WO2021114008A1 - Wake-up signal techniques in wireless communications - Google Patents

Wake-up signal techniques in wireless communications Download PDF

Info

Publication number
WO2021114008A1
WO2021114008A1 PCT/CN2019/123921 CN2019123921W WO2021114008A1 WO 2021114008 A1 WO2021114008 A1 WO 2021114008A1 CN 2019123921 W CN2019123921 W CN 2019123921W WO 2021114008 A1 WO2021114008 A1 WO 2021114008A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
synchronization signal
signal
blocks
transmission
Prior art date
Application number
PCT/CN2019/123921
Other languages
French (fr)
Inventor
Min Huang
Chao Wei
Qiaoyu Li
Jing Dai
Hao Xu
Hui Guo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/123921 priority Critical patent/WO2021114008A1/en
Publication of WO2021114008A1 publication Critical patent/WO2021114008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06954Sidelink beam training with support from third instance, e.g. the third instance being a base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates generally to wireless communications, and more specifically to wake-up signal techniques in wireless communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • An access link is a communication link between a UE and a base station.
  • an access link may be referred to as a Uu interface.
  • a sidelink is a communication link between similar devices.
  • a sidelink may support communications between multiple UEs or may support communications between multiple base stations.
  • an access link may be referred to as a PC5 interface (e.g., supporting communications between UEs, vehicle-to-everything (V2X) or vehicle-to-vehicle (V2V) communications between vehicles in a system, communications between base stations, etc. ) .
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a sidelink may be referred to as a device-to-device (D2D) link and may support unicast messaging, multicast messaging, broadcast messaging, or combinations thereof.
  • one UE in sidelink communications may act as a relay UE between another sidelink UE (which may be referred to as a remote UE) and a base station. Efficient techniques for management of sidelink and access link communications in such systems may be desirable.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support wake-up signal techniques in wireless communications.
  • the described techniques provide for efficient wake-up signal (WUS) transmissions that allow a user equipment (UE) to transition from a sleep mode to an awake mode with relatively low overhead associated with monitoring for WUS transmissions.
  • a UE may act as a relay UE in sidelink communications and may relay communications between a remote UE and a serving base station. Such a relay UE may conserve power by transitioning to a sleep mode and monitoring for WUSs only in identified WUS occasions.
  • the WUS occasions may be associated with beamformed synchronization signal block (SSB) transmissions, such that a SSB may be mapped to a corresponding WUS occasion.
  • the relay UE may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion.
  • the remote UE when establishing the sidelink connection with the relay UE, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB in cases where the relay UE needs to be awakened.
  • a method of wireless communication may include transmitting, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determining one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the apparatus may include means for transmitting, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determining one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • a non-transitory computer-readable medium storing code for wireless communication is described.
  • the code may include instructions executable by a processor to transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block.
  • the reception beam of the first UE at the first wake-up signal monitoring occasion and the transmission beam of the first synchronization signal block may have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  • the set of synchronization signal blocks each may have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks may have an associated wake-up signal monitoring occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE and one or more other UEs, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions, and where the monitoring includes monitoring each of the set of wake-up signal occasions for one or more wake-up signals.
  • each synchronization signal block may have one or more pre-specified wake-up signal occasions associated therewith.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to at least the second UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the broadcast signaling may be provided in one or more of the synchronization signal blocks, in a system information block, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to at least the second UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the multicast signaling may be provided to a subset of a set of remote UEs that may be configured to provide wake-up signals, and where the second UE may be included in the subset of UEs.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring the second UE with a group identifier, and where the multicast signaling includes the group identifier.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the unicast signaling may be provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission to the second UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • a set of wake-up signal monitoring occasions may have a one-to-one correspondence to the set of synchronization signal blocks.
  • two or more synchronization signal blocks may be mapped to one wake-up signal monitoring occasion.
  • two or more wake-up signal monitoring occasions may be mapped to one synchronization signal block.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a first wake-up signal from the second UE in the first wake-up signal monitoring occasion, transitioning from the reduced-power state to an awake state, decoding an additional information transmission provided with the first wake-up signal, and communicating with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  • a method of wireless communication may include receiving, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, selecting a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determining at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
  • the apparatus may include means for receiving, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, selecting a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determining at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
  • a non-transitory computer-readable medium storing code for wireless communication is described.
  • the code may include instructions executable by a processor to receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
  • a reception beam of the second UE for the first synchronization signal block corresponds to a transmission beam of the first wake-up signal monitoring occasion.
  • the reception beam of the second UE for the first synchronization signal block and the transmission beam of the first wake-up signal may have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  • the set of synchronization signal blocks each may have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks may have an associated wake-up signal monitoring occasion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • each synchronization signal block may have one or more pre-specified wake-up signal occasions associated therewith.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the broadcast signaling may be provided in one or more of the synchronization signal blocks, in a SIB, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, a group identifier, and where the multicast signaling includes the group identifier.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the unicast signaling may be provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • a set of wake-up signal monitoring occasions may have a one-to-one correspondence to the set of synchronization signal blocks.
  • two or more synchronization signal blocks may be mapped to one wake-up signal monitoring occasion.
  • two or more wake-up signal monitoring occasions may be mapped to one synchronization signal block.
  • the first wake-up signal includes a wake-up indication and an additional information transmission provided with the first wake-up signal, and communications with the first UE may be based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  • FIG. 1 illustrates an example of a system for wireless communications that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a portion of a wireless communications system that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 3 through 5 illustrate examples of SSB and WUS occasion mapping that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 11 and 12 show block diagrams of devices that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 13 shows a block diagram of a communications manager that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIG. 14 shows a diagram of a system including a device that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 15 through 18 show flowcharts illustrating methods that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • a wireless communications system may support both access links and sidelinks for communications between wireless devices, in which an access link may refer to a communication link between a user equipment (UE) and a base station (e.g., a Uu interface) , and a sidelink may refer to any communication link between similar wireless devices (e.g., a PC5 communication link between UEs) .
  • UE user equipment
  • base station e.g., a Uu interface
  • a sidelink may refer to any communication link between similar wireless devices (e.g., a PC5 communication link between UEs) .
  • similar wireless devices e.g., a PC5 communication link between UEs
  • a sidelink may support device-to-device (D2D) communications, vehicle-to-everything (V2X) and/or vehicle-to-vehicle (V2V) communications, message relaying, discovery signaling, beacon signaling, or any combination of these or other signals transmitted over-the-air from one UE to one or more other UEs.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • message relaying e.g., discovery signaling, beacon signaling, or any combination of these or other signals transmitted over-the-air from one UE to one or more other UEs.
  • IoT Internet-of-Things
  • a UE may act as a relay UE in sidelink communications and may relay communications between a remote UE and a serving base station. Such a relay UE may conserve power by transitioning to a sleep mode and monitoring for WUSs only in identified WUS occasions.
  • the WUS occasions may be associated with beamformed synchronization signal block (SSB) transmissions, such that a SSB may be mapped to a corresponding WUS occasion.
  • the relay UE may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion.
  • SSB beamformed synchronization signal block
  • the remote UE when establishing the sidelink connection with the relay UE, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB in cases where the relay UE needs to be awakened.
  • the remote UE may be a wearable device (e.g., a watch, glasses, headset, etc. ) that have communications relayed to a base station by a user’s mobile phone that acts as a relay UE.
  • the relay UE may transition to a power-saving sleep mode, and while in sleep mode may monitor for WUSs from one or more remote UEs.
  • a relay UE may simply monitor for an easily identifiable WUS and transition to an awake mode upon detection of the WUS.
  • the relay UE and remote UE may operate in higher frequency bands in which analog beamforming is utilized and a relatively large number of narrow beams are available (e.g., in frequency bands above 6 GHZ or frequency range 2 (FR2) communications)
  • monitoring by a relay UE for WUSs on a number of different beams for each WUS monitoring occasion may consume significant amounts of power.
  • the remote UE may consume a large amount of energy in transmitting a large number of WUS signal repetitions.
  • Techniques such as provided herein may allow for efficient WUS transmissions at a remote UE and monitoring of WUS occasions by a relay UE through monitoring one or more particular beams at one or more WUS occasions rather than monitoring for WUSs on all beams that could otherwise be used for WUS transmission.
  • a remote UE can transmit WUS at a proper WUS occasion where the reception beam by the relay UE fits to the remote UE. Therefore, the WUS detection success ratio is improved, and the energy consumed in WUS transmission is reduced at this remote UE.
  • the relay UE may be aware of which remote UEs can possibly transmit WUS, and may only monitor for WUSs at the WUS occasions in correspondence with the suitable beams of such identified remote UEs. Therefore, the energy consumed in WUS reception is also reduced at the relay UE.
  • aspects of the disclosure are initially described in the context of exemplary wireless communications systems. Various examples of WUS occasions and SSBs are then discussed. Aspects of the disclosure are further illustrated by and described with reference to process flows, apparatus diagrams, system diagrams, and flowcharts that relate to wake-up signal techniques in wireless communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-Advanced Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link (e.g., a sidelink communication link 155) may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • groupcast communications among a group of UEs 115 may be performed via sidelink communication links 155, and configuration of beams for use in sidelink groupcast communications may be performed according to various aspects discussed herein.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a first UE 115-a may act as a relay UE, and a second or remote UE 115-b may have communications with a base station 105 relayed through the first UE 115-a. Further, the first UE 115-a may in some cases transition to a sleep mode, and the remote UE 115-b may need to communicate and wake up the first UE 115-a. In such cases, the remote UE 115-b may transmit a WUS to the first UE 115-a.
  • Various described techniques provide for efficient WUS transmissions that allow a relay UE 115-a to transition from a sleep mode to an awake mode with relatively low overhead associated with monitoring for WUS transmissions.
  • the relay UE 115-a may monitor for WUSs only in identified WUS occasions.
  • the WUS occasions may be associated with beamformed SSB transmissions, such that a SSB may be mapped to a corresponding WUS occasion.
  • the relay UE 115-a may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion.
  • the remote UE 115-b when establishing the sidelink connection 155 with the relay UE 115-a, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a first UE 115-c, a second UE 115-d, a third UE 115-e, and base station 105-a which may be examples of UEs 115 and base stations 105 described with reference to FIG. 1.
  • the first UE 115-c is a relay UE
  • the second UE 115-d and third UE 115-e are both remote UEs.
  • One or more of the UEs 115 may communicate with the base station 105-a using a corresponding access link 205.
  • the base station 105-a may communicate with the first UE 115-c via access link 205-a, may optionally communicate with the second UE 115-d via access link 205-b and the third UE 115-e via access link 205-c.
  • the second UE 115-d and the third UE 115-e may not have separate access links 205 with the base station 105-a, and rely on the first UE 115-a acting as a relay UE to relay communications with the base station 105-a.
  • the first UE 115-c, second UE 115-d, and third UE 115-e may establish sidelink communications which may be performed over transmission beams (e.g., using mmW frequencies) , and the first UE 115-c may be a relay UE that transmits on one or more transmit beams 210.
  • the second UE 115-e and the third UE 115-f (and any other remote UEs 115) may use beams 215 for communications with the first UE 115-c.
  • the base station 105-a may provide sidelink configuration information 220 to one or more of the UEs 115 via access links 205.
  • Such sidelink configuration information 220 may include, for example, resources that are to be used for sidelink communications, sidelink communications parameters, SSBs to use for sidelink communications, WUS occasions, or any combinations thereof.
  • the sidelink configuration information 220 may also include a mapping between sidelink SSBs (S-SSBs) and WUS occasions.
