可用于进行射频信号的辐射和接收。
当通信装置1800需要发送数据时,处理器1802可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1800时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1802,处理器1802将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
在多波束覆盖的网络下,使每个WUS监听时机对应于1个SSB波束,从而使用户设备能够准确监听唤醒信号的监听时机。

Claims (26)

  1. 一种监听唤醒信号的方法,由用户设备执行,此方法包括:
    监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
  2. 如权利要求1所述的方法,其中,
    每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
  4. 如权利要求1所述的方法,其中,
    所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
  5. 如权利要求1所述的方法,其中,所述方法还包括:
    基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
    或者,接收网络设备发送的第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
  6. 如权利要求1所述的方法,其中,所述方法还包括:
    基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
    或者,接收网络设备发送的第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
  7. 如权利要求1所述的方法,其中,所述方法还包括:
    从网络设备接收第三配置信息,所述第三配置信息用于配置上行资源;
    响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
  8. 如权利要求1所述的方法,其中,所述方法还包括:
    从网络设备接收第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
    响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
  9. 如权利要求1所述的方法,其中,
    所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
  10. 如权利要求1所述的方法,其中,
    所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
  11. 一种发送唤醒信号的方法,由网络设备执行,此方法包括:
    确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
    在所述WUS时机向所述用户设备发送唤醒信号WUS。
  12. 如权利要求11所述的方法,其中,
    每个WUS时机包含M与N的乘积个WUS监听时机,所述M为进行数据传输的SSB波束的个数,N为大于或等于1的整数,每个SSB波束对应于N个WUS监听时机。
  13. 如权利要求11所述的方法,其中,所述方法还包括:
    根据所述用户设备的标识和唤醒信号WUS周期确定所述用户设备对应的WUS时机。
  14. 如权利要求11所述的方法,其中,
    所述WUS监听时机包括至少一个时域符号;同一WUS时机内的各WUS监听时机包含的时域符号的个数相同。
  15. 如权利要求11所述的方法,其中,所述方法还包括:
    基于协议约定确定所述WUS监听时机内包括的时域符号的个数,
    或者,向所述用户设备发送第一配置信息,其中,所述第一配置信息用于指示所述WUS监听时机内包括的时域符号的个数。
  16. 如权利要求11所述的方法,其中,所述方法还包括:
    基于协议约定确定所述WUS时机内每个WUS监听时机的时域位置,
    或者,向所述用户设备发送第二配置信息,其中,所述第二配置信息用于指示所述WUS时机内的WUS监听时机的时域位置。
  17. 如权利要求11所述的方法,其中,所述方法还包括:
    向所述用户设备发送第三配置信息,所述第三配置信息用于配置上行资源;
    响应于所述WUS监听时机中任意一符号与所述上行资源中的上行符号发生重叠,将所述WUS监听时机的起始时域位置更新为所述上行符号之后的最近的一个下行符号的起始位置。
  18. 如权利要求11所述的方法,其中,所述方法还包括:
    向所述用户设备发送第四配置信息,所述第四配置信息用于配置下行资源,所述下行资源为同步信号或SSB或CORESET0;
    响应于所述WUS监听时机所占用的至少一资源单元RE与所述下行资源重叠,将所述WUS监听时机的起始时域位置更新为所述下行资源之后的最近的一个下行符号的起始位置。
  19. 如权利要求11所述的方法,其中,
    所述WUS时机中的多个WUS监听时机对应的WUS信号相同。
  20. 如权利要求11所述的方法,其中,
    所述WUS时机中的多个WUS监听时机对应的WUS信号分别携带与所述WUS监听时机对应的SSB波束的索引。
  21. 一种监听唤醒信号的装置,配置于用户设备,此装置包括:
    收发模块,被配置为监听与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束。
  22. 一种监听唤醒信号的装置,配置于网络设备,此装置包括:
    处理模块,被配置为确定与所述用户设备对应的唤醒信号WUS时机,每个WUS时机包含多个WUS监听时机,每个WUS监听时机对应于1个SSB波束;
    收发模块,被配置为在所述WUS时机向所述用户设备发送唤醒信号WUS。
  23. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-10中任一项所述的方法。
  24. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求11-20中任一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-10中任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求11-20中任一项所述的方法。
PCT/CN2022/082876 2022-03-24 2022-03-24 一种监听唤醒信号的方法、装置及可读存储介质 WO2023178623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000853.8A CN117121565A (zh) 2022-03-24 2022-03-24 一种监听唤醒信号的方法、装置及可读存储介质
PCT/CN2022/082876 WO2023178623A1 (zh) 2022-03-24 2022-03-24 一种监听唤醒信号的方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082876 WO2023178623A1 (zh) 2022-03-24 2022-03-24 一种监听唤醒信号的方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023178623A1 true WO2023178623A1 (zh) 2023-09-28

Family

ID=88099505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082876 WO2023178623A1 (zh) 2022-03-24 2022-03-24 一种监听唤醒信号的方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN117121565A (zh)
WO (1) WO2023178623A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097792A1 (en) * 2019-11-22 2021-05-27 Lenovo (Beijing) Limited Configuration for wake up signal
WO2021114008A1 (en) * 2019-12-09 2021-06-17 Qualcomm Incorporated Wake-up signal techniques in wireless communications
CN114080008A (zh) * 2020-08-14 2022-02-22 大唐移动通信设备有限公司 数据传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097792A1 (en) * 2019-11-22 2021-05-27 Lenovo (Beijing) Limited Configuration for wake up signal
WO2021114008A1 (en) * 2019-12-09 2021-06-17 Qualcomm Incorporated Wake-up signal techniques in wireless communications
CN114080008A (zh) * 2020-08-14 2022-02-22 大唐移动通信设备有限公司 数据传输方法及装置

Also Published As

Publication number Publication date
CN117121565A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2023206424A1 (zh) 一种上行切换的方法、装置及可读存储介质
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023178623A1 (zh) 一种监听唤醒信号的方法、装置及可读存储介质
WO2024000129A1 (zh) 一种传输资源配置信息的方法、装置以及可读存储介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2024082289A1 (zh) 一种监听或发送信息的方法、装置、设备以及存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024060153A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备或介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2023245627A1 (zh) 一种传输配置信息的方法、装置、设备及可读存储介质
WO2023193185A1 (zh) 一种传输同步信号功率信息的方法、装置及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2023193193A1 (zh) 一种传输唤醒信号功率信息的方法、装置及可读存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023164907A1 (zh) 一种传输下行控制信息的方法、装置、设备及存储介质
WO2023115410A1 (zh) 一种确定定时值的方法、装置及可读存储介质
WO2024036446A1 (zh) 一种发送接收配置信息的方法、装置及可读存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2024020798A1 (zh) 一种传输下行信道的方法、装置、设备以及可读存储介质
WO2023070279A1 (zh) 一种传输能力指示信息的方法、装置、及可读存储介质
WO2024036571A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024036523A1 (zh) 一种传输物理随机接入信道方法、装置、设备以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932688

Country of ref document: EP

Kind code of ref document: A1