  • the first UE 115-c may transmit a number of S-SSBs in a beam sweep procedure, and the second UE 115-d and third UE 115-e may measure received S-SSBs to determine a beam that is suitable for use in sidelink communications with the first UE 115-c.
  • the first UE 115-c may transmit a number of S-SSBs on different training beams 210, including a first training beam 210-a for a first S-SSB, a second training beam 210-b for a second S-SSB, and a third training beam 210-c for a third S-SSB.
  • the second UE 115-e and the third UE 115-f may measure received S-SSBs (e.g., using reference signal received power (RSRP) measurements, signal to interference and noise (SINR) measurements, or combinations thereof) to identify one or more preferred beams.
  • the second UE 115-e may measure received signal characteristics for beamforming parameters corresponding to a first receive beam 215-a and a second receive beam 215-b
  • the third UE 115-e may measure received signal characteristics for beamforming parameters corresponding to a third receive beam 215-c and a fourth receive beam 215-d.
  • the illustrated beams are provided for purposes of discussion and illustration only, and that more or fewer transmit beams 210 or receive beams 215 may be transmitted and used for measurements as part of the beam training procedure.
  • each of these remote UEs 115 may identify a WUS occasion that is associated with the S-SSB of the identified preferred beam.
  • the second UE 115-d may identify second receive beam 215-b as a preferred beam that may be used to determine analog beamforming parameters for sidelink communications with the first UE 115-c, and that the second receive beam 215-b is used for receiving the second S-SSB that was transmitted using the second transmit beam 210-b.
  • the second S-SSB may have a corresponding WUS occasion, during which the first UE 115-c will monitor for WUSs by using receive beamforming parameters associated with the second transmit beam 210-b.
  • the second UE 115-d may transmit a WUS 225-a in the identified WUS occasion.
  • the third UE 115-e may identify third receive beam 215-c as a preferred beam that may be used to determine analog beamforming parameters for sidelink communications with the first UE 115-c, and that the third receive beam 215-c is used for receiving the third S-SSB that was transmitted using the third transmit beam 210-c.
  • the third S-SSB may have a corresponding WUS occasion, during which the first UE 115-c will monitor for WUSs on using receive beamforming parameters associated with the third transmit beam 210-c.
  • the third UE 115-e may transmit a WUS 225-b in the identified WUS occasion.
  • the first UE 115-c acting as the relay UE, may indicate the association relation of the WUS occasions and the S-SSB occasions to the remote UEs 115.
  • the association between the WUS occasions and the S-SSB occasions thus indicates that the reception beam of the first UE 115-c at a certain WUS occasion is the same (or quasi-the-same, similar, etc. ) as the transmission beam at the corresponding certain S-SSB occasion.
  • the remote UEs 115 can derive the position of a preferred WUS occasion from the position of its preferred S-SSB occasion. Then, the remote UEs 115 can select a WUS occasion to transmit WUS based on such indicated relations.
  • the indication from the relay UE 115-c to the remote UEs 115-d and 115-e may be provided by the relay UE 115-c in one or more sidelink transmissions.
  • the indication of the relation between S-SSB occasions and WUS occasions can be provided in one or more broadcast, multicast or unicast transmissions, or combinations thereof.
  • the relation between S-SSB occasions and WUS occasions is provided in a broadcast message
  • a message is sent to all remote UEs 115 that connect to this relay UE 115-c, including the remote UEs 115-d, 115-e that have already established sidelink connections (e.g., RRC connections) to the relay UE 115-c, and also including the other remote UEs that have not yet established connection to this relay UE 115-c (e.g., remote UEs that may be searching for an access node) .
  • the indication between S-SSB occasions and WUS occasions may be provided in the S-SSB signal themselves, or other broadcast signals (e.g., in a MIB, SIB, RMSI, etc. ) .
  • Such a message may be sent to each remote UE 115 that is granted with permission to transmit a WUS.
  • Such remote UEs 115 may have a higher priority or have time-critical services (e.g., URLLC services) .
  • Other remote UEs 115 that are not granted with WUS transmission permission may have lower priority, and thus may not awake the relay UE 115-c, and instead wait for the relay UE 115-c to automatically wake up or be awaken by a higher-priority remote UE with WUS grant permission.
  • Such a technique may further help the relay UE 115-c to save energy and concentrate its power usage related to WUS monitoring to the higher-priority remote UEs 115.
  • remote UEs 115 that have permission to transmit a WUS may be configured with common identifier for a certain remote UE group (i.e., remote UEs with WUS permission) , and then the relay UE 115-c may transmit the relationship between S-SSB occasions and WUS occasions to the UEs 115 configured with this common identifier.
  • the relation between S-SSB occasions and WUS occasions may be sent individually to each remote UE 115.
  • Such messages may be transmitted as part of the sidelink connection establishment (e.g., in RRC messaging) , or afterwards via a physical sidelink control channel (PSCCH) transmission, a physical sidelink shared channel (PSSCH) transmission, or combinations thereof.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the relation between S-SSB occasions and WUS occasions may be pre-specified in a wireless communications standard, and thus not indicated to any of the UEs.
  • FIGs. 3 through 5 illustrate a number of examples of relations between S-SSB occasions and WUS occasions.
  • FIG. 3 illustrates an example of a SSB and WUS occasion mapping 300 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • SSB and WUS occasion mapping 300 may implement aspects of wireless communications system 100 or 200.
  • a relay UE 115-f may support sidelink connections with a number of remote UEs 115, which in this example include a first remote UE 115-g, a second remote UE 115-h, a third remote UE 115-i, and a fourth remote UE 115-j, which may be examples of UEs 115 described with reference to FIGs. 1 and 2.
  • One or more of the UEs 115 may communicate with a base station using a corresponding access link.
  • the relay UE 115-f may transmit S-SSB signals at four S-SSB occasions 305 with four respective transmission beams 310. More specifically, a first S-SSB at a first S-SSB occasion 305-a may be transmitted using a first transmission beam 310-a, a second S-SSB at a second S-SSB occasion 305-b may be transmitted using a second transmission beam 310-b, a third S-SSB at a third S-SSB occasion 305-c may be transmitted using a third transmission beam 310-c, and a fourth S-SSB at a fourth S-SSB occasion 305-d may be transmitted using a fourth transmission beam 310-d.
  • this relay UE 115-f may receive WUS signals at four WUS occasions 315 with four respective reception beams 320. More specifically, the relay UE 115-f may monitor a first WUS occasion 315-a using a first reception beam 320-a, a second WUS occasion 315-b using a second reception beam 320-b, a third WUS occasion 315-c using a third reception beam 320-c, and a fourth WUS occasion 315-d using a fourth reception beam 320-d.
  • one S-SSB occasion is mapped to one WUS occasion, where their transmission beam and reception beam are in the correspondence.
  • a transmission antenna panel is the same as a reception antenna panel, and the beamforming weights of antenna elements at transmission are the same as those at reception, such that the transmission beam has the same or similar beamforming gain, beam shape and beam width as the reception beam.
  • the relay UE 115-f may indicate such relations between S-SSB occasions 305 and WUS occasions 315 to the remote UEs 115-g through 115-j. Each remote UE 115-g through 115-j may, in some cases, then select a WUS occasion 315 to transmit a WUS signal based on which S-SSB has suitable channel condition measurements.
  • the first remote UE 115-g may detect that the received S-SSB signal at the first S-SSB occasion 305-a has the largest beamforming gain, and based on the indication that the first S-SSB occasion 305-a is associated to the first WUS occasion 315-a, may transmit a WUS at the first WUS occasion 315-a using beamforming parameters associated with the first S-SSB beam.
  • the determination of the relation between S-SSB occasions 305 and WUS occasions 315 may be through signaling from the relay UE 115-f, through signaling from an associated serving base station, may be hard-coded according to a standard, or combinations thereof.
  • the relay UE 115-f transmits the indication to the remote UEs 115-g through 115-j may be provided in broadcast signaling, multicast signaling, unicast signaling, or combinations thereof, as discussed with reference to FIG. 2.
  • the relation between S-SSB occasions 305 and WUS occasions 315 may be based on a one-to-one mapping. In other cases, multiple S-SSB occasions 305 may be mapped to one WUS occasion such as in the example of FIG. 4, or one S-SSB occasion 305 may be mapped to multiple WUS occasions such as in the example of FIG. 5.
  • one WUS occasion 315 is associated with one S-SSB occasion 305 such that the relay UE 115-f reception beam at this WUS occasion 315 is identical with the relay UE 115-f transmission beam at the corresponding S-SSB occasion (e.g. the transmission beamforming weight vector is conjugate to the reception beamforming weight) .
  • downlink/uplink channel reciprocity may provide that beamforming gain in transmission and reception are equal at the relay UE 115-f.
  • FIG. 4 illustrates another example of a SSB and WUS occasion mapping 400 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • SSB and WUS occasion mapping 400 may implement aspects of wireless communications system 100 or 200.
  • a relay UE 115-k may support sidelink connections with a number of remote UEs 115, which again in this example include a first remote UE 115-l, a second remote UE 115-m, a third remote UE 115-n, and a fourth remote UE 115-o, which may be examples of UEs 115 described with reference to FIGs. 1 through 3.
  • One or more of the UEs 115 may communicate with a base station using a corresponding access link.
  • the relay UE 115-k may transmit S-SSB signals at four S-SSB occasions 405 with four respective transmission beams 410. More specifically, a first S-SSB at a first S-SSB occasion 405-a may be transmitted using a first transmission beam 410-a, a second S-SSB at a second S-SSB occasion 405-b may be transmitted using a second transmission beam 410-b, a third S-SSB at a third S-SSB occasion 405-c may be transmitted using a third transmission beam 410-c, and a fourth S-SSB at a fourth S-SSB occasion 405-d may be transmitted using a fourth transmission beam 410-d.
  • multiple S-SSB occasions 405 may be mapped to one WUS occasion 415.
  • this relay UE 115-k may receive WUS signals at two WUS occasions 415 with two respective reception beams 420. More specifically, the relay UE 115-k may monitor a first WUS occasion 415-a using a first reception beam 420-a, and a second WUS occasion 415-b using a second reception beam 420-b.
  • the multiple S-SSB occasions 405 to one WUS occasion 415 correspondence may help to save energy consumption in WUS reception by relay UE 115-k, through monitoring of fewer WUS occasions 415 at the relay UE 115-k.
  • the reception beams 420 may be configured to be wider reception beams relative to, for example the reception beams 320 of FIG. 3, and in some cases may be equal to the aggregation of transmission beams of all corresponding S-SSB occasions 405 that are mapped to the WUS occasion 415. In some cases, such a configuration may be selected if the required channel quality for WUS detection is lower than that for S-SSB decoding (e.g., the required SNR for WUS detection is lower than that for S-SSB decoding) .
  • FIG. 5 illustrates another example of a SSB and WUS occasion mapping 500 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • SSB and WUS occasion mapping 500 may implement aspects of wireless communications system 100 or 200.
  • a relay UE 115-k may support sidelink connections with a number of remote UEs 115, which again in this example include a first remote UE 115-q, a second remote UE 115-r, a third remote UE 115-s, and a fourth remote UE 115-t, which may be examples of UEs 115 described with reference to FIGs. 1 through 3.
  • One or more of the UEs 115 may communicate with a base station using a corresponding access link.
  • the relay UE 115-p may transmit S-SSB signals at two S-SSB occasions 505 with two respective transmission beams 510. More specifically, a first S-SSB at a first S-SSB occasion 505-a may be transmitted using a first transmission beam 510-a, and a second S-SSB at a second S-SSB occasion 505-b may be transmitted using a second transmission beam 510-b.
  • one S-SSB occasion 505 may be mapped to multiple WUS occasions 515.
  • this relay UE 115-p may receive WUS signals at four WUS occasions 515 with two respective reception beams 520 that correspond to the S-SSB transmission beams 510. More specifically, the relay UE 115-p may monitor a first WUS occasion 515-a and a second WUS occasion 515-b using a first reception beam 520-a, and a third WUS occasion 515-c and a fourth WUS occasion 515-d using a second reception beam 520-b.
  • a WUS may not only be used to awake relay UE 115-p, but may also be used to convey some information (e.g., buffer information indicating an amount of data to be transmitted) .
  • the required SINR for decoding information in WUS becomes higher than the required SINR for merely detecting the existence of WUS transmission.
  • the correspondence can be configured as one S-SSB occasion 505 to multiple WUS occasions 515. In this manner, the decoding success ratio can be improved through fewer collisions when the remote UEs 115, who locate nearby and transmit a WUS that includes additional information, randomly select one of the WUS occasions 515 that fit to a single S-SSB occasion 505.
  • FIG. 6 illustrates an example of a process flow 600 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • process flow 600 may implement aspects of wireless communications system 100 or 200.
  • Process flow 600 may be implemented by relay UE 115-u (which may also be referred to as a first UE) , one or more remote UEs 115-v (which may be referred to as a second UE) , or any other examples of UEs 115, and base station 105-b, as described herein.
  • relay UE 115-u which may also be referred to as a first UE
  • remote UEs 115-v which may be referred to as a second UE
  • any other examples of UEs 115 and base station 105-b, as described herein.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the base station 105-b, relay UE 115-u, and remote UE (s) 115-v may perform a connection establishment.
  • the connection establishment may establish access links between one or more of the UEs 115 to the base station 105-b through established connection establishment procedures. Further, the connection establishment may also establish one or more sidelinks between the relay UE 115-u and one or more of the remote UE (s) 115-v.
  • the base station 105-b may determine a sidelink configuration for sidelink connections between the relay UE 115-u and one or more of the remote UE (s) 115-v.
  • Such sidelink configuration may include, in some cases, a mapping between one or more SSB occasions (e.g., one or more S-SSB occasions) and one or more WUS occasions.
  • a particular mapping may be associated with a mapping index value that may be used to convey mapping information to sidelink UEs 115.
  • the base station 105-a may transmit sidelink configuration information to one or more of the relay UE 115-u or the remote UE (s) 115-v.
  • the relay UE 115-u may identify SSB to WUS occasion mapping.
  • the SSB to WUS mapping may be identified based on sidelink configuration information received from the base station 105-b, based on a mapping provided in a wireless communication standard, based on a mapping that is determined at the relay UE 115-u, or any combinations thereof.
  • the SSB to WUS mapping may be a one-to-one mapping, a one-to-many mapping, or many-to-one mapping, such as discussed herein with respect to FIGs. 3 through 5.
  • the relay UE 115-u may monitor the WUS occasions when the UE is in sleep mode, in accordance with the WUS occasion mapping.
  • the relay UE 115-u may transition to sleep mode according to a configured sleep mode for the relay UE 115-u, which may be indicated to the remote UE (s) 115-v as part of the sidelink configuration, and the WUS occasions may coincide with the sleep mode schedule of the relay UE 115-u.
  • the relay UE 115-u may transmit a broadcast signal that indicates the sleep mode configuration.
  • the relay UE 115-u may perform a periodic beam training procedure in which SSBs (e.g., S-SSBs) are transmitted in a beam sweeping procedure.
  • the remote UE (s) 115-v may measure the SSBs in accordance with the beam training procedure.
  • the relay UE 115-u may transmit SSB to WUS mapping information to the remote UE (s) 115-v.
  • mapping information may be provided in a broadcast transmission (e.g., in the SSBs themselves, in a MIB, in a SIB, in RMSI, or any combinations thereof) , in a multicast transmission (e.g., to a subset of remote UE (s) 115-v that are configured with a group ID based on whether WUS permission is granted) , in a unicast transmission (e.g., via PSCCH or PSSCH) , or any combinations thereof.
  • a broadcast transmission e.g., in the SSBs themselves, in a MIB, in a SIB, in RMSI, or any combinations thereof
  • a multicast transmission e.g., to a subset of remote UE (s) 115-v that are configured with a group ID based on whether WUS permission is granted
  • a unicast transmission e.g., via PSCCH or PSSCH
  • the remote UE (s) 115-v may identify a first SSB and determine beam parameters based on first SSB measurements. In some cases, the remote UE (s) 115-v may perform measurements on the SSBs to identify a suitable or best SSB and beam for communications.
  • the remote UE (s) 115-v may determine a first WUS occasion associated with a first SSB.
  • the first WUS occasion may be associated with a preferred or selected SSB that was identified at the remote UE (s) 115-v.
  • the remote UE (s) 115-v may determine to transmit a WUS to the relay UE 115-u. In some cases, such a determination may be made based on the remote UE (s) 115-v having new data in a transmission buffer.
  • the remote UE (s) 115-v may determine to transmit the WUS when data having a predetermined priority (e.g., low latency data, mission critical data, or data associated with a high priority service) arrives at a transmit buffer.
  • the remote UE (s) 115-v may transmit the WUS in the identified first WUS occasion, using a transmit beam that corresponds to the beam of the SSB that is associated with the first WUS occasion.
  • the relay UE 115-u may, based on monitoring of the WUS occasions, identify the WUS and transition to an awake mode. Based on the transition to the awake mode, at 670, the relay UE 115-u and the remote UE (s) 115-v may exchange sidelink communications.
  • Such techniques provide for reduced power consumption of UEs 115 while allowing for relatively low latency in sidelink communications through WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at the relay UE 115-u, and the energy consumed in WUS transmission is reduced at the remote UE (s) 115-v through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion. Further, the relay UE 115-u may be aware of which remote UE (s) 115-v can possibly transmit WUS, and may only monitor for WUSs at the WUS occasions in correspondence with the suitable beams of such identified remote UE (s) 115-v. Therefore, the energy consumed in WUS reception may be further reduced at the relay UE 115-u.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may transmit, from a first UE (e.g., from a relay UE) , a set of synchronization signal blocks to at least a second UE (e.g., a remote UE) , where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • a first UE e.g., from a relay UE
  • a second UE e.g., a remote UE
  • the communications manager 715 may also receive, at a second UE (e.g., a remote UE) from a first UE (e.g., a relay UE) , a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may thus advantageously provide for reduced power consumption of UEs while allowing for relatively low latency in sidelink communications through reliable WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at relay UEs, and the energy consumed in WUS transmission is reduced at remote UEs through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 835.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include a SSB manager 820, a sidelink communications manager 825, and a WUS manager 830.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the SSB manager 820 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the sidelink communications manager 825 may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks.
  • the WUS manager 830 may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the SSB manager 820 may receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the sidelink communications manager 825 may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block.
  • the WUS manager 830 may determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  • the transmitter 835 may transmit signals generated by other components of the device 805.
  • the transmitter 835 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 835 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 835 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include a SSB manager 910, a sidelink communications manager 915, a WUS manager 920, a beam manager 925, a configuration manager 930, a power control manager 935, and a decoder 940. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the SSB manager 910 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the SSB manager 910 may receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the sidelink communications manager 915 may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks.
  • the sidelink communications manager 915 may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block.
  • the sidelink communications manager 915 may communicate with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  • the WUS manager 920 may monitor, monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the WUS manager 920 may determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block. In some examples, the WUS manager 920 may transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters. In some examples, two or more synchronization signal blocks are mapped to one wake-up signal monitoring occasion. In some examples, two or more wake-up signal monitoring occasions are mapped to one synchronization signal block. In some cases, a set of wake-up signal monitoring occasions have a one-to-one correspondence to the set of synchronization signal blocks.
  • the WUS manager 920 may receive a first wake-up signal from the second UE in the first wake-up signal monitoring occasion. In some examples, the WUS manager 920 may receive, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the set of synchronization signal blocks each have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
  • the first wake-up signal includes a wake-up indication and an additional information transmission provided with the first wake-up signal
  • communications with the first UE are based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  • the beam manager 925 may identify and configure one or more beams for beamformed communications.
  • a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block.
  • the reception beam of the first UE at the first wake-up signal monitoring occasion and the transmission beam of the first synchronization signal block have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  • the configuration manager 930 may transmit, to the second UE and one or more other UEs, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions, and where the monitoring includes monitoring each of the set of wake-up signal occasions for one or more wake-up signals.
  • the configuration manager 930 may transmit, to at least the second UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may transmit, to at least the second UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may configure the second UE with a group identifier, and where the multicast signaling includes the group identifier.
  • the configuration manager 930 may receive, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • the configuration manager 930 may receive, from the first UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, a group identifier, and where the multicast signaling includes the group identifier. In some examples, the configuration manager 930 may receive, from the first UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
  • each synchronization signal block has one or more pre-specified wake-up signal occasions associated therewith.
  • the broadcast signaling is provided in one or more of the synchronization signal blocks, in a system information block, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
  • RMSI remaining minimum system information
  • the multicast signaling is provided to a subset of a set of remote UEs that are configured to provide wake-up signals, and where the second UE is included in the subset of UEs.
  • the unicast signaling is provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission to the second UE.
  • the power control manager 935 may transition a relay UE from the reduced-power state to an awake state.
  • the decoder 940 may decode an additional information transmission provided with the first wake-up signal.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
  • buses e.g., bus 1045
  • the communications manager 1010 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the communications manager 1010 may also receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  • the communications manager 1010 may thus advantageously provide for reduced power consumption of UEs while allowing for relatively low latency in sidelink communications through reliable WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at relay UEs, and the energy consumed in WUS transmission is reduced at remote UEs through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include RAM and ROM.
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting wake-up signal techniques in wireless communications) .
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may establish a connection with at least a first UE and a second UE, configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE, transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions, and configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
  • the communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
  • the communications manager 1115 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 1115 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1115, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1115, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 1120 may transmit signals generated by other components of the device 1105.
  • the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1120 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1235.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein.
  • the communications manager 1215 may include a sidelink communications manager 1220, a configuration manager 1225, and a WUS manager 1230.
  • the communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
  • the sidelink communications manager 1220 may establish a connection with at least a first UE and a second UE.
  • the configuration manager 1225 may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE and transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions.
  • the WUS manager 1230 may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
  • the transmitter 1235 may transmit signals generated by other components of the device 1205.
  • the transmitter 1235 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1235 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1235 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein.
  • the communications manager 1305 may include a sidelink communications manager 1310, a configuration manager 1315, a WUS manager 1320, and a beam manager 1325. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the sidelink communications manager 1310 may establish a connection with at least a first UE and a second UE.
  • the configuration manager 1315 may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE. In some examples, the configuration manager 1315 may transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions.
  • the WUS manager 1320 may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
  • the set of S-SSBs each have an associated position in an indexed list of S-SSBs, and each position in the indexed list of S-SSBs has an associated WUS monitoring occasion.
  • the beam manager 1325 may configure one or more beams for beamformed communications.
  • a reception beam of the first UE at a first WUS monitoring occasion corresponds to a transmission beam of a first S-SSB.
  • a reception beam of the first UE at the first WUS monitoring occasion and the transmission beam of the first S-SSB have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a conjugate set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  • FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
  • buses e.g., bus 1450
  • the communications manager 1410 may establish a connection with at least a first UE and a second UE, configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE, transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions, and configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
  • the network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1430 may include RAM, ROM, or a combination thereof.
  • the memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1440
  • the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting wake-up signal techniques in wireless communications) .
  • the inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a relay UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may transmit a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
  • the UE may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
  • the UE may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a relay UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may transmit a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
  • the UE may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
  • the UE may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
  • the UE may receive a first wake-up signal from the second UE in the first wake-up signal monitoring occasion.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
  • the UE may transition from the reduced-power state to an awake state.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a power control manager as described with reference to FIGs. 7 through 10.
  • the UE may decode an additional information transmission provided with the first wake-up signal.
  • the operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a decoder as described with reference to FIGs. 7 through 10.
  • the UE may communicate with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  • the operations of 1635 may be performed according to the methods described herein. In some examples, aspects of the operations of 1635 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a remote UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive, from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
  • the UE may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
  • the UE may determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
  • the UE may transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may establish a connection with at least a first UE and a second UE.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a sidelink communications manager as described with reference to FIGs. 11 through 14.
  • the base station may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a configuration manager as described with reference to FIGs. 11 through 14.
  • the base station may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a WUS manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a configuration manager as described with reference to FIGs. 11 through 14.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS- 856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described in which two or more UEs may establish a sidelink connection in which a relay UE may relay communications of a remote UE with a base station. The remote UE may transmit a wake-up signal (WUS) to the relay UE to wake the relay UE from a sleep mode. The WUS transmissions may be provided in WUS monitoring occasions that are configured at the relay UE and the remote UE. The WUS monitoring occasions may be associated with beamformed synchronization signal block (SSB) transmissions, such that a SSB may be mapped to a corresponding WUS occasion. The relay UE may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion, and the remote UE may transmit the WUS using the beam that corresponds to the WUS occasion.

Description

WAKE-UP SIGNAL TECHNIQUES IN WIRELESS COMMUNICATIONS BACKGROUND
The following relates generally to wireless communications, and more specifically to wake-up signal techniques in wireless communications.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Some wireless communications systems may support both access links and sidelinks. An access link is a communication link between a UE and a base station. In some examples, an access link may be referred to as a Uu interface. A sidelink is a communication link between similar devices. For example, a sidelink may support communications between multiple UEs or may support communications between multiple base stations. In some examples, an access link may be referred to as a PC5 interface (e.g., supporting communications between UEs, vehicle-to-everything (V2X) or vehicle-to-vehicle (V2V) communications between vehicles in a system, communications between base stations, etc. ) . In some cases, a sidelink may be referred to as a device-to-device (D2D) link and may support unicast messaging, multicast messaging, broadcast messaging, or combinations thereof. In some cases, one UE in sidelink communications may act as a relay UE between another sidelink UE (which may be referred to as a remote UE) and a base station. Efficient  techniques for management of sidelink and access link communications in such systems may be desirable.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support wake-up signal techniques in wireless communications. In various aspects, the described techniques provide for efficient wake-up signal (WUS) transmissions that allow a user equipment (UE) to transition from a sleep mode to an awake mode with relatively low overhead associated with monitoring for WUS transmissions. In some cases, a UE may act as a relay UE in sidelink communications and may relay communications between a remote UE and a serving base station. Such a relay UE may conserve power by transitioning to a sleep mode and monitoring for WUSs only in identified WUS occasions. In some cases, the WUS occasions may be associated with beamformed synchronization signal block (SSB) transmissions, such that a SSB may be mapped to a corresponding WUS occasion. The relay UE may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion. The remote UE, when establishing the sidelink connection with the relay UE, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB in cases where the relay UE needs to be awakened.
A method of wireless communication is described. The method may include transmitting, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determining one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
An apparatus for wireless communication is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set  of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
Another apparatus for wireless communication is described. The apparatus may include means for transmitting, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determining one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
A non-transitory computer-readable medium storing code for wireless communication is described. The code may include instructions executable by a processor to transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block. In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the reception beam of the first UE at the first wake-up signal monitoring occasion and the transmission beam of the first synchronization signal block may have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of synchronization signal blocks each may have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks may have an associated wake-up signal monitoring occasion. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE and one or more other UEs, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions, and where the monitoring includes monitoring each of the set of wake-up signal occasions for one or more wake-up signals. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each synchronization signal block may have one or more pre-specified wake-up signal occasions associated therewith.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to at least the second UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the broadcast signaling may be provided in one or more of the synchronization signal blocks, in a system information block, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to at least the second UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer- readable medium described herein, the multicast signaling may be provided to a subset of a set of remote UEs that may be configured to provide wake-up signals, and where the second UE may be included in the subset of UEs. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for configuring the second UE with a group identifier, and where the multicast signaling includes the group identifier.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the unicast signaling may be provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission to the second UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a set of wake-up signal monitoring occasions may have a one-to-one correspondence to the set of synchronization signal blocks. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may two or more synchronization signal blocks may be mapped to one wake-up signal monitoring occasion. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein two or more wake-up signal monitoring occasions may be mapped to one synchronization signal block.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a first wake-up signal from the second UE in the first wake-up signal monitoring occasion, transitioning from the reduced-power state to an awake state, decoding an additional information transmission provided with the first wake-up signal, and  communicating with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
A method of wireless communication is described. The method may include receiving, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, selecting a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determining at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
An apparatus for wireless communication is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
Another apparatus for wireless communication is described. The apparatus may include means for receiving, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, selecting a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determining at  least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
A non-transitory computer-readable medium storing code for wireless communication is described. The code may include instructions executable by a processor to receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based on the one or more transmission and reception parameters.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a reception beam of the second UE for the first synchronization signal block corresponds to a transmission beam of the first wake-up signal monitoring occasion. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the reception beam of the second UE for the first synchronization signal block and the transmission beam of the first wake-up signal may have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the set of synchronization signal blocks each may have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks may have an associated wake-up signal monitoring occasion. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, an indication of a relation between the set of  synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, each synchronization signal block may have one or more pre-specified wake-up signal occasions associated therewith.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the broadcast signaling may be provided in one or more of the synchronization signal blocks, in a SIB, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, a group identifier, and where the multicast signaling includes the group identifier.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the unicast signaling may be provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In  some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, a set of wake-up signal monitoring occasions may have a one-to-one correspondence to the set of synchronization signal blocks. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, two or more synchronization signal blocks may be mapped to one wake-up signal monitoring occasion. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, two or more wake-up signal monitoring occasions may be mapped to one synchronization signal block. In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first wake-up signal includes a wake-up indication and an additional information transmission provided with the first wake-up signal, and communications with the first UE may be based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a portion of a wireless communications system that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIGs. 3 through 5 illustrate examples of SSB and WUS occasion mapping that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIGs. 11 and 12 show block diagrams of devices that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 13 shows a block diagram of a communications manager that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIG. 14 shows a diagram of a system including a device that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
FIGs. 15 through 18 show flowcharts illustrating methods that support wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
As discussed herein, a wireless communications system may support both access links and sidelinks for communications between wireless devices, in which an access link may refer to a communication link between a user equipment (UE) and a base station (e.g., a Uu interface) , and a sidelink may refer to any communication link between similar wireless devices (e.g., a PC5 communication link between UEs) . It is noted that while various examples provided herein are discussed for UE sidelink devices, such sidelink techniques may be used for any type of wireless devices that use sidelink communications. For example, a sidelink may support device-to-device (D2D) communications, vehicle-to-everything (V2X) and/or vehicle-to-vehicle (V2V) communications, message relaying, discovery signaling, beacon signaling, or any combination of these or other signals transmitted over-the-air from one UE to one or more other UEs. As demand for sidelink communication increases (e.g., due to increased UE-to-UE communications for wearable devices, D2D communication between Internet-of-Things (IoT) devices, etc. ) , techniques to enhance throughput and reliability of sidelink channels is desirable.
In various aspects, described techniques provide for efficient wake-up signal (WUS) transmissions that allow a user equipment to transition from a sleep mode to an awake mode with relatively low overhead associated with monitoring for WUS transmissions. In some cases, a UE may act as a relay UE in sidelink communications and may relay communications between a remote UE and a serving base station. Such a relay UE may conserve power by transitioning to a sleep mode and monitoring for WUSs only in identified WUS occasions. In some cases, the WUS occasions may be associated with beamformed synchronization signal block (SSB) transmissions, such that a SSB may be mapped to a corresponding WUS occasion. The relay UE may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion. The remote UE, when establishing the sidelink connection with the relay UE, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB in cases where the relay UE needs to be awakened.
Techniques such as discussed in various aspects of the present disclosure thus provide for sidelink communications in which remote and relay UEs may efficiently communicate and also allow the UEs to conserve power, as such UEs may be battery powered devices. For example, the remote UE may be a wearable device (e.g., a watch, glasses, headset, etc. ) that have communications relayed to a base station by a user’s mobile phone that acts as a relay UE. In order to conserve battery power, the relay UE may transition to a power-saving sleep mode, and while in sleep mode may monitor for WUSs from one or more remote UEs. In communications that use non-beamformed or beamformed communications with relatively few available beams (e.g., in sub-6 GHz or frequency range 1 (FR1) communications) such a relay UE may simply monitor for an easily identifiable WUS and transition to an awake mode upon detection of the WUS. However, in cases where the relay UE and remote UE may operate in higher frequency bands in which analog beamforming is utilized and a relatively large number of narrow beams are available (e.g., in frequency bands above 6 GHZ or frequency range 2 (FR2) communications) , monitoring by a relay UE for WUSs on a number of different beams for each WUS monitoring occasion may consume significant amounts of power. Similarly, if the remote UE repeats the WUS transmission at a number of different WUS occasions where the relay UE sweeps all the possible narrow reception beams, although the relay UE can detect the WUS at a certain  WUS occasion, the remote UE may consume a large amount of energy in transmitting a large number of WUS signal repetitions. Techniques such as provided herein may allow for efficient WUS transmissions at a remote UE and monitoring of WUS occasions by a relay UE through monitoring one or more particular beams at one or more WUS occasions rather than monitoring for WUSs on all beams that could otherwise be used for WUS transmission.
Techniques such as discussed herein thus provide for enhanced reliability and efficiency in sidelink communications, and provide for reduced power consumption of UEs. For example, using disclosed techniques, a remote UE can transmit WUS at a proper WUS occasion where the reception beam by the relay UE fits to the remote UE. Therefore, the WUS detection success ratio is improved, and the energy consumed in WUS transmission is reduced at this remote UE. Further, the relay UE may be aware of which remote UEs can possibly transmit WUS, and may only monitor for WUSs at the WUS occasions in correspondence with the suitable beams of such identified remote UEs. Therefore, the energy consumed in WUS reception is also reduced at the relay UE.
Aspects of the disclosure are initially described in the context of exemplary wireless communications systems. Various examples of WUS occasions and SSBs are then discussed. Aspects of the disclosure are further illustrated by and described with reference to process flows, apparatus diagrams, system diagrams, and flowcharts that relate to wake-up signal techniques in wireless communications.
FIG. 1 illustrates an example of a wireless communications system 100 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate  via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT)  device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples. A UE 115 may communicate with the core network 130 through communication link 135.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme,  the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM  techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial  applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link (e.g., a sidelink communication link 155) may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some cases, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both. Further, in some cases, groupcast communications among a group of UEs 115 may be performed via sidelink communication links 155, and configuration of beams for use in sidelink groupcast communications may be performed according to various aspects discussed herein.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at  least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio  access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna  elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In some cases, when two or more UEs 115 of wireless communications system 100 establish a sidelink connection 155, a first UE 115-a may act as a relay UE, and a second or remote UE 115-b may have communications with a base station 105 relayed through the first UE 115-a. Further, the first UE 115-a may in some cases transition to a sleep mode, and the remote UE 115-b may need to communicate and wake up the first UE 115-a. In such cases, the remote UE 115-b may transmit a WUS to the first UE 115-a. Various described techniques provide for efficient WUS transmissions that allow a relay UE 115-a to transition from a sleep mode to an awake mode with relatively low overhead associated with monitoring for WUS transmissions. In some cases, the relay UE 115-a may monitor for WUSs only in identified WUS occasions. In some cases, the WUS occasions may be associated with beamformed SSB transmissions, such that a SSB may be mapped to a corresponding WUS occasion. The relay UE 115-a may monitor for a WUS on a beam associated with the SSB that corresponds to the WUS occasion. The remote UE 115-b, when establishing the sidelink connection 155 with the relay UE 115-a, may identify a SSB and associated beam that provides suitable channel conditions, and may transmit a WUS using the beam in the WUS occasion that corresponds to the identified SSB.
FIG. 2 illustrates an example of a wireless communications system 200 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. In some examples, the wireless communications system 200 may include a first UE 115-c, a second UE 115-d, a third UE 115-e, and base station 105-a which may be examples of UEs 115 and base stations 105 described with reference to FIG. 1. In this example, the first UE 115-c is a relay UE, and the second UE 115-d and third UE 115-e are both remote UEs. One or more of the UEs 115 may communicate with the base station 105-a using a corresponding access link 205. In this example, the base station 105-a may communicate with the first UE 115-c via access link 205-a, may optionally communicate with the second UE 115-d via access link 205-b and the third UE 115-e via access link 205-c. In other cases, the second UE 115-d and the third UE  115-e may not have separate access links 205 with the base station 105-a, and rely on the first UE 115-a acting as a relay UE to relay communications with the base station 105-a.
In this example, the first UE 115-c, second UE 115-d, and third UE 115-e may establish sidelink communications which may be performed over transmission beams (e.g., using mmW frequencies) , and the first UE 115-c may be a relay UE that transmits on one or more transmit beams 210. The second UE 115-e and the third UE 115-f (and any other remote UEs 115) may use beams 215 for communications with the first UE 115-c. In some cases, the base station 105-a may provide sidelink configuration information 220 to one or more of the UEs 115 via access links 205. Such sidelink configuration information 220 may include, for example, resources that are to be used for sidelink communications, sidelink communications parameters, SSBs to use for sidelink communications, WUS occasions, or any combinations thereof. In some cases, the sidelink configuration information 220 may also include a mapping between sidelink SSBs (S-SSBs) and WUS occasions.
In some cases, the first UE 115-c, as part of an establishment of sidelink communications, may transmit a number of S-SSBs in a beam sweep procedure, and the second UE 115-d and third UE 115-e may measure received S-SSBs to determine a beam that is suitable for use in sidelink communications with the first UE 115-c. In some cases, the first UE 115-c may transmit a number of S-SSBs on different training beams 210, including a first training beam 210-a for a first S-SSB, a second training beam 210-b for a second S-SSB, and a third training beam 210-c for a third S-SSB. The second UE 115-e and the third UE 115-f (and any other remote UEs) may measure received S-SSBs (e.g., using reference signal received power (RSRP) measurements, signal to interference and noise (SINR) measurements, or combinations thereof) to identify one or more preferred beams. In this example, the second UE 115-e may measure received signal characteristics for beamforming parameters corresponding to a first receive beam 215-a and a second receive beam 215-b, and the third UE 115-e may measure received signal characteristics for beamforming parameters corresponding to a third receive beam 215-c and a fourth receive beam 215-d. It is to be understood that the illustrated beams are provided for purposes of discussion and illustration only, and that more or fewer transmit beams 210 or receive beams 215 may be transmitted and used for measurements as part of the beam training procedure.
In some cases, based on the SSB of the identified preferred beam at the second UE 115-d and third UE 115-e, each of these remote UEs 115 may identify a WUS occasion that is associated with the S-SSB of the identified preferred beam. For example, the second UE 115-d may identify second receive beam 215-b as a preferred beam that may be used to determine analog beamforming parameters for sidelink communications with the first UE 115-c, and that the second receive beam 215-b is used for receiving the second S-SSB that was transmitted using the second transmit beam 210-b. In some cases, the second S-SSB may have a corresponding WUS occasion, during which the first UE 115-c will monitor for WUSs by using receive beamforming parameters associated with the second transmit beam 210-b. In this example, the second UE 115-d may transmit a WUS 225-a in the identified WUS occasion. Likewise, the third UE 115-e may identify third receive beam 215-c as a preferred beam that may be used to determine analog beamforming parameters for sidelink communications with the first UE 115-c, and that the third receive beam 215-c is used for receiving the third S-SSB that was transmitted using the third transmit beam 210-c. In some cases, the third S-SSB may have a corresponding WUS occasion, during which the first UE 115-c will monitor for WUSs on using receive beamforming parameters associated with the third transmit beam 210-c. In this example, the third UE 115-e may transmit a WUS 225-b in the identified WUS occasion.
In some cases, the first UE 115-c, acting as the relay UE, may indicate the association relation of the WUS occasions and the S-SSB occasions to the remote UEs 115. The association between the WUS occasions and the S-SSB occasions thus indicates that the reception beam of the first UE 115-c at a certain WUS occasion is the same (or quasi-the-same, similar, etc. ) as the transmission beam at the corresponding certain S-SSB occasion. After being indicated, the remote UEs 115 can derive the position of a preferred WUS occasion from the position of its preferred S-SSB occasion. Then, the remote UEs 115 can select a WUS occasion to transmit WUS based on such indicated relations.
In some cases, the indication from the relay UE 115-c to the remote UEs 115-d and 115-e, may be provided by the relay UE 115-c in one or more sidelink transmissions. For example, the indication of the relation between S-SSB occasions and WUS occasions can be provided in one or more broadcast, multicast or unicast transmissions, or combinations thereof. In cases where the relation between S-SSB occasions and WUS occasions is provided in a broadcast message, such a message is sent to all remote UEs 115 that connect to  this relay UE 115-c, including the remote UEs 115-d, 115-e that have already established sidelink connections (e.g., RRC connections) to the relay UE 115-c, and also including the other remote UEs that have not yet established connection to this relay UE 115-c (e.g., remote UEs that may be searching for an access node) . In some cases, the indication between S-SSB occasions and WUS occasions may be provided in the S-SSB signal themselves, or other broadcast signals (e.g., in a MIB, SIB, RMSI, etc. ) .
In cases where the relation between S-SSB occasions and WUS occasions is provided in a multicast message, such a message may be sent to each remote UE 115 that is granted with permission to transmit a WUS. Such remote UEs 115, for example, may have a higher priority or have time-critical services (e.g., URLLC services) . Other remote UEs 115 that are not granted with WUS transmission permission may have lower priority, and thus may not awake the relay UE 115-c, and instead wait for the relay UE 115-c to automatically wake up or be awaken by a higher-priority remote UE with WUS grant permission. Such a technique may further help the relay UE 115-c to save energy and concentrate its power usage related to WUS monitoring to the higher-priority remote UEs 115. In some cases, remote UEs 115 that have permission to transmit a WUS may be configured with common identifier for a certain remote UE group (i.e., remote UEs with WUS permission) , and then the relay UE 115-c may transmit the relationship between S-SSB occasions and WUS occasions to the UEs 115 configured with this common identifier.
In cases where the relation between S-SSB occasions and WUS occasions is provided in a unicast message, such a message may be sent individually to each remote UE 115. Such messages may be transmitted as part of the sidelink connection establishment (e.g., in RRC messaging) , or afterwards via a physical sidelink control channel (PSCCH) transmission, a physical sidelink shared channel (PSSCH) transmission, or combinations thereof. In further cases, the relation between S-SSB occasions and WUS occasions may be pre-specified in a wireless communications standard, and thus not indicated to any of the UEs. FIGs. 3 through 5 illustrate a number of examples of relations between S-SSB occasions and WUS occasions.
FIG. 3 illustrates an example of a SSB and WUS occasion mapping 300 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, SSB and WUS occasion mapping 300 may  implement aspects of  wireless communications system  100 or 200. In the example of FIG. 3, a relay UE 115-f may support sidelink connections with a number of remote UEs 115, which in this example include a first remote UE 115-g, a second remote UE 115-h, a third remote UE 115-i, and a fourth remote UE 115-j, which may be examples of UEs 115 described with reference to FIGs. 1 and 2. One or more of the UEs 115 may communicate with a base station using a corresponding access link.
In this example, the relay UE 115-f may transmit S-SSB signals at four S-SSB occasions 305 with four respective transmission beams 310. More specifically, a first S-SSB at a first S-SSB occasion 305-a may be transmitted using a first transmission beam 310-a, a second S-SSB at a second S-SSB occasion 305-b may be transmitted using a second transmission beam 310-b, a third S-SSB at a third S-SSB occasion 305-c may be transmitted using a third transmission beam 310-c, and a fourth S-SSB at a fourth S-SSB occasion 305-d may be transmitted using a fourth transmission beam 310-d. Correspondingly, this relay UE 115-f may receive WUS signals at four WUS occasions 315 with four respective reception beams 320. More specifically, the relay UE 115-f may monitor a first WUS occasion 315-a using a first reception beam 320-a, a second WUS occasion 315-b using a second reception beam 320-b, a third WUS occasion 315-c using a third reception beam 320-c, and a fourth WUS occasion 315-d using a fourth reception beam 320-d.
Thus, in this example, one S-SSB occasion is mapped to one WUS occasion, where their transmission beam and reception beam are in the correspondence. For example, a transmission antenna panel is the same as a reception antenna panel, and the beamforming weights of antenna elements at transmission are the same as those at reception, such that the transmission beam has the same or similar beamforming gain, beam shape and beam width as the reception beam. The relay UE 115-f may indicate such relations between S-SSB occasions 305 and WUS occasions 315 to the remote UEs 115-g through 115-j. Each remote UE 115-g through 115-j may, in some cases, then select a WUS occasion 315 to transmit a WUS signal based on which S-SSB has suitable channel condition measurements. For example, the first remote UE 115-g may detect that the received S-SSB signal at the first S-SSB occasion 305-a has the largest beamforming gain, and based on the indication that the first S-SSB occasion 305-a is associated to the first WUS occasion 315-a, may transmit a WUS at the first WUS occasion 315-a using beamforming parameters associated with the first S-SSB beam.
As discussed herein, the determination of the relation between S-SSB occasions 305 and WUS occasions 315 may be through signaling from the relay UE 115-f, through signaling from an associated serving base station, may be hard-coded according to a standard, or combinations thereof. In cases where the relay UE 115-f transmits the indication to the remote UEs 115-g through 115-j, may be provided in broadcast signaling, multicast signaling, unicast signaling, or combinations thereof, as discussed with reference to FIG. 2.
In the example of FIG. 3, the relation between S-SSB occasions 305 and WUS occasions 315 may be based on a one-to-one mapping. In other cases, multiple S-SSB occasions 305 may be mapped to one WUS occasion such as in the example of FIG. 4, or one S-SSB occasion 305 may be mapped to multiple WUS occasions such as in the example of FIG. 5. In a one-to-one configuration such as illustrated in FIG. 3, one WUS occasion 315 is associated with one S-SSB occasion 305 such that the relay UE 115-f reception beam at this WUS occasion 315 is identical with the relay UE 115-f transmission beam at the corresponding S-SSB occasion (e.g. the transmission beamforming weight vector is conjugate to the reception beamforming weight) . In this way, downlink/uplink channel reciprocity may provide that beamforming gain in transmission and reception are equal at the relay UE 115-f.
FIG. 4 illustrates another example of a SSB and WUS occasion mapping 400 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, SSB and WUS occasion mapping 400 may implement aspects of  wireless communications system  100 or 200. In the example of FIG. 4, a relay UE 115-k may support sidelink connections with a number of remote UEs 115, which again in this example include a first remote UE 115-l, a second remote UE 115-m, a third remote UE 115-n, and a fourth remote UE 115-o, which may be examples of UEs 115 described with reference to FIGs. 1 through 3. One or more of the UEs 115 may communicate with a base station using a corresponding access link.
In this example, the relay UE 115-k may transmit S-SSB signals at four S-SSB occasions 405 with four respective transmission beams 410. More specifically, a first S-SSB at a first S-SSB occasion 405-a may be transmitted using a first transmission beam 410-a, a second S-SSB at a second S-SSB occasion 405-b may be transmitted using a second transmission beam 410-b, a third S-SSB at a third S-SSB occasion 405-c may be transmitted  using a third transmission beam 410-c, and a fourth S-SSB at a fourth S-SSB occasion 405-d may be transmitted using a fourth transmission beam 410-d.
In this example, multiple S-SSB occasions 405 may be mapped to one WUS occasion 415. Correspondingly, this relay UE 115-k may receive WUS signals at two WUS occasions 415 with two respective reception beams 420. More specifically, the relay UE 115-k may monitor a first WUS occasion 415-a using a first reception beam 420-a, and a second WUS occasion 415-b using a second reception beam 420-b. In such examples, the multiple S-SSB occasions 405 to one WUS occasion 415 correspondence may help to save energy consumption in WUS reception by relay UE 115-k, through monitoring of fewer WUS occasions 415 at the relay UE 115-k. In some cases, the reception beams 420 may be configured to be wider reception beams relative to, for example the reception beams 320 of FIG. 3, and in some cases may be equal to the aggregation of transmission beams of all corresponding S-SSB occasions 405 that are mapped to the WUS occasion 415. In some cases, such a configuration may be selected if the required channel quality for WUS detection is lower than that for S-SSB decoding (e.g., the required SNR for WUS detection is lower than that for S-SSB decoding) .
FIG. 5 illustrates another example of a SSB and WUS occasion mapping 500 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, SSB and WUS occasion mapping 500 may implement aspects of  wireless communications system  100 or 200. In the example of FIG. 5, a relay UE 115-k may support sidelink connections with a number of remote UEs 115, which again in this example include a first remote UE 115-q, a second remote UE 115-r, a third remote UE 115-s, and a fourth remote UE 115-t, which may be examples of UEs 115 described with reference to FIGs. 1 through 3. One or more of the UEs 115 may communicate with a base station using a corresponding access link.
In this example, the relay UE 115-p may transmit S-SSB signals at two S-SSB occasions 505 with two respective transmission beams 510. More specifically, a first S-SSB at a first S-SSB occasion 505-a may be transmitted using a first transmission beam 510-a, and a second S-SSB at a second S-SSB occasion 505-b may be transmitted using a second transmission beam 510-b.
In this example, one S-SSB occasion 505 may be mapped to multiple WUS occasions 515. Correspondingly, this relay UE 115-p may receive WUS signals at four WUS occasions 515 with two respective reception beams 520 that correspond to the S-SSB transmission beams 510. More specifically, the relay UE 115-p may monitor a first WUS occasion 515-a and a second WUS occasion 515-b using a first reception beam 520-a, and a third WUS occasion 515-c and a fourth WUS occasion 515-d using a second reception beam 520-b. In such cases, a WUS may not only be used to awake relay UE 115-p, but may also be used to convey some information (e.g., buffer information indicating an amount of data to be transmitted) . In this case, the required SINR for decoding information in WUS becomes higher than the required SINR for merely detecting the existence of WUS transmission. To alleviate the WUS contention (i.e., the possibility a same WUS occasion being selected by different remote UEs 115) , the correspondence can be configured as one S-SSB occasion 505 to multiple WUS occasions 515. In this manner, the decoding success ratio can be improved through fewer collisions when the remote UEs 115, who locate nearby and transmit a WUS that includes additional information, randomly select one of the WUS occasions 515 that fit to a single S-SSB occasion 505.
FIG. 6 illustrates an example of a process flow 600 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. In some examples, process flow 600 may implement aspects of  wireless communications system  100 or 200. Process flow 600 may be implemented by relay UE 115-u (which may also be referred to as a first UE) , one or more remote UEs 115-v (which may be referred to as a second UE) , or any other examples of UEs 115, and base station 105-b, as described herein. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
Optionally, at 605, the base station 105-b, relay UE 115-u, and remote UE (s) 115-v may perform a connection establishment. The connection establishment may establish access links between one or more of the UEs 115 to the base station 105-b through established connection establishment procedures. Further, the connection establishment may also establish one or more sidelinks between the relay UE 115-u and one or more of the remote UE (s) 115-v.
Optionally, at 610, the base station 105-b may determine a sidelink configuration for sidelink connections between the relay UE 115-u and one or more of the remote UE (s) 115-v. Such sidelink configuration may include, in some cases, a mapping between one or more SSB occasions (e.g., one or more S-SSB occasions) and one or more WUS occasions. In some cases, a particular mapping may be associated with a mapping index value that may be used to convey mapping information to sidelink UEs 115. Optionally, at 615, the base station 105-a may transmit sidelink configuration information to one or more of the relay UE 115-u or the remote UE (s) 115-v.
At 620, the relay UE 115-u may identify SSB to WUS occasion mapping. In some cases, the SSB to WUS mapping may be identified based on sidelink configuration information received from the base station 105-b, based on a mapping provided in a wireless communication standard, based on a mapping that is determined at the relay UE 115-u, or any combinations thereof. In some cases, the SSB to WUS mapping may be a one-to-one mapping, a one-to-many mapping, or many-to-one mapping, such as discussed herein with respect to FIGs. 3 through 5.
At 625, the relay UE 115-u may monitor the WUS occasions when the UE is in sleep mode, in accordance with the WUS occasion mapping. In some cases, the relay UE 115-u may transition to sleep mode according to a configured sleep mode for the relay UE 115-u, which may be indicated to the remote UE (s) 115-v as part of the sidelink configuration, and the WUS occasions may coincide with the sleep mode schedule of the relay UE 115-u. In some cases, the relay UE 115-u may transmit a broadcast signal that indicates the sleep mode configuration.
At 630, the relay UE 115-u may perform a periodic beam training procedure in which SSBs (e.g., S-SSBs) are transmitted in a beam sweeping procedure. At 635, the remote UE (s) 115-v may measure the SSBs in accordance with the beam training procedure. Optionally, at 640, the relay UE 115-u may transmit SSB to WUS mapping information to the remote UE (s) 115-v. Such mapping information may be provided in a broadcast transmission (e.g., in the SSBs themselves, in a MIB, in a SIB, in RMSI, or any combinations thereof) , in a multicast transmission (e.g., to a subset of remote UE (s) 115-v that are configured with a group ID based on whether WUS permission is granted) , in a unicast transmission (e.g., via PSCCH or PSSCH) , or any combinations thereof.
At 645, the remote UE (s) 115-v may identify a first SSB and determine beam parameters based on first SSB measurements. In some cases, the remote UE (s) 115-v may perform measurements on the SSBs to identify a suitable or best SSB and beam for communications.
At 650, the remote UE (s) 115-v may determine a first WUS occasion associated with a first SSB. In some cases, the first WUS occasion may be associated with a preferred or selected SSB that was identified at the remote UE (s) 115-v. At 655, the remote UE (s) 115-v may determine to transmit a WUS to the relay UE 115-u. In some cases, such a determination may be made based on the remote UE (s) 115-v having new data in a transmission buffer. In some cases, the remote UE (s) 115-v may determine to transmit the WUS when data having a predetermined priority (e.g., low latency data, mission critical data, or data associated with a high priority service) arrives at a transmit buffer. At 660, the remote UE (s) 115-v may transmit the WUS in the identified first WUS occasion, using a transmit beam that corresponds to the beam of the SSB that is associated with the first WUS occasion.
At 665, the relay UE 115-u may, based on monitoring of the WUS occasions, identify the WUS and transition to an awake mode. Based on the transition to the awake mode, at 670, the relay UE 115-u and the remote UE (s) 115-v may exchange sidelink communications.
Such techniques provide for reduced power consumption of UEs 115 while allowing for relatively low latency in sidelink communications through WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at the relay UE 115-u, and the energy consumed in WUS transmission is reduced at the remote UE (s) 115-v through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion. Further, the relay UE 115-u may be aware of which remote UE (s) 115-v can possibly transmit WUS, and may only monitor for WUSs at the WUS occasions in correspondence with the suitable beams of such identified remote UE (s) 115-v. Therefore, the energy consumed in WUS reception may be further reduced at the relay UE 115-u.
FIG. 7 shows a block diagram 700 of a device 705 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The  device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may transmit, from a first UE (e.g., from a relay UE) , a set of synchronization signal blocks to at least a second UE (e.g., a remote UE) , where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
The communications manager 715 may also receive, at a second UE (e.g., a remote UE) from a first UE (e.g., a relay UE) , a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715 may thus advantageously provide for reduced power consumption of UEs while allowing for relatively low latency in sidelink  communications through reliable WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at relay UEs, and the energy consumed in WUS transmission is reduced at remote UEs through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a device 805 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a  transmitter 835. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include a SSB manager 820, a sidelink communications manager 825, and a WUS manager 830. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
In some cases, the SSB manager 820 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions. The sidelink communications manager 825 may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks. The WUS manager 830 may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
In some cases, the SSB manager 820 may receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions. The sidelink communications manager 825 may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block. The WUS manager 830 may determine at least a first wake-up signal monitoring occasion that is  associated with the first synchronization signal block and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
The transmitter 835 may transmit signals generated by other components of the device 805. In some examples, the transmitter 835 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 835 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 835 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include a SSB manager 910, a sidelink communications manager 915, a WUS manager 920, a beam manager 925, a configuration manager 930, a power control manager 935, and a decoder 940. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The SSB manager 910 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
In some examples, the SSB manager 910 may receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions.
The sidelink communications manager 915 may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks.
In some examples, the sidelink communications manager 915 may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission parameters for  communications between the first UE and the second UE are determined based on the first synchronization signal block.
In some examples, the sidelink communications manager 915 may communicate with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
The WUS manager 920 may monitor, monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
In some examples, the WUS manager 920 may determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block. In some examples, the WUS manager 920 may transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters. In some examples, two or more synchronization signal blocks are mapped to one wake-up signal monitoring occasion. In some examples, two or more wake-up signal monitoring occasions are mapped to one synchronization signal block. In some cases, a set of wake-up signal monitoring occasions have a one-to-one correspondence to the set of synchronization signal blocks.
In some examples, the WUS manager 920 may receive a first wake-up signal from the second UE in the first wake-up signal monitoring occasion. In some examples, the WUS manager 920 may receive, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
In some cases, the set of synchronization signal blocks each have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
In some cases, the first wake-up signal includes a wake-up indication and an additional information transmission provided with the first wake-up signal, and communications with the first UE are based on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
The beam manager 925 may identify and configure one or more beams for beamformed communications. In some cases, a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block. In some cases, the reception beam of the first UE at the first wake-up signal monitoring occasion and the transmission beam of the first synchronization signal block have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
The configuration manager 930 may transmit, to the second UE and one or more other UEs, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions, and where the monitoring includes monitoring each of the set of wake-up signal occasions for one or more wake-up signals.
In some examples, the configuration manager 930 may transmit, to at least the second UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may transmit, to at least the second UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may configure the second UE with a group identifier, and where the multicast signaling includes the group identifier.
In some examples, the configuration manager 930 may receive, from a serving base station, signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, an indication of a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
In some examples, the configuration manager 930 may receive, from the first UE, broadcast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, multicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up  signal monitoring occasions. In some examples, the configuration manager 930 may receive, from the first UE, a group identifier, and where the multicast signaling includes the group identifier. In some examples, the configuration manager 930 may receive, from the first UE, unicast signaling that indicates a relation between the set of synchronization signal blocks and a set of associated wake-up signal monitoring occasions.
In some cases, each synchronization signal block has one or more pre-specified wake-up signal occasions associated therewith. In some cases, the broadcast signaling is provided in one or more of the synchronization signal blocks, in a system information block, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
In some cases, the multicast signaling is provided to a subset of a set of remote UEs that are configured to provide wake-up signals, and where the second UE is included in the subset of UEs. In some cases, the unicast signaling is provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission to the second UE.
The power control manager 935 may transition a relay UE from the reduced-power state to an awake state. The decoder 940 may decode an additional information transmission provided with the first wake-up signal.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
The communications manager 1010 may transmit, from a first UE, a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, determine one or more transmission or reception parameters for communications  between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks, and monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
The communications manager 1010 may also receive, at a second UE from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions, select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block, determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block, and transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
The communications manager 1010 may thus advantageously provide for reduced power consumption of UEs while allowing for relatively low latency in sidelink communications through reliable WUS transmission and monitoring. Further, the WUS detection success ratio may be improved at relay UEs, and the energy consumed in WUS transmission is reduced at remote UEs through WUS transmissions only on a beam associated with the identified SSB and in the identified WUS occasion.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1015 may utilize an operating system such as
Figure PCTCN2019123921-appb-000001
or another known operating system. In other cases, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1015 may be implemented as part of a processor. In some cases, a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include RAM and ROM. The memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting wake-up signal techniques in wireless communications) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may establish a connection with at least a first UE and a second UE, configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE, transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions, and configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions. The communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
The communications manager 1115, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1115, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are  implemented at different physical locations by one or more physical components. In some examples, the communications manager 1115, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1115, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1120 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1120 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a device 1205 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1235. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to wake-up signal techniques in wireless communications, etc. ) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein. The communications manager 1215 may include a sidelink communications manager 1220, a configuration manager 1225, and a WUS manager 1230. The communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
The sidelink communications manager 1220 may establish a connection with at least a first UE and a second UE.
The configuration manager 1225 may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE and transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions.
The WUS manager 1230 may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
The transmitter 1235 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1235 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1235 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1235 may utilize a single antenna or a set of antennas.
FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The communications manager 1305 may be an example of aspects of a communications manager 1115, a communications manager 1215, or a communications manager 1410 described herein. The communications manager 1305 may include a sidelink communications manager 1310, a configuration manager 1315, a WUS manager 1320, and a beam manager 1325. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The sidelink communications manager 1310 may establish a connection with at least a first UE and a second UE.
The configuration manager 1315 may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE. In some examples, the configuration manager 1315 may transmit configuration information to one or more of the first UE or the second UE to enable  the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions.
The WUS manager 1320 may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions. In some cases, the set of S-SSBs each have an associated position in an indexed list of S-SSBs, and each position in the indexed list of S-SSBs has an associated WUS monitoring occasion.
The beam manager 1325 may configure one or more beams for beamformed communications. In some cases, a reception beam of the first UE at a first WUS monitoring occasion corresponds to a transmission beam of a first S-SSB. In some cases, a reception beam of the first UE at the first WUS monitoring occasion and the transmission beam of the first S-SSB have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a conjugate set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
The communications manager 1410 may establish a connection with at least a first UE and a second UE, configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE, transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions, and configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS  from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions.
The network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1430 may include RAM, ROM, or a combination thereof. The memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein. In some cases, the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1440 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1440. The processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting wake-up signal techniques in wireless communications) .
The inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 15 shows a flowchart illustrating a method 1500 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a relay UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may transmit a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
At 1510, the UE may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1510 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
At 1515, the UE may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring occasion is associated with the first synchronization signal block. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
FIG. 16 shows a flowchart illustrating a method 1600 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a relay UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may transmit a set of synchronization signal blocks to at least a second UE, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
At 1610, the UE may determine one or more transmission or reception parameters for communications between the first UE and the second UE based on a first synchronization signal block of the set of synchronization signal blocks. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
At 1615, the UE may monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, where the first wake-up signal monitoring  occasion is associated with the first synchronization signal block. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
At 1620, the UE may receive a first wake-up signal from the second UE in the first wake-up signal monitoring occasion. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
At 1625, the UE may transition from the reduced-power state to an awake state. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a power control manager as described with reference to FIGs. 7 through 10.
At 1630, the UE may decode an additional information transmission provided with the first wake-up signal. The operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a decoder as described with reference to FIGs. 7 through 10.
At 1635, the UE may communicate with the first UE based on the first wake-up signal and the additional information transmission provided with the first wake-up signal. The operations of 1635 may be performed according to the methods described herein. In some examples, aspects of the operations of 1635 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
FIG. 17 shows a flowchart illustrating a method 1700 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a remote UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may receive, from a first UE, a set of synchronization signal blocks, where each of the set of synchronization signal blocks has one or more associated wake-up signal monitoring occasions. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a SSB manager as described with reference to FIGs. 7 through 10.
At 1710, the UE may select a first synchronization signal block based on one or more measurements of the set of synchronization signal blocks, where one or more transmission and reception parameters for communications between the first UE and the second UE are determined based on the first synchronization signal block. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a sidelink communications manager as described with reference to FIGs. 7 through 10.
At 1715, the UE may determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
At 1720, the UE may transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a WUS manager as described with reference to FIGs. 7 through 10.
FIG. 18 shows a flowchart illustrating a method 1800 that supports wake-up signal techniques in wireless communications in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1805, the base station may establish a connection with at least a first UE and a second UE. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a sidelink communications manager as described with reference to FIGs. 11 through 14.
At 1810, the base station may configure sidelink communications between the first UE and the second UE, where the first UE is configured as a relay UE and the second UE is configured as a remote UE. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a configuration manager as described with reference to FIGs. 11 through 14.
At 1815, the base station may configure a set of S-SSBs for transmission from the first UE to the second UE and a set of WUS occasions that are available for transmission of a WUS from the second UE to the first UE, where each of the set of S-SSBs has one or more associated WUS monitoring occasions. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a WUS manager as described with reference to FIGs. 11 through 14.
At 1820, the base station may transmit configuration information to one or more of the first UE or the second UE to enable the sidelink communications and S-SSBs that are associated with the WUS monitoring occasions. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a configuration manager as described with reference to FIGs. 11 through 14.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS- 856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may  support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the  similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (56)

  1. A method for wireless communication, comprising:
    transmitting, from a first user equipment (UE) , a plurality of synchronization signal blocks to at least a second UE, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    determining one or more transmission or reception parameters for communications between the first UE and the second UE based at least in part on a first synchronization signal block of the plurality of synchronization signal blocks; and
    monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, wherein the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  2. The method of claim 1, wherein a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block.
  3. The method of claim 2, wherein the reception beam of the first UE at the first wake-up signal monitoring occasion and the transmission beam of the first synchronization signal block have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  4. The method of claim 1, wherein the plurality of synchronization signal blocks each have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
  5. The method of claim 1, further comprising:
    transmitting, to the second UE and one or more other UEs, an indication of a relation between the plurality of synchronization signal blocks and a plurality of associated  wake-up signal monitoring occasions, and wherein the monitoring comprises monitoring each of the plurality of wake-up signal occasions for one or more wake-up signals.
  6. The method of claim 1, wherein each synchronization signal block has one or more pre-specified wake-up signal occasions associated therewith.
  7. The method of claim 1, further comprising:
    transmitting, to at least the second UE, broadcast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  8. The method of claim 7, wherein the broadcast signaling is provided in one or more of the synchronization signal blocks, in a system information block, in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
  9. The method of claim 1, further comprising:
    transmitting, to at least the second UE, multicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  10. The method of claim 9, wherein the multicast signaling is provided to a subset of a set of remote UEs that are configured to provide wake-up signals, and wherein the second UE is included in the subset of UEs.
  11. The method of claim 9, further comprising:
    configuring the second UE with a group identifier, and wherein the multicast signaling includes the group identifier.
  12. The method of claim 1, further comprising:
    transmitting, to the second UE, unicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  13. The method of claim 12, wherein the unicast signaling is provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission to the second UE.
  14. The method of claim 1, further comprising:
    receiving, from a serving base station, signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  15. The method of claim 1, wherein a plurality of wake-up signal monitoring occasions have a one-to-one correspondence to the plurality of synchronization signal blocks.
  16. The method of claim 1, wherein:
    two or more synchronization signal blocks are mapped to one wake-up signal monitoring occasion.
  17. The method of claim 1, wherein:
    two or more wake-up signal monitoring occasions are mapped to one synchronization signal block.
  18. The method of claim 1, further comprising:
    receiving a first wake-up signal from the second UE in the first wake-up signal monitoring occasion;
    transitioning from the reduced-power state to an awake state;
    decoding an additional information transmission provided with the first wake-up signal; and
    communicating with the first UE based at least in part on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  19. A method for wireless communication, comprising:
    receiving, at a second user equipment (UE) from a first UE, a plurality of synchronization signal blocks, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    selecting a first synchronization signal block based at least in part on one or more measurements of the plurality of synchronization signal blocks, wherein one or more transmission and reception parameters for communications between the first UE and the second UE are determined based at least in part on the first synchronization signal block;
    determining at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block; and
    transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  20. The method of claim 19, wherein a reception beam of the second UE for the first synchronization signal block corresponds to a transmission beam of the first wake-up signal monitoring occasion.
  21. The method of claim 20, wherein the reception beam of the second UE for the first synchronization signal block and the transmission beam of the first wake-up signal have one or more of a same antenna panel, a same set of beamforming weights of antenna elements, a same beamforming gain, a same beam shape, a same beam width, or any combinations thereof.
  22. The method of claim 19, wherein the plurality of synchronization signal blocks each have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
  23. The method of claim 19, further comprising:
    receiving, from the first UE, an indication of a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  24. The method of claim 19, wherein each synchronization signal block has one or more pre-specified wake-up signal occasions associated therewith.
  25. The method of claim 19, further comprising:
    receiving, from the first UE, broadcast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  26. The method of claim 25, wherein the broadcast signaling is provided in one or more of the synchronization signal blocks, in a system information block (SIB) , in a remaining minimum system information (RMSI) transmission, or any combinations thereof.
  27. The method of claim 19, further comprising:
    receiving, from the first UE, multicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  28. The method of claim 27, further comprising:
    receiving, from the first UE, a group identifier, and wherein the multicast signaling includes the group identifier.
  29. The method of claim 19, further comprising:
    receiving, from the first UE, unicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  30. The method of claim 29, wherein the unicast signaling is provided in one or more of a physical sidelink control channel transmission or a physical sidelink shared channel transmission.
  31. The method of claim 19, further comprising:
    receiving, from a serving base station, signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  32. The method of claim 19, wherein a plurality of wake-up signal monitoring occasions have a one-to-one correspondence to the plurality of synchronization signal blocks.
  33. The method of claim 19, wherein:
    two or more synchronization signal blocks are mapped to one wake-up signal monitoring occasion.
  34. The method of claim 19, wherein:
    two or more wake-up signal monitoring occasions are mapped to one synchronization signal block.
  35. The method of claim 19, wherein the first wake-up signal includes a wake-up indication and an additional information transmission provided with the first wake-up signal, and communications with the first UE are based at least in part on the first wake-up signal and the additional information transmission provided with the first wake-up signal.
  36. An apparatus for wireless communication, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, from a first user equipment (UE) , a plurality of synchronization signal blocks to at least a second UE, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    determine one or more transmission or reception parameters for communications between the first UE and the second UE based at least in part on a first synchronization signal block of the plurality of synchronization signal blocks; and
    monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, wherein the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  37. The apparatus of claim 36, wherein a reception beam of the first UE at the first wake-up signal monitoring occasion corresponds to a transmission beam of the first synchronization signal block.
  38. The apparatus of claim 36, wherein the plurality of synchronization signal blocks each have an associated position in an indexed list of synchronization signal  blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
  39. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second UE and one or more other UEs, an indication of a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions, and wherein the monitoring comprises monitoring each of the plurality of wake-up signal occasions for one or more wake-up signals.
  40. The apparatus of claim 36, wherein each synchronization signal block has one or more pre-specified wake-up signal occasions associated therewith.
  41. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to at least the second UE, broadcast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  42. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to at least the second UE, multicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  43. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second UE, unicast signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  44. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from a serving base station, signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  45. The apparatus of claim 36, wherein a plurality of wake-up signal monitoring occasions have a one-to-one correspondence to the plurality of synchronization signal blocks.
  46. The apparatus of claim 36, wherein two or more synchronization signal blocks are mapped to one wake-up signal monitoring occasion.
  47. The apparatus of claim 36, wherein two or more wake-up signal monitoring occasions are mapped to one synchronization signal block.
  48. An apparatus for wireless communication, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, at a second user equipment (UE) from a first UE, a plurality of synchronization signal blocks, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    select a first synchronization signal block based at least in part on one or more measurements of the plurality of synchronization signal blocks, wherein one or more transmission and reception parameters for communications between the first UE and the second UE are determined based at least in part on the first synchronization signal block;
    determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block; and
    transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  49. The apparatus of claim 48, wherein a reception beam of the second UE for the first synchronization signal block corresponds to a transmission beam of the first wake-up signal monitoring occasion.
  50. The apparatus of claim 48, wherein the plurality of synchronization signal blocks each have an associated position in an indexed list of synchronization signal blocks, and each position in the indexed list of synchronization signal blocks has an associated wake-up signal monitoring occasion.
  51. The apparatus of claim 48, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first UE, an indication of a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  52. The apparatus of claim 48, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from a serving base station, signaling that indicates a relation between the plurality of synchronization signal blocks and a plurality of associated wake-up signal monitoring occasions.
  53. An apparatus for wireless communication, comprising:
    means for transmitting, from a first user equipment (UE) , a plurality of synchronization signal blocks to at least a second UE, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    means for determining one or more transmission or reception parameters for communications between the first UE and the second UE based at least in part on a first synchronization signal block of the plurality of synchronization signal blocks; and
    means for monitoring, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, wherein the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  54. An apparatus for wireless communication, comprising:
    means for receiving, at a second user equipment (UE) from a first UE, a plurality of synchronization signal blocks, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    means for selecting a first synchronization signal block based at least in part on one or more measurements of the plurality of synchronization signal blocks, wherein one or more transmission and reception parameters for communications between the first UE and the second UE are determined based at least in part on the first synchronization signal block;
    means for determining at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block; and
    means for transmitting a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
  55. A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    transmit, from a first user equipment (UE) , a plurality of synchronization signal blocks to at least a second UE, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    determine one or more transmission or reception parameters for communications between the first UE and the second UE based at least in part on a first synchronization signal block of the plurality of synchronization signal blocks; and
    monitor, while in a reduced-power state, at least a first wake-up signal monitoring occasion for a wake-up signal from the second UE based on the one or more transmission or reception parameters, wherein the first wake-up signal monitoring occasion is associated with the first synchronization signal block.
  56. A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    receive, at a second user equipment (UE) from a first UE, a plurality of synchronization signal blocks, wherein each of the plurality of synchronization signal blocks has one or more associated wake-up signal monitoring occasions;
    select a first synchronization signal block based at least in part on one or more measurements of the plurality of synchronization signal blocks, wherein one or more transmission and reception parameters for communications between the first UE and the second UE are determined based at least in part on the first synchronization signal block;
    determine at least a first wake-up signal monitoring occasion that is associated with the first synchronization signal block; and
    transmit a first wake-up signal to the first UE in the first wake-up signal monitoring occasion based at least in part on the one or more transmission and reception parameters.
PCT/CN2019/123921 2019-12-09 2019-12-09 Wake-up signal techniques in wireless communications WO2021114008A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123921 WO2021114008A1 (en) 2019-12-09 2019-12-09 Wake-up signal techniques in wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/123921 WO2021114008A1 (en) 2019-12-09 2019-12-09 Wake-up signal techniques in wireless communications

Publications (1)

Publication Number Publication Date
WO2021114008A1 true WO2021114008A1 (en) 2021-06-17

Family

ID=76329266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123921 WO2021114008A1 (en) 2019-12-09 2019-12-09 Wake-up signal techniques in wireless communications

Country Status (1)

Country Link
WO (1) WO2021114008A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102882A1 (en) * 2021-12-10 2023-06-15 Lenovo (Beijing) Limited Wake up signal for uplink transmission
WO2023159445A1 (en) * 2022-02-24 2023-08-31 北京小米移动软件有限公司 Method and apparatus for transmitting wake-up signal, and readable storage medium
WO2023179855A1 (en) 2022-03-23 2023-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Category-based discovery for devices in deep sleep
WO2023178623A1 (en) * 2022-03-24 2023-09-28 北京小米移动软件有限公司 Method and device for monitoring wake-up signal and readable storage medium
WO2023216984A1 (en) * 2022-05-09 2023-11-16 维沃移动通信有限公司 Signal monitoring method and apparatus, configuration method and apparatus, terminal, and network side device
WO2024032227A1 (en) * 2022-08-09 2024-02-15 华为技术有限公司 Communication method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089294A1 (en) * 2014-12-02 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for d2d communication
US20190090293A1 (en) * 2017-09-18 2019-03-21 Apple Inc. Off Grid Radio Service System Design
US20190349856A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Methods and apparatus for a group wake up signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089294A1 (en) * 2014-12-02 2016-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Wake-up for d2d communication
US20190090293A1 (en) * 2017-09-18 2019-03-21 Apple Inc. Off Grid Radio Service System Design
US20190349856A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Methods and apparatus for a group wake up signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Evaluation Methodology for UE Power Saving", 3GPP DRAFT; R1-1812360_EVALUATION METHODOLOGY FOR UE POWER SAVING_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051478553 *
QUALCOMM: "Wakeup Signaling for multi-beam systems", 3GPP DRAFT; R2-1709116 WAKEUP SIGNALING FOR MULTI-BEAM SYSTEMS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Berlin, Germany; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051318909 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102882A1 (en) * 2021-12-10 2023-06-15 Lenovo (Beijing) Limited Wake up signal for uplink transmission
WO2023159445A1 (en) * 2022-02-24 2023-08-31 北京小米移动软件有限公司 Method and apparatus for transmitting wake-up signal, and readable storage medium
WO2023179855A1 (en) 2022-03-23 2023-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Category-based discovery for devices in deep sleep
WO2023178623A1 (en) * 2022-03-24 2023-09-28 北京小米移动软件有限公司 Method and device for monitoring wake-up signal and readable storage medium
WO2023216984A1 (en) * 2022-05-09 2023-11-16 维沃移动通信有限公司 Signal monitoring method and apparatus, configuration method and apparatus, terminal, and network side device
WO2024032227A1 (en) * 2022-08-09 2024-02-15 华为技术有限公司 Communication method and apparatus

Similar Documents

Publication Publication Date Title
US11516876B2 (en) Discontinuous reception configuration for sidelink
US11082973B2 (en) Upstream timing control mechanisms for non-terrestrial networks
CN111316723B (en) Open loop uplink timing advance
WO2021114008A1 (en) Wake-up signal techniques in wireless communications
EP4018726A1 (en) Power saving techniques for sidelink communication
WO2020252319A2 (en) Device-to-device synchronization in wireless communications
WO2021232176A1 (en) Discontinuous reception for sidelink communications in wireless communications systems
WO2021034638A1 (en) Reference signals for narrowband communications
JP2022550802A (en) Sidelink groupcast configuration to support feedback control
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US11923971B2 (en) Modulation and coding scheme table selection for sidelink communications
WO2021068883A1 (en) Broadcast group identifier for multicast messages
WO2021179245A1 (en) Small data transmissions in an inactive state to disaggregated base stations
WO2021046836A1 (en) Internode measurement configuration signaling
WO2020263931A1 (en) Opportunistic transmission for sidelink communications
CN115868213A (en) Power boosting for uplink shared channel repetition
WO2022147712A1 (en) Timing advance acquisition techniques for sidelink
WO2022170556A1 (en) Additional user equipment identifier for paging response
KR102660155B1 (en) Configure sidelink groupcast to support feedback control
WO2023024010A1 (en) Base station assistance for user equipment discovery
US20220239450A1 (en) Techniques for enhancing user equipment performance for multiple subscriber identification module operation
WO2022187990A1 (en) Paging occasion update using a registration request
WO2021203274A1 (en) Transitioning to single connectivity mode to address data transfer interruptions
US20210345232A1 (en) Physical cell identifier limit configuration
US20230199649A1 (en) Signaling to wake up a cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955856

Country of ref document: EP

Kind code of ref document: A1